
There are many different programming
languages available to learn and use.
Some are vastly complex and incredibly
powerful and some are extremely
basic and used as minor utilities for the
operating system. Python sits somewhere
in the middle, combining ease of use with
a generous helping of power to allow the
user to create a range of minor utilities,
some excellent games and performance-
heavy computational tasks too.

However, there’s more to Python than
simply being another programming
language. It has a vibrant and lively
community behind it that shares
knowledge, code and project ideas, as
well as bug fixes for future releases.
It’s thanks to this community that the
language has grown and thrived. Now it’s
your turn to take the plunge and learn
how to program in Python.

This book is here to help you get started
with the latest version of Python and
from there guide you on how to use some
of the most common and interesting
functions and features of the language.
Before long, you will be able to code
your own helpful systems tools, text
adventures and even control a character
as they move around the screen.

Read on and let’s see how to start you off
on your Python Adventure.

24	 Starting Python for the First Time

26	 Your First Code

28	 Saving and Executing Your Code

30	 Executing Code from the Command Line

32	 Numbers and Expressions

34	 Using Comments

36	 Working with Variables

Python & C++ for Beginners 1www.bdmpublications.com

Say Hello to Python

C++ & Python
Tricks and Tips

Gain
Insider

Skills

techgo

Advanced
Guides & Tips

Rediscover
Your Device

Next level
Secrets & Fixes

C++ & Python
Tricks and Tips

© 2021 Black Dog Media Limited All rights reserved. No part

of this publication may be reproduced in any form, stored in

a retrieval system or integrated into any other publication,

database or commercial programs without the express

written permission of the publisher. Under no circumstances

should this publication and its contents be resold, loaned out

or used in any form by way of trade without the publisher’s

written permission.

While we pride ourselves on the quality of the information

we provide, Black Dog Media Limited reserves the right not

to be held responsible for any mistakes or inaccuracies found

within the text of this publication. Due to the nature of the

tech industry, the publisher cannot guarantee that all apps

and software will work on every version of device. It remains

the purchaser’s sole responsibility to determine the suitability

of this book and its content for whatever purpose.

Any app images reproduced on the front and back cover are

solely for design purposes and are not representative of

content. We advise all potential buyers to check listing prior

to purchase for confirmation of actual content. All editorial

opinion herein is that of the reviewer as an individual and

is not representative of the publisher or any of its affiliates.

Therefore the publisher holds no responsibility in regard to

editorial opinion and content.

This is an independent publication and as such does not

necessarily reflect the views or opinions of the producers

of apps or products contained within. This publication is

100% unofficial. All copyrights, trademarks and registered

trademarks for the respective companies are acknowledged.

Relevant graphic imagery reproduced with courtesy of

brands and products. Additional images contained within this

publication are reproduced under licence from Shutterstock.

Prices, international availability, ratings, titles and content

are subject to change. All information was correct at time

of publication. Some content may have been previously

published in other volumes or titles produced under license

from Papercut Ltd.

Python & C++ Tricks and Tips

ISBN: 978-1-912847-54-9

Foreword

Welcome back...

Having completed our exclusive For Beginners

digital guidebook, we have taught you all you

need to master the basics of your new device,

software or hobby. Yet that’s just the start!

Advancing your skill set is the goal of all users

of consumer technology and our team of long

term industry experts will help you achieve

exactly that. Over this extensive series of titles

we will be looking in greater depth at how

you make the absolute most from the latest

consumer electronics, software, hobbies and

trends!

We will guide you step-by-step through using

all the advanced aspects of the technology that

you may have been previously apprehensive at

attempting. Let our expert guide help you build

your understanding of technology and gain the

skills to take you from a confident user to an

experienced expert.

Over the page our journey continues and we

will be with you at every stage to advise, inform

and ultimately inspire you to go further.

About the Publisher

From its humble beginnings in 2004, the
BDM brand has quickly grown from a single
publication produced by a team of just two
to one of the biggest names in global tech
print and digital publishing, for one simple
reason. Our passion and commitment
to deliver the very best product to the
marketplace.

While the company has grown with a
portfolio of over 500 publications crafted by
our international staff of respected industry
veterans, the foundation that it has been
built upon remains the same. That being to
create the best quality, fully independent,
user friendly and, most essentially, 100%
up-to-date content possible.

Delivering not only market leading
publications but also piece of mind to
our readers, so that they have the very
best foundation to build their knowledge,
confidence and understanding of their new
software and hardware. Our regular readers
trust BDM, as should you.

How to use this book

This book has been designed for you to progress through
the coreconcepts and fundamentals of use, through to more
advanced elements, projects, and ideas. There’s something
for every style of reader, and for every type of user; there’s
probably even a few terrible jokes dotted within the pages. So
here’s how to get the best from it.

Step 1
Don’t skip - While it’s fun to see what’s coming up later in the book, it
does make understanding what you’re reading more difficult. After all,
you wouldn’t start reading a book on speaking French, then skip further
in without first learning proper grammar, sentence structure and so on.
The same applies here. Take your first read-through page by-page, once
you’ve mastered the book, then you can return to key concepts whenever
you need.

Step 2
Ever-Changing - While every effort has been made to ensure that this
book is up to date, there’s no knowing what updates may occur over
time. While some companies do offer an accurate roadmap of their future
development of a product, it’s not always written in stone. For example,
an app available for Windows 10 now may not be available with the next
update of the operating system. It’s up to Microsoft to decide whether
they want to drop it for one reason or another. The same, to some extent,
applies here. However, we continually update the content in this title, so
it’s as accurate as possible.

Step 3
Follow the Steps - An obvious one, this. Following the steps from one
onwards, in most tutorials in this book, will ensure that you get the result
that’s intended. If you skip steps, then you may miss out on something
important, and not understand how it works later in the book. The
temptation to skip something you already know is often too much, but
stick with the logical progression of the steps and you’ll get the most from
what’s on offer.

Step 4
Have Fun - Learning a new skill is supposed to be fun. We had fun writing
the book, and hopefully you’ll have fun reading it and applying new skills.
Everyone learns at a different pace, so take your time, digest the tutorials,
and keep returning to key concepts if you feel the need to master any
element within these pages. The content in this book isn’t something
we’re going to be testing you on, so have fun and enjoy the art of learning
something new. And if you create something amazing after reading this
book, then let us know.

68	 Common Coding Mistakes

70	 Beginner Python Mistakes

72	 Beginner C++ Mistakes

74	 Where Next?

46	 User Interaction

48	 Character Literals

50	 Defining Constants

52	 File Input/Output

44 C++ Input/Output

66 Working with Code

56	 While Loop

58	 For Loop

60	 Do… While Loop

62	 If Statement

64	 If… Else Statement

54 Loops and Decision Making

Contents

www.bdmpublications.com4

Contents

8	 Lists

10	 Tuples

12	 Dictionaries

14	 Splitting and Joining Strings

16	 Formatting Strings

18	 Date and Time

20	 Opening Files

22	 Writing to Files

24	 Exceptions

26	 Python Graphics

30	 Calendar Module

32	 OS Module

34	 Random Module

36	 Tkinter Module

38	 Pygame Module

42	 Create Your Own Modules

6 Working with Data

28 Using Modules

www.bdmpublications.com 5

Contents

BDM’s Code Portal60+ Python programs 21,500+ lines of codeMaster Python with the help of our
fantastic Code Portal, featuring
code for games, tools and more.

Visit: https://bdmpublications.com/code-portal, and log in to get access!

BDM Publications www.bdmpublications.com@bdmpubs

“…We’ve taken two of the most
powerful and versatile programming
languages available, Python and C++
and broken them down into bite-sized
tutorials and guides to help you learn
how they work, and how to make them
work for you…”

www.bdmpublications.com6

Working with Data

www.bdmpublications.com

Data is everything. With it you can display,
control, add, remove, create and manipulate
Python to your every demand. Over these
coming pages we look at how you can
create lists, tuples, dictionaries and multi-
dimensional lists; and see how to use them to
forge exciting and useful programs.

Then, you can learn how to use date and time
functions, write to files in your system and
even create graphical user interfaces that take
your coding skills to new levels and into new
project ideas.

Working
with Data

7

Lists are one of the most common types of data structures you will comes across in
Python. A list is simply a collection of items, or data if you prefer, that can be accessed
as a whole, or individually if wanted.

Lists

Working with Data

Lists are extremely handy in Python. A list can be strings, integers and also variables. You can even include functions in lists,
and lists within lists.

WORKING WITH LISTS

A list is a sequence of data values called items. You
create the name of your list followed by an equals

sign, then square brackets and the items separated by commas;
note that strings use quotes:

numbers = [1, 4, 7, 21, 98, 156]
mythical_creatures – [“Unicorn”, “Balrog”,
“Vampire”, “Dragon”, “Minotaur”]

You can also access, or index, the last item in a list by
using the minus sign before the item number [-1],

or the second to last item with [-2] and so on. Trying to reference an
item that isn’t in the list, such as [10] will return an error:

numbers[-1]
mythical_creatures[-4]

Once you’ve defined your list you can call each
by referencing its name, followed by a number. Lists

start the first item entry as 0, followed by 1, 2, 3 and so on.
For example:

numbers

To call up the entire contents of the list.

numbers[3]

To call the third from zero item in the list (21 in this case).

Slicing is similar to indexing but you can retrieve
multiple items in a list by separating item numbers

with a colon. For example:

numbers[1:3]

Will output the 4 and 7, being item numbers 1 and 2. Note that the
returned values don’t include the second index position (as you
would numbers[1:3] to return 4, 7 and 21).

 STEP 1 STEP 3

 STEP 2 STEP 4

BDM’s i-Tech Special - Volume 288 www.bdmpublications.com8

BDM’s i-Tech Special - Volume 28www.bdmpublications.com

Lists

You can update items within an existing list, remove
items and even join lists together. For example, to

join two lists you can use:

everything = numbers + mythical_creatures

Then view the combined list with:

everything

Removal of items can be done in two ways. The first
is by the item number:

del numbers[7]

Alternatively, by item name:

mythical_creatures.remove(“Nessie”)

Items can be added to a list by entering:

numbers=numbers+[201]

Or for strings:

mythical_creatres=mythical_creatures+[“Griffin”]

Or by using the append function:

mythical_creatures.append(“Nessie”)
numbers.append(278)

You can view what can be done with lists by entering
dir(list) into the Shell. The output is the available

functions, for example, insert and pop are used to add and remove
items at certain positions. To insert the number 62 at item index 4:

numbers.insert(4, 62)

To remove it:

numbers.pop(4)

Based on that, you can create a program to store
someone’s name and age as a list:

name=input(“What’s your name? “)
lname=list(name)
age=int(input(“How old are you: “))
lage=[age]

user = lname + lage

The combined name and age list is called user, which can be called
by entering user into the Shell. Experiment and see what you can do.

You also use the list function to break a string down
into its components. For example:

list(“David”)

Breaks the name David into ‘D’, ‘a’, ‘v’, ‘i’, ‘d’. This can then be passed
to a new list:

name=list(“David Hayward”)
name
age=[44]
user = name + age
user

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

9www.bdmpublications.com 9

BDM’s i-Tech Special - Volume 2810

Working with Data

Tuples are very much identical to lists. However, where lists can be updated, deleted or
changed in some way, a tuple remains a constant. This is called immutable and they’re
perfect for storing fixed data items.

Tuples

Reasons for having tuples vary depending on what the program is intended to do. Normally, a tuple is reserved for something
special but they’re also used for example, in an adventure game, where non-playing character names are stored.

THE IMMUTABLE TUPLE

A tuple is created the same way as a list but in this
instance you use curved brackets instead of square

brackets. For example:

months=(“January”, “February”, “March”, “April”,
“May”, “June”)
months

You can create grouped tuples into lists that contain
multiple sets of data. For instance, here is a tuple

called NPC (Non-Playable Characters) containing the character name
and their combat rating for an adventure game:

NPC=[(“Conan”, 100), (“Belit”, 80), (“Valeria”,
95)]

Just as with lists, the items within a named tuple can
be indexed according to their position in the data

range, i.e.:

months[0]
months[5]

However, any attempt at deleting or adding to the tuple will result
in an error in the Shell.

Each of these data items can be accessed as a
whole by entering NPC into the Shell; or they can be

indexed according to their position NPC[0]. You can also index the
individual tuples within the NPC list:

NPC[0][1]

Will display 100.

 STEP 1 STEP 3

 STEP 2 STEP 4

BDM’s i-Tech Special - Volume 2810 www.bdmpublications.com10

BDM’s i-Tech Special - Volume 28 11www.bdmpublications.com

Tuples

It’s worth noting that when referencing multiple
tuples within a list, the indexing is slightly different

from the norm. You would expect the 95 combat rating of the
character Valeria to be NPC[4][5], but it’s not. It’s actually:

NPC[2][1]

Tuples though utilise a feature called unpacking,
where the data items stored within a tuple are

assigned variables. First create the tuple with two items (name and
combat rating):

NPC=(“Conan”, 100)

This means of course that the indexing follows thus:

Which as you can imagine, gets a little confusing when you’ve got a
lot of tuple data to deal with.

Now unpack the tuple into two
corresponding variables:

(name, combat_rating)=NPC

You can now check the values by entering name and combat_rating.

You can use the max and min functions to find the
highest and lowest values of a tuple composed of

numbers. For example:

numbers=(10.3, 23, 45.2, 109.3, 6.1, 56.7, 99)

The numbers can be integers and floats. To output the highest and
lowest, use:

print(max(numbers))
print(min(numbers))

Remember, as with lists, you can also index tuples
using negative numbers which count backwards

from the end of the data list. For our example, using the tuple with
multiple data items, you would reference the Valeria character with:

NPC[2][-0]

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9
0
0, 0
0, 1
1
1, 0

1, 1
2
2, 0
2,1

11www.bdmpublications.com 11

BDM’s i-Tech Special - Volume 2812

Working with Data

Lists are extremely useful but dictionaries in Python are by far the more technical way
of dealing with data items. They can be tricky to get to grips with at first but you’ll soon
be able to apply them to your own code.

Dictionaries

A dictionary is like a list but instead each data item comes as a pair, these are known as Key and Value. The Key part must be
unique and can either be a number or string whereas the Value can be any data item you like.

KEY PAIRS

Let’s say you want to create a phonebook in Python.
You would create the dictionary name and enter

the data in curly brackets, separating the key and value by a colon
Key:Value. For example:

phonebook={“Emma”: 1234, “Daniel”: 3456, “Hannah”:
6789}

As with lists and tuples, you can check the contents
of a dictionary by giving the dictionary a name:

phonebook, in this example. This will display the data items you’ve
entered in a similar fashion to a list, which you’re no doubt familiar
with by now.

Just as with most lists, tuples and so on, strings
need be enclosed in quotes (single or double),

whilst integers can be left open. Remember that the value can be
either a string or an integer, you just need to enclose the relevant
one in quotes:

phonebook2={“David”: “0987 654 321”}

The benefit of using a dictionary is that you
can enter the key to index the value. Using the

phonebook example from the previous steps, you can enter:

phonebook[“Emma”]
phonebook[“Hannah”]

 STEP 1 STEP 3

 STEP 2 STEP 4

BDM’s i-Tech Special - Volume 2812 www.bdmpublications.com12

BDM’s i-Tech Special - Volume 28 13www.bdmpublications.com

Dictionaries

Adding to a dictionary is easy too. You can include
a new data item entry by adding the new key and

value items like:

phonebook[“David”] = “0987 654 321”
phonebook

Taking this a step further, how about creating a
piece of code that will ask the user for the dictionary

key and value items? Create a new Editor instance and start by
coding in a new, blank dictionary:

phonebook={}

You can also remove items from a dictionary by
issuing the del command followed by the item’s

key; the value will be removed as well, since both work as a pair of
data items:

del phonebook[“David”]

Next, you need to define the user inputs and
variables: one for the person’s name, the other

for their phone number (let’s keep it simple to avoid lengthy
Python code):

name=input(“Enter name: “)
number=int(input(“Enter phone number: “))

Now when you save and execute the code, Python
will ask for a name and a number. It will then insert

those entries into the phonebook dictionary, which you can test by
entering into the Shell:

phonebook
phonebook[“David”]

If the number needs to contain spaces you need to make it a string,
so remove the int part of the input.

Note we’ve kept the number as an integer instead
of a string, even though the value can be both

an integer or a string. Now you need to add the user’s inputted
variables to the newly created blank dictionary. Using the same
process as in Step 5, you can enter:

phonebook[name] = number

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

13www.bdmpublications.com 13

BDM’s i-Tech Special - Volume 2814

Working with Data

When dealing with data in Python, especially from a user’s input, you will undoubtedly
come across long sets of strings. A useful skill to learn in Python programming is being
able to split those long strings for better readability.

Splitting and
Joining Strings

You’ve already looked at some list functions, using .insert, .remove, and .pop but there are also functions that can be applied
to strings.

STRING THEORIES

The main tool in the string function arsenal is .split().
With it you’re able to split apart a string of data,

based on the argument within the brackets. For example, here’s a
string with three items, each separated by a space:

text=”Daniel Hannah Emma”

Note that the text.split part has the brackets,
quotes, then a space followed by closing quotes

and brackets. The space is the separator, indicating that each list
item entry is separated by a space. Likewise, CSV (Comma Separated
Value) content has a comma, so you’d use:

text=”January,February,March,April,May,June”
months=text.split(“,”)
months

Now let’s turn the string into a list and split the
content accordingly:

names=text.split(“ “)

Then enter the name of the new list, names, to see the three items.

You’ve previously seen how you can split a string
into individual letters as a list, using a name:

name=list(“David”)
name

The returned value is ‘D’, ‘a’, ‘v’, ‘i’, ‘d’. Whilst it may seem a little
useless under ordinary circumstances, it could be handy for creating
a spelling game for example.

 STEP 1 STEP 3

 STEP 2 STEP 4

BDM’s i-Tech Special - Volume 2814 www.bdmpublications.com14

BDM’s i-Tech Special - Volume 28 15www.bdmpublications.com

Splitting and Joining Strings

The opposite of the .split function is .join, where
you will have separate items in a string and can join

them all together to form a word or just a combination of items,
depending on the program you’re writing. For instance:

alphabet=””.join([“a”,”b”,”c”,”d”,”e”])
alphabet

This will display ‘abcde’ in the Shell.

A good example of using the .join function is when
you have a list of words you want to combine into

a sentence:

list=[“Conan”, “raised”, “his”, “mighty”, “sword”,
“and”, “struck”, “the”, “demon”]
text=” “.join(list)
text

Note the space between the quotes before the .join function (where
there were no spaces in the Step 6’s join)

You can therefore apply .join to the separated name
you made in Step 4, combining the letters again to

form the name:

name=””.join(name)
name

We’ve joined the string back together, and retained the list called
name, passing it through the .join function.

As with the .split function, the separator doesn’t
have to be a space, it can also be a comma, a full

stop, a hyphen or whatever you like:

colours=[“Red”, “Green”, “Blue”]
col=”,”.join(colours)
col

You can also use logic operators on strings,
with the ‘in’ and ‘not in’ functions. These enable

you to check if a string contains (or does not contain) a sequence
of characters:

message=”Have a nice day”
“nice” in message

”bad” not in message
“day” not in message
“night” in message

There’s some interesting functions you apply to a
string, such as .capitalize and .title. For example:

title=”conan the cimmerian”
title.capitalize()
title.title()

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

15www.bdmpublications.com 15

BDM’s i-Tech Special - Volume 2816

Working with Data

When you work with data, creating lists, dictionaries and objects you may often want
to print out the results. Merging strings with data is easy especially with Python 3, as
earlier versions of Python tended to complicate matters.

Formatting Strings

Since Python 3, string formatting has become a much neater process, using the .format function combined with curly brackets.
It’s a more logical and better formed approach than previous versions.

STRING FORMATTING

The basic formatting in Python is to call each
variable into the string using the curly brackets:

name=”Conan”
print(“The barbarian hero of the Hyborian Age is:
{}”.format(name))

You can of course also include integers into the mix:

number=10000
print(“{} of {} was a skilled mercenary,
and thief too. He once stole {} gold from a
merchant.”.format(name, place, number))

Remember to close the print function with two sets
of brackets, as you’ve encased the variable in one,

and the print function in another. You can include multiple cases of
string formatting in a single print function:

name=”Conan”
place=”Cimmeria”
print(“{} hailed from the North, in a cold land
known as {}”.format(name, place))

There are many different ways to apply string
formatting, some are quite simple, as we’ve shown

you here; others can be significantly more complex. It all depends
on what you want from your program. A good place to reference
frequently regarding string formatting is the Python Docs webpage,
found at www.docs.python.org/3.1/library/string.html. Here, you
will find tons of help.

 STEP 1 STEP 3

 STEP 2 STEP 4

BDM’s i-Tech Special - Volume 2816 www.bdmpublications.com16

BDM’s i-Tech Special - Volume 28 17www.bdmpublications.com

Formatting Strings

Interestingly you can reference a list using the string
formatting function. You need to place an asterisk in

front of the list name:

numbers=1, 3, 45, 567546, 3425346345
print(“Some numbers: {}, {}, {}, {}, {}”.
format(*numbers))

And as you probably suspect, you can mix strings
and integers in a single list to be called in the

.format function:

characters=[“Conan”, “Belit”, “Valeria”, 19, 27,
20]
print (“{0} is {3} years old. Whereas {1} is {4}
years old.”.format(*characters))

With indexing in lists, the same applies to calling a
list using string formatting. You can index each item

according to its position (from 0 to however many are present):

numbers=1, 4, 7, 9
print(“More numbers: {3}, {0}, {2},
{1}.”.format(*numbers))

You can also print out the content of a user’s input
in the same fashion:

name=input(“What’s your name? “)
print(“Hello {}.”.format(name)

You can also call upon a pair of lists and reference
them individually within the same print function.

Looking back the code from Step 7, you can alter it with:

names=[“Conan”, “Belit”, “Valeria”]
ages=[25, 21, 22]

Creating two lists. Now you can call each list, and individual items:

print(“{0[0]} is {1[0]} years old. Whereas {0[1]}
is {1[1]} years old.”.format(names, ages))

You can extend this simple code example to display
the first letter in a person’s entered name:

name=input(“What’s your name? “)
print(“Hello {}.”.format(name))
lname=list(name)
print(“The first letter of your name is a {0}”.
format(*lname))

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

17www.bdmpublications.com 17

BDM’s i-Tech Special - Volume 2818

Working with Data

When working with data it’s often handy to have access to the time. For example, you
may want to time-stamp an entry or see at what time a user logged into the system and
for how long. Luckily acquiring the date and time is easy, thanks to the Time module.

Date and Time

The time module contains functions that help you retrieve the current system time, reads the date from strings, formats the
time and date and much more.

TIME LORDS

First you need to import the time module. It’s one
that’s built-in to Python 3 so you shouldn’t need to

drop into a command prompt and pip install it. Once it’s imported,
you can call the current time and date with a simple command:

import time
time.asctime()

You can see the structure of how time is presented
by entering:

time.local.time()

The output is displayed as such: ‘time.struct_time(tm_
year=2017, tm_mon=9, tm_mday=7, tm_hour=9,
tm_min=6, tm_sec=13, tm_wday=3, tm_yday=250, tm_
isdst=0)’; obviously dependent on your current time as opposed
to the time shown above.

The time function is split into nine tuples, these are
divided up into indexed items, as with any other

tuple, and shown in the screen shot below.

There are numerous functions built into the time
module. One of the most common of these is

.strftime(). With it, you’re able to present a wide range of arguments
as it converts the time tuple into a string. For example, to display the
current day of the week you can use:

time.strftime(‘%A’)

 STEP 1 STEP 3

 STEP 2 STEP 4

BDM’s i-Tech Special - Volume 2818 www.bdmpublications.com18

BDM’s i-Tech Special - Volume 28 19www.bdmpublications.com

Date and Time

This naturally means you can incorporate various
functions into your own code, such as:

time.strftime(“%a”)
time.strftime(“%B”)
time.strftime(“%b”)
time.strftime(“%H”)
time.strftime(“%H%M”)

This means you’re going to be able to display
either the current time or the time when

something occurred, such as a user entering their name. Try this
code in the Editor:

import time
name=input(“Enter login name: “)
print(“Welcome”, name, “\d”)
print(“User:”, name, “logged in at”, time.
strftime(“%H:%M”))

Try to extend it further to include day, month, year and so on.

Note the last two entries, with %H and %H%M, as
you can see these are the hours and minutes and as

the last entry indicates, entering them as %H%M doesn’t display the
time correctly in the Shell. You can easily rectify this with:

time.strftime(“%H:%M”)

You saw at the end of the previous section, in the
code to calculate Pi to however many decimal places

the users wanted, you can time a particular event in Python. Take
the code from above and alter it slightly by including:

start_time=time.time()

Then there’s:

endtime=time.time()-start_time

There’s a lot that can be done with the time
module; some of it is quite complex too, such as

displaying the number of seconds since January 1st 1970. If you
want to drill down further into the time module, then in the Shell
enter: help(time) to display the current Python version help file
for the time module.

The output will look similar to the screenshot below.
The timer function needs to be either side of the

input statement, as that’s when the variable name is being created,
depending on how long the user took to log in. The length of time is
then displayed on the last line of the code as the endtime variable.

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

19www.bdmpublications.com 19

BDM’s i-Tech Special - Volume 2820

Working with Data

In Python you can read text and binary files in your programs. You can also write to file,
which is something we will look at next. Reading and writing to files enables you to
output and store data from your programs.

Opening Files

In Python you create a file object, similar to creating a variable, only pass in the file using the open() function. Files are usually
categorised as text or binary.

OPEN, READ AND WRITE

Start by entering some text into your system’s text
editor. The text editor is best, not a word processor,

as word processors include background formatting and other
elements. In our example, we have the poem The Cimmerian, by
Robert E Howard. You need to save the file as poem.txt.

If you now enter poem into the Shell, you will get
some information regarding the text file you’ve just

asked to be opened. You can now use the poem variable to read the
contents of the file:

poem.read()

Note than a /n entry in the text represents a new line, as you
used previously.

You use the open() function to pass the file into a
variable as an object. You can name the file object

anything you like, but you will need to tell Python the name and
location of the text file you’re opening:

poem=open(“/home/pi/Documents/Poem.txt”)

If you enter poem.read() a second time you will
notice that the text has been removed from the file.

You will need to enter: poem=open(“/home/pi/Documents/
Poem.txt”) again to recreate the file. This time, however, enter:

print(poem.read())

This time, the /n entries are removed in favour of new lines and
readable text.

 STEP 1 STEP 3

 STEP 2 STEP 4

BDM’s i-Tech Special - Volume 2820 www.bdmpublications.com20

BDM’s i-Tech Special - Volume 28 21www.bdmpublications.com

Opening Files

Just as with lists, tuples, dictionaries and so on,
you’re able to index individual characters of the

text. For example:

poem.read(5)

Displays the first five characters, whilst again entering:

poem.read(5)

Will display the next five. Entering (1) will display one character at
a time.

You may have guessed that you can pass the
readline() function into a variable, thus allowing you

to call it again when needed:

poem=open(“/home/pi/Documents/Poem.txt”)
line=poem.readline()
line

Similarly, you can display one line of text at a time by
using the readline() function. For example:

poem=open(“/home/pi/Documents/Poem.txt”)
poem.readline()

Will display the first line of the text with:

poem.readline()

Displaying the next line of text once more.

Extending this further, you can use readlines() to
grab all the lines of the text and store them as

multiple lists. These can then be stored as a variable:

poem=open(“/home/pi/Documents/Poem.txt”)
lines=poem.readlines()
lines[0]
lines[1]
lines[2]

Let’s imagine that you want to print the text one
character at a time, like an old dot matrix printer

would. You can use the time module mixed with what you’ve looked
at here. Try this:

import time
poem=open(“/home/pi/Documents/Poem.txt”)
lines=poem.read()
for lines in lines:
 print(lines, end=””)
 time.sleep(.15)

The output is fun to view, and easily incorporated into your own code.

You can also use the for statement to read the lines
of text back to us:

for lines in lines:
 print(lines)

Since this is Python, there are other ways to produce the same output:

poem=open(“/home/pi/Documents/Poem.txt”)
for lines in poem:
 print(lines)

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

21www.bdmpublications.com 21

BDM’s i-Tech Special - Volume 2822

Working with Data

The ability to read external files within Python is certainly handy but writing to a file is
better still. Using the write() function, you’re able to output the results of a program to
a file, that you can then read() back into Python.

Writing to Files

The write() function is slightly more complex than read(). Along with the filename you must also include an access mode which
determines whether the file in question is in read or write mode.

WRITE AND CLOSE

Start by opening IDLE and enter the following:

t=open(“/home/pi/Documents/text.
txt”,”w”)

Change the destination from /home/pi/Documents to your own
system. This code will create a text file called text.txt in write mode
using the variable ‘t’. If there’s no file of that name in the location, it
will create one. If one already exits, it will overwrite it, so be careful.

However, the actual text file is still blank (you can
check by opening it up). This is because you’ve

written the line of text to the file object but not committed it to the
file itself. Part of the write() function is that you need to commit the
changes to the file; you can do this by entering:

t.close()

You can now write to the text file using the write()
function. This works opposite to read(), writing lines

instead of reading them. Try this:

t.write(“You awake in a small, square room. A
single table stands to one side, there is a locked
door in front of you.”)

Note the 109. It’s the number of characters you’ve entered.

If you now open the text file with a text editor,
you can see that the line you created has been

written to the file. This gives us the foundation for some interesting
possibilities: perhaps the creation of your own log file or even the
beginning of an adventure game.

 STEP 1 STEP 3

 STEP 2 STEP 4

BDM’s i-Tech Special - Volume 2822 www.bdmpublications.com22

BDM’s i-Tech Special - Volume 28 23www.bdmpublications.com

Writing to Files

To expand this code, you can reopen the file using
‘a’, for access or append mode. This will add any text

at the end of the original line instead of wiping the file and creating
a new one. For example:

t=open(“/home/pi/Documents/text.txt”,”a”)
t.write(“\n”)
t.write(“ You stand and survey your surroundings.
On top of the table is some meat, and a cup of
water.\n”)

There are various types of file access to consider
using the open() function. Each depends on how the

file is accessed and even the position of the cursor. For example, r+
opens a file in read and write and places the cursor at the start of
the file.

You can keep extending the text line by line,
ending each with a new line (\n). When you’re

done, finish the code with t.close() and open the file in a text
editor to see the results:

t.write(“The door is made of solid oak with iron
strips. It’s bolted from the outside, locking you
in. You are a prisoner!.\n”)
t.close()

You can pass variables to a file that you’ve created
in Python. Perhaps you want the value of Pi to be

written to a file. You can call Pi from the math module, create a new
file and pass the output of Pi into the new file:

import math
print(“Value of Pi is: “,math.pi)
print(“\nWriting to a file now…”)

To finish, you can use string formatting to call the
variable and write it to the file, then commit the

changes and close the file:

t.write(“Value of Pi is: {}”.format(pi))
t.close()

You can see from the results that you’re able to pass any variable to
a file.

Now let’s create a variable called pi and assign it the
value of Pi:

pi=math.pi

You also need to create a new file in which to write Pi to:

t=open(“/home/pi/Documents/pi.txt”,”w”)

Remember to change your file location to your own particular
system setup.

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

23www.bdmpublications.com 23

BDM’s i-Tech Special - Volume 2824

Working with Data

When coding, you’ll naturally come across some issues that are out of your control.
Let’s assume you ask a user to divide two numbers and they try to divide by zero. This
will create an error and break your code.

Exceptions

Rather than stop the flow of your code, Python includes exception objects which handle unexpected errors in the code. You
can combat errors by creating conditions where exceptions may occur.

EXCEPTIONAL OBJECTS

You can create an exception error by simply trying
to divide a number by zero. This will report back

with the ZeroDivisionError: Division by zero message, as seen in the
screenshot. The ZeroDivisionError part is the exception class, of
which there are many.

You can use the functions raise exception to create
our own error handling code within Python. Let’s

assume your code has you warping around the cosmos, too much
however results in a warp core breach. To stop the game from
exiting due to the warp core going supernova, you can create a
custom exception:

raise Exception(“warp core breach”)

Most exceptions
are raised

automatically when Python
comes across something that’s
inherently wrong with the code.
However, you can create your
own exceptions that are designed
to contain the potential error and
react to it, as opposed to letting
the code fail.

To trap any errors in the code you can encase the
potential error within a try: block. This block consists

of try, except, else, where the code is held within try:, then if there’s
an exception do something, else do something else.

 STEP 1 STEP 3

 STEP 2 STEP 4

BDM’s i-Tech Special - Volume 2824 www.bdmpublications.com24

BDM’s i-Tech Special - Volume 28 25www.bdmpublications.com

Exceptions

For example, use the divide by zero error. You can
create an exception where the code can handle the

error without Python quitting due to the problem:

try:
 a=int(input(“Enter the first number: “))
 b=int(input(“Enter the second number: “))
 print(a/b)
except ZeroDivisionError:
 print(“You have tried to divide by zero!”)
else:
 print(“You didn’t divide by zero. Well done!”)

Obviously this won’t work due to the file textfile.txt
being opened as read only (the “r” part). So in this

case rather than Python telling you that you’re doing something
wrong, you’ve created an exception using the IOError class
informing the user that the permissions are incorrect.

You can use exceptions to handle a variety of useful
tasks. Using an example from our previous tutorials,

let’s assume you want to open a file and write to it:

try:
 txt = open(“/home/pi/Documents/textfile.txt”, “r”)
 txt.write(“This is a test. Normal service will
shortly resume!”)
except IOError:
 print (“Error: unable to write the file. Check
permissions”)
else:
 print (“Content written to file successfully. Have
a nice day.”)
 txt.close()

Naturally, you can quickly fix the issue by changing
the “r” read only instance with a “w” for write. This,

as you already know, will create the file and write the content then
commit the changes to the file. The end result will report a different
set of circumstances, in this case, a successful execution of the code.

As before an error will occur as you’ve used the
“r” read-only permission. If you change it to a “w”,

then the code will execute without the error being displayed in the
IDLE Shell. Needless to say, it can be a tricky getting the exception
code right the first time. Practise though, and you will get the hang
of it.

You can also use a finally: block, which works in a
similar fashion but you can’t use else with it. To use

our example from Step 6:

try:
 txt = open(“/home/pi/Documents/textfile.txt”, “r”)
 try:
 txt.write(“This is a test. Normal service will
shortly resume!”)
 finally:
 print (“Content written to file successfully.
Have a nice day.”)
 txt.close()
except IOError:
 print (“Error: unable to write the file. Check
permissions”)

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

25www.bdmpublications.com 25

BDM’s i-Tech Special - Volume 2826

Working with Data

While dealing with text on the screen, either as a game or in a program, is great, there
will come a time when a bit of graphical representation wouldn’t go amiss. Python 3
has numerous ways in which to include graphics and they’re surprisingly powerful too.

Python Graphics

You can draw simple graphics, lines, squares and so on, or you can use one of the many Python modules available, to bring out
some spectacular effects.

GOING GRAPHICAL

One of the best graphical modules to begin learning
Python graphics is Turtle. The Turtle module is, as

the name suggests, based on the turtle robots used in many schools,
that can be programmed to draw something on a large piece
of paper on the floor. The Turtle module can be imported with:
import turtle.

The command turtle.circle(50) is what draws the
circle on the screen, with 50 being the size. You

can play around with the sizes if you like, going up to 100, 150 and
beyond; you can draw an arc by entering: turtle.circle(50,
180), where the size is 50, but you’re telling Python to only draw
180° of the circle.

Let’s begin by drawing a simple circle. Start a New
File, then enter the following code:

import turtle

turtle.circle(50)
turtle.getscreen()._root.mainloop()

As usual press F5 to save the code and execute it. A new window will
now open up and the ‘Turtle’ will draw a circle.

The last part of the circle code tells Python to keep
the window where the drawing is taking place to

remain open, so the user can click to close it. Now, let’s make a square:

import turtle

print(“Drawing a square…”)

for t in range(4):
 turtle.forward(100)
 turtle.left(90)
turtle.getscreen()._root.mainloop()

You can see that we’ve inserted a loop to draw the sides of the square.

 STEP 1 STEP 3

 STEP 2 STEP 4

BDM’s i-Tech Special - Volume 2826 www.bdmpublications.com26

BDM’s i-Tech Special - Volume 28 27www.bdmpublications.com

Python Graphics

You can add a new line to the square code to add
some colour:

turtle.color(“Red”)

Then you can even change the character to an actual turtle by entering:

turtle.shape(“turtle”)

You can also use the command turtle.begin_fill(), and
turtle.end_fill() to fill in the square with the chosen colours;
red outline, yellow fill in this case.

Another way in which you can display graphics is
by using the Pygame module. There are numerous

ways in which pygame can help you output graphics to the screen
but for now let’s look at displaying a predefined image. Start by
opening a browser and finding an image, then save it to the folder
where you save your Python code.

You can see that the Turtle module can draw out
some pretty good shapes and become a little

more complex as you begin to master the way it works. Enter this
example:

from turtle import *
color(‘red’, ‘yellow’)
begin_fill()
while True:
 forward(200)
 left(170)
 if abs(pos()) < 1:
 break
end_fill()
done()

It’s a different method,
but very effective.

Now let’s get the code by importing the pygame module:

import pygame
pygame.init()

img = pygame.image.load(“RPi.png”)

white = (255, 255, 255)
w = 900
h = 450
screen = pygame.display.
set_mode((w, h))
screen.fill((white))

screen.fill((white))
screen.blit(img,(0,0))
pygame.display.flip()

while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 pygame.quit()

Press F5 to save and execute the code and your
image will be displayed in a new window. Have a

play around with the colours, sizes and so on and take time to look
up the many functions within the pygame module too.

In the previous step you imported pygame, initiated
the pygame engine and asked it to import our saved

Raspberry Pi logo image, saved as RPi.png. Next you defined the
background colour of the window to display the image and the
window size as per the actual image dimensions. Finally you have a
loop to close the window.

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

27www.bdmpublications.com 27

28

Using Modules

www.bdmpublications.com

www.bdmpublications.com 29

A Python module is simply a Python-created
source file which contains the necessary code
for classes, functions and global variables.
You can bind and reference modules to
extend functionality and create even more
spectacular Python programs.

Want to see how to improve these modules
to add a little something extra to your code?
Then read on and learn how they can be used
to fashion fantastic code.

Using
Modules

BDM’s i-Tech Special - Volume 28

Using Modules

30

Calendar Module
Beyond the time module, the calendar module can produce some interesting results
when executed within your code. It does far more than simply display the date in the
time module-like format, you can actually call up a wall calendar type display.

The calendar module is built into Python 3. However, if for some reason it’s not installed you can add it using pip install
calendar as a Windows administrator or sudo pip install calendar for Linux and macOS.

WORKING WITH DATES

Launch Python 3 and enter: import calendar to
call up the module and its inherent functions. Once

it’s loaded into memory, start by entering:

sep=calendar.TextCalendar(calendar.SUNDAY)
sep.prmonth(2017, 9)

There are numerous functions within the calendar
module that may be of interest to you when

forming your own code. For example, you can display the number of
leap years between two specific years:

leaps=calendar.leapdays(1900, 2018)
print(leaps)

The result is 29, starting from 1904 onward.

You can see that the days of September 2017 are
displayed in a wall calendar fashion. Naturally you

can change the 2017, 9 part of the second line to any year and
month you want, a birthday for example (1973, 6). The first line
configures TextCalendar to start its weeks on a Sunday; you can opt
for Monday if you prefer.

You could even fashion that particular example into
a piece of working, user interactive Python code:

import calendar
print(“>>>>>>>>>>Leap Year
Calculator<<<<<<<<<<\n”)y1=int(input(“Enter the
first year: “))
y2=int(input(“Enter the second year: “))
leaps=calendar.leapdays(y1, y2)
print(“Number of leap years between”, y1, “and”,
y2, “is:”, leaps)

 STEP 1 STEP 3

 STEP 2 STEP 4

BDM’s i-Tech Special - Volume 2830 www.bdmpublications.com30

BDM’s i-Tech Special - Volume 28www.bdmpublications.com 31

You can also create a program that will display all
the days, weeks and months within a given year:

import calendar
year=int(input(“Enter the year to display: “)
print(calendar.prcal(year))

We’re sure you’ll agree that’s quite a handy bit of code to have
to hand.

You can see that code produced some zeros at the
beginning, this is due to the starting day of the

week, Sunday in this case, and overlapping days from the previous
month. So the counting of the days will start on Friday 1st June
2018 and will total 30 as the output correctly displays.

Interestingly we can also list the number of days in a
month by using a simple for loop:

import calendar
cal=calendar.TextCalendar(calendar.SUNDAY)
for i in cal.itermonthdays(2018, 6):
 print(i)

You’re also able to print the individual months or
days of the week:

import calendar
for name in calendar.month_name:
 print(name)

import calendar
for name in calendar.day_name:
 print(name)

Of course, you can modify that to display a given
year as a web page calendar:

import calendar

year=int(input(“Enter the year to display as a
webpage: “))
cal=open(“/home/pi/Documents/cal.html”, “w”)
cal.write(calendar.HTMLCalendar(calendar.MONDAY).
formatyear(year))
cal.close()

This code asks the user for a year, then creates the necessary
webpage. Remember to change your file destination.

The calendar module also allows us to write the
functions in HTML, so that you can display it on a

website. Let’s start by creating a new file:

import calendar
cal=open(“/home/pi/Documents/cal.html”, “w”)
c=calendar.HTMLCalendar(calendar.SUNDAY)
cal.write(c.formatmonth(2018, 1))
cal.close()

This code will create an HTML file called cal, open it with a browser
and it displays the calendar for January 2018.

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

Calendar Module

31www.bdmpublications.com 31

BDM’s i-Tech Special - Volume 28

Using Modules

32

OS Module
The OS module allows you to interact directly with the built-in commands found in your
operating system. Commands vary depending on the OS you’re running, as some will
work with Windows whereas others will work with Linux and macOS.

One of the primary features of the OS module is the ability to list, move, create, delete and otherwise interact with files
stored on the system, making it the perfect module for backup code.

INTO THE SYSTEM

You can start the OS module with some simple
functions to see how it interacts with the operating

system environment that Python is running on. If you’re using Linux
or the Raspberry Pi, try this:

import os
home=os.getcwd()
print(home)

The Windows output is different as that’s the
current working directory of Python, as determined

by the system; as you might suspect, the os.getcwd() function is
asking Python to retrieve the Current Working Directory. Linux users
will see something along the same lines as the Raspberry Pi, as will
macOS users.

The returned result from printing the variable home
is the current user’s home folder on the system.

In our example that’s /home/pi; it will be different depending on
the user name you log in as and the operating system you use.
For example, Windows 10 will output: C:\Program Files (x86)\
Python36-32.

Yet another interesting element to the OS module,
is its ability to launch programs that are installed

in the host system. For instance, if you wanted to launch the
Chromium browser from within a Python program you can use
the command:

import os
browser=os.system(“/usr/bin/chromium-browser”)

 STEP 1 STEP 3

 STEP 2 STEP 4

BDM’s i-Tech Special - Volume 2832 www.bdmpublications.com32

BDM’s i-Tech Special - Volume 28www.bdmpublications.com 33

The os.system() function is what allows interaction
with external programs; you can even call up

previous Python programs using this method. You will obviously
need to know the full path and program file name for it to work
successfully. However, you can use the following:

import os
os.system(‘start chrome “https://www.youtube.com/
feed/music”’)

Note in the previous step’s example the use of
single and double-quotes. The single quotes encase

the entire command and launching Chromium, whereas the double
quotes open the specified page. You can even use variables to call
multiple tabs in the same browser:

import os
a=(‘chromium-browser “http://bdmpublications.
com/”’)
b=(‘chromium-browser “http://www.google.co.uk”’)
os.system(a + b)

For Step 5’s example we used Windows, to show
that the OS module works roughly the same across

all platforms. In that case, we opened YouTube’s music feed page, so
it is therefore possible to open specific pages:

import os
os.system(‘chromium-browser “http://
bdmpublications.com/”’)

The ability to manipulate directories, or folders if
you prefer, is one of the OS module’s best features.

For example, to create a new directory you can use:

import os
os.mkdir(“NEW”)

This creates a new directory within the Current Working Directory,
named according to the object in the mkdir function.

Another module that goes together with OS is
shutil. You can use the shutil module together

with OS and time to create a time-stamped backup directory, and
copy files into it:

import os, shutil, time

root_src_dir = r’/home/pi/Documents’
root_dst_dir = ‘/home/pi/backup/’ + time.asctime()

for src_dir, dirs, files in os.walk(root_src_dir):
 dst_dir = src_dir.replace(root_src_dir, root_
dst_dir, 1)
 if not os.path.exists(dst_dir):
 os.makedirs(dst_dir)
 for file_ in files:
 src_file = os.path.join(src_dir, file_)
 dst_file = os.path.join(dst_dir, file_)
 if os.path.exists(dst_file):
 os.remove(dst_file)
 shutil.copy(src_file, dst_dir)

print(“>>>>>>>>>>Backup complete<<<<<<<<<<”)

You can also rename any directories you’ve created
by entering:

import os
os.rename(“NEW”, “OLD”)

To delete them:

import os
os.rmdir(“OLD”)

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

OS Module

33www.bdmpublications.com 33

BDM’s i-Tech Special - Volume 28

Using Modules

34

Random Module
The random module is one you will likely come across many times in your Python
programming lifetime; as the name suggests, it’s designed to create random numbers
or letters. However, it’s not exactly random but it will suffice for most needs.

You can extend the previous example somewhat by
having random.choice() select from a list of mixed

variables. For instance:

import random
lst=[“David”, 44, “BDM Publications”, 3245.23,
“Pi”, True, 3.14, “Python”]
rnd=random.choice(lst)
print(rnd)

 STEP 5

There are numerous functions within the random module, which when applied can create some interesting and very useful
Python programs.

RANDOM NUMBERS

Just as with other modules you need to import
random before you can use any of the functions

we’re going to look at in this tutorial. Let’s begin by simply printing a
random number from 1 to 5:

import random
print(randomint(0,5))

For a bigger set of numbers, including floating
point values, you can extend the range by using the

multiplication sign:

import random
print(random.random() *100)

Will display a floating point number between 0 and 100, to the tune
of around fifteen decimal points.

In our example
the number four

was returned. However, enter
the print function a few more
times and it will display different
integer values from the set of
numbers given, zero to five. The
overall effect, although pseudo-
random, is adequate for the
average programmer to utilise in
their code.

However, the random module isn’t used exclusively
for numbers. You can use it to select an entry from a

list from random, and the list can contain anything:

import random
random.choice([“Conan”, “Valeria”, “Belit”])

This will display one of the names of our adventurers at random,
which is a great addition to a text adventure game.

 STEP 1

 STEP 3

 STEP 2

 STEP 4

BDM’s i-Tech Special - Volume 2834 www.bdmpublications.com34

BDM’s i-Tech Special - Volume 28www.bdmpublications.com 35

Using shuffle, you can create an entirely random list
of numbers. For example, within a given range:

import random
lst=[[i] for I in range(20)]
random.shuffle(lst)
print(lst)

Keep shuffling the list and you can have a different selection of
items from 0 to 20 every time.

Interestingly, you can also use a function within the
random module to shuffle the items in the list, thus

adding a little more randomness into the equation:

random.shuffle(lst)
print(lst)

This way, you can keep shuffling the list before displaying a random
item from it.

You can also select a random number from a given
range in steps, using the start, stop, step loop:

import random
for i in range(10):
 print(random.randrange(0, 200, 7))

Results will vary but you get the general idea as to how it works.

Here’s an interesting piece of code. Using a text
file containing 466 thousand words, you can pluck

a user generated number of words from the file (text file found at:
www.github.com/dwyl/english-words):

import random

print(“>>>>>>>>>>Random Word Finder<<<<<<<<<<”)
print(“\nUsing a 466K English word text file I can
pick any words at random.\n”)

wds=int(input(“\nHow many words shall I choose?
“))

with open(“/home/pi/Downloads/words.txt”, “rt”) as
f:
 words = f.readlines()
words = [w.rstrip() for w in words]

print(“--------------------”)

for w in random.sample(words, wds):
 print(w)

print(“--------------------”)

Let’s use an example piece of code which flips a
virtual coin ten thousand times and counts how

many times it will land on heads or tails:

import random
output={“Heads”:0, “Tails”:0}
coin=list(output.keys())

for i in range(10000):
 output[random.choice(coin)]+=1

print(“Heads:”, output[“Heads”])
print(“Tails:”, output[“Tails”])

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

Random Module

35www.bdmpublications.com 35

BDM’s i-Tech Special - Volume 28

Using Modules

36

Tkinter Module
While running your code from the command line, or even in the Shell, is perfectly fine,
Python is capable of so much more. The Tkinter module enables the programmer to set
up a Graphical User Interface to interact with the user, and it’s surprisingly powerful too.

Tkinter is easy to use but there’s a lot more you can do with it. Let’s start by seeing how it works and getting some code into it.
Before long you will discover just how powerful this module really is.

GETTING GUI

Tkinter is usually built into Python 3. However, if it’s
available when you enter: import tkinter, then

you need to pip install tkinter from the command prompt.
We can start to import modules differently than before, to save on
typing and by importing all their contents:

import tkinter as tk
from tkinter import *

The ideal approach is to add mainloop() into the
code to control the Tkinter event loop, but we’ll

get to that soon. You’ve just created a Tkinter widget and there are
several more we can play around with:

btn=Button()
btn.pack()
btn[“text”]=”Hello everyone!”

The first line focuses on the newly created window. Click back into
the Shell and continue the other lines.

It’s not recommended to import everything from a
module using the asterisk but it won’t do any harm

normally. Let’s begin by creating a basic GUI window, enter:

wind=Tk()

This creates a small, basic window. There’s not much else to do at
this point but click the X in the corner to close the window.

You can combine the above into a New File:

import tkinter as tk
from tkinter import *
btn=Button()
btn.pack()
btn[“text”]=”Hello everyone!”

Then add some button interactions:

def click():
 print(“You just clicked me!”)
btn[“command”]=click

 STEP 1 STEP 3

 STEP 2 STEP 4

BDM’s i-Tech Special - Volume 2836 www.bdmpublications.com36

BDM’s i-Tech Special - Volume 28www.bdmpublications.com 37

Save and execute the code from Step 4 and a
window appears with ‘Hello everyone!’ inside. If you

click the Hello everyone! button, the Shell will output the text ‘You
just clicked me!’. It’s simple but shows you what can be achieved
with a few lines of code.

The previous code is
quite weighty, mostly
due to the content
variable holding a part
of BDM’s About page
from the company
website. You can
obviously change the
content, the root.title
and the image to suit
your needs.

You can also display both text and images within
a Tkinter window. However, only GIF, PGM or PPM

formats are supported. So find an image and convert it before using
the code. Here’s an example using the BDM Publishing logo:

from tkinter import *

root = Tk()
logo = PhotoImage(file=”/home/pi/Downloads/BDM_logo.
gif”)
w1 = Label(root, root.title(“BDM Publications”),
image=logo).pack(side=”right”)
content = “”” From its humble beginnings in 2004,
the BDM brand quickly grew from a single publication
produced by a team of just two to one of the biggest
names in global bookazine publishing, for two simple
reasons. Our passion and commitment to deliver the
very best product each and every volume. While
the company has grown with a portfolio of over 250
publications delivered by our international staff,
the foundation that it has been built upon remains
the same, which is why we believe BDM isn’t just
the first choice it’s the only choice for the smart
consumer. “””
w2 = Label(root,
 justify=LEFT,
 padx = 10,
 text=content).pack(side=”left”)
root.mainloop()

You can create radio buttons too. Try:

from tkinter import *

root = Tk()

v = IntVar()

Label(root, root.title(“Options”), text=”””Choose
a preferred language:”””,
 justify = LEFT, padx = 20).pack()
Radiobutton(root,
 text=”Python”,
 padx = 20,
 variable=v,
 value=1).pack(anchor=W)
Radiobutton(root,
 text=”C++”,
 padx = 20,
 variable=v,
 value=2).pack(anchor=W)

mainloop()

The code from Step 9 introduced some new
geometry elements into Tkinter. Note the

sticky=N, E and W arguments. These describe the locations of the
check boxes and buttons (North, East, South and West). The row
argument places them on separate rows. Have a play around and
see what you get.

You can also create check boxes, with buttons and
output to the Shell:

from tkinter import *
root = Tk()

def var_states():
 print(“Warrior: %d,\nMage: %d” % (var1.get(),
var2.get()))

Label(root, root.title(“Adventure Game”),
text=”>>>>>>>>>>Your adventure role<<<<<<<<<<”).
grid(row=0, sticky=N)
var1 = IntVar()
Checkbutton(root, text=”Warrior”, variable=var1).
grid(row=1, sticky=W)
var2 = IntVar()
Checkbutton(root, text=”Mage”, variable=var2).
grid(row=2, sticky=W)
Button(root, text=’Quit’, command=root.destroy).
grid(row=3, sticky=W, pady=4)
Button(root, text=’Show’, command=var_states).
grid(row=3, sticky=E, pady=4)

mainloop()

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

Tkinter Module

37www.bdmpublications.com 37

BDM’s i-Tech Special - Volume 28

Using Modules

38

Pygame Module
We’ve had a brief look at the Pygame module already but there’s a lot more to it that
needs exploring. Pygame was developed to help Python programmers create either
graphical or text-based games.

Pygame isn’t an inherent module to Python but those using the Raspberry Pi will already have it installed. Everyone else will
need to use: pip install pygame from the command prompt.

PYGAMING

Naturally you need to load up the Pygame modules
into memory before you’re able to utilise them.

Once that’s done Pygame requires the user to initialise it prior to
any of the functions being used:

import pygame
pygame.init()

 STEP 1 Sadly you can’t close the newly created Pygame
window without closing the Python IDLE Shell,

which isn’t very practical. For this reason, you need to work in the
editor (New > File) and create a True/False while loop:

import pygame
from pygame.locals import *
pygame.init()

gamewindow=pygame.display.set_mode((800,600))
pygame.display.set_caption(“Adventure Game”)

running=True

while running:
 for event in pygame.event.get():
 if event.type==QUIT:
 running=False
 pygame.quit()

 STEP 3

Let’s create a simple game ready window, and give
it a title:

gamewindow=pygame.display.set_mode((800,600))
pygame.display.set_caption(“Adventure Game”)

You can see that after the first line is entered, you need to click back
into the IDLE Shell to continue entering code; also, you can change
the title of the window to anything you like.

 STEP 2

BDM’s i-Tech Special - Volume 2838 www.bdmpublications.com38

BDM’s i-Tech Special - Volume 28www.bdmpublications.com 39

Let’s quickly go through the code changes. We’ve
defined two colours, black and white together

with their respective RGB colour values. Next we’ve loaded the

downloaded image called sprite1.png and allocated it to the
variable img; and also defined a sprite function and the Blit function
will allow us to eventually move the image.

 STEP 6

You’re going to shift the code around a bit now,
running the main Pygame code within a while loop;

it makes it neater and easier to follow. We’ve downloaded a graphic
to use and we need to set some parameters for pygame:

import pygame
pygame.init()

running=True

while running:

 gamewindow=pygame.display.set_mode((800,600))
 pygame.display.set_caption(“Adventure Game”)
 black=(0,0,0)
 white=(255,255,255)

 img=pygame.image.load(“/home/pi/Downloads/
sprite1.png”)

 def sprite(x,y):
 gamewindow.blit(img, (x,y))

 x=(800*0.45)
 y=(600*0.8)

 gamewindow.fill(white)
 sprite(x,y)
 pygame.display.update()

 for event in pygame.event.get():
 if event.type==pygame.QUIT:
 running=False

 STEP 5

If the Pygame window still won’t
close don’t worry, it’s just a

discrepancy between the IDLE (which is written
with Tkinter) and the Pygame module. If you
run your code via the command line, it closes
perfectly well.

 STEP 4

Pygame Module

39www.bdmpublications.com 39

BDM’s i-Tech Special - Volume 28

Using Modules

40

Now we can change the code around again, this
time containing a movement option within the

while loop, and adding the variables needed to move the sprite
around the screen:

import pygame
from pygame.locals import *
pygame.init()

running=True

gamewindow=pygame.display.set_mode((800,600))
pygame.display.set_caption(“Adventure Game”)
black=(0,0,0)
white=(255,255,255)
img=pygame.image.load(“/home/pi/Downloads/sprite1.
png”)

def sprite(x,y):
 gamewindow.blit(img, (x,y))

x=(800*0.45)
y=(600*0.8)

xchange=0

imgspeed=0

while running:
 for event in pygame.event.get():
 if event.type==QUIT:
 running=False

 if event.type == pygame.KEYDOWN:
 if event.key==pygame.K_LEFT:
 xchange=-5
 elif event.key==pygame.K_RIGHT:
 xchange=5
 if event.type==pygame.KEYUP:
 if event.key==pygame.K_LEFT or event
key==pygame.K_RIGHT:
 xchange=0

 x += xchange

 gamewindow.fill(white)
 sprite(x,y)
 pygame.display.update()

pygame.quit()

 STEP 7

Copy the code down and using the left and right arrow keys on the keyboard you can move your sprite across the bottom of
the screen. Now, it looks like you have the makings of a classic arcade 2D scroller in the works.

 STEP 8

BDM’s i-Tech Special - Volume 2840 www.bdmpublications.com40

BDM’s i-Tech Special - Volume 28www.bdmpublications.com 41

Pygame Module

You can now implement a few additions and utilise
some previous tutorial code. The new elements are

the subprocess module, of which one function allows us to launch a
second Python script from within another; and we’re going to create a
New File called pygametxt.py:

import pygame
import time
import subprocess
pygame.init()
screen = pygame.display.set_mode((800, 250))
clock = pygame.time.Clock()

font = pygame.font.Font(None, 25)

pygame.time.set_timer(pygame.USEREVENT, 200)

def text_generator(text):
 tmp = ‘’
 for letter in text:
 tmp += letter
 if letter != ‘ ‘:
 yield tmp

class DynamicText(object):
 def __init__(self, font, text, pos,
autoreset=False):
 self.done = False
 self.font = font
 self.text = text
 self._gen = text_generator(self.text)
 self.pos = pos
 self.autoreset = autoreset
 self.update()

 def reset(self):
 self._gen = text_generator(self.text)
 self.done = False
 self.update()

 def update(self):
 if not self.done:
 try: self.rendered = self.font.
render(next(self._gen), True, (0, 128, 0))
 except StopIteration:
 self.done = True
 time.sleep(10)
 subprocess.Popen(“python3 /home/pi/Documents/
Python\ Code/pygame1.py 1”, shell=True)

 def draw(self, screen):
 screen.blit(self.rendered, self.pos)

text=(“A long time ago, a barbarian strode from the
frozen north. Sword in hand...”)

message = DynamicText(font, text, (65, 120),
autoreset=True)

while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT: break
 if event.type == pygame.USEREVENT: message.
update()
 else:
 screen.fill(pygame.color.Color(‘black’))
 message.draw(screen)

 STEP 9

When you run this code it will display a long,
narrow Pygame window with the intro text

scrolling to the right. After a pause of ten seconds, it then launches
the main game Python script where you can move the warrior sprite
around. Overall the effect is quite good but there’s always room
for improvement.

 STEP 10

 pygame.display.flip()
 clock.tick(60)
 continue
 break

pygame.quit()

41www.bdmpublications.com 41

BDM’s i-Tech Special - Volume 28

Using Modules

42

Create Your Own Modules
Large programs can be much easier to manage if you break them up into smaller parts
and import the parts you need as modules. Learning to build your own modules also
makes it easier to understand how they work.

If you now try and execute the basic_math.py code
again, the error ‘NameError: name ‘timestwo’ is

not defined’ will be displayed. This is due to the code no longer
having access to the function definitions.

Return to the
newly created

window containing the function
definitions, and click File > Save
As. Name this minimath.py
and save it in the same location
as the original basic_math.
py program. Now close the
minimath.py window, so the
basic_math.py window is left
open.

Now you’re going to take the function definitions
out of the program and into a separate file.

Highlight the function definitions and choose Edit > Cut. Choose File
> New File and use Edit > Paste in the new window. You now have
two separate files, one with the function definitions, the other with
the function calls.

Under the above code, enter functions to call the
code:

print (timestwo(2))
print (timesthree(3))
print (square(4))
print (power(5,3))

Save the program as basic_math.py and execute it to get the results.

Let’s start by creating a set of basic mathematics
functions. Multiply a number by two, three and

square or raise a number to an exponent (power). Create a New File
in the IDLE and enter:

def timestwo(x):
 return x * 2

def timesthree(x):
 return x * 3

def square(x):
 return x * x

def power(x,y):
 return x ** y

 STEP 4

 STEP 5

 STEP 3

 STEP 2

 STEP 1

Modules are Python files, containing code, that you save using a .py extension. These are then imported into Python using the
now familiar import command.

BUILDING MODULES

BDM’s i-Tech Special - Volume 2842 www.bdmpublications.com42

BDM’s i-Tech Special - Volume 28www.bdmpublications.com

Create Your Own Modules

43

Note that for the last available options, the Power
of choice, we’ve added a second variable, num2.

This passes a second number through the function definition called
power. Save and execute the program to see it in action.

Finally, you can now create a range of if statements
to determine what to do with the number and

utilise the newly created function definitions:

if choice == ‘1’:
 print(timestwo(num1))

elif choice == ‘2’:
 print(timesthree(num1))

elif choice == ‘3’:
 print(square(num1))

elif choice == ‘4’:
 num2 = int(input(“Enter second number: “))
 print(power(num1, num2))
else:
 print(“Invalid input”)

Now we can add the user input to get the number
the code will work on:

num1 = int(input(“\nEnter number: “))

This will save the user-entered number as the variable num1.

You can now use the code further to make the
program a little more advanced, utilising the newly

created module to its full. Include some user interaction. Start by
creating a basic menu the user can choose from:

print(“Select operation.\n”)
print(“1.Times by two”)
print(“2.Times by Three”)
print(“3.Square”)
print(“4.Power of”)

choice = input(“\nEnter choice (1/2/3/4):”)

Back to the basic_math.py window: at the top of the
code enter:

from minimath import *

This will import the function definitions as a module. Press F5 to
save and execute the program to see it in action.

 STEP 10

 STEP 9

 STEP 8

 STEP 7

 STEP 6

43www.bdmpublications.com 43

www.bdmpublications.com44

C++ Input/Output

There’s a satisfying feeling when you program
code that asks the user for input, then uses that
input to produce something that the user can see.
Even if it’s simply asking for someone’s name, and
displaying a personal welcome message, it’s a big
leap forward.

User interaction, character literals, defining
constants and file input and output are all covered
in the following pages. All of which help you to
understand how a C++ program works better.

C++ Input/
Output

45www.bdmpublications.com

BDM’s i-Tech Special - Volume 2846

C++ Input/Output

There’s nothing quite as satisfying as creating a program that responds to you. This
basic user interaction is one of the most taught aspects of any language and with it
you’re able to do much more than simply greet the user by name.

User Interaction

You have already used cout, the standard output stream, throughout our code. Now you’re going to be using cin, the standard
input stream, to prompt a user response.

HELLO, DAVE

Anything that you want the user to input into the
program needs to be stored somewhere in the

system memory, so it can be retrieved and used. Therefore, any
input must first be declared as a variable, so it’s ready to be used by
the user. Start by creating a blank C++ file with headers.

The cin command works in the opposite way from
the cout command. With the first cout line you’re

outputting ‘What is your age’ to the screen, as indicated with the
chevrons. Cin uses opposite facing chevrons, indicating an input. The
input is put into the integer age and called up in the second cout
command. Build and run the code.

The data type of the variable must also match the
type of input you want from the user. For example,

to ask a user their age, you would use an integer like this:

#include <iostream>
using namespace std;

int main ()
{
 int age;
 cout << “what is your age: “;
 cin >> age;

 cout <<”\nYou are “ << age << “ years old.\n”;

}

If you’re asking a question, you need to store the
input as a string; to ask the user their name, you

would use:

#include <iostream>
using namespace std;

int main ()
{
 string name;
 cout << “what is your name: “;
 cin >> name;

 cout << “\nHello, “ << name << “. I hope you’re
well today?\n”;

}

 STEP 1 STEP 3

 STEP 2

 STEP 4

BDM’s i-Tech Special - Volume 2846 www.bdmpublications.com46

BDM’s i-Tech Special - Volume 28

The principal works the same as the previous code.
The user’s input, their name, is stored in a string,

because it contains multiple characters, and retrieved in the second
cout line. As long as the variable ‘name’ doesn’t change, then you
can recall it wherever you like in your code

Likewise, inputted data can be manipulated once
you have it stored in a variable. For instance, ask the

user for two numbers and do some maths on them:

#include <iostream>
using namespace std;

int main ()
{
 float num1, num2;

 cout << “Enter two numbers: \n”;
 cin >> num1 >> num2;

 cout << num1 << “ + “ << num2 << “ is: “ <<
num1 + num2 << “\n”;

}

You can chain input requests to the user but just
make sure you have a valid variable to store the

input to begin with. Let’s assume you want the user to enter two
whole numbers:

#include <iostream>
using namespace std;

int main ()
{
 int num1, num2;

 cout << “Enter two whole numbers: “;
 cin >> num1 >> num2;

 cout << “you entered “ << num1 << “ and “ <<
num2 << “\n”;

}

While cin works well for most input tasks, it does
have a limitation. Cin always considers spaces as a

terminator, so it’s designed for just single words not multiple words.
However, getline takes cin as the first argument and the variable as
the second:

#include <iostream>
using namespace std;

int main ()
{

 string mystr;
 cout << “Enter a sentence: \n”;
 getline(cin, mystr);

 cout << “Your sentence is: “ << mystr.size() <<
“ characters long.\n”;

}

Getline is usually a command that new C++
programmers forget to include. The terminating

white space is annoying when you can’t figure out why your code
isn’t working. In short, it’s best to use getline(cin, variable) in future:

#include <iostream>
using namespace std;

int main ()
{

 string name;
 cout << “Enter your full name: \n”;
 getline(cin, name);

 cout << “\nHello, “ << name << “\n”;

}

Build and execute the code, then enter a sentence
with spaces. When you’re done the code reads the

number of characters. If you remove the getline line and replace it
with cin >> mystr and try again, the result displays the number of
characters up to the first space.

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

47www.bdmpublications.com

User Interaction

47www.bdmpublications.com 47

BDM’s i-Tech Special - Volume 2848

C++ Input/Output

In C++ a literal is an object or variable that once defined remains the same throughout
the code. However, a character literal is defined by a backslash, such as the \n you’ve
been using at the end of a cout statement to signify a new line.

Character Literals

When used in something like a cout statement, character literals are also called Escape Sequence Codes. They allow you to
insert a quote, an alert, new line and much more.

ESCAPE SEQUENCE

Create a new C++ file and enter the relevant headers:

#include <iostream>
using namespace std;

int main ()
{

}

If you wanted to insert speech quotes inside a cout
statement, you would have to use a backslash as it

already uses quotes:

#include <iostream>
using namespace std;

int main ()
{
 cout << “Hello, user. This is how to use
\”quotes\”.”;

}

You’ve already experienced the \n character literal
placing a new line wherever it’s called. The line: cout

<< “Hello\n” << “I’m a C++\n” << “Program\n”; outputs three lines
of text, each starting after the last \n.

There’s even a character literal that can trigger an
alarm. In Windows 10, it’s the notification sound

that chimes when you use \a. Try this code, and turn up your sound.

#include <iostream>
using namespace std;

int main ()
{
 cout << “ALARM! \a”;

}

 STEP 1 STEP 3

 STEP 2 STEP 4

BDM’s i-Tech Special - Volume 2848 www.bdmpublications.com48

BDM’s i-Tech Special - Volume 28 49www.bdmpublications.com

Character Literals

There are numerous character literals, or escape sequence codes, to choose from. We therefore thought it would be good for
you to have a handy chart available, for those times when you need to insert a code.

A HANDY CHART

Unicode characters are symbols or characters that are standard across
all platforms. For example, the copyright symbol, that can be entered
via the keyboard by entering the Unicode code, followed by ALT+X. In
the case of the copyright symbol enter: 00A9 Alt+X. In C++ code, you
would enter:

#include <iostream>
using namespace std;

int main ()
{
 cout << “\u00A9”;

A complete list of the available Unicode
characters can be found at www.
unicode-table.com/en/. Hover your
mouse over the character to see its
unique code to enter in C++.

UNICODE CHARACTERS (UTF-8)

UNICODE
CHARACTER TABLE

ESCAPE SEQUENCE CODE CHARACTER
\\ Backslash

\’ Single Quote

\” Double Quote (Speech Marks)

\? Question Mark

\a Alert/Alarm

\b Backspace

\f Form Feed

\n New Line

\r Carriage Return

\t Horizontal Tab

\v Vertical Tab

\0 Null Character

\uxxxx Unicode (UTF-8)

\Uxxxxxxxx Unicode (UTF-16)

49www.bdmpublications.com 49

BDM’s i-Tech Special - Volume 2850

C++ Input/Output

Constants are fixed values in your code. They can be any basic data type but as the
name suggests their value remains constant throughout the entire code. There are two
separate ways to define a constant in C++, the #define pre-processor and const.

Defining Constants

The pre-processors are instructions to the compiler to pre-process the information before it goes ahead and compiles the
code. #include is a pre-processor as is #define.

#DEFINE

You can use the #define pre-processor to define any
constants you want in our code. Start by creating a

new C++ file complete with the usual headers:

#include <iostream>
using namespace std;

int main ()

{

}

Note the capitals for defined constants, it’s
considered good programming practise to define all

constants in capitals. Here, the assigned values are 50, 40 and 60, so
let’s call them up:

#include <iostream>
using namespace std;

#define LENGTH 50
#define WIDTH 40
#define HEIGHT 60

int main ()

{
 cout << “Length is: “ << LENGTH << “\n”;
 cout << “Width is: “ << WIDTH << “\n”;
 cout << “Height is: “ << HEIGHT << “\n”;
}

Now let’s assume your code has three different
constants: length, width and height. You can define

them with:

#include <iostream>
using namespace std;
#define LENGTH 50
#define WIDTH 40
#define HEIGHT 60

int main ()

{

}
Build and run the code. Just as expected, it displays
the values for each of the constants created. It’s

worth noting that you don’t need a semicolon when you’re defining
a constant with the #define keyword.

 STEP 1 STEP 3

 STEP 2

 STEP 4

BDM’s i-Tech Special - Volume 2850 www.bdmpublications.com50

BDM’s i-Tech Special - Volume 28 51www.bdmpublications.com

Defining Constants

You can also define other elements as a constant.
For example, instead of using \n for a newline in the

cout statement, you can define it at the start of the code:

#include <iostream>
using namespace std;

#define LENGTH 50
#define WIDTH 40
#define HEIGHT 60
#define NEWLINE ‘\n’

int main ()

{
 cout << “Length is: “ << LENGTH << NEWLINE;
 cout << “Width is: “ << WIDTH << NEWLINE;
 cout << “Height is: “ << HEIGHT << NEWLINE;
}

Defining a constant is a good way of initialising your
base values at the start of your code. You can define

that your game has three lives, or even the value of PI without
having to call up the C++ math library:

#include <iostream>
using namespace std;

#define PI 3.14159

int main ()

{
 cout << “The value of Pi is: “ << PI << endl;

}

The code, when built and executed, does exactly the
same as before, using the new constant NEWLINE

to insert a newline in the cout statement. Incidentally, creating a
newline constant isn’t a good idea unless you’re making it smaller
than \n or even the endl command.

Another method of defining a constant is with the
const keyword. Use const together with a data type,

variable and value: const type variable = value. Using Pi as an example:

#include <iostream>
using namespace std;

int main ()

{
 const double PI = 3.14159;
 cout << “The value of Pi is: “ << PI << endl;
}

Const works in much the same way as #define.
You can create static integers and even newlines:

#include <iostream>
using namespace std;

int main()

{
 const int LENGTH = 50;
 const int WIDTH = 40;
 const char NEWLINE = ‘\n’;

 int area;
 area = LENGTH * WIDTH;

 cout << “Area is: “ << area << NEWLINE;

}

Because you’re using const within the main block of
code, you need to finish the line with a semicolon.

You can use either, as long as the names and values don’t clash, but
it’s worth mentioning that #define requires no memory, so if you’re
coding to a set amount of memory, #define is your best bet.

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

51www.bdmpublications.com 51

BDM’s i-Tech Special - Volume 2852

C++ Input/Output

The standard iostream library provides C++ coders with the cin and cout input and
output functionality. However, to be able to read and write from a file you need to
utilise another C++ library, called fstream.

File Input/Output

There are two main data types within the fstream library that are used to open a file, read from it and write to it, ofstream and
ifstream. Here’s how they work.

FSTREAMS

The first task is to create a new C++ file and along
with the usual headers you need to include the new

fstream header:

#include <iostream>
#include <fstream>
Using namespace std;

int main ()

{

}

We’ve included comments in the screenshot of step
2 to help you understand the process. You created

a string called name, to store the user’s inputted name. You also
created a text file called name.txt (with the ofstream newfile and
newfile.open lines), asked the user for their name and stored it and
then written the data to the file.

Begin by asking a user for their name and writing
that information to a file. You need the usual string

to store the name, and getline to accept the input from the user.

#include <iostream>
#include <fstream>
using namespace std;

int main ()

{

 string name;

 ofstream newfile;
 newfile.open(“name.txt”);

 cout << “Enter your name: “ << endl;
 getline(cin, name);

 newfile << name << endl;

 newfile.close();

}

To read the contents of a file, and output it to the
screen, you need to do things slightly differently.

First you need to create a string variable to store the file’s contents
(line by line), then open the file, use getline to read the file line by
line and output those lines to the screen. Finally, close the file.

 string line;
 ifstream newfile (“name.txt”);

 cout << “Contents of the file: “ << endl;

 getline(newfile, line);
 cout << line << endl;
 newfile.close();

 STEP 1 STEP 3

 STEP 2

 STEP 4

BDM’s i-Tech Special - Volume 2852 www.bdmpublications.com52

BDM’s i-Tech Special - Volume 28 53www.bdmpublications.com

File Input/Output

The code above is great for opening a file with one
or two lines but what if there are multiple lines? Here

we opened a text file of the poem Cimmeria, by Robert E Howard:

 string line;
 ifstream newfile (“c:\\users\\david\\
Documents\\Cimmeria.txt”);

 cout << “Cimmeria, by Robert E Howard: \n” <<
endl;

 while (getline(newfile, line))
 cout << line << endl;

 newfile.close();

You can also see that the location of the text file
Cimmeria.txt isn’t in the same folder as the C++

program. When we created the first name.txt file, it was written to
the same folder where the code was located; this is done by default.
To specify another folder, you need to use double-back slashes, as
per the character literals/escape sequence code.

You can no
doubt see that

we’ve included a while loop,
which we cover in a few pages
time. It means that while there
are lines to be read from the
text file, C++ getlines them.
Once all the lines are read,
the output is displayed on the
screen and the file is closed.

Just as you might expect, you can write almost
anything you like to a file, for reading either in

Notepad or via the console through the C++ code:

 string name;
 int age;

 ofstream newfile;
 newfile.open(“name.txt”);

 cout << “Enter your name: “ << endl;
 getline(cin, name);

 newfile << name << endl;

 cout << “\nHow old are you: “ << endl;
 cin >> age;

 newfile << age << endl;

 newfile.close();

Here’s an exercise: see if you can create code to
write several different elements to a text file. You

can have a user’s name, age, phone number etc. Maybe even the
value of Pi and various mathematical elements. It’s all good practice.

The code from step 8 differs again, but only where
it comes to adding the age integer. Notice that

we used cin >> age, instead of the previous getline(cin, variable).
The reason for this is that the getline function handles strings, not
integers; so when you’re using a data type other than a string, use
the standard cin.

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

53www.bdmpublications.com 53

www.bdmpublications.com54

Loops and Decision Making

www.bdmpublications.com

Loops and repetition are one of the most
important factors of any programming language.
Good use of a loop creates a program that does
exactly what you want it to and delivers the
desired outcome without issues or errors.

Without loops and decision making events within
the code, your program will never be able to offer
the user any choice. It’s this understanding of
choice that elevates your skills as a programmer
and makes for much better code.

Loops and
Decision
Making

55

If you didn’t need to see the continually increasing
value of num, you could have done away with the

compound while statement and instead just added num by itself
until it reached 30, and then displayed the value:

{
 int num = 1;

 while (num < 30)
 num++;
 cout << “Number: “ << num << endl;

 return 0;
}

 STEP 5

BDM’s i-Tech Special - Volume 2856

A while loop’s function is to repeat a statement, or a group of statements, while a certain
condition remains true. When the while loop starts, it initialises itself by testing the
condition of the loop and the statements within, before executing the rest of the loop.

While Loop

Loops and Decision Making

While loops are one of the most popular form of C++ code looping. They repeatedly run the code contained within the loop
while the condition is true. Once it proves false, the code continues as normal.

TRUE OR FALSE?

Clear what you’ve done so far and create a new C++
file. There’s no need for any extra headers at the

moment, so add the standard headers as per usual:

#include <iostream>
using namespace std;

int main ()

{

}

First you
need to

create a condition, so use a
variable called num and give
it the value 1. Now create
the while loop, stating that
as long as num is less than
30, the loop is true. Within
the loop the value of num
is displayed and adds 1 until
it’s more than 30.

Create a simple while loop. Enter the code below,
build and run (we’ve added comments to the

screen shot):

{
 int num = 1;

 while (num < 30)
 {
 cout << “Number: “ << num << endl;
 num = num +1;
 }

 return 0;
}

We’re introducing a few new elements here. The
first are the opening and closing braces for the

while loop. This is because our loop is a compound statement,
meaning a group of statements; note also, there’s no semicolon
after the while statement. You now also have return 0, which is a
clean and preferred way of ending the code.

 STEP 1 STEP 3

 STEP 2

 STEP 4

BDM’s i-Tech Special - Volume 2856 www.bdmpublications.com56

BDM’s i-Tech Special - Volume 28

In our example, if we were to execute the code
the value of num would be 1, as set by the int

statement. When the code hits the while statement it reads
that while the condition of 1 being less than 30 is true, loop. The
semicolon closes the line, so the loop repeats; but it never adds 1 to
num, as it won’t continue through the compound statement.

It’s important to remember not to add a semicolon
at the end of a while statement. Why? Well, as you

know, the semicolon represents the end of a C++ line of code. If
you place one at the end of a while statement, your loop will be
permanently stuck until you close the program.

You can manipulate the while statement to display
different results depending on what code lies within

the loop. For example, to read the poem, Cimmeria, word by word,
you would enter:

#include <iostream>
#include <fstream>
using namespace std;

int main ()

{
 string word;
 ifstream newfile (“C:\\users\\david\\
Documents\\Cimmeria.txt”);

 cout << “Cimmeria, by Robert E Howard: \n” <<
endl;

 while (newfile >> word)
 {
 cout << word << endl;
 }

 return 0;
}

Sleep() works in milliseconds, so Sleep(1000) is
one second, Sleep(10000) is ten seconds and so

on. Combining the sleep function (along with the header it needs)
and a while loop enables you to come up with some interesting
countdown code.

#include <iostream>
#include <windows.h>
using namespace std;

int main ()

{
 int a = 10;

 while (a != 0)
 {
 cout << a << endl;
 a = a - 1;
 Sleep(1000);
 }

 cout << “\nBlast Off!” << endl;

 return 0;
}

You can further expand the code to enable each
word of the poem to appear every second. To do

so, you need to pull in a new library, <windows.h>. This is a Windows
only library and within it you can use the Sleep() function:

#include <iostream>
#include <fstream>
#include <windows.h>
using namespace std;

int main ()

{
 string word;
 ifstream newfile (“C:\\users\\david\\
Documents\\Cimmeria.txt”);

 cout << “Cimmeria, by Robert E Howard: \n” <<
endl;

 while (newfile >> word)
 {
 cout << word << endl;
 Sleep(1000);
 }

 return 0;
}

 STEP 7

 STEP 6

 STEP 8 STEP 10

 STEP 9

57www.bdmpublications.com

While Loop

57www.bdmpublications.com 57

A for loop is quite a neat package in C++, all
contained within its own brackets, while the other

elements outside of the loop are displayed below. If you want to
create a 10-second countdown, you could use:

#include <iostream>
#include <windows.h>
using namespace std;

int main ()

{
 //For Loop Begins
 for(int a = 10; a != 0; a = a -1)
 {
 cout << a << endl;
 Sleep(1000);
 }

 cout << “\nBlast Off!” << endl;

 return 0;

}

 STEP 5

BDM’s i-Tech Special - Volume 2858

In some respects, a for loop works in a very similar way to that of a while loop, although it’s
structure is different. A for loop is split into three stages: an initialiser, a condition and an
incremental step. Once set up, the loop repeats itself until the condition becomes false.

Loops and Decision Making

The initialise stage of a for loop is executed only once and this sets the point reference for the loop. The condition is evaluated
by the loop to see if it’s true or false and then the increment is executed. The loop then repeats the second and third stage.

LOOPY LOOPS

Create a new C++ file, with the standard headers:

#include <iostream>
using namespace std;

int main ()

{

}

Working through the process of the for loop, begin
by creating an integer called num and assigning it a

value of 1. Next, set the condition, in this case num being less than
30. The last stage is where you create the increments; here it’s the
value of num being added by 1.

Start simple and create a for loop that counts from
1 to 30, displaying the value to the screen with

each increment:

{
 //For Loop Begins
 for(int num = 1; num < 30; num = num +1)
 {
 cout << “Number: “ << num << endl;
 }

 return 0;

}

After the loop, you created a compound statement
in braces (curly brackets), that displays the current

value of the integer num. Every time the for loop repeats itself, the
second and third stages of the loop, it adds 1 until the condition <30
is false. The loop then ends and the code continues, ending neatly
with return 0.

 STEP 1

 STEP 3

 STEP 2

 STEP 4

For Loop

BDM’s i-Tech Special - Volume 2858 www.bdmpublications.com58

BDM’s i-Tech Special - Volume 28

Naturally you can include a lot more content into a
for loop, including some user input:

 int i, n, fact = 1;

 cout << “Enter a whole number: “;
 cin >> n;

 for (i = 1; i <= n; ++i) {
 fact *= i;
 }

 cout<< “\nFactorial of “<< n <<” = “<< fact <<
endl;

 return 0;

With the countdown code, don’t forget to include
the windows.h library, so you can use the Sleep

command. Build and run the code; in the command console you can
see the numbers 10 to 1 countdown in one second increments, until
it reaches zero and Blast Off! appears.

The code from step 7, when built and run, asks for a
number, then displays the factorial of that number

through the for loop. The user’s number is stored in the integer
n, followed by the integer I which is used to check if the condition
is true or false, adding 1 each time and comparing it to the user’s
number, n.

The value of the integer i can be expanded from
12 to whatever number you want, displaying a

very large multiplication table in the process (or a small one). Of
course the data type within a for loop doesn’t have to be an integer;
as long as it’s valid, it works.

for (float i = 0.00; i < 1.00; i += 0.01)
 {
 cout << i << endl;
 }

return 0;

Here’s an example of a for loop displaying the
multiplication tables of a user inputted number.

Handy for students:

{
 int n;

 cout << “Enter a number to view its times
table: “;
 cin >> n;

 for (int i = 1; i <= 12; ++i) {
 cout << n << “ x “ << i << “ = “ << n * i
<< endl;
 }

 return 0;
}

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

59www.bdmpublications.com

For Loop

59www.bdmpublications.com 59

BDM’s i-Tech Special - Volume 2860

A do… while loop differs slightly from that of a for or even a while loop. Both for and
while set and examine the state of the condition at the start of the loop, or the top of
the loop if you prefer. However, a do… while loop, is similar to a while loop but instead
checks the condition at the bottom of the loop.

Do… While Loop

Loops and Decision Making

The good thing about a do… while loop is that it’s guaranteed to run through at least once. It’s structure is: do, followed by
statements, while condition is true. This is how it works.

DO LOOPS

Begin with a new, blank C++ file and enter the
standard headers:

#include <iostream>
using namespace std;

int main ()

{

}

Now, here’s a look at the structure of a do… while
loop. First you create an integer called num, with

the value of 1. Now the do… while loops begins. The code inside
the body of the loop is executed at least once, then the condition is
checked for either true or false.

Begin with a simple number count:

{
 int num = 1;

 do
 {
 cout << “Number: “ << num << endl;
 num = num + 1;

 }
 while (num < 30);

 return 0;

}

If the condition is true, the loop is executed. This
continues until the condition is false. When the

condition has been expressed as false, the loop terminates and the
code continues. This means you can create a loop where the code
continues until the user enters a certain character.

 STEP 1 STEP 3

 STEP 2

 STEP 4

BDM’s i-Tech Special - Volume 2860 www.bdmpublications.com60

BDM’s i-Tech Special - Volume 28

If you want code to add up user inputted numbers
until the user enters zero:

{
 float number, sum = 0.0;
 cout << “**** Program to execute a Do...
While loop continuously ****” << endl;
 cout << “\nEnter 0 to stop and display the
sum of all the numbers entered\n” << endl;
 cout << “\n---------------------------------
---\n” << endl;

 do {
 cout<<”\nPlease enter a number: “;
 cin>>number;
 sum += number;
 }
 while(number != 0.0);

 cout<<”Total sum of all numbers: “<<sum;

 return 0;

}

The do… while loop in this instance asks the user
to input a number, which you assigned to the float

variable, number. The calculation step uses the second floating
point variable, sum, which adds the value of number every time the
user enters a new value.

The code from Step 5 works as follows: two floating
point variables are assigned, number and sum, both

with the value of 0.0. There is a brief set of instructions for the user,
then the do… while loop begins.

Finally, the while statement checks the condition
of the variable number. If the user has entered

zero, then the loop is terminated, if not then it continues
indefinitely. When the user finally enters zero, the value of sum,
the total value of all the user’s input, is displayed. The loop, and
the program, then ends.

The main advantage of using a do… while loop
is because it’s an exit-condition loop; whereas a

while loop is an entry-control loop. Therefore, if your code requires a
loop that needs to be executed at least once (for example, to check
the number of lives in a game), then a do… while loop is perfect.

Using the countdown and Blast Off! code used
previously, a do… while loop would look like:

{
 int a = 10;

 do
 {
 cout << a << endl;
 a = a - 1;
 }
 while (a != 0);

 cout << “\nBlast Off!” << endl;

 return 0;

}

 STEP 5

 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

61www.bdmpublications.com

Do… While Loop

61www.bdmpublications.com 61

BDM’s i-Tech Special - Volume 2862

The decision making statement ‘if’ is probably one of the most used statements in any
programming language, regardless of whether it’s C++, Python, BASIC or anything
else. It represents a junction in the code, where IF one condition is true, do this; or IF it’s
false, do that.

If Statement

Loops and Decision Making

If uses a Boolean expression within its statement. If the Boolean expression is true, the code within the statement is executed.
If not, then the code after the statement is executed instead.

IF ONLY

First, create a new C++ file and enter the relevant
standard headers, as usual:

#include <iostream>
using namespace std;

int main ()

{

}

What’s going on here? To begin, an integer called
num was created and assigned with the value of 1.

The if statement comes next, and in this case we’ve instructed the
code that if the condition, the value, of num is less than 1, then the
code within the braces should be executed.

If is best explained when you use a number-
based condition:

{
 int num = 1;

 if (num < 30)
 {

 cout << “The number is less than 30.” <<
endl;

 }
 cout << “Value of number is: “ << num << endl;

 return 0;

}

The second cout statement displays the current
value of num and the program terminates safely. It’s

easy to see how the if statement works if you were to change the
initial value of num from 1 to 31.

 STEP 1

 STEP 3 STEP 2

 STEP 4

BDM’s i-Tech Special - Volume 2862 www.bdmpublications.com62

BDM’s i-Tech Special - Volume 28

When you change the value to anything above
30, then build and run the code, you can see that

the only line to be outputted to the screen is the second cout
statement, displaying the current value of num. This is because the
initial if statement is false, so it ignores the code within the braces.

The code in Step 6 is simplistic but effective. First we
created a floating point integer called temp, then a

do… while loop that asks the user to enter the current temperature.

You can include an if statement within a do… while
loop. For example:

{
 float temp;

 do
 {
 cout << “\nEnter the temperature (or
-10000 to exit): “ << endl;
 cin >> temp;
 if (temp <= 0)
 {
 cout << “\nBrrrr, it’s really cold!”
<< endl;
 }
 if (temp > 0)
 {
 cout << “\nAt least it’s not
freezing!” << endl;
 }
 }
 while (temp != -10000);

 cout << “\nGood bye\n” << endl;

 return 0;

}

The first if statement checks to see if the user’s
inputted value is less than or equal to zero. If it is,

then the output is ‘Brrrr, it’s really cold!’. Otherwise, if the input is
greater than zero, the code outputs ‘At least it’s not freezing!’.

Using if is quite powerful, if it’s used correctly. Just
remember that if the condition is true then the

code executes what’s in the braces. If not, it continues on its merry
way. See what else you can come up with using if and a combination
of loops.

Finally, if the user enters the value -10000, which is
impossibly cold so is therefore a unrealistic value,

the do… while loop is terminated and a friendly ‘Good bye’ is
displayed to the screen.

 STEP 5 STEP 7

 STEP 6

 STEP 8

 STEP 10

 STEP 9

63www.bdmpublications.com

If Statement

63www.bdmpublications.com 63

You can change the value of num in the code or
you can improve the code by asking the user to

enter a value:

{
 int num;

 cout << “Enter a number: “;
 cin >> num;

 if (num < 30)
 {
 cout << “The number is less than 30!” <<
endl;
 }
 else
 {
 cout << “The number is greater than 30!”
<< endl;
 }

 return 0;

}

 STEP 5

BDM’s i-Tech Special - Volume 2864

There is a much better way to use an if statement in your code, with if… else. If… else
works in much the same way as a standard if statement. If the Boolean expression
is true, the code with in the braces is executed. Else, the code within the next set of
braces is used instead.

If… Else Statement

Loops and Decision Making

There are two sections of code that can be executed depending on the outcome in an if… else statement. It’s quite easy to
visualise once you get used to its structure.

IF YES, ELSE NO

Begin with a new C++ file and the standard headers:

#include <iostream>
using namespace std;

int main ()

{

}

The first line in the code creates the integer called
num and gives it a value of 1. The if statement

checks to see if the value of num is less than thirty and if it is it
outputs “The number is less than 30!” to the console.

Let’s expand the code from the If Statement on the
previous page:

{
 int num = 1;

 if (num < 30)
 {
 cout << “The number is less than 30!” <<
endl;
 }
 else
 {
 cout << “The number is greater than 30!”
<< endl;
 }

 return 0;

}

The else companion to if checks if the number is
greater than 30 and if so, then displays “The number
is greater than 30!” to the console; and finally, the

code is terminated satisfactorily.

 STEP 1 STEP 3

 STEP 2 STEP 4

BDM’s i-Tech Special - Volume 2864 www.bdmpublications.com64

BDM’s i-Tech Special - Volume 28

The new addition to the code is what’s known as a
nested if… else statement. This allows you to check

for multiple conditions. In this case, if the user enters a number less
than 30, greater than 30 or actually 30 itself, a different outcome is
presented to them.

The code works the same way, as you would expect,
but what if you wanted to display something if the

user entered the number 30? Try this:

{
 int num;

 cout << “Enter a number: “;
 cin >> num;

 if (num < 30)
 {
 cout << “The number is less than 30!” <<
endl;
 }
 else if (num > 30)
 {
 cout << “The number is greater than 30!”
<< endl;
 }
 else if (num == 30)
 {
 cout << “The number is exactly 30!” <<
endl;
 }

 return 0;

}

You can take this up a notch and create a two-player
number guessing game. Begin by creating the variables:

int num, guess, tries = 0;

 cout << “***** Two-player number guessing game
****” << endl;
 cout << “\nPlayer One, enter a number for
Player Two to guess: “ << endl;
 cin >> num;
 cout << string(50, ‘\n’);

Grab a second player, then
build and run the code.
Player One enters the
number to be guessed,
then Player Two can take
as many guesses as they
need to get the right
number. Want to make
it harder? Maybe use
decimal numbers.

The cout << string(50, ‘\n’) line clears the screen so
Player Two doesn’t see the entered number. Now

you can create a do… while loop, together with if… else:

 do
 {
 cout << “\nPlayer Two, enter your guess: “;
 cin >> guess;
 tries++;
 if (guess > num)
 {
 cout << “\nToo High!\n” << endl;
 }
 else if (guess < num)
 {
 cout << “\nToo Low!\n” << endl;
 }
 else if (guess == num)
 {
 cout << “Well done! You got it in “ <<
tries << “ guesses!” << endl;
 }
 } while (guess != num);

 return 0;

 STEP 7

 STEP 6 STEP 8

 STEP 10

 STEP 9

65www.bdmpublications.com

If… Else Statement

65www.bdmpublications.com 65

www.bdmpublications.com66

Working with Code

www.bdmpublications.com

By now you should have the essential building
blocks of how to program in both Python and
C++. You can create code, store data, ask the user
questions, offer them a choice and repeat functions
until they prove true and provide the correct output.
What next then?

This final section looks at some of the more common
coding mistakes that Python and C++ beginners
make and where you can turn to next to continue
your programming adventure.

Working
with Code

67

68

Working with Code

EASY VARIABLES

PLAN AHEAD

Meaningful naming for variables is a must to eliminate
common coding mistakes. Having letters of the alphabet
is fine but what happens when the code states there’s
a problem with x variable. It’s not too difficult to name
variables lives, money, player1 and so on.

While it’s great to wake up one morning and decide to code
a classic text adventure, it’s not always practical without a
good plan. Small snippets of code can be written without
too much thought and planning but longer and more in-
depth code requires a good working plan to stick to and
help iron out the bugs.

SMALL CHUNKS
It would be wonderful to be able to
work like Neo from The Matrix movies.
Simply ask, your operator loads it into
your memory and you instantly know
everything about the subject. Sadly
though, we can’t do that. The first
major pitfall is someone trying to learn
too much, too quickly. So take coding in
small pieces and take your time.

//COMMENTS
Use comments. It’s a simple concept but commenting on
your code saves so many problems when you next come to
look over it. Inserting comment lines helps you quickly sift
through the sections of code that are causing problems;
also useful if you need to review an older piece of code.

There are many pitfalls for the programmer to be aware of, far too many to be listed here. Being able
to recognise a mistake and fix it is when you start to move into more advanced territory.

X=MISTAKE, PRINT Y

When you start something new you’re inevitably going to make mistakes, this is purely
down to inexperience and those mistakes are great teachers in themselves. However,
even experts make the occasional mishap. Thing is, to learn from them as best you can.

Common Coding Mistakes

BDM’s i-Tech Special - Volume 2868 www.bdmpublications.com68

BDM’s i-Tech Special - Volume 28 69

RE-INVENTING WHEELS

BACKUPS

SECURE DATA

MATHSHELP!

You can easily spend days trying to fathom out a section
of code to achieve a given result and it’s frustrating and
often time-wasting. While it’s equally rewarding to solve
the problem yourself, often the same code is out there on
the Internet somewhere. Don’t try and re-invent the wheel,
look to see if some else has done it first.

Always make a backup of your work, with a secondary
backup for any changes you’ve made. Mistakes can be
rectified if there’s a good backup in place to revert to for
those times when something goes wrong. It’s much easier
to start where you left off, rather than starting from the
beginning again.

If you’re writing code
to deal with usernames
and passwords, or
other such sensitive
data, then ensure
that the data isn’t in
cleartext. Learn how
to create a function
to encrypt sensitive
data, prior to feeding
into a routine that can
transmit or store it
where someone may be
able to get to view it.

If your code makes multiple calculations then you need
to ensure that the maths behind it is sound. There are
thousands of instances where programs have offered
incorrect data based on poor mathematical coding, which
can have disastrous effects depending on what the code is
set to do. In short, double check your code equations.

Asking for help is something most of us has struggled
with in the past. Will the people we’re asking laugh at us?
Am I wasting everyone’s time? It’s a common mistake for
someone to suffer in silence. However, as long as you ask
the in the correct manner, obey any forum rules and be
polite, then your question isn’t silly.

USER ERROR
User input is often a paralysing mistake in code. For
example, when the user is supposed to enter a number for
their age and instead they enter it in letters. Often a user
can enter so much into an input that it overflows some
internal buffer, thus sending the code crashing. Watch those
user inputs and clearly state what’s needed from them.

Common Coding Mistakes

69www.bdmpublications.com 69

BDM’s i-Tech Special - Volume 2870

Python is a relatively easy language to get started in where there’s plenty of room for
the beginner to find their programming feet. However, as with any other programming
language, it can be easy to make common mistakes that’ll stop your code from running.

Beginner Python Mistakes

Working with Code

Here are ten common Python programming mistakes most beginners find themselves making. Being able to identify these
mistakes will save you headaches in the future.

DEF BEGINNER(MISTAKES=10)

To add to the confusion that most beginners already face when
coming into programming, Python has two live versions of its
language available to download and use. There is Python version
2.7.x and Python 3.6.x. The 3.6.x version is the most recent, and
the one we’d recommend starting. But, version 2.7.x code doesn’t
always work with 3.6.x code and vice versa.

Every programmer has and does at some point go on the Internet
and copy some code to insert into their own routines. There’s
nothing wrong with using others’ code, but you need to know how
the code works and what it does before you go blindly running it on
your own computer.

Python uses precise indentations when displaying its code. The
indents mean that the code in that section is a part of the previous
statement, and not something linked with another part of the code.
Use four spaces to create an indent, not the Tab key.

Again we mention commenting. It’s a hugely important factor in
programming, even if you’re the only one who is ever going to view
the code, you need to add comments as to what’s going on. Is this
function where you lose a life? Write a comment and help you, or
anyone else, see what’s going on.

VERSIONS

THE INTERNET

INDENTS, TABS AND SPACES

COMMENTING

BDM’s i-Tech Special - Volume 2870 www.bdmpublications.com70

BDM’s i-Tech Special - Volume 28 71www.bdmpublications.com

Beginner Python Mistakes

Remember that in Python a loop doesn’t count the last number you
specify in a range. So if you wanted the loop to count from 1 to 10,
then you will need to use:

n = list(range(1, 11))

Which will return 1 to 10.

Everyone forgets to include that extra bracket they should have
added to the end of the statement. Python relies on the routine
having an equal amount of closed brackets to open brackets, so any
errors in your code could be due to you forgetting to count your
brackets; including square brackets.

Python is a case sensitive programming language, so you will need
to check any variables you assign. For example, Lives=10 is a
different variable to lives=10, calling the wrong variable in your code
can have unexpected results.

It’s common for beginners to forget to add a colon to the end of a
structural statement, such as:

class Hangman:
def guess(self, letter):

And so on. The colon is what separates the code, and creates the
indents to which the following code belongs to.

Writing code for multiple platforms is difficult, especially when you
start to utilise the external commands of the operating system. For
example, if your code calls for the screen to be cleared, then for
Windows you would use cls. Whereas, for Linux you need to use
clear. You need to solve this by capturing the error and issuing it
with an alternative command.

Using the wrong operator is also a common mistake to make. When
you’re performing a comparison between two values, for example,
you need to use the equality operator (a double equals, ==). Using
a single equal (=) is an assignment operator that places a value to a
variable (such as, lives=10).

COUNTING LOOPS

CASE SENSITIVE

BRACKETS

OPERATING SYSTEMS

COLONS

OPERATORS

71www.bdmpublications.com 71

BDM’s i-Tech Special - Volume 2872

There are many pitfalls the C++ developer can encounter, especially as this is a more
complex and often unforgiving language to master. Beginners need to take C++ a step
at a time and digest what they’ve learned before moving on.

Beginner C++ Mistakes

Working with Code

Admittedly it’s not just C++ beginners that make the kinds of errors we outline on these pages, even hardened coders are
prone to the odd mishap here and there. Here are some common issues to try and avoid.

VOID(C++, MISTAKES)

A common C++ mistake, and to be honest a common mistake with
most programming languages, is when you try and output a variable
that doesn’t exist. Displaying the value of x on-screen is fine but not
if you haven’t told the compiler what the value of x is to begin with.

Referencing the Standard Library is common for beginners
throughout their code, but if you miss the std:: element of a
statement, your code errors out when compiling. You can combat
this by adding:

using namespace std;

Under the #include part and simply using cout, cin and so on from
then on.

Remember that each line of a C++ program must end with a
semicolon. If it doesn’t then the compiler treats the line with the
missing semicolon as the same line with the next semicolon on. This
creates all manner of problems when trying to compile, so don’t
forget those semicolons.

If you’re compiling in Linux then you will no doubt come across
gcc and g++. In short, gcc is the Gnu Compiler Collection (or Gnu
C Compiler as it used to be called) and g++ is the Gnu ++ (the C++
version) of the compiler. If you’re compiling C++ then you need to
use g++, as the incorrect compiler drivers will be used.

UNDECLARED IDENTIFIERS

SEMICOLONS GCC OR G++

STD NAMESPACE

BDM’s i-Tech Special - Volume 2872 www.bdmpublications.com72

BDM’s i-Tech Special - Volume 28 73www.bdmpublications.com

Beginner C++ Mistakes

COMMENTS (AGAIN) TOO MANY BRACES

QUOTES

EXTRA SEMICOLONS

Indeed the mistake of never making any comments on code is back
once more. As we’ve previously bemoaned, the lack of readable
identifiers throughout the code makes it very difficult to look back at
how it worked, for both you and someone else. Use more comments.

While it’s necessary to have a semicolon at the end of every C++ line,
there are some exceptions to the rule. Semicolons need to be at
the end of every complete statement but some lines of code aren’t
complete statements. Such as:

#include
if lines
switch lines

If it sounds confusing don’t worry, the compiler lets you know where
you went wrong.

Missing quotes is a common mistake to make, for every level of user.
Remember that quotes need to encase strings and anything that’s
going to be outputted to the screen or into a file, for example. Most
compilers errors are due to missing quotes in the code.

The braces, or curly brackets, are beginning and ending markers
around blocks of code. So for every { you must have a }. Often it’s
easy to include or miss out one or the other facing brace when
writing code; usually when writing in a text editor, as an IDE adds
them for you.

A common mistake when compiling in Linux is forgetting to name
your C++ code post compiling. When you compile from the Terminal,
you enter:

g++ code.cpp

This compiles the code in the file code.cpp and create an a.out file
that can be executed with ./a.out. However, if you already have code
in a.out then it’s overwritten. Use:

g++ code.cpp -o nameofprogram

In C++ variables aren’t initialised to zero by default. This means if
you create a variable called x then, potentially, it is given a random
number from 0 to 18,446,744,073,709,551,616, which can be
difficult to include in an equation. When creating a variable, give it
the value of zero to begin with: x=0.

INITIALISE VARIABLES

A.OUT

73www.bdmpublications.com 73

BDM’s i-Tech Special - Volume 2874

Working with Code

Coding, like most subjects, is a continual learning experience. You may not class yourself
as a beginner any more but you still need to test your code, learn new tricks and hacks to
make it more efficient and even branch out and learn another programming language.

Where Next?

What can you do to further your skills, learn new coding practises, experiment and present your code and even begin to help
others using what you’ve experienced so far?

#INCLUDE<KEEP ON LEARNING>

Twitter isn’t all trolls and antagonists, among the well-publicised
vitriol are some genuine people who are more than willing to spread
their coding knowledge. We recommend you find a few who you can
relate to and follow them. Often they post great tips, hacks and fixes
for common coding problems.

Look for open source projects that you like the sound of and offer
to contribute to the code to keep it alive and up to date. There are
millions of projects to choose from, so contact a few and see where
they need help. It may only be a minor code update but it’s a noble
occupation for coders to get into.

If you’ve mastered Python fairly well, then turn your attention to
C++ or even C#. Still keep your Python skills going but learning a new
coding language keeps the old brain ticking over nicely and give you a
view into another community, and how they do things differently.

Become more active on coding and development knowledge sites,
such as StackExchange. If you have the skills to start and help others
out, not only will you feel really good for doing so but you can also
learn a lot yourself by interacting with other members.

TWITTER OPEN PROJECTS

KEEP CODING SHARE SKILLS

BDM’s i-Tech Special - Volume 2874 www.bdmpublications.com74

BDM’s i-Tech Special - Volume 28 75www.bdmpublications.com

Where Next?

The mobile market is a great place to test your coding skills and
present any games or apps you’ve created. If your app is good, then
who knows, it could be the next great thing to appear on the app
stores. It’s a good learning experience nevertheless, and something
worth considering.

Get sharing, even if you think your code isn’t very good. The
criticism, advice and comments you receive back help you iron out
any issues with your code, and you add them all to your checklist.
Alternatively your code might be utterly amazing but you won’t
know unless you share it.

Online courses are good examples of where to take your coding
skills next, even if you start from the beginner level again. Often,
an online course follows a strict coding convention, so if you’re self-
taught then it might be worth seeing how other developers lay out
their code, and what’s considered acceptable.

If you’ve learned how to code with an eye for a developer job in
the future, then it’s worth starting to build up an online portfolio
of code. Look at job postings and see what skills they require,
then learn and code something with those skills and add it to the
portfolio. When it comes to applying, include a link to the portfolio.

Contributing to hardware projects is a great resource for proving your
code with others and learning from other contributors. Many of the
developer boards have postings for coders to apply to for hardware
projects, using unique code to get the most from the hardware that’s
being designed.

Can you teach? If your coding skills are spot on, consider
approaching a college or university to see if they have need for a
programming language teacher, perhaps a part-time or evening
course. If not teaching, then consider creating your own YouTube
how to code channel.

ONLINE LEARNING TEACH CODE

GOING MOBILE PORTFOLIOS

SHARE CODE HARDWARE PROJECTS

75www.bdmpublications.com 75

Master Your Tech From Beginner to Expert

Black Dog Media

To continue learning more about your tech visit us at:

www.bdmpublications.com

� Print & digital editions
� Featuring the very latest updates
� Step-by-step tutorials and guides
� Created by BDM experts
Check out our latest titles today!

bdmpublications.com/ultimate-photoshop
Buy our Photoshop guides and download tutorial
images for free! Simply sign up and get creative.

FREE Tech Guides

EXCLUSIVE Offers on
our Tech Guidebooks

SPECIAL DEALS
and Bonus Content
Sign up to our monthly newsletter
and get the latest updates, offers
and news from BDM. We are here
to help you Master Your Tech!

Samsung & Android

Coding Python,
Raspberry Pi & Linux

Photography,
Photoshop & Lightroom

Apple iPhone, iPad,
Mac, MacBook & Watch

PC & Windows 10

PLUS

 210 Readly BDM Oct19 Ad.qxp_OFC.qxd 16/10/2019 16:29 Page 2

0-9

3G
The third generation of mobile data networking
used by both the iPhone and iPad. This connection is
slower than Wi-Fi, but is more readily available and is
used to transfer data from your device when you are
on the go. It uses the mobile phone network.

4G
The fourth generation of mobile data networking.

5G
The fifth generation of mobile data networking
offers increased speed when transferring data on
the go but it is still in its early stages of adoption by
mobile phone networks.

A...

Accessibility
A series of tools and features designed to make an
Apple device such as the Mac and mobile
devices easier to use by those with disabilities such
as vision or hearing impairments. You can find
the Mac’s Accessibility features and customise them
in System Preferences.

ADB
Android Debug Bridge. Part of the Android Software
Development Kit, used to send commands from a
computer to an attached phone.

Adobe Bridge
Bridge is a browser application produced by Adobe
Systems as part of the Creative Suite and is usually
installed alongside Photoshop. Its main function is as
the file management hub of the Creative Suite. It can
be used to open, manage, rate and rename files as
well as edit their metadata.

Adobe RGB
A device independent colour space developed by
Adobe. It provides a relatively large range of colours,
i.e. grey-balanced and perceptually uniform. It is
widely used for image editing.

ADSL
Asymmetric Digital Subscriber Line. It’s a means of
connecting to the Internet through your telephone
line. Sometimes just called ‘DSL’

Airplane Mode
All airlines warn you to turn off mobile electronic
devices when on board an aircraft, so this iPad
setting turns off all incoming and outgoing signals
to your device, including data, Bluetooth and Wi-Fi.

AirPlay
A protocol for streaming sounds and video from an
Apple device to a set of compatible speakers or a device
such as an Apple TV. It’s wireless and easy to use.

AMOLED

Active Matrix Organic Light Emitting Diode. A
bright and colourful display technology popular on
smartphones (although it has now been superseded
by Super AMOLED and qHD.)

Android
The name of the operating on your smartphone
(we are assuming you own an Android phone if you
are reading this magazine). There have so far been
eleven versions/updates released.

Android Market
The previous name for the Google Play Store. The
place to go to find apps, books and movies to install
on your phone.

Anti-Aliasing Filter
This is an optical filter, also known as low-pass filter,
which is placed on the camera sensor to create a
slight blur or softening that helps counteract aliasing
or Moiré interference.

Apk (.apk)
The file extension of Android applications.

Apps (Applications)
The programs, such as Angry Birds, Facebook
or Soundhound, that you install and run on you
Android phone.

App Store
The App Store is where you can download free and
paid programs to your device using your Apple ID.
You can access it through the application found on
your home screen.

App Inventor
A web-based system that lets anyone develop apps
for Android. Originally created and run by Google,
but now run as an open-source project.

Apple ID
This is the email address and password that you
have registered with Apple. It will be required
to access most online applications on your iPad,
including iTunes, App Store and Books.

Apple Menu
The menu that’s opened by clicking on the Apple
icon in the left of the menu bar, when using a Mac
or MacBook computer. It gives access to system
functions such as Preferences, App Store,
Force Quit and more.

Archos
A manufacturer of Android tablets.

ASUS
A well-known manufacturer of Android smartphones
and tablets.

AT&T

One of the “Big Four” of American carriers

B...

Bit
A contraction of binary digit, the smallest unit of
information storage or digital information that can
take on one of two values, 0 and 1.

Bit Depth
Defines how many bits of colour data are used
to describe each pixel or channel. For example, 2
bits per pixel only allows for black or white. 8 bits
provides 256 colours. When referring to an 8-bit
colour image, 256 is multiplied by the three primary
channels (red, green and blue) to create what is
commonly called 24-bit colour, with a possible
16,777,266 colours.

Black Point
In image editing, the black point is a tonal
adjustment that sets the point at which the deepest
shadow detail in the histogram is clipped to black.

Bloatware
The name given to unwanted applications
preloaded onto your phone. Bloatware cannot
usually be removed by the end user unless they
decide to root their handset.

BlueTooth
Short range file data system built into almost every
Android smartphone ever made. Can be used to
send files and connect speakers or headphones
wirelessly to your phone.

Books
Apple’s eBook reader, available from the App
Store. It handles the standard electronic publishing
formats protected by FairPlay DRM and PDF. It was
introduced in 2010 along with the iPad.

Bootloader
A normally hidden mode in Android that helps with
flashing ROMs when rooting an Android phone.

Broadband
Wide bandwidth data transmission, that is, fast
Internet as opposed to the older, dial-up services.

Browser
An app used to access websites found on the
worldwide web. The iPad and iPhone come with
Apple’s Safari browser preinstalled but others are
available in the App Store. Android devices use the
Chrome browser

BSI
Backside Illumination. Sometimes used to improve
smartphone camera performance.

The Ultimate Jargon Buster
Avoid tech confusion, either when reading this book or when talking to friends, with this glossary

of technology terms and phrases. We have looked across the tech boarders to bring to you the

definitive jargon buster, but it should help you to understand the common terms people use

when talking about their devices and their software.

C...

Calendar
This is one of several preloaded apps found on most
devices. Use it to keep track of events, invitations
and reminders on your phone and tablet.

Camera Raw
Proprietary raw file formats designed to hold
image data and metadata generated by digital
cameras. These formats are non-standard and
undocumented, although they are usually based on
the TIFF/EP file format standard.

Carrier
Another name for a mobile network provider
(Vodafone, AT&A, Sprint, etc.)

Casting
The process of converting one data-type into
another. For example, sometimes a number may
stored as text but need to be converted in to an
integer.

CCD (Charged Coupled Device)
A type of image sensor found in digital cameras and
scanners. It is a light-sensitive chip that converts light
into an electrical charge that is then processed by an
analogue to digital converter. CCD differs from the
other common sensor type (CMOS) in the way that it
processes the electrical charges captured by sensor
elements.

CDMA
One of the two main cell phone communication
standards. Not often used in phones outside of the
U.S.

Chromatic Aberration
Known also as colour fringing, chromatic aberration
is caused when a camera lens does not focus the
different wavelengths of light onto the exact same
focal plane. The effect is visible as a thin coloured
halo around objects in the scene, often the border
between dark and light objects.

Class
A class provides a means of bundling data and
functionality together. They are used to encapsulate
variables and functions into a single entity.

Clipping
The loss or either highlight or shadow details when
tone information is forced to pure white or black.
For example, over-exposure can produce clipping
by forcing highlights that should contain detail
to register as pure white. Clipping can also be
caused either intentionally as a creative effect or
unintentionally because of excessive corrections.
Saturation clipping can occur when colours are
pushed beyond the range of a colour space.

Comments
A comment is a section of real world wording
inserted by the programmer to help document
what’s going on in the code. They can be single line
or multi-line and are defined by a # or ‘’’.

Constant
A number that does not change. It is good practice
to name constants in capitals e.g. SPEED_OF_LIGHT

CMOS (Complementary Metal Oxide

Semiconductor)
A type of image sensor found in digital cameras and
scanners. It is a light-sensitive chip that converts light
into an electrical charge, which is then processed by
an analogue to digital converter. CMOS differs from

the other common sensor type (CCD) in the way
that it processes the electrical charges captured by
sensor elements.

CMYK
Also commonly referred to as process colour, CMYK
is a subtractive colour model using cyan, magenta,
yellow and black inks in colour printing.

Colour Profile
Also known as an ICC profile, the Colour Profile
defines the information required to by a colour
management system (CMS), to make the colour
transformations between colour spaces. They can be
device specific such as monitors, scanners or printers
or abstract editing spaces.

Compression
The process of re-encoding digital information
using fewer bits than the original file or source.
This reduces transmission time and storage
requirements. There are a number of different
algorithms that provide either “lossy” or lossless
compression. JEPG is a common file format that
employs lossy compression to achieve smaller file
sizes at the expense of image quality.

Cupcake
The nickname for Android version 1.5.

CyanogenMod
One of the best known and most often used series of
custom ROMs.

D...

DECT
Digital Enhanced Cordless Telecommunications.
It’s a wireless standard used mostly for cable-free
telephone systems.

DLNA
Dynamic Living Network Alliance. A technology
found on some high-end Android phones that lets
users stream photos and videos from their phone to
a compatible TV.

DNG (Digital Negative)
An open standard file format developed by Adobe
Systems that provides an alternative to proprietary
camera raw files. The DNG specification incorporates
rich metadata along with embedded previews,
camera profiles and editable notes. DNG uses
lossless compression that can result in a significant
file size reduction over the original proprietary raw.

Download
The term used when taking a file from the Internet
or from a connected device such as a computer, to
your phone or tablet.

Dock
The opaque strip at the bottom of the home screen.
Apps in the dock remain in a special row of icons (or
Folders post iOS 4) along the bottom of iPhone, iPod
touch and iPad screens and do not change when
you swipe between home screens.

DPI (Dots Per Inch)
The measurement of print resolution expressed
in how many dots of ink are laid down either
horizontally or vertically per inch. A higher number
indicates a greater amount of output resolution. Not
to be confused with pixel per inch (PPI). There is not
necessarily a direct correlation between DPI and PPI.

Dream (HTC Dream or G1)
The very first phone to use the Android operating system.

Dynamic Range
In the context of photography, dynamic range describes
the difference between the brightest and darkest light
intensities of a scene. From capture to output, there can
be a large difference in the size of the dynamic range
that each device is capable capturing or reproducing.
Dynamic range is commonly expressed in the number
of f-stops that can be captured or the contrast ratio of
the scene or device.

E...

Eclair
The nickname for Android version 2.0/2.1.

Emoticon
A small drawing used to augment a message or text.
Typically these are yellow faces showing a variety of
expressions.

Escape Sequence
When characters that have certain meanings in the
Python coding language are required in strings they
have to be “escaped” so that the computer knows
they do not have their usual meaning. This is done
by putting a slash in front of them e.g. \”

Ethernet
The format used for local cabled networks (LAN).
Your router comes supplied with Ethernet cables
and has ports for plugging them in.

Exposure
The total amount of light that strikes the sensor or
film during an image capture. An optimal exposure
takes full advantage of the dynamic range of the
sensor without under-exposing the shadows or
over-exposing the highlights.

Extender
A device that extends the range of a wireless
network by creating a second entry point, which
may, or may not, merge with the main one.

F...

Facebook
Currently the most popular social networking site
on the Internet; there are currently over 835 million
registered users.

FaceTime
Apple’s video calling service. Requires a Wi-Fi
connection and is currently only supported via
a phone number on iPhone and Apple ID email
address on iPod touch 4 and Mac.

Factory Reset
An option on your Android phone that allows you to
return it to the state it was when it left the factory.

File Format
The structure of how information is encoded in a
computer file. File formats are designed to store
specific types of information, such as JPEG and TIFF
for image or raster data, AI for vector data or PDF for
document exchange.

Folder
An icon representing a container for a group of apps,
files or icons.

Force Quit
In the Fast App Switcher, tapping and holding an
app will put it in ‘jiggly mode’ and tapping the x
badge will force it to quit. Built-in apps like Mail and
Messages will automatically restart while third-party
apps will restart the next time you launch them.

Froyo
The nickname given to Android version 2.2.

G...

G1
The very first phone to run the Android operating
system. Also known and the HTC Dream.

Game Center
Apple’s gaming service, where you can discover
new games and share your game experiences with
friends from around the world.

Gamut
The range of colours and tonal values that can
be produced by a capture or output device or
represented by a colour space.

Galaxy
A range of hugely popular handsets from Samsung,
the biggest smartphone manufacturer in the world.

Geotagging
The act of digitally attaching your location to photos
taken on your phone.

Gingerbread
The nickname given to Android version 2.3.

Gmail
Google’s web-based email software. Comes pre-
installed on every Android smartphone.

Google
Owner (although not the original creator) of
Android. Also own a fairly well known search
engine...

Google Now
An enhanced Google search app which bases the
information displayed on current location. Currently
only found in Jelly Bean.

Google Play
Previously known as Android Market, this is where
you go to download Android compatible apps,
books, music and movies.

Gorilla Glass
Increasingly popular scratch-resistant glass used for
smartphone displays.

GPS
Global Positioning System. A system that uses
satellites to pinpoint your current location.

Grayscale
A monochromatic digital image file with pixel
values that use shades of grey to represent tonal
information. The term is often used to describe
digital black and white photographs.

GSM
One of the two main cell phone communication
standards. Used in most countries outside of the U.S.

H...

Hacking
Most often means rooting when talking about
Android.

Hard Reset
Also called Factory Reset. Returns the phone to its
post-factory state.

HDR (High Dynamic Range)
A process that combines multiple exposure
variations of an image to achieve a dynamic range
exceeding that of a single exposure. Algorithms
are used to blend the exposures into a high-bit file
format that can then be converted to either 8 or 16
bit for printing or web presentation.

Histogram
A graphical representation of the tone and colour
distribution in a digital image. This is typically based
on a particular colour or working space by plotting
the number of pixels for each tone or colour value. It
can be used to interpret photographic exposure and
reveal shadow or highlight clipping.

Home Button
The physical hardware button on the front of early
models of the iPhone, iPod touch, iPad and many
Android devices, located just below the screen. It’s
used to wake the device, return to the Home Screen
and several other functions.

Home Screen
The front end of your smartphone or tablet. The
screen you see, containing app icons, widgets, etc.,
when you first unlock the device.

Honeycomb
The nickname given to Android version 3.0. The only
version designed specifically for tablets, but now
superseded by ICS.

HTC
A large Taiwanese smartphone manufacturer.

HTTP
Hypertext Transfer Protocol, the protocol used by
the World Wide Web (Internet) that defines how
messages are sent, received and read by browsers
and other connected software layers.

HTTPS
Hypertext Transfer Protocol Secure, an encrypted
and far more secure version of HTTP.

I...

Ice Cream Sandwich
The nickname given to Android version 4.0/4.1. The
majority of new Android tablets now use this.

IMEI
International Mobile Equipment Identity. This is a
unique identification number assigned to every
phone.

Intel
Well known PC processor manufacturer. Has now
started producing smartphone processors.

Internet
A global system of interconnected computers and
networks which use the Internet Protocol Suite (TCP/
IP) to link online devices.

Indentation
The coding language Python uses indentation to
delimit blocks of code. The indents are four spaces
apart, and are often created automatically after a
colon is used in the code

iOS
Apple mobile operating system and the software
that powers the iPhone, iPod touch, iPad and Apple
TV.

IPS
In Plane Switching is a type of display used on some
phones that increases the viewing angle of the
screen.

I-Tunes
Mac and Windows music playing software, also used
to activate and sync iPhone, iPod touch and iPad. It
is also used to purchase and manage music, movies,
TV shows, apps, books and other media.

ISO (International Organisation for

Standardisation)
In photography, ISO refers to the standard for
measurement of the sensitivity of film or digital
sensors to light.

J...

Jelly Bean
The nickname given to Android 4.2, the latest
version of the operating system.

JIT
The Just In Time compiler was introduced in Android
2.2. It helps to speed up apps on Android.

JPEG, JPG (Joint Photographic Experts

Group)
A standard created by the Joint Photographic
Experts Group for the compression of photographic
images and the accompanying file format. It
employs lossy compression that can reduce file size
but at the expense of image quality and detail.

K...

Kernel
The basic Linux building block of Android.

Keyboard
Tablets and smartphones can feature either a
physical or software keyboard.

Keyword
An element of metadata that is used to make a file
more easily discoverable to searches. Keywords can
be individual words or short phrases and can have a
hierarchical structure.

L...

Landscape Mode
This describes a phone or tablet when you hold it
horizontally; this is when it’s wider than it is tall and
the Home button is on the right or left of the screen.

Launcher
This is the part of the Android user interface on
home screens that lets you launch apps and make
phone calls.

LAN
Local Area Network. Devices that are connected to
your router using Ethernet cables, are part of the
LAN (see also WLAN).

LG
A large Korean electronics and smartphone
manufacturer.

Linux
An open-source operating system that is used as the
basis of Android.

Live Wallpapers
Animated wallpapers introduced in Android 2.1.

Loop
A piece of code that repeats itself until a certain
condition is met. Loops can encase the entire code
or just sections of it.

LTE
Long-Term Evolution. A name sometimes given to
4G data networks.

Luminance
The intensity of light as emitted or reflected by
an object or surface. This is usually expressed
in candelas per square meter (cd/m2). It is a
measurement of the brightness of an object or light
source.

M...

Magic
HTC phone also known as the MyTouch 3G. The first
phone to use an Android operating system.

Mail
Built-in Apple app for handling POP3, IMAP,
MobileMe and Exchange/ActiveSync email accounts.

Messages
One of Apple’s built-in iPhone apps that handles
SMS text messages and MMS multimedia messages.
SMS messages are also more generally called
“messages” on most devices.

MMS: (MultimediaMmessages)
MMS supports images, videos, sound, contact
cards and location data. Sent and received via the
Messages app.

Megapixel
A term used to describe digital camera resolution,
1 megapixel equals one million pixels or sensor
elements. To calculate the megapixel value for a
camera, multiply the horizontal by the vertical pixel
counts of the recorded image.

Mesh
A means of combining two wireless access points
into one, so they use the same settings and appear
as a single network to devices that join it.

Metadata
Embedded or associated information describing a
file’s contents, used in digital photography to hold
exposure information, GPS location data, copyright
information and more. There are several metadata
formats such as EXIF, IIM, IPTC Core, Dublin Core,
DICOM and XMP.

Modem
Short for modulate-demodulate, a modem converts
data into a signal that can be transferred over a
phone line, and does so in reverse for incoming data.

Motorola
A large manufacturer or electronics and
smartphones.

N...

News
Is an app in iOS that collected together magazine
and newspaper apps and allowed the automatic
downloading of new stories.

Nexus

A range of smartphones and tablets developed by
Google. The Nexus range runs a pure version of
Android.

NFC
Near Field Communication. A technology which
allows data to be between phones or between your
phone and another device.

Noise
The unwanted colour or luminance variations of
pixels that degrade the overall quality of an image.
Noise can result from several different sources
including a low signal to noise ratio, the use of high
ISO settings, long exposures, stuck sensor pixels
and compression artefacts. It can appear as random
colour speckles, a grain-like effect or banding.

Notification Centre:
A pull-down list of recent notifications, accessible
from any iOS Home Screen or from within any iOS
app. Similar to the Notification Panel found on
Android.

O...

OEM
Original Equipment Manufacturer. A company which
manufacturers devices for another brand (e.g. ASUS
is the OEM of Google’s Nexus 7.)

One Series
A range of smartphones from HTC. Includes the One
X, One V and the One S.

Open GL
An open source graphics library, used on some
smartphones.

Open Source
Software which is available to be studied, used
and adapted by anyone. Android is open source
software.

Operating System
Also OS. The program that’s loaded into the
computer after the initial boot sequence has
completed. The OS manages all the other programs,
graphical user interface (GUI), input and output and
physical hardware interactions with the user.

Optimus
A range of smartphones from LG

OTA
Over The Air. A method which upgrades are
wirelessly sent to smartphones.

Output
Data that is sent from the program to a screen,
printer or other external peripheral.

P...

Pantech
A South Korean smartphone manufacturer.

PDF (Portable Document Format)
Developed by Adobe Systems, PDF is an open
standard file format for cross-platform document
exchange. PDF is highly extensible, preserves the
integrity of the original document, is searchable and
provides document security.

Photos
Built-in Apple app that handles your photo albums
on your iPhone and iPod touch 4, and synced

photos and videos for iPhone and all generations of
iPad and iPod touch.

Photo Stream
Part of iCloud, Photo Stream stores your last thirty
days or 1000 photos online and on your iOS devices,
and all your photos on your Mac.

Pixel
Derived from the term picture element, this is the
smallest unit of information in a digital image. It
is also commonly used to describe the individual
elements on a capture device such as a camera
sensor.

PIN
Stands for Personal Identification Number. Used to
lock smartphones and SIM cards.

Plug-In
A software application or module that provides
extended and specific functionality from within a
larger host application.

Portrait Mode
This describes a smartphone or tablet when you
hold it vertically; this is when it’s taller than it is wide
and the Home button is at the top or bottom of the
screen.

PSD
The .psd (Photoshop Document) format is a popular
proprietary file format from Adobe Systems, Inc.
It has support for most of the imaging options
available in Photoshop, such as layer masks,
transparency, text and alpha channels. In addition,
spot colours, clipping paths and even duotone
settings can be saved if you are preparing images
for printing.

Project Butter
Software enhancements introduced in Android 4.1.
Designed to smooth out frame rates and animations.

Q...

QR Code
A type of barcode which can be scanned by
smartphones to reveal information such as text and
website URL’s.

QuickTime
Apple’s 2D video and graphics player, used to play
movies and other video on iOS.

R...

Raw Files
A Raw file is the unprocessed data captured by a
digital camera sensor. In most cases, cameras write
Raw files using a proprietary file format. Raw files
give the photographer the advantage of managing
image processing during post-production rather
than letting the camera make the processing
decisions, as happens when shooting in JPEG
format. See also: DNG.

Recovery Mode
A separate operating mode of Android. Mainly used
for device administration and repair.

Retina Display
Super sharp display available on Mac computers and
iOS devices.

Resolution

A measurement of the ability of an optical, capture,
or output system to record and reproduce detail. It
can be defined in several different metrics such as
Line Pairs, PPI, DPI, SPI and LPI. Also see DPI and PPI.

RGB
A colour model that uses the three primary additive
colours (red, green, blue) that can be mixed in
different ratios to make all other colours.

ROM
Read Only Memory. In Android a ROM is used to
load software updates. Custom ROMs are software
updates developed by third parties.

Root
In Android, to Root means to unlock the device to
allow more access to the core software (or root).

Router
A device that manages and organises your home
network devices, whether they connect to the router
using a cable (LAN), or wirelessly (WLAN).

S...

Safari
Apple’s web browser, both for Mac OS X and iOS
(sometimes called Mobile Safari). Based on KHTML/
WebKit renderer and the Nitro JavaScript engine.

Samsung
A huge Korean smartphone and electronics
manufacturer.

SD Card
A small memory card which can often be inserted
into smartphones to increase storage capacity.

Sense
The user interface designed by and used on HTC
phones.

Sharpening
The process of increasing or emphasising contrast
around the edges of details in an image, to give the
impression that the image is sharper than it really is.

Sideload
The process of installing an app onto your phone
outside of the Google Play store.

SIM Card
The small plastic chip required in all GSM phones to
connect to the mobile network.

Siri
Apple’s intelligent virtual assistant, that replaces
Voice Control on the iPhone.

Sleep/Wake Button
Physical hardware button. Used to power on, wake
from sleep, put to sleep and power down most
smartphones and tablets.

Sony Ericsson
The company formed by Sony and Ericsson to
manufacture and distribute mobile devices.

Sprint
One of the large US mobile carriers.

SSID
Service Set ID. In a nutshell, this is the ‘name’ of your
wireless network, and can be changed using your
router.

Super AMOLED
An improvement of AMOLED displays, providing
brighter, less power hungry and less reflective
screens.

T...

T-Mobile
Large US mobile carrier and manufacturer of
smartphones.

Tegra 2
NVIDIA’s dual-core mobile processor.

Tegra 3
NVIDIA’s newer, quad-core, mobile processor.

Tethering
Using your smartphones data connection to provide
internet access for another device (laptops, etc.)

Text Field
Any area where you can add text. For example, the
search field is where you type something you’re
looking for. Tap on a text field to bring up the virtual
keyboard.

Thumbnail Image
A small, low-resolution image preview used on the
web to link to a high-resolution version of the file.
Thumbnails can also be embedded in file formats
such as TIFF and PSD.

TIFF or TIF (Tagged Image File Format)
An open standard file format specifically designed
for images. TIFF can incorporate several types of
compression, including LZW, JPEG and ZIP. The
format is suitable for the storage of high quality
archive images. The DNG format is based on the
main TIFF standard.

TouchWiz
Samsung’s custom user interface.

Twitter
One of the most popular social networks built
around a follower and following system rather than
friends.

U...

UPnP
Universal Plug and Play. A protocol used by digital
media players for enjoying video, music, and
pictures over your home network.

URL
Uniform Resource Locator. This is a web address,
used to access a web page on the Internet, and
usually starts ‘www’ and ends in ‘.com’, or some
other top-level domain.

USB
Universal Serial Bus. The connection method
now used by most smartphones to connect to a
computer or power source (MicroUSB).

V...

Vanilla
Sometimes used to describe Android without any
custom user interface applied.

VDSL
Very High Speed Digital Subscriber Line. It’s another
protocol for getting on the Internet using your
phone line, and is sometimes shortened to DSL.

Verizon
One of the four large US mobile carriers.

Virtual Environment
A cooperatively isolated runtime environment that
allows Python users and applications to install and
upgrade Python distribution packages without
interfering with the behaviour of other Python
applications running on the same system.

Virtual Machine
A computer defined entirely in software. Can be
used to test/run/create code that won’t affect the
host system.

VPN

(Virtual Private Network):
This provides secure access over the Internet to
private networks, such as the network at your
company or school.

W...

While Loop
A coding loop that repeats code while a
comparative statement returns the value True.

White Balance (WB)
In digital photography, white balance establishes
the colour balance of the image in relationship to
colour temperature of the lighting conditions. Most
digital cameras have several built-in white balance
presets (tungsten, daylight, cloudy, fluorescent, etc.)
along with an auto setting and the ability to set a
custom WB.

Widgets
The name given to the home-screen gadgets which
allow you to see app updates, news, etc.

Wi-Fi
A group of backwards-compatible radio
technologies used to connect peripherals to a
network wirelessly.

WLAN
Wireless Local Area Network. Your network of
wireless devices, as opposed to devices connected
with a cable (see LAN).

World Phone
A device which works on both CDMA and GSM
networks outside of its home country.

WPS
Wi-Fi Protected Setup, an easier way of connecting
wireless devices to your router.

XYZ...

Xperia
A range of smartphones developed by Sony
Ericsson. Includes the Xperia T and the Xperia Play,
the PlayStation smartphone.

YouTube
Google-owned, web-based video streaming service.
A YouTube app is usually pre-installed on Android
devices.

