
Python
Tricks and Tips

Gain
Insider

Skills

techgo

Advanced
Guides & Tips

Rediscover
Your Device

Next level
Secrets & Fixes

Python
Tricks and Tips

© 2021 Black Dog Media Limited All rights reserved. No part

of this publication may be reproduced in any form, stored in

a retrieval system or integrated into any other publication,

database or commercial programs without the express

written permission of the publisher. Under no circumstances

should this publication and its contents be resold, loaned out

or used in any form by way of trade without the publisher’s

written permission.

While we pride ourselves on the quality of the information

we provide, Black Dog Media Limited reserves the right not

to be held responsible for any mistakes or inaccuracies found

within the text of this publication. Due to the nature of the

tech industry, the publisher cannot guarantee that all apps

and software will work on every version of device. It remains

the purchaser’s sole responsibility to determine the suitability

of this book and its content for whatever purpose.

Any app images reproduced on the front and back cover are

solely for design purposes and are not representative of

content. We advise all potential buyers to check listing prior

to purchase for confirmation of actual content. All editorial

opinion herein is that of the reviewer as an individual and

is not representative of the publisher or any of its affiliates.

Therefore the publisher holds no responsibility in regard to

editorial opinion and content.

This is an independent publication and as such does not

necessarily reflect the views or opinions of the producers

of apps or products contained within. This publication is

100% unofficial. All copyrights, trademarks and registered

trademarks for the respective companies are acknowledged.

Relevant graphic imagery reproduced with courtesy of

brands and products. Additional images contained within this

publication are reproduced under licence from Shutterstock.

Prices, international availability, ratings, titles and content

are subject to change. All information was correct at time

of publication. Some content may have been previously

published in other volumes or titles produced under license

from Papercut Ltd.

Python Tricks and Tips

ISBN: 978-1-912847-52-5

Foreword

Welcome back...

Having completed our exclusive For
Beginners digital guidebook, we have
taught you all you need to master the
basics of your new device, software or
hobby. Yet that’s just the start!

Advancing your skill set is the goal of all
users of consumer technology and our
team of long term industry experts will
help you achieve exactly that. Over this
extensive series of titles we will be looking
in greater depth at how you make the
absolute most from the latest consumer
electronics, software, hobbies and trends!

We will guide you step-by-step through
using all the advanced aspects of the
technology that you may have been
previously apprehensive at attempting.
Let our expert guide help you build your
understanding of technology and gain the
skills to take you from a confident user to
an experienced expert.

Over the page our journey continues and
we will be with you at every stage to
advise, inform and ultimately inspire you
to go further.

About the Publisher

From its humble beginnings in 2004, the
BDM brand has quickly grown from a single
publication produced by a team of just two
to one of the biggest names in global tech
print and digital publishing, for one simple
reason. Our passion and commitment
to deliver the very best product to the
marketplace.

While the company has grown with a
portfolio of over 500 publications crafted by
our international staff of respected industry
veterans, the foundation that it has been
built upon remains the same. That being to
create the best quality, fully independent,
user friendly and, most essentially, 100%
up-to-date content possible.

Delivering not only market leading
publications but also piece of mind to
our readers, so that they have the very
best foundation to build their knowledge,
confidence and understanding of their new
software and hardware. Our regular readers
trust BDM, as should you.

How to use this book

This book has been designed for you to progress through
the coreconcepts and fundamentals of use, through to more
advanced elements, projects, and ideas. There’s something
for every style of reader, and for every type of user; there’s
probably even a few terrible jokes dotted within the pages. So
here’s how to get the best from it.

Step 1
Don’t skip - While it’s fun to see what’s coming up later in the book, it
does make understanding what you’re reading more difficult. After all,
you wouldn’t start reading a book on speaking French, then skip further
in without first learning proper grammar, sentence structure and so
on. The same applies here. Take your first read-through page by-page,
once you’ve mastered the book, then you can return to key concepts
whenever you need.

Step 2
Ever-Changing - While every effort has been made to ensure that this
book is up to date, there’s no knowing what updates may occur over
time. While some companies do offer an accurate roadmap of their
future development of a product, it’s not always written in stone. For
example, an app available for Windows 10 now may not be available with
the next update of the operating system. It’s up to Microsoft to decide
whether they want to drop it for one reason or another. The same, to
some extent, applies here. However, we continually update the content
in this title, so it’s as accurate as possible.

Step 3
Follow the Steps - An obvious one, this. Following the steps from one
onwards, in most tutorials in this book, will ensure that you get the result
that’s intended. If you skip steps, then you may miss out on something
important, and not understand how it works later in the book. The
temptation to skip something you already know is often too much, but
stick with the logical progression of the steps and you’ll get the most
from what’s on offer.

Step 4
Have Fun - Learning a new skill is supposed to be fun. We had fun
writing the book, and hopefully you’ll have fun reading it and applying
new skills. Everyone learns at a different pace, so take your time, digest
the tutorials, and keep returning to key concepts if you feel the need to
master any element within these pages. The content in this book isn’t
something we’re going to be testing you on, so have fun and enjoy the
art of learning something new. And if you create something amazing
after reading this book, then let us know.

Contents
50	 While Loop

52	 For Loop

54	 Do… While Loop

56	 If Statement

58	 If… Else Statement

60	 Combining All You Know

4

Contents

22	 Your First C++ Program

24	 Structure of a C++ Program

26	 Compile and Execute

28	 Using Comments

30	 Variables

32	 Data Types

34	 Strings

36	 C++ Maths

40	 User Interaction

42	 Character Literals

44	 Defining Constants

46	 File Input/Output

20 C++ Fundamentals

38 C++ Input/Output

64 Code Repository

48 Loops and Decision Making

BDM’s Code Portal60+ Python programs 21,500+ lines of codeMaster Python with the help of our
fantastic Code Portal, featuring
code for games, tools and more.

Visit: https://bdmpublications.com/code-portal, and log in to get access!

6 Say Hello to C++

8	 Why C++?

10	 Equipment You Will Need

12	 How to Set Up C++ in Windows

14	 How to Set Up C++ on a Mac

16	 How to Set Up C++ in Linux

18	 Other C++ IDEs to Install

www.bdmpublications.com

66	 Python File Manager

68	 Number Guessing Game

70	 Random Number Generator

71	 Random Password Generator

72	 Text Adventure Script

74	 Hangman Game Script

5

Contents

www.bdmpublications.com

BDM Publications www.bdmpublications.com@bdmpubs

“The most important single
aspect of software
development is to be clear
about what you are
trying to build.”

– Bjarne Stroustrup (Developer and creator of C++)

BDM’s Definitive Guide Series - Volume 346

Say Hello to C++

“The most important
property of a program is
whether it accomplishes
the intention
of its user.”

– C.A.R. Hoare
(Computer scientist, developer of Quicksort)

6 www.bdmpublications.com

www.bdmpublications.com

Say Hello
to C++
C++ is an excellent, high-level programming
language that’s used in a multitude of
technologies. Everything from your favourite
mobile app, console and PC game to entire
operating systems are developed with C++ as
the core, together with a collection of software
development kits and custom libraries.

C++ is the driving force behind most of what you
use on a daily basis, which makes it a complex and
extraordinarily powerful language to get to grips
with. In this section, we look at how to install a C++
IDE and compiler on your computer.

77www.bdmpublications.com

www.bdmpublications.com

Say Hello to C++

C++ is one of the most popular programming languages available today. Originally
called C with Classes, the language was renamed C++ in 1983. It’s an extension of the
original C language and is a general purpose object-oriented (OOP) environment.

Why C++?

Due to how complex the language can be, and its power and performance, C++ is often used to develop games, programs,
device drivers and even entire operating systems.

Dating back to 1979, the start of the golden era of home
computing, C++, or rather C with Classes, was the brainchild of
Danish computer scientist Bjarne Stroustrup while working on his
PhD thesis. Stroustrup’s plan was to further the original C language,
which was widely used since the early seventies.

C++ proved to be popular among the developers of the ‘80s,
since it was a much easier environment to get to grips with and
more importantly, it was 99% compatible with the original C
language. This meant that it could be used beyond the mainstream

C EVERYTHING

computing labs and by regular people who didn’t have access to the
mainframes and large computing data centres.

C++’s impact in the digital world is immense. Many of the programs,
applications, games and even operating systems are coded using
C++. For example, all of Adobe’s major applications, such as
Photoshop, InDesign and so on, are developed in C++. You will find
that the browser you surf the Internet with is written in C++, as
well as Windows 10, Microsoft Office and the backbone to Google’s
search engine. Apple’s macOS is written largely in C++ (with some

C++ code is much faster than that of Python.

88 www.bdmpublications.com

www.bdmpublications.com

Why C++?

other languages mixed in depending on the function) and the likes
of NASA, SpaceX and even CERN use C++ for various applications,
programs, controls and umpteen other computing tasks.

C++ is also extremely efficient and performs
well across the board as well as being an
easier addition to the core C language.
This higher level of performance over
other languages, such as Python, BASIC
and such, makes it an ideal development
environment for modern computing,
hence the aforementioned companies
using it so widely.

While Python is a great programming
language to learn, C++ puts the developer
in a much wider world of coding. By
mastering C++, you can find yourself
developing code for the likes of Microsoft, Apple
and so on. Generally, C++ developers enjoy a higher
salary than programmers of some other languages and
due to its versatility, the C++ programmer can move between
jobs and companies without the need to relearn anything specific.
However, Python is an easier language to begin with. If you’re
completely new to programming then we would recommend you

begin with Python and spend some time getting to grips with
programming structure and the many ways and means in which

you find a solution to a problem through programming. Once
you can happily power up your computer and whip

out a Python program with one hand tied behind
your back, then move on to C++. Of course,

there’s nothing stopping you from jumping
straight into C++; if you feel up to the task,
go for it.

Getting to use C++ is as easy as Python, all
you need is the right set of tools in which
to communicate with the computer in
C++ and you can start your journey. A C++
IDE is free of charge, even the immensely
powerful Visual Studio from Microsoft
is freely available to download and use.

You can get into C++ from any operating
system, be it macOS, Linux, Windows or even

mobile platforms.

Just like Python, to answer the question of Why C++ is the
answer is because it’s fast, efficient and developed by most of the
applications you regularly use. It’s cutting edge and a fantastic
language to master.

99www.bdmpublications.com

Microsoft’s Visual Studio is a great,
free environment to learn C++ in.

Indeed, the operating system you’re
using is written in C++.

BDM’s Definitive Guide Series - Volume 3410

Say Hello to C++

You don’t need to invest a huge amount of money in order to learn C++ and you
don’t need an entire computing lab at your disposal either. Providing you have a fairly
modern computer, everything else is freely available.

Equipment You Will Need

Most, if not all, operating systems have C++ in their code, so it stands to reason that you can learn to program in C++ no matter
what OS you’re currently using.

C++ SETUPS

COMPUTER
Unless you fancy writing out your C++ code by hand on a sheet of
paper (which is something many older coders used to do), a computer
is an absolute must have component. PC users can have any recent
Linux distro or Windows OS, Mac users the latest macOS.

TEXT EDITOR
Some programmers much prefer to use a text editor to assemble their
C++ code before running it through a compiler. Essentially you can
use any text editor to write code, just save it with a .cpp extension.
However, Notepad++ is one of the best code text editors available.

AN IDE
Just as with Python, an IDE is used to enter and execute your C++
code. Many IDEs come with extensions and plugins that help make
it work better, or add an extra level of functionality. Often, an IDE
provides enhancements depending on the core OS being used, such as
being enhanced for Windows 10.

INTERNET ACCESS
While it’s entirely possible to learn how to code on a computer that’s
not attached to the Internet, it’s extraordinarily difficult. You need
to install relevant software, keep it up to date, install any extras or
extensions and look for help when coding. All of these require access
to the Internet.

COMPILER
A compiler is a program that converts the C++ language into binary,
so that the computer can understand. While some IDEs come with a
compiler built in, others don’t. Code::Blocks is our favourite IDE that
comes with a C++ compiler as part of the package. More on this later.

TIME AND PATIENCE
Yes, as with Python, you’re going to need to set aside significant time
to spend on learning how to code in C++. Sadly, unless you’re a genius,
it’s not going to happen overnight, or even a week. A good C++ coder
has spent many years honing their craft, so be patient, start small and
keep learning.

1010 www.bdmpublications.com

www.bdmpublications.com 11

Equipment You Will Need

 LINUX

Linux users are lucky in that they already have a compiler and
text editor built into their operating system. Any text editor
allows you to type out your C++ code, when it’s saved with a
.cpp extension, use g++ to compile it.

 WINDOWS

We have mentioned previously that a good IDE is Microsoft’s
Visual Studio. However, a better IDE and compiler is
Code::Blocks, which is regularly kept up to date with a new
release twice a year. Otherwise Windows users can enter
their code in Notepad++, then compile it with MinGW as used
by Code::Blocks.

 MAC

Mac owners will need to
download and install Xcode
to be able to compile their
C++ code natively. Other
options for the macOS
include Netbeans, Eclipse or
Code::Blocks. Note: the
latest Code::Blocks isn’t
available for Mac due to a lack
of Mac developers.

 RASPBERRY PI

The Raspberry Pi’s operating
system is Raspbian, which
is Linux based. Therefore,
you’re able to write your code
out using a text editor, then
compile it with g++ as you
would in any other Linux distro.

C++ will work in any operating system but getting all the necessary pieces together can be confusing to a newcomer. Here are
some OS specifics for C++.

OS SPECIFIC NEEDS

1111www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3412

Say Hello to C++

Windows users have a wealth of choice when it comes to programming in C++. There
are plenty of IDEs and compilers available, including Visual Studio from Microsoft.
However, in our opinion, the best C++ IDE to begin with is Code::Blocks.

Code::Blocks is a free C++, C and Fortran IDE that’s feature rich and easily extendible with plug-ins. It’s easy to use, comes with
a compiler and has a vibrant community behind it.

CODE::BLOCKS

Start by visiting the Code::Blocks download site, at
www.codeblocks.org/downloads. From there, click

on the ‘Download the binary releases’ link to be taken to the latest
downloadable version for Windows.

When you’ve located the file, click on the
Sourceforge.net link at the end of the line and a

download notification window appears; click on Save File to start
the download and save the executable to your PC. Locate the
downloaded Code::Blocks installer and double-click to start. Follow
the on-screen instructions to begin the installation.

You can see that there are several Windows versions
available. The one you want to download has

‘mingw-setup.exe’ at the end of the current version number. At
the time of writing this is: codeblocks-17.12mingw-setup.exe. The
difference is that the mingw-setup version includes a C++ compiler
and debugger from TDM-GCC (a compiler suite).

Once you’ve agreed to the licencing terms, there is a
choice of installation options available. You can opt

for a smaller install, missing out on some of the components but we
would recommend you opt for the Full option as default.

 STEP 1 STEP 3

 STEP 2 STEP 4

How to Set Up
C++ in Windows

1212 www.bdmpublications.com

www.bdmpublications.com 13

How to Set Up C++ in Windows

Next choose an install location for the Code::Blocks
files. It’s your choice, but the default will generally

suffice, unless of course you have any special requirements. When
you click Next, the install begins; when it’s finished a notification
pops up asking you if you want to start Code::Blocks now, so click Yes.

When the program starts another message appears,
informing you that Code::Blocks is currently not the

default application for C++ files. You a couple of options: to leave
everything as it is or allow Code::Blocks to associate all C++ file
types. Again, we would recommend you opt for the last choice to
associate Code::Blocks with every supported file type.

The first time Code::Blocks loads it runs an
auto-detect for any C++ compilers you may already

have installed on you system. If you don’t have any, click on the
first detected option, GNU GCC Compiler, and click the Default
button to set it as the system’s C++ compiler. Click OK when you’re
ready to continue.

Before you start using Code::Blocks it’s worth
explaining exactly why you need the added

compiler. First, a compiler is a separate program that reads
through your C++ code and checks it against the latest acceptable
programming standards; this is why you need the most recently
available compiler. This is currently C++17, with C++20 underway.

The compiler therefore takes what you’ve
entered as C++ code and translates that to

Machine Language. To execute C++ code the IDE ‘builds’ the code,
checking for errors, then pass it through the compiler to check
standardisation and convert it to ones and zeros for the computer
to act upon. It’s rather clever stuff, when you stop to think about it.

Essentially, computers work and understand only
binary, ones and zeros, or Machine Language.

Programming in binary isn’t effective for human beings. For
example, to output the words “Hello World!” to the screen in C++
would appear in binary as:

01100011 01101111 01110101 01110100 00100000
00111100 00111100 00100000 00100010 01001000
01100101 01101100 01101100 01101111 00100000
01010111 01101111 01110010 01101100 01100100
00100001 00100010 00111011

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

1313www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3414

Say Hello to C++

To begin C++ coding on a Mac you first need to install Apple’s Xcode. This is a free, full
featured IDE that’s designed to create native Apple apps. However, you can also use it
to create C++ code relatively easily.

Apple’s Xcode is primarily designed for users to develop apps for macOS, iOS, tvOS and watchOS applications in Swift or
Objective-C but you can use it for C++ too.

XCODE

Start by opening the App Store on your Mac, Apple
Menu > App Store. In the Search box enter ‘Xcode’

and press Return. There are many suggestions filling the App Store
window but it’s the first option, Xcode, that you need to click on.

When you’re ready, click on the Get button which
then turns into Install App. Enter your Apple ID

and Xcode begins to download and install. It may take some time
depending on the speed of your Internet connection.

Take a moment to browse through the app’s
information, including the compatibility, to ensure

you have the correct version of macOS. Xcode requires macOS
10.12.6 or later to install and work.

When the installation is complete, click on the
Open button to launch Xcode. Click Agree to the

licence terms and enter your password to allow Xcode to make
changes to the system. When that is done, Xcode begins to install
additional components.

 STEP 1 STEP 3

 STEP 2 STEP 4

How to Set Up
C++ on a Mac

1414 www.bdmpublications.com

www.bdmpublications.com 15

How to Set Up C++ on a Mac

With everything now installed, including the
additional components, Xcode launches, displaying

the version number along with three choices and any recent projects
that you’ve worked on; with a fresh install though, this is blank.

Fill in the various fields but ensure that the
Language option at the bottom is set to C++; simply

choose it from the drop-down list. When you’ve filled in the fields,
and made sure that C++ is the chosen language, click on the Next
button to continue.

Start by clicking on Create New Xcode Project; this
opens a template window to choose which platform

you’re developing code for. Click the macOS tab, then click the
Command Line Tool option. Click Next to continue.

The next step asks where to create a Git Repository
for all your future code. Choose a location on your

Mac, or a network location, and click the Create button. When
you’ve done all that, you can start to code. The left-hand pane
details the files used in the C++ program you’re coding. Click on the
main.cpp file in the list.

When you want to run the code, click on Product >
Run. You may be asked to enable Developer Mode

on the Mac; this is to authorise Xcode to perform functions without
needing your password every session. When the program executes,
the output is displayed at the bottom of the Xcode window.

You can see that Xcode has automatically
completed a basic Hello World program for you.

While it may not make much sense at present, you will discover
more as you progress, the content is just Xcode utilising what’s
available on the Mac.

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

1515www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3416

Say Hello to C++

Linux is a great C++ coding environment. Most Linux distros already have the essential
components preinstalled, such as a compiler. The text editors are also excellent for
entering code into, including colour coding. There’s also tons of extra software available
to help you out.

If you’re not familiar with Linux, then we recommend taking a look at one of our Linux titles from the BDM Publications range.
If you have a Raspberry Pi, the commands used below work just fine and for this example we’re using Linux Mint.

LINUX++

The first step is to ensure Linux is ready for your C++
code, so check the system and software are up to

date. Open a Terminal and enter: sudo apt-get update && sudo apt-
get upgrade. Then press Return and enter your password. These
commands update the entire system and any installed software.

Amazingly, that’s it. Everything is already for you
to start coding. Here’s how to get your first C++

program up and running. In Linux Mint the main text editor is Xed,
which you can launch by clicking on the Menu and typing Xed into
the search bar. Click on the Text Editor button in the right-hand pane
to open it.

Most Linux distros come preinstalled with all
the necessary components to start coding in

C++; however, it’s always worth checking to see if everything
is present. Still within the Terminal, enter: sudo apt-get
install build-essential and press Return. If you have the right
components nothing is installed; if you’re missing some then they
are installed by the command.

In Xed, or any other text editor you may be using,
enter the lines of code that make up your C++ Hello

World program. It’s a little different to what the Mac produced:

#include <iostream>

int main()
{
//My first C++ program
std::cout << “Hello World!\n”;
}

 STEP 1 STEP 3

 STEP 2 STEP 4

How to Set Up
C++ in Linux

1616 www.bdmpublications.com

www.bdmpublications.com 17

How to Set Up C++ in Linux

When you’ve entered your code, click File > Save As
and choose a folder in which to save your program.

Name the file as helloworld.cpp (it can be any name as long as it has
.cpp as the extension). Click Save to continue.

With your code now saved, drop into the Terminal
again. You need to navigate to the location of

the C++ file you’ve just saved. Our example is in the Documents
folder, so we can navigate to it by entering: cd Documents.
Remember, the Linux Terminal is case sensitive, so any capitals
must be entered correctly.

The first thing to notice is that Xed has
automatically recognised this as a C++ file, since the

file extension is now set to .cpp. The colour coding is present in the
code and if you open up the file manager you can also see that file’s
icon has C++ stamped on it.

Before you can execute the C++ file you need to
compile it. In Linux it’s common to use g++, an open

source C++ compiler; as you’re now in the same folder as the C++
file, enter: g++ helloworld.cpp in the Terminal and press Return.

The a.out file is the compiled C++ code. To run
the code enter: ./a.out and press Return. The

words ‘Hello World!’ appear on the screen. However, a.out isn’t
very friendly. To name it something else post-compiling, you can
recompile with: g++ helloworld.cpp -o helloworld. This creates an
output file called helloworld which can be run with: ./helloworld.

It takes a short time while the code is compiled by
g++ but providing there are no mistakes or errors in

the code you are returned to the command prompt. The compiling
of the code has created a new file. If you enter: ls into the Terminal
you can see that alongside your C++ file is a.out.

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

1717www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3418

Say Hello to C++

If you want to try a different approach to working with your C++ code, then there are
plenty of options available to you. Windows is the most prolific platform for C++ IDEs
but there are plenty for Mac and Linux users too.

Other C++ IDEs to Install

Here are ten great C++ IDEs that are worth looking into. You can install one or all of them if you like, but find the one that
works best for you.

DEVELOPING C++

Eclipse is a hugely popular C++ IDE that offers
the programmer a wealth of features. It has a

great, clean interface, is easy to use and available for Windows,
Linux and Mac. Head over to www.eclipse.org/downloads/ to
download the latest version. If you’re stuck, click the Need Help link
for more information.

CodeLite is a free and open source IDE that’s
regularly updated and available for Windows,

Linux and macOS. It’s lightweight, uncomplicated and extremely
powerful. You can find out more information as well as how to
download and install it at www.codelite.org/.

The GNAT Programming Studio (GPS) is a powerful
and intuitive IDE that supports testing, debugging

and code analysis. The Community Edition is free, whereas the
Pro version costs; however, the Community Edition is available for
Windows, Mac, Linux and even the Raspberry Pi. You can find it at
www.adacore.com/download.

Another popular choice is NetBeans. This
is another excellent IDE that’s packed with

features and a pleasure to use. NetBeans IDE includes project based
templates for C++ that give you the ability to build applications with
dynamic and static libraries. Find out more at www.netbeans.org/
features/cpp/index.html.

 ECLIPSE CODELITE

 GNAT NETBEANS

1818 www.bdmpublications.com

19www.bdmpublications.com

Other C++ IDEs to Install

Microsoft’s Visual Studio is a
mammoth C++ IDE that allows you

to create applications for Windows, Android, iOS and the web. The
Community version is free to download and install but the other
versions allow a free trial period. Go to www.visualstudio.com/ to
see what it can do for you.

Bloodshed Dev C++, despite its colourful name,
is an older IDE that is for Windows systems only.

However, many users praise its clean interface and uncomplicated
way of coding and compiling. Although there’s not been much
updating for some time, it’s certainly one to consider if you want
something different: www.bloodshed.net/devcpp.html.

This cross-platform IDE is designed to
create C++ applications for desktop and

mobile environments. It comes with a code editor and integrated
tools for testing and debugging, as well as deploying to you chosen
platform. It’s not free but there is a trial period on offer before
requiring purchasing: www.qt.io/qt-features-libraries-apis-tools-
and-ide/.

The Anjuta DevStudio is a Linux-only IDE that
features some of the more advanced features you

would normally find in a paid software development studio. There’s
a GUI designer, source editor, app wizard, interactive debugger and
much more. Go to www.anjuta.org/ for more information.

Ultimate++ is a cross-platform C++ IDE that boasts a
rapid development of code through the smart and

aggressive use of C++. For the novice, it’s a beast of an IDE but behind
its complexity is a beauty that would make a developer’s knees go
wobbly. Find out more at www.ultimatepp.org/index.html.

This excellent IDE allows developers
to write C++ code for desktop and

web applications across all the major platforms. There’s an advanced
text editor, integrated debugger and a configurable workbench to
help you create your code. It’s available for Windows, Mac and Linux
and is free to download and use: www.monodevelop.com/.

 VISUAL STUDIO

 DEV C++

 QT CREATOR

 ANJUTA

 U++

 MONODEVELOP

1919www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3420

C++ Fundamentals

“How did
you know so
much about
computers?”

“I didn’t, it was
the first one.”

– Admiral Grace Hopper
(pioneer programmer)
when interviewed by
David Letterman

2020 www.bdmpublications.com

www.bdmpublications.com

Within this section, you will begin to
understand the structure of C++ code and
how you can compile and execute that
code. These are the core fundamentals
of C++, which teach you the basics such
as using comments, variables, data types,
strings and how to use C++ mathematics.

These are the building blocks of a C++
program. With them, you will be able to
form your own code, produce an output
to the screen, store and retrieve data and
be well on your way to creating your own
custom code.

C++
Fundamentals

212121www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3422

C++ Fundamentals

You may have followed the Mac and Linux examples previously but you’re going to be
working exclusively in Windows and Code::Blocks from here on. Let’s begin by writing
your first C++ program and taking the first small step into a larger coding world.

It’s traditional in programming for the first code to be entered to output the words ‘Hello, World!’ to the screen. Interestingly,
this dates back to 1968 using a language called BCPL.

HELLO, WORLD!

As mentioned, we’re using Windows 10 and the
latest version of Code::Blocks for the rest of the C++

code in this book. Begin by launching Code::Blocks. When open, click
on File > New > Empty File or press Ctrl+Shift+N on the keyboard.

At the moment it doesn’t look like much, and
it makes even less sense, but we’ll get to that

in due course. Now click on File > Save File As. Create or find a
suitable location on your hard drive and in the File Name box, call
it helloworld.cpp. Click the Save as type box and select C/C++ files.
Click the Save button.

Now you can see a blank screen, with the tab
labelled *Untitled1, and the number one in the top

left of the main Code::Blocks window. Begin by clicking in the main
window, so the cursor is next to the number one, and entering:

#include <iostream>

You can see that Code::Blocks has now changed
the colour coding, recognising that the file is now

C++ code. This means that code can be auto-selected from the
Code::Blocks repository. Delete the #include <iostream> line and
re-enter it. You can see the auto-select boxes appearing.

 STEP 1 STEP 3

 STEP 2 STEP 4

Your First C++ Program

222222 www.bdmpublications.com

www.bdmpublications.com 23

Your First C++ Program

Auto-selection of commands is extremely handy and
cuts out potential mistyping. Press Return to get to

line 3, then enter:

int main()

Note: there’s no space between the brackets.

Notice that Code::Blocks has automatically created
a corresponding closing curly bracket a couple of

lines below, linking the pair, as well as a slight indent. This is due to
the structure of C++ and it’s where the meat of the code is entered.
Now enter:

//My first C++ program

On the next line below int main(), enter a curly bracket:

{

This can be done by pressing Shift and the key to the right of P on an
English UK keyboard layout.

Note again the colour coding change. Press Return at
the end of the previous step’s line, and then enter:

std::cout << “Hello, world!\n”;

That’s all you need to do for the moment. It may
not look terribly amazing but C++ is best absorbed

in small chunks. Don’t execute the code at the moment as you need
to look at how a C++ program is structured first; then you can build
and run the code. For now, click on Save, the single floppy disc icon.

Just as before, Code::Blocks auto-completes the
code you’re entering, including placing a closing

speech mark as soon as you enter the first. Don’t forget the
semicolon at the end of the line; this is one of the most important
elements to a C++ program and we’ll tell you why in the next
section. For now, move the cursor down to the closing curly bracket
and press Return.

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

232323www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3424

C++ Fundamentals

C++ has a very defined structure and way of doing things. Miss something out, even
as small as a semicolon, and your entire program will fail to be compiled and executed.
Many a professional programmer has fallen foul of sloppy structure.

Learning the basics of programming, you begin to understand the structure of a program. The commands may be different
from one language to the next, but you will start to see how the code works.

#INCLUDE <C++ STRUCTURE>

Structure of a
C++ Program

int main() initiates the
declaration of a function, which
is a group of code statements
under the name ‘main’. All
C++ code begins at the main
function, regardless of where it
actually lies within the code.

The structure of a C++ program
is quite precise. Every C++ code
begins with a directive: #include
<>. The directive instructs the
pre-processor to include a
section of the standard C++
code. For example: #include
<iostream> includes the
iostream header to support
input/output operations.

The open brace (curly brackets) is something
that you may not have come across before,
especially if you’re used to Python. The
open brace indicates the beginning of the
main function and contains all the code that
belongs to that function.

 C++

C++ was invented by Danish
student Bjarne Stroustrup in
1979, as a part of his Ph.D.
thesis. Initially C++ was called C
with Classes, which added
features to the already popular
C programming language,
while making it a more
user-friendly environment
through a new structure.

Bjarne Stroustrup, inventor
of C++.

#INCLUDE

INT MAIN()

BRACES

242424 www.bdmpublications.com

www.bdmpublications.com 25

Structure of a C++ Program

//My first C++ program
cout << “Hello, world!\n”

Lines that begin with a double slash are comments. This means they
won’t be executed in the code and are ignored by the compiler.
Comments are designed to help you, or another programmer
looking at your code, explain what’s going on. There are two types
of comment: /* covers multiple line comments, // a single line. Lines
that begin with a double slash are comments. This means they won’t
be executed in the code and
are ignored by the compiler.
Comments are designed
to help you, or another
programmer looking at
your code, explain what’s
going on. There are two
types of comment: /* covers
multiple line comments, // a
single line.

In this example we’re using cout, which is a part of the Standard
Namespace, hence why it’s there, as you’re asking C++ to use it from
that particular namespace. Cout means Character OUTput, which
displays, or prints, something to the screen. If we leave std:: out we
have to declare it at the start of the code, as mentioned previously.

While std stands for something quite different, in C++ it means
Standard. It’s part of the Standard Namespace in C++, which covers
a number of different statements and commands. You can leave the
std:: part out of the code but it must be declared at the start with:
using namespace std; not both. For example:

#include <iostream>
using namespace std;

The two chevrons used here are insertion operators. This means
that whatever follows the chevrons is to be inserted into the
std::cout statement. In this case they’re the words ‘Hello, world’,
which are to be displayed on the screen when you compile and
execute the code.

Finally you can see that lines within a function code block (except
comments) end with a semicolon. This marks the end of the
statement and all statements in C++ must have one at the end or
the compiler fails to build the code. The very last line has the closing
brace to indicate the end of the main function.

Leading on, the “Hello, world!” part is what we want to appear on
the screen when the code is executed. You can enter whatever you
like, as long as it’s inside the quotation marks. The brackets aren’t
needed but some compilers insist on them. The \n part indicates a
new line is to be inserted.

COMMENTS

STD

COUT

<<

OUTPUTS

; AND }

252525www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3426

C++ Fundamentals

Compiling and executing C++ code from Code::Blocks is extraordinarily easy; just a matter of clicking an icon and seeing the
result. Here’s how it’s done.

GREETINGS FROM C++

Open Code::Blocks, if you haven’t already, and
load up the previously saved Hello World code you

created. Ensure that there are no visible errors, such as missing
semicolons at the end of the std::cout line.

Start by clicking on the Build icon, the yellow cog.
At this point, your code has now been run through

the Code::Blocks compiler and checked for any errors. You can see
the results of the Build by looking to the bottom window pane. Any
messages regarding the quality of the code are displayed here.

If your code is looking similar to the one in our
screenshot, then look to the menu bar along the top

of the screen. Under the Fortran entry in the topmost menu you can
see a group of icons: a yellow cog, green play button and a cog/play
button together. These are Build, Run, Build and Run functions.

Now click on the Run icon, the green play button.
A command line box appears on your screen

displaying the words: Hello, world!, followed by the time it’s taken
to execute the code, and asking you press a key to continue. Well
done, you just compiled and executed your first C++ program.

 STEP 1 STEP 3

 STEP 2 STEP 4

You’ve created your first C++ program and you now understand the basics behind the
structure of one. Let’s actually get things moving and compile and execute, or run if
you prefer, the program and see how it looks.

Compile and Execute

262626 www.bdmpublications.com

www.bdmpublications.com 27

Compile and Execute

Pressing any key in the command line box closes it,
returning you to Code::Blocks. Let’s alter the code

slightly. Under the #include line, enter:

using namespace std;

Then, delete the std:: part of the Cout line; like so:

cout << “Hello, world\n”;

Just as we mentioned in the previous pages, you
don’t need to have std::cout if you already declare

using namespace std; at the beginning of the code. We could have
easily clicked the Build/Run icon to begin with but it’s worth going
through the available options. You can also see that by building and
running, the file has been saved.

In order to apply the new changes to the code, you
need to re-compile, build, and run it again. This time,

however, you can simply click the Build/Run icon, the combined
yellow cog and green play button.

Create a deliberate error in the code. Remove the
semicolon from the cout line, so it reads:

cout << “Hello, world!\n”

Replace the semicolon and under the cout line,
enter a new line to your code:

cout << “And greetings from C++!\n”;

The \n simply adds a new line under the last line of outputted text.
Build and Run the code, to display your handiwork.

Now click the Build and Run icon again to apply the
changes to the code. This time Code::Blocks refuses

to execute the code, due to the error you put in. In the Log pane at
the bottom of the screen you are informed of the error, in this case:
Expected ‘;’ before ‘}’ token, indicating the missing semicolon.

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

272727www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3428

C++ Fundamentals

Comments inside code are basically human readable descriptions
that detail what the code is doing at that particular point. They don’t
sound especially important but code without comments is one of
the many frustrating areas of programming, regardless of whether
you’re a professional or just starting out.

In short, all code should be commented in such a manner as to
effectively describe the purpose of a line, section, or individual
elements. You should get in to the habit of commenting as much as
possible, by imagining that someone who doesn’t know anything
about programming can pick up your code and understand what it’s
going to do simply by reading your comments.

In a professional environment, comments are vital to the success
of the code and ultimately, the company. In an organisation, many
programmers work in teams alongside engineers, other developers,
hardware analysts and so on. If you’re a part of the team that’s
writing a bespoke piece of software for the company, then your

comments help save a lot of time should something go
wrong, and another team member has to pick up and

follow the trail to pinpoint the issue.

Place yourself in the shoes of someone whose job
it is to find out what’s wrong with a program. The
program has in excess of 800,000 lines of code,
spread across several different modules. You can
soon appreciate the need for a little help from the
original programmers in the form of a good comment.

The best comments are always concise and link
the code logically, detailing what happens when

the program hits this line
or section. You don’t

need to comment on
every line. Something
along the lines of: if
x==0 doesn’t require
you to comment

that if x equals zero
then do something;

that’s going to be
obvious to the reader.

However, if x equalling
zero is something that

drastically changes
the program for the

While comments may seem like a minor element to the many lines of code that
combine to make a game, application or even an entire operating system, in actual fact
they’re probably one of the most important factors.

THE IMPORTANCE OF COMMENTING

Using Comments

user, such as, they’ve run out of lives, then it certainly needs to
commented on.

Even if the code is your own, you should write comments as if you
were going to publicly share it with others. This way you can return
to that code and always understand what it was you did or where it
was you went wrong or what worked brilliantly.

Comments are good practise and once you understand how to add a
comment where needed, you soon do it as if it’s second nature.

282828 www.bdmpublications.com

www.bdmpublications.com 29

Using Comments

Commenting in C++ involves using a double forward slash ‘/’, or a forward slash and an asterisk, ‘/*’. You’ve already seen some
brief examples but this is how they work.

C++ COMMENTS

Using the Hello World code as an example, you can
easily comment on different sections of the code

using the double forward slash:

//My first C++ program
cout << “Hello, world!\n”;

Be careful when commenting, especially with block
comments. It’s very easy to forget to add the closing

asterisk and forward slash and thus negate any code that falls inside
the comment block.

You can comment out several lines by using the
forward slash and asterisk:

/* This comment can
 cover several lines
 without the need to add more slashes */

Just remember to finish the block comment with the opposite
asterisk and forward slash.

However, you can also add comments to the end
of a line of code, to describe in a better way what’s

going on:

cout << “Hello, world!\n”; //This line outputs the
words ‘Hello, world!’. The \n denotes a new line.

Note, you don’t have to put a semicolon at the end of a comment.
This is because it’s a line in the code that’s ignored by the compiler.

If you’re using block comments, it’s good practise
in C++ to add an asterisk to each new line of the

comment block. This also helps you to remember to close the
comment block off before continuing with the code:

/* This comment can
 * cover several lines
 * without the need to add more slashes */

Obviously if you try and build and execute the
code it errors out, complaining of a missing curly

bracket ‘}’ to finish off the block of code. If you’ve made the
error a few times, then it can be time consuming to go back and
rectify. Thankfully, the colour coding in Code::Blocks helps identify
comments from code.

 STEP 1 STEP 4

 STEP 3

 STEP 2

 STEP 6

 STEP 5

292929www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3430

C++ Fundamentals

Variables differ slightly when using C++ as opposed to Python. In Python, you can
simply state that ‘a’ equals 10 and a variable is assigned. However, in C++ a variable has
to be declared with its type before it can be used.

Variables

You can declare a C++ variable by using statements within the code. There are several distinct types of variables you can
declare. Here’s how it works.

THE DECLARATION OF VARIABLES

Open up a new, blank C++ file and enter the usual
code headers:

#include <iostream>
using namespace std;

int main()
{

}

You can build and run the code but it won’t do
much, other than store the values 10 and 5 to the

integers a and b. To output the contents of the variables, add:

cout << a;
cout << ”\n”;
cout << b;

The cout << “\n”; part
simply places a new line
between the output of
10 and 5.

Start simple by creating two variables, a and b, with
one having a value of 10 and the other 5. You can

use the data type int to declare these variables. Within the curly
brackets, enter:

int a;
int b;

a = 10;
b = 5;

Naturally you can declare a new variable, call it
result and output some simple arithmetic:

int result;

result = a + b;
cout << result;

Insert the above into the code as per the screenshot.

 STEP 1 STEP 3

 STEP 2 STEP 4

303030 www.bdmpublications.com

www.bdmpublications.com 31

Variables

You can assign a value to a variable as soon as you
declare it. The code you’ve typed in could look like

this, instead:

int a = 10;
int b = 5;
int result = a + b;

cout << result;

You can create global variables, which are variables
that are declared outside any function and used in

any function within the entire code. What you’ve used so far are
local variables: variables used inside the function. For example:

#include <iostream>
using namespace std;
int StartLives = 3;

int main ()

{
 startLives = StartLives – 1;
 cout << StartLives;
}

Specific to C++, you can also use the following
to assign values to a variable as soon as you

declare them:

int a (10);
int b (5);

Then, from the C++ 2011 standard, using curly brackets:

int result {a+b};

The previous step creates the variable StartLives,
which is a global variable. In a game, for example,

a player’s lives go up or down depending on how well or how bad
they’re doing. When the player restarts the game, the StartLives
returns to its default state: 3. Here we’ve assigned 3 lives, then
subtracted 1, leaving 2 lives left.

A couple of new elements here: first, auto won’t
work unless you go to Settings > Compiler and

tick the box labelled ‘Have G++ follow the C++11 ISO C++ Language
Standard [-std=c++1]’. Then, the new data type, double, which
means double-precision floating point value. Enable C++11, then
build and run the code. The result should be 7.06858.

The modern C++ compiler is far more intelligent
than most programmers give it credit. While there

are numerous data types you can declare for variables, you can in
fact use the auto feature:

#include <iostream>
using namespace std;
auto pi = 3.141593;

int main()

{
 double area, radius = 1.5;

 area = pi * radius * radius;

 cout << area;

}

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

313131www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3432

C++ Fundamentals

Variables, as we’ve seen, store information that the programmer can then later call up,
and manipulate if required. Variables are simply reserved memory locations that store
the values the programmer assigns, depending on the data type used.

Data Types

There are many different data types available for the programmer
in C++, such as an integer, floating point, Boolean, character and so
on. It’s widely accepted that there are seven basic data types, often
called Primitive Built-in Types; however, you can create your own
data types should the need ever arise within your code.

The seven basic data types are:

These basic types can also be extended using the following modifiers:
Long, Short, Signed and Unsigned. Basically this means the modifiers
can expand the minimum and maximum range values for each data
type. For example, the int data type has a default value range of
-2147483648 to 2147483647, a fair value, you would agree.

Now, if you were to use one of the modifiers, the range alters:

Unsigned int = 0 to 4294967295
Signed int = -2147483648 to 2147483647
Short int = -32768 to 32767
Unsigned Short int = 0 to 65,535
Signed Short int = -32768 to 32767
Long int = -2147483647 to 2147483647
Signed Long int = -2147483647 to 2147483647
Unsigned Long int = 0 to 4294967295

Naturally you can get away with using the basic type without the
modifier, as there’s plenty of range provided with each data type.
However, it’s considered good C++ programming practise to use the
modifiers when possible.

There are issues when using the modifiers though. Double
represents a double-floating point value, which you can use for

THE VALUE OF DATA

TYPE COMMAND
Integer Integer

Floating Point float

Character char

Boolean bool

Double Floating Point double

Wide Character wchar_t

No Value void

incredibly accurate numbers but those numbers are only accurate
up to the fifteenth decimal place. There’s also the problem when
displaying such numbers in C++ using the cout function, in that cout
by default only outputs the first five decimal places. You can combat
that by adding a cout.precision () function and adding a value inside
the brackets, but even then you’re still limited by the accuracy of the
double data type. For example, try this code:

#include <iostream>
using namespace std;
double PI = 3.141592653589793238463;

int main()
{
 cout << PI;
}

Build and run the code and as you can see the output is only
3.14159, representing cout’s limitations in this example.

You can alter the code including the aforementioned cout.precision
function, for greater accuracy. Take precision all the way up to 22
decimal places, with the following code:

#include <iostream>
using namespace std;
double PI = 3.141592653589793238463;

int main()
{

323232 www.bdmpublications.com

www.bdmpublications.com 33

Data Types

This is mainly due to the conversion from binary in the compiler
and that the IEEE 754 double precision standard occupies 64-bits
of data, of which 52-bits are dedicated to the significant (the
significant digits in a floating-point number) and roughly 3.5-bits
are taken holding the values 0 to 9. If you divide 53 by 3.5, then you
arrive at 15.142857 recurring, which is 15-digits of precision.

To be honest, if you’re creating code that needs to be accurate to
more than fifteen decimal places, then you wouldn’t be using C++,
you would use some scientific specific language with C++ as the
connective tissue between the two languages.

You can create your own data types, using an alias-like system called
typedef. For example:

#include <iostream>
using namespace std;
typedef int metres;

int main()
{
 metres distance;
 distance = 15;
 cout << “distance in metres is: “ << distance;

}

 cout.precision(22);
 cout << PI;

}

Again, build and run the code; as you can see from the command
line window, the number represented by the variable PI is different
to the number you’ve told C++ to use in the variable. The output
reads the value of PI as 3.141592653589793115998, with the
numbers going awry from the fifteenth decimal place.

This code when executed creates a new int data type called metres.
Then, in the main code block, there’s a new variable called distance,
which is an integer; so you’re basically telling the compiler that
there’s another name for int. We assigned the value 15 to distance
and displayed the output: distance in metres is 15.

It might sound a little confusing to begin with but the more you use
C++ and create your own code, the easier it becomes.

333333www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3434

C++ Fundamentals

Strings are objects that represent and hold sequences of characters. For example, you
could have a universal greeting in your code ‘Welcome’ and assign that as a string to be
called up wherever you like in the program.

Strings

There are different ways in which you can create a string of characters, which historically are all carried over from the original
C language, and are still supported by C++.

STRING THEORY

To create a string you use the char function. Open a
new C++ file and begin with the usual header:

#include <iostream>
using namespace std;

int main ()

{

}

Build and run the code, and ‘Welcome’ appears
on the screen. While this is perfectly fine, it’s

not a string. A string is a class, which defines objects that can be
represented as a stream of characters and doesn’t need to be
terminated like an array. The code can therefore be represented as:

#include <iostream>
using namespace std;

int main ()

{
 char greet[] = “Welcome”;
 cout << greet << “\n”;

}

It’s easy to confuse a string with an array. Here’s an
array, which can be terminated with a null character:

#include <iostream>
using namespace std;

int main ()

{
 char greet[8] = {‘W’, ‘e’, ‘l’, ‘c’, ‘o’, ‘m’,
‘e’, ‘\0’};
 cout << greet << “\n”;

}

In C++ there’s also a string function, which works in
much the same way. Using the greeting code again,

you can enter:

#include <iostream>
using namespace std;

int main ()

{
 string greet = “Welcome”;
 cout << greet << “\n”;

}

 STEP 1 STEP 3

 STEP 2 STEP 4

343434 www.bdmpublications.com

www.bdmpublications.com 35

Strings

There are also many different operations that you
can apply with the string function. For instance, to

get the length of a string you can use:

#include <iostream>
using namespace std;

int main ()

{
 string greet = “Welcome”;
 cout << “The length of the string is: “;
 cout << greet.size() << “\n”;

}

You can of course add strings together, or rather
combine them to form longer strings:

#include <iostream>
using namespace std;

int main ()

{
 string greet1 = “Hello”;
 string greet2 = “, world!”;
 string greet3 = greet1 + greet2;

 cout << greet3 << “\n”;

}

You can see that we used greet.size() to output the
length, the number of characters there are, of the

contents of the string. Naturally, if you call your string something
other than greet, then you need to change the command to reflect
this. It’s always stringname.operation. Build and run the code to see
the results.

Just as you might expect, you can mix in an integer
and store something to do with the string. In this

example, we created int length, which stores the result of string.
size() and outputs it to the user:

#include <iostream>
using namespace std;

int main ()

{
 int length;
 string greet1 = “Hello”;
 string greet2 = “, world!”;
 string greet3 = greet1 + greet2;

 length = greet3.size();

 cout << “The length of the combined strings
is: “ << length << “\n”;

}

It’s worth spending some time playing around with
the numbers, which are the character positions

in the string. Occasionally, it can be hit and miss whether you get it
right, so practice makes perfect. Take a look at the screenshot to see
the result of the code.

Using the available operations that come with the
string function, you can manipulate the contents of a

string. For example, to remove characters from a string you could use:

#include <iostream>
using namespace std;

int main ()

{
 string strg (“Here is a long sentence in a
string.”);
 cout << strg << ‘\n’;

 strg.erase (10,5);
 cout << strg << ‘\n’;

 strg.erase (strg.begin()+8);
 cout << strg << ‘\n’;

 strg.erase (strg.begin()+9, strg.end()-9);
 cout << strg << ‘\n’;

}

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

353535www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3436

C++ Fundamentals

Programming is mathematical in nature and as you might expect, there’s plenty of
built-in scope for some quite intense maths. C++ has a lot to offer someone who’s
implementing mathematical models into their code. It can be extremely complex or
relatively simple.

C++ Maths

The basic mathematical symbols apply in C++ as they do in most other programming languages. However, by using the C++
Math Library, you can also calculate square roots, powers, trig and more.

C++ = MC2

C++’s mathematical operations follow the
same patterns as those taught in school, in that

multiplication and division take precedence over addition and
subtraction. You can alter that though. For now, create a new file
and enter:

#include <iostream>
using namespace std;

int main ()
{
 float numbers = 100;

 numbers = numbers + 10; // This adds 10 to the
initial 100

 cout << numbers << “\n”;

 numbers = numbers - 10; // This subtracts 10
from the new 110

 cout << numbers << “\n”;

}

Multiplication and division can be applied as such:

#include <iostream>
using namespace std;

int main ()
{
 float numbers = 100;

 numbers = numbers * 10; // This multiplies 100
by 10

 cout << numbers << “\n”;

 numbers = numbers / 10; // And this divides
1000 by 10

 cout << numbers << “\n”;

}

While simple, it does get the old maths muscle
warmed up. Note that we used a float for the

numbers variable. While you can happily use an integer, if you
suddenly started to use decimals, you would need to change to a
float or a double, depending on the accuracy needed. Run the code
and see the results.

Again, execute the simple code and see the results.
While not particularly interesting, it’s a start into C++

maths. We used a float here, so you can play around with the code
and multiply by decimal places, as well as divide, add and subtract.

 STEP 1 STEP 3

 STEP 2

 STEP 4

363636 www.bdmpublications.com

www.bdmpublications.com 37

C++ Maths

The interesting maths content comes when you call
upon the C++ Math Library. Within this header are

dozens of mathematical functions along with further operations.
Everything from computing cosine to arc tangent with two
parameters, to the value of PI. You can call the header with:

#include <iostream>
#include <cmath>
using namespace std;

int main ()
{

}

Here we created a new float called number and
used the sqrt(number) function to display the

square root of 134, the value of the variable, number. Build and run
the code, and your answer reads 11.5758.

Start by getting the square root of a number:

#include <iostream>
#include <cmath>
using namespace std;

int main ()
{
 float number = 134;

 cout << “The square root of “ << number << “
is: “ << sqrt(number) << “\n”;

}

Calculating powers of numbers can be done with:

#include <iostream>
#include <cmath>
using namespace std;

int main ()
{
 float number = 12;

 cout << number << “ to the power of 2 is “ <<
pow(number, 2) << “\n”;
 cout << number << “ to the power of 3 is “ <<
pow(number, 3) << “\n”;
 cout << number << “ to the power of .08 is “
<< pow(number, 0.8) << “\n”;

}

The value of Pi is also stored in the cmath header
library. It can be called up with the M_PI function.

Enter cout << M_PI; into the code and you get 3.14159; or you can
use it to calculate:

#include <iostream>
#include <cmath>
using namespace std;

int main ()
{
 double area, radius = 1.5;

 area = M_PI * radius * radius;

 cout << area << “\n”;

}

Here we created a float called number with the
value of 12, and the pow(variable, power) is where

the calculation happens. Of course, you can calculate powers and
square roots without using variables. For example, pow (12, 2)
outputs the same value as the first cout line in the code.

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

373737www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3438

C++ Input/Output

“Measuring
programming
progress by lines
of code is like
measuring aircraft
building progress
by weight.”

– Bill Gates
(Co-founder of Microsoft)

3838383838 www.bdmpublications.com

www.bdmpublications.com

There’s a satisfying feeling when you
program code that asks the user for
input, then uses that input to produce
something that the user can see. Even
if it’s simply asking for someone’s name
and displaying a personal welcome
message, it’s a big leap forward
and creates a more human level of
interaction with your code.

User interaction, character literals
and defining constants, alongside file
input and output, are all covered in the
following pages. All of which will help
you to better understand how a C++
program works.

C++ Input/
Output

393939393939www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3440

C++ Input/Output

There’s nothing quite as satisfying as creating a program that responds to you. This
basic user interaction is one of the most taught aspects of any language and with it
you’re able to do much more than simply greet the user by name.

User Interaction

You have already used cout, the standard output stream, throughout our code. Now you’re going to be using cin, the standard
input stream, to prompt a user response.

HELLO, DAVE

Anything that you want the user to input into the
program needs to be stored somewhere in the

system memory, so it can be retrieved and used. Therefore, any
input must first be declared as a variable, so it’s ready to be used by
the user. Start by creating a blank C++ file with headers.

The cin command works in the opposite way from
the cout command. With the first cout line you’re

outputting ‘What is your age’ to the screen, as indicated with the
chevrons. Cin uses opposite facing chevrons, indicating an input. The
input is put into the integer age and called up in the second cout
command. Build and run the code.

The data type of the variable must also match the
type of input you want from the user. For example,

to ask a user their age, you would use an integer like this:

#include <iostream>
using namespace std;

int main ()
{
 int age;
 cout << “what is your age: “;
 cin >> age;

 cout <<”\nYou are “ << age << “ years old.\n”;

}

If you’re asking a question, you need to store the
input as a string; to ask the user their name, you

would use:

#include <iostream>
using namespace std;

int main ()
{
 string name;
 cout << “what is your name: “;
 cin >> name;

 cout << “\nHello, “ << name << “. I hope you’re
well today?\n”;

}

 STEP 1 STEP 3

 STEP 2

 STEP 4

40404040 www.bdmpublications.com

www.bdmpublications.com 41

User Interaction

The principal works the same as the previous code.
The user’s input, their name, is stored in a string,

because it contains multiple characters, and retrieved in the second
cout line. As long as the variable ‘name’ doesn’t change, then you
can recall it wherever you like in your code.

Likewise, inputted data can be manipulated once
you have it stored in a variable. For instance, ask the

user for two numbers and do some maths on them:

#include <iostream>
using namespace std;

int main ()
{
 float num1, num2;

 cout << “Enter two numbers: \n”;
 cin >> num1 >> num2;

 cout << num1 << “ + “ << num2 << “ is: “ <<
num1 + num2 << “\n”;

}

You can chain input requests to the user but just
make sure you have a valid variable to store the

input to begin with. Let’s assume you want the user to enter two
whole numbers:

#include <iostream>
using namespace std;

int main ()
{
 int num1, num2;

 cout << “Enter two whole numbers: “;
 cin >> num1 >> num2;

 cout << “you entered “ << num1 << “ and “ <<
num2 << “\n”;

}

While cin works well for most input tasks, it does
have a limitation. Cin always considers spaces as a

terminator, so it’s designed for just single words not multiple words.
However, getline takes cin as the first argument and the variable as
the second:

#include <iostream>
using namespace std;

int main ()
{

 string mystr;
 cout << “Enter a sentence: \n”;
 getline(cin, mystr);

 cout << “Your sentence is: “ << mystr.size() <<
“ characters long.\n”;

}

Getline is usually a command that new C++
programmers forget to include. The terminating

white space is annoying when you can’t figure out why your code
isn’t working. In short, it’s best to use getline(cin, variable) in future:

#include <iostream>
using namespace std;

int main ()
{

 string name;
 cout << “Enter your full name: \n”;
 getline(cin, name);

 cout << “\nHello, “ << name << “\n”;

}

Build and execute the code, then enter a sentence
with spaces. When you’re done the code reads the

number of characters. If you remove the getline line and replace it
with cin >> mystr and try again, the result displays the number of
characters up to the first space.

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

41414141www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3442

C++ Input/Output

In C++ a literal is an object or variable that once defined remains the same throughout
the code. However, a character literal is defined by a backslash, such as the \n you’ve
been using at the end of a cout statement to signify a new line.

Character Literals

When used in something like a cout statement, character literals are also called escape sequence codes. They allow you to
insert a quote, an alert, new line and much more.

ESCAPE SEQUENCE

Create a new C++ file and enter the relevant headers:

#include <iostream>
using namespace std;

int main ()
{

}

If you wanted to insert speech quotes inside a cout
statement, you would have to use a backslash as it

already uses quotes:

#include <iostream>
using namespace std;

int main ()
{
 cout << “Hello, user. This is how to use
\”quotes\”.”;

}

You’ve already experienced the \n character literal
placing a new line wherever it’s called. The line: cout

<< “Hello\n” << “I’m a C++\n” << “Program\n”; outputs three lines
of text, each starting after the last \n.

There’s even a character literal that can trigger an
alarm. In Windows 10, it’s the notification sound

that chimes when you use \a. Try this code, and turn up your sound.

#include <iostream>
using namespace std;

int main ()
{
 cout << “ALARM! \a”;

}

 STEP 1 STEP 3

 STEP 2 STEP 4

4242424242 www.bdmpublications.com

www.bdmpublications.com 43

Character Literals

There are numerous character literals, or escape sequence codes, to choose from. We therefore thought it would be good for
you to have a handy chart available, for those times when you need to insert a code.

A HANDY CHART

Unicode characters are symbols or characters that are standard across
all platforms. For example, the copyright symbol, that can be entered
via the keyboard by entering the Unicode code, followed by ALT+X. In
the case of the copyright symbol enter: 00A9 Alt+X. In C++ code, you
would enter:

#include <iostream>
using namespace std;

int main ()
{
 cout << “\u00A9”;

A complete list of the available Unicode
characters can be found at www.unicode-
table.com/en/. Hover your mouse over the
character to see the unique code to enter in
C++. While it may be a little overwhelming
to look at to begin with, bookmark the page
as you will probably need to come back to
it for reference as you dig deeper into C++,
and indeed character literals. One more
thing, the table will also display characters
from different languages, such as Tibetan
or Sudanese. This means your code can be
truly universal.

UNICODE CHARACTERS (UTF-8)

UNICODE
CHARACTER TABLE

ESCAPE SEQUENCE CODE CHARACTER
\\ Backslash

\’ Single Quote

\” Double Quote (Speech Marks)

\? Question Mark

\a Alert/Alarm

\b Backspace

\f Form Feed

\n New Line

\r Carriage Return

\t Horizontal Tab

\v Vertical Tab

\0 Null Character

\uxxxx Unicode (UTF-8)

\Uxxxxxxxx Unicode (UTF-16)

4343434343www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3444

C++ Input/Output

Constants are fixed values in your code. They can be any basic data type but as the
name suggests their value remains constant throughout the entire code. There are two
separate ways to define a constant in C++, the #define pre-processor and const.

Defining Constants

The pre-processors are instructions to the compiler to pre-process the information before it goes ahead and compiles the
code. #include is a pre-processor as is #define.

#DEFINE

You can use the #define pre-processor to define any
constants you want in our code. Start by creating a

new C++ file complete with the usual headers:

#include <iostream>
using namespace std;

int main ()

{

}

Note the capitals for defined constants, it’s
considered good programming practise to define all

constants in capitals. Here, the assigned values are 50, 40 and 60, so
let’s call them up:

#include <iostream>
using namespace std;

#define LENGTH 50
#define WIDTH 40
#define HEIGHT 60

int main ()

{
 cout << “Length is: “ << LENGTH << “\n”;
 cout << “Width is: “ << WIDTH << “\n”;
 cout << “Height is: “ << HEIGHT << “\n”;
}

Now let’s assume your code has three different
constants: length, width and height. You can define

them with:

#include <iostream>
using namespace std;
#define LENGTH 50
#define WIDTH 40
#define HEIGHT 60

int main ()

{

}
Build and run the code. Just as expected, it displays
the values for each of the constants created. It’s

worth noting that you don’t need a semicolon when you’re defining
a constant with the #define keyword.

 STEP 1 STEP 3

 STEP 2

 STEP 4

4444444444 www.bdmpublications.com

www.bdmpublications.com 45

Defining Constants

You can also define other elements as a constant.
For example, instead of using \n for a newline in the

cout statement, you can define it at the start of the code:

#include <iostream>
using namespace std;

#define LENGTH 50
#define WIDTH 40
#define HEIGHT 60
#define NEWLINE ‘\n’

int main ()

{
 cout << “Length is: “ << LENGTH << NEWLINE;
 cout << “Width is: “ << WIDTH << NEWLINE;
 cout << “Height is: “ << HEIGHT << NEWLINE;
}

Defining a constant is a good way of initialising your
base values at the start of your code. You can define

that your game has three lives, or even the value of PI without
having to call up the C++ math library:

#include <iostream>
using namespace std;

#define PI 3.14159

int main ()

{
 cout << “The value of Pi is: “ << PI << endl;

}

The code, when built and executed, does exactly the
same as before, using the new constant NEWLINE

to insert a newline in the cout statement. Incidentally, creating a
newline constant isn’t a good idea unless you’re making it smaller
than \n or even the endl command.

Another method of defining a constant is with the
const keyword. Use const together with a data type,

variable and value: const type variable = value. Using Pi as an example:

#include <iostream>
using namespace std;

int main ()

{
 const double PI = 3.14159;
 cout << “The value of Pi is: “ << PI << endl;
}

Const works in much the same way as #define.
You can create static integers and even newlines:

#include <iostream>
using namespace std;

int main()

{
 const int LENGTH = 50;
 const int WIDTH = 40;
 const char NEWLINE = ‘\n’;

 int area;
 area = LENGTH * WIDTH;

 cout << “Area is: “ << area << NEWLINE;

}

Because you’re using const within the main block of
code, you need to finish the line with a semicolon.

You can use either, as long as the names and values don’t clash, but
it’s worth mentioning that #define requires no memory, so if you’re
coding to a set amount of memory, #define is your best bet.

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

4545454545www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3446

C++ Input/Output

The standard iostream library provides C++ coders with the cin and cout input and
output functionality. However, to be able to read and write from a file you need to
utilise another C++ library, called fstream.

File Input/Output

There are two main data types within the fstream library that are used to open a file, read from it and write to it, ofstream and
ifstream. Here’s how they work.

FSTREAMS

The first task is to create a new C++ file and along
with the usual headers you need to include the new

fstream header:

#include <iostream>
#include <fstream>
Using namespace std;

int main ()

{

}

We’ve included comments in the screenshot of step
2 to help you understand the process. You created

a string called name, to store the user’s inputted name. You also
created a text file called name.txt (with the ofstream newfile and
newfile.open lines), asked the user for their name and stored it and
then written the data to the file.

Begin by asking a user for their name and writing
that information to a file. You need the usual string

to store the name, and getline to accept the input from the user.

#include <iostream>
#include <fstream>
using namespace std;

int main ()

{

 string name;

 ofstream newfile;
 newfile.open(“name.txt”);

 cout << “Enter your name: “ << endl;
 getline(cin, name);

 newfile << name << endl;

 newfile.close();

}

To read the contents of a file, and output it to the
screen, you need to do things slightly differently.

First you need to create a string variable to store the file’s contents
(line by line), then open the file, use getline to read the file line by
line and output those lines to the screen. Finally, close the file.

 string line;
 ifstream newfile (“name.txt”);

 cout << “Contents of the file: “ << endl;

 getline(newfile, line);
 cout << line << endl;
 newfile.close();

 STEP 1 STEP 3

 STEP 2

 STEP 4

4646464646 www.bdmpublications.com

www.bdmpublications.com 47

File Input/Output

The code above is great for opening a file with one
or two lines but what if there are multiple lines? Here

we opened a text file of the poem Cimmeria, by Robert E Howard:

 string line;
 ifstream newfile (“c:\\users\\david\\
Documents\\Cimmeria.txt”);

 cout << “Cimmeria, by Robert E Howard: \n” <<
endl;

 while (getline(newfile, line))
 cout << line << endl;

 newfile.close();

You can also see that the location of the text file
Cimmeria.txt isn’t in the same folder as the C++

program. When we created the first name.txt file, it was written to
the same folder where the code was located; this is done by default.
To specify another folder, you need to use double-back slashes, as
per the character literals/escape sequence code.

You can no
doubt see that

we’ve included a while loop,
which we cover in a few pages
time. It means that while there
are lines to be read from the
text file, C++ getlines them.
Once all the lines are read,
the output is displayed on the
screen and the file is closed.

Just as you might expect, you can write almost
anything you like to a file, for reading either in

Notepad or via the console through the C++ code:

 string name;
 int age;

 ofstream newfile;
 newfile.open(“name.txt”);

 cout << “Enter your name: “ << endl;
 getline(cin, name);

 newfile << name << endl;

 cout << “\nHow old are you: “ << endl;
 cin >> age;

 newfile << age << endl;

 newfile.close();

Here’s an exercise: see if you can create code to
write several different elements to a text file. You

can have a user’s name, age, phone number etc. Maybe even the
value of Pi and various mathematical elements. It’s all good practice.

The code from step 8 differs again, but only where
it comes to adding the age integer. Notice that

we used cin >> age, instead of the previous getline(cin, variable).
The reason for this is that the getline function handles strings, not
integers; so when you’re using a data type other than a string, use
the standard cin.

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

4747474747www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3448

Loops and Decision Making

“The purpose of software
engineering is to control
complexity, not to create it.”

– Pamela Zave (Developer, scientist and
telecommunications expert)

4848484848 www.bdmpublications.com

www.bdmpublications.com

Loops and repetition are one of the most
important factors of any programming
language. Good use of a loop will create a
program that does exactly what you want
it to and delivers the desired outcome
without issues or errors.

Without loops and decision-making
events within the code, your program will
never be able to offer the user any choice.
It’s this understanding of choice that
elevates your skills as a programmer and
makes for much better code.

Loops and
Decision
Making

494949494949www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3450

Loops and Decision Making

If you didn’t need to see the continually increasing
value of num, you could have done away with the

compound while statement and instead just added num by itself
until it reached 30, and then displayed the value:

{
 int num = 1;

 while (num < 30)
 num++;
 cout << “Number: “ << num << endl;

 return 0;
}

 STEP 5

A while loop’s function is to repeat a statement, or a group of statements, while a certain
condition remains true. When the while loop starts, it initialises itself by testing the
condition of the loop and the statements within, before executing the rest of the loop.

While Loop

While loops are one of the most popular form of C++ code looping. They repeatedly run the code contained within the loop
while the condition is true. Once it proves false, the code continues as normal.

TRUE OR FALSE?

Clear what you’ve done so far and create a new C++
file. There’s no need for any extra headers at the

moment, so add the standard headers as per usual:

#include <iostream>
using namespace std;

int main ()

{

}

First you
need to

create a condition, so use a
variable called num and give
it the value 1. Now create
the while loop, stating that
as long as num is less than
30, the loop is true. Within
the loop the value of num
is displayed and adds 1 until
it’s more than 30.

Create a simple while loop. Enter the code below,
build and run (we’ve added comments to the

screen shot):

{
 int num = 1;

 while (num < 30)
 {
 cout << “Number: “ << num << endl;
 num = num +1;
 }

 return 0;
}

We’re introducing a few new elements here. The
first are the opening and closing braces for the

while loop. This is because our loop is a compound statement,
meaning a group of statements; note also, there’s no semicolon
after the while statement. You now also have return 0, which is a
clean and preferred way of ending the code.

 STEP 1 STEP 3

 STEP 2

 STEP 4

505050505050 www.bdmpublications.com

www.bdmpublications.com 51

While Loop

In our example, if we were to execute the code
the value of num would be 1, as set by the int

statement. When the code hits the while statement it reads
that while the condition of 1 being less than 30 is true, loop. The
semicolon closes the line, so the loop repeats; but it never adds 1 to
num, as it won’t continue through the compound statement.

It’s important to remember not to add a semicolon
at the end of a while statement. Why? Well, as you

know, the semicolon represents the end of a C++ line of code. If
you place one at the end of a while statement, your loop will be
permanently stuck until you close the program.

You can manipulate the while statement to display
different results depending on what code lies within

the loop. For example, to read the poem, Cimmeria, word by word,
you would enter:

#include <iostream>
#include <fstream>
using namespace std;

int main ()

{
 string word;
 ifstream newfile (“C:\\users\\david\\
Documents\\Cimmeria.txt”);

 cout << “Cimmeria, by Robert E Howard: \n” <<
endl;

 while (newfile >> word)
 {
 cout << word << endl;
 }

 return 0;
}

Sleep() works in milliseconds, so Sleep(1000) is
one second, Sleep(10000) is ten seconds and so

on. Combining the sleep function (along with the header it needs)
and a while loop enables you to come up with some interesting
countdown code.

#include <iostream>
#include <windows.h>
using namespace std;

int main ()

{
 int a = 10;

 while (a != 0)
 {
 cout << a << endl;
 a = a - 1;
 Sleep(1000);
 }

 cout << “\nBlast Off!” << endl;

 return 0;
}

You can further expand the code to enable each
word of the poem to appear every second. To do

so, you need to pull in a new library, <windows.h>. This is a Windows
only library and within it you can use the Sleep() function:

#include <iostream>
#include <fstream>
#include <windows.h>
using namespace std;

int main ()

{
 string word;
 ifstream newfile (“C:\\users\\david\\
Documents\\Cimmeria.txt”);

 cout << “Cimmeria, by Robert E Howard: \n” <<
endl;

 while (newfile >> word)
 {
 cout << word << endl;
 Sleep(1000);
 }

 return 0;
}

 STEP 7

 STEP 6

 STEP 8 STEP 10

 STEP 9

515151515151www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3452

Loops and Decision Making

A for loop is quite a neat package in C++, all
contained within its own brackets, while the other

elements outside of the loop are displayed below. If you want to
create a 10-second countdown, you could use:

#include <iostream>
#include <windows.h>
using namespace std;

int main ()

{
 //For Loop Begins
 for(int a = 10; a != 0; a = a -1)
 {
 cout << a << endl;
 Sleep(1000);
 }

 cout << “\nBlast Off!” << endl;

 return 0;

}

 STEP 5

In some respects, a for loop works in a very similar way to that of a while loop, although it’s
structure is different. A for loop is split into three stages: an initialiser, a condition and an
incremental step. Once set up, the loop repeats itself until the condition becomes false.

The initialise stage of a for loop is executed only once and this sets the point reference for the loop. The condition is evaluated
by the loop to see if it’s true or false and then the increment is executed. The loop then repeats the second and third stage.

LOOPY LOOPS

Create a new C++ file, with the standard headers:

#include <iostream>
using namespace std;

int main ()

{

}

Working through the process of the for loop, begin
by creating an integer called num and assigning it a

value of 1. Next, set the condition, in this case num being less than
30. The last stage is where you create the increments; here it’s the
value of num being added by 1.

Start simple and create a for loop that counts from
1 to 30, displaying the value to the screen with

each increment:

{
 //For Loop Begins
 for(int num = 1; num < 30; num = num +1)
 {
 cout << “Number: “ << num << endl;
 }

 return 0;

}

After the loop, you created a compound statement
in braces (curly brackets), that displays the current

value of the integer num. Every time the for loop repeats itself, the
second and third stages of the loop, it adds 1 until the condition <30
is false. The loop then ends and the code continues, ending neatly
with return 0.

 STEP 1

 STEP 3

 STEP 2

 STEP 4

For Loop

525252525252 www.bdmpublications.com

www.bdmpublications.com 53

For Loop

Naturally you can include a lot more content into a
for loop, including some user input:

 int i, n, fact = 1;

 cout << “Enter a whole number: “;
 cin >> n;

 for (i = 1; i <= n; ++i) {
 fact *= i;
 }

 cout<< “\nFactorial of “<< n <<” = “<< fact <<
endl;

 return 0;

With the countdown code, don’t forget to include
the windows.h library, so you can use the Sleep

command. Build and run the code; in the command console you can
see the numbers 10 to 1 countdown in one second increments, until
it reaches zero and Blast Off! appears.

The code from step 7, when built and run, asks for a
number, then displays the factorial of that number

through the for loop. The user’s number is stored in the integer
n, followed by the integer I which is used to check if the condition
is true or false, adding 1 each time and comparing it to the user’s
number, n.

The value of the integer i can be expanded from
12 to whatever number you want, displaying a

very large multiplication table in the process (or a small one). Of
course the data type within a for loop doesn’t have to be an integer;
as long as it’s valid, it works.

for (float i = 0.00; i < 1.00; i += 0.01)
 {
 cout << i << endl;
 }

return 0;

Here’s an example of a for loop displaying the
multiplication tables of a user inputted number.

Handy for students:

{
 int n;

 cout << “Enter a number to view its times
table: “;
 cin >> n;

 for (int i = 1; i <= 12; ++i) {
 cout << n << “ x “ << i << “ = “ << n * i
<< endl;
 }

 return 0;
}

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

535353535353www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3454

Loops and Decision Making

A do… while loop differs slightly from that of a for or even a while loop. Both for and
while set and examine the state of the condition at the start of the loop, or the top of
the loop if you prefer. However, a do… while loop, is similar to a while loop but instead
checks the condition at the bottom of the loop.

Do… While Loop

The good thing about a do… while loop is that it’s guaranteed to run through at least once. It’s structure is: do, followed by
statements, while condition is true. This is how it works.

DO LOOPS

Begin with a new, blank C++ file and enter the
standard headers:

#include <iostream>
using namespace std;

int main ()

{

}

Now, here’s a look at the structure of a do… while
loop. First you create an integer called num, with

the value of 1. Now the do… while loops begins. The code inside
the body of the loop is executed at least once, then the condition is
checked for either true or false.

Begin with a simple number count:

{
 int num = 1;

 do
 {
 cout << “Number: “ << num << endl;
 num = num + 1;

 }
 while (num < 30);

 return 0;

}

If the condition is true, the loop is executed. This
continues until the condition is false. When the

condition has been expressed as false, the loop terminates and the
code continues. This means you can create a loop where the code
continues until the user enters a certain character.

 STEP 1 STEP 3

 STEP 2

 STEP 4

545454545454 www.bdmpublications.com

www.bdmpublications.com 55

Do… While Loop

If you want code to add up user inputted numbers
until the user enters zero:

{
 float number, sum = 0.0;
 cout << “**** Program to execute a Do...
While loop continuously ****” << endl;
 cout << “\nEnter 0 to stop and display the
sum of all the numbers entered\n” << endl;
 cout << “\n---------------------------------
---\n” << endl;

 do {
 cout<<”\nPlease enter a number: “;
 cin>>number;
 sum += number;
 }
 while(number != 0.0);

 cout<<”Total sum of all numbers: “<<sum;

 return 0;

}

The do… while loop in this instance asks the user
to input a number, which you assigned to the float

variable, number. The calculation step uses the second floating
point variable, sum, which adds the value of number every time the
user enters a new value.

The code from Step 5 works as follows: two floating
point variables are assigned, number and sum, both

with the value of 0.0. There is a brief set of instructions for the user,
then the do… while loop begins.

Finally, the while statement checks the condition
of the variable number. If the user has entered

zero, then the loop is terminated, if not then it continues
indefinitely. When the user finally enters zero, the value of sum,
the total value of all the user’s input, is displayed. The loop, and
the program, then ends.

The main advantage of using a do… while loop
is because it’s an exit-condition loop; whereas a

while loop is an entry-control loop. Therefore, if your code requires a
loop that needs to be executed at least once (for example, to check
the number of lives in a game), then a do… while loop is perfect.

Using the countdown and Blast Off! code used
previously, a do… while loop would look like:

{
 int a = 10;

 do
 {
 cout << a << endl;
 a = a - 1;
 }
 while (a != 0);

 cout << “\nBlast Off!” << endl;

 return 0;

}

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

555555555555www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3456

Loops and Decision Making

The decision making statement ‘if’ is probably one of the most used statements in any
programming language, regardless of whether it’s C++, Python, BASIC or anything
else. It represents a junction in the code, where IF one condition is true, do this; or IF it’s
false, do that.

If Statement

If uses a Boolean expression within its statement. If the Boolean expression is true, the code within the statement is executed.
If not, then the code after the statement is executed instead.

IF ONLY

First, create a new C++ file and enter the relevant
standard headers, as usual:

#include <iostream>
using namespace std;

int main ()

{

}

What’s going on here? To begin, an integer called
num was created and assigned with the value of 1.

The if statement comes next, and in this case we’ve instructed the
code that if the condition, the value, of num is less than 1, then the
code within the braces should be executed.

If is best explained when you use a number-
based condition:

{
 int num = 1;

 if (num < 30)
 {

 cout << “The number is less than 30.” <<
endl;

 }
 cout << “Value of number is: “ << num << endl;

 return 0;

}

The second cout statement displays the current
value of num and the program terminates safely. It’s

easy to see how the if statement works if you were to change the
initial value of num from 1 to 31.

 STEP 1

 STEP 3 STEP 2

 STEP 4

565656565656 www.bdmpublications.com

www.bdmpublications.com 57

If Statement

When you change the value to anything above
30, then build and run the code, you can see that

the only line to be outputted to the screen is the second cout
statement, displaying the current value of num. This is because the
initial if statement is false, so it ignores the code within the braces.

The code in Step 6 is simplistic but effective. First we
created a floating point integer called temp, then a

do… while loop that asks the user to enter the current temperature.

You can include an if statement within a do… while
loop. For example:

{
 float temp;

 do
 {
 cout << “\nEnter the temperature (or
-10000 to exit): “ << endl;
 cin >> temp;
 if (temp <= 0)
 {
 cout << “\nBrrrr, it’s really cold!”
<< endl;
 }
 if (temp > 0)
 {
 cout << “\nAt least it’s not
freezing!” << endl;
 }
 }
 while (temp != -10000);

 cout << “\nGood bye\n” << endl;

 return 0;

}

The first if statement checks to see if the user’s
inputted value is less than or equal to zero. If it is,

then the output is ‘Brrrr, it’s really cold!’. Otherwise, if the input is
greater than zero, the code outputs ‘At least it’s not freezing!’.

Using if is quite powerful, if it’s used correctly. Just
remember that if the condition is true then the

code executes what’s in the braces. If not, it continues on its merry
way. See what else you can come up with using if and a combination
of loops.

Finally, if the user enters the value -10000, which is
impossibly cold so is therefore a unrealistic value,

the do… while loop is terminated and a friendly ‘Good bye’ is
displayed to the screen.

 STEP 5 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

575757575757www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3458

Loops and Decision Making

You can change the value of num in the code or
you can improve the code by asking the user to

enter a value:

{
 int num;

 cout << “Enter a number: “;
 cin >> num;

 if (num < 30)
 {
 cout << “The number is less than 30!” <<
endl;
 }
 else
 {
 cout << “The number is greater than 30!”
<< endl;
 }

 return 0;

}

 STEP 5

There is a much better way to use an if statement in your code, with if… else. If… else
works in much the same way as a standard if statement. If the Boolean expression
is true, the code within the braces is executed. Else, the code within the next set of
braces is used instead.

If… Else Statement

There are two sections of code that can be executed depending on the outcome in an if… else statement. It’s quite easy to
visualise once you get used to its structure.

IF YES, ELSE NO

Begin with a new C++ file and the standard headers:

#include <iostream>
using namespace std;

int main ()

{

}

The first line in the code creates the integer called
num and gives it a value of 1. The if statement

checks to see if the value of num is less than thirty and if it is it
outputs “The number is less than 30!” to the console.

Let’s expand the code from the If Statement on the
previous page:

{
 int num = 1;

 if (num < 30)
 {
 cout << “The number is less than 30!” <<
endl;
 }
 else
 {
 cout << “The number is greater than 30!”
<< endl;
 }

 return 0;

}

The else companion to if checks if the number
is greater than 30 and if so, then displays “The

number is greater than 30!” to the console; and finally, the code is
terminated satisfactorily.

 STEP 1 STEP 3

 STEP 2 STEP 4

585858585858 www.bdmpublications.com

www.bdmpublications.com 59

If… Else Statement

The new addition to the code is what’s known as a
nested if… else statement. This allows you to check

for multiple conditions. In this case, if the user enters a number less
than 30, greater than 30 or actually 30 itself, a different outcome is
presented to them.

The code works the same way, as you would expect,
but what if you wanted to display something if the

user entered the number 30? Try this:

{
 int num;

 cout << “Enter a number: “;
 cin >> num;

 if (num < 30)
 {
 cout << “The number is less than 30!” <<
endl;
 }
 else if (num > 30)
 {
 cout << “The number is greater than 30!”
<< endl;
 }
 else if (num == 30)
 {
 cout << “The number is exactly 30!” <<
endl;
 }

 return 0;

}

You can take this up a notch and create a two-player
number guessing game. Begin by creating the variables:

int num, guess, tries = 0;

 cout << “***** Two-player number guessing game
****” << endl;
 cout << “\nPlayer One, enter a number for
Player Two to guess: “ << endl;
 cin >> num;
 cout << string(50, ‘\n’);

Grab a second player, then
build and run the code.
Player One enters the
number to be guessed,
then Player Two can take
as many guesses as they
need to get the right
number. Want to make
it harder? Maybe use
decimal numbers.

The cout << string(50, ‘\n’) line clears the screen so
Player Two doesn’t see the entered number. Now

you can create a do… while loop, together with if… else:

 do
 {
 cout << “\nPlayer Two, enter your guess: “;
 cin >> guess;
 tries++;
 if (guess > num)
 {
 cout << “\nToo High!\n” << endl;
 }
 else if (guess < num)
 {
 cout << “\nToo Low!\n” << endl;
 }
 else if (guess == num)
 {
 cout << “Well done! You got it in “ <<
tries << “ guesses!” << endl;
 }
 } while (guess != num);

 return 0;

 STEP 7

 STEP 6 STEP 8

 STEP 10

 STEP 9

595959595959www.bdmpublications.com

60

Loops and Decision Making

BDM’s Definitive Guide Series - Volume 34

We’re going to mix many elements of what we’ve looked at so far to create code that will animate a rocket blasting off into
space. There’s a lot than can be done with this code, so feel free to play with it.

REACH FOR THE STARS

A good working knowledge of C++ can help engineer your future, regardless of
whether your aim is to start a job as a developer, or simply to learn something new. The
power of C++ is what makes it such a spectacular language to learn. Now, how about
combining all you’ve learned so far.

Combining All You Know

Let’s begin with a blank page. Enter the usual pre-
processor, #include <iostream>, but also add a new

one: #include <unistd.h> this is a pre-processor that provides access
to the POSIX operating system API. In our case, we’re going to use it
to access a command called Usleep, as we’ll see later.

The ASCII art looks
messy to begin with.

Remember though, you will need to
enter a ‘\’ after every ‘\’ for it to be
recognised and a ‘\n\’ at the end of a
line to signify a new line. It’ll take some
time to get right. You can test the
results by entering:

Int main()
{
cout << background << “\n”
<< rocket;
{

 STEP 1

 STEP 3

Next up, we’re going to create a couple of data
strings that will contain ASCII images that we can use

in the code. You can of course create your own, if you’re artistically
inclined, however, if you’re not, then take to Google and search for
‘ASCII rocket art’. Define two strings, background and rocket.

 STEP 2

606060606060 www.bdmpublications.com

61www.bdmpublications.com

Combining All You Know

When you’ve sorted the ASCII art out, remove the
cout statements and enter the following:

string greet = “Are you ready to explore the stars?”;
 int x=0;

 cout << background;
 cout << “\n”;

 while (greet[x] !=’\0’)
 {
 cout << greet[x];
 usleep(95000);
 x++;
 }

 string name;
 cout << “\n” << “\n” << “What is your name,
	 brave astronaut? “;
 cin >> name;
 cout << flush;
 cout << “Press Enter for take off, “ << name
	 << “.\n”;
 cin.ignore();
 cin.get();

 STEP 4

What you’ve done here is
create a simple greeting

string, displayed the background ASCII
art and asked the user for their name.
Notice there’s a While loop that will
display the greet string, one letter at
a time, until it reaches the end of the
string. The cout << flush statement
clears the screen and cin.get pauses, until
the user hits Enter.

For the last section of the code, enter:

for (int i = 0; i < 50; i ++) cout << “\n”;
 cout << rocket;
 int j = 300000;
 for (int i = 0; i < 50; i ++)
 {
 usleep(j);
 j = (int)(j * 0.9);
 cout << “\n”;
 }

 cout << “Boldly go, “ << name << “!\n”;
 return 0;
{

 STEP 5

 STEP 6

616161616161www.bdmpublications.com

62

Loops and Decision Making

BDM’s Definitive Guide Series - Volume 34

The previous code displays and animates the rocket
ASCII art. It uses a for loop to add an extra line

under the rocket at increasing steps; using the Usleep function to
lessen the amount of time between each new line, thus giving the
appearance of the rocket speeding up into space. Finally, there’s a
message to the user at the end of the code.

Compile the code, ensuring that all brackets are
closed off and there’s a semicolon at the end of

the appropriate lines. When you run through, you will be asked for
your name, press Enter to clear the screen and watch the rocket
animation (cheating animation, but animation all the same) take off,
with a final ‘Boldly go, NAME’ message at the end.

 STEP 7 STEP 8

 IMPROVED GRAPHICS

Sadly, C++ in itself doesn’t provide graphics. To get better graphics
and animations, you will need to use some of the available libraries
and full development engines. Much like Python, in some respects,
you will need to apply the relevant extras (modules in the case of
Python, libraries for C++) and learn how to code them into your
own programs.

What you need to understand is that C++ development in the
console, the command line if you will, is completely different to
game development. Years ago, using Borland C++, you could easily
utilise the Graphics.h library then display and animate EGA and
VGA graphics.

If you’re looking to stretch your C++ graphics and animations
learning, then you’re probably best learning the basics first, such
as this section of the book, before moving into the more complex
areas of C++. Then when you’ve got a grasp on the more advanced
concepts of C++, the next step would be to get hold of a game
engine, such as CryEngine, Unreal Engine, or AppGameKit. Each of

these are used to create some of the most impressive games, with
AppGameKit probably being the easiest of the bunch to begin with.

However to reiterate, as with most aspects of coding, building a
good foundation first is essential before delving into the inner
workings of a graphical or game engine.

With the correct tools, you can combine graphics and
animations with C++ routines.

The Unreal Engine helps you develop rich environments and
allows you to add C++ code behind the scenes.

Game engines, together with C++ code, can be used to create
anything from a top-selling game, to something personal.

626262626262 www.bdmpublications.com

63www.bdmpublications.com

Here’s the code in its entirety:

#include <iostream>
#include <unistd.h>
using namespace std;

const char background[]=
“	 *	 *	 *	 *\n\
				 *	 *\n\
	 * 	 *	 ___\n\
 *	 * | | |\n\
 *		 _________##	 *	 / \\ | |\n\
		 @\\\\\\\\\\\\\\\\\\## * |
|--o|===|-|\n\
 *		 @@@\\\\\\\\\\\\\\\\##\\ \\|/|/
|---| | |\n\
		 @@ @@\\\\\\\\\\\\\\\\\\\\\\
\\|\\\|//|/ * / N \\ | |\n\
	 * @@@@@@@\\\\\\\\\\\\\\\\\\\\\\
\\|\\|/|/ | A | | |\n\
		 @@@@@@@@@----------| \\\\|//
| S |=| |\n\
 __ @@ @@@ @@__________| \\|/
| A | | |\n\
 ____|_@|_ @@@@@@@@@__________| \\|/
|_______| |_|\n\
=|__ _____ |= @@@@ .@@@__________| |
|@| |@| | |\n\
____0_____0__\\|/__@@@@__@@@__________|_\\|/__|___
\\|/__\\|/___________|_|_\n\
“;

const char rocket[] =
“ /\\\n\
 |==|\n\
 | |\n\
 | |\n\
 | |\n\
 /____\\\n\
 | |\n\
 | N |\n\
 | A |\n\
 | S |\n\
 /| A |\\\n\
 / | | \\\n\
 /__|____|__\\\n\
 /_\/_\\\n\
 ######\n\
 ########\n\
 ######\n\
 ####\n\
 ####\n\
 ##\n\
“;

int main()
{
 string greet = “Are you ready to explore the
stars?”;
 int x=0;

 cout << background;
 cout << “\n”;

 while (greet[x] !=’\0’)
 {
 cout << greet[x];
 usleep(95000);
 x++;
 }

 string name;
 cout << “\n” << “\n” << “What is your name,
brave astronaut? “;
 cin >> name;
 cout << flush;
 cout << “Press Enter for take off, “ << name
<< “.\n”;
 cin.ignore();
 cin.get();

 for (int i = 0; i < 50; i ++) cout << “\n”;
 cout << rocket;
 int j = 300000;
 for (int i = 0; i < 50; i ++)
 {
 usleep(j);
 j = (int)(j * 0.9);
 cout << “\n”;
 }
 cout << “Boldly go, “ << name << “!\n”;

}

 STEP 9

 ASCII ART

The only major issue that can be time-consuming is getting
the ASCII art to be displayed correctly. As you can see from the
screenshots, it doesn’t display correctly in the IDE, but when
executed it displays perfectly fine in the console window. Take
the time to play around with it, remember the slashes ‘\’, and
new lines, ‘\n\’. See what other art you can come up with.

Combining All You Know

636363636363www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3464

Code Repository

The code listed within this section can be downloaded
as Python files, so you don’t have to type it out.
Simply visit: www.bdmpublications.com/code-portal,
sign up for access to the portal and the code is
available as a compressed file for you to download
and execute.

In addition, if you’ve written something amazing and
want to show it off then why not send it in and we’ll
add it to the Code Portal as well as mention it via our
social media accounts.

Tell us what the code does, how it works (don’t forget
to include comments in the code) and what platform
to run it on.

Send it in to: enquiries:bdmpublications.com. We look
forward to seeing what you’ve done.

SHARE YOUR CODE!

“Controlling complexity is the
essence of computer programming.”

– Brian Kernighan (Co-developer of UNIX and author)

BDM’s Definitive Guide Series - Volume 3464646464646464 www.bdmpublications.com

www.bdmpublications.com

Code
Repository

65

It’s one thing to learn to code, but something
else entirely to view a working program and be
able to customise it for your own needs. With
that in mind, we’ve got some great Python code
examples available for you to try out and use.

There’s code for a Python file manager, number
guessing game, random password generator and
even a game of Hangman. Use the code, tear it
apart and improve it, it’s free for you to play with.

www.bdmpublications.com 65656565656565www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3466

Code Repository

This file manager program displays
a list of options that allow you to
read a file, write to a file, append to
a file, delete a file, list the contents
of a directory and much more. It’s
remarkably easy to edit and insert
into your own code, or add to.

Python File Manager

Copy the code below into a New > File and save it as FileMan.py.
Once executed it will display the program title, along with the
current time and date and the available options.

FILEMAN.PY

import shutil
import os
import time
import subprocess

def Read():
	 path=input(“Enter the file path to read:”)
	 file=open(path,”r”)
	 print(file.read())
	 input(‘Press Enter...’)
	 file.close()

def Write():
	 path=input(“Enter the path of file to write or create:”)
	 if os.path.isfile(path):
 	 	 print(‘Rebuilding the existing file’)
	 else:
	 	 print(‘Creating the new file’)
	 text=input(“Enter text:”)
	 file=open(path,”w”)
	 file.write(text)

def Add():
	 path=input(“Enter the file path:”)
	 text=input(“Enter the text to add:”)
	 file=open(path,”a”)	
 	 file.write(‘\n’+text)

def Delete():
 	 path=input(“Enter the path of file for deletion:”)
 	 if os.path.exists(path):
	 	 print(‘File Found’)
 	 	 os.remove(path)
 	 	 print(‘File has been deleted’)
	 else:
 	 	 print(‘File Does not exist’)

def Dirlist():
	 path=input(“Enter the Directory path to display:”)
	 sortlist=sorted(os.listdir(path))
	 i=0
	 while(i<len(sortlist)):
	 	 print(sortlist[i]+’\n’)
	 	 i+=1

def Check():
	 fp=int(input(‘Check existence of \n1.File \n2.
	 Directory\n’))
	 	 if fp==1:
	 	 	 path=input(“Enter the file path:”)
	 	 	 os.path.isfile(path)

1

2

This part of the code imports the necessary modules.
The OS and Subprocess modules deal with the
operating system elements of the program.

Each def XXX() functions store the code for each
of the menu’s options. Once the code within the
function is complete, the code returns to the main
menu for another option.

This is part of the code that checks to see what OS
the user is running. In Windows the CLS command
clears the screen, whereas in Linux and macOS, the
Clear command wipes the screen. If the code tries
to run CLS when being used in Linux or macOS, an
error occurs, which then prompts it to run the Clear
command instead.

These are the options, from 1 to 12. Each executes
the appropriate function when the relevant number
is entered.

1

2

3

4

BDM’s Definitive Guide Series - Volume 3466 BDM’s Definitive Guide Series - Volume 3466666666666666 www.bdmpublications.com

www.bdmpublications.com 67

Python File Manager

Imports
There are three modules to import here: Shutil, OS and
Time. The first two deal with the operating system and file
management and manipulation; and the Time module simply
displays the current time and date.

Note how we’ve included a try and except block to check if
the user is running the code on a Linux system or Windows.
Windows uses CLS to clear the screen, while Linux uses clear.
The try block should work well enough but it’s a point of
possible improvement depending on your own system.

	 	 if os.path.isfile(path)==True:
	 	 	 print(‘File Found’)
		 else:
	 	 	 print(‘File not found’)
	 if fp==2:
	 	 path=input(“Enter the directory path:”)
	 	 os.path.isdir(path)
	 	 if os.path.isdir(path)==False:
	 	 	 print(‘Directory Found’)
		 else:
	 	 	 print(‘Directory Not Found’)

def Move():
	 path1=input(‘Enter the source path of file to move:’)
	 mr=int(input(‘1.Rename \n2.Move \n’))
	 if mr==1:
		 path2=input(‘Enter the destination path and file name:’)
	 	 shutil.move(path1,path2)
	 	 print(‘File renamed’)
	 if mr==2:
	 	 path2=input(‘Enter the path to move:’)
	 	 shutil.move(path1,path2)
	 	 print(‘File moved’)

def Copy():
	 path1=input(‘Enter the path of the file to copy or rename:’)
	 path2=input(‘Enter the path to copy to:’)
	 shutil.copy(path1,path2)
	 print(‘File copied’)

def Makedir():
	 path=input(“Enter the directory name with path to make
	 \neg. C:\\Hello\\Newdir \nWhere Newdir is new
	 directory:”)
	 os.makedirs(path)
	 print(‘Directory Created’)

def Removedir():
	 path=input(‘Enter the path of Directory:’)
	 treedir=int(input(‘1.Deleted Directory \n2.Delete
	 Directory Tree \n3.Exit \n’))
	 if treedir==1:
	 	 os.rmdir(path)
	 if treedir==2:
	 	 shutil.rmtree(path)
	 	 print(‘Directory Deleted’)
	 if treedir==3:
		 exit()

def Openfile():
	 path=input(‘Enter the path of program:’)
	 try:
	 	 os.startfile(path)
	 except:
	 	 print(‘File not found’)

run=1
while(run==1):
	 try:
	 	 os.system(‘clear’)
	 except OSError:
	 	 os.system(‘cls’)
	 print(‘\n>>>>>>>>>>Python 3 File Manager<<<<<<<<<<\n’)
	 print(‘The current time and date is:’,time.asctime())
	 print(‘\nChoose the option number: \n’)
	 dec=int(input(‘’’1.Read a file
2.Write to a file
3.Append text to a file
4.Delete a file

5.List files in a directory
6.Check file existence
7.Move a file
8.Copy a file
9.Create a directory
10.Delete a directory
11.Open a program
12.Exit

‘’’))
	 if dec==1:
		 Read()
	 if dec==2:
		 Write()
	 if dec==3:
		 Add()
	 if dec==4:
		 Delete()
	 if dec==5:
		 Dirlist()
	 if dec==6:
		 Check()
	 if dec==7:
	 	 Move()
	 if dec==8:
		 Copy()
	 if dec==9:
		 Makedir()
	 if dec==10:
	 	 Removedir()
	 if dec==11:
	 	 Openfile()
	 if dec==12:
		 exit()
	 run=int(input(“1.Return to menu\n2.Exit \n”))
	 if run==2:
		 exit()

3

4

67www.bdmpublications.com 67676767676767www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3468

Code Repository

This is a simple little piece of
code but it makes good use of the
Random module, print and input,
and a while loop. The number of
guesses can be increased from 5
and the random number range can
easily be altered too.

Number Guessing Game

Copy the code and see if you can beat the computer within
five guesses. It’s an interesting bit of code that can be quite
handy when your implementing a combination of the Random
module alongside a while loop.

NUMBERGUESS.PY

import random

guessesUsed = 0
Name=input(‘Hello! What is your name? ‘)
number = random.randint(1, 30)
print(‘Greetings, ‘ + Name + ‘, I\’m thinking of a
number between 1 and 30.’)
while guessesUsed < 5:
	 guess=int(input(‘Guess the number within 5 guesses...’))
	 guessesUsed = guessesUsed + 1
	 if guess < number:
	 	 print(‘Too low, try again.’)
	 if guess > number:
	 	 print(‘Too high, try again.’)
	 if guess == number:
		 break
if guess == number:
	 guessesUsed = str(guessesUsed)
	 print(‘Well done, ‘ + Name + ‘! You guessed
	 correctly in ‘ + guessesUsed + ‘ guesses.’)

if guess != number:
	 number = str(number)
	 print(‘Sorry, out of guesses. The number I was
	 thinking of is ‘ + number)

1

2

3

Although this is a reasonably easy to follow program, there are
some elements to the code that are worth pointing out. To begin
with, you need to import the Random module, as you’re using
random numbers within the code.

This section of the code creates the variables for the number
of guesses used, along with the name of the player, and also
sets up the random number between 1 and 30. If you want a
wider range of random number selection, then increase the
number=random.randint(1, 30) end value of 30; don’t make
it too high though or the player will never be able to guess it.
If the player guesses too low or too high, they are given the
appropriate output and asked to try again, while the number
of guesses is less than five. You can also increase the number of
guesses from 5 by altering the while guessesUsed < 5: value.

If the player guessed the correct number then they are given a
‘well done’ output, along with how many guesses they used up.
If the player runs out of guesses, then the game over output is
displayed instead, along with revealing the number the computer
was thinking of. Remember, if you do alter the values of the
random number chosen by the computer, or the number of
guesses the player can take, then along with the variable values,
you also need to amend the instructions given in the print
statements at the start of the code.

1

2

3

BDM’s Definitive Guide Series - Volume 3468 BDM’s Definitive Guide Series - Volume 3468686868686868 www.bdmpublications.com

www.bdmpublications.com 69

Number Guessing Game

Code Improvements
Since this is such as simple script to apply to a situation, there’s
plenty of room to mess around with it and make it more
interesting. Perhaps you can include an option to take score, the
best out of three rounds. Maybe an elaborate way to congratulate
the player for getting a ‘hole in one’ correct guess on their first try.

Moreover, the number guessing game code does offer some room
for implementing into your code in a different manner. What we
mean by this is, the code can be used to retrieve a random number
between a range, which in turn can give you the start of a character
creation defined function within an adventure game.

Imagine the start of a text adventure written in Python, where
the player names their character. The next step is to roll the
virtual random dice to decide what that character’s combat
rating, strength, endurance and luck values are. These can then be
carried forward into the game under a set of variables that can be
reduced or increased depending on the circumstances the player’s
character ends up in.

For example, as per the screenshot provided, you could use
something along the lines of:

Endurance=0
CR=0
Luck=0
Endurance = random.randint(1, 15)
CR = random.randint(1, 20)
Luck = random.randint(1, 10)
Print(“Your character’s stats are as follows:\n”)
Print(“Endurance:”, Endurance)
Print(“Combat Rating:”, CR)
Print(“Luck:”, Luck)

The player can then decide to either stick with their roll or try again
for the hope of better values being picked. There’s ample ways in
which to implement this code into a basic adventure game.

69www.bdmpublications.com 69696969696969www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3470

Code Repository

User input and the ability to
manipulate that input are
important elements with any
programming language. It’s what
separates a good program from a
great program, one that allows the
user to interact and see the results
of that interaction.

Random Number Generator
It might be simple but this little piece of code will ask the user
for two sets of numbers, a start and a finish. The code will then
pluck out a random number between the two sets and display it.

RNDNUMGEN.PY

from random import *

print(“\n>>>>>>>>>>Random Number Generator<<<<<<<<<<\n”)
nmb1=int(input(“Enter the start number: “))
nmb2=int(input(“Enter the last number: “))

x = randint(nmb1, nmb2)
print(“\nThe random number between”,nmb1,”and”,nmb2,”is:\n”)
print(x)

More Input
While an easy code to follow, it could be more interesting if you
prompt the user for more input. Perhaps you can provide them
with addition, subtraction, multiplication elements with their
numbers. If you’re feeling clever, see if you can pass the code
through some Tkinter GUI code, so it’s presented in a window
rather in the console.

Furthermore, the core of the code can be used in a text adventure
game, where the character fights something and their health,
along with the enemy’s, is reduced by a random number. This
can be mixed with the previous code from Page 154’s Number
Guessing Game, where we defined the stats for the adventure
game’s character.

You can also introduce the Turtle module into the code and
perhaps set some defined rules for drawing a shape, object or
something based on a user inputted random value from a range
of numbers. It takes a little working out but the effect is certainly
really interesting.

For example, the code could be edited to this:

from random import *
import turtle

print(“\n>>>>>>>>>>Random Turtle Image<<<<<<<<<<\n”)
nmb1=int(input(“Enter the start number: “))
nmb2=int(input(“Enter the second number: “))
nmb3=int(input(“Enter the third number: “))
nmb4=int(input(“Enter the fourth number: “))

turtle.forward(nmb1)
turtle.left(90)
turtle.forward(nmb2)
turtle.left(90)
turtle.forward(nmb3)
turtle.left(90)
turtle.forward(nmb4)
turtle.left(90)

Whilst it’s a little rough around the edges, you can easily make it
more suitable.

BDM’s Definitive Guide Series - Volume 3470 BDM’s Definitive Guide Series - Volume 3470707070707070 www.bdmpublications.com

www.bdmpublications.com 71

Random Number Generator/Password Generator

Random Password
Generator

Copy the code and run it; each time you’ll get a random string
of characters that can easily be used as a secure password
which will be incredibly difficult for a password cracker to hack.

RNDPASSWORD.PY

import string
import random

def randompassword():
	 chars=string.ascii _ uppercase + string.ascii _
	 lowercase + string.digits
	 size= 8
	 return ‘’.join(random.choice(chars) for x in
	 range(size,20))

print(randompassword())

Secure Passwords
There’s plenty you can do to modify this code and improve it
further. For one, you can increase the number of characters the
generated password displays and perhaps you can include special
characters too, such as signs and symbols. Then, you can output
the chosen password to a file, then securely compress it using the
previous random number generator as a file password and send it
to a user for their new password.

An interesting aspect to this code is the ability to introduce a loop
and print any number of random passwords. Let’s assume you have
a list of 50 users for a company and you’re in charge of generating
a random password for them each month.

Adding a loop to print a password fifty times is extremely easy,
for example:

import string
import random

def randompassword():
	 chars=string.ascii _ uppercase + string.ascii _
	 lowercase + string.digits
	 size= 4
	 return ‘’.join(random.choice(chars) for x in
	 range(size,20))

n=0
while n<50:
	 print(randompassword())
	 n=n+1

This will output fifty random passwords based on the previous
random selection of characters.

We’re always being told that our
passwords aren’t secure enough;
well here’s a solution for you to
implement into your own future
programs. The random password
generator code below will create a
12-letter string of words (both cases)
and numbers each time it’s executed.

71www.bdmpublications.com 71717171717171www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3472

Code Repository

Text adventures are an excellent
way to build your Python coding
skills and have some fun at the
same time. This example that we
created will start you on the path
to making a classic text adventure;
where it will end is up to you.

Text Adventure Script

The Adventure game uses just the Time module to begin
with, creating pauses between print functions. There’s a help
system in place to expand upon, as well as the story itself.

ADVENTURE.PY

import time

print(“\n” * 200)
print(“>>>>>>>>>>Awesome Adventure<<<<<<<<<<\n”)
print(“\n” * 3)
time.sleep(3)
print(“\nA long time ago, a warrior strode forth from
the frozen north.”)
time.sleep(1)
print(“Does this warrior have a name?”)
name=input(“> “)
print(name, “the barbarian, sword in hand and looking
for adventure!”)
time.sleep(1)
print(“However, evil is lurking nearby....”)
time.sleep(1)
print(“A pair of bulbous eyes regards the hero...”)
time.sleep(1)
print(“Will”, name, “prevail, and win great fortune...”)
time.sleep(1)
print(“Or die by the hands of great evil...?”)
time.sleep(1)
print(“\n” *3)
print(“Only time will tell...”)
time.sleep(1)
print(‘...’)
time.sleep(1)
print(‘...’)
time.sleep(1)
print(‘...’)
time.sleep(1)
print(‘...’)
time.sleep(5)
print(“\n” *200)

print(‘’’ You find yourself at a small inn. There’s
	 little gold in your purse but your sword is sharp,
	 and you’re ready for adventure.
	 With you are three other customers.
	 A ragged looking man, and a pair of dangerous 	
	 looking guards.’’’)

def start():
	 print(“\n ----------”)
	 print(“Do you approach the...”)
	 print(“\n”)
	 print(“1. Ragged looking man”)
	 print(“2. Dangerous looking guards”)

	 cmdlist=[“1”, “2”]
	 cmd=getcmd(cmdlist)

BDM’s Definitive Guide Series - Volume 3472 BDM’s Definitive Guide Series - Volume 3472727272727272 www.bdmpublications.com

www.bdmpublications.com 73

Text Adventure Script

	 if cmd == “1”:
		 ragged()
	 elif cmd == “2”:
		 guards()

def ragged():
	 print(“\n” * 200)
	 print(‘’’You walk up to the ragged looking man and
	 greet him.
	 	 He smiles a toothless grin and, with a strange
	 	 accent, says.
	 	 “Buy me a cup of wine, and I’ll tell you of
	 	 great treasure...’’’)
	 time.sleep(2)

def guards():
	 print(“\n” *200)
	 print(‘’’You walk up to the dangerous looking guards
	 and greet them.
	 	 The guards look up from their drinks and
	 	 snarl at you.
 	 	 “What do you want, barbarian?” One guard reaches
	 	 for the hilt of his sword...’’’)
	 time.sleep(2)

def getcmd(cmdlist):
	 cmd = input(name+”>”)
	 if cmd in cmdlist:
		 return cmd
	 elif cmd == “help”:
	 	 print(“\nEnter your choices as detailed in
	 	 the game.”)
	 	 print(“or enter ‘quit’ to leave the game”)
		 return getcmd(cmdlist)
	 elif cmd == “quit”:
	 	 print(“\n-----------”)
	 	 time.sleep(1)
	 	 print(“Sadly you return to your homeland without
	 	 fame or fortune...”)
	 	 time.sleep(5)
		 exit()

if _ _ name _ _ ==” _ _ main _ _ ”:
	 start()

Adventure Time
This, as you can see, is just the beginning of the adventure and
takes up a fair few lines of code. When you expand it, and weave
the story along, you’ll find that you can repeat certain instances
such as a chance meeting with an enemy or the like.

We’ve created each of the two encounters as a defined set
of functions, along with a list of possible choices under the
cmdlist list, and cmd variable, of which is also a defined function.
Expanding on this is quite easy, just map out each encounter and
choice and create a defined function around it. Providing the user
doesn’t enter quit into the adventure, they can keep playing.

There’s also room in the adventure for a set of variables designed
for combat, luck, health, endurance and even an inventory or
amount of gold earned. Each successful combat situation can
reduce the main character’s health but increase their combat skills
or endurance. Plus, they could loot the body and gain gold, or earn
gold through quests.

Finally, how about introducing the Random module. This will
enable you to include an element of chance in the game. For
example, in combat, when you strike an enemy you will do a
random amount of damage as will they. You could even work out
the maths behind improving the chance of a better hit based on
your or your opponent’s combat skills, current health, strength and
endurance. You could create a game of dice in the inn, to see if you
win or lose gold (again, improve the chances of winning by working
out your luck factor into the equation).

Needless to say, your text adventure can grow exponentially
and prove to be a work of wonder. Good luck, and have fun with
your adventure.

73www.bdmpublications.com 73737373737373www.bdmpublications.com

BDM’s Definitive Guide Series - Volume 3474

Code Repository

Hangman is a great game to
program into Python. It can be
extremely complex, displaying
graphics, the number of guesses left
in the secret word, a huge bank of
available words picked at random
and countless other elements. It can
also be quite simple. Here we have a
mix between the two.

Hangman Game Script

We’ve made a Hangman game board (the gallows) out of
characters that can be displayed in the IDLE Shell, along with
a huge bank of words to randomly choose from.

HANGMAN.PY

import random

board = [‘’’

>>>>>>>>>>Hangman<<<<<<<<<<

+---+
| |
 |
 |
 |
 |
=========’’’, ‘’’

+---+
| |
O |
 |
 |
 |
=========’’’, ‘’’

+---+
| |
O |
| |
 |
 |
=========’’’, ‘’’

 +---+
 | |
 O |
/| |
 |
 |
=========’’’, ‘’’

 +---+
 | |
 O |
/|\ |
 |
 |
=========’’’, ‘’’

 +---+
 | |
 O |
/|\ |
/ |

BDM’s Definitive Guide Series - Volume 3474 BDM’s Definitive Guide Series - Volume 3474747474747474 www.bdmpublications.com

www.bdmpublications.com 75

Hangman Game Script

 |
=========’’’, ‘’’

 +---+
 | |
 O |
/|\ |
/ \ |
 |
=========’’’]

class Hangman:
	 def _ _ init _ _ (self,word):
	 	 self.word = word
	 	 self.missed _ letters = []
	 	 self.guessed _ letters = []
		
	 def guess(self,letter):
	 	 if letter in self.word and letter not in self.
	 	 guessed _ letters:
	 	 	 self.guessed _ letters.append(letter)
	 	 elif letter not in self.word and letter not in
	 	 self.missed _ letters:
	 	 	 self.missed _ letters.append(letter)
		 else:
			 return False
	 	 return True
		
	 def hangman _ over(self):
	 	 return self.hangman _ won() or (len(self.missed _
		 letters) == 6)
		
	 def hangman _ won(self):
	 	 if ‘ _ ’ not in self.hide _ word():
	 	 	 return True
		 return False
		
	 def hide _ word(self):
	 	 rtn = ‘’
	 	 for letter in self.word:
	 	 	 if letter not in self.guessed _ letters:
	 	 	 	 rtn += ‘ _ ’
			 else:
	 	 	 	 rtn += letter
		 return rtn
		
	 def print _ game _ status(self):
	 	 print (board[len(self.missed _ letters)])
	 	 print (‘Word: ‘ + self.hide _ word())
	 	 print (‘Letters Missed: ‘,)
	 	 for letter in self.missed _ letters:
	 	 	 print (letter,)
		 print ()
	 	 print (‘Letters Guessed: ‘,)
	 	 for letter in self.guessed _ letters:
	 	 	 print (letter,)
		 print ()

def rand _ word():
	 bank = ‘ability about above absolute accessible
	 accommodation accounting beautiful bookstore
	 calculator clever engaged engineer enough
	 handsome refrigerator opposite socks interested
	 strawberry backgammon anniversary confused
	 dangerous entertainment exhausted impossible
	 overweight temperature vacation scissors
	 accommodation appointment decrease development
	 earthquake environment brand environment necessary

	 luggage responsible ambassador circumstance
	 congratulate frequent’.split()
	 return bank[random.randint(0,len(bank))]

def main():
	 game = Hangman(rand _ word())
	 while not game.hangman _ over():
	 	 game.print _ game _ status()
	 	 user _ input = input(‘\nEnter a letter: ‘)
	 	 game.guess(user _ input)

	 game.print _ game _ status()	
	 if game.hangman _ won():
	 	 print (‘\nCongratulations! You have won!!’)
	 else:
	 	 print (‘\nSorry, you have lost.’)
	 	 print (‘The word was ‘ + game.word)
		
	 print (‘\nGoodbye!\n’)
		
if _ _ name _ _ == “ _ _ main _ _ ”:
	 main()

QUIT()
Since this is the last example in our Python code repository, we
thought we’d go out with a bang and feature the hangman
gallows being drawn with each incorrect guess of the word.
Don’t worry if it looks misaligned in the text here, this is merely
due to the differences between using the Python IDLE editor
and pasting the code into a word processor (which formats
things differently).

There’s plenty you can do to improve, enhance and expand on
what we’ve presented here. You can include a routine that
returns an error if the user enters a number or character. You
can include extra points for someone who guesses the entire
word in one go rather than one letter at a time and you could
perhaps add Chopin’s Funeral March should you lose the game;
or something celebratory if you win.

Consider replacing the bank of words too. They’re found under
the bank list, and could easily be swapped out for something
more difficult. If you download www.github.com/dwyl/english-
words you can find a text document with over 466,000 words.
Perhaps you could swap the words in the bank to instead read
the contents of the text file:

def rand _ word():
	 with open(“/home/pi/Downloads/words.txt”, “rt”) as f:
	 	 bank=f.readlines()
	 return bank[random.randint(0,len(bank))]

75www.bdmpublications.com 75757575757575www.bdmpublications.com

Master Your Tech From Beginner to Expert

Black Dog Media

To continue learning more about your tech visit us at:

www.bdmpublications.com

� Print & digital editions
� Featuring the very latest updates
� Step-by-step tutorials and guides
� Created by BDM experts
Check out our latest titles today!

bdmpublications.com/ultimate-photoshop
Buy our Photoshop guides and download

tutorial images for free!
Simply sign-up and get creative.

FREE Tech Guides

EXCLUSIVE Offers on
our Tech Guidebooks

Special Deals and
Bonus Content

Sign up to our monthly newsletter
and get the latest updates, offers
and news from BDM. We are here
to help you Master Your Tech!

Samsung & Android

Coding Python,
Raspberry Pi & Linux

Photography,
Photoshop & Lightroom

Apple iPhone, iPad,
Mac, MacBook & Watch

PC & Windows 10

PLUS

210 Readly BDM Ad.qxp_OFC.qxd 05/08/2019 13:58 Page 2

0-9

3G
The third generation of mobile data networking
used by both the iPhone and iPad. This connection is
slower than Wi-Fi, but is more readily available and is
used to transfer data from your device when you are
on the go. It uses the mobile phone network.

4G
The fourth generation of mobile data networking.

5G
The fifth generation of mobile data networking
offers increased speed when transferring data on
the go but it is still in its early stages of adoption by
mobile phone networks.

A...

Accessibility
A series of tools and features designed to make an
Apple device such as the Mac and mobile
devices easier to use by those with disabilities such
as vision or hearing impairments. You can find
the Mac’s Accessibility features and customise them
in System Preferences.

ADB
Android Debug Bridge. Part of the Android Software
Development Kit, used to send commands from a
computer to an attached phone.

Adobe Bridge
Bridge is a browser application produced by Adobe
Systems as part of the Creative Suite and is usually
installed alongside Photoshop. Its main function is as
the file management hub of the Creative Suite. It can
be used to open, manage, rate and rename files as
well as edit their metadata.

Adobe RGB
A device independent colour space developed by
Adobe. It provides a relatively large range of colours,
i.e. grey-balanced and perceptually uniform. It is
widely used for image editing.

ADSL
Asymmetric Digital Subscriber Line. It’s a means of
connecting to the Internet through your telephone
line. Sometimes just called ‘DSL’

Airplane Mode
All airlines warn you to turn off mobile electronic
devices when on board an aircraft, so this iPad
setting turns off all incoming and outgoing signals
to your device, including data, Bluetooth and Wi-Fi.

AirPlay
A protocol for streaming sounds and video from an
Apple device to a set of compatible speakers or a device
such as an Apple TV. It’s wireless and easy to use.

AMOLED

Active Matrix Organic Light Emitting Diode. A
bright and colourful display technology popular on
smartphones (although it has now been superseded
by Super AMOLED and qHD.)

Android
The name of the operating on your smartphone
(we are assuming you own an Android phone if you
are reading this magazine). There have so far been
eleven versions/updates released.

Android Market
The previous name for the Google Play Store. The
place to go to find apps, books and movies to install
on your phone.

Anti-Aliasing Filter
This is an optical filter, also known as low-pass filter,
which is placed on the camera sensor to create a
slight blur or softening that helps counteract aliasing
or Moiré interference.

Apk (.apk)
The file extension of Android applications.

Apps (Applications)
The programs, such as Angry Birds, Facebook
or Soundhound, that you install and run on you
Android phone.

App Store
The App Store is where you can download free and
paid programs to your device using your Apple ID.
You can access it through the application found on
your home screen.

App Inventor
A web-based system that lets anyone develop apps
for Android. Originally created and run by Google,
but now run as an open-source project.

Apple ID
This is the email address and password that you
have registered with Apple. It will be required
to access most online applications on your iPad,
including iTunes, App Store and Books.

Apple Menu
The menu that’s opened by clicking on the Apple
icon in the left of the menu bar, when using a Mac
or MacBook computer. It gives access to system
functions such as Preferences, App Store,
Force Quit and more.

Archos
A manufacturer of Android tablets.

ASUS
A well-known manufacturer of Android smartphones
and tablets.

AT&T

One of the “Big Four” of American carriers

B...

Bit
A contraction of binary digit, the smallest unit of
information storage or digital information that can
take on one of two values, 0 and 1.

Bit Depth
Defines how many bits of colour data are used
to describe each pixel or channel. For example, 2
bits per pixel only allows for black or white. 8 bits
provides 256 colours. When referring to an 8-bit
colour image, 256 is multiplied by the three primary
channels (red, green and blue) to create what is
commonly called 24-bit colour, with a possible
16,777,266 colours.

Black Point
In image editing, the black point is a tonal
adjustment that sets the point at which the deepest
shadow detail in the histogram is clipped to black.

Bloatware
The name given to unwanted applications
preloaded onto your phone. Bloatware cannot
usually be removed by the end user unless they
decide to root their handset.

BlueTooth
Short range file data system built into almost every
Android smartphone ever made. Can be used to
send files and connect speakers or headphones
wirelessly to your phone.

Books
Apple’s eBook reader, available from the App
Store. It handles the standard electronic publishing
formats protected by FairPlay DRM and PDF. It was
introduced in 2010 along with the iPad.

Bootloader
A normally hidden mode in Android that helps with
flashing ROMs when rooting an Android phone.

Broadband
Wide bandwidth data transmission, that is, fast
Internet as opposed to the older, dial-up services.

Browser
An app used to access websites found on the
worldwide web. The iPad and iPhone come with
Apple’s Safari browser preinstalled but others are
available in the App Store. Android devices use the
Chrome browser

BSI
Backside Illumination. Sometimes used to improve
smartphone camera performance.

The Ultimate Jargon Buster
Avoid tech confusion, either when reading this book or when talking to friends, with this glossary

of technology terms and phrases. We have looked across the tech boarders to bring to you the

definitive jargon buster, but it should help you to understand the common terms people use

when talking about their devices and their software.

C...

Calendar
This is one of several preloaded apps found on most
devices. Use it to keep track of events, invitations
and reminders on your phone and tablet.

Camera Raw
Proprietary raw file formats designed to hold
image data and metadata generated by digital
cameras. These formats are non-standard and
undocumented, although they are usually based on
the TIFF/EP file format standard.

Carrier
Another name for a mobile network provider
(Vodafone, AT&A, Sprint, etc.)

Casting
The process of converting one data-type into
another. For example, sometimes a number may
stored as text but need to be converted in to an
integer.

CCD (Charged Coupled Device)
A type of image sensor found in digital cameras and
scanners. It is a light-sensitive chip that converts light
into an electrical charge that is then processed by an
analogue to digital converter. CCD differs from the
other common sensor type (CMOS) in the way that it
processes the electrical charges captured by sensor
elements.

CDMA
One of the two main cell phone communication
standards. Not often used in phones outside of the
U.S.

Chromatic Aberration
Known also as colour fringing, chromatic aberration
is caused when a camera lens does not focus the
different wavelengths of light onto the exact same
focal plane. The effect is visible as a thin coloured
halo around objects in the scene, often the border
between dark and light objects.

Class
A class provides a means of bundling data and
functionality together. They are used to encapsulate
variables and functions into a single entity.

Clipping
The loss or either highlight or shadow details when
tone information is forced to pure white or black.
For example, over-exposure can produce clipping
by forcing highlights that should contain detail
to register as pure white. Clipping can also be
caused either intentionally as a creative effect or
unintentionally because of excessive corrections.
Saturation clipping can occur when colours are
pushed beyond the range of a colour space.

Comments
A comment is a section of real world wording
inserted by the programmer to help document
what’s going on in the code. They can be single line
or multi-line and are defined by a # or ‘’’.

Constant
A number that does not change. It is good practice
to name constants in capitals e.g. SPEED_OF_LIGHT

CMOS (Complementary Metal Oxide

Semiconductor)
A type of image sensor found in digital cameras and
scanners. It is a light-sensitive chip that converts light
into an electrical charge, which is then processed by
an analogue to digital converter. CMOS differs from

the other common sensor type (CCD) in the way
that it processes the electrical charges captured by
sensor elements.

CMYK
Also commonly referred to as process colour, CMYK
is a subtractive colour model using cyan, magenta,
yellow and black inks in colour printing.

Colour Profile
Also known as an ICC profile, the Colour Profile
defines the information required to by a colour
management system (CMS), to make the colour
transformations between colour spaces. They can be
device specific such as monitors, scanners or printers
or abstract editing spaces.

Compression
The process of re-encoding digital information
using fewer bits than the original file or source.
This reduces transmission time and storage
requirements. There are a number of different
algorithms that provide either “lossy” or lossless
compression. JEPG is a common file format that
employs lossy compression to achieve smaller file
sizes at the expense of image quality.

Cupcake
The nickname for Android version 1.5.

CyanogenMod
One of the best known and most often used series of
custom ROMs.

D...

DECT
Digital Enhanced Cordless Telecommunications.
It’s a wireless standard used mostly for cable-free
telephone systems.

DLNA
Dynamic Living Network Alliance. A technology
found on some high-end Android phones that lets
users stream photos and videos from their phone to
a compatible TV.

DNG (Digital Negative)
An open standard file format developed by Adobe
Systems that provides an alternative to proprietary
camera raw files. The DNG specification incorporates
rich metadata along with embedded previews,
camera profiles and editable notes. DNG uses
lossless compression that can result in a significant
file size reduction over the original proprietary raw.

Download
The term used when taking a file from the Internet
or from a connected device such as a computer, to
your phone or tablet.

Dock
The opaque strip at the bottom of the home screen.
Apps in the dock remain in a special row of icons (or
Folders post iOS 4) along the bottom of iPhone, iPod
touch and iPad screens and do not change when
you swipe between home screens.

DPI (Dots Per Inch)
The measurement of print resolution expressed
in how many dots of ink are laid down either
horizontally or vertically per inch. A higher number
indicates a greater amount of output resolution. Not
to be confused with pixel per inch (PPI). There is not
necessarily a direct correlation between DPI and PPI.

Dream (HTC Dream or G1)
The very first phone to use the Android operating system.

Dynamic Range
In the context of photography, dynamic range describes
the difference between the brightest and darkest light
intensities of a scene. From capture to output, there can
be a large difference in the size of the dynamic range
that each device is capable capturing or reproducing.
Dynamic range is commonly expressed in the number
of f-stops that can be captured or the contrast ratio of
the scene or device.

E...

Eclair
The nickname for Android version 2.0/2.1.

Emoticon
A small drawing used to augment a message or text.
Typically these are yellow faces showing a variety of
expressions.

Escape Sequence
When characters that have certain meanings in the
Python coding language are required in strings they
have to be “escaped” so that the computer knows
they do not have their usual meaning. This is done
by putting a slash in front of them e.g. \”

Ethernet
The format used for local cabled networks (LAN).
Your router comes supplied with Ethernet cables
and has ports for plugging them in.

Exposure
The total amount of light that strikes the sensor or
film during an image capture. An optimal exposure
takes full advantage of the dynamic range of the
sensor without under-exposing the shadows or
over-exposing the highlights.

Extender
A device that extends the range of a wireless
network by creating a second entry point, which
may, or may not, merge with the main one.

F...

Facebook
Currently the most popular social networking site
on the Internet; there are currently over 835 million
registered users.

FaceTime
Apple’s video calling service. Requires a Wi-Fi
connection and is currently only supported via
a phone number on iPhone and Apple ID email
address on iPod touch 4 and Mac.

Factory Reset
An option on your Android phone that allows you to
return it to the state it was when it left the factory.

File Format
The structure of how information is encoded in a
computer file. File formats are designed to store
specific types of information, such as JPEG and TIFF
for image or raster data, AI for vector data or PDF for
document exchange.

Folder
An icon representing a container for a group of apps,
files or icons.

Force Quit
In the Fast App Switcher, tapping and holding an
app will put it in ‘jiggly mode’ and tapping the x
badge will force it to quit. Built-in apps like Mail and
Messages will automatically restart while third-party
apps will restart the next time you launch them.

Froyo
The nickname given to Android version 2.2.

G...

G1
The very first phone to run the Android operating
system. Also known and the HTC Dream.

Game Center
Apple’s gaming service, where you can discover
new games and share your game experiences with
friends from around the world.

Gamut
The range of colours and tonal values that can
be produced by a capture or output device or
represented by a colour space.

Galaxy
A range of hugely popular handsets from Samsung,
the biggest smartphone manufacturer in the world.

Geotagging
The act of digitally attaching your location to photos
taken on your phone.

Gingerbread
The nickname given to Android version 2.3.

Gmail
Google’s web-based email software. Comes pre-
installed on every Android smartphone.

Google
Owner (although not the original creator) of
Android. Also own a fairly well known search
engine...

Google Now
An enhanced Google search app which bases the
information displayed on current location. Currently
only found in Jelly Bean.

Google Play
Previously known as Android Market, this is where
you go to download Android compatible apps,
books, music and movies.

Gorilla Glass
Increasingly popular scratch-resistant glass used for
smartphone displays.

GPS
Global Positioning System. A system that uses
satellites to pinpoint your current location.

Grayscale
A monochromatic digital image file with pixel
values that use shades of grey to represent tonal
information. The term is often used to describe
digital black and white photographs.

GSM
One of the two main cell phone communication
standards. Used in most countries outside of the U.S.

H...

Hacking
Most often means rooting when talking about
Android.

Hard Reset
Also called Factory Reset. Returns the phone to its
post-factory state.

HDR (High Dynamic Range)
A process that combines multiple exposure
variations of an image to achieve a dynamic range
exceeding that of a single exposure. Algorithms
are used to blend the exposures into a high-bit file
format that can then be converted to either 8 or 16
bit for printing or web presentation.

Histogram
A graphical representation of the tone and colour
distribution in a digital image. This is typically based
on a particular colour or working space by plotting
the number of pixels for each tone or colour value. It
can be used to interpret photographic exposure and
reveal shadow or highlight clipping.

Home Button
The physical hardware button on the front of early
models of the iPhone, iPod touch, iPad and many
Android devices, located just below the screen. It’s
used to wake the device, return to the Home Screen
and several other functions.

Home Screen
The front end of your smartphone or tablet. The
screen you see, containing app icons, widgets, etc.,
when you first unlock the device.

Honeycomb
The nickname given to Android version 3.0. The only
version designed specifically for tablets, but now
superseded by ICS.

HTC
A large Taiwanese smartphone manufacturer.

HTTP
Hypertext Transfer Protocol, the protocol used by
the World Wide Web (Internet) that defines how
messages are sent, received and read by browsers
and other connected software layers.

HTTPS
Hypertext Transfer Protocol Secure, an encrypted
and far more secure version of HTTP.

I...

Ice Cream Sandwich
The nickname given to Android version 4.0/4.1. The
majority of new Android tablets now use this.

IMEI
International Mobile Equipment Identity. This is a
unique identification number assigned to every
phone.

Intel
Well known PC processor manufacturer. Has now
started producing smartphone processors.

Internet
A global system of interconnected computers and
networks which use the Internet Protocol Suite (TCP/
IP) to link online devices.

Indentation
The coding language Python uses indentation to
delimit blocks of code. The indents are four spaces
apart, and are often created automatically after a
colon is used in the code

iOS
Apple mobile operating system and the software
that powers the iPhone, iPod touch, iPad and Apple
TV.

IPS
In Plane Switching is a type of display used on some
phones that increases the viewing angle of the
screen.

I-Tunes
Mac and Windows music playing software, also used
to activate and sync iPhone, iPod touch and iPad. It
is also used to purchase and manage music, movies,
TV shows, apps, books and other media.

ISO (International Organisation for

Standardisation)
In photography, ISO refers to the standard for
measurement of the sensitivity of film or digital
sensors to light.

J...

Jelly Bean
The nickname given to Android 4.2, the latest
version of the operating system.

JIT
The Just In Time compiler was introduced in Android
2.2. It helps to speed up apps on Android.

JPEG, JPG (Joint Photographic Experts

Group)
A standard created by the Joint Photographic
Experts Group for the compression of photographic
images and the accompanying file format. It
employs lossy compression that can reduce file size
but at the expense of image quality and detail.

K...

Kernel
The basic Linux building block of Android.

Keyboard
Tablets and smartphones can feature either a
physical or software keyboard.

Keyword
An element of metadata that is used to make a file
more easily discoverable to searches. Keywords can
be individual words or short phrases and can have a
hierarchical structure.

L...

Landscape Mode
This describes a phone or tablet when you hold it
horizontally; this is when it’s wider than it is tall and
the Home button is on the right or left of the screen.

Launcher
This is the part of the Android user interface on
home screens that lets you launch apps and make
phone calls.

LAN
Local Area Network. Devices that are connected to
your router using Ethernet cables, are part of the
LAN (see also WLAN).

LG
A large Korean electronics and smartphone
manufacturer.

Linux
An open-source operating system that is used as the
basis of Android.

Live Wallpapers
Animated wallpapers introduced in Android 2.1.

Loop
A piece of code that repeats itself until a certain
condition is met. Loops can encase the entire code
or just sections of it.

LTE
Long-Term Evolution. A name sometimes given to
4G data networks.

Luminance
The intensity of light as emitted or reflected by
an object or surface. This is usually expressed
in candelas per square meter (cd/m2). It is a
measurement of the brightness of an object or light
source.

M...

Magic
HTC phone also known as the MyTouch 3G. The first
phone to use an Android operating system.

Mail
Built-in Apple app for handling POP3, IMAP,
MobileMe and Exchange/ActiveSync email accounts.

Messages
One of Apple’s built-in iPhone apps that handles
SMS text messages and MMS multimedia messages.
SMS messages are also more generally called
“messages” on most devices.

MMS: (MultimediaMmessages)
MMS supports images, videos, sound, contact
cards and location data. Sent and received via the
Messages app.

Megapixel
A term used to describe digital camera resolution,
1 megapixel equals one million pixels or sensor
elements. To calculate the megapixel value for a
camera, multiply the horizontal by the vertical pixel
counts of the recorded image.

Mesh
A means of combining two wireless access points
into one, so they use the same settings and appear
as a single network to devices that join it.

Metadata
Embedded or associated information describing a
file’s contents, used in digital photography to hold
exposure information, GPS location data, copyright
information and more. There are several metadata
formats such as EXIF, IIM, IPTC Core, Dublin Core,
DICOM and XMP.

Modem
Short for modulate-demodulate, a modem converts
data into a signal that can be transferred over a
phone line, and does so in reverse for incoming data.

Motorola
A large manufacturer or electronics and
smartphones.

N...

News
Is an app in iOS that collected together magazine
and newspaper apps and allowed the automatic
downloading of new stories.

Nexus

A range of smartphones and tablets developed by
Google. The Nexus range runs a pure version of
Android.

NFC
Near Field Communication. A technology which
allows data to be between phones or between your
phone and another device.

Noise
The unwanted colour or luminance variations of
pixels that degrade the overall quality of an image.
Noise can result from several different sources
including a low signal to noise ratio, the use of high
ISO settings, long exposures, stuck sensor pixels
and compression artefacts. It can appear as random
colour speckles, a grain-like effect or banding.

Notification Centre:
A pull-down list of recent notifications, accessible
from any iOS Home Screen or from within any iOS
app. Similar to the Notification Panel found on
Android.

O...

OEM
Original Equipment Manufacturer. A company which
manufacturers devices for another brand (e.g. ASUS
is the OEM of Google’s Nexus 7.)

One Series
A range of smartphones from HTC. Includes the One
X, One V and the One S.

Open GL
An open source graphics library, used on some
smartphones.

Open Source
Software which is available to be studied, used
and adapted by anyone. Android is open source
software.

Operating System
Also OS. The program that’s loaded into the
computer after the initial boot sequence has
completed. The OS manages all the other programs,
graphical user interface (GUI), input and output and
physical hardware interactions with the user.

Optimus
A range of smartphones from LG

OTA
Over The Air. A method which upgrades are
wirelessly sent to smartphones.

Output
Data that is sent from the program to a screen,
printer or other external peripheral.

P...

Pantech
A South Korean smartphone manufacturer.

PDF (Portable Document Format)
Developed by Adobe Systems, PDF is an open
standard file format for cross-platform document
exchange. PDF is highly extensible, preserves the
integrity of the original document, is searchable and
provides document security.

Photos
Built-in Apple app that handles your photo albums
on your iPhone and iPod touch 4, and synced

photos and videos for iPhone and all generations of
iPad and iPod touch.

Photo Stream
Part of iCloud, Photo Stream stores your last thirty
days or 1000 photos online and on your iOS devices,
and all your photos on your Mac.

Pixel
Derived from the term picture element, this is the
smallest unit of information in a digital image. It
is also commonly used to describe the individual
elements on a capture device such as a camera
sensor.

PIN
Stands for Personal Identification Number. Used to
lock smartphones and SIM cards.

Plug-In
A software application or module that provides
extended and specific functionality from within a
larger host application.

Portrait Mode
This describes a smartphone or tablet when you
hold it vertically; this is when it’s taller than it is wide
and the Home button is at the top or bottom of the
screen.

PSD
The .psd (Photoshop Document) format is a popular
proprietary file format from Adobe Systems, Inc.
It has support for most of the imaging options
available in Photoshop, such as layer masks,
transparency, text and alpha channels. In addition,
spot colours, clipping paths and even duotone
settings can be saved if you are preparing images
for printing.

Project Butter
Software enhancements introduced in Android 4.1.
Designed to smooth out frame rates and animations.

Q...

QR Code
A type of barcode which can be scanned by
smartphones to reveal information such as text and
website URL’s.

QuickTime
Apple’s 2D video and graphics player, used to play
movies and other video on iOS.

R...

Raw Files
A Raw file is the unprocessed data captured by a
digital camera sensor. In most cases, cameras write
Raw files using a proprietary file format. Raw files
give the photographer the advantage of managing
image processing during post-production rather
than letting the camera make the processing
decisions, as happens when shooting in JPEG
format. See also: DNG.

Recovery Mode
A separate operating mode of Android. Mainly used
for device administration and repair.

Retina Display
Super sharp display available on Mac computers and
iOS devices.

Resolution

A measurement of the ability of an optical, capture,
or output system to record and reproduce detail. It
can be defined in several different metrics such as
Line Pairs, PPI, DPI, SPI and LPI. Also see DPI and PPI.

RGB
A colour model that uses the three primary additive
colours (red, green, blue) that can be mixed in
different ratios to make all other colours.

ROM
Read Only Memory. In Android a ROM is used to
load software updates. Custom ROMs are software
updates developed by third parties.

Root
In Android, to Root means to unlock the device to
allow more access to the core software (or root).

Router
A device that manages and organises your home
network devices, whether they connect to the router
using a cable (LAN), or wirelessly (WLAN).

S...

Safari
Apple’s web browser, both for Mac OS X and iOS
(sometimes called Mobile Safari). Based on KHTML/
WebKit renderer and the Nitro JavaScript engine.

Samsung
A huge Korean smartphone and electronics
manufacturer.

SD Card
A small memory card which can often be inserted
into smartphones to increase storage capacity.

Sense
The user interface designed by and used on HTC
phones.

Sharpening
The process of increasing or emphasising contrast
around the edges of details in an image, to give the
impression that the image is sharper than it really is.

Sideload
The process of installing an app onto your phone
outside of the Google Play store.

SIM Card
The small plastic chip required in all GSM phones to
connect to the mobile network.

Siri
Apple’s intelligent virtual assistant, that replaces
VoiceControl on the iPhone.

Sleep/Wake Button
Physical hardware button. Used to power on, wake
from sleep, put to sleep and power down most
smartphones and tablets.

Sony Ericsson
The company formed by Sony and Ericsson to
manufacture and distribute mobile devices.

Sprint
One of the large US mobile carriers.

SSID
Service Set ID. In a nutshell, this is the ‘name’ of your
wireless network, and can be changed using your
router.

Super AMOLED
An improvement of AMOLED displays, providing
brighter, less power hungry and less reflective
screens.

T...

T-Mobile
Large US mobile carrier and manufacturer of
smartphones.

Tegra 2
NVIDIA’s dual-core mobile processor.

Tegra 3
NVIDIA’s newer, quad-core, mobile processor.

Tethering
Using your smartphones data connection to provide
internet access for another device (laptops, etc.)

Text Field
Any area where you can add text. For example, the
search field is where you type something you’re
looking for. Tap on a text field to bring up the virtual
keyboard.

Thumbnail Image
A small, low-resolution image preview used on the
web to link to a high-resolution version of the file.
Thumbnails can also be embedded in file formats
such as TIFF and PSD.

TIFF or TIF (Tagged Image File Format)
An open standard file format specifically designed
for images. TIFF can incorporate several types of
compression, including LZW, JPEG and ZIP. The
format is suitable for the storage of high quality
archive images. The DNG format is based on the
main TIFF standard.

TouchWiz
Samsung’s custom user interface.

Twitter
One of the most popular social networks built
around a follower and following system rather than
friends.

U...

UPnP
Universal Plug and Play. A protocol used by digital
media players for enjoying video, music, and
pictures over your home network.

URL
Uniform Resource Locator. This is a web address,
used to access a web page on the Internet, and
usually starts ‘www’ and ends in ‘.com’, or some
other top-level domain.

USB
Universal Serial Bus. The connection method
now used by most smartphones to connect to a
computer or power source (MicroUSB).

V...

Vanilla
Sometimes used to describe Android without any
custom user interface applied.

VDSL
Very High Speed Digital Subscriber Line. It’s another
protocol for getting on the Internet using your
phone line, and is sometimes shortened to DSL.

Verizon
One of the four large US mobile carriers.

Virtual Environment
A cooperatively isolated runtime environment that
allows Python users and applications to install and
upgrade Python distribution packages without
interfering with the behaviour of other Python
applications running on the same system.

Virtual Machine
A computer defined entirely in software. Can be
used to test/run/create code that won’t affect the
host system.

VPN

(Virtual Private Network):
This provides secure access over the Internet to
private networks, such as the network at your
company or school.

W...

While Loop
A coding loop that repeats code while a
comparative statement returns the value True.

White Balance (WB)
In digital photography, white balance establishes
the colour balance of the image in relationship to
colour temperature of the lighting conditions. Most
digital cameras have several built-in white balance
presets (tungsten, daylight, cloudy, fluorescent, etc.)
along with an auto setting and the ability to set a
custom WB.

Widgets
The name given to the home-screen gadgets which
allow you to see app updates, news, etc.

Wi-Fi
A group of backwards-compatible radio
technologies used to connect peripherals to a
network wirelessly.

WLAN
Wireless Local Area Network. Your network of
wireless devices, as opposed to devices connected
with a cable (see LAN).

World Phone
A device which works on both CDMA and GSM
networks outside of its home country.

WPS
Wi-Fi Protected Setup, an easier way of connecting
wireless devices to your router.

XYZ...

Xperia
A range of smartphones developed by Sony
Ericsson. Includes the Xperia T and the Xperia Play,
the PlayStation smartphone.

YouTube
Google-owned, web-based video streaming service.
A YouTube app is usually pre-installed on Android
devices.

