

Effective DevOps with AWS
Second Edition

Implement continuous delivery and integration in the
AWS environment

Yogesh Raheja
Giuseppe Borgese
Nathaniel Felsen

BIRMINGHAM - MUMBAI

Effective DevOps with AWS
Second Edition
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Gebin George
Acquisition Editor: Heramb Bhavsar
Content Development Editor: Abhijit Sreedharan
Technical Editor: Swathy Mohan
Copy Editor: Safis Editing
Project Coordinator: Jagdish Prabhu
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Graphics: Tom Scaria
Production Coordinator: Aparna Bhagat

First published: July 2017
Second edition: September 2018

Production reference: 1280918

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78953-997-4

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Yogesh Raheja is a certified DevOps and cloud expert with a decade of IT experience. He
has expertise in technologies such as OS, source code management, build and release tools,
continuous integration/deployment/delivery tools, containers, configuration management
tools, monitoring, logging tools, and public and private clouds. He loves to share his
technical expertise with audience worldwide at various forums, conferences, webinars,
blogs, and LinkedIn. He has written Automation with Puppet 5 and Automation with Ansible
and has published his online courses on Udemy. He has also reviewed multiple books for
Packt like Implementing Splunk 7, Third Edition and Splunk Operational Intelligence Cookbook,
Third Edition.

A big thanks to God who made me capable of sharing my knowledge with the world. Many
thanks go to the great team at Packt for their outstanding work for this project. I would
like to thank my mother Sudesh Rani and wife Divya Vohra Raheja for their love, endless
support, patience, and help to chase my dreams. They makes everything possible for me.
Finally, a special thanks to Gagandeep Singh, Kulbhushan Mayer and the great team of
Thinknyx Technologies who inspired and motivated me to write this book.

Giuseppe Borgese is currently working as a DevOps AWS Specialist for Siemens. He
possesses a master's degree in Internet Technology and is a certified AWS DevOps
Engineer Professional holding 4 certifications. His contributions to the AWS community
include a Youtube channel featuring a series of AWS Tutorials and numerous articles for
renowned blogs such as LinuxAcademy. He also holds VMware and Cisco certifications.
This is his second book and the first book published with Packt. In this book, the chapters,
Scaling Your Infrastructure and Hardening the Security of Your AWS Environment have been
contributed by him.

Nathaniel Felsen is a DevOps engineer who started working on DevOps engineering
concepts over 10 years ago, before the term was even coined. He worked in several
companies ranging from small start-ups to enterprises, including Qualys, Square, and more
recently, Medium.

Outside of work, Nathaniel lives a fabulous life where he enjoys running after his very
active kids and spending a fortune on occasional date nights with his wife. Although
Nathaniel is French, he prefers exploring local stout beers with friends than drinking wine.
He holds a MS degree in system, network, and security from Ecole Pour l'Informatique et
les Techniques Avancées (EPITA), a top CS engineering school in France.

About the reviewer
Hai Dam is working as DevOps Engineer in Netcompany, Denmark. His DevOps
toolchain: Jenkins, CircleCI, ELK, AWS, Docker.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: The Cloud and DevOps Revolution 7
Thinking in terms of the cloud, and not infrastructure 8

Deploying your own hardware versus in the cloud 8
Cost analysis 9
Just-in-time infrastructure 9

The different layers of a cloud 12
Adopting a DevOps culture 13

The origin of DevOps 13
The developers versus operations dilemma 14

Too much code changing at once 14
Differences in the production environment 15

Communication 15
Key characteristics of a DevOps culture 16

Source control everything 16
Automating testing 16
Automating infrastructure provisioning and configuration 17
Automating deployment 17
Measuring everything 18

Deploying in AWS 20
How to take advantage of the AWS ecosystem? 20
How does AWS synergize with a DevOps culture? 20

Summary 23
Questions 23
Further reading 23

Chapter 2: Deploying Your First Web Application 24
Technical requirements 24
Creating and configuring your account 25

Signing up 25
Enabling MFA on the root account 27
Creating a new user in IAM 29
Installing and configuring the command-line interface (CLI) 32

Installing WSL (Windows only) 33
Installing the AWS CLI package 38
Configuring the AWS CLI 39

Creating our first web server 40
Amazon Machine Images (AMIs) 40
Instance types 41
Security groups 42

Table of Contents

[ii]

Generating your SSH keys 44
Launching an EC2 instance 46
Connecting to the EC2 instance using SSH 49
Creating a simple Hello World web application 50

Installing Node.js 51
Running a Node.js Hello World application 51
Turning our simple code into a service using upstart 53

Terminating our EC2 instance 54
Summary 55
Questions 56
Further reading 56

Chapter 3: Treating Your Infrastructure as Code 57
Technical requirements 58
Managing your infrastructure with CloudFormation 59

Getting started with CloudFormation 59
AWS CloudFormation Designer 61
CloudFormer 63
Recreating our Hello World example with CloudFormation 66

Using Troposphere to create a Python script for our template 66
Creating the stack in the CloudFormation console 71
Adding our template to a source control system 72
Updating our CloudFormation stack 74

Updating our Python script 74
Updating our stack 77

Change sets 78
Deleting our CloudFormation stack 79

Adding a configuration management system 81
Getting started with Ansible 82
Installing Ansible on your computer 82
Creating our Ansible playground 83
Creating our Ansible repository 83
Executing modules 86
Running arbitrary commands 87
Ansible playbooks 87

Creating a playbook 87
Creating roles to deploy and start our web application 88
Creating the playbook file 92
Executing a playbook 93
Canary-testing changes 96
Running Ansible in pull mode 97

Installing Git and Ansible on our EC2 instance 98
Configuring Ansible to run on localhost 98
Adding a cron job to our EC2 instance 99
Integrating Ansible with CloudFormation 99

Monitoring 102
Summary 103

Table of Contents

[iii]

Questions 103
Further reading 104

Chapter 4: Infrastructure as Code with Terraform 105
Technical requirements 106
What is Terraform? 106

Getting started with Terraform 107
Terraform and AWS for automated provisioning 109

Deployment using AWS Management Console 109
Deployment using AWS CLI 111

Creating our Terraform repository 112
First Terraform template for AWS instance provisioning 114
A second Terraform template for deploying a Hello World application 125

Integrating AWS, Terraform, and Ansible 129
Terraform with Ansible using a push-based approach 129

Terraform with Ansible using the pull-based approach 133
Summary 136
Questions 137
Further reading 137

Chapter 5: Adding Continuous Integration and Continuous
Deployment 138

Technical requirements 139
Building a CI pipeline 140

Creating a Jenkins server using Ansible and CloudFormation 141
Creating the Ansible playbook for Jenkins 141
Creating the CloudFormation template 146
Launching the stack and configuring Jenkins 148

Preparing our CI environment 150
Creating a new GitHub organization and repository 150
Creating a GitHub personal access token 153
Adding the access token to the credentials in Jenkins 153
Creating the Jenkins job to automatically run the builds 154

Implementing the helloworld application using our CI environment 157
Initializing the project 157
Creating a functional test using Mocha 158
Developing the remainder of the application 162
Creating the CI pipeline in Jenkins 163

Productionizing the CI pipeline 167
Building a continuous deployment pipeline 169

Creating new web servers for continuous deployment 170
Importing a custom library to Ansible for AWS CodeDeploy 170
Creating a CodeDeploy Ansible role 171
Creating the web server CloudFormation template 173
Launching our web server 174

Integrating our helloworld application with CodeDeploy 174
Creating the IAM service role for CodeDeploy 175

Table of Contents

[iv]

Creating the CodeDeploy application 176
Adding the CodeDeploy configuration and scripts to our repository 177

Building our deployment pipeline with AWS CodePipeline 182
Creating a continuous deployment pipeline for staging 182
Integrating Jenkins to our CodePipeline pipeline 185

Updating the IAM profile through CloudFormation 186
Installing and using the CodePipeline Jenkins plugin 187
Adding a test stage to our pipeline 188

Building a continuous delivery pipeline for production 189
Creating the new CloudFormation stack for production 189
Creating a CodeDeploy group to deploy to production 190
Adding a continuous delivery step to our pipeline 191

Strategies to practice continuous deployments in production 193
Fail fast 193
Canary deployment 193
Feature flags 195

Summary 195
Questions 196
Further reading 196

Chapter 6: Scaling Your Infrastructure 198
Technical requirements 198
A monolithic application 199

What is a monolithic application? 199
Associating a DNS name 203

Scaling a monolithic application 204
Advantages of a monolith 206

The database 206
Moving the database to the RDS 208
Choose the RDS type 213
Backup 213
Multi-AZ 214
ElastiCache 214

Elastic Load Balancer (ELB) 215
Choosing the right ELB 216
Deploying the balancer 217

Step 1 – open the access for the port 8080 from the whole VPC CIDR 218
Step 2 – Creating the ALB and associate to the EC2 machine 219
Step 3 – creating an alias for the ELB 223
Step 4 – removing the Apache software from the machine 224

Configuring the SSL certificate 224
ALB and integration with Auth0 231
Pre-warming a load balancer 231
Access/error logs 232
The next step 233

Moving the state outside the EC2 machine 233
Pushing the logs out 233

Configure Auto Scaling 234

Table of Contents

[v]

Moving our example inside Auto Scaling 235
Preparing the image 236
Using the wizard launch configuration part 237
Auto Scaling group part 238
Scaling policies 240
Modifying the Auto Scaling group 244
Removing the manually created instance from the balancer 246

Using microservices and serverless 246
Summary 247
Questions 248
Further reading 248

Chapter 7: Running Containers in AWS 249
Technical requirements 250
Dockerizing our Hello World application 251

Getting started with Docker 251
Docker fundamentals 252
Docker in action 254
Creating our Dockerfile 257

Using the EC2 container service 263
Creating an ECR repository to manage our Docker image 265
Creating an ECS cluster 269
Creating an ALB 278
Creating our ECS hello world service 282

Creating a CI/CD pipeline to deploy to ECS 288
Creating our production ECS cluster 289
Automating the creation of containers with CodeBuild 291
Creating our deployment pipeline with CodePipeline 297
Adding the CloudFormation template to our code base 298
Creating a CloudFormation template for CodePipeline 299
Starting and configuring our CloudFormation stack 307

Summary 309
Questions 310
Further reading 310

Chapter 8: Hardening the Security of Your AWS Environment 311
Technical requirements 312
IAM security 312

Root account 312
Root account password 313
Delete your root access keys 314

Setting up a password policy for IAM users 314
Creating an administrator group and a personal IAM user 315
AmazonEC2FullAccess policy 316
Final security status 316

CloudTrail 318

Table of Contents

[vi]

VPC Flow Logs 318
Creating the flow log for one subnet 322
Verifying the flow logs 323
VPC Flow Log consideration 326

VPC subnets 326
Routing and subnet types 327

Accessing private subnets 327
What to place in which subnet? 328
Identifying subnets from the web console 328

Endpoint routing 331
AWS WAF 334

Web application playground 335
Allow a sub-URL to be accessible only from an IP 338
Testing with the command line 339
Identifying the WAF from the web console 340

Blocking DoS/DDoS attacks 342
Creating AWS WAF with Terraform 342
DDoS attach consideration 346

WAF for SQL Injection (SQLi) 346
Summary 346
Questions 347
Further reading 347

Assessment 348

Other Books You May Enjoy 356

Index 359

Preface
The DevOps movement has transformed the way modern tech companies work. Amazon
Web Services (AWS), which has been at the forefront of the cloud computing revolution,
has also been a key contributor to the DevOps movement, creating a huge range of
managed services that help you implement DevOps principles.

In this book, you'll understand how the most successful tech start-ups launch and scale
their services on AWS, and learn how you can do the same, too. This book explains how to
treat infrastructure as code, meaning you can bring resources online and offline as easily as
you control your software. You will also build a continuous integration and continuous
deployment pipeline to keep your app up to date.
Once you have got to grips will all this, you'll move on to learning how to scale your
applications to offer maximum performance to users even when traffic spikes, by using the
latest technologies such as containers. In addition to this, you'll get insights into monitoring
and alerting, so you can make sure your users have the best experience when using your
service. In the concluding chapters, you'll cover inbuilt AWS tools such as CodeDeploy and
CloudFormation, which are used by many AWS administrators to perform DevOps.
By the end of this book, you'll have learned how to ensure the security of your platform
and data using the latest and most prominent AWS tools.

Who this book is for
This book is for you if you are a developer, DevOps engineer, or you work in a team which
wants to build and use AWS for software infrastructure. Basic computer science knowledge
is required to get the most out of this book.

Preface

[2]

What this book covers
Chapter 1, The Cloud and DevOps Revolution, this chapter will set the foundation to anyone
about the need of DevOps and Cloud Journey. An in depth understanding of DevOps
culture, DevOps Terminology and AWS ecosystem will be gained to start and prepare the
roadmap for future chapters.

Chapter 2, Deploying Your First Web Application, this chapter will demonstrate AWS
infrastructure provisioning in simplest form with some of the best AWS authentication
practices. We will create a simple web application and understand how to host the
application on AWS in the easiest form and finally will terminate the instance. This whole
process will be implemented using AWS cli utility and will be automated in further chapter
to understand how manual tasks can be automated using different available AWS and
other famous services and products.

Chapter 3, Treating Your Infrastructure as Code, this chapter will focus on Automating
Provisioning using AWS native utility CloudFormation and the techniques used to create
CloudFormation templates. Then we will introduce a Configuration Management system to
automate application deployments with Ansible.

Chapter 4, Infrastructure as Code with Terraform, this chapter will focus on understanding
the fundamentals of Terraform. We will provision our first AWS instance using Terraform
templates and then extend the power of Terraform to deploy the application using another
Terraform Template. Finally we will understand AWS provisioning using Terraform by
integrate it with Ansible automation for application deployments.

Chapter 5, Adding Continuous Integration and Continuous Deployment, this chapter will focus
on building CI/CD pipelines using AWS DevOps services with Automated Testing
Framework. We will prepare a technology framework using multiple tools like Version
Control, Continuous Integration, Automated Testing tools, AWS native DevOps tools and
Infrastructure Automation tools to understand how fail fast and fail often lead to an robust
production environment.

Chapter 6, Scaling Your Infrastructure, this chapter will introduce other useful cost effective
AWS services to build scalable AWS infrastructure with performance oriented vision. AWS
services like Elastic Cache, CloudFront, SQS, Kinesis and so on will be used to build our
application Framework.

Preface

[3]

Chapter 7, Running Containers in AWS, this chapter will introduce one of the most niche
technologies in the market Docker. We will get started with the understanding of container
using Docker with all of the essential concepts. Here we will build AWS container
environment with ECS and build a complete framework of ECS for our application. At last
we will build a complete CI/CD pipeline to deploy AWS ECS services using AWS DevOps
tool set.

Chapter 8, Hardening the Security of Your AWS Environment, this chapter will focus on
identifying and securing your AWS environment using AWS auditing services, AWS IAM
services for managing and providing limited access as per roles, strengthening AWS VPC
model and finally protecting against ransomware and other vulnerabilities.

Chapter 9, Monitoring and Alerting, this chapter will focus on building a monitoring
framework for your AWS environment using AWS CloudWatch service. We will use some
of the famous dashboard tools for visualization of logs. Finally a notification framework
will be created using AWS SNS services to notify the users about the health of your AWS
environment to take corrective actions. For this chapter refer to https:/ ​/​www. ​packtpub.
com/​sites/​default/ ​files/ ​downloads/ ​Monitoring_ ​and_ ​Alerting. ​pdf.

To get the most out of this book
The software required for this book are as follows:

AWS Management Console
AWS compute services
AWS IAM
AWS CLI setup
JavaScript for the web application

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
https://www.packtpub.com/sites/default/files/downloads/Monitoring_and_Alerting.pdf
http://www.packt.com
http://www.packt.com/support

Preface

[4]

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Effective- ​DevOps- ​with- ​AWS- ​Second- ​Edition. In case there's an update
to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

The codes can also be found at following repositories:

https:/​/ ​github. ​com/ ​yogeshraheja/ ​Effective- ​DevOps- ​with- ​AWS

https:/​/ ​github. ​com/ ​giuseppeborgese/ ​effective_ ​devops_ ​with_ ​aws_​_ ​second_
edition

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​9781789539974_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Click on the start button and search for settings option."

http://www.packt.com
https://github.com/PacktPublishing/Effective-DevOps-with-AWS-Second-Edition
https://github.com/PacktPublishing/Effective-DevOps-with-AWS-Second-Edition
https://github.com/PacktPublishing/Effective-DevOps-with-AWS-Second-Edition
https://github.com/PacktPublishing/Effective-DevOps-with-AWS-Second-Edition
https://github.com/PacktPublishing/Effective-DevOps-with-AWS-Second-Edition
https://github.com/PacktPublishing/Effective-DevOps-with-AWS-Second-Edition
https://github.com/PacktPublishing/Effective-DevOps-with-AWS-Second-Edition
https://github.com/PacktPublishing/Effective-DevOps-with-AWS-Second-Edition
https://github.com/PacktPublishing/Effective-DevOps-with-AWS-Second-Edition
https://github.com/PacktPublishing/Effective-DevOps-with-AWS-Second-Edition
https://github.com/PacktPublishing/Effective-DevOps-with-AWS-Second-Edition
https://github.com/PacktPublishing/Effective-DevOps-with-AWS-Second-Edition
https://github.com/PacktPublishing/Effective-DevOps-with-AWS-Second-Edition
https://github.com/PacktPublishing/Effective-DevOps-with-AWS-Second-Edition
https://github.com/PacktPublishing/Effective-DevOps-with-AWS-Second-Edition
https://github.com/PacktPublishing/Effective-DevOps-with-AWS-Second-Edition
https://github.com/PacktPublishing/Effective-DevOps-with-AWS-Second-Edition
https://github.com/PacktPublishing/Effective-DevOps-with-AWS-Second-Edition
https://github.com/PacktPublishing/Effective-DevOps-with-AWS-Second-Edition
https://github.com/PacktPublishing/Effective-DevOps-with-AWS-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/yogeshraheja/Effective-DevOps-with-AWS
https://github.com/yogeshraheja/Effective-DevOps-with-AWS
https://github.com/yogeshraheja/Effective-DevOps-with-AWS
https://github.com/yogeshraheja/Effective-DevOps-with-AWS
https://github.com/yogeshraheja/Effective-DevOps-with-AWS
https://github.com/yogeshraheja/Effective-DevOps-with-AWS
https://github.com/yogeshraheja/Effective-DevOps-with-AWS
https://github.com/yogeshraheja/Effective-DevOps-with-AWS
https://github.com/yogeshraheja/Effective-DevOps-with-AWS
https://github.com/yogeshraheja/Effective-DevOps-with-AWS
https://github.com/yogeshraheja/Effective-DevOps-with-AWS
https://github.com/yogeshraheja/Effective-DevOps-with-AWS
https://github.com/yogeshraheja/Effective-DevOps-with-AWS
https://github.com/yogeshraheja/Effective-DevOps-with-AWS
https://github.com/yogeshraheja/Effective-DevOps-with-AWS
https://github.com/yogeshraheja/Effective-DevOps-with-AWS
https://github.com/yogeshraheja/Effective-DevOps-with-AWS
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://www.packtpub.com/sites/default/files/downloads/9781789539974_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789539974_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789539974_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789539974_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789539974_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789539974_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789539974_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789539974_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789539974_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789539974_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789539974_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789539974_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789539974_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789539974_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789539974_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789539974_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789539974_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789539974_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789539974_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789539974_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789539974_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789539974_ColorImages.pdf

Preface

[5]

A block of code is set as follows:

var http = require("http") http.createServer(function (request, response) {
// Send the HTTP header
// HTTP Status: 200 : OK
// Content Type: text/plain
response.writeHead(200, {'Content-Type': 'text/plain'})
// Send the response body as "Hello World" response.end('Hello World\n')
}).listen(3000)

// Console will print the message console.log('Server running')

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

$ aws ec2 describe-instance-status --instance-ids i-057e8deb1a4c3f35d --
output text| grep -i SystemStatus

SYSTEMSTATUS ok

Any command-line input or output is written as follows:

$ aws ec2 authorize-security-group-ingress \
 --group-name HelloWorld \
 --protocol tcp \
 --port 3000 \
 --cidr 0.0.0.0/0

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"In this menu, find the feature called Windows Subsystem for Linux (Beta)."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[6]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
The Cloud and DevOps

Revolution
The technological industry is constantly changing. Although the internet was born only a
quarter of a century ago, it has already transformed the way that we live. Every day, over a
billion people visit Facebook; every minute, approximately 300 hours of video footage are
uploaded on YouTube; and every second, Google processes approximately 40,000 search
queries. Being able to handle such a staggering scale isn't easy. However, this book will
provide you with a practical guide for deployment philosophy, tooling, or using the best
practices of the companies. Through the use of Amazon Web Services (AWS), you will be
able to build the key elements required to efficiently manage and scale your infrastructure,
your engineering processes, and your applications, with minimal cost and effort. This first
chapter will explain the new paradigms of the following topics:

Thinking in terms of the cloud, and not infrastructure
Adopting a DevOps culture
Deploying in AWS

The Cloud and DevOps Revolution Chapter 1

[8]

Thinking in terms of the cloud, and not
infrastructure
We will now describe a real incident that took place in a datacenter in late December, 2011,
when dozens of alerts were received from our live monitoring system. This was a result of
losing connectivity to the datacenter. In response to this, administrator rushed to the
Network Operations Center (NOC), hoping that it was only a small glitch in the
monitoring system. With so much redundancy, we may wonder how everything can go
offline. Unfortunately, the big monitoring screens in the NOC room were all red, which is
not a good sign. This was the beginning of a very long nightmare.

As it happens, this was caused by an electrician who was working in the datacenter and
mistakenly triggered the fire alarm. Within seconds of this occurring, the fire suppression
system set off and released its aragonite on top of the server racks. Unfortunately, this kind
of fire suppression system made so much noise when it released its gas that sound waves
instantly killed hundreds of hard drives, effectively shutting down the data center facility.
It took months to recover from this.

Deploying your own hardware versus in the cloud
It wasn't long ago that tech companies, small and large, had to have a proper technical
operations team, able to build infrastructures. The process went a little bit like this:

Fly to the location where you want to set up your infrastructure. Here, take a1.
tour of different datacenters and their facilities. Observe the floor considerations,
power considerations, Heating, Ventilation, and Air Conditioning (HVAC), fire
prevention systems, physical security, and so on.
Shop for an internet service provider. Ultimately, you are considering servers2.
and a lot more bandwidth, but the process is the same—you want to acquire
internet connectivity for your servers.
Once this is done, it's time to buy your hardware. Make the right decisions here,3.
because you will probably spend a big portion of your company's money on
selecting and buying servers, switches, routers, firewalls, storage, UPS (for when
you have a power outage), KVM, network cables, labeling (which is dear to every
system administrator's heart), and a bunch of spare parts, hard drives, raid
controllers, memory, power cables, and so on.

The Cloud and DevOps Revolution Chapter 1

[9]

At this point, once the hardware has been purchased and shipped to the data4.
center location, you can rack everything, wire all the servers, and
power everything on. Your network team can kick in and establish connectivity
to the new datacenter using various links, configuring the edge routers, switches,
top of the rack switches, KVM, and firewalls (sometimes). Your storage team is
next, and will provide the much-needed Network Attached Storage (NAS) or
Storage Area Network (SAN). Next comes your sysops team, which will image
the servers, upgrade the BIOS (sometimes), configure the hardware raid, and
finally, put an OS on the servers.

Not only is this a full-time job for a big team, but it also takes a lot of time and money to
even get there. As you will see in this book, getting new servers up and running with AWS
only takes us a few minutes. In fact, you will soon see how to deploy and run multiple
services in a few minutes, and just when you need it, with the pay-what-you-use model.

Cost analysis
From the perspective of cost, deploying services and applications in a cloud infrastructure
such as AWS usually ends up being a lot cheaper than buying your own hardware. If you
want to deploy your own hardware, you have to pay for all of the hardware mentioned
previously (servers, network equipment, storage, and so on) upfront as well as licensed
software, in some cases. In a cloud environment, you pay as you go. You can add or remove
servers in no time, and will only be charged for the duration in which the servers were
running. Also, if you take advantage of PaaS and SaaS applications, you will usually end
up saving even more money by lowering your operating costs, as you won't need as many
administrators to administrate your servers, database, storage, and so on. Most cloud
providers (AWS included) also offer tiered pricing and volume discounts. As your service
grows, you will end up paying less for each unit of storage, bandwidth, and so on.

Just-in-time infrastructure
As you just saw, when deploying in the cloud, you only pay for the resources that you are
provided with. Most cloud companies use this to their advantage, in order to scale their
infrastructure up or down as the traffic to their site changes. This ability to add or remove
new servers and services in no time and on demand is one of the main differentiators of an
effective cloud infrastructure.

The Cloud and DevOps Revolution Chapter 1

[10]

In the following example, you can see the amount of traffic at https:/ ​/​www. ​amazon. ​com/
 during the month of November. Thanks to Black Friday and Cyber Monday, the traffic
triples at the end of the month:

If the company were hosting their service in an old-fashioned way, they would need to
have enough servers provisioned to handle this traffic, so that only 24% of their
infrastructure would be used during the month, on average:

https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/
https://www.amazon.com/

The Cloud and DevOps Revolution Chapter 1

[11]

However, thanks to being able to scale dynamically, they can provide only what they really
need, and then dynamically absorb the spikes in traffic that Black Friday and Cyber
Monday trigger:

You can also see the benefits of having fast auto-scaling capabilities on a very regular basis,
across multiple organizations using the cloud. This is again a real case study taken by the
company medium, very often. Here, stories become viral, and the amount of traffic going on
drastically changes. On January 21, 2015, the White House posted a transcript of the State of
the Union minutes before President Obama began his speech: http://bit.ly/2sDvseP. As
you can see in the following graph, thanks to being in the cloud and having auto-scaling
capabilities, the platform was able to absorb five times the instant spike of traffic that the
announcement made, by doubling the number of servers that the front service used. Later,
as the traffic started to drain naturally, you automatically removed some hosts from your
fleet:

http://bit.ly/2sDvseP
http://bit.ly/2sDvseP
http://bit.ly/2sDvseP
http://bit.ly/2sDvseP
http://bit.ly/2sDvseP
http://bit.ly/2sDvseP
http://bit.ly/2sDvseP
http://bit.ly/2sDvseP
http://bit.ly/2sDvseP
http://bit.ly/2sDvseP
http://bit.ly/2sDvseP
http://bit.ly/2sDvseP
http://bit.ly/2sDvseP
http://bit.ly/2sDvseP
http://bit.ly/2sDvseP
http://bit.ly/2sDvseP
http://bit.ly/2sDvseP

The Cloud and DevOps Revolution Chapter 1

[12]

The different layers of a cloud
Cloud computing is often broken down into three different types of services, generally
called service models, as follows:

Infrastructure as a Service (IaaS): This is the fundamental building block, on top
of which everything related to the cloud is built. IaaS is usually a computing
resource in a virtualized environment. This offers a combination of processing
power, memory, storage, and network. The most common IaaS entities that you
will find are Virtual Machines (VMs) and network equipment, such as load
balancers or virtual Ethernet interfaces, and storage, such as block devices. This
layer is very close to the hardware, and offers the full flexibility that you would
get when deploying your software outside of a cloud. If you have any experience
with datacenters, it will also apply mostly to this layer.
Platform as a Service (PaaS): This layer is where things start to get really
interesting with the cloud. When building an application, you will likely need a
certain number of common components, such as a data store and a queue. The
PaaS layer provides a number of ready-to-use applications, to help you build
your own services without worrying about administrating and operating third-
party services, such as database servers.
Software as a Service (SaaS): This layer is the icing on the cake. Similar to the
PaaS layer, you get access to managed services, but this time, these services are a
complete solution dedicated to certain purposes, such as management or
monitoring tools.

We would suggest that you go through the National Institute of Standard and Technology
(NIST) Definition of Cloud Computing
at https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-145.pd
f and the NIST Cloud Computing Standards Roadmap at
https://www.nist.gov/sites/default/files/documents/itl/cloud/NIST_SP-500-291_Ve

rsion-2_2013_June18_FINAL.pdf. This book covers a fair amount of services of the PaaS
and SaaS types. While building an application, relying on these services makes a big
difference, in comparison to the more traditional environment outside of the cloud.
Another key element to success when deploying or migrating to a new infrastructure is
adopting a DevOps mindset.

https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-145.pdf
https://www.nist.gov/sites/default/files/documents/itl/cloud/NIST_SP-500-291_Version-2_2013_June18_FINAL.pdf
https://www.nist.gov/sites/default/files/documents/itl/cloud/NIST_SP-500-291_Version-2_2013_June18_FINAL.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-145.pdf

The Cloud and DevOps Revolution Chapter 1

[13]

Adopting a DevOps culture
Running a company with a DevOps culture is all about adopting the right culture to allow
developers and the operations team to work together. A DevOps culture advocates the
implementation of several engineering best practices, by relying on tools and technologies
that you will discover throughout this book.

The origin of DevOps
DevOps is a new movement that officially started in Belgium in 2009, when a group of
people met at the first DevOpsdays conference, organized by Patrick Debois, to discuss
how to apply some agile concepts to infrastructure. Agile methodologies transformed the
way software is developed. In a traditional waterfall model, the product team would come
up with specifications; the design team would then create and define a certain user
experience and user interface; the engineering team would then start to implement the
requested product or feature, and would then hand off the code to the QA team, who
would test and ensure that the code behaved correctly, according to the design
specifications. Once all the bugs were fixed, a release team would package the final code,
which would be handed off to the technical operations team, to deploy the code and
monitor the services over time:

The increasing complexity of developing certain software and technologies showed some
limitations with this traditional waterfall pipeline. The agile transformation addressed
some of these issues, allowing for more interaction between the designers, developers, and
testers. This change increased the overall quality of the product, as these teams now had the
opportunity to iterate more on product development. However, apart from this, you would
still be in a very classical waterfall pipeline, as follows:

The Cloud and DevOps Revolution Chapter 1

[14]

All of the agility added by this new process didn't extend past the QA cycles, and it was
time to modernize this aspect of the software development life cycle. This foundational
change with the agile process which allows for more collaboration between the designers,
developers, and QA teams, is what DevOps was initially after, but very quickly, the
DevOps movement started to rethink how developers and operations teams could work
together.

The developers versus operations dilemma
In a non-DevOps culture, developers are in charge of developing new products and
features and maintaining the existing code, but ultimately, they are rewarded when their
code is shipped. The incentive is to deliver as quickly as possible. On the other hand, the
operations team, in general, is responsible for maintaining the uptime of the production
environment. For these teams, change is a negative thing. New features and services
increase the risk of having an outage, and therefore, it is important to move with caution.
To minimize the risk of outages, operations teams usually have to schedule any
deployments ahead of time, so that they can stage and test any production deployment and
maximize their chances of success. It is also very common for enterprise software
companies to schedule maintenance windows, and, in these cases, production changes can
only be made a few times a quarter, half-yearly, or once a year. Unfortunately, many times,
deployments won't succeed, and there are many possible reasons for that.

Too much code changing at once
There is a correlation that can be made between the size of the change and the risk of
introducing critical bugs into the product, as follows:

The Cloud and DevOps Revolution Chapter 1

[15]

Differences in the production environment
It is often the case that the code produced by developers works fine in a development
environment, but not in production. A lot of the time, this is because the production
environment is very different from other environments, and some unforeseen errors occur.
The common mistakes involve the development environment, because services are
collocated on the same servers, or there isn't the same level of security. As a consequence,
services can communicate with one another in development, but not in production.
Another issue is that the development environment might not run the same versions of a
certain library/software, and therefore, the interface to communicate with them might
differ. The development environment may be running a newer version of a service, which
has new features that the production doesn't have yet; or it could be simply a question of
scale. Perhaps the dataset used in development isn't as big as that of production, and
scaling issues will crop up once the new code is out in production.

Communication
One of the biggest dilemmas in information technology is miscommunication.

The following is according to Conway's Law:

"Organizations which design systems are constrained to produce designs which are copies
of the communication structures of these organizations."

 —Melvin Conway

In other words, the product that you are building reflects the communication of your
organization. A lot of the time, problems don't come from the technology, but from the
people and organizations surrounding the technology. If there is dysfunction among your
developers and operations team in the organization, this will show. In a DevOps culture,
developers and operations have a different mindset. They help to break down the silos that
surround those teams, by sharing responsibilities and adopting similar methodologies to
improve productivity. Together, they try to automate whatever is possible (not everything,
as not everything can be automated in a single go) and use metrics to measure their success.

The Cloud and DevOps Revolution Chapter 1

[16]

Key characteristics of a DevOps culture
As we have noted, a DevOps culture relies on a certain number of principles. These
principles are to source control (version control) everything, automate whatever is possible,
and measure everything.

Source control everything
Revision control software has been around for many decades now, but too often, only the
product code is checked. When practicing DevOps, not only is the application code
checked, but configurations, tests, documentation, and all of the infrastructure automation
needed to deploy the application in all environments, are also checked. Everything goes
through the regular review process by the Source Code Manager (SCM).

Automating testing
Automated software testing predates the history of DevOps, but it is a good starting point.
Too often, developers focus on implementing features and forget to add a test to their code.
In a DevOps environment, developers are responsible for adding proper testing to their
code. QA teams can still exist; however, similar to other engineering teams, they work on
building automation around testing.

This topic could fill its own book, but in a nutshell, when developing code, keep in mind
that there are four levels of testing automation to focus on, in order to successfully
implement DevOps:

Unit testing: This is to test the functionality of each code block and function.
Integration testing: This is to make sure that services and components work
together.
User interface testing: This is often the most challenging component to
successfully implement.
System testing: This is end-to-end testing. For example, in a photo- sharing
application, the end-to-end testing could be to open the home page, sign in,
upload a photo, add a caption, publish the photo, and then sign out.

The Cloud and DevOps Revolution Chapter 1

[17]

Automating infrastructure provisioning and
configuration
In the last few decades, the size of the average infrastructure and the complexity of the
stack have skyrocketed. Managing infrastructure on an ad-hoc basis, as was once possible,
is very error-prone. In a DevOps culture, the provisioning and configuration of servers,
networks, and services in general, are performed through automation. Configuration
management is often what the DevOps movement is known for. However, as you know,
this is just a small piece of a big puzzle.

Automating deployment
As you now, it is easier to write software in small chunks and deploy the new chunks as
soon as possible, to make sure that they are working. To get there, companies practicing
DevOps rely on continuous integration and continuous deployment pipelines. Whenever a
new chunk of code is ready, the continuous integration pipeline kicks off. Through an
automated testing system, the new code is run through all of the relevant, available tests. If
the new code shows no obvious regression, it is considered valid and can be merged to the
main code base. At that point, without further involvement from the developer, a new
version of the service (or application) that includes those new changes will be created and
handed off to a system called a continuous deployment system. The continuous
deployment system will take the new builds and automatically deploy them to the different
environments that are available. Depending on the complexity of the deployment pipeline,
this might include a staging environment, an integration environment, and sometimes, a
pre-production environment. Ultimately, if everything goes as planned (without any
manual intervention), this new build will get deployed to production.

One aspect about practicing continuous integration and continuous deployment that often
gets misunderstood is that new features don't have to be accessible to users as soon as they
are developed. In this paradigm, developers heavily rely on feature flagging and dark
launches. Essentially, whenever you develop new code and want to hide it from the end
users, you set a flag in your service configuration to describe who gets access to the new
feature, and how. At the engineering level, by dark launching a new feature this way, you
can send production traffic to the service, but hide it from the UI, to see the impact it has on
your database or on performance, for example. At the product level, you can decide to
enable the new feature for only a small percentage of your users, to see if the new feature is
working correctly and if the users who have access to the new feature are more engaged
than the control group, for example.

The Cloud and DevOps Revolution Chapter 1

[18]

Measuring everything
Measuring everything is the last major principle that DevOps-driven companies adopt. As
Edwards Deming said, you can't improve what you can't measure. DevOps is an ever-evolving
process and methodology that feeds off those metrics to assess and improve the overall
quality of the product and the team working on it. From a tooling and operating
standpoint, the following are some of the metrics most organizations look at:

How many builds are pushed to production a day
How often you need to roll back production in your production environment
(this is indicated when your testing didn't catch an important issue)
The percentage of code coverage
The frequency of alerts resulting in paging the on-call engineers for immediate
attention
The frequency of outages
Application performance
The Mean Time to Resolution (MTTR), which is the speed at which an outage or
a performance issue can be fixed

At the organizational level, it is also interesting to measure the impact of shifting to a
DevOps culture. While this is a lot harder to measure, you can consider the following
points:

The amount of collaboration across teams
Team autonomy
Cross-functional work and team efforts
Fluidity in the product
How often Dev and Ops communicate
Happiness among engineers
Attitudes towards automation
Obsession with metrics

The Cloud and DevOps Revolution Chapter 1

[19]

As you just learned, having a DevOps culture means, first of all, changing the traditional
mindset that developers and operations are two separate silos, and making the teams
collaborate more, during all phases of the software development life cycle.

In addition to a new mindset, DevOps culture requires a specific set of tools geared toward
automation, deployment, and monitoring:

With AWS, Amazon offers a number of services of the PaaS and SaaS types that will let us
do just that.

The Cloud and DevOps Revolution Chapter 1

[20]

Deploying in AWS
AWS is at the forefront of cloud providers. Launched in 2006, with SQS and EC2, Amazon
quickly became the biggest IaaS provider. They have the biggest infrastructure and
ecosystem, with constant additions of new features and services. In 2018, they passed more
than a million active customers. Over the last few years, they have managed to change
peoples mindsets about the cloud, and deploying new services to this is now the norm.
Using AWS's managed tools and services is a way to drastically improve your productivity
and keep your team lean. Amazon continually listens to its customer's feedback and looks
at the market trends. Therefore, as the DevOps movement started to get established,
Amazon released a number of new services tailored toward implementing some DevOps
best practices. In this book, you will see how these services synergize with the DevOps
culture.

How to take advantage of the AWS ecosystem?
Amazon services are like Lego pieces. If you can picture your final product, then you can
explore the different services and start combining them, in order to build the stack needed
to quickly and efficiently build your product. Of course, in this case, the if is a big if, and,
unlike Lego, understanding what each piece can do is a lot less visual and colorful. That is
why this book is written in a very practical way; throughout the different chapters, we are
going to take a web application and deploy it like it's our core product. You will see how to
scale the infrastructure supporting it, so that millions of people can use it, and also so that
you can make it more secure. And, of course, we will do this following DevOps best
practices. By going through that exercise, you will learn how AWS provides a number of
managed services and systems to perform a number of common tasks, such as computing,
networking, load balancing, storing data, monitoring, programmatically managing
infrastructure and deployment, caching, and queuing.

How does AWS synergize with a DevOps culture?
As you saw earlier in this chapter, having a DevOps culture is about rethinking how
engineering teams work together, by breaking the development and operations silos and
bringing a new set of tools, in order to implement the best practices. AWS helps to
accomplish this in many different ways. For some developers, the world of operations can
be scary and confusing, but if you want better cooperation between engineers, it is
important to expose every aspect of running a service to the entire engineering
organization.

The Cloud and DevOps Revolution Chapter 1

[21]

As an operations engineer, you can't have a gatekeeper mentality towards developers.
Instead, it's better to make them comfortable by accessing production and working on the
different components of the platform. A good way to get started with this is in the AWS
console, as follows:

The Cloud and DevOps Revolution Chapter 1

[22]

While a bit overwhelming, this is still a much better experience for people who are
unfamiliar with navigating this web interface, rather than referring to constantly out-of-
date documentation, using SSH and random plays in order to discover the topology and
configuration of the service. Of course, as your expertise grows and your application
becomes more complex, the need to operate it faster increases, and the web interface starts
to show some weaknesses. To get around this issue, AWS provides a very DevOps-friendly
alternative. An API is accessible through a command-line tool and a number of SDKs
(including Java, JavaScript, Python, .NET, PHP, Ruby Go, and C++). These SDKs let you
administrate and use the managed services. Finally, as you saw in the previous section,
AWS offers a number of services that fit DevOps methodologies and will ultimately allow
us to implement complex solutions in no time.

Some of the major services that you will use, at the computing level are Amazon Elastic
Compute Cloud (EC2), the service to create virtual servers. Later, as you start to look into
how to scale the infrastructure, you will discover Amazon EC2 Auto Scaling, a service that
lets you scale pools on EC2 instances, in order to handle traffic spikes and host failures. You
will also explore the concept of containers with Docker, through Amazon Elastic Container
Service (ECS). In addition to this, you will create and deploy your application using AWS
Elastic Beanstalk, with which you retain full control over the AWS resources powering your
application; you can access the underlying resources at any time. Lastly, you will create
serverless functions through AWS Lambda, to run custom code without having to host it on
our servers. To implement your continuous integration and continuous deployment
system, you will rely on the following four services:

AWS Simple Storage Service (S3): This is the object store service that will allow
us to store our artifacts
AWS CodeBuild: This will let us test our code
AWS CodeDeploy: This will let us deploy artifacts to our EC2 instances
AWS CodePipeline: This will let us orchestrate how our code is built, tested, and
deployed across environments

To monitor and measure everything, you will rely on AWS CloudWatch, and later,
on ElasticSearch/Kibana, to collect, index, and visualize metrics and logs. To stream some
of our data to these services, you will rely on AWS Kinesis. To send email and SMS alerts,
you will use the Amazon SNS service. For infrastructure management, you will heavily
rely on AWS CloudFormation, which provides the ability to create templates of
infrastructures. In the end, as you explore ways to better secure our infrastructure, you will
encounter Amazon Inspector and AWS Trusted Advisor, and you will explore the IAM
and the VPC services in more detail.

The Cloud and DevOps Revolution Chapter 1

[23]

Summary
In this chapter, you learned that adopting a DevOps culture means changing the way that
traditional engineering and operations teams operate. Instead of two isolated teams with
opposing goals and responsibilities, companies with a DevOps culture take advantage of
complementary domains of expertise to better collaborate through converging processes
and using a new set of tools. These new processes and tools include not only automating
whatever possible, from testing and deployment through to infrastructure management,
but also measuring everything, so that you can improve each process over time. When it
comes to cloud services, AWS is leading the catalogue with more services than any other
cloud provider. All of these services are usable through APIs and SDKs, which is good for
automation. In addition, AWS has tools and services for each key characteristic of the
DevOps culture.

In Chapter 2, Deploying Your First Web Application, we will finally gets our hands dirty and
start to use AWS. The final goal of the chapter will be to have a Hello World application,
accessible to anyone on the internet.

Questions
What is DevOps?1.
What is DevOps – IaC?2.
List the key characteristics of a DevOps culture.3.
What are the three major service models in the cloud?4.
What is the AWS cloud?5.

Further reading
You can explore more about AWS services at https:/ ​/​aws. ​amazon. ​com/ ​products/ ​.

https://aws.amazon.com/products/
https://aws.amazon.com/products/
https://aws.amazon.com/products/
https://aws.amazon.com/products/
https://aws.amazon.com/products/
https://aws.amazon.com/products/
https://aws.amazon.com/products/
https://aws.amazon.com/products/
https://aws.amazon.com/products/
https://aws.amazon.com/products/
https://aws.amazon.com/products/
https://aws.amazon.com/products/

2
Deploying Your First Web

Application
In the previous chapter, we covered a general introduction to the cloud, its benefits, and
what having a DevOps philosophy means. AWS offers a number of services that are all
easily accessible through the web interface, command-line interface, various SDKs, and
APIs. In this chapter, we will take advantage of the web interface and command-line
interface to create and configure our account and create a web server to host a simple Hello
World application, all in a matter of minutes.

In this chapter, we will go through the following topics:

Creating and configuring your account
Spinning up your first web server

Technical requirements
The technologies and services used in this chapter are as follows:

AWS Management Console
AWS compute services
AWS IAM
AWS CLI setup
JavaScript for the web application
GitHub for ready made code

Deploying Your First Web Application Chapter 2

[25]

The GitHub links for the code are as follows:

https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-A
WS/master/Chapter02/helloworld.js

https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-A
WS/master/Chapter02/helloworld.conf

Creating and configuring your account
If you haven't signed up for AWS yet, it is time to do so.

Signing up
This step is, of course, fairly simple and self-explanatory. In order to sign up (if you haven't
done so yet), open https://portal.aws.amazon.com in your browser, click on the Create a
new AWS account button, and follow the steps. You will need an email address and your
credit card information.

The two exceptions to this process are as follows:

If you plan to deploy servers in China, then you need to create your account in
the AWS China region at https:/ ​/​www. ​amazonaws. ​cn/ ​.
AWS has a special facility called GovCloud for specific regulatory needs of
United States federal, state, and local agencies. To sign up for this, go to the
following link at https:/ ​/​aws. ​amazon. ​com/ ​govcloud- ​us/​contact/ ​.

In this book, we will use servers located in Northern Virginia so you will
need to sign up using the standard registration process.

Amazon runs a free-tier program for new users. This is designed to help you to discover
AWS services free of cost. Amazon gives free credit on most services. It is likely that over
time the offer will change, so this book isn't going to cover the specifics of this offer, but the
details are available at https://aws.amazon.com/free/.

https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://portal.aws.amazon.com
https://www.amazonaws.cn/
https://www.amazonaws.cn/
https://www.amazonaws.cn/
https://www.amazonaws.cn/
https://www.amazonaws.cn/
https://www.amazonaws.cn/
https://www.amazonaws.cn/
https://www.amazonaws.cn/
https://www.amazonaws.cn/
https://www.amazonaws.cn/
https://aws.amazon.com/govcloud-us/contact/
https://aws.amazon.com/govcloud-us/contact/
https://aws.amazon.com/govcloud-us/contact/
https://aws.amazon.com/govcloud-us/contact/
https://aws.amazon.com/govcloud-us/contact/
https://aws.amazon.com/govcloud-us/contact/
https://aws.amazon.com/govcloud-us/contact/
https://aws.amazon.com/govcloud-us/contact/
https://aws.amazon.com/govcloud-us/contact/
https://aws.amazon.com/govcloud-us/contact/
https://aws.amazon.com/govcloud-us/contact/
https://aws.amazon.com/govcloud-us/contact/
https://aws.amazon.com/govcloud-us/contact/
https://aws.amazon.com/govcloud-us/contact/
https://aws.amazon.com/govcloud-us/contact/
https://aws.amazon.com/govcloud-us/contact/
https://aws.amazon.com/free/

Deploying Your First Web Application Chapter 2

[26]

Once you're done with the sign-up process, you will be on the AWS Management Console
landing page. This screen can be a bit overwhelming as Amazon now has a lot of services,
but you will quickly get used to it. If you are a fan of bookmarks, this page is definitely a
prime candidate:

Deploying Your First Web Application Chapter 2

[27]

The account you just created is called a root account. This account will always have full
access to all resources. Because of this, make sure that you keep your password in a safe
place. The best practice is to use the root account only to create the initial user through the
IAM service that we will discover shortly. In addition, it is strongly recommended to switch
to multi-factor authentication (MFA) and use the identity service IAM—to manage user
accounts, so pick a relatively complex password.

Enabling MFA on the root account
In order to avoid any kind of issues, the first thing we need to do once we sign up is enable
MFA. In case you haven't seen or heard of this before, MFA is a security system that
requires more than one method of authentication from independent categories of
credentials. These are used to verify the user's identity in order to log in. In practice, once
enabled, you will need the password previously set when you signed up in order to login.
However, you will also need another code provided from a different source. That second
source can be provided through a physical device such as the SafeNet IDProve, which is
available at http://amzn.to/2u4K1rR, through an SMS on your phone, or through an
application installed on your smartphone. We will use the third option—an application
installed on your smartphone, which is completely free:

Go to your App Store, Google Play Store, or App Marketplace and install an1.
application called Google Authenticator (or any other equivalent, such as
Authy).
In the AWS Management Console, open the My Security Credentials page in the2.
top-right corner:

http://amzn.to/2u4K1rR

Deploying Your First Web Application Chapter 2

[28]

If prompted to create and use AWS Identity and Access Management (IAM),3.
users with limited permissions, click on the Continue to Security Credentials
button. We will explore the IAM system in Chapter 3, Treating Your Infrastructure
as Code. Expand the Multi-factor authentication (MFA) section on the page.
Pick virtual MFA and follow the instructions to sync Google authentication with4.
your root account (note that the scan QR code option is the easiest one to pair the
device).

From this point on, you will need your password and the token displayed on the MFA
application in order to log in as root in the AWS console.

Two general tips for managing your passwords and MFA are as follows:

There are a number of good applications to manage passwords,
such as 1Password at https:/ ​/​agilebits. ​com/ ​onepassword or
Dashlane at https:/ ​/​www. ​dashlane. ​com.

For MFA, you can also try using Authy at https:/ ​/ ​www.​authy.
com. This works like Google Authenticator but also has a
centralized server allowing it to work across multiple devices
(including desktop applications), so if you lose your phone, you
won't lose access to AWS.

As we have seen earlier, the root account usage should be limited to a bare minimum. So, in
order to create virtual servers, configure services, and so on, we will rely on the IAM
service which will let us have granular control over permissions for each user.

https://agilebits.com/onepassword
https://agilebits.com/onepassword
https://agilebits.com/onepassword
https://agilebits.com/onepassword
https://agilebits.com/onepassword
https://agilebits.com/onepassword
https://agilebits.com/onepassword
https://agilebits.com/onepassword
https://agilebits.com/onepassword
https://www.dashlane.com/
https://www.dashlane.com/
https://www.dashlane.com/
https://www.dashlane.com/
https://www.dashlane.com/
https://www.dashlane.com/
https://www.dashlane.com/
https://www.dashlane.com/
https://www.dashlane.com/
https://agilebits.com/onepassword
https://www.authy.com/
https://www.authy.com/
https://www.authy.com/
https://www.authy.com/
https://www.authy.com/
https://www.authy.com/
https://www.authy.com/
https://www.authy.com/

Deploying Your First Web Application Chapter 2

[29]

Creating a new user in IAM
In this section, we will create and configure accounts for different individuals who need
access to AWS. For now, we will keep things simple and only create an account for
ourselves, as follows:

Navigate to the IAM menu in the AWS console1.
(https://console.aws.amazon.com/iam/) or go to the Services drop-down list
on the top left corner of the AWS console page and search for IAM:

Choose the Users option from the navigation pane.2.
Create a new user by clicking on the Add user button, and make sure that you3.
tick the Programmatic access option to generate an access key ID and a secret
access key for the user.
Select the default options for now and create a user. Don't forget to download4.
credentials.
Back in the Users menu, click on your username to access the details page.5.

https://console.aws.amazon.com/iam/

Deploying Your First Web Application Chapter 2

[30]

In the Permissions tab, click on the Add permissions button and select the6.
Attach existing policies directly option. Click on AdministratorAccess to
provide full access to AWS services and resources to our newly created user.
Select the checkbox next to the AdministratorAccess option to provide full access7.
to AWS services and resource to our newly created user. You will be left with a
screen that looks like this:

The last thing we need to do is add a password and turn on MFA for this account.
This can be done as follows:

Click on the Security credentials tab.8.
Now click on the Console password option and enable the password for the9.
newly created user. Set the password of your choice and click on the Apply
button.
Once you're done with adding a password, click on the Assigned MFA device10.
option.

Deploying Your First Web Application Chapter 2

[31]

Select A virtual MFA device option and follow the remaining instructions in11.
order to turn on MFA in your newly created account. You will get a message
stating that The MFA device was successfully associated with your account, as
shown in the following screenshot:

At this point, you are ready to start using the newly created user account. The12.
important thing to note here is that signing in with an IAM user account is
different from the root account. The main difference is that you sign in using a
different URL.
Navigate to https://console.aws.amazon.com/iam/home#home or click on the13.
Dashboard in the IAM menu.
You will see your unique sign-in URL under IAM users sign-in link. Feel free to14.
also customize the link. Save this new URL in your bookmarks, and, from now
on, use this link to sign into the AWS console.
Sign out from the root account.15.
Sign back in, but this time use your IAM user account16.
at https://AWS-account-ID or alias.signin.aws.amazon.com/console.

https://console.aws.amazon.com/iam/home#home
https://us-east-1.signin.aws.amazon.com/oauth?SignatureVersion=4&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAJMOATPLHVSJ563XQ&X-Amz-Date=2018-08-27T10%3A03%3A52.789Z&X-Amz-Signature=bd1d9ecc1e645513ee09a2133776098ba8a82903c49d994f62fe4cb04a5d92d9&X-Amz-SignedHeaders=host&client_id=arn%3Aaws%3Aiam%3A%3A015428540659%3Auser%2Fhomepage&redirect_uri=https%3A%2F%2Fconsole.aws.amazon.com%2Fconsole%2Fhome%3Fstate%3DhashArgs%2523%26isauthcode%3Dtrue&response_type=code&state=hashArgs%23

Deploying Your First Web Application Chapter 2

[32]

Do not share your access key and secret key. By going through those
steps, we enforced the use of MFA to access the AWS Console with our
IAM user. We now need two factors (the password and the MFA token) to
access the console. That said, we also created an access key which is far
less secure. Anyone in possession of the secret key and access key (both
present in the credentials.csv) will have full administrative access to
the AWS account. Make sure to never share these credentials online. In
Chapter 8, Hardening the Security of Your AWS Environment, we will make
a few changes to better protect this key and require the use of MFA to gain
administrator privileges.

The next step in configuring our account is to configure our computers to interact with
AWS using the command-line interface.

Installing and configuring the command-line
interface (CLI)
Using Amazon's web interface is usually a great way to explore new services. The problem
is that when you want to go fast, create more repeatable steps, or create good
documentation, having simple commands to execute becomes more efficient. Amazon
provides a great and easy-to-use CLI. The tool is written in Python and therefore is cross-
platform (Windows, Mac, and Linux).

We will install the tool on our laptop/desktop so that we can interact with AWS using bash
commands. Linux and macOS X come natively with bash. If you use one of these operating
systems, you can skip the next section. On Windows, we first need to install a feature called
Windows Subsystem for Linux (WSL), which will give us the ability to run Bash
commands that are very similar to what you get on Ubuntu Linux.

Deploying Your First Web Application Chapter 2

[33]

Installing WSL (Windows only)
Nowadays, Linux and macOS X are among the most predominant OS used by developers.
Windows recently released a partnership with Canonical, the company behind one of the
most popular Linux distributions, support for Bash, and most of the common Linux
packages. By installing this tool on Windows, we will be able to interact with our
servers more efficiently, which will also run Linux:

Click on the Start button and search for settings, and then open the Settings1.
application:

Deploying Your First Web Application Chapter 2

[34]

This will lead you to the following window, where you have to search2.
for Windows Update settings. Open the Windows Update settings menu:

Deploying Your First Web Application Chapter 2

[35]

In the left-hand side menu of Windows Update settings, click on the For3.
developers sub-menu and turn on the Developer mode option.
Once your developer mode is turned on, search in the search bar on the left-4.
hand-side menu for the Control Panel option:

Deploying Your First Web Application Chapter 2

[36]

In the Control Panel dashboard, select the Category option from the View by5.
drop-down, and click on the Programs option. Then, under Programs and
Features, click on the Turn Windows features on or off option:

Deploying Your First Web Application Chapter 2

[37]

In this menu, find the feature called Windows Subsystem for Linux (Beta), and6.
click on the OK button:

This will install the feature and ask you to restart your computer.

Once you are back in Windows, click on the Start button again, search for bash,7.
and start the Bash on Ubuntu on the Windows application:

Deploying Your First Web Application Chapter 2

[38]

After a few initialization steps, you will be able to use Bash on Windows in the8.
same way you would on Linux.

From that point on, use the Bash application to run the commands present in the book.

Installing the AWS CLI package
The AWS CLI utility is written in Python. While there are several ways to install it, we will
use PyPA, the Python package manager, to install this tool.

To install PyPA, depending on your OS, you will need to run the following commands:

On Windows:

$ sudo apt install python-pip

On macOS X:

$ sudo easy_install pip

On Debian-based Linux distributions:

$ sudo apt-get install python-pip python-dev build-essential

On Red Hat/CentOS-based Linux distributions:

 $ sudo yum -y install python-pip

Once PyPA is installed, you will get access to the pip command.

Lastly, to install the AWS CLI using the pip command, you simply need to run the
following command:

$ sudo pip install --upgrade --user awscli

If you get an output to upgrade your pip version to the latest available level, execute pip
install --upgrade pip.

We have demonstrated all of the outputs from CentOS-based Linux
distribution but the process is equally applicable on all of the mentioned
supported platforms.

Deploying Your First Web Application Chapter 2

[39]

Configuring the AWS CLI
To do this, you will need to extract the AWS access key ID and secret access key from the
file downloaded in step 4 of the Creating a new user in IAM section:

$ more credentials.csv
User Name,Access Key Id,Secret Access Key "yogeshraheja",
AKIAII55DTLEV3X4ETAQ, mL2dEC8/ryuZ7fu6UI6kOm7PTlfROCZpai07Gy6T

We will run the following command to configure our AWS account:

$ aws configure
AWS Access Key ID [None]: AKIAII55DTLEV3X4ETAQ
AWS Secret Access Key [None]: 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
Default region name [None]: us-east-1
Default output format [None]:

At this point, we are ready to start using the CLI. We can quickly verify that everything is
working by listing the user accounts, as follows:

$ aws iam list-users
{
 "Users": [
 {
 "UserName": "yogeshraheja",
 "PasswordLastUsed": "2018-08-07T09:57:53Z",
 "CreateDate": "2018-08-07T04:56:03Z",
 "UserId": "AIDAIN22VCQLK43UVWLMK",
 "Path": "/",
 "Arn": "arn:aws:iam::094507990803:user/yogeshraheja"
 }
]
}

AWS aws-shell
Amazon has a second CLI tool called aws-shell. This tool is more
interactive than the classic awscli command, as it offers out-of-the-box
auto-completion and a split-screen view that lets you access the
documentation as you type your commands. If you are a new AWS user,
give it a shot (pip install aws-shell).

Deploying Your First Web Application Chapter 2

[40]

Creating our first web server
Now that we have our environment set up, we are finally ready to launch our first EC2
instance. There are a couple of ways to do that. Since we just installed and configured
awscli and we want to see effective ways of managing infrastructures, we will
demonstrate how to do this using the CLI.

Launching a virtual server requires having a certain amount of information ahead of time.
We will use the aws ec2 run-instances command, but we need to supply it with the
following:

An AMI ID
An instance type
A security group
An SSH key-pair

Amazon Machine Images (AMIs)
An AMI is a package that contains, among other things, the root file system with the
operating system (for example, Linux, UNIX, or Windows) as well as additional software
required to start up the system. To find the proper AMI, we will use the aws ec2
describe-images command. By default, the describe-images command will list all
available public AMIs, which is way over 3 million by now. To get the best out of that
command, it is important to combine it with the filter option to only include the AMI we
would like to use. In our case, we want to use the following to filter our AMIs:

We want the name to be Amazon Linux AMI, which designates the Linux
distribution officially supported by AWS. Amazon Linux is based off Red
Hat/CentOS but includes a few extra packages to make the integration with other
AWS services easy to do. You can read more about AWS Linux at http:/ ​/​amzn.
to/​2uFT13F.
We want to use the x84_64 bits version of Linux to match the architecture we
will use.
The virtualization type should be HVM, which stands for hardware virtual
machine. This is the newest and best-performing type of virtualization.
We want GP2 support, which will let us use the newest generation of instances
that don't come with instance store, meaning that the servers that power our
instances will be different from the servers that store our data.

http://amzn.to/2uFT13F
http://amzn.to/2uFT13F
http://amzn.to/2uFT13F
http://amzn.to/2uFT13F
http://amzn.to/2uFT13F
http://amzn.to/2uFT13F
http://amzn.to/2uFT13F
http://amzn.to/2uFT13F

Deploying Your First Web Application Chapter 2

[41]

In addition, we will sort the output by age and only look at the most recently released AMI:

$ aws ec2 describe-images --filters "Name=description,Values=Amazon Linux
AMI * x86_64 HVM GP2" --query 'Images[*].[CreationDate, Description,
ImageId]' --output text | sort -k 1 | tail

The output of running the preceding command can be shown as follows:

As you can see, at this time, the most recent AMI ID is ami-cfe4b2b0. This might differ by
the time you execute the same command, as the Amazon vendors included regularly
update their OS.

When using the aws cli --query option, the output can be very
consequential for certain commands. Taking the preceding example, if we
only care about a subset of information, we can supplement the
commands with the --query option to filter the information we want
only. This option uses the JMESPath query language.

Instance types
In this section, we will select the virtual hardware to use for our virtual server. AWS
provides a number of options best described in their documentation
at https://aws.amazon.com/ec2/instance-types/. We will talk about instance types in
more detail in Chapter 6, Scaling Your Infrastructure.

For now, we will select the t2.micro instance type as it is eligible for the AWS free usage
tier.

https://aws.amazon.com/ec2/instance-types/

Deploying Your First Web Application Chapter 2

[42]

Security groups
Security groups work a bit like firewalls. All EC2 instances have a set of security groups
assigned to them, and each security group contains rules to allow traffic to flow inbound
(ingress) and/or outbound (egress).

For this exercise, we will create a small web application running on port tcp/3000. In
addition, we want to be able to SSH into the instance, so we also need to allow inbound
traffic to port tcp/22. We will create a simple security group to allow this, by performing
the following steps:

First, we need to find out our default virtual private cloud (VPC) ID. Despite1.
being in a cloud environment, where the physical resources are shared by all
AWS customers, there is still a strong emphasis on security. AWS segmented
their virtual infrastructure using the concept of VPC. You can imagine this as
being a virtual datacenter with its own network. The security groups that protect
our EC2 instances are tied with subnets that in turn are tied to the network that
the VPC provides:

Deploying Your First Web Application Chapter 2

[43]

To identify our VPC ID, we can run the following command:

 $ aws ec2 describe-vpcs

 {
 "Vpcs": [
 {
 "VpcId": "vpc-4cddce2a",
 "InstanceTenancy": "default",
 "CidrBlockAssociationSet": [
 {
 "AssociationId": "vpc-cidr-assoc-3c313154",
 "CidrBlock": "172.31.0.0/16",
 "CidrBlockState": {
 "State": "associated"
 }
 }
],
 "State": "available",
 "DhcpOptionsId": "dopt-c0be5fa6",
 "CidrBlock": "172.31.0.0/16",
 "IsDefault": true
 }
]
 }

Now that we know the VPC ID (yours will be different), we can create our new2.
security group, as follows:

 $ aws ec2 create-security-group \
 --group-name HelloWorld \
 --description "Hello World Demo" \
 --vpc-id vpc-4cddce2a

 {
 "GroupId": "sg-01864b4c"
 }

By default, security groups allow all outbound traffic from the instance. We just3.
need to open up SSH (tcp/22) and tcp/3000 for inbound traffic. We then need
to input the following:

 $ aws ec2 authorize-security-group-ingress \
 --group-name HelloWorld \
 --protocol tcp \
 --port 22 \
 --cidr 0.0.0.0/0
 $ aws ec2 authorize-security-group-ingress \

Deploying Your First Web Application Chapter 2

[44]

 --group-name HelloWorld \
 --protocol tcp \
 --port 3000 \
 --cidr 0.0.0.0/0

We can now verify the change made using the following code, as the previous4.
commands aren't verbose:

 $ aws ec2 describe-security-groups \
 --group-names HelloWorld \
 --output text

 SECURITYGROUPS Hello World Demo sg-01864b4c HelloWorld
 094507990803 vpc-4cddce2a
 IPPERMISSIONS 22 tcp 22
 IPRANGES 0.0.0.0/0
 IPPERMISSIONS 3000 tcp 3000
 IPRANGES 0.0.0.0/0
 IPPERMISSIONSEGRESS -1
 IPRANGES 0.0.0.0/0

As expected, we opened up the traffic to the proper ports. If you know how to find your
public IP, you can improve the SSH rule by replacing 0.0.0.0/0 with your IP/32 so that
only you can try to SSH into that EC2 instance.

Using the aws cli --output option
By default, most of the commands will return a JSON output. AWS has a a
certain number of options globally available. You can see them used a bit in
this chapter. The first option is --output [json | text | table]:

Generating your SSH keys
By default, Amazon EC2 uses SSH key pairs to give you SSH access to your EC2 instances.
You can either generate a key pair in EC2 and download the private key or generate a key
yourself using a third-party tool such as OpenSSL, importing the public key in EC2. We
will use the first method to create EC2 SSH keys.

Deploying Your First Web Application Chapter 2

[45]

Here, ensure that you set read only permissions on your newly generated private (.pem)
key file:

 $ aws ec2 create-key-pair --key-name EffectiveDevOpsAWS --query
 'KeyMaterial' --output text > ~/.ssh/EffectiveDevOpsAWS.pem
 $ aws ec2 describe-key-pairs --key-name EffectiveDevOpsAWS
 {
 "KeyPairs": [
 {
 "KeyName": "EffectiveDevOpsAWS",
 "KeyFingerprint":
 "27:83:5d:9b:4c:88:f6:15:c7:39:df:23:4f:29:21:3b:3d:49:e6:af"
 }
]
 }
 $ cat ~/.ssh/EffectiveDevOpsAWS.pem
 -----BEGIN RSA PRIVATE KEY-----
MIIEpAIBAAKCAQEAiZLtUMnO2OKnHvTJOiIP26fThdsU0YRdlKI60in85x9aFZXSrZsKwOh
WPpMtnUMJKeGvVQut+gJ1I1PNNjPqS2Dy60jH55hntUhr/ArpaL2ISDX4BgRAP1jcukBqS6
+pL+mTp6OUNTToUt7LvAZoeo+10SYbzHF1ZMQLLs96fCMNvnbJdUCa904dJjJs7t/G2ou9R
iNMRx8midrWcmmuGKOb1s6FgrxJ5OAMYegeccFVfGOjqPk3f+6QTPOTMNgNQ8ANKOMA9Ytc
Ica/75QGUPifusTqUT4Fqtv3rbUYPvacAnYL9eCthtn1XMG7Oo/mR5MrU60wib2QcPipmrG
NbwIDAQABAoIBABSyqkmxUxGGaCZcJbo9Ta16fnRxFZzAEWQ/VCIydv4+1UrSE7RS0zdavT
8E3aP/Ze2LKtncu/wVSpJaFVHGVcWpfGKxvIG3iELZ9oUhDyTW/x3+IKanFRNyxyKudk+Uy
huPRMu/7JhksV9mbbiILkfiPzSMSzpjB4p1hEkypfbvBnrbB+sRycx+jK5l209rNDukkJVv
yFCnqPiH0wmvKRqHTNOMGWmM6CPOU+VpuMX+dIlrSeId7j6hqMjA0rGncnxYi035v2zicvI
sEKHZ9MZCnkiRb3kJ9PhueTwwUQmoBYfV5E+1Wu34UmdsmALQEX3xniaR6xf9iWhQ2Nh8La
ECgYEAzXHOZDPAUzXitO735KBUaiBp9NMv2gzE862Yf2rmDkFM4Y5RE3DKHrKfeOkrYqlG1
1On0m44GHBk/g4eqqIEaBjVp6i/Lk74tpQU6Kn1HT3w9lbXEFsCWjYZnev5oHP6PdedtRYN
zZsCSNUdlw0kOG5WZZJ4E7mPZyrvK5pq+rMCgYEAq22KT0nD3d59V+LVVZfMzJuUBDeJeD1
39mmVbzAq9u5Hr4MkurmcIj8Q6jJIQaiC8XC1gBVEl08ZN2oY1+CBE+Gesi7mGOQ2ovDmoT
fYRgScKKHv7WwR+N5/N7o26x+ZaoeaBe43Vjp6twaTpKkBOIuT50tvb25v9+UVMpGKcFUC
gYEAoOFjJ3KjREYpT1jnROEM2cKiVrdefJmNTel+RyF2IGmgg+1Hrjqf/OQSH8QwVmWK9So
sfIwVX4X8gDqcZzDS1JXGEjIB7IipGYjiysP1D74myTF93u/16qD89H8LD0xjBTSo6lrn2j
9tzY0eS+Bdodc9zvKhF4kzNC4Z9wJIjiMCgYAOtqstXP5zt5n4hh6bZxkL4rqUlhO1f0khn
DRYQ8EcSp1agh4P7Mhq5BDWmRQ8lnMOuAbMBIdLmV1ntTKGrN1HUJEnaAEV19icqaKR6dIl
SFYC4stODH2KZ8ZxiQkXqzGmxBbDNYwIWaKYvPbFJkBVkx1Rt9bLsKXpl/72xSkltQKBgQC
YEjUVp4dPzZL1CFryOwV72PMMX3FjOflTgAWr8TJBq/OLujzgwYsTy6cdD3AqnMQ2BlU7Gk
4mmDZCVVsMqHFbIHEa5Y4e5qIQhamedl3IgmnMpdyuDYaT/Uh4tw0JxIJabqm+sQZv4s1Ot
gh00JlGrgFs+0D39Fy8qszqr6J04w==
-----END RSA PRIVATE KEY-----

 $ chmod 400 ~/.ssh/EffectiveDevOpsAWS.pem

Deploying Your First Web Application Chapter 2

[46]

Launching an EC2 instance
We now have all the information required to launch our instance. Let's finally launch it as
follows:

$ aws ec2 run-instances \
 --instance-type t2.micro \
 --key-name EffectiveDevOpsAWS \
 --security-group-ids sg-01864b4c \
 --image-id ami-cfe4b2b0
{
 "Instances": [
 {
 "Monitoring": {
 "State": "disabled"
 },
 "PublicDnsName": "",
 "StateReason": {
 "Message": "pending",
 "Code": "pending"
 },
 "State": {
 "Code": 0,
 "Name": "pending"
 },
 "EbsOptimized": false,
 "LaunchTime": "2018-08-08T06:38:43.000Z",
 "PrivateIpAddress": "172.31.22.52",
 "ProductCodes": [],
 "VpcId": "vpc-4cddce2a",
 "CpuOptions": {
 "CoreCount": 1,
 "ThreadsPerCore": 1
 },
 "StateTransitionReason": "",
 "InstanceId": "i-057e8deb1a4c3f35d",
 "ImageId": "ami-cfe4b2b0",
 "PrivateDnsName": "ip-172-31-22-52.ec2.internal",
 "KeyName": "EffectiveDevOpsAWS",
 "SecurityGroups": [
 {
 "GroupName": "HelloWorld",
 "GroupId": "sg-01864b4c"
 }
],
 "ClientToken": "",
 "SubnetId": "subnet-6fdd7927",
 "InstanceType": "t2.micro",

Deploying Your First Web Application Chapter 2

[47]

 "NetworkInterfaces": [
 {
 "Status": "in-use",
 "MacAddress": "0a:d0:b9:db:7b:38",
 "SourceDestCheck": true,
 "VpcId": "vpc-4cddce2a",
 "Description": "",
 "NetworkInterfaceId": "eni-001aaa6b5c7f92b9f",
 "PrivateIpAddresses": [
 {
 "PrivateDnsName": "ip-172-31-22-
 52.ec2.internal",
 "Primary": true,
 "PrivateIpAddress": "172.31.22.52"
 }
],
 "PrivateDnsName": "ip-172-31-22-52.ec2.internal",
 "Attachment": {
 "Status": "attaching",
 "DeviceIndex": 0,
 "DeleteOnTermination": true,
 "AttachmentId": "eni-attach-0428b549373b9f864",
 "AttachTime": "2018-08-08T06:38:43.000Z"
 },
 "Groups": [
 {
 "GroupName": "HelloWorld",
 "GroupId": "sg-01864b4c"
 }
],
 "Ipv6Addresses": [],
 "OwnerId": "094507990803",
 "SubnetId": "subnet-6fdd7927",
 "PrivateIpAddress": "172.31.22.52"
 }
],
 "SourceDestCheck": true,
 "Placement": {
 "Tenancy": "default",
 "GroupName": "",
 "AvailabilityZone": "us-east-1c"
 },
 "Hypervisor": "xen",
 "BlockDeviceMappings": [],
 "Architecture": "x86_64",
 "RootDeviceType": "ebs",
 "RootDeviceName": "/dev/xvda",
 "VirtualizationType": "hvm",

Deploying Your First Web Application Chapter 2

[48]

 "AmiLaunchIndex": 0
 }
],
 "ReservationId": "r-09a637b7a3be11d8b",
 "Groups": [],
 "OwnerId": "094507990803"
}

You can track the progress of the instance creation. To do that, get the instance ID provided
in the output of the aws ec2 run-instances command and run the following command:

$ aws ec2 describe-instance-status --instance-ids i-057e8deb1a4c3f35d
{
 "InstanceStatuses": [
 {
 "InstanceId": "i-057e8deb1a4c3f35d",
 "InstanceState": {
 "Code": 16,
 "Name": "running"
 },
 "AvailabilityZone": "us-east-1c",
 "SystemStatus": {
 "Status": "initializing",
 "Details": [
 {
 "Status": "initializing",
 "Name": "reachability"
 }
]
 },
 "InstanceStatus": {
 "Status": "initializing",
 "Details": [
 {
 "Status": "initializing",
 "Name": "reachability"
 }
]
 }
 }
]
}

Deploying Your First Web Application Chapter 2

[49]

The instance will be ready once the status under SystemStatus changes from
initializing to ok:

$ aws ec2 describe-instance-status --instance-ids i-057e8deb1a4c3f35d --
output text| grep -i SystemStatus

SYSTEMSTATUS ok

Connecting to the EC2 instance using SSH
The main goal of this chapter is to create a simple Hello World web application. Since we
are starting with a Vanilla OS, we need to connect to the host to make the necessary
changes to turn our standard server into a web server. In order to SSH our instance, we
need to find the DNS name of our running instance, as follows:

$ aws ec2 describe-instances \
 --instance-ids i-057e8deb1a4c3f35d \
 --query "Reservations[*].Instances[*].PublicDnsName"

[
 [
 "ec2-34-201-101-26.compute-1.amazonaws.com"
]
]

We now have the public DNS name of our instance and the private key to SSH into it. The
last thing to know is that, for the OS that we selected while choosing our AMI in Amazon
Linux, the default user account is called ec2-user:

$ ssh -i ~/.ssh/EffectiveDevOpsAWS.pem ec2-user@
ec2-34-201-101-26.compute-1.amazonaws.com

The authenticity of host 'ec2-34-201-101-26.compute-1.amazonaws.com
(172.31.22.52)' can't be established.

ECDSA key fingerprint is
SHA256:V4kdXmwb5ckyU3hw/E7wkWqbnzX5DQR5zwP1xJXezPU.

ECDSA key fingerprint is
MD5:25:49:46:75:85:f1:9d:f5:c0:44:f2:31:cd:e7:55:9f.

Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added
'ec2-34-201-101-26.compute-1.amazonaws.com,172.31.22.52' (ECDSA) to the
list of known hosts.

Deploying Your First Web Application Chapter 2

[50]

 __| __|_)
 _| (/ Amazon Linux AMI
 ___|___|___|

https://aws.amazon.com/amazon-linux-ami/2018.03-release-notes/

1 package(s) needed for security, out of 2 available

Run "sudo yum update" to apply all updates.
[ec2-user@ip-172-31-22-52 ~]$

If you experience any issues, add the -vvv option in your SSH command to troubleshoot it.

Creating a simple Hello World web application
Now that we are connected to our EC2 instance, we are ready to start playing around with
it. In this book, we will focus on the most common use case for AWS in tech companies:
hosting an application. In terms of languages, we will use JavaScript, which is one of the
most popular languages on GitHub. That said, this application is aimed more at giving
support in order to demonstrate how to best use AWS using the DevOps principles. Having
any kind of knowledge about JavaScript isn't required in order to understand this book:

Deploying Your First Web Application Chapter 2

[51]

Some of the main advantages that JavaScript offers with regards to this book include the
fact that:

It is fairly easy to write and read, even for beginners
It doesn't need to be compiled
It can be run server side thanks to Node.js (https://nodejs.org)
It is officially supported by AWS and therefore the AWS SDK for JavaScript is a
first-class citizen

For the rest of the chapter, all the commands and code are to be run on our instance
through SSH.

Installing Node.js
The first thing we need to do is install Node.js. Amazon Linux is based on Red Hat
Enterprise Linux (RHEL) and uses the yum utility to manage and install packages. The OS
comes with Extra Packages for Enterprise Linux (EPEL) preconfigured in it. As we would
expect, Node.js is present in EPEL:

[ec2-user@ip-172-31-22-52 ~]$ sudo yum install --enablerepo=epel -y nodejs
[ec2-user@ip-172-31-22-52 ~]$ node -v
v0.10.48

This is definitely an old version of the node but it's going to be good enough for what we
need.

Running a Node.js Hello World application
Now that the node is installed, we can create a simple Hello World application. Here is the
code for creating this:

var http = require("http") http.createServer(function (request, response) {
// Send the HTTP header
// HTTP Status: 200 : OK
// Content Type: text/plain
response.writeHead(200, {'Content-Type': 'text/plain'})
// Send the response body as "Hello World" response.end('Hello World\n')
}).listen(3000)

// Console will print the message console.log('Server running')

https://nodejs.org

Deploying Your First Web Application Chapter 2

[52]

Feel free to copy this into a file. Alternatively, if you want to save time, download this from
GitHub:

[ec2-user@ip-172-31-22-52 ~]$
wget
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/ma
ster/Chapter02/helloworld.js -O /home/ec2-user/helloworld.js
--2018-08-19 13:06:42--
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/ma
ster/Chapter02/helloworld.js
Resolving raw.githubusercontent.com (raw.githubusercontent.com)...
151.101.200.133
Connecting to raw.githubusercontent.com
(raw.githubusercontent.com)|151.101.200.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 384 [text/plain]
Saving to: ‘/home/ec2-user/helloworld.js’

/home/ec2-user/helloworld.js
100%[==
===============>] 384 --.-KB/s in 0s

2018-08-19 13:06:42 (37.9 MB/s) - ‘/home/ec2-user/helloworld.js’ saved
[384/384]

[ec2-user@ip-172-31-22-52 ~]$

In order to run the Hello World application, we are now simply going to run the following
code:

[ec2-user@ip-172-31-22-52 ~]$ node helloworld.js
Server running

If everything goes well, you will now be able to open this in your browser at the following
link: http://your-public-dns-name:3000. Or in my case, this will be found
here: http://ec2-34-201-101-26.compute-1.amazonaws.com:3000. You will then be
able to see the result, as follows:

Deploying Your First Web Application Chapter 2

[53]

We will now stop the execution of the Hello World web application with Ctrl + C in your
Terminal window.

Turning our simple code into a service using upstart
Since we started the node application manually in the Terminal, closing the SSH connection
or hitting Ctrl + C on the keyboard will stop the node process, and therefore our Hello
World application will not work anymore. Amazon Linux, unlike a standard Red Hat-
based distribution, comes with a system called upstart.

This is fairly easy to use and provides a couple of extra features that traditional System-V
bootup scripts don't have, such as the ability to respawn a process that died unexpectedly.
To add an upstart configuration, you need to create a file inside /etc/init on the EC2
instance.

Here is the code to insert it in /etc/init/helloworld.conf:

description "Hello world Daemon"

Start when the system is ready to do networking. Start on started
elastic-network-interfaces

Stop when the system is on its way down. Stop on shutdown

respawn script
exec su --session-command="/usr/bin/node /home/ec2-user/helloworld.js" ec2-
user
end script

Why start on elastic network interfaces? If you are familiar with upstart
outside of AWS, you might have used start on run level [345]. In AWS, the
problem with that is that your network comes from Elastic Network
Interface (ENI), and if your application starts before this service, it might
not be able to connect to the network correctly.

[ec2-user@ip-172-31-22-52 ~]$
sudo wget
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/ma
ster/Chapter02/helloworld.conf -O /etc/init/helloworld.conf
--2018-08-19 13:09:39--
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/ma
ster/Chapter02/helloworld.conf
Resolving raw.githubusercontent.com (raw.githubusercontent.com)...
151.101.200.133
Connecting to raw.githubusercontent.com

Deploying Your First Web Application Chapter 2

[54]

(raw.githubusercontent.com)|151.101.200.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 301 [text/plain]
Saving to: ‘/etc/init/helloworld.conf’

/etc/init/helloworld.conf
100%[==
===============>] 301 --.-KB/s in 0s

2018-08-19 13:09:39 (54.0 MB/s) - ‘/etc/init/helloworld.conf’ saved
[301/301]

[ec2-user@ip-172-31-22-52 ~]$

We can now simply start our application, as follows:

[ec2-user@ip-172-31-22-52 ~]$ sudo start helloworld
helloworld start/running, process 2872
[ec2-user@ip-172-31-22-52 ~]$

As expected, http://your-public-dns-name:3000 still works, and this time we can
safely close our SSH connection.

Terminating our EC2 instance
As with most Hello World exercises, once the helloworld message is displayed, the goal is
reached. It is now time to think about shutting down our server. Since we only pay for what
we consume in AWS, freeing up unnecessary resources such as this server is a good
strategy for making AWS very cost effective.

We can do a clean shutdown of the Hello World service using the stop command. We can
then exit the virtual server and terminate our instance, as follows:

[ec2-user@ip-172-31-22-52 ~]$ sudo stop helloworld
helloworld stop/waiting
[ec2-user@ip-172-31-22-52 ~]$ ec2-metadata --instance-id
instance-id: i-057e8deb1a4c3f35d
[ec2-user@ip-172-31-22-52 ~]$ exit
logout
$ aws ec2 terminate-instances --instance-ids i-057e8deb1a4c3f35d
{
 "TerminatingInstances": [
 {
 "InstanceId": "i-057e8deb1a4c3f35d",
 "CurrentState": {

Deploying Your First Web Application Chapter 2

[55]

 "Code": 32,
 "Name": "shutting-down"
 },
 "PreviousState": {
 "Code": 16,
 "Name": "running"
 }
 }
]
}

Summary
This chapter was a quick and simple introduction to AWS and its most notorious service,
EC2. After signing up for AWS, we configured our environment in such a way that we
could create a virtual server using the command-line interface. Leading to this, we selected
our first AMI, created our first security group, and generated our SSH keys, which we will
reuse throughout the book. After launching an EC2 instance, we manually deployed a
simple Node.js application to display Hello World.

While the process wasn't very fastidious thanks to the AWS CLI, it still required going
through numerous steps, which aren't very repeatable. We also deployed the application
without any automation or validation. Furthermore, the only way we can check if the
application is running is by manually checking the endpoint. In the remainder of the book,
we will revisit the process of creating and managing web applications and infrastructure,
but, this time, we will follow the DevOps principles and incorporate their best practices.

In Chapter 3, Treating Your Infrastructure as Code, we will address one of the first issues we
encountered: managing our infrastructure with automation. To do that, we will write code
to manage our infrastructure.

Deploying Your First Web Application Chapter 2

[56]

Questions
Please answer the following questions:

How do you create a free-tier AWS account?1.
How do you create your first AWS cloud instance using the AWS Console2.
portal?
How do you create your first AWS cloud instance using the AWS CLI utility?3.
How do you deploy a simple Hello World web application on your newly4.
created AWS instance?
How do you destroy your created AWS instance to complete this exercise?5.

Further reading
Refer to the following links for for more information on AWS and AWS CLI:

AWS Free Tier: https:/ ​/ ​aws. ​amazon. ​com/ ​free/ ​

AWS Command Line Interface: https:/ ​/​aws. ​amazon. ​com/ ​cli/ ​

https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/

3
Treating Your Infrastructure as

Code
In the previous chapter, we familiarized ourselves with AWS. We also created an EC2
instance and deployed a Hello World web application onto it. However, to get there, we
had to go through a number of steps to configure the instance and its security groups.
Because we did that in a very manual fashion using the command-line interface, the steps
that we went through will not be reusable or auditable, as you may recall from the first
chapter when implementing DevOps best practices. Two key concepts that you should rely
on as often as possible are source control (version control) and automation. In this chapter,
we will explore how to apply those principles to our infrastructure.

In a cloud environment, where almost everything is abstracted and served through the
intermediary of virtual resources, it is easy to imagine that code can describe the topology
of a network and the configuration of a system. To go through that transformation, we will
learn about two key concepts in an effective DevOps organization. The first one is
commonly called Infrastructure as Code (IAC). This is the process of describing all your
virtual resources in the form of codes. These resources may include virtual servers, load
balancers, storage, the network layer, and so on. The second concept, which is very close to
IAC, focuses further on system configuration and is called configuration management.
Through configuration management systems, developers and system administrators have
the ability to automate operating system configuration, package installation, and even
application deployment.

Treating Your Infrastructure as Code Chapter 3

[58]

Going through that transformation is a crucial step for any DevOps-focused organization.
By having the code to describe the different resources and their configurations, we will be
able to use the same tools and processes as we do when developing applications. We will
be able to use source control and make smaller changes to individual branches, as well as
submitting pull requests, following standard review processes, and finally, testing changes
before they are applied to our production environment. This will give us better clarity,
accountability, and auditability for infrastructure changes. Because of that, we will also be
able to manage a much bigger fleet of resources without necessarily needing more
engineers or without spending a lot more time operating all the resources. This will also
open up the door to further automation, as we will see with continuous deployment in
Chapter 5, Adding Continuous Integration and Continuous Deployment. In this chapter, we
will cover the following topics:

Managing your infrastructure with CloudFormation
Adding a configuration management system

Technical requirements
The technical requirements for this chapter are as follows:

AWS Console
AWS CloudFormation
AWS CloudFormation Designer
CloudFormer
Troposphere
Git
GitHub
Ansible

The GitHub links to find the codes in this chapter are as follows:

https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-A
WS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-
part-1.py

https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-A
WS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py

https:/​/ ​github. ​com/ ​yogeshraheja/ ​Automation- ​with- ​Ansible- ​By- ​Yogesh-
Raheja

https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja

Treating Your Infrastructure as Code Chapter 3

[59]

https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/
Chapter03/ansible/roles/nodejs/tasks/main.yml

https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/
Chapter03/ansible/roles/helloworld/tasks/main.yml

https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/
Chapter03/ansible/roles/helloworld/meta/main.yml

https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/
Chapter03/ansible

https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/a
nsiblebase-cf-template.py

Managing your infrastructure with
CloudFormation
CloudFormation introduces a new way to manage services and their configurations.
Through the creation of JSON or YAML files, CloudFormation lets you describe the AWS
architecture you would like to build. Once your files are created, you can simply upload
them to CloudFormation, which will execute them, and automatically create or update your
AWS resources. Most AWS-managed tools and services are supported. You can get the full
list at http:/​/​amzn. ​to/ ​1Odslix. In this chapter, we will only look at the infrastructure we
have built so far, but we will add more resources in the following chapters. After a brief
overview of how CloudFormation is structured, we will create a minimal list stack to
recreate the Hello World web application from Chapter 2, Deploying Your First Web
Application. After that, we will see two more options to create CloudFormation
templates—the designer, which lets you visually edit your template in a Web GUI, and
CloudFormer, a tool to generate templates from existing infrastructure.

Getting started with CloudFormation
As you would expect, you can access CloudFormation through the AWS console at https:/
/​console.​aws.​amazon. ​com/ ​cloudformation, or by using the following command line:

$ aws cloudformation help # for the list of options

https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py
http://amzn.to/1Odslix
http://amzn.to/1Odslix
http://amzn.to/1Odslix
http://amzn.to/1Odslix
http://amzn.to/1Odslix
http://amzn.to/1Odslix
http://amzn.to/1Odslix
http://amzn.to/1Odslix
http://amzn.to/1Odslix
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation

Treating Your Infrastructure as Code Chapter 3

[60]

The service is organized around the concept of stacks. Each stack typically describes a set of
AWS resources and their configuration in order to start an application. When working with
CloudFormation, most of your time is spent editing those templates. There are different
ways to get started with the actual editing of the templates. One of the easiest ways is to
edit existing templates. AWS has a number of well-written examples available at http:/ ​/
amzn.​to/​27cHmrb. At the highest level, templates are structured as follows:

{
"AWSTemplateFormatVersion" : "version date", "Description" : "Description",
"Resources" : { },
"Parameters" : { },
"Mappings" : { },
"Conditions" : { },
"Metadata" : { },
"Outputs" : { }
}

The AWSTemplateFormatVersion section is currently always 2010-09-09 and this
represents the version of the template language used. This version is currently the only
valid value. The Description section is there for you to summarize what the template
does. The Resources section describes which AWS services will be instantiated and what
their configurations are. When you launch a template, you have the ability to provide some
extra information to CloudFormation, such as which SSH key-pair to use. For example, if
you want to give SSH access to your EC2 instances, this kind of information goes into the
Parameters section. The Mappings section is useful when you try to create a more generic
template.

You can, for example, define which Amazon Machine Image (AMI) to use for a given
region, so that the same template can be used to start an application in that AWS region.
The Conditions section allows you to add conditional logic to your other sections (if
statements, logical operators, and so on), while the Metadata section lets you add more
arbitrary information to your resources. Finally, the Outputs section lets you extract and
print out useful information based on the execution of your template, such as the IP
address of the EC2 server created, for example. In addition to those examples, AWS also
provides a couple of tools and services around CloudFormation template creation. The first
tool you can use to create your templates is called CloudFormation Designer.

http://amzn.to/27cHmrb
http://amzn.to/27cHmrb
http://amzn.to/27cHmrb
http://amzn.to/27cHmrb
http://amzn.to/27cHmrb
http://amzn.to/27cHmrb
http://amzn.to/27cHmrb
http://amzn.to/27cHmrb

Treating Your Infrastructure as Code Chapter 3

[61]

AWS CloudFormation Designer
AWS CloudFormation Designer is a tool that lets you create and edit CloudFormation
templates using a graphic user interface. Designer hides a lot of the complexity of editing a
CloudFormation template using a standard text editor. You can access this directly at
https:/​/​console. ​aws. ​amazon. ​com/ ​cloudformation/ ​designer, or in the CloudFormation
dashboard after you click on the Create Stack button, as shown here:

The workflow is fairly simple. You simply drag and drop resources from the left-hand side
menu into a canvas.

https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer
https://console.aws.amazon.com/cloudformation/designer

Treating Your Infrastructure as Code Chapter 3

[62]

Once your resources are added, you can then connect them to other resources using the
small dots surrounding each resource icon. In the preceding example, we are connecting an
EC2 instance to its security group. There are a number of hidden gems that can help you
when designing your template. You can right-click on resources and directly access the
documentation for the CloudFormation resource as follows:

When dragging a dot to connect two resources, a designer will highlight resources that are
compatible with that connection. The editor on the bottom section of the designer supports
auto completion using Ctrl + Spacebar:

Once your template is complete, you can simply click on a button and go from designing
your stack to launching it. The next tool we will look at is called CloudFormer.

Treating Your Infrastructure as Code Chapter 3

[63]

CloudFormer
CloudFormer is a tool that lets you create CloudFormation templates by looking at pre-
existing resources. If you have a set of resources that you have already created on an ad hoc
basis, as we have done so far in the book, then you can use CloudFormer to group them
under a new CloudFormation template. You can then later customize the template that
CloudFormer generates using a text editor or even CloudFormation designer, making it fit
your needs. Unlike most AWS tools and services, CloudFormer isn't completely managed
by AWS; it's a self-hosted tool that you can instantiate on demand using CloudFormation.
To do so, follow the given steps:

Open https://console.aws.amazon.com/cloudformation in your browser.1.
Now, scroll down the AWS console screen, select Create a Template from your2.
Existing Resources option, and click on the Launch CloudFormer button.
In the Select a sample template drop-down menu, choose3.
the CloudFormer option and click on the Next button, as shown in the following
screenshot:

https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation

Treating Your Infrastructure as Code Chapter 3

[64]

On that screen, at the top, you can provide a stack name (feel free to keep the4.
default name, AWSCloudFormer) and in the bottom part, you are asked to
provide three additional parameters, a Username, a Password and VPC
Selection. This username and password will be used later to log into
CloudFormer. Pick a username and a password, select the Default VPC, and
click on the Next button.
On the next screen, you can provide extra tags and more advanced options, but5.
we will simply continue by clicking on the Next button.
This brings us to the review page, where we will check the checkbox to6.
acknowledge that this will cause AWS CloudFormation to create IAM resources.
Click on the Create button.
This will bring us back to the main screen of the CloudFormation console, where7.
we can see our AWS CloudFormer stack being created . Once the Status column
goes from CREATE_IN_PROGRESS to CREATE_COMPLETE, select it and
click on the Outputs tab at the bottom. At that point, you have created the
resources needed to use CloudFormer. In order to create a stack with it, do the
following: in the Outputs tab (which illustrates the Outputs section of
CloudFormation), click on the website URL link. This will open up the
CloudFormer tool. Log in using the username and password provided in the
fourth step of the previous set of instructions, and you should see something like
the following:

Treating Your Infrastructure as Code Chapter 3

[65]

Select the AWS region where you want to create the template and then click on8.
the Create Template button. The following screen will then appear:

Follow the workflow proposed by the tool to select the different resources that9.
you want for your CloudFormation template, as far as the last step.
In the end, you will be able to download the generated template or save it10.
directly in S3.

The CloudFormation template generated by CloudFormer will usually need a bit of editing,
as you will often want to create a more flexible stack with input parameters and an Outputs
section.

Treating Your Infrastructure as Code Chapter 3

[66]

Recreating our Hello World example with
CloudFormation
Designer and CloudFormer are two very useful tools when you are in the process of
architecting your infrastructure and trying to add source control to your design. That said,
whenever you wear your DevOps hat, it's a different story. Using those tools markedly
reduces the added value that CloudFormation provides by using the JSON format. If you
got a chance to read some of the templates available, or tried to use CloudFormer on your
existing infrastructure, you probably noticed that raw CloudFormation templates tend to be
fairly long and not Don't Repeat Yourself (DRY).

From a DevOps perspective, one of the most powerful aspects of CloudFormation is the
ability to write code to dynamically generate those templates. To illustrate that point, we
are going to turn to Python, and a library called troposphere, to generate our Hello World
CloudFormation template.

There are also a number of more advanced tools to assist with the creation
of CloudFormation templates. If you plan on using other third-party
services in addition to AWS, you can take a look at Terraform from
Hashicorp (available at https://www.terraform.io), for example, which
handles a number of other cloud providers and services in addition to
CloudFormation.

Using Troposphere to create a Python script for our
template
We will first install the troposphere library. Again, we are demonstrating all of the
outputs from a CentOS 7.x-based Linux distribution, but the process applies equally to all
of the supported platforms mentioned. The following is the command to install the
troposphere library:

$ pip install troposphere

One known issue with the Troposphere is the upgraded version of
setuptools. If you come across the following issue, then the solution is
to upgrade setuptools using the pip install -U
setuptools command.

https://www.terraform.io

Treating Your Infrastructure as Code Chapter 3

[67]

Once you have run the preceding command, you may encounter the following error:

....
setuptools_scm.version.SetuptoolsOutdatedWarning: your setuptools is too
old (<12)

Command "python setup.py egg_info" failed with error code 1 in /tmp/pip-
install-pW4aV4/cfn-flip/

In order to fix the error, you can run the following command:

$ pip install -U setuptools

Collecting setuptools
 Downloading
https://files.pythonhosted.org/packages/ff/f4/385715ccc461885f3cedf57a41ae3
c12b5fec3f35cce4c8706b1a112a133/setuptools-40.0.0-py2.py3-none-any.whl
(567kB)
 100% |████████████████████████████████| 573kB
22.2MB/s
Installing collected packages: setuptools
 Found existing installation: setuptools 0.9.8
 Uninstalling setuptools-0.9.8:
 Successfully uninstalled setuptools-0.9.8
Successfully installed setuptools-40.0.0

Once the installation is complete, you can then create a new file called helloworld-cf-
template.py.

We will start our file by importing a number of definitions from the troposphere module
as follows:

"""Generating CloudFormation template."""

from troposphere import (
 Base64,
 ec2,
 GetAtt,
 Join,
 Output,
 Parameter,
 Ref,
 Template,
)

Treating Your Infrastructure as Code Chapter 3

[68]

We are also going to define a first variable that will make editing the code easier for the
remainder of the book. This is because we will create new scripts by building on this initial
template:

ApplicationPort = "3000"

From a code standpoint, the first thing we will do is initialize a Template variable. By the
end of our script, the template will contain the entire description of our infrastructure and
we will be able to simply print its output to get our CloudFormation template:

t = Template()

Throughout this book, we will create and run several CloudFormation
templates concurrently. To help us identify what's in a given stack, we have the ability to
provide a description. After the creation of the template, add the description as follows:

add_description("Effective DevOps in AWS: HelloWorld web application")

When we launched EC2 instances using the web command-line interface, we selected
which key-pair to use in order to gain SSH access to the host. In order to not lose this
ability, the first thing our template will have is a parameter to offer the CloudFormation
user the ability to select which key-pair to use when launching the EC2 instance. To do that,
we are going to create a Parameter object and initialize it by providing an identifier, a
description, a parameter type, a description of the parameter type, and a constraint
description to help make the right decision when we launch the stack. In order for this
parameter to exist in our final template, we will also use the add_parameter() function
defined in the template class:

t.add_parameter(Parameter(
 "KeyPair",
 Description="Name of an existing EC2 KeyPair to SSH",
 Type="AWS::EC2::KeyPair::KeyName",
 ConstraintDescription="must be the name of an existing EC2 KeyPair.",
))

The next thing we will look at is the security group. We will proceed exactly as we did for
our KeyPair parameter. We want to open up SSH/22 and TCP/3000 to the world. Port
3000 was defined in the ApplicationPort variable declared earlier. In addition, this time,
the information defined isn't a parameter like before, but a resource. Consequently, we will
add that new resource using the add_resource() function as follows:

t.add_resource(ec2.SecurityGroup(
 "SecurityGroup",
 GroupDescription="Allow SSH and TCP/{} access".format(ApplicationPort),
 SecurityGroupIngress=[

Treating Your Infrastructure as Code Chapter 3

[69]

 ec2.SecurityGroupRule(
 IpProtocol="tcp",
 FromPort="22",
 ToPort="22",
 CidrIp="0.0.0.0/0",
),
 ec2.SecurityGroupRule(
 IpProtocol="tcp",
 FromPort=ApplicationPort,
 ToPort=ApplicationPort,
 CidrIp="0.0.0.0/0",
),
],
))

In our next section, we will replace the need to log on to our EC2 instance and install the
helloworld.js file and its init scripts by hand. To do so, we will take advantage of the
UserData features that EC2 offers. When you create an EC2 instance, the UserData
optional parameter gives you the ability to provide a set of commands to run once the
virtual machine has spawned up (you can read more on this topic at http:/ ​/ ​amzn. ​to/
1VU5b3s). One of the constraints of the UserData parameter is that the script must be
base64-encoded in order to be added to our API call.

We are going to create a small script to reproduce the steps that we went through in
Chapter 2, Deploying Your First Web Application. Here, we will encode, deploy our first web
application deployment step in base-64 and store it in a variable called ud. Note that
installing the application in the home directory of ec2-user isn't very clean. For now, we
are trying to stay consistent with what we did in Chapter 2, Deploying Your First Web
Application. We will fix that in Chapter 5, Adding Continuous Integration and Continuous
Deployment, as we improve our deployment system:

ud = Base64(Join('\n', [
 "#!/bin/bash",
 "sudo yum install --enablerepo=epel -y nodejs",
 "wget http://bit.ly/2vESNuc -O /home/ec2-user/helloworld.js",
 "wget http://bit.ly/2vVvT18 -O /etc/init/helloworld.conf",
 "start helloworld"
]))

We will now focus on the main resource of our template, which is our EC2 instance. The
creation of the instance requires providing a name for identifying the resource, an image
ID, an instance type, a security group, the key-pair to use for the SSH access, and the user
data. In order to keep things simple, we will hardcode the AMI ID (ami-cfe4b2b0) and
instance type (t2.micro).

http://amzn.to/1VU5b3s
http://amzn.to/1VU5b3s
http://amzn.to/1VU5b3s
http://amzn.to/1VU5b3s
http://amzn.to/1VU5b3s
http://amzn.to/1VU5b3s
http://amzn.to/1VU5b3s
http://amzn.to/1VU5b3s

Treating Your Infrastructure as Code Chapter 3

[70]

The remaining pieces of information needed to create our EC2 instances are the security
group information and the KeyPair name, which we collected previously by defining a
parameter and a resource. In CloudFormation, you can refer to pre-existing subsections of
your template by using the Ref keyword. In Troposphere, this is done by calling the Ref()
function. As before, we will add the resulting output to our template with the help of the
add_resource function:

...
t.add_resource(ec2.Instance(
 "instance",
 ImageId="ami-cfe4b2b0",
 InstanceType="t2.micro",
 SecurityGroups=[Ref("SecurityGroup")],
 KeyName=Ref("KeyPair"),
 UserData=ud,
))
...

In the last section of our script, we will focus on producing the Outputs section of the
template that gets populated when CloudFormation creates a stack. This selection allows
you to print out useful information that was computed during the launch of the stack. In
our case, there are two useful pieces of information—the URL to access our web
application, and the public IP address of the instance, so that we can SSH into it if we want
to. In order to retrieve such information, CloudFormation uses the Fn::GetAtt function.
In Troposphere, this is translated into the GetAtt() function:

...
t.add_output(Output(
 "InstancePublicIp",
 Description="Public IP of our instance.",
 Value=GetAtt("instance", "PublicIp"),
))

t.add_output(Output(
 "WebUrl",
 Description="Application endpoint",
 Value=Join("", [
 "http://", GetAtt("instance", "PublicDnsName"),
 ":", ApplicationPort
]),
))
...

Treating Your Infrastructure as Code Chapter 3

[71]

At that point, we can make our script output the final result of the template we generated:

print t.to_json()

The script is now complete. We can save this and quit our editor. The file created should
look like the file at the following link: https:/ ​/​raw. ​githubusercontent. ​com/
yogeshraheja/​Effective- ​DevOps- ​with- ​AWS/ ​master/ ​Chapter03/
EffectiveDevOpsTemplates/ ​helloworld- ​cf-​template- ​part- ​1.​py.

We can now run our script, giving it the proper permissions and generating the
CloudFormation template by saving the output of our script in a file as follows:

$ python helloworld-cf-template.py > helloworld-cf.template

cloud-init is a set of Python scripts compatible with most Linux
distributions and cloud providers. This complements the UserData field
by moving most standard operations, such as installing packages, creating
files, and running commands into different sections of the template. This
book doesn't cover that tool, but if your CloudFormation templates rely
heavily on the UserData field, take a look at it. You can get its
documentation at http:/ ​/ ​bit.​ly/ ​1W6s96M.

Creating the stack in the CloudFormation console
At this point, we can launch our template using the following steps:

Open the CloudFormation web console in your browser with the following1.
link: https:/ ​/ ​console. ​aws. ​amazon. ​com/ ​cloudformation. Click on the Create
Stack button.
On the next screen, we will upload our newly generated template, helloworld-2.
cf.template, by selecting Upload a template to Amazon S3, and then
browsing to select our helloworld-cf.template file.
We will then pick a stack name, such as HelloWorld.3.
After the stack name, we can see the Parameters section of our template in action.4.
CloudFormation lets us pick which SSH key-pair to use. Select your key-pair
using the drop-down menu.
On the next screen, we have to ability the add optional tags to our resources; in5.
the Advanced section, we can see how we can potentially integrate
CloudFormation and SNS, make decisions on what to do when a failure or a
timeout occurs, and even add a stack policy that lets you control who can edit the
stack, for example. For now, we will simply click on the Next button.

https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
http://bit.ly/1W6s96M
http://bit.ly/1W6s96M
http://bit.ly/1W6s96M
http://bit.ly/1W6s96M
http://bit.ly/1W6s96M
http://bit.ly/1W6s96M
http://bit.ly/1W6s96M
http://bit.ly/1W6s96M
http://bit.ly/1W6s96M
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation

Treating Your Infrastructure as Code Chapter 3

[72]

This leads us to the review screen where we can verify the information selected6.
and even estimate how much it will cost to run that stack. Click on the Create
button.
This will bring us to the main CloudFormation console. On that screen, we are7.
able to see how our resources are created in the Events tab.
When the creation of the template is complete, click on the Outputs tabs, which8.
will reveal the information we generated through the Outputs section of our
template, as shown here:

Click on the link in the value of the WebUrl key, which will open our Hello9.
World page.

Adding our template to a source control system
Now that we have tested our template and know it's working, we are going to commit it to
our source control system. This will allow us to keep track of changes, making it possible to
treat our infrastructure code at the same standard as our application code (more on this in
Chapter 5, Adding Continuous Integration and Continuous Deployment).

To do that, we will rely on Git. AWS has a service called AWS CodeCommit (http:/ ​/ ​amzn.
to/​2tKUj0n), which lets you manage Git repositories easily. However, because this service
is a lot less popular than GitHub (https:/ ​/​github. ​com), we will instead use the latter. If
you don't have an account for GitHub yet, start by signing up for the service—it's
completely free.

http://amzn.to/2tKUj0n
http://amzn.to/2tKUj0n
http://amzn.to/2tKUj0n
http://amzn.to/2tKUj0n
http://amzn.to/2tKUj0n
http://amzn.to/2tKUj0n
http://amzn.to/2tKUj0n
http://amzn.to/2tKUj0n
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/

Treating Your Infrastructure as Code Chapter 3

[73]

Once logged into GitHub, create a new repository for the CloudFormation template:

In your browser, open https:/ ​/​github. ​com/ ​new.1.
Call the new repository the following: EffectiveDevOpsTemplates.2.
Check the Initialize this repository with a README checkbox.3.
Finally, click on the Create repository button, as shown here:4.

Once your repository is created, you will want to clone it into your computer. For5.
that, you need to have Git installed (search on Google for instructions on how to
install Git for your operating system if you don't have it yet). For CentOS, you
just need to run yum -y install git, as the Git package is a part of Linux
distribution now:

$ git clone
https://github.com/<your_github_username>/EffectiveDevOpsTempla
tes

https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new

Treating Your Infrastructure as Code Chapter 3

[74]

Now that the repository is cloned, we will go into it and copy the template6.
previously created in the new GitHub repository:

$ cd EffectiveDevOpsTemplates
$ cp <path_to_helloworld_template>/helloworld-cf-template.py .

Finally, we will add and commit that new file to our project and push it to7.
GitHub as follows:

$ git add helloworld-cf-template.py
$ git commit -m "Adding helloworld Troposphere template"
$ git push

Monorepo versus multirepo: When managing your code, there are two
common approaches to organizing your code repositories. You can create
one repository for each project you have, or decide to put your entire
organization code under a single repository. We will choose the simplest
option for this book, which is one repository per project, but with the
recent releases of several open source projects, such as Bazel from Google,
Buck from Facebook, or Pants from Twitter, using a monorepo becomes a
very compelling option as it avoids juggling between multiple repositories
when making big changes to your infrastructure and services
simultaneously.

Updating our CloudFormation stack
One of the biggest benefits of using the CloudFormation template to manage our resources
is that the resources created from CloudFormation are tightly coupled to our stack. If we
want to make a change to our stack, we can update the template and apply the change to
our existing CloudFormation stack. Let's see how that works.

Updating our Python script
Our helloworld-cf-template.py script is fairly basic. At this point, we are only taking
advantage of Python as far as using the troposphere library to easily generate JSON
output in a more pleasant way than if we had to write it by hand. Of course, you might
already realize that we are barely scratching the surface of what we can do when we have
the ability to write scripts to create and manage infrastructures. The following section is a
simple example that will let us write a couple more lines of Python and illustrate the
concept of updating a CloudFormation stack, while taking advantage of more services and
external resources.

Treating Your Infrastructure as Code Chapter 3

[75]

The security groups we created in our previous example open up two ports to the world:
22 (SSH) and 3000 (the web application port). We could try to harden one aspect of our
security by only allowing our own IP to use SSH. This means changing the Classless Inter-
Domain Routing (CIDR) IP information in our Python script on the security group that
handles the port 22 traffic. There are a number of free services online that will let us know
what our public IP is. We are going to use one of these, available at https:/ ​/​api. ​ipify.
org. We can see it in action with a simple curl command:

$ curl https://api.ipify.org 54.164.95.231

We are going to take advantage of that service in our script. One of the reasons for using
this particular service is that it has been packaged into a Python library. You can read more
on this at https:/​/ ​github. ​com/ ​rdegges/ ​python- ​ipify. You can first install that library as
follows:

$ pip install ipify

In case you come across some pip related errors, as shown in the following code block, the
fix would be to downgrade the pip version, install ipify, and then upgrade the pip
version again to the latest version:

Cannot uninstall 'requests'. It is a distutils installed project and thus
we cannot accurately determine which files belong to it which would lead to
only a partial uninstall.

The preceding error can be fixed with the following commands:

$ pip install --upgrade --force-reinstall pip==9.0.3
$ pip install ipify
$ pip install --upgrade pip

Our script requires a CIDR. In order to convert our IP address to CIDR, we will also install
another library, called ipaddress. The main advantage of combining these libraries is that
we don't have to worry about handling IPv4 versus IPv6:

$ pip install ipaddress

Once those libraries are installed, reopen helloworld-cf-template.py in your editor. At
the top of our script, we are going to import the libraries, then, after the ApplicationPort
variable definition, we will define a new variable called PublicCidrIp and, combining the
two libraries mentioned previously, we can extract our CIDR as follows:

...
from ipaddress import ip_network
from ipify import get_ip
from troposphere import (

https://api.ipify.org/
https://api.ipify.org/
https://api.ipify.org/
https://api.ipify.org/
https://api.ipify.org/
https://api.ipify.org/
https://api.ipify.org/
https://api.ipify.org/
https://github.com/rdegges/python-ipify
https://github.com/rdegges/python-ipify
https://github.com/rdegges/python-ipify
https://github.com/rdegges/python-ipify
https://github.com/rdegges/python-ipify
https://github.com/rdegges/python-ipify
https://github.com/rdegges/python-ipify
https://github.com/rdegges/python-ipify
https://github.com/rdegges/python-ipify
https://github.com/rdegges/python-ipify
https://github.com/rdegges/python-ipify
https://github.com/rdegges/python-ipify
https://github.com/rdegges/python-ipify

Treating Your Infrastructure as Code Chapter 3

[76]

 Base64,
 ec2,
 GetAtt,
 Join,
 Output,
 Parameter,
 Ref,
 Template,
)

ApplicationPort = "3000"
PublicCidrIp = str(ip_network(get_ip()))
...

Lastly, we can change the CidrIp declaration for the SSH group rule as follows:

SecurityGroupIngress=[
 ec2.SecurityGroupRule(
 IpProtocol="tcp",
 FromPort="22",
 ToPort="22",
 CidrIp=PublicCidrIp,
),
....
]

We can now save these changes. The file created should look like the file at https:/ ​/
github.​com/​yogeshraheja/ ​Effective- ​DevOps- ​with- ​AWS/ ​blob/ ​master/ ​Chapter03/
EffectiveDevOpsTemplates/ ​helloworld- ​cf-​template. ​py.

We can now generate a new diff command to visually verify the change:

$ python helloworld-cf-template.py > helloworld-cf-v2.template
$ diff helloworld-cf-v2.template helloworld-cf.template
46c46
< "CidrIp": "54.164.95.231/32",

> "CidrIp": "0.0.0.0/0",
 91a92
>
$

As we can see, our CIDR IP is now correctly restricting the connection to our IP. We can
now apply that change.

https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template.py

Treating Your Infrastructure as Code Chapter 3

[77]

Updating our stack
Having generated the new JSON CloudFormation template, we can get in the
CloudFormation console and update the stack as follows:

Open the CloudFormation web console in your browser at https:/ ​/​console.1.
aws.​amazon. ​com/ ​cloudformation.
Select the HelloWorld stack that we created previously .2.
Click on the Actions drop-down menu, and then choose the Update Stack3.
option.
Choose the helloworld-cf-v2.template file by clicking the Browse button,4.
selecting the file, and then clicking on the Next button.
This brings us to the next screen that lets us update the details of our stack. In our5.
case, nothing has changed in the parameters, so we can continue by clicking on
the Next button.
In the next screen as well, since we simply want to see the effect of our IP change,6.
we can click on the Next button:

https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation

Treating Your Infrastructure as Code Chapter 3

[78]

This brings us to the review page, where, after a couple of seconds, we can see7.
CloudFormation giving us a preview of our change:

As you can see, the only change will be an update on the security group. Now8.
click on the Update button. This will bring us back to the CloudFormation
template, where we will see the change being applied.
In this particular example, AWS is able to simply update the security group to9.
take our change into account. We can verify the change by extracting the physical
ID from either the review page, or in the Resources tab back in the console:

 $ aws ec2 describe-security-groups \
 --group-names HelloWorld-SecurityGroup-1XTG3J074MXX

Change sets
Our template only includes a web server and a security group that makes updating
CloudFormation a fairly harmless operation. Furthermore, our change was fairly trivial, as
AWS could simply update the existing security group, as opposed to having to replace it.
As you can imagine, as the architecture becomes more and more complex, so does the
CloudFormation template. Depending on the update you want to perform, you might
encounter unexpected changes when you review the change set in the final step of
updating a template. AWS offers an alternative and safer way to update templates; this
feature is called change sets and is accessible from the CloudFormation console. Follow this
procedure in order to use change sets to review the updates, followed by execution:

Open the CloudFormation web console in your browser at https:/ ​/​console.1.
aws.​amazon. ​com/ ​cloudformation

Select the HelloWorld stack that we previously created2.
Click on the Actions drop-down menu and then click the Create Change Set For3.
Current Stack option

https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation

Treating Your Infrastructure as Code Chapter 3

[79]

From there, you can follow the same steps you took to create a simple update in the
Updating our stack section. The main difference happens on the last screen, shown here:

Unlike the regular stack updates, change sets have a strong emphasis on giving you the
ability to review a change before applying it. If you are satisfied with the changes
displayed, you have the ability to execute the update. Lastly, when using a change set to
update your stack, you can easily audit recent changes using the Change Sets tab of your
stack in the CloudFormation console. Finally, we will commit the changes to the
Troposphere script with the following command:

$ git commit -am "Only allow ssh from our local IP"
$ git push

Deleting our CloudFormation stack
In the last section, we saw how CloudFormation was able to update resources as we update
our template. The same goes when you want to remove a CloudFormation stack and its
resources. In a couple of clicks, you can delete your template and the various resources that
were created at launch time. From a best practice standpoint, it is highly recommended to
always use CloudFormation to make changes to your resources that were previously
initialized with CloudFormation, including when you don't need your stack any more.

Treating Your Infrastructure as Code Chapter 3

[80]

Deleting a stack is very simple, and you should proceed as follows:

Open the CloudFormation web console in your browser at https:/ ​/​console.1.
aws.​amazon. ​com/ ​cloudformation

Select the HelloWorld stack that we created previously 2.
Click on the Actions drop-down menu, and then click on the Delete Stack option3.

As always, you will be able to track completion in the Events tab:

CloudFormation has a unique place in the AWS ecosystem. As complex as they are, most
architectures can be described and managed through CloudFormation, allowing you to
keep tight control over your AWS resources creation. While CloudFormation does a great
job of managing the creation of resources, it doesn't always make things easy. This is
especially the case when you want to make simple changes on services such as EC2.
Because CloudFormation doesn't keep track of the state of the resources once they are
launched, the only reliable way to update an EC2 instance is, for example, to recreate a new
instance and swap it with the existing instance when it is ready. This creates somewhat of
an immutable design (assuming that you don't run any extra commands when the instance
is created). This may be an attractive architecture choice and, in some cases, it may take you
a long way, but you may wish to have the ability to have long-running instances where you
can, as this allows you to quickly and reliably make changes through a controlled pipeline,
like we did with CloudFormation. This is what configuration management systems excel at.

https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation

Treating Your Infrastructure as Code Chapter 3

[81]

Adding a configuration management system
Configuration management systems are probably the most well known components of
classic DevOps-driven organizations. Present in most companies (including in the
enterprise market), configuration management systems are quickly replacing home-grown
Shell, Python, and Perl scripts. There are many reasons why configuration management
systems should be a part of your environment. One reason is that they offer domain-
specific languages, which improves the readability of the code, and they are tailored to the
specific needs that arise in organizations when trying to configure systems. This results in a
lot of useful built-in features. Furthermore, the most common configuration management
tools have a big and active user community, which often means that you will be able to find
existing code for the system you are trying to automate.

Some of the most popular configuration management tools include Puppet, Chef,
SaltStack, and Ansible. While all of those options are fairly good, this book will focus on
Ansible, the easiest of the four tools mentioned. There are a number of key characteristics
that make Ansible a very popular and easy-to-use solution. Unlike other configuration
management systems, Ansible is built to work without a server, a daemon, or a database.
You can simply keep your code in source control and download it on the host whenever
you need to run it or use a push mechanism through SSH. The automation code you write
is in YAML static files, which makes the learning curve a lot less steep than some of the
other alternatives that use Ruby or specific DSL. In order to store our configuration files, we
will instead rely on our version control system (in our case, GitHub.)

AWS OpsWorks and its Chef integration: While Amazon hasn't really
released a service dedicated to configuration management, it supports
Chef and Puppet within the OpsWorks service. Unlike the services we
have explored so far in the book, OpsWorks aims at being a complete
application life cycle, including resource provisioning, configuration
management, application deployment, software updates, monitoring, and access
control. If you are willing to sacrifice some flexibility and control,
OpsWorks might be able to handle what you need in order to run a simple
web application. You can learn more about this at http:/ ​/​amzn. ​to/
1O8dTsn.

http://amzn.to/1O8dTsn
http://amzn.to/1O8dTsn
http://amzn.to/1O8dTsn
http://amzn.to/1O8dTsn
http://amzn.to/1O8dTsn
http://amzn.to/1O8dTsn
http://amzn.to/1O8dTsn
http://amzn.to/1O8dTsn

Treating Your Infrastructure as Code Chapter 3

[82]

Getting started with Ansible
Begin by installing Ansible on your computer. After doing this, create an EC2 instance that
will let us illustrate the basic usage of Ansible. After that, we will work on recreating the
Hello World Node.js application by creating and executing what Ansible calls a playbook.
We will then look at how Ansible can run in pull mode, which offers a new approach to
deploying changes. Finally, we will look at replacing the UserData block in our
CloudFormation template with Ansible to combine the benefits of both CloudFormation
and our configuration management system.

Ansible is fairly easy to use and well documented throughout the web.
This book will cover enough to get you started and up to speed on simple
configurations, such as the one we need in our examples. However, you
might be interested in spending a bit more time learning about Ansible in
order to be really efficient with it.

Installing Ansible on your computer
As mentioned before, Ansible is a really simple application with very few dependencies.
You can install Ansible on your computer using your operating system package manager,
or through pip, as Ansible is written in Python. We will be demonstrating all of the outputs
from a CentOS 7.x-based Linux distribution, but the process applies equally to all
supported platforms. (For more information, refer to the following link in order to find and
install Ansible binaries on your operating system: https:/ ​/ ​docs. ​ansible. ​com/ ​ansible/
latest/​installation_ ​guide/ ​intro_ ​installation. ​html#installing- ​the- ​control-
machine.) The following command will install a number of binaries, libraries, and Ansible
modules:

$ yum install ansible

Note that no daemon or database is installed at this point. This is because, by default,
Ansible relies on static files and SSH in order to run. At this point, we are ready to use
Ansible:

$ ansible --version

ansible 2.6.2
 config file = /etc/ansible/ansible.cfg
 configured module search path = [u'/root/.ansible/plugins/modules',
 u'/usr/share/ansible/plugins/modules']
 ansible python module location = /usr/lib/python2.7/site-
 packages/ansible
 executable location = /bin/ansible

https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#installing-the-control-machine

Treating Your Infrastructure as Code Chapter 3

[83]

 python version = 2.7.5 (default, Aug 4 2017, 00:39:18) [GCC 4.8.5
 20150623 (Red Hat 4.8.5-16)]

Creating our Ansible playground
To illustrate the basic functionalities of Ansible, we are going to start by re-launching
our Hello World application.

In the previous section, we saw how to create a stack using the web interface. As you
would expect, it is also possible to launch a stack using the command-line interface. Go into
the EffectiveDevOpsTemplates directory where you previously generated the
helloworld-cf-v2.template file and run the following command:

$ aws cloudformation create-stack \
 --capabilities CAPABILITY_IAM \
 --stack-name ansible \
 --template-body file://helloworld-cf-v2.template \
 --parameters ParameterKey=KeyPair,ParameterValue=EffectiveDevOpsAWS
{
 "StackId": "arn:aws:cloudformation:us-east-
 1:094507990803:stack/ansible/bb29cb10-9bbe-11e8-9ee4-500c20fefad2"
}

Our instance will soon be ready. We can now bootstrap our environment by creating a
workspace.

Creating our Ansible repository
With Ansible, our first goal is to be able to run commands on remote hosts. In order to do
that efficiently, we need to configure our local environment. Because we don't want to have
to redo those steps repeatedly, and because, ultimately, we want to source-control
everything, we will create a new Git repository. To do that, we will repeat the same steps
that we used when we created our EffectiveDevOpsTemplate repository.

Treating Your Infrastructure as Code Chapter 3

[84]

Once logged into GitHub, create a new repository for the CloudFormation template as
follows:

In your browser, open this link: https:/ ​/​github. ​com/ ​new.1.
Give the new repository the name ansible, as shown here:2.

Check the Initialize this repository with a README checkbox.3.
Finally, click on the Create repository button.4.
Once your repository is created, clone it onto your computer as follows:5.

$ git clone https://github.com/<your_github_username>/ansible

Now that the repository is cloned, we will go into this and copy the template 6.
created previously in the new GitHub repository:

$ cd ansible

https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new

Treating Your Infrastructure as Code Chapter 3

[85]

At its base, Ansible is a tool that can run commands remotely on the hosts in your
inventory. The inventory can be managed manually by creating an INI file where you list
all your hosts and/or IPs. It can also be managed dynamically if it can query an API. As you
can imagine, Ansible is perfectly capable of taking advantage of the AWS API in order to
fetch our inventory. To do so, we will download a Python script from the official Ansible
Git repository and give the execution permissions as follows:

$ curl -Lo ec2.py http://bit.ly/2v4SwE5
$ chmod +x ec2.py

Before we can start testing this Python script, we also need to provide a configuration for it.
Create a new file in the same directory and call it ec2.ini. In this file, we will put the
following configuration:

[ec2]
regions = all
regions_exclude = us-gov-west-1,cn-north-1 destination_variable =
public_dns_name vpc_destination_variable = ip_address route53 = False
cache_path = ~/.ansible/tmp cache_max_age = 300
rds = False

Once this is done, you can finally validate that the inventory is working by executing the
ec2.py script as follows:

$./ec2.py

This command should return a big nested JSON of the different resources found on your
AWS account. Among these is the public IP address of the EC2 instance that we created in
the previous section. The last step in our bootstrapping is to configure Ansible itself, such
that it knows how to get the inventory of our infrastructure; which user to use when it tries
to SSH into our instances; how to become a root; and so on. We will create a new file in the
same location and call it ansible.cfg. Its content should be as follows:

[defaults]
inventory = ./ec2.py
remote_user = ec2-user
become = True
become_method = sudo
become_user = root
nocows = 1

At that point, we are ready to start running Ansible commands. Ansible has a few
commands and some simple concepts. We will first look at the ansible command and the
concept of modules.

Treating Your Infrastructure as Code Chapter 3

[86]

Executing modules
The ansible command is the main command that drives the execution of the different
modules on the remote hosts. Modules are libraries that can be executed directly on remote
hosts. Ansible comes with a number of modules, as listed at http:/ ​/​bit. ​ly/​24rU0yk. In
addition to the standard modules, you can also create your own custom modules using
Python. These are the modules for most common use cases and technologies. The first
module we will see is a simple module called ping, which tries to connect to a host and
returns pong if the host is usable.

Module documentation can also be accessed using the ansible-doc
command, shown as follows:
$ ansible-doc <Module-Name>
$ ansible-doc ping

Here, ping is one of the Ansible module names.

When creating our Ansible playground section, we created a new EC2 instance using
CloudFormation. So far, we haven't looked up the IP address for this. Using Ansible and
the ping module, we will discover that information. As mentioned before, we need to be in
the ansible directory in order to run the ansible command. The command is as follows:

$ ansible --private-key ~/.ssh/EffectiveDevOpsAWS.pem ec2 -m ping
18.206.223.199 | SUCCESS => {
 "changed": false,
 "ping": "pong"
}

As we can see, Ansible was able to find our EC2 instance by querying the AWS EC2 API.
The newly created instance is now ready to be used.

Configuring SSH: As Ansible relies heavily on SSH, it is worth dedicating
a bit of time to configuring SSH through the $HOME/.ssh/config file.
For instance, you can use the following options to avoid having to specify
--private-key and -u in the preceding example:
IdentityFile ~/.ssh/EffectiveDevOpsAWS.pem
User ec2-user StrictHostKeyChecking no
PasswordAuthentication no
ForwardAgent yes

Once configured, you won't need to provide the --private-key option
to Ansible.

http://bit.ly/24rU0yk
http://bit.ly/24rU0yk
http://bit.ly/24rU0yk
http://bit.ly/24rU0yk
http://bit.ly/24rU0yk
http://bit.ly/24rU0yk
http://bit.ly/24rU0yk
http://bit.ly/24rU0yk
http://bit.ly/24rU0yk

Treating Your Infrastructure as Code Chapter 3

[87]

Running arbitrary commands
The ansible command can also be used to run arbitrary commands on remote servers. In
the following example, we will only run the df command on hosts matching
18.206.223.* for their public IP address (you will need to adapt this command to match
your instance public IP, as returned in the ping command in the previous example):

$ ansible --private-key ~/.ssh/EffectiveDevOpsAWS.pem '18.206.223.*' \
-a 'df -h'
18.206.223.199 | SUCCESS | rc=0 >>
Filesystem Size Used Avail Use% Mounted on
devtmpfs 484M 56K 484M 1% /dev
tmpfs 494M 0 494M 0% /dev/shm
/dev/xvda1 7.8G 1.1G 6.6G 15% /

Now that we have a basic understanding of how Ansible works, we can start combining
calls to different Ansible modules to put in place for automation. This is called creating a
playbook.

Ansible playbooks
Playbooks are the files that contain Ansible's configuration, deployment, and orchestration
language. By creating those files, you sequentially define the state of your systems, from the
OS configuration down to application deployment and monitoring. Ansible uses YAML,
which is fairly easy to read. For that reason, an easy way to get started with
Ansible, similarly to what we did with CloudFormation, is to look at some examples inside
the official Ansible GitHub repository, available at https:/ ​/​github. ​com/ ​ansible/ ​ansible-
examples. Alternatively, you can even look in my repository, which makes it fairly simple
and easy to understand playbooks, and which can be found at https:/ ​/​github. ​com/
yogeshraheja/​Automation- ​with- ​Ansible- ​By-​Yogesh- ​Raheja for the book Automation with
Ansible.

Creating a playbook
Ansible provides a number of best practices on their website, available at http:/ ​/​bit. ​ly/
1ZqdcLH. One emphasis in their documentation is on using roles. One crucial way to
organize your playbook content is Ansible's roles organization feature, which is
documented as part of the main playbooks page. Creating roles is a key component in
making Ansible code sharable and modular enough so that you can reuse your code across
services and playbooks. To demonstrate a proper structure, we are going to create a role
that our playbook will then call.

https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://github.com/ansible/ansible-examples
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
https://github.com/yogeshraheja/Automation-with-Ansible-By-Yogesh-Raheja
http://bit.ly/1ZqdcLH
http://bit.ly/1ZqdcLH
http://bit.ly/1ZqdcLH
http://bit.ly/1ZqdcLH
http://bit.ly/1ZqdcLH
http://bit.ly/1ZqdcLH
http://bit.ly/1ZqdcLH
http://bit.ly/1ZqdcLH

Treating Your Infrastructure as Code Chapter 3

[88]

Creating roles to deploy and start our web application
We are going to use roles to recreate the Hello World stack we made previously using the
UserData block of CloudFormation. If you recall, the UserData section looked roughly
like this:

yum install --enablerepo=epel -y nodejs
wget http://bit.ly/2vESNuc -O /home/ec2-user/helloworld.js
wget http://bit.ly/2vVvT18 -O /etc/init/helloworld.conf start helloworld

You will notice three different types of operation in the preceding script. We are first
preparing the system to run our application. To do that, in our example, we are simply
installing a Node.js package. Next, we copy the different resources needed to run the
application. In our case, this is the JavaScript code and the upstart configuration. Finally,
we start the service. As always when doing programming, it is important to keep the code
DRY. If deploying and starting our application is very unique to our Hello World project,
installing Node.js likely isn't. In order to make the installation of Node.js a reusable piece of
code, we are going to create two roles—one to install Node.js, and one to deploy and start
the Hello World application.

By default, Ansible expects to see roles inside a roles directory at the root of the Ansible
repository. So, the first thing we need to do is to go inside the ansible directory that we
created under the Creating our Ansible repository section. Create the roles directory inside,
and cd the following into it:

$ mkdir roles
$ cd roles

We can now create our roles. Ansible has an ansible-galaxy command that can be used
to initialize the creation of a role. The first role we will look into is the role that will install
Node.js:

$ ansible-galaxy init nodejs
- nodejs was created successfully

As briefly mentioned, Ansible, like most other configuration management
systems, has a strong support community who share roles online
through https://galaxy.ansible.com/. In addition to using the
ansible-galaxy command to create the skeleton for new roles, you can
also use ansible-galaxy to import and install community supported
roles.

https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/

Treating Your Infrastructure as Code Chapter 3

[89]

This creates a nodejs directory, and a number of sub-directories that will let us structure
the different sections of our role. We will enter this directory with the following command:

$ cd nodejs

The most important directory inside the nodejs directory is the one called tasks. When
Ansible executes a playbook, it runs the code present in the tasks/main.yml file. Open
the file with your favorite text editor.

When you first open tasks/main.yml, you will see the following:

tasks file for nodejs

The goal of the nodejs role is to install Node.js and npm. To do so, we will proceed
similarly to how we did with the UserData script, and use the yum command to perform
those tasks.

When writing a task in Ansible, you sequence a number of calls to various Ansible
modules. The first module we are going to look at is a wrapper around the yum command.
The documentation on it is available at http:/ ​/​bit. ​ly/​28joDLe. This will let us install our
packages. We are also going to introduce the concept of loops. Since we have two packages
to install, we will want to call the yum module twice. We will use the
operator's with_items. All Ansible codes are written in YAML, which is very easy to start
with and use. After the initial three dashes and comments, which indicate the start of a
YAML file, we are going to call the yum module in order to install our packages:

tasks file for nodejs

name: Installing node and npm yum:
name: "{{ item }}" enablerepo: epel state: installed
with_items:
nodejs
npm

Whenever Ansible runs that playbook, it will look at packages installed on the system. If it
doesn't find the nodejs or npm packages, it will install them.

http://bit.ly/28joDLe
http://bit.ly/28joDLe
http://bit.ly/28joDLe
http://bit.ly/28joDLe
http://bit.ly/28joDLe
http://bit.ly/28joDLe
http://bit.ly/28joDLe
http://bit.ly/28joDLe
http://bit.ly/28joDLe

Treating Your Infrastructure as Code Chapter 3

[90]

Your file should look like the example available at https:/ ​/​github. ​com/ ​yogeshraheja/
Effective-​DevOps- ​with- ​AWS/ ​blob/ ​master/ ​Chapter03/ ​ansible/ ​roles/ ​nodejs/ ​tasks/
main.​yml. This first role is complete. For the purpose of this book, we are keeping the role
very simple, but you can imagine how, in a more production-type environment, you might
have a role that will install specific versions of Node.js and npm, fetch the binaries directly
from https:/​/​nodejs. ​org/ ​en/ ​, and maybe even install specific dependencies. Our next
role will be dedicated to deploying and starting the Hello World application that we built
previously. We are going to go one directory up back into the roles directory, and call
ansible-galaxy one more time:

$ cd ..
$ ansible-galaxy init helloworld
- helloworld was created successfully

Like before, we will now go inside the newly created helloworld directory as follows:

$ cd helloworld

This time, we will explore some of the other directories present. One of the sub-directories
that was created when we ran the ansible-galaxy command was the directory called
files. Adding files to that directory will give us the ability to copy files on the remote
hosts. To do so, we are first going to download our two files in this directory as follows:

$ wget http://bit.ly/2vESNuc -O files/helloworld.js
$ wget http://bit.ly/2vVvT18 -O files/helloworld.conf

We can now use task files to perform the copy on the remote system. Open the
tasks/main.yml file and, after the initial three dashes and comments, add the following:

tasks file for helloworld
- name: Copying the application file copy:
src: helloworld.js dest: /home/ec2-user/ owner: ec2-user group: ec2-user
mode: 0644
notify: restart helloworld

We are taking advantage of the copy module documented at http://bit.ly/1WBv08E to
copy our application file in the home directory of the ec2-user. On the last line of that call,
we add a notify option at the end (note how the notify statement is aligned with the call
to the copy module). Notify actions are triggers that can be added at the end of each block
of tasks in a playbook. In this example, we are telling Ansible to call the restart
helloworld directive if the file helloworld.js changed, and not to perform a restart if
nothing is changed in the code (we will define how to do a restart of the helloworld
application in a different file a bit later).

https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/nodejs/tasks/main.yml
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
http://bit.ly/1WBv08E
http://bit.ly/1WBv08E
http://bit.ly/1WBv08E
http://bit.ly/1WBv08E
http://bit.ly/1WBv08E
http://bit.ly/1WBv08E
http://bit.ly/1WBv08E
http://bit.ly/1WBv08E
http://bit.ly/1WBv08E
http://bit.ly/1WBv08E
http://bit.ly/1WBv08E
http://bit.ly/1WBv08E
http://bit.ly/1WBv08E
http://bit.ly/1WBv08E

Treating Your Infrastructure as Code Chapter 3

[91]

One of the big differences between CloudFormation and Ansible is that Ansible is expected
to run multiple times throughout the lifetime of your systems. A lot of the functionalities
built into Ansible are optimized for long-running instances. As such, the notify option
makes it easy to trigger events when a system changes state. Similarly, Ansible will know to
stop the execution when an error encountered prevents outages as far as possible.

Now that we have copied our application file, we can add our second file, the upstart
script. After the previous call to copy the helloword.js file, we are going to add the
following call:

- name: Copying the upstart file copy:
src: helloworld.conf
dest: /etc/init/helloworld.conf owner: root
group: root mode: 0644

The last task we need to perform is to start our service. We will use the service module
for that. The module documentation is available at http:/ ​/​bit. ​ly/​22I7QNH:

- name: Starting the HelloWorld node service service:
name: helloworld state: started

Our task file is now completed. You should end up with something resembling the sample
available
at https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapte
r03/ansible/roles/helloworld/tasks/main.yml.

Having finished our task file, we are going to move on to the next file, which will give
Ansible knowledge of how and when to restart helloworld, as called out in the notify
parameter of our task. These types of interaction are defined in the handler section of the
role. We are going to edit the handlers/main.yml file. Here too, we are going to use the
service module. The following is a comment:

handlers file for helloworld

Add the following to the main.yml file:

- name: restart helloworld service:
name: helloworld state: restarted

http://bit.ly/22I7QNH
http://bit.ly/22I7QNH
http://bit.ly/22I7QNH
http://bit.ly/22I7QNH
http://bit.ly/22I7QNH
http://bit.ly/22I7QNH
http://bit.ly/22I7QNH
http://bit.ly/22I7QNH
http://bit.ly/22I7QNH
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/tasks/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/tasks/main.yml

Treating Your Infrastructure as Code Chapter 3

[92]

No surprises here; we are using the same module we previously used to manage the
service. We need one more step in our role. In order for the helloworld role to work, the
system needs to have Node.js installed. Ansible supports the concept of role dependencies.
We can explicitly tell that our helloworld role depends on the nodejs role we previously
created, so that, if the helloworld role is executed, it will first call the nodejs role and
install the necessary requirements to run the app.

Open the meta/main.yml file. This file has two sections. The first one, under
galaxy_info, lets you fill in the information on the role you are building. If you wish, you
can ultimately publish your role on GitHub and link it back into ansible-galaxy to share
your creation with the Ansible community. The second section at the bottom of the file is
called dependencies and this is the one we want to edit to make sure that nodejs is
present on the system prior to starting our application. Remove the square brackets ([]) and
add an entry to call nodejs as follows:

dependencies:
- nodejs

Your file should look like the sample available at https:/ ​/​github. ​com/ ​yogeshraheja/
Effective-​DevOps- ​with- ​AWS/ ​blob/ ​master/ ​Chapter03/ ​ansible/ ​roles/ ​helloworld/ ​meta/
main.​yml. This concludes the creation of the code for the role. From a documentation
standpoint, it is good practice to also edit README.md. Once done, we can move on to
creating a playbook file that will reference our newly created role.

Creating the playbook file
At the top level of our Ansible repository (two directories up from the helloworld role),
we are going to create a new file called helloworld.yml. In this file, we are going to add
the following:

- hosts: "{{ target | default('localhost') }}" become: yes
roles:
- helloworld

This basically tells Ansible to execute the helloworld role onto the hosts listed in the
target variable, or localhost if the target isn't defined. The become option will tell
Ansible to execute the role with elevated privileges (in our case, sudo). At this point, your
Ansible repository should look like the example at https:/ ​/​github. ​com/ ​yogeshraheja/
Effective-​DevOps- ​with- ​AWS/ ​tree/ ​master/ ​Chapter03/ ​ansible. We are now ready to test
our playbook.

https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/blob/master/Chapter03/ansible/roles/helloworld/meta/main.yml
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter03/ansible

Treating Your Infrastructure as Code Chapter 3

[93]

Note that in practice, on a bigger scale, the roles sections could include more than a single
role. If you deploy multiple applications or services to a target, you will often see playbook
looking like this. In later chapters, we will see more examples of this:

hosts: webservers roles:
foo
bar
baz

Executing a playbook
The execution of playbooks is done using the dedicated ansible-playbook command.
This command relies on the same Ansible configuration file that we used previously, and
therefore, we want to run the command from the root of our Ansible repository. The syntax
of the command is as follows:

ansible-playbook <playbook.yml> [options]

We will first run the following command (adapt the value of the private-key option):

$ ansible-playbook helloworld.yml \
 --private-key ~/.ssh/EffectiveDevOpsAWS.pem \
 -e target=ec2 \
 --list-hosts

The option -e (or --extra-vars) allows us to pass extra options for execution. In our case,
we are defining the target variable (which we declared in the hosts section of our
playbook) to be equal to ec2. This first ansible-playbook command will tell Ansible to
target all EC2 instances. The --list-hosts option will make Ansible return a list of hosts
that match the hosts criteria, but it won't actually run anything against those hosts. The
output of the command will be something like this:

playbook: helloworld.yml
 play #1 (ec2): ec2 TAGS:[]
 pattern: [u'ec2']
 hosts (1):
 18.206.223.199

Treating Your Infrastructure as Code Chapter 3

[94]

The list-hosts option is a good way to verify your inventory and, on more complex
playbooks with more specific host values, to verify which hosts would run actual
playbooks, allowing you to verify that they are targeting the hosts you expect.

We now know which hosts will be impacted if we were to use this value for the target. The
next thing we want to check is what will happen if we run our playbook. The ansible-
playbook command has an option -C (or --check) that will try to predict the change a
given playbook will make; this is sometimes also called dry-run mode in Ansible:

$ ansible-playbook helloworld.yml \
 --private-key ~/.ssh/EffectiveDevOpsAWS.pem \
 -e target=18.206.223.199 \
 --check

PLAY [18.206.223.199]

TASK [Gathering Facts]

**
ok: [18.206.223.199]

TASK [nodejs : Installing node and npm]

changed: [18.206.223.199] => (item=[u'nodejs', u'npm'])

TASK [helloworld : Copying the application file]

**
changed: [18.206.223.199]

TASK [helloworld : Copying the upstart file]

**
changed: [18.206.223.199]

TASK [helloworld : Starting the HelloWorld node service]

changed: [18.206.223.199]

RUNNING HANDLER [helloworld : restart helloworld]

changed: [18.206.223.199]

Treating Your Infrastructure as Code Chapter 3

[95]

PLAY RECAP

18.206.223.199 : ok=6 changed=5 unreachable=0 failed=0

Running that command will execute our playbook in dry-run mode. Through that mode,
we can ensure that the proper tasks will be executed. Because we are in dry-run mode,
some of the modules don't really find everything they need in order to simulate how they
would run. This is the reason why we sometimes see service start errors at the end of the
service module. If you see this, then don't worry, it will get executed when the packages are
installed in the real-mode. Having verified the hosts and code, we can finally run
ansible-playbook and execute our changes in a real-mode as follows:

$ ansible-playbook helloworld.yml \
 --private-key ~/.ssh/EffectiveDevOpsAWS.pem \
 -e target=18.206.223.199

The output is very similar to the --check command, except that this time, the execution is
performed in real-mode. Our application is now installed and configured, and we can
verify that it is running correctly as follows:

$ curl 18.206.223.199:3000
Hello World

We were able to reproduce what we did previously with CloudFormation using Ansible.
Now that we have tested our first playbook, we can commit our changes. We will do that in
two commits to break down the initialization of the repository and the creation of the role.
From the root of your Ansible repository, run the following commands:

$ git add ansible.cfg ec2.ini ec2.py
$ git commit -m "Configuring ansible to work with EC2"
$ git add roles helloworld.yml
$ git commit -m "Adding role for nodejs and helloworld"
$ git push

Treating Your Infrastructure as Code Chapter 3

[96]

Canary-testing changes
One of the great benefits of using Ansible to manage services is that you can easily make
changes to your code and quickly push the change. In some situations where you have a
big fleet of services managed by Ansible, you may wish to push out a change only to a
single host to make sure things are how you expect them to be. This is often called canary
testing. With Ansible, doing this is really easy. To illustrate that, we are going to open
the roles/helloworld/files/helloworld.js file and then simply change the response
on line 11 from Hello World to Hello World, Welcome again:

// Send the response body as "Hello World"
response.end('Hello World, Welcome again\n');
}).listen(3000);

Save the file, and then run ansible-playbook again. Do this with the --check option
first:

$ ansible-playbook helloworld.yml \
 --private-key ~/.ssh/EffectiveDevOpsAWS.pem \
 -e target=18.206.223.199 \
 --check

This time, Ansible detects only two changes. The first one overwrites the application file
and the second one executes the notify statement, which means restarting the application.
Seeing that it is what we expect, we can run our playbook without the --check options:

$ ansible-playbook helloworld.yml \
 --private-key ~/.ssh/EffectiveDevOpsAWS.pem \
 -e target=18.206.223.199

This produces the same output as in our previous command, but this time the change is in
effect:

$ curl 18.206.223.199:3000
Hello World, Welcome again

Our change was very simple, but if we had done this by updating our CloudFormation
template, CloudFormation would have had to create a new EC2 instance to make it happen.
Here, we simply updated the code of the application and pushed it through Ansible on the
target host. We will now revert this change locally in Git as follows:

$ git checkout roles/helloworld/files/helloworld.js

Treating Your Infrastructure as Code Chapter 3

[97]

We will demonstrate this by removing the changes from the EC2 instance as we illustrate a
new concept. In the next section, we will be running Ansible asynchronously in a reverse
mode (in this case, in pull mode).

The sooner, the better: Being able to push changes in seconds instead of
minutes may seem like a small win, but it isn't. Speed matters; it is what
sets apart successful start-ups and technologies. The ability to deploy new
servers in minutes instead of days is a big factor in cloud adoption.
Similarly, the recent success of containers, as we will see later in the book,
is also likely driven by the fact that it only takes seconds to run a new
container, while it still takes minutes to start a virtual server.

Running Ansible in pull mode
Having the ability to instantly make a change like we just did is a very valuable feature. We
could easily and synchronously push the new code out and verify that the Ansible
execution was successful. On a larger scale, while being able to change anything across a
fleet of servers remains as valuable as in our example, it is also sometimes a bit trickier. The
risk with making changes that way is that you have to be very disciplined with regards to
not pushing changes to only a subset of hosts, and forgetting other hosts that are also
sharing the role that just got updated. Otherwise, the increasing number of changes
between the Ansible configuration repository and the running servers quickly makes
running Ansible a riskier operation. For those situations, it is usually preferable to use a
pull mechanism that will automatically pull in the changes. Of course, you don't have to
choose one or the other—it is easy to configure both push and pull mechanisms to deploy
changes. Ansible provides a command called ansible-pull, which, as its name suggests,
makes it easy to run Ansible in pull mode. The ansible-pull command works very much
like ansible-playbook, except that it starts by pulling your code from your GitHub
repository.

Treating Your Infrastructure as Code Chapter 3

[98]

Installing Git and Ansible on our EC2 instance
Since we need to be able to run Ansible and Git remotely, we first need to install those
packages on our EC2 instance. For now, we will do that by manually installing those two
packages. We will implement a reusable solution later in this chapter. Since Ansible is a
perfect tool for running remote commands and this has a module to manage most common
requirements such as installing packages, instead of logging in on the host through ssh and
running some commands, we are going to use Ansible to push out those changes. We will
install Git and Ansible from the EPEL yum repository. This will require running commands
as root, which you can do with the help of the become option. After adapting the IP
address of your EC2 instance, run the following commands:

$ ansible '18.206.223.199' \
 --private-key ~/.ssh/EffectiveDevOpsAWS.pem \
 --become \
 -m yum -a 'name=git enablerepo=epel state=installed'

$ ansible '18.206.223.199' \
 --private-key ~/.ssh/EffectiveDevOpsAWS.pem \
 --become \
 -m yum -a 'name=ansible enablerepo=epel state=installed'

With ansible-pull, our goal is for Ansible to apply the change locally. We can make a
change to our Ansible repository in order to optimize this operation.

Configuring Ansible to run on localhost
Since ansible-pull relies on Git to locally clone the repository and execute it, we don't
need the execution to happen over SSH. Go to the root directory of your Ansible
repository to create a new file. The file should be called localhost and it should contain
the following:

[localhost]
localhost ansible_connection=local

Essentially, what we are doing is creating a static inventory and asking ansible to run
commands in local mode (as opposed to using SSH) when the target host is localhost. We
can save the changes and commit the new file to GitHub as follows:

$ git add localhost
$ git commit -m "Adding localhost inventory"
$ git push

Treating Your Infrastructure as Code Chapter 3

[99]

Adding a cron job to our EC2 instance
We are now going to create a cron tab entry to periodically call ansible-pull. Here, too,
we will rely on Ansible to create our cron job remotely. Run the following command by
adapting the IP address:

$ ansible '18.206.223.199' \
--private-key ~/.ssh/EffectiveDevOpsAWS.pem \
-m cron -a 'name=ansible-pull minute="*/10" job="/usr/bin/ansible-pull -U
https://github.com/<your_username>/ansible helloworld.yml -i localhost --
sleep 60"'

In the preceding command, we are telling Ansible to use the cron module targeting our
ec2 instance. Here, we are providing a name that Ansible will use to track the cron job over
time, telling cron to run the job every 10 minutes, followed by the command to execute
and its parameters. The parameters we are giving to ansible-pull are the GitHub URL of
our branch, the inventory file we just added to our repository, and a sleep parameter that
will make the command start sometime between 1 and 60 seconds after the call started.
This will help spread out the load on the network and prevent all node services from
restarting at the same time if we have more than one server. After waiting for a bit, we can
verify that our change is effective through the following:

$ curl 54.175.86.38:3000
Hello World

After manually integrating Ansible to the EC2 instance we created using CloudFormation,
we can now formalize the procedure.

Integrating Ansible with CloudFormation
While there are different strategies to integrate Ansible to CloudFormation, in our situation
there is an obvious path to take. We are going to take advantage of the UserData field, and
initialize Ansible through the ansible-pull command.

We are now going to start the Troposphere script that we created earlier in this chapter. We
will duplicate this and call the new script as follows:

ansiblebase-cf-template.py.

Treating Your Infrastructure as Code Chapter 3

[100]

Go to your template repository and duplicate the previous template as follows:

$ cd EffectiveDevOpsTemplates
$ cp helloworld-cf-template.py ansiblebase-cf-template.py

Next, open the ansiblebase-cf-template.py script with your editor. To keep the script
readable, we will first define several variables. Before the declaration of the application
port, we will define an application name:

ApplicationName = "helloworld"
ApplicationPort = "3000"

We will also set a number of constants around the GitHub information. Replace the value
of GithubAccount with your GitHub username or GitHub organization name as follows:

ApplicationPort = "3000"

GithubAccount = "EffectiveDevOpsWithAWS"
GithubAnsibleURL = "https://github.com/{}/ansible".format(GithubAccount)

After the definition of GithubAnsibleURL, we are going to create one more variable that
will contain the command line we want to execute in order to configure the host through
Ansible. We will call ansible-pull and use the GithubAnsibleURL and
ApplicationName variables that we just defined. This is what this looks like:

AnsiblePullCmd = \
"/usr/bin/ansible-pull -U {} {}.yml -i localhost".format(GithubAnsibleURL,
ApplicationName
)

We are now going to update the UserData block. Instead of installing Node.js,
downloading our application files and starting the service, we will change this block to
install git and ansible, execute the command contained in the AnsiblePullCmd
variable, and finally create a cron job to re-execute that command every 10 minutes. Delete
the previous ud variable definition and replace it with the following:

ud = Base64(Join('\n', ["#!/bin/bash",
"yum install --enablerepo=epel -y git", "pip install ansible",
AnsiblePullCmd,
"echo '*/10 * * * * {}' > /etc/cron.d/ansible- pull".format(AnsiblePullCmd)
]))

Treating Your Infrastructure as Code Chapter 3

[101]

We can now save our file, use it to create our JSON template, and test it. Your new script
should look like the sample at https:/ ​/​github. ​com/ ​yogeshraheja/
EffectiveDevOpsTemplates/ ​blob/ ​master/ ​ansiblebase- ​cf- ​template. ​py:

$ python ansiblebase-cf-template.py > ansiblebase.template
$ aws cloudformation update-stack \
 --stack-name ansible \
 --template-body file://ansiblebase.template \
 --parameters ParameterKey=KeyPair,ParameterValue=EffectiveDevOpsAWS
{
"StackId": "arn:aws:cloudformation:us-
east-1:511912822958:stack/HelloWorld/ef2c3250-6428-11e7-a67b-50d501eed2b3"
}

You can even create a new stack yourself. For example, let's say helloworld, instead of
changing the existing ansible stack. In this case, you need to run the following command
for stack creation:

$ aws cloudformation create-stack \
 --stack-name helloworld \
 --template-body file://ansiblebase.template \
 --parameters ParameterKey=KeyPair,ParameterValue=EffectiveDevOpsAWS
{
 "StackId": "arn:aws:cloudformation:us-east-
 1:094507990803:stack/helloworld/5959e7c0-9c6e-11e8-b47f-
 50d5cd26c2d2"
}

We can now wait until the execution is complete:

$ aws cloudformation wait stack-update-complete \
 --stack-name ansible

Now that the stack creation is complete, we can query CloudFormation to get the output of
the stack and, more specifically, its public IP address:

$ aws cloudformation describe-stacks \
 --stack-name ansible \
 --query 'Stacks[0].Outputs[0]'
 {
 "Description": "Public IP of our instance.",
 "OutputKey": "InstancePublicIp",
 "OutputValue": "35.174.138.51"
 }

https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ansiblebase-cf-template.py

Treating Your Infrastructure as Code Chapter 3

[102]

And finally, we can verify that our server is up and running as follows:

$ curl 35.174.138.51:3000
Hello World

We can now commit our newly created troposphere script to our GitHub repository as
follows:

EffectiveDevOpsTemplates repository:
$ git add ansiblebase-cf-template.py
$ git commit -m "Adding a Troposphere script to create a stack that relies
on Ansible to manage our application"
$ git push

We now have a complete solution for efficiently managing our infrastructure using code.
We demonstrated this through a very simple example. However, as you can imagine,
everything is applicable to bigger infrastructure with a greater number of services. This
section is almost over; we can now delete our stack to free up the resources that we are
currently consuming. In the earlier part of the chapter, we did this using the web interface.
As you can imagine, this can also be done easily using the following command-line
interface:

$ aws cloudformation delete-stack --stack-name ansible

Note that if you have created a new helloworld stack for this example, then remove that
too using the following command:

aws cloudformation delete-stack --stack-name helloworld

Monitoring
As you probably know by now, monitoring and measuring everything is an important
aspect of a DevOps-driven organization. On the internet, you will find a number of well
written blog posts and examples of how to efficiently monitor CloudFormation and
Ansible. When working on monitoring CloudFormation, you will want to subscribe to an
SNS topic for your stack creation to receive all events relating to your stack life cycle. It is
also important to look out for CloudFormation stack creation failure. Ansible has a system
of callbacks that will also give you a way to create some automation around the Ansible
execution. Similarly to CloudFormation, receiving notifications when Ansible fails to run is
important (it's even more important when Ansible is configured to run in pull mode).

Treating Your Infrastructure as Code Chapter 3

[103]

Summary
In this chapter, we learned how to efficiently manage infrastructure by using code. We also
explored CloudFormation, an AWS service that allows you to create templates for your
different services in order to describe each AWS component used, as well as its
configuration. In order to simplify the creation of those templates, we looked at a couple of
options, ranging from CloudFormation designer, a tool with a graphic user interface, to
Troposphere, a Python library. After that, we looked at configuration management, one of
the most well-known aspects of the DevOps philosophy. To illustrate this topic, we looked
at Ansible, one of the most popular configuration management solutions. We first looked at
the different ways to use Ansible commands and ran simple commands against our
infrastructure. We then looked at how to create playbooks, which allowed us to orchestrate
the different steps to deploy our web server. Finally, we looked at how Ansible can be used
in pull mode, which usually makes more sense when managing sizable infrastructure.

We now have a good production environment that is ready to host any application, and we
have seen how to architect it and monitor our servers. In Chapter 5, Adding Continuous
Integration and Continuous Deployment, we will continue to use CloudFormation and
Ansible, but in the context of software delivery: we will learn how to put in place
continuous integration testing and continuous deployment.

Questions
What does IaC stand for?1.
How can a simple Hello World application be deployed using the AWS2.
CloudFormation Console?
List some of the popular SCM offerings. How is a GitHub account useful for3.
source control management?
Install Git (Local Version Control) package, clone your GitHub global repository4.
created in the previous example and push your helloworld-cf.template to
your GitHub repository.
What is Ansible? List some of its important characteristics.5.

Treating Your Infrastructure as Code Chapter 3

[104]

Further reading
In order to explore this topic in more detail, please visit the following links:

AWS CloudFormation details at https:/ ​/ ​console. ​aws. ​amazon. ​com/
cloudformation

Troposphere – Python library to create AWS CloudFormation descriptions at https:/ ​/
github.​com/ ​cloudtools/ ​troposphere

Ansible configuration management tool at https:/ ​/​docs. ​ansible. ​com/ ​ansible

https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://github.com/cloudtools/troposphere
https://github.com/cloudtools/troposphere
https://github.com/cloudtools/troposphere
https://github.com/cloudtools/troposphere
https://github.com/cloudtools/troposphere
https://github.com/cloudtools/troposphere
https://github.com/cloudtools/troposphere
https://github.com/cloudtools/troposphere
https://github.com/cloudtools/troposphere
https://github.com/cloudtools/troposphere
https://docs.ansible.com/ansible
https://docs.ansible.com/ansible
https://docs.ansible.com/ansible
https://docs.ansible.com/ansible
https://docs.ansible.com/ansible
https://docs.ansible.com/ansible
https://docs.ansible.com/ansible
https://docs.ansible.com/ansible
https://docs.ansible.com/ansible
https://docs.ansible.com/ansible
https://docs.ansible.com/ansible

4
Infrastructure as Code with

Terraform
In Chapter 3, Treating Your Infrastructure as Code, we familiarized ourselves with AWS
CloudFormation and Ansible. We created a CloudFormation template to create an EC2
environment and deployed a HelloWorld web application on it. Taking a step further in the
world of automation, we then introduced the Ansible configuration management tool. We
learnt about how Ansible takes care of application deployment and orchestration so that
CloudFormation templates remain neat and confined until provisioning. This approach is
well accepted by the tech giants as far as the AWS cloud is concerned, but when we talk
about heterogeneous environments where we have multiple cloud platforms such as AWS,
Azure, Google cloud, OpenStack, and VMware then CloudFormation service, as it is
a AWS-native service, is not applicable.

Hence, we need an alternative solution that will not only help us to provision compute
services but also other cloud native services without much effort. Obviously, this is possible
using complex, unmanageable scripts in imperative way, but we'd end up making the
environments even more complex. We need a solution that will keep the heterogeneous
environment simple and manageable, with a declarative approach that follows the
recommended guidelines regarding using Infrastructure as Code (IaC). This solution
is Terraform, a tool for building, changing, and versioning infrastructure safely and
efficiently.

In this chapter, we will cover the following topics:

What is Terraform?
Creating a Terraform repository
Integrating AWS, Terraform, and Ansible

Infrastructure as Code with Terraform Chapter 4

[106]

Technical requirements
The technical requirements are as follows:

AWS Console
Git
GitHub
Terraform
Ansible

The following websites provide further information about Terraform:

Terraform official website for product information: https:/ ​/​terraform. ​io

Terraform supported provide details: https:/ ​/ ​www.​terraform. ​io/ ​docs/
providers/ ​

HashiCorp configuration language details: https:/ ​/​github. ​com/​hashicorp/ ​hcl

GitHub link for Terraform template for the first project: https:/ ​/​raw.
githubusercontent. ​com/ ​yogeshraheja/ ​EffectiveDevOpsTerraform/ ​master/
firstproject/ ​ec2. ​tf

GitHub link for Terraform template for the second project: https:/ ​/ ​raw.
githubusercontent. ​com/ ​yogeshraheja/ ​EffectiveDevOpsTerraform/ ​master/
secondproject/ ​helloworldec2. ​tf

Github link for Terraform template for the third project: https:/ ​/​raw.
githubusercontent. ​com/ ​yogeshraheja/ ​EffectiveDevOpsTerraform/ ​master/
thirdproject/ ​helloworldansible. ​tf

Github link for Terraform template for the fourth project: https:/ ​/​raw.
githubusercontent. ​com/ ​yogeshraheja/ ​EffectiveDevOpsTerraform/ ​master/
fourthproject/ ​helloworldansiblepull. ​tf

What is Terraform?
Terraform is an open-source, IaC software that was released in July 2014 by a company
named HashiCorp. This is the same company that produced tools including Vagrant,
Packer, and Vault. Terraform was released under the Mozilla Public License (MPL)
version 2.0. The source code for Terraform is available on GitHub at https:/ ​/​github. ​com/
hashicorp/​terraform. Anyone can use this source code and contribute to Terraform's
development.

https://terraform.io
https://terraform.io
https://terraform.io
https://terraform.io
https://terraform.io
https://terraform.io
https://terraform.io
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/
https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://github.com/hashicorp/terraform
https://github.com/hashicorp/terraform
https://github.com/hashicorp/terraform
https://github.com/hashicorp/terraform
https://github.com/hashicorp/terraform
https://github.com/hashicorp/terraform
https://github.com/hashicorp/terraform
https://github.com/hashicorp/terraform
https://github.com/hashicorp/terraform
https://github.com/hashicorp/terraform

Infrastructure as Code with Terraform Chapter 4

[107]

Terraform allow users to define a datacenter infrastructure in a high-level configuration
language called HashiCorp Configuration Language (HCL). HashiCorp also provide the
Enterprise version of Terraform, which comes with added support. There are lot of features
available with Terraform, which makes it a perfect high-level infrastructure orchestration
tool. It has the following features:

It has very easy and minimal installation steps.
It has a declarative approach to write Terraform templates.
It is available as both open-source and Enterprise offerings.
It has idempotency, which means the Terraform templates provide the same
result every time you apply them in your environment.
It is a perfect match for almost all majorly available cloud platforms such as
AWS, Azure, GCP, OpenStack, DigitalOcean, and so on. Refer to https:/ ​/​www.
terraform. ​io/ ​docs/ ​providers/ ​ for more details.

However, Terraform is not:

A configuration management tool like Puppet, Chef, Ansible, or SaltStack. You
can install some lightweight programs or software to ship some important
configuration files inside your instances, but when it comes to the deployment
and orchestration of more complex applications, you need to use configuration
tools like those listed in the preceding section.
A low-level tool like Boto for AWS.

Getting started with Terraform
In this book, we will focus on open-source Terraform. We will be demonstrating the
complete Terraform setup on the CentOS 7.x machine that we used in the previous
chapters. HashiCorp does not provide native packages for operating systems, so Terraform
is distributed as a single binary, packaged inside a ZIP archive.

https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/
https://www.terraform.io/docs/providers/

Infrastructure as Code with Terraform Chapter 4

[108]

Let's set up Terraform on our CentOS server. Follow these steps:

We have to download the Terraform binaries from the official website: https:/ ​/1.
www.​terraform. ​io/ ​downloads. ​html. In our case, we will be using Linux 64-bit:

Unzip the extracted Terraform .zip file. You need to install the unzip package if2.
it is not already present:

$ yum -y install unzip
$ echo $PATH
$ unzip terraform_0.11.8_linux_amd64.zip -d /usr/bin/

This will extract the Terraform binary to the /usr/bin, which is available in
the PATH environment variable for your Linux systems.

Finally, check the installed version of Terraform. The latest version of Terraform3.
software available at the time of writing is the following:

$ terraform -v
Terraform v0.11.8

As you can observe, setting up Terraform takes just a matter of minutes and it has
very lightweight binaries. We are now all set to use the Terraform environment
for AWS service provisioning.

https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html

Infrastructure as Code with Terraform Chapter 4

[109]

Terraform and AWS for automated provisioning
As mentioned previously, Terraform supports multiple providers such as AWS, Azure, and
GCP for high level infrastructure orchestration. In this book, we will use only the AWS
platform. As we saw at in Chapter 2, Deploying Your First Web Application, we can deploy
compute services or any AWS service using two modes:

AWS Management Console
AWS Command Line Interface (CLI)

Deployment using AWS Management Console
Here, we will focus on deploying the AWS compute service as we did previously.
Deploying AWS instances using the AWS Management Console is fairly simple. Follow the
steps below:

Log in into your AWS Management Console at https:/ ​/​console. ​aws.​amazon.1.
com or use your IAM user account to log in . We created an IAM user account in
Chapter 2, Deploying Your First Web Application at
https://AWS-account-ID-or-alias.signin.aws.amazon.com/console.
Select the Services tab, followed by EC2 from the Compute section, and click on2.
the Launch Instance button.
On the next screen, search for and select Amazon Machine Image (AMI). In this3.
book, we are using ami-cfe4b2b0, which is Amazon Linux AMI.
Select the t2.micro type from the Choose an Instance Type step and click on4.
the Next: Configure Instance Details button.
Accept the default settings and click the Next: Add Storage button.5.
Again, accept the default setting for storage and click on the Next: Add tags6.
button followed by the Next: Configure Security Group button.

https://console.aws.amazon.com
https://console.aws.amazon.com
https://console.aws.amazon.com
https://console.aws.amazon.com
https://console.aws.amazon.com
https://console.aws.amazon.com
https://console.aws.amazon.com
https://console.aws.amazon.com
https://console.aws.amazon.com
https://console.aws.amazon.com

Infrastructure as Code with Terraform Chapter 4

[110]

Here, select the security group you created in Chapter 2, Deploying Your First7.
Web Application, which in my case is sg-01864b4c, as shown in the following
screenshot:

Now, click on the Review and Launch button. Ignore any warnings that appear8.
and press the Launch button.
Select the key-pair, which in my case is EffectiveDevOpsAWS. Click the Launch9.
Instances button.

Within a few minutes, your AWS instance will be up and running. Once the server is up,
log in to the server from your local instance, which is CentOS in my case. Proceed with the
following process to deploy the Hello World application manually and verify it locally or
from the browser:

$ ssh -i ~/.ssh/EffectiveDevOpsAWS.pem ec2-user@34.201.116.2 (replace this
IP with your AWS public IP)
$ sudo yum install --enablerepo=epel -y nodejs
$ sudo wget
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/ma
ster/Chapter02/helloworld.js -O /home/ec2-user/helloworld.js
$ sudo wget
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/ma
ster/Chapter02/helloworld.conf -O /etc/init/helloworld.conf
$ sudo start helloworld

$ curl http://34.201.116.2:3000/
Hello World

Infrastructure as Code with Terraform Chapter 4

[111]

Remember to terminate the instance from the AWS Management Console
once you are done with the test.

The termination process is also very straightforward. Select the created instance, click the
Actions drop-down, followed by the Instance State option and then click Terminate, as
shown in the following screenshot:

Deployment using AWS CLI
The steps for creating an instance and deploying the Hello World web application using
AWS CLI have already been demonstrated in Chapter 2, Deploying Your First Web
Application. You need to make sure to install the awscli utility before proceeding further.
Here is a quick overview for deploying the Hello World web application using AWS CLI:

$ aws ec2 run-instances \
 --instance-type t2.micro \
 --key-name EffectiveDevOpsAWS \
 --security-group-ids sg-01864b4c \
 --image-id ami-cfe4b2b0

$ aws ec2 describe-instances \

Infrastructure as Code with Terraform Chapter 4

[112]

 --instance-ids i-0eb05adae2bb760c6 \
 --query "Reservations[*].Instances[*].PublicDnsName"

Make sure to replace i-0eb05adae2bb760c6 with the AWS instance ID that you created in
the previous command.

$ ssh -i ~/.ssh/EffectiveDevOpsAWS.pem ec2-
user@ec2-18-234-227-160.compute-1.amazonaws.com
$ sudo yum install --enablerepo=epel -y nodejs
$ sudo wget
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/ma
ster/Chapter02/helloworld.js -O /home/ec2-user/helloworld.js
$ sudo wget
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/ma
ster/Chapter02/helloworld.conf -O /etc/init/helloworld.conf
$ sudo start helloworld

$ curl http://ec2-18-234-227-160.compute-1.amazonaws.com:3000/
 Hello World

Remember to terminate the instance using aws ec2 terminate-
instances --instance-ids <AWS INSTANCE ID> once you are done
with the testing.

Creating our Terraform repository
We have now looked at two modes for creating AWS EC2 instances: using AWS
Management Console and using AWS CLI. These can be automated using the AWS cloud
native service called CloudFormation template, as we saw in Chapter 3, Treating Your
Infrastructure as Code. This is only applicable for use with the AWS cloud. In this chapter,
we will achieve the same results of provisioning AWS instances using Terraform. Refer to
https:/​/​www.​terraform. ​io/ ​intro/ ​vs/ ​cloudformation. ​html to understand the differences
between Terraform and CloudFormation.

https://www.terraform.io/intro/vs/cloudformation.html
https://www.terraform.io/intro/vs/cloudformation.html
https://www.terraform.io/intro/vs/cloudformation.html
https://www.terraform.io/intro/vs/cloudformation.html
https://www.terraform.io/intro/vs/cloudformation.html
https://www.terraform.io/intro/vs/cloudformation.html
https://www.terraform.io/intro/vs/cloudformation.html
https://www.terraform.io/intro/vs/cloudformation.html
https://www.terraform.io/intro/vs/cloudformation.html
https://www.terraform.io/intro/vs/cloudformation.html
https://www.terraform.io/intro/vs/cloudformation.html
https://www.terraform.io/intro/vs/cloudformation.html
https://www.terraform.io/intro/vs/cloudformation.html
https://www.terraform.io/intro/vs/cloudformation.html
https://www.terraform.io/intro/vs/cloudformation.html
https://www.terraform.io/intro/vs/cloudformation.html
https://www.terraform.io/intro/vs/cloudformation.html

Infrastructure as Code with Terraform Chapter 4

[113]

Let's create a dedicated repository in our GitHub account and start our journey with
Terraform. Once you've logged in to GitHub, create a new repository for the Terraform
templates by following the steps below:

In your browser, open https:/ ​/​github. ​com/ ​new.1.
Call the new repository EffectiveDevOpsTerraform as shown in the following2.
screenshot:

Check the Initialize this repository with a README checkbox.3.
Finally, click the Create repository button.4.
Once your repository is created, you will want to clone it to your system. To do5.
this, you need to have Git installed. If you don't have Git yet, search on Google
for instructions on how to install it for your operating system. For CentOS, you
just need to run yum -y install git as the Git package is part of the Linux
distribution now:

$ git clone
https://github.com/<your_github_username>/EffectiveDevOpsTerraf
orm

https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new

Infrastructure as Code with Terraform Chapter 4

[114]

Now that the repository is cloned, it's time to start developing Terraform
templates. Go into the EffectiveDevOpsTerraform repository and create a
directory called firstproject:

$ cd EffectiveDevOpsTerraform
$ mkdir firstproject
$ cd firstproject

First Terraform template for AWS instance
provisioning
Terraform is used to create, manage, and update infrastructure resources such as virtual
machines, cloud instances, physical machines, containers, and much more. Almost any
infrastructure type can be represented as a resource in Terraform. We are going to create a
resource in the next step. Before that, we need to understand Terraform providers, which are
responsible for understanding API interactions and exposing resources. A provider could
be IaaS (such as AWS, GCP, and so on), PaaS (such as Heroku) or SaaS (such as DNSimple).
The provider is the first section with which we have to start our Terraform templates.
Before using Terraform to create an instance, we need to configure the AWS provider. This
is the first piece of code that we are going to write in our template.

Templates are written in a special language called HCL. More details about HCL can be
found at https:/​/​github. ​com/ ​hashicorp/ ​hcl. You can also write your templates in JSON,
but we will be using HCL here. Terraform template files must have the extension .tf,
which stands for Terraform file. Let's create our first template, ec2.tf:

provider "aws" {
access_key = "<YOUR AWS ACCESS KEY>"
secret_key = "<YOUR AWS SECRET KEY>"
region = "us-east-1"
}

Visit https:/​/​www. ​terraform. ​io/ ​docs/ ​providers/ ​aws/​index. ​html to explore more
options about the AWS provider.

This type of declaration for providers in Terraform is called configuring providers using static
credentials. It is not a secure way of declaring providers; there are other options in
Terraform, such as environment variables, Terraform variable files, AWS native credential
files (~/.aws/credentials), and so on, for storing providers with sensitive information.

https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html
https://www.terraform.io/docs/providers/aws/index.html

Infrastructure as Code with Terraform Chapter 4

[115]

Do not push your AWS access key or your secret key on GitHub or any
other public website. Doing so will allow hackers to hack your AWS
account.

Before moving on, we need to install the plugin or reinitialize the plugins that are related to
AWS for Terraform. We don't need to do much here; the configured file with the provider
plugins will perform this task for us.

Run the following command:

$ terraform init

The output of the preceding command is as follows:

Infrastructure as Code with Terraform Chapter 4

[116]

The next step is to configure our infrastructure. This is where we start developing
the ec2.ft file with Terraform resources. Resources are components of your infrastructure.
They can be as complex as a complete virtual server that has multiple other services, or as
simple as a DNS record. Each resource belongs to a provider and the type of the resource is
suffixed with the provider name. The configuration of a resource, which is called
a resource block, takes the following form:

resource "provider-name_resource-type" "resource-name" {
parameter_name = “parameter_value”
parameter_name = “parameter_value”
.
.
}

In our case, we have to create an EC2 instance. The aws_instance resource in Terraform is
responsible for this job. To create an instance, we need to set at least two parameters: ami
and instance_type. These two parameters are required, whereas the others are optional.
In order to get a list and a description of all the aws_instance resource parameters, check
out the following website: https:/ ​/​www.
terraform.io/docs/providers/aws/r/instance.html.

In our case we will create an instance with the same details with which we created and
tested the instance using the AWS Management Console and the AWS CLI utility. We have
ami-cfe4b2b0 as AMI and t2.micro as our instance type. EffectiveDevOpsAWS is the
key name that we created in the past and sg-01864b4c is our security group. We are also
tagging the instance with the name helloworld for easy recognition. It's worth mentioning
that like any other scripting or automation language, you can put comments in the
Terraform template with the # sign. Our complete file should now look as follows:

Provider Configuration for AWS
provider "aws" {
access_key = “<YOUR AWS ACCESS KEY>"
secret_key = "<YOUR AWS SECRET KEY>"
region = "us-east-1"
}

Resource Configuration for AWS
resource "aws_instance" "myserver" {
ami = "ami-cfe4b2b0"
instance_type = "t2.micro"
key_name = "EffectiveDevOpsAWS"
vpc_security_group_ids = ["sg-01864b4c"]
tags {

https://www.terraform.io/docs/providers/aws/r/instance.html
https://www.terraform.io/docs/providers/aws/r/instance.html
https://www.terraform.io/docs/providers/aws/r/instance.html
https://www.terraform.io/docs/providers/aws/r/instance.html
https://www.terraform.io/docs/providers/aws/r/instance.html
https://www.terraform.io/docs/providers/aws/r/instance.html

Infrastructure as Code with Terraform Chapter 4

[117]

Name = "helloworld"
}
}

The created file should look like the file at the following website: https:/ ​/ ​raw.
githubusercontent. ​com/ ​yogeshraheja/ ​EffectiveDevOpsTerraform/ ​master/
firstproject/​ec2. ​tf.

Let's validate the Terraform template first to ensure that the template doesn't have any
syntax errors. Terraform has a dedicated terraform validate utility, which checks the
syntax of the Terraform template and provides us with the outputs if there are any syntax
errors that need our attention:

$ terraform validate

As there are no outputs, this signifies that our Terraform template is free from syntax
errors. It's time to perform a dry run to see what this template will execute. This is just a
smoke test to find out which changes or implementations will be performed by the
template we have created. This step in Terraform is known as plan:

[root@yogeshraheja firstproject]# terraform plan
Refreshing Terraform state in-memory prior to plan...
The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.

--

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
 + create

Terraform will perform the following actions:

 + aws_instance.myserver
 id: <computed>
 ami: "ami-cfe4b2b0"
 arn: <computed>
 associate_public_ip_address: <computed>
 availability_zone: <computed>
 cpu_core_count: <computed>
 cpu_threads_per_core: <computed>
 ebs_block_device.#: <computed>
 ephemeral_block_device.#: <computed>
 get_password_data: "false"
 instance_state: <computed>
 instance_type: "t2.micro"

https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/firstproject/ec2.tf

Infrastructure as Code with Terraform Chapter 4

[118]

 ipv6_address_count: <computed>
 ipv6_addresses.#: <computed>
 key_name: "EffectiveDevOpsAWS"
 network_interface.#: <computed>
 network_interface_id: <computed>
 password_data: <computed>
 placement_group: <computed>
 primary_network_interface_id: <computed>
 private_dns: <computed>
 private_ip: <computed>
 public_dns: <computed>
 public_ip: <computed>
 root_block_device.#: <computed>
 security_groups.#: <computed>
 source_dest_check: "true"
 subnet_id: <computed>
 tags.%: "1"
 tags.Name: "helloworld"
 tenancy: <computed>
 volume_tags.%: <computed>
 vpc_security_group_ids.#: "1"
 vpc_security_group_ids.1524136243: "sg-01864b4c"

Plan: 1 to add, 0 to change, 0 to destroy.

--

Here, we didn't specify an -out parameter to save this plan, so Terraform can't guarantee
that these actions exactly will be performed if terraform apply is subsequently run:

[root@yogeshraheja firstproject]#

Our plan stage indicates the same parameters that we want in the real execution while
creating our instance. Again, don't get confused with the <computed> parameters, this just
signifies that their value will be assigned when the resources are created

Let's now execute our plan for real and look at how a Terraform template can be used to
create an AWS instance with the defined resource parameters. Terraform does this using
the terraform apply utility and you can think of this stage as apply. Once you execute
terraform apply, it will ask for your approval by default for confirmation. Type yes to
start the resource creation.

Infrastructure as Code with Terraform Chapter 4

[119]

In case you want to skip this interactive approval of the plan before applying it, use the --
auto-approve option with the terraform apply command:

[root@yogeshraheja firstproject]# terraform apply

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
 + create

Terraform will perform the following actions:

 + aws_instance.myserver
 id: <computed>
 ami: "ami-cfe4b2b0"
 arn: <computed>
 associate_public_ip_address: <computed>
 availability_zone: <computed>
 cpu_core_count: <computed>
 cpu_threads_per_core: <computed>
 ebs_block_device.#: <computed>
 ephemeral_block_device.#: <computed>
 get_password_data: "false"
 instance_state: <computed>
 instance_type: "t2.micro"
 ipv6_address_count: <computed>
 ipv6_addresses.#: <computed>
 key_name: "EffectiveDevOpsAWS"
 network_interface.#: <computed>
 network_interface_id: <computed>
 password_data: <computed>
 placement_group: <computed>
 primary_network_interface_id: <computed>
 private_dns: <computed>
 private_ip: <computed>
 public_dns: <computed>
 public_ip: <computed>
 root_block_device.#: <computed>
 security_groups.#: <computed>
 source_dest_check: "true"
 subnet_id: <computed>
 tags.%: "1"
 tags.Name: "helloworld"
 tenancy: <computed>
 volume_tags.%: <computed>
 vpc_security_group_ids.#: "1"
 vpc_security_group_ids.1524136243: "sg-01864b4c"

Infrastructure as Code with Terraform Chapter 4

[120]

Plan: 1 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
 Terraform will perform the actions described above.
 Only 'yes' will be accepted to approve.

 Enter a value: yes

aws_instance.myserver: Creating...
 ami: "" => "ami-cfe4b2b0"
 arn: "" => "<computed>"
 associate_public_ip_address: "" => "<computed>"
 availability_zone: "" => "<computed>"
 cpu_core_count: "" => "<computed>"
 cpu_threads_per_core: "" => "<computed>"
 ebs_block_device.#: "" => "<computed>"
 ephemeral_block_device.#: "" => "<computed>"
 get_password_data: "" => "false"
 instance_state: "" => "<computed>"
 instance_type: "" => "t2.micro"
 ipv6_address_count: "" => "<computed>"
 ipv6_addresses.#: "" => "<computed>"
 key_name: "" => "EffectiveDevOpsAWS"
 network_interface.#: "" => "<computed>"
 network_interface_id: "" => "<computed>"
 password_data: "" => "<computed>"
 placement_group: "" => "<computed>"
 primary_network_interface_id: "" => "<computed>"
 private_dns: "" => "<computed>"
 private_ip: "" => "<computed>"
 public_dns: "" => "<computed>"
 public_ip: "" => "<computed>"
 root_block_device.#: "" => "<computed>"
 security_groups.#: "" => "<computed>"
 source_dest_check: "" => "true"
 subnet_id: "" => "<computed>"
 tags.%: "" => "1"
 tags.Name: "" => "helloworld"
 tenancy: "" => "<computed>"
 volume_tags.%: "" => "<computed>"
 vpc_security_group_ids.#: "" => "1"
 vpc_security_group_ids.1524136243: "" => "sg-01864b4c"
aws_instance.myserver: Still creating... (10s elapsed)
aws_instance.myserver: Still creating... (20s elapsed)
aws_instance.myserver: Creation complete after 22s (ID: i-dd8834ca)

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.
[root@yogeshraheja firstproject]#

Infrastructure as Code with Terraform Chapter 4

[121]

Let's confirm the newly created instance from our AWS console to ensure the helloworld
instance has been created by the Terraform template:

Terraform didn't simply create an instance and forget about it. In fact, Terraform actually
saves everything it knows about the resources (in our case, the instance) to a special file,
which is known as the state file in Terraform. In this file, Terraform stores the state of all
the resources it has created. It is saved to the same directory where the Terraform template
is present and with the .tfstate extension. The format of the state file is a simple JSON
format:

[root@yogeshraheja firstproject]# cat terraform.tfstate
{
 "version": 3,
 "terraform_version": "0.11.8",
 "serial": 1,
 "lineage": "9158b0ed-754a-e01e-094e-6b0827347950",
 "modules": [
 {
 "path": [
 "root"
],
 "outputs": {},
 "resources": {
 "aws_instance.myserver": {
 "type": "aws_instance",
 "depends_on": [],
 "primary": {
 "id": "i-dd8834ca",
 "attributes": {
 "ami": "ami-cfe4b2b0",
 "arn": "arn:aws:ec2:us-
east-1:094507990803:instance/i-dd8834ca",
 "associate_public_ip_address": "true",

Infrastructure as Code with Terraform Chapter 4

[122]

 "availability_zone": "us-east-1b",
 "cpu_core_count": "1",
 "cpu_threads_per_core": "1",
 "credit_specification.#": "1",
 "credit_specification.0.cpu_credits":
"standard",
 "disable_api_termination": "false",
 "ebs_block_device.#": "0",
 "ebs_optimized": "false",
 "ephemeral_block_device.#": "0",
 "get_password_data": "false",
 "iam_instance_profile": "",
 "id": "i-dd8834ca",
 "instance_state": "running",
 "instance_type": "t2.micro",
 "ipv6_addresses.#": "0",
 "key_name": "EffectiveDevOpsAWS",
 "monitoring": "false",
 "network_interface.#": "0",
 "network_interface_id": "eni-b0683ee7",
 "password_data": "",
 "placement_group": "",
 "primary_network_interface_id": "eni-b0683ee7",
 "private_dns": "ip-172-31-74-203.ec2.internal",
 "private_ip": "172.31.74.203",
 "public_dns":
"ec2-52-70-251-228.compute-1.amazonaws.com",
 "public_ip": "52.70.251.228",
 "root_block_device.#": "1",
 "root_block_device.0.delete_on_termination":
"true",
 "root_block_device.0.iops": "100",
 "root_block_device.0.volume_id":
"vol-024f64aa1bb805237",
 "root_block_device.0.volume_size": "8",
 "root_block_device.0.volume_type": "gp2",
 "security_groups.#": "1",
 "security_groups.2004290681": "HelloWorld",
 "source_dest_check": "true",
 "subnet_id": "subnet-658b6149",
 "tags.%": "1",
 "tags.Name": "helloworld",
 "tenancy": "default",
 "volume_tags.%": "0",
 "vpc_security_group_ids.#": "1",
 "vpc_security_group_ids.1524136243":
"sg-01864b4c"
 },

Infrastructure as Code with Terraform Chapter 4

[123]

 "meta": {
 "e2bfb730-ecaa-11e6-8f88-34363bc7c4c0": {
 "create": 600000000000,
 "delete": 1200000000000,
 "update": 600000000000
 },
 "schema_version": "1"
 },
 "tainted": false
 },
 "deposed": [],
 "provider": "provider.aws"
 }
 },
 "depends_on": []
 }
]
}
[root@yogeshraheja firstproject]#

The special part about Terraform is that you can read this JSON output in a human-
readable format using the terraform show command:

[root@yogeshraheja firstproject]# terraform show
aws_instance.myserver:
 id = i-dd8834ca
 ami = ami-cfe4b2b0
 arn = arn:aws:ec2:us-east-1:094507990803:instance/i-dd8834ca
 associate_public_ip_address = true
 availability_zone = us-east-1b
 cpu_core_count = 1
 cpu_threads_per_core = 1
 credit_specification.# = 1
 credit_specification.0.cpu_credits = standard
 disable_api_termination = false
 ebs_block_device.# = 0
 ebs_optimized = false
 ephemeral_block_device.# = 0
 get_password_data = false
 iam_instance_profile =
 instance_state = running
 instance_type = t2.micro
 ipv6_addresses.# = 0
 key_name = EffectiveDevOpsAWS
 monitoring = false
 network_interface.# = 0
 network_interface_id = eni-b0683ee7
 password_data =

Infrastructure as Code with Terraform Chapter 4

[124]

 placement_group =
 primary_network_interface_id = eni-b0683ee7
 private_dns = ip-172-31-74-203.ec2.internal
 private_ip = 172.31.74.203
 public_dns = ec2-52-70-251-228.compute-1.amazonaws.com
 public_ip = 52.70.251.228
 root_block_device.# = 1
 root_block_device.0.delete_on_termination = true
 root_block_device.0.iops = 100
 root_block_device.0.volume_id = vol-024f64aa1bb805237
 root_block_device.0.volume_size = 8
 root_block_device.0.volume_type = gp2
 security_groups.# = 1
 security_groups.2004290681 = HelloWorld
 source_dest_check = true
 subnet_id = subnet-658b6149
 tags.% = 1
 tags.Name = helloworld
 tenancy = default
 volume_tags.% = 0
 vpc_security_group_ids.# = 1
 vpc_security_group_ids.1524136243 = sg-01864b4c

[root@yogeshraheja firstproject]#

Up to here, we have created a Terraform template, validated it to ensure there are no syntax
errors, performed a smoke test in the form of terraform plan, and then finally applied
our Terraform template using terraform apply to create resources.

The question remaining is how can we delete or destroy all of the resources that are created by the
Terraform template? Do we need to find and delete resources one after another? The answer
is No, this will also be taken care of by Terraform. By referring to the state file Terraform
created during the apply phase, any resources that have been created by Terraform can be
destroyed using the simple terraform destroy command from the template directory:

[root@yogeshraheja firstproject]# terraform destroy
aws_instance.myserver: Refreshing state... (ID: i-dd8834ca)

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
 - destroy

Terraform will perform the following actions:

 - aws_instance.myserver

Infrastructure as Code with Terraform Chapter 4

[125]

Plan: 0 to add, 0 to change, 1 to destroy.

Do you really want to destroy all resources?
 Terraform will destroy all your managed infrastructure, as shown above.
 There is no undo. Only 'yes' will be accepted to confirm.

 Enter a value: yes

aws_instance.myserver: Destroying... (ID: i-dd8834ca)
aws_instance.myserver: Still destroying... (ID: i-dd8834ca, 10s elapsed)
aws_instance.myserver: Still destroying... (ID: i-dd8834ca, 20s elapsed)
aws_instance.myserver: Still destroying... (ID: i-dd8834ca, 30s elapsed)
aws_instance.myserver: Still destroying... (ID: i-dd8834ca, 40s elapsed)
aws_instance.myserver: Still destroying... (ID: i-dd8834ca, 50s elapsed)
aws_instance.myserver: Destruction complete after 1m0s

Destroy complete! Resources: 1 destroyed.
[root@yogeshraheja firstproject]#

Check your AWS console to ensure that the instance is in a terminated state.

Check the terraform show command now. It should be empty as none
of your resources will be available.

A second Terraform template for deploying a
Hello World application
Go into the EffectiveDevOpsTerraform repository and create a directory called second
project:

$ mkdir secondproject
$ cd secondproject

Infrastructure as Code with Terraform Chapter 4

[126]

Now that we have created our EC2 instance with the Terraform template in the previous
section, we are ready to extend the provisioning of our Hello World web application. We
are going to use Terraform Provisioner to recreate the Hello World stack that we
previously made using the UserDatablock field of CloudFormation in Chapter
2, Deploying Your First Web Application and using Ansible roles in Chapter 3, Treating Your
Infrastructure as Code. If you recall, the UserData field looked roughly like this:

yum install --enablerepo=epel -y nodejs
wget
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/ma
ster/Chapter02/helloworld.js -O /home/ec2-user/helloworld.js
wget
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/ma
ster/Chapter02/helloworld.conf -O /etc/init/helloworld.conf
start helloworld

You will observe that there are three different types of operations for the deployment of our
Hello World web application. First, we prepare the system to run our application. To do
this, in our example, we are simply installing the Node.js package. Next, we copy the
different resources that are needed to run the application. In our case, these resources
include the JavaScript code and the upstart configuration. Finally, we start the service.

In order to deploy our Hello World web application, we need to introduce Terraform
Provisioner. Provisioners in Terraform are configuration blocks available for several
resources that allow you to perform actions after the resource has been created. It is mostly
used for EC2 instances. Provisioners are primarily used as post build steps to install
lightweight applications or configuration management agents such as Puppet agents or
chef-clients. They can even be used to run configuration management tools such
as playbooks, Puppet modules, Chef cookbooks, or Salt formulas. In the next section,
we’ll look at a few examples of how to use Terraform with Ansible.

Let's create the helloworldec2.tf Terraform template to create the instance and then
introduce the provisioner block with remote-exec to establish a connection with the
newly created instance and download and deploy Hello World application on top of it. Our
completed Terraform template should look like this:

Provider Configuration for AWS
provider "aws" {
 access_key = "<YOUR AWS ACCESS KEY>"
 secret_key = "<YOUR AWS SECRET KEY>"
 region = "us-east-1"
}

Resource Configuration for AWS
resource "aws_instance" "myserver" {

Infrastructure as Code with Terraform Chapter 4

[127]

 ami = "ami-cfe4b2b0"
 instance_type = "t2.micro"
 key_name = "EffectiveDevOpsAWS"
 vpc_security_group_ids = ["sg-01864b4c"]

 tags {
 Name = "helloworld"
 }

Helloworld Appication code
 provisioner "remote-exec" {
 connection {
 user = "ec2-user"
 private_key = "${file("/root/.ssh/EffectiveDevOpsAWS.pem")}"
 }
 inline = [
 "sudo yum install --enablerepo=epel -y nodejs",
 "sudo wget
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/ma
ster/Chapter02/helloworld.js -O /home/ec2-user/helloworld.js",
 "sudo wget
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/ma
ster/Chapter02/helloworld.conf -O /etc/init/helloworld.conf",
 "sudo start helloworld",
]
 }
}

The created file should look like the file at: https:/ ​/​raw. ​githubusercontent. ​com/
yogeshraheja/​EffectiveDevOpsTerraform/ ​master/ ​secondproject/ ​helloworldec2. ​tf.

As we are creating the Terraform template inside a new directory, secondproject, we
need to install the plugin or reinitialize the plugins that are related to AWS for Terraform.
The configured file with the provider section will perform this task for us:

$ terraform init

Now, it's time to validate the Terraform template file to ensure that it doesn't have any
syntax errors. Upon successful verification, run the plan command followed by the
complete execution of the template using the terraform apply command:

$ terraform validate
$ terraform plan
$ terraform apply

https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/secondproject/helloworldec2.tf

Infrastructure as Code with Terraform Chapter 4

[128]

We will get the following output:

Our Terraform template has been executed successfully. We have provisioned our EC2
instance and deployed our Hello World web application. Let's find the public IP of the
instance by executing the terraform show command followed by the curl command to
ensure the application has deployed correctly:

$ terraform show | grep -i public_ip
$ curl <PUBLIC_IP>:3000

The output of running the preceding commands is as follows:

Infrastructure as Code with Terraform Chapter 4

[129]

Let's verify the application outputs from our browser as well, as shown in the following
screenshot:

We have now successfully deployed our Hello World web application using the power of
Terraform. Once you've tested it, make sure to remove all of the created resources before
you proceed to the next section. Execute the terraform destroy command, which will
take care of removing all of the created resources by referring to the Terraform state file.

Run the following command:

$ terraform destroy

Integrating AWS, Terraform, and Ansible
In the previous sections, we looked at how to provision a vanilla instance using Terraform.
We then learnt how to provision a vanilla EC2 instance and execute post builds using the
Terraform remote-exec provisioner. Now, we'll look at how Terraform can be integrated
with Ansible to perform configuration management tasks. We will consider two different
scenarios. In scenario one, we will provision an EC2 instance and run Ansible using push
mode, which is the primary way that we can use Ansible to perform automation. In
scenario two, we will provision an EC2 instance and run Ansible in pull mode using
the ansible pull approach.

Terraform with Ansible using a push-based
approach
Go into the EffectiveDevOpsTerraform repository and create a directory called
thirdproject:

$ mkdir thirdproject
$ cd thirdproject

Infrastructure as Code with Terraform Chapter 4

[130]

In this example, we will use the recommended practices to create Terraform templates. We
will remove our AWS access_key and our AWS secret_key from our Terraform
template first. We have AWS CLI installed on our system, which means that we have
already configured this system to talk to our AWS account. If we don't already have AWS
CLI installed, we will use the aws configure to install it. This will create a credentials
file inside the /root/.aws directory, which will contain our AWS access and secret keys.
We will take the advantage of this file for our Terraform template and use the same
credentials to build resources on our AWS account:

[root@yogeshraheja thirdproject]# cat /root/.aws/credentials
[default]
aws_access_key_id = <YOUR AWS SECRET KEY>
aws_secret_access_key = <YOUR AWS SECRET KEY>
[root@yogeshraheja thirdproject]#

It's now time to start writing our helloworldansible.tf Terraform template. In this
case, we will provision an EC2 instance and wait for the SSH services to appear by
verifying the connection using the remote-exec provisioner. We will then use the local-
exec provisioner to create the inventory with the new IP and run the Ansible playbooks on
it using the primary push model by executing ansible-playbook locally from the system.

Inside provisioners (and only inside provisioners), we can use a special
keyword, self, to access the attributes of a resource being provisioned.

We are also using another block in our code, which is called the output block. Outputs
allow you to return data from the Terraform template after it was applied, using the
Terraform output command:

Provider Configuration for AWS
provider "aws" {
 region = "us-east-1"
}

Resource Configuration for AWS
resource "aws_instance" "myserver" {
 ami = "ami-cfe4b2b0"
 instance_type = "t2.micro"
 key_name = "EffectiveDevOpsAWS"
 vpc_security_group_ids = ["sg-01864b4c"]

 tags {
 Name = "helloworld"
 }

Infrastructure as Code with Terraform Chapter 4

[131]

Provisioner for applying Ansible playbook
 provisioner "remote-exec" {
 connection {
 user = "ec2-user"
 private_key = "${file("/root/.ssh/EffectiveDevOpsAWS.pem")}"
 }
 }
 provisioner "local-exec" {
 command = "sudo echo '${self.public_ip}' > ./myinventory",
 }

 provisioner "local-exec" {
 command = "sudo ansible-playbook -i myinventory --private-
key=/root/.ssh/EffectiveDevOpsAWS.pem helloworld.yml",
 }
}

IP address of newly created EC2 instance
output "myserver" {
 value = "${aws_instance.myserver.public_ip}"
}

The created file should look like the file at: https:/ ​/​raw. ​githubusercontent. ​com/
yogeshraheja/​EffectiveDevOpsTerraform/ ​master/ ​thirdproject/ ​helloworldansible. ​tf.

We will call the helloworld role in our helloworld.yml Ansible playbook to deploy the
Hello World web application:

- hosts: all
 become: yes
 roles:
 - helloworld

The Ansible configuration file ansible.cfg should look like as follows. It should be
pointing to the myinventory file that is present in our thirdproject directory structure:

[defaults]
inventory = $PWD/myinventory
roles_path = ./roles
remote_user = ec2-user
become = True
become_method = sudo
become_user = root
nocows = 1
host_key_checking = False

https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/thirdproject/helloworldansible.tf

Infrastructure as Code with Terraform Chapter 4

[132]

The complete project should look like the file at: https:/ ​/​github. ​com/ ​yogeshraheja/
EffectiveDevOpsTerraform/ ​tree/ ​master/ ​thirdproject.

As we have created a new directory, thirdproject, we again need to install the plugin or
reinitialize the plugins that are related to AWS for Terraform. The configured file with
the provider section will perform this task for us:

$ terraform init

It's now time to validate the Terraform template file to ensure that it doesn't have any
syntax errors. Upon successful verification, execute the plan followed by the real run using
terraform apply:

$ terraform validate
$ terraform plan
$ terraform apply

https://github.com/yogeshraheja/EffectiveDevOpsTerraform/tree/master/thirdproject
https://github.com/yogeshraheja/EffectiveDevOpsTerraform/tree/master/thirdproject
https://github.com/yogeshraheja/EffectiveDevOpsTerraform/tree/master/thirdproject
https://github.com/yogeshraheja/EffectiveDevOpsTerraform/tree/master/thirdproject
https://github.com/yogeshraheja/EffectiveDevOpsTerraform/tree/master/thirdproject
https://github.com/yogeshraheja/EffectiveDevOpsTerraform/tree/master/thirdproject
https://github.com/yogeshraheja/EffectiveDevOpsTerraform/tree/master/thirdproject
https://github.com/yogeshraheja/EffectiveDevOpsTerraform/tree/master/thirdproject
https://github.com/yogeshraheja/EffectiveDevOpsTerraform/tree/master/thirdproject
https://github.com/yogeshraheja/EffectiveDevOpsTerraform/tree/master/thirdproject
https://github.com/yogeshraheja/EffectiveDevOpsTerraform/tree/master/thirdproject
https://github.com/yogeshraheja/EffectiveDevOpsTerraform/tree/master/thirdproject
https://github.com/yogeshraheja/EffectiveDevOpsTerraform/tree/master/thirdproject
https://github.com/yogeshraheja/EffectiveDevOpsTerraform/tree/master/thirdproject
https://github.com/yogeshraheja/EffectiveDevOpsTerraform/tree/master/thirdproject
https://github.com/yogeshraheja/EffectiveDevOpsTerraform/tree/master/thirdproject

Infrastructure as Code with Terraform Chapter 4

[133]

The outputs are clearly showing the logs for Ansible playbook and returning the output
block with the public IP. Let's use this public IP to verify the application deployment:

$ curl 54.85.107.87:3000

The output of running the preceding command is as follows:

Let's verify the application outputs from the browser, as shown in the following screenshot:

Upon successful deployment, execute terraform destroy to clean up the created
resources:

$ terraform destroy

Terraform with Ansible using the pull-based approach
Go into the EffectiveDevOpsTerraform repository and create a directory called
fourthproject:

$ mkdir fourthproject
$ cd fourthproject

Again, we will follow the best practices for Terraform templates here and use
the credentials file located in the /root/.aws directory, which contains our AWS access
and secret keys. In this case, we will use Ansible in the inverted form: the Ansible pull-based
approach. To use Ansible in this inverted approach, we have to make sure to install Ansible
on the provisioned EC2 instance and run ansible-pull by referring to the Ansible code
that is present at the source code repository.

Infrastructure as Code with Terraform Chapter 4

[134]

In our case we will be using the same Ansible code that we created in Chapter 3, Treating
Your Infrastructure as Code, which is present at https:/ ​/​github. ​com/ ​yogeshraheja/
ansible. In our helloworldansiblepull.tf Terraform template, we will be using
a remote-exec Terraform provisioner to establish a connection with the newly created
instance. We will use the inline attribute to execute multiple commands remotely on the
newly created EC2 installation. Our Terraform template should look as follows:

Provider Configuration for AWS
provider "aws" {
 region = "us-east-1"
}

Resource Configuration for AWS
resource "aws_instance" "myserver" {
 ami = "ami-cfe4b2b0"
 instance_type = "t2.micro"
 key_name = "EffectiveDevOpsAWS"
 vpc_security_group_ids = ["sg-01864b4c"]

 tags {
 Name = "helloworld"
 }

Provisioner for applying Ansible playbook in Pull mode
 provisioner "remote-exec" {
 connection {
 user = "ec2-user"
 private_key = "${file("/root/.ssh/EffectiveDevOpsAWS.pem")}"
 }
 inline = [
 "sudo yum install --enablerepo=epel -y ansible git",
 "sudo ansible-pull -U https://github.com/yogeshraheja/ansible
helloworld.yml -i localhost",
]
 }
}

IP address of newly created EC2 instance
output "myserver" {
 value = "${aws_instance.myserver.public_ip}"
}

https://github.com/yogeshraheja/ansible
https://github.com/yogeshraheja/ansible
https://github.com/yogeshraheja/ansible
https://github.com/yogeshraheja/ansible
https://github.com/yogeshraheja/ansible
https://github.com/yogeshraheja/ansible
https://github.com/yogeshraheja/ansible
https://github.com/yogeshraheja/ansible
https://github.com/yogeshraheja/ansible
https://github.com/yogeshraheja/ansible

Infrastructure as Code with Terraform Chapter 4

[135]

The created file should look like the file at: https:/ ​/​raw. ​githubusercontent. ​com/
yogeshraheja/​EffectiveDevOpsTerraform/ ​master/ ​fourthproject/
helloworldansiblepull. ​tf.

As we have again created a new directory, fourthproject, we need to install the plugin
or reinitialize the plugins related to AWS for Terraform. The configured file with
the provider section will perform this task for us.

$ terraform init

It's now time to validate the Terraform template file to ensure that it doesn't have any
syntax errors. Upon successful verification, execute the plan followed by the real run using
terraform apply:

$ terraform validate
$ terraform plan
$ terraform apply

https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf

Infrastructure as Code with Terraform Chapter 4

[136]

As expected, the Ansible code is running locally on the newly created EC2 instance. The
output block configured in the Terraform template has also returned the expected value of
the public IP. Let's verify the outputs using the curl command:

$ curl 18.212.64.84:3000/

The output of running the preceding command is as follows:

Finally, verify the outputs from the browser, as shown in the following screenshot:

Great—the application is deployed and verified. Once you are done, don't forget to destroy
the resource using the following command, to avoid unwanted AWS bills:

$ terraform destroy

Summary
In this chapter, we learned how to efficiently manage infrastructure using Terraform
templates. First, we learned about how Terraform can be used to provision an EC2 instance
in just a few lines. We then looked at how to create Terraform templates using Terraform
provisioners to deploy lightweight applications. We then extended the Terraform templates
with Ansible, which allowed us to orchestrate the different steps to deploy our web
application. Finally, we looked at how Terraform can be integrated with Ansible in a pull-
based approach, which usually makes more sense when managing sizable infrastructures,
as we observed in Chapter 3, Treating Your Infrastructure as Code.

We now have a good production environment ready to host any application. We have seen
how to architect it using CloudFormation, Ansible, and Terraform. In Chapter 5, Adding
Continuous Integration and Continuous Deployment, we will continue to use CloudFormation
and Ansible, but in the context of software delivery, as we will learn how to put in place
continuous integration testing and continuous deployment.

Infrastructure as Code with Terraform Chapter 4

[137]

Questions
What is Terraform and how it is different from other configuration management1.
tools?
How do you install Terraform on a Linux-based operating system?2.
How do you provision your first AWS instance using a Terraform template?3.
How do you write a Terraform template to integrate Ansible with a pull-based4.
approach?

Further reading
Read the following articles for more information:

Terraform reference at https:/ ​/​terraform. ​io

Terraform GitHub reference at https:/ ​/​github. ​com/​hashicorp/ ​terraform

https://terraform.io
https://terraform.io
https://terraform.io
https://terraform.io
https://terraform.io
https://terraform.io
https://terraform.io
https://github.com/hashicorp/terraform
https://github.com/hashicorp/terraform
https://github.com/hashicorp/terraform
https://github.com/hashicorp/terraform
https://github.com/hashicorp/terraform
https://github.com/hashicorp/terraform
https://github.com/hashicorp/terraform
https://github.com/hashicorp/terraform
https://github.com/hashicorp/terraform
https://github.com/hashicorp/terraform
https://github.com/hashicorp/terraform

5
Adding Continuous Integration

and Continuous Deployment
In the previous chapters, we focused on improving the creation and management of
infrastructure. The DevOps culture doesn't stop there, however. As you might recall from
Chapter 1, The Cloud and the DevOps Revolution, DevOps culture also includes having a
very efficient process to test and deploy code. At the 2009 Velocity conference, John
Allspaw and Paul Hammond made a very inspirational speech about how Flickr was
carrying out over 10 deployments a day (http:/ ​/​bit. ​ly/ ​292ASlW). This presentation is
often mentioned as a pivotal moment that contributed to the creation of the DevOps
movement. In their presentation, John and Paul talk about the conflicts between
development and operations teams but also outline a number of best practices that allow
Flickr to deploy new code to production multiple times a day.

With innovations such as virtualization, the public and private cloud, and automation,
creating new start ups has never been so easy. Because of that, the biggest problem many
companies are now facing is being able to stand apart from their competitors. Having the
ability to iterate faster than most competitors can be a detrimental to a company's success.
 An effective DevOps organization uses a number of tools and strategies to increase the
velocity at which engineering organizations release new code to production. This is what
we will focus on in this chapter.

We will first look at creating a Continuous Integration (CI) pipeline. A CI pipeline will
allow us to test proposed code changes automatically and continuously. This will free up
the time of developers and QAs who no longer have to carry out as much manual testing. It
also makes the integration of code changes much easier. To implement our pipeline, we will
use GitHub and one of the most widely used integration tools—Jenkins.

http://bit.ly/292ASlW
http://bit.ly/292ASlW
http://bit.ly/292ASlW
http://bit.ly/292ASlW
http://bit.ly/292ASlW
http://bit.ly/292ASlW
http://bit.ly/292ASlW
http://bit.ly/292ASlW
http://bit.ly/292ASlW

Adding Continuous Integration and Continuous Deployment Chapter 5

[139]

We will then look at creating a Continuous Deployment (CD) pipeline. Once the code has
gone through the CI pipeline, we will use this continuous deployment pipeline to
automatically deploy the new code. We will rely on two AWS services to implement this
pipeline—AWS CodeDeploy and AWS CodePipeline. CodeDeploy lets us define how the
new code needs to be deployed on our EC2 instances while CodePipeline lets us orchestrate
the full life cycle of our application.

In order to deploy our code to production, we will add an extra step that will allow the
operator to deploy the latest build that is present in the staging to the production process at
the press of a button. This ability to deploy code to production on-demand is called CD. Its
main advantage is that it provides the ability for the deployment operator to validate a
build in a staging environment before it gets deployed to production. At the end of the
chapter, we will see a couple of techniques and strategies that effective engineering
organizations use to convert their continuous delivery pipelines into continuous
deployment pipelines so that the entire process of deploying code up to production can
happen without any human intervention. We will cover the following topics:

Building a continuous integration pipeline
Building a continuous deployment pipeline

Technical requirements
The technical requirements for this chapter as follows:

GitHub
Jenkins
Ansible
AWS CodeDeploy
AWS CodePipeline

The links are as follows:

Jenkins package repository: https:/ ​/ ​pkg.​jenkins. ​io/ ​

Jenkins setup playbook: https:/ ​/​raw. ​githubusercontent. ​com/ ​yogeshraheja/
ansible/ ​master/ ​roles/ ​jenkins/ ​tasks/ ​main. ​yml

Jenkinsfile: https:/ ​/ ​raw. ​githubusercontent. ​com/​yogeshraheja/ ​helloworld/
master/​Jenkinsfile

Code deploy library: https:/ ​/​raw. ​githubusercontent. ​com/​yogeshraheja/
Effective- ​DevOps- ​with- ​AWS/ ​master/ ​Chapter05/ ​ansible/ ​library/ ​aws_
codedeploy

https://pkg.jenkins.io/
https://pkg.jenkins.io/
https://pkg.jenkins.io/
https://pkg.jenkins.io/
https://pkg.jenkins.io/
https://pkg.jenkins.io/
https://pkg.jenkins.io/
https://pkg.jenkins.io/
https://pkg.jenkins.io/
https://pkg.jenkins.io/
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/ansible/library/aws_codedeploy

Adding Continuous Integration and Continuous Deployment Chapter 5

[140]

Building a CI pipeline
Initially, working in a CI environment meant that developers had to commit their code in a
common branch as frequently as possible, as opposed to working off a separate branch or
not committing changes for weeks. This allowed for improved visibility of the ongoing
work and encouraged communication to avoid integration problems, a situation that is
commonly known as Integration Hell. As the toolset related to source control and build
and release management matured, so did the vision of how code integration should look in
an ideal world.

Nowadays, most effective engineering organizations will continue down the path of
integrating early and often. They often use, however, a more modern development process,
where developers are required to edit the code and, at the same time, add or edit the
different relevant tests to validate the change. This drastically increases overall
productivity; it is now easier to find new bugs as the amount of code that changes between
merges is fairly small.

To adopt such a workflow, using a source control tool such as Git for example, you can
proceed as follows:

When as a developer, you want to make changes, start by creating a new Git1.
branch that branches off the HEAD of the master branch.
Edit the code and, at the same time, add or edit the different relevant tests to2.
validate the change.
Test the code locally.3.
When the code is ready, rebase the branch to integrate new eventual changes4.
from other developers. If needed, resolve conflicts and test the code again.
If everything went well, the next step consists of creating a pull request. In5.
this process, you tell other developers that your code is ready to be reviewed.
Once the pull request is created, an automated testing system such as the one we6.
will build in this chapter will pick up the change and run the entire test suite to
make sure nothing fails.
In addition, other interested parties will review the code and the different tests7.
that were added to the branch. If they are satisfied with the proposed change,
they will approve it, giving the developers the green light to merge their changes.
In the last step, the developers merge their pull requests, which will translate into8.
merging their new code and testing the master branch. Other developers will
now integrate this change when they rebase or create new branches.

Adding Continuous Integration and Continuous Deployment Chapter 5

[141]

In the following section, we will create a CI server using Jenkins running on top of an EC2
instance and GitHub.

As projects get bigger, the number of tests, the time it takes to run them.
While certain advanced build systems such as Bazel (https:/ ​/ ​bazel.
build/ ​) have the ability to run only those tests relevant to a particular
change, it is usually easier to start simply and create a CI system that runs
all the tests available every time a new pull request is proposed. Having
an external test infrastructure with the elasticity of AWS becomes a huge
time saver for the developers who don't want to wait minutes or even
hours for all the tests to be executed. In this book, we will focus on web
application development. You may face a more challenging environment
in which you need to build software for specific hardware and operating
system. Having a dedicated CI system will allow you to run your tests on
the hardware and software you are ultimately targeting.

Creating a Jenkins server using Ansible and
CloudFormation
As mentioned before, we are going to use Jenkins as our central system to run our CI
pipeline. With over 10 years of development, Jenkins has been the leading open-source
solution to practice continuous integration for a long time. Famous for its rich plugin
ecosystem, Jenkins has gone through a major new release (Jenkins 2.x), which has put the
spotlight on a number of very DevOps-centric features, including the ability to create native
delivery pipelines that can be checked in and version-controlled. It also provides better
integration with source control systems such as GitHub, which we are using in this book.

We are going to continue using Ansible and CloudFormation in the same way as we did in
Chapter 3, Treating Your Infrastructure as Code, to manage our Jenkins server.

Creating the Ansible playbook for Jenkins
Start by navigating to our ansible roles directory:

$ cd ansible/roles

https://bazel.build/
https://bazel.build/
https://bazel.build/
https://bazel.build/
https://bazel.build/
https://bazel.build/
https://bazel.build/

Adding Continuous Integration and Continuous Deployment Chapter 5

[142]

This directory should contain the helloworld and nodejs directories, with the
configurations that we created previously in Chapter 3, Treating Your Infrastructure as Code.
We are now going to create our Jenkins role with the ansible-galaxy command:

$ ansible-galaxy init jenkins

We are now going to edit the task definition for this new role by editing the
file: jenkins/tasks/main.yml. Open up the file with your favorite text editor.

The goal of our task is to install and start Jenkins. In order to do this, since we are on a
Linux-based operating system (AWS Amazon Linux, in our case), we are going to install an
RPM package through yum. Jenkins maintains a yum repository, so the first step will consist
of importing this to our yum repository configuration, basically as an entry in
/etc/yum.repos.d:

The following is the initial comment of the tasks file, add the following:

- name: Add Jenkins repository
 shell: wget -O /etc/yum.repos.d/jenkins.repo
https://pkg.jenkins.io/redhat/jenkins.repo

The next step will consist of importing the GPG key of that repository. Ansible has a
module to manage these kinds of keys:

- name: Import Jenkins GPG key
 rpm_key:
 state: present
 key: https://pkg.jenkins.io/redhat/jenkins.io.key

We have now reached the point where we can use yum to install Jenkins. We will do that
with the following call:

- name: Install Jenkins
 yum:
 name: jenkins-2.99
 enablerepo: jenkins
 state: present

Since the jenkins repository is disabled by default, we are enabling it through the
enablerepo flag for the execution of this yum command.

Adding Continuous Integration and Continuous Deployment Chapter 5

[143]

At this point, Jenkins will be installed. To conform with best practice guidelines, we will
specify which version of Jenkins we want to install (in our case the version is 2.99). We also
want to start the service and have it enabled at the chkconfig level so that if the EC2
instance where Jenkins is installed restarts, Jenkins will start automatically. We can do that
using the service module. Add the following after the previous call:

- name: Start Jenkins
 service:
 name: jenkins
 enabled: yes
 state: started

For a simple Jenkins role, that's all we need.

We should now have a main.yml file that looks as follows: https:/ ​/​raw.
githubusercontent. ​com/ ​yogeshraheja/ ​ansible/ ​master/ ​roles/ ​jenkins/ ​tasks/ ​main. ​yml.

AWS Amazon Linux comes with Java 7 but Jenkins has pre-requisites to install Java 8 for
Jenkins version 2.54 and above. So you will see two extra tasks in the preceding link, which
will uninstall Java 7 and install Java 8:

- name: Removing old version of JAVA from Amazon Linux
 yum:
 name: java-1.7.0-openjdk
 state: absent

- name: Install specific supported version of JAVA
 yum:
 name: java-1.8.0-openjdk
 state: present

As you gain more experience with Jenkins and Ansible, explore the web
or the Ansible galaxy, you will find more advanced roles allowing you to
configure Jenkins in more detail, generate jobs, and select the plugins to
install. It is an important step to go through that this book won't cover,
but ideally, you want your entire system to be described by code. In
addition, in this chapter, we are using Jenkins over HTTP. It is strongly
encouraged to use it over an encrypted protocol such as HTTPS or, as we
will see in Chapter 8, Hardening the Security of Your AWS Environment, in a
private subnet with a VPN connection.

https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml
https://raw.githubusercontent.com/yogeshraheja/ansible/master/roles/jenkins/tasks/main.yml

Adding Continuous Integration and Continuous Deployment Chapter 5

[144]

We have now built a role that will allow us to install Jenkins. We want to create a new EC2
instance and install Jenkins on it with the end goal of testing our Node.js code on the
instance. In order to be able to do that, the Jenkins host will need to also have the node
and npm installed.

We have two options. We can either add our nodejs role as a dependency of the Jenkins
role, as we did for the helloworld role, or we can list the nodejs role in the list of roles for
our playbook. Since ultimately Jenkins doesn't really require a node to run, we will opt for
the second approach. In the root directory of our ansible repository, create the playbook
file. The filename is jenkins.yml and it should look as follows:

- hosts: "{{ target | default('localhost') }}"
 become: yes
 roles:
 - jenkins
 - nodejs

Our role is now complete, so we can commit our new role and push it to GitHub. Following
the best practices described previously, we will start by creating a new branch:

$ git checkout -b jenkins

Add our files with the following command:

$ git add jenkins.yml roles/jenkins

Commit and finally push the changes:

$ git commit -m "Adding a Jenkins playbook and role"
$ git push origin jenkins

Adding Continuous Integration and Continuous Deployment Chapter 5

[145]

From there, submit a pull request inside GitHub and merge the branch back to the master:

Once done, get back to the master branch with the following command:

$ git checkout master
$ git branch
 jenkins
 * master
$ git pull

In a real-life situation, you likely also want to periodically run the following:

$ git pull

This will retrieve the changes made by other developers.

We can now create our CloudFormation template in order to call the role.

Adding Continuous Integration and Continuous Deployment Chapter 5

[146]

Creating the CloudFormation template
In order to keep our code fairly similar to the code we looked at in Chapter 3, Treating Your
Infrastructure as Code, we are going to start off with the helloworld Troposphere code that
we created in that chapter. First, we are going to duplicate the Python script. Go to your
EffectiveDevOpsTemplates directory, where you have your Troposphere templates, and
then clone the ansiblebase-cf-template.py file as follows:

$ cp ansiblebase-cf-template.py jenkins-cf-template.py

The Jenkins host will need to interact with AWS. To allow this, we will create an instance
profile, which we will describe in more detail later, taking advantage of another library that
is developed by the same authors as Troposphere. We will install it as follows:

$ pip install awacs

We are now going to edit the jenkins-cf-template.py file. The first two changes we
will make are to the name and port of the application. Jenkins runs by default on
TCP/8080:

ApplicationName = "jenkins"
ApplicationPort = "8080"

We will also set a number of constants around the GitHub information. Replace the value
of your GithubAccount with your GitHub username or organization name:

GithubAccount = "yogeshraheja"

We also want to add an instance IAM profile to better control how our EC2 instance can
interact with AWS services such as EC2. We previously used the IAM service in Chapter 2,
Deploying Your First Web Application, when we created our user. You may recall that in
addition to creating the user, we also assigned it the administrator policy, which gives the
user full access to all AWS services. On top of that, we generated an access key and a secret
access key, which we are currently using to authenticate ourselves as that administrator
user and interact with services such as CloudFormation and EC2.

When you are using EC2 instances, the instance profile feature provided lets you specify
an IAM role to your instance. In other words, we can assign IAM permissions directly to
EC2 instances without having to use access keys and secret access keys.

Adding Continuous Integration and Continuous Deployment Chapter 5

[147]

Having an instance profile will be very useful later on in this chapter, when we work on the
CI pipeline and integrate our Jenkins instance with the AWS managed services. To do this,
we will first import some extra libraries. The following is from Troposphere import()
section, add the following:

from troposphere.iam import (
 InstanceProfile,
 PolicyType as IAMPolicy,
 Role,
)

from awacs.aws import (
 Action,
 Allow,
 Policy,
 Principal,
 Statement,
)

from awacs.sts import AssumeRole

Then, in between the instantiation of the variables ud and the creation of the instance, we
are going to create and add our role resource to the template as follows:

t.add_resource(Role(
 "Role",
 AssumeRolePolicyDocument=Policy(
 Statement=[
 Statement(
 Effect=Allow,
 Action=[AssumeRole],
 Principal=Principal("Service", ["ec2.amazonaws.com"])
)
]
)
))

As we did previously for the role, we can now create our instance profile and reference the
role. The following code is the creation of the role:

t.add_resource(InstanceProfile(
 "InstanceProfile",
 Path="/",
 Roles=[Ref("Role")]
))

Adding Continuous Integration and Continuous Deployment Chapter 5

[148]

Finally, we can reference our new instance profile by updating the declaration of our
instance. We will add a period after UserData=ud and on the line after initializing the
IamInstanceProfile as follows:

t.add_resource(ec2.Instance(
 "instance",
 ImageId="ami-cfe4b2b0",
 InstanceType="t2.micro",
 SecurityGroups=[Ref("SecurityGroup")],
 KeyName=Ref("KeyPair"),
 UserData=ud,
 IamInstanceProfile=Ref("InstanceProfile"),
)

The file should now look like this https:/ ​/​github. ​com/ ​yogeshraheja/
EffectiveDevOpsTemplates/ ​blob/ ​master/ ​jenkins- ​cf- ​template. ​py. You can save the
changes, commit the new script to GitHub, and generate the CloudFormation template:

$ git add jenkins-cf-template.py
$ git commit -m "Adding troposphere script to generate a Jenkins instance"
$ git push
$ python jenkins-cf-template.py > jenkins-cf.template

Launching the stack and configuring Jenkins
In order to create our EC2 instance with Jenkins running on it, we will proceed as we did in
Chapter 3, Treating Your Infrastructure as Code, using either the web interface or the
command-line interface as follows:

$ aws cloudformation create-stack \
 --capabilities CAPABILITY_IAM \
 --stack-name jenkins \
 --template-body file://jenkins-cf.template \
 --parameters
 ParameterKey=KeyPair,ParameterValue=EffectiveDevOpsAWS

As we did before, we can then wait until the execution is complete:

$ aws cloudformation wait stack-create-complete \
 --stack-name jenkins

https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/jenkins-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/jenkins-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/jenkins-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/jenkins-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/jenkins-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/jenkins-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/jenkins-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/jenkins-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/jenkins-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/jenkins-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/jenkins-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/jenkins-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/jenkins-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/jenkins-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/jenkins-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/jenkins-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/jenkins-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/jenkins-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/jenkins-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/jenkins-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/jenkins-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/jenkins-cf-template.py

Adding Continuous Integration and Continuous Deployment Chapter 5

[149]

After that, we can extract the host's public IP:

$ aws cloudformation describe-stacks \
 --stack-name jenkins \
 --query 'Stacks[0].Outputs[0]'
 {
 "Description": "Public IP of our instance.",
 "OutputKey": "InstancePublicIp",
 "OutputValue": "18.208.183.35"
 }

Because we kept the Ansible Jenkins role fairly simple, we need to complete its
configuration in order to complete the installation of Jenkins. Follow these steps:

Open port 8080 of the instance public IP in your browser (that is, in my1.
case, http://18.208.183.35:8080). Wait for a while to get Jenkins
configurations to get configured before you get the screen):

Adding Continuous Integration and Continuous Deployment Chapter 5

[150]

Using the following ssh command (adapt the IP address) and its ability to run2.
commands remotely, we can extract the admin password, and provide it to that
first configuration screen with the following command:

$ ssh -i ~/.ssh/EffectiveDevOpsAWS.pem ec2-user@18.208.183.35 \
sudo cat /var/lib/jenkins/secrets/initialAdminPassword

On the next screen, choose to install the suggested plugins.3.
Create your first admin user on the next screen and click on the Save and Finish4.
button.
Finally, click on the Start using Jenkins button.5.

Our Jenkins instance is now ready to be used.

Preparing our CI environment
We are going to use our Jenkins instance in conjunction with GitHub to recreate our
helloworld application using a proper CI pipeline. To do this, we are going to go through
a number of preliminary steps, starting with the creation of a new GitHub organization that
has a new repository named helloworld.

Creating a new GitHub organization and repository
We are now going to create a new organization having a new repository dedicated to
hosting our helloworld node application. We will create the organization by going
through the following steps and then will create a new repository inside the organization
using the same steps as in Chapter 3, Treating Your Infrastructure as Code:

Open https:/ ​/​github. ​com/ ​organizations/ ​new in your browser.1.
Set the organization name, which will be a separate GitHub account inside your2.
main GitHub account. I am creating mine with the name
yogeshrahejahelloworld.
Provide your email ID and select the free plan.3.

https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new
https://github.com/new

Adding Continuous Integration and Continuous Deployment Chapter 5

[151]

Click on the Create organization button and select the default settings for the4.
next two steps:

Create a new repository for the newly created organization:5.

Adding Continuous Integration and Continuous Deployment Chapter 5

[152]

Call your repository helloworld.6.
Check the Initialize this repository with a README checkbox.7.
Click on the Create Repository button:8.

This will create the repository, a master branch, and a README.md file.

A proper CI pipeline works silently in the background. In order to achieve this, when the
code is hosted on GitHub, Jenkins needs to get notifications from GitHub to indicate that
the code has changed so that it can trigger a build automatically. This is something we can
easily implement thanks to a plugin called github-organization-plugin. This plugin is
one of those that were installed when we chose to install the suggested plugins in Jenkins.
In order to use it, we first need to create a personal access token in GitHub.

Adding Continuous Integration and Continuous Deployment Chapter 5

[153]

Creating a GitHub personal access token
Creating a personal access token will give the plugins the ability to access the code pushed
to GitHub and create the necessary hooks to get notifications when new commits and pull
requests occur. In order to create the token, use the following steps:

Open https://github.com/settings/tokens in your browser.1.
Click on the Generate new token button.2.
Give it a descriptive name, such as Effective DevOps with AWS Jenkins.3.
Select the repo, admin:repo_hook, and admin:org_hook scopes.4.
Click on the Generate token button.5.
This brings you back to the main token page. Save the token that is generated.6.
We will need it later.

Adding the access token to the credentials in Jenkins
We can now add the token to Jenkins as follows:

Open Jenkins, in my case http://18.208.183.35:8080.1.
Click on Credentials in the menu on the left, then click on System just after it it,2.
and then Global credentials.
On the next screen, click on Add credentials.3.
The credentials we are going to create are of the type Username with password.4.
The scope should be global.5.
Use your GitHub organization as a username.6.
Use the token generated in the previous section as your password.7.
The ID can be something like GitHub as shown in the following screenshot:8.

https://github.com/settings/tokens

Adding Continuous Integration and Continuous Deployment Chapter 5

[154]

You can also choose to give it a description. After that, click OK.9.

The last step of our initialization process consists of creating the Jenkins job.

Creating the Jenkins job to automatically run the builds
As mentioned previously, Jenkins has a plugin to help with the GitHub integration. We can
easily take advantage of this by creating a GitHub organization job. To do this, go through
the following steps:

Open your Jenkins home page in your browser,1.
enter http://18.208.183.35:8080/ and click on Create new jobs.
Enter an item name, provide your GitHub username or organization name, click2.
on GitHub Organization, and then click on OK.
This will bring us to a new page, where we will be able to configure the project:3.

In the Credentials drop-down menu, select your newly created1.
credential.
Validate that the owner is your username or organization name or the2.
name you provided while creating the job. This will be used by Jenkins
to scan all your repositories.
Since we already know that we are only interested in3.
the helloworld repository, click on the Add button at the bottom of
the Behaviors section and select the first option, which should be Filter
by Name (with regular expression).

Adding Continuous Integration and Continuous Deployment Chapter 5

[155]

In the newly populated field, Regular expression, replace .* with4.
helloworld. Select strategy as All branches from the Discover
branches section and scroll down to select one minute from the Scan
Organization Triggers section on the same page:

Adding Continuous Integration and Continuous Deployment Chapter 5

[156]

Click on Save.5.

Adding Continuous Integration and Continuous Deployment Chapter 5

[157]

The job will be created and will scan the project to find a branch. It will find the master
branch with the README file in it, but because we don't have any code yet we will not do
anything. In the following section, we are going to remediate that lack of code and
implement our helloworld application:

Implementing the helloworld application using
our CI environment
Here, we will once again use the simple helloworld web application that we created in
Chapter 2, Deploying Your First Web Application. The goal here is more to illustrate the use
of our CI pipeline than to build a complex web application:

Initializing the project
We are going to use the same AWS instance that we deployed and configured in the
previous section for Jenkins, as a development environment. Therefore, we need to have
nodejs and npm installed on our instance. If you haven't installed these yet, refer to the
instructions in Chapter 2, Deploying Your First Web Application:

$ ssh -i ~/.ssh/EffectiveDevOpsAWS.pem ec2-user@18.208.183.35

Adding Continuous Integration and Continuous Deployment Chapter 5

[158]

$ node –v
$ npm –v

The output of running the preceding command is as follows:

Our first step will be to clone the helloworld GitHub repository that we created in the
preceding section:

$ git clone https://github.com/<your_github_organization>/helloworld.git
$ cd helloworld

We can now create a new branch:

$ git checkout -b initial-branch

Create an empty file called helloworld.js:

$ touch helloworld.js

One of the best ways to write tests for these types of projects is to use a Test Driven
Development (TDD) approach. In a TDD process, developers create the tests first, then run
them to make sure they are failing, write the code, and then test again. At that point, the
tests should pass. We can create a pull request and merge it once it has been reviewed and
approved.

Creating a functional test using Mocha
In order to illustrate the process of writing tests for our TDD approach, we will use a tool
called Mocha (https:/ ​/​mochajs. ​org/ ​). Mocha is a very common and easy-to-use
JavaScript test framework to create a test.

We will install it locally on our system using the following npm, the Node.js package
manager command.

https://mochajs.org/
https://mochajs.org/
https://mochajs.org/
https://mochajs.org/
https://mochajs.org/
https://mochajs.org/
https://mochajs.org/
https://mochajs.org/

Adding Continuous Integration and Continuous Deployment Chapter 5

[159]

First, we will initialize npm with the following command:

$ npm config set registry http://registry.npmjs.org/
$ npm init –yes

The output of running the preceding command is as follows:

Adding Continuous Integration and Continuous Deployment Chapter 5

[160]

This will create a new file called package.json. Next, we will install Mocha and add it to
our list of development dependencies as follows:

$ npm install mocha@2.5.3 --save-dev

This will create a directory called node_modules. Mocha will be installed in that directory.

In addition to Mocha, we will use a headless browser testing module to render our
helloworld application, called Zombie. We can install it with the same command as
follows:

$ npm install zombie@3.0.15 --save-dev

In order to separate the tests from the rest of the project, we are now going to create a
directory called test in the root location of our helloworld project. By default, Mocha
will look for tests in that directory:

$ mkdir test

The last piece of boilerplate code we will use will configure npm to use Mocha to run our
tests. With your editor, open the package.json file and replace the test scripts with the
following command:

 "scripts": {
 "test": "node_modules/mocha/bin/mocha"
 },

Inside the test directory, create and edit the file helloworld_test.js.

The first step consists of loading two modules that we are going to use and need in our test.
The first one is zombie, our headline browser, and the second one is the assert module,
which is the standard module used to create unit testing in Node.js applications:

var Browser = require('zombie')
var assert = require('assert')

Next, we need to load our application. This is done by calling the same require()
function, but this time we will ask it to load the helloworld.js file that we will soon
implement. For now, it's an empty file:

var app = require('../helloworld')

Adding Continuous Integration and Continuous Deployment Chapter 5

[161]

We can now start creating the test. The basic syntax of Mocha tries to mimic what it thinks
specification document could require. The following are the three required statements, add
the following:

describe('main page', function() {
 it('should say hello world')
})

We now need to add hooks into that test to interact with our web application.

The first step will be to point the test to our application endpoint. As you might remember
from the previous chapters, the application is running on http://localhost:3000. We
will use the hook called before() to set up a precondition. Above the call to it(), add the
following to point our headless browser to the proper server:

describe('main page', function() {
before(function() {
 this.browser = new Browser({ site: 'http://localhost:3000' })
})

it('should say hello world')
})
...

At this point, our headless browser will connect to our application, but it won't request any
page. Let's add that in another before() hook, as follows:

describe('main page', function() {
 before(function() {
 this.browser = new Browser({ site: 'http://localhost:3000' })
 })

 before(function(done) {
 this.browser.visit('/', done)
 })

 it('should say hello world')
})
...

Now that the home page has loaded, we need to implement the code in the it() function
to validate our assertion. We will edit the line with the it() call to add a callback function,
as follows:

describe('main page', function() {
 before(function() {
 this.browser = new Browser({ site: 'http://localhost:3000' })

Adding Continuous Integration and Continuous Deployment Chapter 5

[162]

 })
 before(function(done) {
 this.browser.visit('/', done)
 })
 it('should say hello world', function() {
 assert.ok(this.browser.success)
 assert.equal(this.browser.text(), "Hello World")
 })
})

Our test is now ready. If everything went well, your code should look like the one shown at
the following link: https:/ ​/​raw. ​githubusercontent. ​com/ ​yogeshraheja/ ​helloworld/
master/​test/​helloworld_ ​test. ​js.

We can test it in Terminal by simply calling the Mocha command, as follows:

$ npm test

./node_modules/mocha/bin/mocha
 main page
 1) "before all" hook
 0 passing (48ms)
 1 failing
 1) main page "before all" hook:
 TypeError: connect ECONNREFUSED 127.0.0.1:3000

As you can see, our test is failing. It can't connect to the web application. This is, of course,
expected, since we haven't implemented the application code yet.

Developing the remainder of the application
We are now ready to develop our application. Since we already went through creating the
exact code in Chapter 2, Deploying Your First Web Application, we are simply going to copy
it or download it directly as follows:

$ curl -L
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/ma
ster/Chapter02/helloworld.js > helloworld.js

We can now test the code again using the npm command:

$ npm test
Server running
 main page
 should say hello world
 1 passing (78ms)

https://raw.githubusercontent.com/yogeshraheja/helloworld/master/test/helloworld_test.js
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/test/helloworld_test.js
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/test/helloworld_test.js
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/test/helloworld_test.js
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/test/helloworld_test.js
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/test/helloworld_test.js
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/test/helloworld_test.js
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/test/helloworld_test.js
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/test/helloworld_test.js
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/test/helloworld_test.js
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/test/helloworld_test.js
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/test/helloworld_test.js
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/test/helloworld_test.js
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/test/helloworld_test.js
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/test/helloworld_test.js
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/test/helloworld_test.js
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/test/helloworld_test.js
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/test/helloworld_test.js
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/test/helloworld_test.js
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/test/helloworld_test.js
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/test/helloworld_test.js
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/test/helloworld_test.js

Adding Continuous Integration and Continuous Deployment Chapter 5

[163]

The output of running the preceding command is as follows:

Our test is now passing.

We are almost there. We have satisfied one of our first goals, which was to have test
coverage for our code. Of course, a real application with more complexity would have
many more tests, but what we want to focus on now is automation. Now that we've learned
how to test our code manually, we want to see how Jenkins can do this for us.

Creating the CI pipeline in Jenkins
As we saw earlier, Jenkins works by creating and executing jobs. Historically, one way to
create the pipeline would be to open Jenkins in the browser, navigate to the job we
previously created, and edit it to outline the different steps involved in testing our code.
The problem with that solution is that there isn't a good review process involved and it's
hard to track every change made over time. In addition, it's very hard for developers to
make changes in a project that involves adding new build steps as the code of the project
and the job building the project aren't synced together. Jenkins 2 made the concept of
describing the build process into a local file a standard feature, which we're going to use in
the following section.

We are going to create and edit a new file in the project called Jenkinsfile (capital J, no
file extension). The file will be written in Groovy (http:/ ​/​www. ​groovy- ​lang. ​org).

On the first line of the file, we are going to put the following:

#!groovy

http://www.groovy-lang.org
http://www.groovy-lang.org
http://www.groovy-lang.org
http://www.groovy-lang.org
http://www.groovy-lang.org
http://www.groovy-lang.org
http://www.groovy-lang.org
http://www.groovy-lang.org
http://www.groovy-lang.org
http://www.groovy-lang.org
http://www.groovy-lang.org

Adding Continuous Integration and Continuous Deployment Chapter 5

[164]

This is useful for the different IDEs and GitHub as it indicates the nature of the file. The
first step of our script will consist of asking Jenkins to assign the job to a node as follows:

node { }

Our Jenkins installation is fairly simple. We only have one server and therefore only one
node. If we had more nodes, we could add parameters to the call to target a node with a
specific architecture, or even drive the parallel execution.

Our CI testing can be logically broken up into a few steps:

Get the code from GitHub.1.
Install the different dependencies by calling the npm install command.2.
Run our run with the command mocha.3.
Clean up.4.

These steps have an equivalent concept in Jenkins called stages. We are going to add them
inside the node routing. Here is what the first stage will look like:

node {
 stage 'Checkout'
 checkout scm
}

This tells Jenkins to get the code from the source control. When we created the job, we
stated that it was a GitHub organization job, so Jenkins will know how to interpret that
correctly.

Next, we need to call the npm install command. Groovy doesn't understand native
language specific features such as calling npm. To do this, therefore, we will use the sh
command, which will allow us to spawn a shell and run a command. Here is what our
second stage looks like:

stage 'Checkout'
 checkout scm

stage 'Setup'
 sh 'npm config set registry http://registry.npmjs.org/'
 sh 'npm install'

Adding Continuous Integration and Continuous Deployment Chapter 5

[165]

In our next stage, we are going to run Mocha. The following is the Setup stage; add the
following:

 stage 'Mocha test'
 sh './node_modules/mocha/bin/mocha'

Finally, we can proceed to clean up the repository with the following stage:

stage 'Cleanup'
 echo 'prune and cleanup'
 sh 'npm prune'
 sh 'rm node_modules -rf'

The Jenkins file is now ready, it should look like this: https:/ ​/ ​raw.​githubusercontent.
com/​yogeshraheja/​helloworld/ ​master/ ​Jenkinsfile.

We can now commit our code and test it:

$ git add Jenkinsfile helloworld.js package.json test
$ git commit -m "Helloworld application"
$ git push origin initial-branch

This will create a remote branch called initial-branch. As the branch gets created,
Jenkins will get a notification from GitHub about the change and will run the CI pipeline.
In a matter of seconds, our test will run on Jenkins, which in turn will send the result back
to GitHub. We can observe this as follows:

Open GitHub in your browser and navigate to the helloworld project you1.
created.
Click on Branch and select initial-branch.2.
From that screen, click on New pull request, provide a title and a good3.
description of the change you are making. If possible, mention other developers
so that they can thoroughly review the change you are proposing.
Click on Create pull request and follow the steps to create a pull request. Once4.
the pull request is created, you will be able to see how GitHub shows that the
pull request has passed all checks:

https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile
https://raw.githubusercontent.com/yogeshraheja/helloworld/master/Jenkinsfile

Adding Continuous Integration and Continuous Deployment Chapter 5

[166]

You can also go to your Jenkins browser and check the build history. You can5.
even check the details from Jenkins by clicking the organization, followed by
repository and branch. This will bring us back to the Jenkins job, where you can
observe the execution of the job and its pipeline in more detail:

Adding Continuous Integration and Continuous Deployment Chapter 5

[167]

At that point, if you mentioned other developers, they should get a notification6.
so that they can look at the content of the pull request. Once it is reviewed and
approved, the pull request can be merged. From that point on, when developers
pull the master branch or rebase their branch, they will see your code.

Depending on the size of the team working on a repository, it is common
to have to rebase a branch. The two most important times to do that are
before creating the pull request (step 2) and before merging it (step 6).

Productionizing the CI pipeline
We have now put in place a basic, yet functional, CI pipeline. While this is a good starting
point, you are likely to want to perfect certain details of this system. As
mentioned previously, our Ansible recipe for Jenkins can be improved to include the
configuration of the jobs such as the helloworld job we manually created.

We only created a single functional test to illustrate how to use a TDD approach and how to
integrate a testing step in our pipeline. The success of a continuous integration pipeline
depends strongly on the quality and quantity of the tests produced. Tests will typically be
broken up into functional and non-functional tests. In order to best take advantage of your
pipeline, you will want to catch possible errors as early as possible. This means focusing on
the functional tests and in particular the unit tests, which are used to validate small units of
code such as a method in a class.

After this, you can focus on integration testing, which covers a bit more ground and
usually interacts with data stores and other functions in the code. Finally, you will want to
add acceptance testing to verify that all the requirements for your stories are complete:

Adding Continuous Integration and Continuous Deployment Chapter 5

[168]

In terms of non-functional testing, you will usually want to look at performance, security,
usability, and compatibility testing.

Finally, you can complement your own tests with code analyzer tools to get a sense of the
code coverage (how many lines of code are executed by your automated tests).

As always with DevOps, it is important to collect metrics. In a CI pipeline, you will
typically want to monitor the number of builds that go through the CI pipeline and the
quality of the pull requests.

Like any other system, you will need to spend a bit of time setting up backups and
monitoring. You may decide to back up the Jenkins home directory if you haven't moved to
a model where your jobs and the Jenkins configuration are managed by your configuration
management system (Ansible). In terms of metrics, keeping an eye on the system
performance, its availability, and health are paramount. A breakage in the build pipeline
should be considered a critical issue as it impacts the productivity of all the developers and
operators.

Finally, you should expect to have to scale up your CI infrastructure over time. As code and
tests get added, it will take longer and longer to run the tests. You may decide to add more
Jenkins slaves, which will allow you to run tests in parallel and/or use bigger instances. In
the current format, Jenkins will run the helloworld pipeline every time a change is
pushed to a branch. You may also decide to only run the pipeline once the pull requests are
created.

In the initial section of this chapter, we adopted a new workflow where developers commit
code and tests to individual branches and send frequent pull requests to share the proposed
changes with the rest of the engineering organization. In addition, we made sure that the
new code is fully tested by creating a continuous integration pipeline. To do this, we
created a Jenkins server and hooked it to GitHub. Thanks to that system, all the tests
committed with the project get automatically executed and the results are sent back to
GitHub. We are now in an ideal situation to take our workflow to the next level and
automate deployment.

Are the QA teams no longer needed with DevOps?
Yes and no. In an effective DevOps organization, non-technical QA jobs
are not usually needed. If everything is fully automated and the
developers write sufficient tests to cover all aspects of the code, the
organization doesn't need to task anyone to write and execute test plans.
Instead of that, DevOps-focused organizations will have engineers,
sometimes called QA engineers, who focus on quality but with an
emphasis on automation. This involves working on tooling and processes
to improve the ability to automatically test code.

Adding Continuous Integration and Continuous Deployment Chapter 5

[169]

Building a continuous deployment pipeline
By creating a CI pipeline, we have taken the first step toward being an effective
engineering organization. Because our workflow now involves working in individual
branches and merging them back to the master branch after going through automated
testing and human reviews, we can assume that the code present in the master branch is of
high quality and is safe to deploy. We can now focus on the next challenge, which is to
release code automatically as new code gets merged into the master branch.

By continuously releasing new code, you drastically accelerate the feedback loop process
that DevOps provides. Releasing new code to production at high speed lets you collect real
customer metrics, which often leads to exposing new and often unexpected issues. For
many companies, deploying new code to production is a challenge. It can be quite
worrying, especially if it involves thousands of new commits all going out to production at
the same time in a process that occurs only a few times a year. Companies that do this often
schedule their maintenance late at night and during weekends. Adopting a more modern
approach, such as the one we will go through in the remainder of the chapters, will have a
significant positive impact on the work-life balance of the engineering team.

Most well-known tech companies such as Google or Facebook don't
deploy code on Fridays. The goal is to avoid pushing bugs out just before
the weekend, which could otherwise lead to unexpected pages on
Saturdays or Sundays. Because they aren't scared of deploying code, a lot
of those changes will go out to production at peak hours so that they can
quickly catch any issues related to load.

In order to implement our continuous deployment pipeline, we are going to look at two
new AWS services—CodePipeline and CodeDeploy:

CodePipeline let us create our deployment pipeline. We will tell it to take our
code from GitHub, like we did before, and send it to Jenkins to run CI testing on
it. Instead of simply returning the result to GitHub, however, we will then take
the code and deploy it to our EC2 instance with the help of AWS CodeDeploy.
CodeDeploy is a service that lets us properly deploy code to our EC2 instances.
By adding a certain number of configuration files and scripts, we can use
CodeDeploy to deploy and test our code reliably. Thanks to CodeDeploy, we
don't have to worry about any kind of complicated logic when it comes to
sequencing our deployment. It is tightly integrated with EC2 and knows how to
perform rolling updates across multiple instances and, if needed, perform a
rollback.

Adding Continuous Integration and Continuous Deployment Chapter 5

[170]

In Chapter 3, Treating Your Infrastructure as Code, we looked at how to configure servers
and deploy the helloworld application using Ansible. While this solution allowed us to
illustrate how to use configuration management, this solution is not good enough for a
more critical service. There isn't any notion of sequencing, there are no good feedback
mechanisms to tell us how the deploy went, and we didn't implement any validation steps.

Having a dedicated service geared towards carrying out deployments in AWS will make
deploying applications a lot better, as we will see in the following section. In order to
demonstrate these services, we will first build a new generic Node.js web server using
Ansible.

Creating new web servers for continuous
deployment
In order to use CodeDeploy, the EC2 instances need to be running the CodeDeploy agent.
This is normally done by downloading an executable from an S3 bucket, which varies
depending on the region your instances are running in. Conveniently, AWS has also
released a custom Ansible library, which can automate these steps. Because that library isn't
a part of the standard Ansible library, we first need to add it to our Ansible repository.

Importing a custom library to Ansible for AWS
CodeDeploy
By default, Ansible expects to find the custom libraries in the /usr/share/my_modules/
directory. Previously, when we looked at the inventory script in Chapter 3, Treating Your
Infrastructure as Code, we changed this default behavior by editing the ansible.cfg file.
We will make the necessary changes so that the library is being downloaded onto the host
with the rest of the Ansible files. The simplest way to accomplish this is to create a new
directory at the root of our ansible repository and put the library in it.

On your computer, open a Terminal and go to your ansible directory:

In the root directory of our ansible repository, where the ansible.cfg file is located, we
are going to add the new directory library to store the AWS CodeDeploy ansible library:

$ mkdir library

Adding Continuous Integration and Continuous Deployment Chapter 5

[171]

Once the folder is created, we can download the ansible library in it:

$ curl -L
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/ma
ster/Chapter05/ansible/library/aws_codedeploy > library/aws_codedeploy

Lastly, we are going to edit the ansible.cfg file that is present in the root directory of the
ansible repository to specify the location of the library folder as follows:

update ansible.cfg
[defaults]
inventory = ./ec2.py
remote_user = ec2-user
become = True
become_method = sudo
become_user = root
nocows = 1
library = library

We are now ready to start using the library. CodeDeploy is a service that we are likely to
reuse over time as new services get added to our system. In order to ensure that our
Ansible repository code conforms to the Don't Repeat Yourself (DRY) principle, we are
going to create an Ansible role that is dedicated to CodeDeploy.

Creating a CodeDeploy Ansible role
We are first going to go into the role directory that is present at the root location of
our ansible repository:

$ cd roles

As before, we will rely on ansible-galaxy to put in place the scaffolding that is needed to
create our role:

$ ansible-galaxy init codedeploy

Our role will be very simple. We are going to edit the codedeploy/tasks/main.yml file
and make a call to the new module that the aws_codedeploy library provides, as follows:

tasks file for codedeploy
- name: Installs and starts the AWS CodeDeploy Agent
 aws_codedeploy:
 enabled: yes

Adding Continuous Integration and Continuous Deployment Chapter 5

[172]

At this point, we can create our new playbook for generic nodejs web servers. First, go
back in the root directory of the ansible repository:

$ cd ..

Create a new file called nodeserver.yml:

$ touch nodeserver.yml

We will take the same approach we did previously with our other playbooks. The goal of
our servers will be to run Node.js applications and run the CodeDeploy daemon. Edit the
nodeserver.yml file and add the following to it:

- hosts: "{{ target | default('localhost') }}"
 become: yes
 roles:
 - nodejs
 - codedeploy

When using CodeDeploy in a config management system such as Ansible
or CloudFormation, it is important to always install all the dependencies
for your application prior to starting it. This allows you to avoid a race
condition.

We can now commit our changes to git. First, create a new branch and then add new files
and directories that we created:

$ git checkout -b code-deploy
$ git add library roles/codedeploy nodeserver.yml ansible.cfg

Finally, commit and push the changes:

$ git commit -m "adding aws_codedeploy library, role and a nodeserver
playbook"
$ git push origin code-deploy

As before, you can now create a pull request. Once the pull request has been reviewed and
approved, merge it back to the master. After you have followed these steps, your Ansible
repository should look as follows: https:/ ​/​github. ​com/ ​yogeshraheja/ ​Effective- ​DevOps-
with-​AWS/​tree/​master/ ​Chapter05/ ​ansible.

https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible
https://github.com/yogeshraheja/Effective-DevOps-with-AWS/tree/master/Chapter05/ansible

Adding Continuous Integration and Continuous Deployment Chapter 5

[173]

Creating the web server CloudFormation template
As we now have our Ansible playbook ready, we can create our CloudFormation template
using Troposphere. Start by duplicating the Troposphere script that we created for Jenkins
earlier in the chapter:

$ cd EffectiveDevOpsTemplates
$ cp jenkins-cf-template.py nodeserver-cf-template.py

Edit the nodeserver-cf-template.py file to make the following changes. First, change
the application name and port by updating the variables as follows:

ApplicationName = "nodeserver"
ApplicationPort = "3000"

In addition, our instances will need to download files from S3. To allow this to happen,
replace the policy that allowed CodePipeline on our Jenkins instance with a policy to allow
S3. Edit the policy called AllowCodePipeline and update its name and action. Above the
instantiation of our instance, add a new IAM policy resource as follows:

t.add_resource(IAMPolicy(
 "Policy",
 PolicyName="AllowS3",
 PolicyDocument=Policy(
 Statement=[
 Statement(
 Effect=Allow,
 Action=[Action("s3", "*")],
 Resource=["*"])
]
),
 Roles=[Ref("Role")]
))

The new script should look as follows: https:/ ​/​raw. ​githubusercontent. ​com/
yogeshraheja/​EffectiveDevOpsTemplates/ ​master/ ​nodeserver- ​cf- ​template. ​py.

As the new script is now ready, we can save it and generate the CloudFormation template
as follows:

$ git add nodeserver-cf-template.py
$ git commit -m "Adding node server troposhere script"
$ git push
$ python nodeserver-cf-template.py > nodeserver-cf.template

https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/nodeserver-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/nodeserver-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/nodeserver-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/nodeserver-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/nodeserver-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/nodeserver-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/nodeserver-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/nodeserver-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/nodeserver-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/nodeserver-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/nodeserver-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/nodeserver-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/nodeserver-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/nodeserver-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/nodeserver-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/nodeserver-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/nodeserver-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/nodeserver-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/nodeserver-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/nodeserver-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/nodeserver-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/nodeserver-cf-template.py

Adding Continuous Integration and Continuous Deployment Chapter 5

[174]

Launching our web server
As before, we are going to launch our instance using CloudFormation. Note that we are
calling this first stack helloworld-staging. We will first look at CodeDeploy as a way to
deploy our code to a staging environment. We will use this name in CodeDeploy so that we
can target the deployments to that specific stack:

$ aws cloudformation create-stack \
 --capabilities CAPABILITY_IAM \
 --stack-name helloworld-staging \
 --template-body file://nodeserver-cf.template \
 --parameters ParameterKey=KeyPair,ParameterValue=EffectiveDevOpsAWS

In a few minutes, our instance will be ready.

We are now at an important point in our DevOps transformation. We have now created
generic nodejs web servers that allow you to deploy code on them easily. We are really
close to a realistic environment that effective companies traditionally use to deploy and run
their services. The fact that we are able to create these environments simply and on demand
is our key to success.

When architecting services, always make sure that the infrastructure can
easily be recreated. Being able to troubleshoot an issue is great, but being
able to quickly rebuild a service host and stop the impact on the user is
often even more desirable.

Integrating our helloworld application with
CodeDeploy
Now that our servers are initiated and the CodeDeploy agent is running, we can start using
them. First, we need to create an IAM service role for CodeDeploy. We then need to add an
entry in the CodeDeploy service to define our application. Finally, we need to add our
application specification file and a few scripts to help with deploying and running our
service to the helloworld application.

Adding Continuous Integration and Continuous Deployment Chapter 5

[175]

Creating the IAM service role for CodeDeploy
CodeDeploy permissions work with IAM at the level of the individual application. In order
to provide sufficient permissions, we will create a new IAM service role with the following
policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "codedeploy.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

We will create a new role that will be called CodeDeployServiceRole using the following
command in the command-line interface:

$ aws iam create-role \
 --role-name CodeDeployServiceRole \
 --assume-role-policy-document \
 https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-
 with-AWS/master/Chapter05/misc/CodeDeploy-Trust.json

We now need to attach the role policy to provide the proper permissions to the service role:

$ aws iam attach-role-policy \
 --role-name CodeDeployServiceRole \
 --policy-arn \
 arn:aws:iam::aws:policy/service-role/AWSCodeDeployRole

Our IAM service role is now ready. We can finally start interacting with the CodeDeploy
web interface.

Adding Continuous Integration and Continuous Deployment Chapter 5

[176]

Creating the CodeDeploy application
Now that we have launched EC2 instances with the CodeDeploy service running on them
and defined our IAM service role, we have all the requirements to create a CodeDeploy
application. As always, there are many ways to use AWS services, but we will demonstrate
the basic uses with the web interface in this section:

Open https:/ ​/​console. ​aws. ​amazon. ​com/ ​codedeploy in your browser.1.
If prompted, click on Get Started Now.2.
This leads us to a welcome screen with two options, Sample3.
Deployment and Custom Deployment. Choose Custom Deployment and click
on Skip Walkthrough. This brings us to a form called Create Application.
In that form, under Application Name, give our application the name4.
helloworld.
The deployment groups can be viewed as the environment in which the5.
application will live. We will first create a staging environment. Under
Deployment Group Name, provide the name staging.
We now need to add instances to our application. Our goal is to target the EC26.
instance that we previously created with CloudFormation. As you might recall,
we called our stack helloworld-staging. In the section Environment
configuration, select Amazon EC2 instances, and select
aws:cloudformation:stack-name in the Key field and helloworld-
staging in the Value field. This will make sure that CodeDeploy only selects the
instance that we intend to use for our application. AWS CodeDeploy should
confirm that it matched one instance:

https://console.aws.amazon.com/codedeploy
https://console.aws.amazon.com/codedeploy
https://console.aws.amazon.com/codedeploy
https://console.aws.amazon.com/codedeploy
https://console.aws.amazon.com/codedeploy
https://console.aws.amazon.com/codedeploy
https://console.aws.amazon.com/codedeploy
https://console.aws.amazon.com/codedeploy
https://console.aws.amazon.com/codedeploy
https://console.aws.amazon.com/codedeploy
https://console.aws.amazon.com/codedeploy
https://console.aws.amazon.com/codedeploy
https://console.aws.amazon.com/codedeploy

Adding Continuous Integration and Continuous Deployment Chapter 5

[177]

The next section is called Deployment configuration. One of the strengths of7.
CodeDeploy is its ability to understand how to deploy code to a cluster of
servers. This features makes it easy to avoid outages during deployment. By
default, the service comes with three deployment options—one at a time, all at
once, and half at a time. It is possible to create custom deployment
configurations, but in our case, since we have only one instance, we can leave the
default option CodeDeployDefault.OneAtATime.
The next two sections are called triggers and alarms. We aren't going to cover8.
these in detail in this book, but basically triggers are useful when it comes to
collecting metrics around deployment and monitoring. By creating triggers to
push notifications in SNS and creating CloudWatch metrics, you can easily
collect metrics around deployments. This helps you answer questions such as
how many deployments are happening, how many fail, how many deploys lead
to rollback, and so on.
Our application is somewhat stateless, therefore enabling rollback upon failure is9.
a good idea. Select the Roll back when a deployment fails option.
Lastly, we need to select the service role that we created in the previous steps.10.
Under Service Role ARN, select the role that ends with
CodeDeployServiceRole.
Finally, click on Create Application.11.

This brings us back to the CodeDeploy application page for our newly created
helloworld application.

Creating the application in CodeDeploy allows us to define where our newly created
application will be deployed. We will now look at how to deploy our code.

Adding the CodeDeploy configuration and scripts to
our repository
When we worked on creating a Jenkins pipeline earlier in this chapter, we created a
Jenkinsfile file inside the helloworld GitHub repository. The reason for this was that we
could change the code and the way the code is tested in the same change set. For the same
reason, it is a good idea to put the logic about how to deploy our code with the code itself.

Our helloworld repository currently contains the application that we created inside a new
GitHub organization (yogeshrahejahelloworld in my case). It also contains the
applications tests and a repository with name helloworld . We are now going to add the
information that CodeDeploy needs in order to execute the deployment of our service.

Adding Continuous Integration and Continuous Deployment Chapter 5

[178]

CodeDeploy relies on an application specification file called appspec.yml to manage
deployment. We first need to create this file. Go to the directory where the helloworld
GitHub project is cloned and create a new branch off the master:

$ git clone https://github.com/<YOUR GITHUB ORGANIZATION>/helloworld.git
$ cd helloworld
$ git checkout -b helloworld-codedeploy

We are now going to create and edit the file appspec.yml:

$ touch appspec.yml

On the first line of the file, we are going to define which version of the AppSpec file we
want to use. Currently, the only version that is supported is 0.0:

version: 0.0

On the next line, we are going to specify the operating system on which we wish to deploy
our service. In our case, this is Linux:

os: linux

We are now going to describe which file goes where. To do this, we are going to create a
section called files and put each file that we want to deploy using a format source
destination. Note that the file is written in YAML and therefore the spacing and alignment
are important:

version: 0.0
os: linux
files:
 - source: helloworld.js
 destination: /usr/local/helloworld/

Thanks to this section, CodeDeploy now knows to copy the helloworld.js in the target
destination, /usr/local/helloworld. Our helloworld directory will be automatically
created by CodeDeploy. In order to start the application, we will also need our upstart
script, which isn't currently in the repository.

Back in the Terminal of the root directory of the helloworld project, we are going to
create a subdirectory called scripts and add the upstart script to it:

$ mkdir scripts
$ wget
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/ma
ster/Chapter02/helloworld.conf -O scripts/helloworld.conf

Adding Continuous Integration and Continuous Deployment Chapter 5

[179]

We can now add the helloworld.conf file that new file to our appspsec.yml by adding
another block with the source and destination of the upstart script as follows:

files:
 - source: helloworld.js
 destination: /usr/local/helloworld/
 - source: scripts/helloworld.conf
 destination: /etc/init/

The two files that we need in order to run our application as a service will now be present
in the appropriate locations. In order to deploy our application, we need more files. We
need CodeDeploy to start and stop the service. Previously, we started the application using
Ansible, but this time around we aren't using Ansible to manage our service. CodeDeploy
has a much more elegant solution: when a deployment starts, the CodeDeploy agent
running on the EC2 instance will go through the following sequence of events:

The archive containing our application will be downloaded on the system during the
DownloadBundle event. The install section will be used to copy the files defined in our
template to their destinations.

CodeDeploy uses the concept of hooks. In the appspec.yml file we can create a number of
hooks to execute custom scripts during each of the stages described previously. We are
going to create three scripts: a script to start our application, a script to stop it, and finally a
script to check if the deployment was successful.

We will put these three scripts in the scripts directory that we created previously. Let's
create the first file start.sh and start editing it:

$ touch scripts/start.sh

The script is very straightforward. We are simply going to call upstart to start the service:

#!/bin/sh
start helloworld

This is all we need. We are now going to create our stop script file:

$ touch scripts/stop.sh

Adding Continuous Integration and Continuous Deployment Chapter 5

[180]

As we did before, edit it as follows:

#!/bin/sh
[[-e /etc/init/helloworld.conf]] \
 && status helloworld | \
 grep -q '^helloworld start/running, process' \
 && [[$? -eq 0]] \
 && stop helloworld || echo "Application not started"

The stop script is slightly more complicated than the start script because it will be executed
during the BeforeInstall step. The basic logic is the same: we are making a call to stop
the helloworld application. We have some extra calls before this because we need to
handle the case of the first deployment where the application hasn't been installed and
started before.

The last script we will create is called validate.sh:

$ touch scripts/validate.sh

Once again the code is very simple:

#!/bin/sh
curl -I localhost:3000

For the purposes of this book, we are carrying out the most basic validation possible. This
consists of a HEAD request on the only route that our application has. In a more realistic
application, we would test more routes and anything that could potentially go wrong when
new code is pushed out.

Our scripts need to be executable to avoid any unnecessary warnings in CodeDeploy:

$ chmod a+x scripts/{start,stop,validate}.sh

We can now add our hooks in our appspec.yml file. Open the file again and create a
hooks section below the files section:

version: 0.0
os: linux
files:
[...]
hooks:

Adding Continuous Integration and Continuous Deployment Chapter 5

[181]

We will first declare the stop script that we want to run at the BeforeInstall stage. In the
hooks section, add the following:

hooks:
 BeforeInstall:
 - location: scripts/stop.sh
 timeout: 30

We are allowing 30 seconds for the execution of the stop command to complete. We are
going to repeat a similar operation to add our start and validate scripts as follows:

hooks:
 BeforeInstall:
 - location: scripts/stop.sh
 timeout: 30
 ApplicationStart:
 - location: scripts/start.sh
 timeout: 30
 ValidateService:
 - location: scripts/validate.sh

When our deploy pipeline runs, it will try to do the following:

Download our application package and decompress it in a temporary directory1.
Run the stop script2.
Copy the application and upstart script3.
Run the start script4.
Run the validate script to make sure everything is working as expected5.

We can add all our new files to git, commit and push the changes, and send a pull request
as follows:

$ git add scripts appspec.yml
$ git commit -m "Adding CodeDeploy support to the application"
$ git push

The branch will go through Jenkins and be tested. A peer can then review the code change;
once it is approved, you can merge your pull request.

In order to perform deployment, we essentially need to answer three questions—what are
we trying to deploy? Where are we trying to deploy it? How can we deploy it? We answered the
second question when we created the job in CodeDeploy and the third question with our
appspec file and its helper scripts. We now need to look into the first question—what are we
trying to deploy? This is where we are going to use AWS CodePipeline.

Adding Continuous Integration and Continuous Deployment Chapter 5

[182]

Building our deployment pipeline with AWS
CodePipeline
AWS CodePipeline is a service dedicated to creating delivery pipelines. You can think of it
as similar to the Jenkins pipelines feature with an AWS twist. The service is very well
integrated with the rest of the AWS ecosystem, which means that it has a number of great
features and useful advantages over Jenkins. Because it's a fully managed service, you don't
have to worry about its uptime the way we do with a single Jenkins instance. It integrates
out of the box with CodeDeploy, which is very handy for our case. While we won't go into
too much detail here, the service is fully integrated with the IAM service, which means that
you have a very granular level of control over who can do what. The service can, for
example, prevent unauthorized users from performing deployments. Thanks to its API, a
number of services can be integrated into your pipelines, including Jenkins and GitHub.

We will first look into creating a basic pipeline in two stages. In the first stage, we will get
the code from GitHub, package it, and store the package on S3. In the second stage, we will
take that package and deploy it to our staging instance using CodeDeploy.

After that, we will go through a more advanced scenario. We will see how we can use our
Jenkins instance to run our tests before deploying our code to staging. We will also create a
production environment and add an on-demand production deployment process, called a
continuous delivery pipeline. Finally, we will look at a couple of strategies that will allow
us to build confidence in the code that we push through our pipeline so that we will be able
to remove the on-demand production deployment step and turn it into a fully automated
pipeline.

Creating a continuous deployment pipeline for staging
To create our first deployment pipeline with CodePipeline, we are going to use the AWS
console, which offers a very intuitive web interface:

Open the following link in your browser: https://console.aws.amazon.com/cod1.
epipeline.
If prompted, click on Get started.2.
On the next screen, give your pipeline the name helloworld and click on Next3.
Step.

https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline

Adding Continuous Integration and Continuous Deployment Chapter 5

[183]

For the source location, select GitHub as a Source provider and click on Connect4.
to Github. If requested, sign into your GitHub account.
This will bring you back to the AWS CodePipeline screen. We can now select a5.
Repository and branch. We will select the helloworld project and the master
branch. Click on Next step.

If you don't see the organization name/repository name (that is,
yogeshrahejahelloworld/helloworld) then, as a workaround,
clone/copy the organization name/repository name to your global Github
repository (that is, yogeshrahejahelloworld/helloworld to
yogeshraheja/hellworld in my case).

This brings us to stage three of our pipeline where we can select our Build6.
provider. Our application is being written in Node.js so we don't need to build
anything. Select No build and click on Next step.
The next step is called Beta. This is essentially our staging deployment step.7.
Under Deployment provider, select AWS CodeDeploy. Under Application
name, select helloworld. Finally, select staging for the Deployment group.
Click on Next step.
This brings us to a step in which we have to choose our Role Name.8.
Conveniently, AWS have also added a Create Role button. Click on this.
On the next screen, select Create a new IAM Role and give it the name AWS-9.
CodePipeline-Service. Use the policy proposed and click on Allow.
Go back to the CodePipeline step and make sure that role name says AWS-10.
CodePipeline-Service. Click on Next step.
On the review screen, make sure everything is correct. Finally, click on Create11.
Pipeline.

Because we are using the web interface, Amazon automatically creates an
S3 bucket on your behalf to store the artifacts that are produced when the
pipeline runs.

Adding Continuous Integration and Continuous Deployment Chapter 5

[184]

The pipeline will be created in a matter of seconds and run for the first time.

Adding Continuous Integration and Continuous Deployment Chapter 5

[185]

To illustrate the basic functions of CodeDeploy and CodePipeline, we
have used the web and command line interface. This process is very
manual and doesn't go through any kind of review process.
CloudFormation supports these two services. For a real production
system, instead of making changes by hand, it is best to use something
like Troposphere to generate the templates programmatically to manage
the services.

Once both steps have run, you can verify that the code has been deployed by opening in
your browser http://<instanceip>:3000. The instance IP can be found in the
CloudFormation template or the EC2 console. You can even verify the success with the
following one-liner:

$ aws cloudformation describe-stacks \
 --stack-name helloworld-staging \
 --query 'Stacks[0].Outputs[0].OutputValue' \
 | xargs -I {} curl {}:3000
Hello World

We have finished our basic pipeline. By taking advantage of CodePipeline, CodeDeploy,
GitHub, and S3, we have built a very elegant solution to handle the deployment our web
application. Every time a pull request is merged to the master, our pipeline will pick up the
change, automatically create a new package with the new code, store it on S3, and then
deploy it to staging. Thanks to CodeDeploy we can have a basic test in place to verify that
the version is working. If needed, we can also roll back to any revisions that were built
previously.

Our pipeline doesn't have to be limited to staging; we can actually do a lot more. As we
mentioned previously, CodePipeline can integrate with Jenkins. We can use
CodePipeline to build artifacts, but also to run some extra series of tests. Let's add it to our
pipeline before deploying to staging.

Integrating Jenkins to our CodePipeline pipeline
One of the features that makes Jenkins so popular is its plugin capability. AWS released a
number of plugins to integrate different services with Jenkins. We are going to use the one
that has been created for CodePipeline. First, this will require us to change the IAM profile
role of the instance so that it can interact with CodePipeline. We will then install the
CodePipeline plugin in Jenkins and create a job to run our test. Finally, we will edit our
pipeline to integrate the new stage.

Adding Continuous Integration and Continuous Deployment Chapter 5

[186]

Updating the IAM profile through CloudFormation
In order to add the new privileges to the instance profile, we are going to edit
the jenkins-cf-template.py template that we created earlier in the chapter. We are
going to add a policy to grant permissions to allow the Jenkins instance to communicate
with CodePipeline. This step is very similar to the change we made to grant S3 access to our
web server previously.

Above the instance variable instantiation, add the following:

t.add_resource(IAMPolicy(
 "Policy",
 PolicyName="AllowS3",
 PolicyDocument=Policy(
 Statement=[
 Statement(
 Effect=Allow,
 Action=[Action("s3", "*")],
 Resource=["*"])
]
),
))

Then, save the changes and regenerate the template. The new template should look as
follows: https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AW
S/master/Chapter05/EffectiveDevOpsTemplates/jenkins-cf-template.py:

$ git add jenkins-cf-template.py
$ git commit -m "Allowing Jenkins to interact with CodePipeline"
$ git push
$ python jenkins-cf-template.py > jenkins-cf.template

Using the web interface, update the stack:

Open https:/ ​/​console. ​aws. ​amazon. ​com/ ​cloudformation.1.
Check the checkbox next to the Jenkins stack and in the Actions menu, select2.
Update Stack.

https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/EffectiveDevOpsTemplates/jenkins-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter05/EffectiveDevOpsTemplates/jenkins-cf-template.py
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation

Adding Continuous Integration and Continuous Deployment Chapter 5

[187]

Browse to the newly generated jenkins-cf.template and click on Next until3.
you get to the review screen:

As shown in the preceding screenshot, only the IAM policy is being added4.
because we created our instance with an instance profile. Our EC2 instance will
stay untouched, making this change safe. Click on Update to confirm the change.

The instance policy will get updated, giving Jenkins enough permissions to interact with
CodePipeline. We can now install the Jenkins plugin for CodePipeline.

Installing and using the CodePipeline Jenkins plugin
Installing a plugin in Jenkins is very simple:

Open your Jenkins instance in your browser (in my case http://11.
8.208.183.35:8080).
If necessary, log in and click on Manage Jenkins.2.
on the Manage Jenkins page, select Manage Plugins.3.
Search for the plugin called AWS CodePipeline Plugin, select it, and install it.4.
We can now start using the plugin.
Go back to the homepage of your Jenkins server.5.
Click on New Item in the menu on the left.6.
Give the new item the name HelloworldTest, select Freestyle project, and click7.
on the OK button at the bottom of the page.

Adding Continuous Integration and Continuous Deployment Chapter 5

[188]

On the next screen, under Source Code Management, select AWS CodePipeline.8.
Because we configured the permissions at the instance profile level, the only
options we need to configure are the AWS Region and Category, which are in
our case US_EAST_1 and Test respectively.
Under Build Triggers, select Poll SCM and then type * * * * * to tell Jenkins9.
to check with CodePipeline every minute for possible code test requests.
Under the Build section, click on Add build step and then Execute shell.10.
Once again, we are going to run the tests that we created at the beginning of the11.
chapter. In the Command section, type the following:

npm config set registry http://registry.npmjs.org/
npm install
./node_modules/mocha/bin/mocha

Add a post-build action and select the action called AWS CodePipline12.
Publisher.
In the newly generated AWS CodePipeline Publisher, click on Add, and leave13.
the Location blank.
You can configure the rest of the job according to your preferences and then click14.
on Save to create the new job.

Our test job in Jenkins is ready to be used and we can now update our pipeline.

Adding a test stage to our pipeline
We are going to use the web interface to make this change:

Open https:/ ​/​console. ​aws. ​amazon. ​com/ ​codepipeline in your browser.1.
Select the helloworld pipeline we previously created.2.
On the helloworld pipeline page, click on the Edit button at the top of the3.
pipeline.
Add a stage by clicking on the + Stage button located between the Source and4.
Beta stages.
Call that stage Test and click on Action.5.
In the menu on the right, under Action category, choose the action called Test.6.
Call your action Jenkins and, for the Test provider, select Add Jenkins.7.
In the Add Jenkins menu, leave the Provider Name set to Jenkins. Provide8.
your Jenkins URL, which in my case is http://18.203.183.35:8080. The
project name needs to match the name of the job on Jenkins. This should be
HelloworldTest. Once set, click on Add action.

https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline

Adding Continuous Integration and Continuous Deployment Chapter 5

[189]

Apply your change by clicking on Save pipeline changes at the top of the9.
pipeline.
Run the pipeline again by clicking on Release change. After a few minutes, you10.
should be able to see the Jenkins step being executed. If everything goes well it
should turn green.

Our pipeline is now starting to look very interesting. Here, we have demonstrated the
Jenkins integration in its most rudimentary form, but you can easily imagine more realistic
scenarios where you would add a step after deploying your code to staging to carry out
better validation with better integration, load, and even penetration testing.

The goal of AWS CodePipeline is to help you take your services from source control all the
way up to production. As you first start working on a service, you might not have the test
coverage needed to continuously deploy it to production so you might opt for one-click
production deployment instead. We are going to take advantage of the automation we have
built so far in this chapter and build a continuous delivery pipeline for production.

Building a continuous delivery pipeline for production
In order to build our continuous delivery pipeline, we are first going to create a
CloudFormation stack for a production environment. We will then add a new deployment
group in CodeDeploy, which will provide us with the ability to deploy code to the new
CloudFormation stack. Finally, we will upgrade the pipeline to include an approval process
to deploy our code to production and the production deployment stage itself.

Creating the new CloudFormation stack for production
Here, we are going to reuse the exact same template as we used for staging. In your
Terminal, go to the location you used to generate the node server template and then run the
same command as before, but this time with the stack name helloworld-production:

$ aws cloudformation create-stack \
 --capabilities CAPABILITY_IAM \
 --stack-name helloworld-production \
 --template-body file://nodeserver.template \
 --parameters ParameterKey=KeyPair,ParameterValue=EffectiveDevOpsAWS

We can then run the following command to wait for the stack to be ready:

$ aws cloudformation wait stack-create-complete \
 --stack-name helloworld-production

Adding Continuous Integration and Continuous Deployment Chapter 5

[190]

You might realize the weakness of our production stack with only one
EC2 instance in it. We will address that concern in Chapter 6, Scaling Your
Infrastructure, when we talk about scaling strategies.

Creating a CodeDeploy group to deploy to production
Previously, we created a CodeDeploy application and a first deployment group that
allowed us to deploy our code to staging. Using the command-line interface, we are now
going to add a new deployment group to deploy our code to our newly created production
environment.

One of the parameters needed to add new deployment groups is the arn of the policy we
created initially. We can easily extract this from the staging deployment group that we
created previously. We will store the result in a variable called arn:

$ arn=$(aws deploy get-deployment-group \
 --application-name helloworld \
 --deployment-group-name staging \
 --query 'deploymentGroupInfo.serviceRoleArn')

We can now run the following command to create the new deployment group:

$ aws deploy create-deployment-group \
 --application-name helloworld \
 --ec2-tag-filters Key=aws:cloudformation:stack-
 name,Type=KEY_AND_VALUE,Value=helloworld-production \
 --deployment-group-name production \
 --service-role-arn $arn

If everything went well, the new deployment group should be created. We can verify this
by browsing to the application in the AWS CodeDeploy web page or using the command-
line with the following command:

$ aws deploy list-deployment-groups \
 --application-name helloworld
{
"applicationName": "helloworld",
"deploymentGroups": [
 "staging",
 "production"
]
}

Adding Continuous Integration and Continuous Deployment Chapter 5

[191]

Adding a continuous delivery step to our pipeline
As we saw earlier in this chapter, pipelines are composed of stages. In CodePipeline, stages
are characterized by their categories. We have explored three categories so far: source,
deploy, and test. In order to add a confirmation step to deploy our service to production,
we will use a new category called approval.

Approval actions offer a number of configuration options to send notifications when a job
is pending approval. To demonstrate this feature, we are going to create a new SNS topic
and subscribe to it. As you might remember from Chapter 3, Treating Your Infrastructure as
Code, SNS is the simple notification service that we used to monitor our infrastructure.

We are going to use the command-line to create a new topic and subscribe to it:

$ aws sns create-topic --name production-deploy-approval
{
"TopicArn": "arn:aws:sns:us-east-1:511912822958:production-deploy-
approval"
}

Here, we will use an email subscription. SNS also supports a number of other protocols
such as SMS, HTTP, and SQS. In order to subscribe, you need to know the Topic ARN,
which is in the output of the previous command:

$ aws sns subscribe --topic-arn \
 arn:aws:sns:us-east-1:511912822958:production-deploy-approval \
 --protocol email \
 --notification-endpoint yogeshraheja07@gmail.com
{
"SubscriptionArn": "pending confirmation"
}

Go to your inbox to confirm the subscription.

We can now add our new stages, starting with the approval stage:

Open https:/ ​/​console. ​aws. ​amazon. ​com/ ​codepipeline in your browser.1.
Select the helloworld application.2.
Click on Edit at the top of the pipeline.3.
Click on the + Stage button at the bottom of the pipeline below the Beta stage.4.
Give it the name Approval.5.
Click on + Action.6.
Select Approval in the Action Category menu.7.
Call the action Approval.8.

https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline

Adding Continuous Integration and Continuous Deployment Chapter 5

[192]

Select the approval type Manual approval.9.
Pick the SNS topic we just created. Typing production deploy should allow10.
you to find the topic easily thanks to the autocomplete feature of the form.
Finally, click on Add action. We are now going to add the deployment to11.
production steps below this approval.
Click on the + Stage button below the newly created stage Approval.12.
Call this new stage Production.13.
Click on + Action.14.
Select the Deploy category.15.
Call the action Production.16.
Select the CodeDeploy provider.17.
Pick helloworld as our application name.18.
Select the deployment group production.19.
Select the artifact MyApp.20.
Click on Add action.21.
Complete the creation of our new stages by clicking on Save pipeline changes at22.
the top of the pipeline.

We can once again click on Release change to test our updated pipeline.

The pipeline will go through the first three stages and then block at the approval stage. If
you check your email inbox, you will find a link where you can review the change.
Alternatively, you can simply use the web interface and click on the review button in the
approval stage:

After carefully reviewing the changes, you can either approve or reject the change. If it is
approved, the deployment will continue to the last step of the pipeline and deploy the code
to production.

We have now automated our entire release process. Our helloworld application may not
reflect what a real application might look like, but the pipeline we built around it does.
What we built can be used as a blueprint for deploying more complex applications from
environment to environment safely.

Adding Continuous Integration and Continuous Deployment Chapter 5

[193]

There is no question that the ability to move fast and release your new features and services
to customers allows you to prevent disruptions. The last step of building a continuous
deployment pipeline is to remove the manual approval process to release code to
production, thereby taking out the last step involving humans in the release process. Over
the years, different companies have come up with a couple of strategies to make production
deployments a safe process. In the next section, we will look at some solutions that you can
implement.

Strategies to practice continuous deployments in
production
As always, your first line of defense is to have enough test coverage and sophisticated
validation scripts that cover most of the sensitive routes and features in your product.
There are some well-known strategies and techniques to make a continuous deployment
pipeline safe for production. We will explore three common ones in this section.

Fail fast
The pipeline that we built is fairly fast and robust. Depending on the nature of your service,
you may choose to trust the quality of the code produced by your team and always deploy
the code straight to production. With sufficient monitoring around your logs and
application metrics, you will be able to catch issues minutes after the code is deployed. You
can then rely on CodeDeploy and its ability to deploy older releases fast to recover from
that situation.

If you take this approach and a problem is detected, simply roll back to a
previous version. You may know exactly what's wrong and know that it's
easy to fix, but the pressure caused by knowing that there is an ongoing
issue impacting users can cause you to make more mistakes, making the
situation worse.

Canary deployment
Similarly, you could try to deploy your code straight to production, but only expose part of
the traffic to the new code for some time. You can build a system where only a small
percentage of the traffic hits the new servers that are running the new code and compare
the error rate and performance originating from each release for a short period of time.
Usually, 10% of the traffic for 10 minutes is sufficient to collect enough information about
the quality of the new build. If, after that time, everything looks good, you can then move
100% of the traffic to the new version of the service.

Adding Continuous Integration and Continuous Deployment Chapter 5

[194]

Bugs such as memory leaks are usually slower to manifest themselves; once the
deployment is complete, continue closely monitoring your different systems and key
metrics to make sure that no mistakes have been made:

Adding Continuous Integration and Continuous Deployment Chapter 5

[195]

Feature flags
Also known as a dark launch, this last strategy is the hardest one to implement but also the
most valuable. It is used by most well-known tech companies. The idea is to have multiple
smart switches on each of your features. When you first deploy the code for a new feature,
you do so with those switches turned off. You then progressively turn them on for different
subsets of users. You might start by only allowing employees of the company to experience
the feature. You might then decide to increase the number of people exposed to that feature
by adding a set of trusted users. You might then turn the feature on for 20% of your users,
then 50%, and so on. As well as allowing you to do a soft launch, this type of features can
be used at the product level to carry out A/B testing, maintenance, where you want to turn
off a specific feature, or even load testing.

One of the best uses of a dark launch was summarized in a blog post by
Facebook. In 2008, Facebook launched their chat functionality. It was a
very challenging feature as it was the first service Facebook developed in
Erlang. In order to make sure the service would be able to handle the scale
at which Facebook operates, they relied on a dark launch strategy. During
the months leading up to the official launch, they simulated what the real
traffic could look like by releasing the service without the UI. Real users
browsers would establish connections to the chat servers and invisibly
send and receive messages to simulate the load. When it was time to
launch, Facebook didn't push out new code, but simply turned the switch
on to make the chat window visible in the UI. More information about this
launch can be found at: https:/ ​/ ​www.​facebook. ​com/ ​notes/ ​facebook-
engineering/ ​facebook- ​cha t/14218138919/.

Summary
In this chapter, we have been through one of the most important aspects of the DevOps
philosophy—how to change the way in which code is released.

Our first objective was to improve developers' productivity. To that effect, we built a
continuous integration pipeline. Taking advantage of Jenkins and GitHub, we created a
new workflow where developers commit their code in individual branches and submit pull
requests. The branches are automatically tested with Jenkins and a final peer review
ensures that the code committed is of high quality.

https://www.facebook.com/notes/facebook-engineering/facebook-chat/14218138919/
https://www.facebook.com/notes/facebook-engineering/facebook-chat/14218138919/
https://www.facebook.com/notes/facebook-engineering/facebook-chat/14218138919/
https://www.facebook.com/notes/facebook-engineering/facebook-chat/14218138919/
https://www.facebook.com/notes/facebook-engineering/facebook-chat/14218138919/
https://www.facebook.com/notes/facebook-engineering/facebook-chat/14218138919/
https://www.facebook.com/notes/facebook-engineering/facebook-chat/14218138919/
https://www.facebook.com/notes/facebook-engineering/facebook-chat/14218138919/
https://www.facebook.com/notes/facebook-engineering/facebook-chat/14218138919/
https://www.facebook.com/notes/facebook-engineering/facebook-chat/14218138919/
https://www.facebook.com/notes/facebook-engineering/facebook-chat/14218138919/
https://www.facebook.com/notes/facebook-engineering/facebook-chat/14218138919/
https://www.facebook.com/notes/facebook-engineering/facebook-chat/14218138919/
https://www.facebook.com/notes/facebook-engineering/facebook-chat/14218138919/
https://www.facebook.com/notes/facebook-engineering/facebook-chat/14218138919/
https://www.facebook.com/notes/facebook-engineering/facebook-chat/14218138919/
https://www.facebook.com/notes/facebook-engineering/facebook-chat/14218138919/
https://www.facebook.com/notes/facebook-engineering/facebook-chat/14218138919/
https://www.facebook.com/notes/facebook-engineering/facebook-chat/14218138919/

Adding Continuous Integration and Continuous Deployment Chapter 5

[196]

Thanks to this change, we can guarantee that the code present in the master branch of our
project is always good and worth being pushed to staging. To do this, we built a continuous
deployment pipeline. Thanks to AWS CodeDeploy and CodePipeline, we were able to
easily build a fully functional pipeline. The pipeline has all the desired features an operator
could wish for. It automatically picks up changes from developers merging their pull
requests, creates a package of the new version of the application, stores the package on S3,
and then deploys it to staging. As the new code gets deployed, validation steps ensure that
the application isn't misbehaving and, if needed, the application can easily be rolled back.

Once we finished building our continuous deployment pipeline, we extended it to build a
continuous delivery capability so that we could carry out production deployment on
demand. We also added an extra stage to integrate testing through Jenkins within the
pipeline itself. Finally, we discussed different techniques and strategies to have a
continuous deployment pipeline for production that will allow us to perform dozens of
production deployments a day for any given service.

Since we started to take a more DevOps approach towards managing our architecture and
services, we haven't looked at the notions of high availability or load balancing. Even in this
chapter, we only created one EC2 instance for our production environment. We will
address this in Chapter 6, Scaling Your Infrastructure. We will look at tools and services to
scale our infrastructure and handle massive amounts of traffic.

Questions
What is Continuous Integration, Continuous Deployment and Continuous1.
Delivery?
What is Jenkins, and how does it help in the SDLC cycle?2.
Describe how to build your first continuous deployment pipeline.3.

Further reading
Please read the following articles for more information:

Jenkins Reference: https:/ ​/ ​jenkins. ​io/ ​

Mocha Reference: https:/ ​/ ​mochajs. ​org/​

AWS CodeDeploy Reference: https:/ ​/​docs. ​aws. ​amazon. ​com/​codedeploy/
latest/​userguide/ ​welcome. ​html

https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://mochajs.org/
https://mochajs.org/
https://mochajs.org/
https://mochajs.org/
https://mochajs.org/
https://mochajs.org/
https://mochajs.org/
https://mochajs.org/
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html

Adding Continuous Integration and Continuous Deployment Chapter 5

[197]

AWS CodePipeline Reference: https:/ ​/​docs. ​aws. ​amazon. ​com/ ​codepipeline/
latest/​userguide/ ​welcome. ​html

Jenkins Reference: https:/ ​/ ​jenkins. ​io/ ​

Mocha Reference: https:/ ​/ ​mochajs. ​org/​

AWS CodeDeploy Reference: https:/ ​/​docs. ​aws. ​amazon. ​com/​codedeploy/
latest/​userguide/ ​welcome. ​html

AWS CodePipeline Reference: https:/ ​/​docs. ​aws. ​amazon. ​com/ ​codepipeline/
latest/​userguide/ ​welcome. ​html

https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://mochajs.org/
https://mochajs.org/
https://mochajs.org/
https://mochajs.org/
https://mochajs.org/
https://mochajs.org/
https://mochajs.org/
https://mochajs.org/
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html

6
Scaling Your Infrastructure

In this chapter, we are going to analyze all the technologies used to deploy a complete web
application in Amazon Web Services (AWS). In particular, we will look at how to create a
monolithic application in one single machine and decompose the application into multiple
pieces in order to achieve scalability and reliability.

Every section of this chapter first has a theoretical part that focuses on the overarching idea
as well as the AWS technologies necessary to implement it. It also has a practical example,
which makes it possible to put what is explained into action.

Starting with the monolith approach to all the software on a single machine, we are going
to see when and why it is convenient to break it into multiple pieces to achieve better
scalability and reliability. To do this, moving the data (also called the state of the
application) outside of the EC2 machine is the first step that can be performed using RDS,
the database service in the Amazon cloud universe. Adding a load balancer can add many
advantages, from using the AWS Certification Manager (ACM), to preparing the
infrastructure and scaling in and out. Configuring Auto Scaling group / launch
configuration is the last step to enabling scalability in and out for our application.

Technical requirements
In this chapter, basic knowledge of the AWS console is assumed. This was covered in the
previous chapters as well as in the Terraform configuration already completed in Chapter
4, Infrastructure as Code with Terraform.

A public domain is available in the AWS account. This can be useful for testing all aspects
of a web application, but this is only an optional step.

Basic knowledge of Linux command-line tool is also required because the example is built
with an Amazon Linux 2 operating system. The code files included within the chapter can
be found on GitHub at link: https:/ ​/ ​github. ​com/ ​giuseppeborgese/ ​effective_ ​devops_
with_​aws_​_​second_ ​edition.

https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition

Scaling Your Infrastructure Chapter 6

[199]

A monolithic application
The purpose of this chapter is to introduce and lead the reader to transform what is
commonly called monolithic application into a dynamic and scalable application.

What is a monolithic application?
When people talk about scaling, they often use the term monolithic application. But what
is this, exactly? Usually, this refers to a software or an infrastructure where everything
(including the presentation part, backend, and data part) is combined in a single
block, called a monolith. In our case, we are focusing on the infrastructure. To explain the
concept of a monolithic application, we are going to build an example application with the
following components as shown in the figure below:

A MySQL database where there is only one table with a single numeric field
A backend frontend Java/Tomcat listening on the default 8080 port component
that reads the database, shows the value, and increments the numeric value
An Apache 2.2 web server listening on default port 80 that communicates with
the Tomcat and shows the web page
Everything contained in a single EC2 virtual machine with a public IP assigned
to it to communicate on the internet

Scaling Your Infrastructure Chapter 6

[200]

Let's create an example application that allows us to break and scale it:

We learned how to use Terraform in the previous chapters. To build the EC2 machine and
the security group showed in the following screenshot, we can use this module called
monolith application. To use it in your account you need to change the initialization
parameters and provide your personal: * vpc-id * subnet * pem key. For the AMI
instead you can find the right one following the indication in the following screenshot. This
example was tested with North Virginia Amazon region and operative system Amazon
Linux 2. Find the AMI ID for your region as it is shown in the following screenshot:

module "monolith_application" {
 source =
"github.com/giuseppeborgese/effective_devops_with_aws__second_edition//terr
aform-modules//monolith-playground"
 my_vpc_id = "${var.my_default_vpcid}"
 my_subnet = "subnet-54840730"
 my_ami_id = "ami-04681a1dbd79675a5"
 my_pem_keyname = "effectivedevops"
}

 The commands that create the modules are always as follows:

terraform init -upgrade
terraform plan -out /tmp/tf11.out -target module.monolith_application
terraform apply apply /tmp/tf11.out

You should have in the output the following result:

Apply complete! Resources: 3 added, 0 changed, 0 destroyed.
Outputs:
monolith_url = http://54.209.174.12/visits

Scaling Your Infrastructure Chapter 6

[201]

If you wait a few minutes to let the application run and install all the software and
configurations, you can put the URL in your browser and see the one shown in the
following screenshot:

If you receive this result, you should wait a few minutes. If this doesn't resolve the error,
something probably went wrong in the installation. The error message is as follows:

Of course, your public IP will be different from this one. Every time you refresh the page or
the URL is opened from any source, the Java application reads the value from the MySQL
database, increments the value of 1 unit, and writes in the same database field.

It is worth spending some lines of code to see how everything was installed. This code is
found inside the monolith_application module shown above:

These lines are the installation script for the monolith_application:

yum -y install httpd mariadb.x86_64 mariadb-server java

systemctl start mariadb
chkconfig httpd on
chkconfig mariadb on
systemctl restart httpd

Now install MySQL (MariaDB)—this is the MySQL type that is available in the Amazon
Linux 2 Long Term Support (LTS) default repository as well as Apache 2 and Java
software.

Scaling Your Infrastructure Chapter 6

[202]

The following is the installation script we started to explain before::

echo "<VirtualHost *>" > /etc/httpd/conf.d/tomcat-proxy.conf
echo " ProxyPass /visits http://localhost:8080/visits" >>
/etc/httpd/conf.d/tomcat-proxy.conf
echo " ProxyPassReverse /visits http://localhost:8080/visits" >>
/etc/httpd/conf.d/tomcat-proxy.conf
echo "</VirtualHost>" >> /etc/httpd/conf.d/tomcat-proxy.conf

Apache is configured to pass the traffic to the Tomcat on port 8080.

To set up the MySQL in a non-interactive way, I used these lines to create a database, table,
and user for the Java application as follows:

mysql -u root -e "create database demodb;"
mysql -u root -e "CREATE TABLE visits (id bigint(20) NOT NULL
AUTO_INCREMENT, count bigint(20) NOT NULL, version bigint(20) NOT NULL,
PRIMARY KEY (id)) ENGINE=InnoDB DEFAULT CHARSET=latin1;" demodb
mysql -u root -e "INSERT INTO demodb.visits (count) values (0) ;"
mysql -u root -e "CREATE USER 'monty'@'localhost' IDENTIFIED BY
'some_pass';"
mysql -u root -e "GRANT ALL PRIVILEGES ON *.* TO 'monty'@'localhost' WITH
GRANT OPTION;"

The user_data script is inside the module_application and it is provided as a
parameter to the user_data field. It downloads an example Java application that saves the
result in the database. To simplify the installation, the .jar file also contains the Tomcat.
This is acceptable for a playground but not for a real usage:

runuser -l ec2-user -c 'cd /home/ec2-user ; curl -O
https://raw.githubusercontent.com/giuseppeborgese/effective_devops_with_aws
__second_edition/master/terraform-modules/monolith-playground/demo-0.0.1-
SNAPSHOT.jar'
runuser -l ec2-user -c 'cd /home/ec2-user ; curl -O
https://raw.githubusercontent.com/giuseppeborgese/effective_devops_with_aws
__second_edition/master/terraform-modules/monolith-playground/tomcat.sh'
cd /etc/systemd/system/ ; curl -O
https://raw.githubusercontent.com/giuseppeborgese/effective_devops_with_aws
__second_edition/master/terraform-modules/monolith-
playground/tomcat.service
chmod +x /home/ec2-user/tomcat.sh
systemctl enable tomcat.service
systemctl start tomcat.service

To run this Tomcat at startup as a service, the .jar and the configuration file are
downloaded and the configuration is made automatically.

Scaling Your Infrastructure Chapter 6

[203]

Anyway, the purpose of the playground application is to have something that saves the
result of its computation (called the state) inside a database. Every time the url is referred
to, the state is read from the database, incremented, and saved again.

Associating a DNS name
It is not indispensable for the exercise, but if you have a public domain register, you can
create an A DNS record.

You need to have a Route 53 public domain registered like mine: devopstools.link. If
you don't know how to register, go to https:/ ​/​docs. ​aws. ​amazon. ​com/ ​Route53/ ​latest/
DeveloperGuide/​domain- ​register- ​update. ​html and follow the instructions there. Based
on my experience, you will need to wait from 30 minutes to two hours and the new domain
will then be available. To create a record follow these steps:

Go to Route53 | Hosted zones and select your zone1.
Click on the Create Record Set button2.
Insert a name and choose the bookapp name3.
Insert the public IP of your EC2 machine 4.
Click on the Create button as shown in the following screenshot:5.

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register-update.html

Scaling Your Infrastructure Chapter 6

[204]

Now you can use this record to query the application:6.

Scaling a monolithic application
We have now created the infrastructure and deployed our application, which is working
well. If the application is useful for a large number of people, there is a chance that the
number of users, requests, and data will grow quickly. This is exactly what every
application owner wants.

It is possible that the EC2 that we chose is not adequate to manage a large amount of
data anymore. The following are also possible:

CPU or RAM are not enough for our three programs: Apache, Tomcat, and
MySQL
The bandwidth of the EC2 virtual machine is not enough for the number of
simultaneous requests
Tomcat or MySQL need to store data for each user and the disk space is not
enough anymore
MySQL and Tomcat need to read a lot of data from a single disk at the same time.
Furthermore, there is a context switch for the single disk.

There are two ways to scale an application. These are as follows:

Scaling it vertically, which means using bigger EC2 instances so that you get an
instance with more CPU, more memory, and better network performance
Scaling it horizontally, which means adding more and more EC2 instances while
running the same code and load balancing the traffic across them

Right now we have monolith so we can only scale vertically. In the next section, we are
going to break the monolith into different pieces, removing the state from the EC2 virtual
disk. In this way we can add more machines and also split the load between the balancer
and the database using the CDN.

Scaling Your Infrastructure Chapter 6

[205]

To vertically scale our monolith, you need to follow these steps:

Choose a new instance type from the list at https:/ ​/​aws. ​amazon. ​com/ ​ec2/1.
instance- ​types/ ​

Switch off the instance2.
Change the instance type: 3.

Switch on the instance 4.

For the disk space instead, this is a little bit more complex. Here, you must expand the size.
This procedure is as follows:

Switch off the machine to avoid date incoherency.1.
Detach each volume attached to the instance. However, before doing this, make a2.
note of the device used: /dev/sda1 or /dev/xdc ecc.
Make a snapshot for each volume attached to the instance.3.
For each snapshot created in the previous step, create a new volume. You need to4.
specify the desired size of the volume.
Attach each new volume to the instance using the same device name as in step 2.5.
Switch the machine on.6.
Log in to the machine and resize the filesystem using the guide for Linux and for7.
Windows. For more details please refer to the Further reading section toward the
end of the chapter.

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

Scaling Your Infrastructure Chapter 6

[206]

Advantages of a monolith
Before breaking and scaling our monolith, it is important to know whether or not it is
worth making the effort for our application. Let's examine all the advantages of a single
block architecture:

The first advantage for sure is the infrastructure cost. Here, we are going to break
into multiple and scalable pieces but this means that we need to pay for each
piece of this architecture. The final cost of the infrastructure will be higher than
the single monolith.
The cost to build a multi-tier scalable architecture will definitely be much more
complex than a monolithic one. This means more time to build and more
competencies required to do that. The purpose of this book is also to reduce this
competency gap.
An articulated architecture requires many settings. For example, correctly
configuring the security group, choosing the right balancer, choosing the right
RDS, and configuring S3 or EFS to move out the state from the virtual disk. An
exception to this is the SSL configuration. Configuring SSL using the AWS
Certificate Manager is much easier than buying and configuring an SSL
certificate for Apache.

So, if you do not expect much traffic, your budget is limited. You can consider building a
monolith infrastructure to host your web application. Of course, keep in mind the scalable
limitation and the downtime that you need to accept when you want to scale up or down
vertically.

The database
Now that we are aware of the benefits and disadvantages of a monolith application and we
have decided to break our app into multiple pieces, it is time to move the first resource
outside of the monolith.

As we anticipated in the first section of this chapter, it is necessary to move the data
(also called state) outside of the EC2 machine. In some web applications, the database is the
only data source. However, in others, there are also files uploaded from the users saved
directly on the disk or index files if you use an index engine such as Apache Solr. For more
information on this, refer to http:/ ​/ ​lucene. ​apache. ​org/​solr/ ​ .

http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/

Scaling Your Infrastructure Chapter 6

[207]

When possible, it is always convenient to use a cloud service instead to install a program in
a virtual machine. For a database, the RDS service (https:/ ​/ ​aws.​amazon. ​com/ ​rds/​)
provides a large set of open or closed source (Amazon Aurora, PostgreSQL, MySQL,
MariaDB, Oracle, and Microsoft SQL Server), so if you need an IBM Db2 https:/ ​/​www.
ibm.​com/​products/ ​db2- ​database you can use the RDS service for your database.

To create our MySQL RDS instance, refer to the module is available in the official registry at
https:/​/​registry. ​terraform. ​io/ ​modules/ ​terraform- ​aws- ​modules/ ​rds/ ​aws/ ​1.​21. ​0:

https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://www.ibm.com/products/db2-database
https://www.ibm.com/products/db2-database
https://www.ibm.com/products/db2-database
https://www.ibm.com/products/db2-database
https://www.ibm.com/products/db2-database
https://www.ibm.com/products/db2-database
https://www.ibm.com/products/db2-database
https://www.ibm.com/products/db2-database
https://www.ibm.com/products/db2-database
https://www.ibm.com/products/db2-database
https://www.ibm.com/products/db2-database
https://www.ibm.com/products/db2-database
https://www.ibm.com/products/db2-database
https://www.ibm.com/products/db2-database
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0

Scaling Your Infrastructure Chapter 6

[208]

It is important to consider that, when splitting the pieces, it is necessary to correctly
configure security groups in order to allow access from the EC2 instance to the RDS
instance on port 3306. This also avoids unnecessary access to the database.

For the subnet, it is mandatory to keep a public subnet for the EC2 instance. Instead, it is
convenient to choose a private one for the RDS instance. We will explore this topic further
in Chapter 8, Hardening the Security of Your AWS Environment.

Moving the database to the RDS
To create the MySQL database, we can use a public module that is available in the official
repository found here: https:/ ​/ ​registry. ​terraform. ​io/ ​modules/ ​terraform- ​aws-
modules/​rds/​aws/ ​1. ​21. ​0.

In the following code, I will simplify the original example slightly and add a security group
as follows. Refer to the main.tf file:

resource "aws_security_group" "rds" {
 name = "allow_from_my_vpc"
 description = "Allow from my vpc"
 vpc_id = "${var.my_default_vpcid}"

 ingress {
 from_port = 3306
 to_port = 3306
 protocol = "tcp"
 cidr_blocks = ["172.31.0.0/16"]
 }
}

module "db" {
 source = "terraform-aws-modules/rds/aws"
 identifier = "demodb"
 engine = "mysql"
 engine_version = "5.7.19"
 instance_class = "db.t2.micro"
 allocated_storage = 5
 name = "demodb"
 username = "monty"
 password = "some_pass"
 port = "3306"

 vpc_security_group_ids = ["${aws_security_group.rds.id}"]
 # DB subnet group
 subnet_ids = ["subnet-d056b4ff", "subnet-b541edfe"]

https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0
https://registry.terraform.io/modules/terraform-aws-modules/rds/aws/1.21.0

Scaling Your Infrastructure Chapter 6

[209]

 maintenance_window = "Mon:00:00-Mon:03:00"
 backup_window = "03:00-06:00"
 # DB parameter group
 family = "mysql5.7"
 # DB option group
 major_engine_version = "5.7"
}

the plan shows 5 these 5 resources to add

 + aws_security_group.rds

 + module.db.module.db_instance.aws_db_instance.this

 + module.db.module.db_option_group.aws_db_option_group.this

 + module.db.module.db_parameter_group.aws_db_parameter_group.this

 + module.db.module.db_subnet_group.aws_db_subnet_group.this

Plan: 5 to add, 0 to change, 0 to destroy.

Because an RDS needs to work on an option group, a parameter group and a subnet group.

You can see the new instance in the RDS console and click on it to open the properties as
follows:

Scaling Your Infrastructure Chapter 6

[210]

Once the property of the selected instance is opened, note the value of the Endpoint field as
shown in the following screenshot:

In my case, this is demodb.cz4zwh6mj6on.us-east-1.rds.amazonaws.com.

Connect in SSH to the EC2 machine and try the connection to the RDS:

[ec2-user@ip-172-31-7-140 ~]$ mysql -u monty -psome_pass -h
demodb.cz4zwh6mj6on.us-east-1.rds.amazonaws.com
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MySQL connection id is 7
Server version: 5.7.19-log MySQL Community Server (GPL)

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

Scaling Your Infrastructure Chapter 6

[211]

Run the show databases command to see if there is the demodb schema:

 MySQL [(none)]> show databases;
 +--------------------+
 | Database |
 +--------------------+
 | information_schema |
 | demodb |
 | innodb |
 | mysql |
 | performance_schema |
 | sys |
 +--------------------+
 6 rows in set (0.00 sec)
MySQL [(none)]> exit
Bye
[ec2-user@ip-172-31-7-140 ~]$

To transfer the database, follow these steps:

Close the Java process with the pkill java command1.
Dump the local database with the following command:2.

 mysqldump -u monty -psome_pass -h localhost demodb >
demodbdump.sql

We don't need the local database anymore, so stop it with the following3.
command:

sudo service mariadb stop

Now restore the dump in the RDS with the following command:4.

 mysql -u monty -psome_pass -h demodb.cz4zwh6mj6on.us-
east-1.rds.amazonaws.com demodb < demodbdump.sql

Scaling Your Infrastructure Chapter 6

[212]

Check if the content was correctly copied as follows:5.

mysql -u monty -psome_pass -h demodb.cz4zwh6mj6on.us-
east-1.rds.amazonaws.com
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MySQL connection id is 12
Server version: 5.7.19-log MySQL Community Server (GPL)

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and
others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

MySQL [(none)]> use demodb;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
MySQL [demodb]> select * from visits;
+----+-------+---------+
| id | count | version |
+----+-------+---------+
| 1 | 5 | 5 |
+----+-------+---------+
1 row in set (0.00 sec)

Now that the dump is correct, you need to replace the connection inside /home/ec2-
user/tomcat.sh:

sudo nano /home/ec2-user/tomcat.sh

Now find the string in the file:

 db_url=jdbc:mysql://localhost:3306/

Replace this with the following line of code:

db_url=jdbc:mysql://demodb.cz4zwh6mj6on.us-east-1.rds.amazonaws.com:3306/

Scaling Your Infrastructure Chapter 6

[213]

Leave everything else untouched:

pkill java
systemctl start tomcat

You should now see that the output and the application are working again.

It is now convenient to remove the local database with the following command:

sudo yum remove mariadb-server

Choose the RDS type
If you have a MySQL engine like we saw in the previous example, you can choose between
the following instance types:

MySQL Classic
Aurora MySQL
A new type of Serverless Aurora MySQL, found here: https:/ ​/ ​aws.​amazon. ​com/
rds/​aurora/ ​serverless/ ​

In most cases, MySQL Classic would be ideal. However, if you know that you will have a
big amount of data to manage, Aurora MySQL is ideal. This serverless option is for
infrequently-used, variable, and unpredictable workloads instead.

Backup
It is important to enable the backup for your RDS instance and choose the
backup as Windows. This is important when you expect a low write load on your database
because it is true that the backup will be done without downtime but it can also influence
the performance. For more information on best practices for Amazon RDS, refer to https:/
/​docs.​aws.​amazon. ​com/ ​AmazonRDS/ ​latest/ ​UserGuide/ ​CHAP_ ​BestPractices. ​html.

You can set up a daily backup and keep a maximum of 35 snapshots. Upon restore you can
choose one of these 35 snapshots or any moment inside these 35 days using the new point-
in-time recovery feature. For more information on this, refer to https:/ ​/​docs. ​aws. ​amazon.
com/​AmazonRDS/​latest/ ​UserGuide/ ​USER_ ​PIT.​html.

https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/rds/aurora/serverless/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PIT.html

Scaling Your Infrastructure Chapter 6

[214]

Multi-AZ
The multi-AZ feature available at https:/ ​/​aws. ​amazon. ​com/ ​rds/ ​details/ ​multi- ​az/ ​
maintains a second copy of your RDS instance, using the master-slave technique in another
availability zone (AZ). If there is an issue with the master instance (or in the whole AZ
where the master instance is located), the DNS name is automatically switched to the slave
instance. Using this feature, two RDS instances will always be up. In addition, the cost will
be doubled. For this reason, it is convenient to only use it in production.

In the following diagram, shown is an multi-AZ architecture:

ElastiCache
You can consider inserting a cache for your database in order to reduce the load on your
RDS instance. This introduces another piece to your infrastructure and is also necessary for
changing the software code in order to make it possible to use the cache instead of the RDS
only. Depending on the type of data that you need to save in it, the AWS ElastiCache
service available at https:/ ​/ ​aws. ​amazon. ​com/​elasticache/ ​ provides two types:
Redis and Memcached.

https://aws.amazon.com/rds/details/multi-az/
https://aws.amazon.com/rds/details/multi-az/
https://aws.amazon.com/rds/details/multi-az/
https://aws.amazon.com/rds/details/multi-az/
https://aws.amazon.com/rds/details/multi-az/
https://aws.amazon.com/rds/details/multi-az/
https://aws.amazon.com/rds/details/multi-az/
https://aws.amazon.com/rds/details/multi-az/
https://aws.amazon.com/rds/details/multi-az/
https://aws.amazon.com/rds/details/multi-az/
https://aws.amazon.com/rds/details/multi-az/
https://aws.amazon.com/rds/details/multi-az/
https://aws.amazon.com/rds/details/multi-az/
https://aws.amazon.com/rds/details/multi-az/
https://aws.amazon.com/rds/details/multi-az/
https://aws.amazon.com/rds/details/multi-az/
https://aws.amazon.com/rds/details/multi-az/
https://aws.amazon.com/rds/details/multi-az/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/

Scaling Your Infrastructure Chapter 6

[215]

Elastic Load Balancer (ELB)
In this section, we are going to replace the Apache with the ELB and also add an SSL
certificate as shown in the following diagram:

Scaling Your Infrastructure Chapter 6

[216]

As we did in the previous section for the RDS, it is convenient here to replace a software
installed in an EC2 machine with a managed service.

We will benefit from the following features:

Deploy and reliability on multiple AZs
A web interface to manage the proxy instead of the Apache configuration files
A fully manageable service that doesn't need to perform software upgrades
 Scalability to handle requests (pre-warming is requested in some scenarios)
Ease of storing logs on an S3 bucket

Alternatively, when you use an ELB you need to follow the AWS method and you are not
free to customize this as you want. Apache is the Swiss knife of the web server; it has
modules that make it possible to do so many different kinds of operations and actions.
Using an ELB, it is possible to lose something that may be useful, such as a redirect from
HTTP to HTTPS.

Choosing the right ELB
As is well documented on AWS at https:/ ​/​aws. ​amazon. ​com/ ​elasticloadbalancing, there
are 2 versions and 3 types of ELB available:

Version 1 with Classic Load Balancer (CLB)
Version 2 with Application Load Balancer (ALB) and Network Load Balancer
(NLB)

Each product can be described as follows:

CLB is the first version of the Elastic Load Balancer and was made available
in Spring 2009. For more information on this, refer to https:/ ​/​aws. ​amazon. ​com/
blogs/​aws/ ​new- ​aws- ​load- ​balancing- ​automatic- ​scaling- ​and- ​cloud-
monitoring- ​services/ ​. This is one of the most popular Load Balancer, but it is
also the one with the fewest features.
ALB was made available during summer 2016. For more information, refer
to https:/ ​/​aws. ​amazon. ​com/ ​blogs/ ​aws/ ​new-​aws- ​application- ​load- ​balancer/
. This extends the CLB version 1 with a lot of features.
NLB was released in September, 2017. For more information on this, refer to
https:/​/ ​aws. ​amazon. ​com/ ​blogs/ ​aws/ ​new- ​network- ​load- ​balancer- ​effortless-
scaling- ​to- ​millions- ​of- ​requests- ​per-​second/ ​. This is complementary to the
ALB and is more focused on the network level.

https://aws.amazon.com/elasticloadbalancing
https://aws.amazon.com/elasticloadbalancing
https://aws.amazon.com/elasticloadbalancing
https://aws.amazon.com/elasticloadbalancing
https://aws.amazon.com/elasticloadbalancing
https://aws.amazon.com/elasticloadbalancing
https://aws.amazon.com/elasticloadbalancing
https://aws.amazon.com/elasticloadbalancing
https://aws.amazon.com/elasticloadbalancing
https://aws.amazon.com/elasticloadbalancing
https://aws.amazon.com/elasticloadbalancing
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/
https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/

Scaling Your Infrastructure Chapter 6

[217]

If you want a comparison of all the features of each of these three products, you can take a
look at the comparison table available at https:/ ​/​aws. ​amazon. ​com/
elasticloadbalancing/ ​details/ ​#compare. However, let's try to summarize these
differences as follows:

You shouldn't create CLB anymore unless you have an EC2 classic network. In
this case, you should really consider migrating to the VPC network type as soon
as possible. You also need to be familiar with the CLB because it is the most
popular product in the AWS Cloud environment.
If you need to manage HTTP/HTTPS connections - and this applies to most of the
web applications - you should use the ALB.
If you need to manage TCP connections or you need to control the public IP of
your balancer instead, the NLB is the right choice. Keep in mind that you cannot
use the SSL feature with this type of balancer.

In our example, the right balancer to deploy is the ALB one. This is because we want to use
a web application with the HTTP/S protocol and have an SSL certificate in it.

Deploying the balancer
Now that we know what to do, it is time to adapt our application to the balancer according
to these steps:

Configure the security groups to allow access from the balancer to port 8080 in1.
the EC2 machine. ALB ==> 8080 EC2 (we are referring to the connection from the
Application Load Balancer to the EC2 machine). To simplify, we will give access
to the whole VPC Classless Inter-Domain Routing (CIDR).
Create the ALB, connect to the EC2 machine, and verify that the machine is in2.
Service.
Now you can change the DNS record from the public IP of the EC2 machine to3.
the alias of the DNS balancer.
Remove the Apache software from the machine; you don't need it anymore.4.

https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare

Scaling Your Infrastructure Chapter 6

[218]

In every environment, it is convenient to deploy the balancer in more subnets that belong to
different AZs. Keep in mind that each zone is like a datacenter and issues can always arise
with datacenters. Deployment in multiple zones doesn't increase the cost as it is for RDS
instead where the cost is double if you use Multi AZ.

In Chapter 5, Adding Continuous Integration and Continuous Deployment we will use
Terraform to create ALB. Here, we will perform these changes from the web console in
order to understand the details of each step.

Step 1 – open the access for the port 8080 from the
whole VPC CIDR
Open the access for the port 8080 from the whole VPC CIDR as follows:

Scaling Your Infrastructure Chapter 6

[219]

Step 2 – Creating the ALB and associate to the EC2
machine
Create the ALB and associate to the EC2 machine as follows:

Go to Load Balancers | Create Load Balancer and choose the ALB by clicking the Create
button on the Application Load Balancer section, as shown in the following screenshot:

Select the internet-facing option from the Scheme section. This is important because we
want it to be reachable from the world and we also want at least two subnets in two
different AZs:

Scaling Your Infrastructure Chapter 6

[220]

Ignore the following message:

Improve your load balancer's security. Your load balancer is not using any
secure listener.

Next, we will add a secure listener.

To do this, click on the Create a new security group radio button for this load balancer and
open the port 80 for HTTP:

Scaling Your Infrastructure Chapter 6

[221]

Now create a new target group. In this group, the requests will be rotated and reach the
EC2 instance. The port 8080 is the port of the Tomcat software in the EC2 machines.

Our playground application has only one URL called /visits so we need to insert that
one, and this will cause an increment of the counter in the DB every time the health check is
performed. In a real environment, you need a health check that performs the control with a
read of the DB as opposed to a write as seen in the following example. In this example, it is
acceptable to use this method:

Select the EC2 instance and click on the Add to registered button, as shown in the
following screenshot:

Scaling Your Infrastructure Chapter 6

[222]

This instance will be added to the Registered targets list:

If you check now the target group just created in the Targets tab, you can see your instance
and the Status column. If the status doesn't become healthy in half a minute, there
is probably an error in the configuration:

Scaling Your Infrastructure Chapter 6

[223]

You can now check the load balancer URL as
follows: http://break-the-monolith-939654549.us-east-1.elb.amazonaws.com/
visits.

Again, your URL will be different from this one, but at this point, you
should understand how it works.

Step 3 – creating an alias for the ELB
Go to the new Route 53 zone and modify the A record created before with a CNAME alias,
as shown in the following screenshot:

Scaling Your Infrastructure Chapter 6

[224]

In less than 300 seconds, you should see the change and have the DNS pointing to the new
domain.

Step 4 – removing the Apache software from the
machine
At this point, we don't need the Apache software in the EC2 machine anymore. To remove
it run the following command:

sudo yum remove httpd

It is also convenient to clean the security group of the EC2 machine by removing the access
to port 80:

Leave the SSH open to your own IP with the My IP source option.

Configuring the SSL certificate
You can configure a single certificate that is valid for one DNS record such
as example.devopstools.link or a generic one such as *.devopstools.link which is
valid for each subdomain. My advice is to use the * so that you don't need to repeat this
certificate procedure every time you have a new resource.

Scaling Your Infrastructure Chapter 6

[225]

Certificate Manager makes it possible to acquire an SSL certificate for free unless you don't
use the private authority. Follow these steps to generate an SSL certificate:

Go to the AWS Certificate Manager service and click on the Provision certificates section
as shown in the following screenshot:

Select the Request a public certificate option as shown in the following screenshot:

Scaling Your Infrastructure Chapter 6

[226]

Now insert the domain name. In my case, this includes the domain name and the domain
name with a *:

I decided to use the DNS validation option, but the Email validation option is also good.
In this case, you need to have access to the email address that was used to register the
domain:

Scaling Your Infrastructure Chapter 6

[227]

The wizard prompts you to create one DNS record for each domain we inserted at the
beginning. In our case, this refers to two domains (*.devopstools.link and
devopstools.link). You can follow the wizard and create it by clicking on the Create
record in Route 53 button, as shown in the following screenshot:

Scaling Your Infrastructure Chapter 6

[228]

Click on the Create button for both DNS records. At this point, the record created will be
shown:

In less than a minute, the status of the new SSL certificate will be Issued and will become
available for use:

If you have ever created an SSL certificate before, you will know how simple and
straightforward this procedure is compared to the classic one. You can now add the new
certificate to your balancer and use an SSL listener.

Scaling Your Infrastructure Chapter 6

[229]

First of all, you need to open the security group of your ALB for the new port 443 as shown
in the following screenshot:

Go to your load balancer, followed by the Listeners Tab, and then click on the Add listener
button as follows:

Select the HTTPS protocol and its default port 443
The rule is to forward to the target already defined at creation time

Scaling Your Infrastructure Chapter 6

[230]

Finally, select the certificate created before from the From ACM (recommended)
drop-down as shown in the following screenshot:

Scaling Your Infrastructure Chapter 6

[231]

Now you have a secure certificate for your application as shown in the following
screenshot:

ALB and integration with Auth0
If you want your users are authenticated before gaining access to the content served by
your load balancer, then you can integrate the ALB with the Auth0 service available at
https:/​/​auth0.​com/ ​. This is a cloud service that is designed to manage users through a
different kind of authentication in order to use the words on their home page and provide a
universal authentication and authorization platform for web, mobile, and legacy
applications.

If you want to try this interesting configuration feature, follow the guidelines at https:/ ​/
medium.​com/​@sandrinodm/ ​securing- ​your- ​applications- ​with- ​aws- ​alb- ​built- ​in-
authentication-​and- ​auth0- ​310ad84c8595.

Pre-warming a load balancer
A well-known problem in the CLB is that it is necessary to pre-warm in order to manage
traffic peak because the system is made to scale up, as you can read in the documentation.
We recommend that you increase the load at a rate of no more than 50 percent every five
minutes.

https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://auth0.com/
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595
https://medium.com/@sandrinodm/securing-your-applications-with-aws-alb-built-in-authentication-and-auth0-310ad84c8595

Scaling Your Infrastructure Chapter 6

[232]

The official declaration about this topic is available at https:/ ​/​aws. ​amazon. ​com/ ​articles/
best-​practices-​in- ​evaluating- ​elastic- ​load- ​balancing/ ​#pre- ​warming. This states the
following:

 "Amazon ELB is able to handle the vast majority of use cases for our customers without
requiring "pre-warming" (configuring the load balancer to have the appropriate level of
capacity based on expected traffic). In certain scenarios, such as when flash traffic is
expected, or in the case where a load test cannot be configured to gradually increase traffic,
we recommend that you contact us https:/ ​/​aws. ​amazon. ​com/ ​contact- ​us/ ​ to have
your load balancer "pre-warmed". We will then configure the load balancer to have the
appropriate level of capacity based on the traffic that you expect. We will need to know the
start and end dates of your tests or expected flash traffic, the expected request rate per
second and the total size of the typical request/response that you will be testing."

Differences between the ALB and NLB:

NLB is designed to handle tens of millions of requests per second while
maintaining high throughput at ultra-low latency, with no effort on the
customer's part. As a result, no pre-warm is needed.
ALB instead follows the same rules as CLB.
In short, NLB doesn't require pre-warming. However, CLB and ALB still need it.

Access/error logs
It is a good practice to configure the ELB to store the access/error logs to an S3 bucket:

For CLB: https:/ ​/ ​docs. ​aws. ​amazon. ​com/​elasticloadbalancing/ ​latest/
classic/ ​enable- ​access- ​logs. ​html
For ALB: https:/ ​/ ​docs. ​aws. ​amazon. ​com/ ​elasticloadbalancing/ ​latest/
application/ ​load- ​balancer- ​access- ​logs. ​html

For NLB: ELBs do not have these kind of logs because it works at network level
TPC/IP

https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html

Scaling Your Infrastructure Chapter 6

[233]

The next step
Now that we have the balancer in multi-AZ with an SSL configured as well as a scalable
system, the RDS is deployed in multi-AZ. However, the EC2 machine is still in a single AZ
so this is consequently a single point of failure which doesn't scale automatically. We need
to configure the Auto Scaling feature for the EC2 part, but first of all we need to move the
state outside of the machine if it is still there.

Moving the state outside the EC2 machine
If your application has something regarding its state saved on a disk, you need to remove it
before applying Auto Scaling. What was previously saved as files in the EC2 machine must
be removed and managed by a service. There are two options which are as follows:

AWS Elastic File System (https:/ ​/​aws. ​amazon. ​com/ ​efs/ ​): In a few words, this
is a network file system that is mounted in your EC2 machine with virtually
infinite space where you only pay for the space used by your file.

AWS S3 (https:/ ​/ ​aws. ​amazon. ​com/ ​s3/​): This was the first AWS service on the
market and is an object storage designed to deliver 99.999999999% durability.

In general, the S3 should be your favorite solution, but it is not always applicable because it
requires application software change to use it. Consequently, in some cases, you may need
an alternative that you can leverage on EFS.

The world is full of software and plugins designed around S3. For example, WordPress
saves the files loaded by the users into the disk by default, but with an additional plugin
you can save it in AWS S3 and remove the state from the EC2 machine in this way.

Pushing the logs out
Your instance is disposable and can be replaced or destroyed at any time. If you need
application-specific logs, you need to use a program to push the logs out to S3 or
CloudWatch.

https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/

Scaling Your Infrastructure Chapter 6

[234]

Configure Auto Scaling
The purpose of the couple, Launch Configurations and Auto Scaling Groups shown below
is to ensure scalability and reliability:

Scalability and reliability are described as follows:

Scalability: if there is an increase of requests/CPU, the system needs to scale up
and add instances. In the same way, if the traffic goes down, it is necessary to
remove unnecessary resources.
Reliability: if one instance goes down for any reason, the Auto Scaling system
automatically replaces it with a new one.

You need to start the instance quickly in order to create an image, so by using the
user_data option you can also install a software program as we did during the monolith
configuration at the beginning of this chapter. However, this results in an additional
amount of time in which it is necessary to start a new instance.

When you need to scale up, this is because you need to satisfy an increase in demand and
therefore need to do this as soon as possible. For this reason, it is a good idea to create an
image with all software and configuration files installed and then insert the parameter or
the configuration files that need to be passed at runtime to the user_data, if there are any.

Scaling Your Infrastructure Chapter 6

[235]

Moving our example inside Auto Scaling
Our application is now ready for Auto Scaling. Here, the state is removed from the EC2 and
it is only in the RDS database. We tested how reachable it is from the balancer and checked
that it can communicate with the database. This is what we are going to create:

Scaling Your Infrastructure Chapter 6

[236]

Preparing the image
We need to have an AMI in order to pass as a parameter in the launch configuration. To
ensure that you have a good AMI, it is convenient to stop the machine first. When it is
stopped, make the AMI. To do this, right-click the Image section and then click on the
Create Image option, as shown in the following screenshot:

 Choose a meaningful name and description before clicking on the Create Image button:

Depending on disk size, the image will be available in a few minutes. In our example with 8
GB of disk, the waiting time will be short.

Scaling Your Infrastructure Chapter 6

[237]

Using the wizard launch configuration part
To have the Auto Scaling process in place, the following two objects are necessary:

Launch configuration
Auto Scaling group

Click on the Auto Scaling Groups option and an automatic wizard will then start to create
the necessary resources:

Launch configuration is the first step to be followed. Here, select the My AMIs option and
find the image created in the previous step, as follows:

Scaling Your Infrastructure Chapter 6

[238]

Now choose the name. Don't modify anything else at this step:

Auto Scaling group part
At this point, the wizard asks us to provide some details for the Auto Scaling part at the
beginning of the configuration process. It is okay to start with 1 instance to first check
whether or not everything is working well.

VPC and subnets that you specify in the Auto Scaling group can be the same used in the
previous example. But keep in mind, for the ALB it is mandatory to choose a public subnet
while for the EC2 you can use a private or a public subnet. In Chapter 5, Adding Continuous
Integration and Continuous Deployment we focus on security, we will explain why it is
beneficial to insert the EC2 in private ones.

Scaling Your Infrastructure Chapter 6

[239]

However, for now, it is okay to use any subnet. The important thing to do is to choose more
than one subnets in different AZs:

For the security group, choose the one assigned to the EC2 machine in precedence; don't
create a new one:

Scaling Your Infrastructure Chapter 6

[240]

Use a key-pair that you own for a normal EC2. In theory, you don't need to log in to a
machine managed by Auto Scaling. You only need a key to log in if there are errors and it is
necessary to debug something:

Scaling policies
This is the important part of the wizard, but this is a slightly more difficult stage. Scaling
policies decide the condition whether to scale up (adding instances to the Auto Scaling
group) and scale down (remove instances from the group). There are many ways to do this;
here I have chosen the easiest way, which is through the CPU % usage:

If the CPU usage is below 70% for more than 5 minutes, add 1 instance
If the CPU usage is lower than 40% for more than 5 minutes, remove 1 instance

Scaling Your Infrastructure Chapter 6

[241]

Of course, the chosen metric and values depend on your application, but with this example,
you can have an idea:

Scaling Your Infrastructure Chapter 6

[242]

It is necessary to create two alarms (one for each rule) to associate to the Auto Scaling
group:

Scaling Your Infrastructure Chapter 6

[243]

This is the final result:

Scaling Your Infrastructure Chapter 6

[244]

In the next step, add at least the tag name so it is easier to identify the instances created by
the Auto Scaling group:

Modifying the Auto Scaling group
If you need to modify the launch configuration, it is mandatory to create a copy and
perform the changes at the time of creation because modifications are not allowed. In the
Auto Scaling group it is possible to make changes without recreating it.

We need to modify the Auto Scaling group because we want each instance to be registered
to the target group associated with our ALB:

Scaling Your Infrastructure Chapter 6

[245]

If you want to manually increase the number of instances, it is enough to modify the Min
size. Keep in mind that the Desired Capacity value needs to have a value between Min and
Max sizes:

In the instances, it is possible to see the new one created by the Auto Scaling group:

Scaling Your Infrastructure Chapter 6

[246]

Removing the manually created instance from the
balancer
Now that the Auto Scale is working, we can remove the EC2 instance used for
configuration from the load balancer and leave the instances that are automatically
generated. As you may notice, when you remove the instance it is not immediately
removed but goes into a draining state for a short period of time. This occurs in order to
avoid poor user experience and manage the possibility that there is still somebody to
connect through it:

At this point, the configuration of the Auto Scale is complete and you now have an
application that satisfies the requirements of scalability and reliability.

Using microservices and serverless
As we tested throughout this whole chapter, breaking the monolith into several pieces
produces many advantages but also complicates the whole system.

This concept is amplified when we use a microservices and serverless approach. This is
because, if you use these two approaches in the correct way, it is possible to increase
scalability, increase reliability, and reduce infrastructure costs. However, you always need
to consider that the system will be more complex to build and manage. This leads to
increasing the build and operative cost, especially if it is the first time that your team builds
and manages a system with this kind of approach.

Scaling Your Infrastructure Chapter 6

[247]

The following image represents the concept of load and cost with micro services and
serverless:

Image source: https:/ ​/​medium. ​freecodecamp. ​org/ ​serverless- ​is- ​cheaper- ​not- ​simpler-
a10c4fc30e49

Summary
Scaling is a long process that has the potential to be improved. In this chapter, we
completed the first step and learned how to break a monolith application into multiple
pieces leveraging the AWS services. This approach brings many advantages but also
complicates our initial infrastructure, meaning that more time is spent on configuration,
bug fixing, and the necessity to study new services. We have explored how powerful and
useful all the AWS tools can be for scalability, but it can also sometimes be difficult to use
this, especially the first time. Using automation with Terraform modules makes it possible
to immediately achieve the result with our knowledge on module creator. In addition,
hiding the complexity of a solution cannot help us in understanding what is really
happening behind the scenes. This can be necessary during a bug fix. For this reason, some
parts of the book, such as the Autos Scale, ALB, and the SSL certification, were completed
using the web console and its wizard.

https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49

Scaling Your Infrastructure Chapter 6

[248]

Questions
Is it always convenient to break a monolith into a multi-level application?1.
What are the differences between the multi-level approach and the2.
microservices/serverless approach?
Can it be difficult moving from software installed in a virtual machine to as a3.
service components?
Can a load balancer manage any spike of traffic without any intervention?4.
Can I save money using Certificate Manager instead of a classic SSL certification5.
authority?
Why is it important to span the resources in multiple AZs?6.

Further reading
For more information, read the following articles:

 Changing the Instance Type: https:/ ​/​docs. ​aws. ​amazon. ​com/ ​AWSEC2/ ​latest/
UserGuide/ ​ec2- ​instance- ​resize. ​html

 Extending a Linux File System after Resizing the Volume: https:/ ​/​docs. ​aws.
amazon.​com/ ​AWSEC2/ ​latest/ ​UserGuide/ ​recognize- ​expanded- ​volume- ​linux.
html
 Extending a Windows File System after Resizing the Volume: https:/ ​/​docs.
aws.​amazon. ​com/ ​AWSEC2/ ​latest/ ​WindowsGuide/ ​recognize- ​expanded- ​volume-
windows. ​html

Elastic Load Balancing Documentation: https:/ ​/ ​aws.​amazon. ​com/
documentation/ ​elastic- ​load- ​balancing/ ​
Comparison of Elastic Load Balancing Products: https:/ ​/​aws. ​amazon. ​com/
elasticloadbalancing/ ​details/ ​#compare

Best Practices in Evaluating Elastic Load Balancing: https:/ ​/​aws. ​amazon. ​com/
articles/ ​best- ​practices- ​in- ​evaluating- ​elastic- ​load- ​balancing/ ​#pre-
warming and https:/ ​/​aws. ​amazon. ​com/ ​articles/ ​best- ​practices- ​in-
evaluating- ​elastic- ​load- ​balancing/ ​

Spring Boot, MySQL, JPA, Hibernate Restful CRUD API Tutorial: https:/ ​/
www.​callicoder. ​com/ ​spring- ​boot-​rest- ​api- ​tutorial- ​with- ​mysql- ​jpa-
hibernate/ ​ the tutorial used to create our playground.
Serverless is cheaper, not simpler: https:/ ​/​medium. ​freecodecamp. ​org/
serverless- ​is- ​cheaper- ​not- ​simpler- ​a10c4fc30e49

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/recognize-expanded-volume-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/recognize-expanded-volume-windows.html
https://aws.amazon.com/documentation/elastic-load-balancing/
https://aws.amazon.com/documentation/elastic-load-balancing/
https://aws.amazon.com/documentation/elastic-load-balancing/
https://aws.amazon.com/documentation/elastic-load-balancing/
https://aws.amazon.com/documentation/elastic-load-balancing/
https://aws.amazon.com/documentation/elastic-load-balancing/
https://aws.amazon.com/documentation/elastic-load-balancing/
https://aws.amazon.com/documentation/elastic-load-balancing/
https://aws.amazon.com/documentation/elastic-load-balancing/
https://aws.amazon.com/documentation/elastic-load-balancing/
https://aws.amazon.com/documentation/elastic-load-balancing/
https://aws.amazon.com/documentation/elastic-load-balancing/
https://aws.amazon.com/documentation/elastic-load-balancing/
https://aws.amazon.com/documentation/elastic-load-balancing/
https://aws.amazon.com/documentation/elastic-load-balancing/
https://aws.amazon.com/documentation/elastic-load-balancing/
https://aws.amazon.com/documentation/elastic-load-balancing/
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/elasticloadbalancing/details/#compare
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/#pre-warming
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://www.callicoder.com/spring-boot-rest-api-tutorial-with-mysql-jpa-hibernate/
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49

7
Running Containers in AWS

In Chapter 6, Scaling Your Infrastructure, our architecture changed quite a bit. We explored
different ways to scale our applications in AWS, but one of the major technologies that we
left out was containers. Containers are at the heart of the software development life cycle
(SDLC) of many major technology companies.

So far, we have used our personal computers to develop our applications. This works well
for simple projects, such as our Hello World application. However, when it comes to more
complex projects with many dependencies, it's a different story. Have you ever heard of
situations in which a certain feature works on a developer's laptop but does not work for
the rest of the organization-or-even worse, does not work in production? A lot of these issues
stem from the differences between environments. When we build our staging and
production environments, we rely on CloudFormation, Terraform, and Ansible, to keep
those environments consistent. Unfortunately, we can't easily replicate that to our local
development environment.

Containers address this issue. With them, we can package an application and include the
operating system, the application code, and everything in between. Containers can also
help at a later stage, when it's time to break out the monolithic approach.

Running Containers in AWS Chapter 7

[250]

In this chapter, we will look at Docker, the most popular container technology. After a brief
explanation of what Docker is and how to use its basic functionalities, we will Dockerize
our application. This will help us to understand the value of using Docker as a developer.
In this chapter, we will cover the following topics:

Dockerizing our Hello World application
Using the EC2 container service
Updating our CI/CD pipeline to utilize ECS

This book covers ECS, but also offers further options for using Docker in
AWS. You can also take a look at CoreOS Tectonic (https:/ ​/​tectonic.
com/​), Mesosphere DC/OS (https:/ ​/​mesosphere. ​com), or Docker
Datacenter (https:/ ​/ ​www. ​docker. ​com/ ​products/ ​docker- ​datacenter).

Technical requirements
The technical requirements for this chapter are as follows:

Docker
Dockerfile
EC2 Container Registry (ECR)
Elastic Container Service (ECS)
Application Load Balancer (ALB)
CodeBuild
CodePipeline

The GitHub links for the code used in this chapter are as follows:

https://github.com/yogeshraheja/helloworld/blob/master/helloworld.js

https://github.com/yogeshraheja/helloworld/blob/master/package.json

https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile

https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/e
cr-repository-cf-template.py

https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/e
cs-cluster-cf-template.py

https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/h
elloworld-ecs-alb-cf-template.py

https://tectonic.com/
https://tectonic.com/
https://tectonic.com/
https://tectonic.com/
https://tectonic.com/
https://tectonic.com/
https://tectonic.com/
https://mesosphere.com/
https://mesosphere.com/
https://mesosphere.com/
https://mesosphere.com/
https://mesosphere.com/
https://mesosphere.com/
https://mesosphere.com/
https://www.docker.com/products/docker-datacenter
https://www.docker.com/products/docker-datacenter
https://www.docker.com/products/docker-datacenter
https://www.docker.com/products/docker-datacenter
https://www.docker.com/products/docker-datacenter
https://www.docker.com/products/docker-datacenter
https://www.docker.com/products/docker-datacenter
https://www.docker.com/products/docker-datacenter
https://www.docker.com/products/docker-datacenter
https://www.docker.com/products/docker-datacenter
https://www.docker.com/products/docker-datacenter
https://www.docker.com/products/docker-datacenter
https://www.docker.com/products/docker-datacenter
https://www.docker.com/products/docker-datacenter
https://www.docker.com/products/docker-datacenter
https://github.com/yogeshraheja/helloworld/blob/master/helloworld.js
https://github.com/yogeshraheja/helloworld/blob/master/package.json
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py

Running Containers in AWS Chapter 7

[251]

https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/h
elloworld-ecs-service-cf-template.py

https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/h
elloworld-codebuild-cf-template.py

https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplate
s/master/helloworld-ecs-service-cf-template.py

https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/h
elloworld-codepipeline-cf-template.py

Dockerizing our Hello World application
Docker, and containers in general, are very powerful tools, worth exploring. By combining
resource isolation features, including union capable filesystem (UCF), Docker allows for
the creation of packages called containers, which include everything that is needed to run
an application. Containers, like virtual machines, are self-contained, but they virtualize the
OS itself, instead of virtualizing the hardware. In practice, this makes a huge difference. As
you have probably noticed by now, starting a virtual machine, such as an EC2 instance,
takes time. This comes from the fact that in order to start a virtual machine, the hypervisor
(that's the name of the technology that creates and runs virtual machines) has to simulate
all of the motions involved in starting a physical server, loading an operating system, and
going through the different run-levels. In addition, virtual machines have a much larger
footprint on the disk and in the memory. With Docker, the added layer is hardly noticeable,
and the size of the containers can stay very small. In order to better illustrate this, we will
first install Docker and explore its basic usage a bit.

Getting started with Docker
Before we start to use Docker, it might be useful to better understand Docker's concept and
architecture. First, we will discuss Docker's fundamental changes with regards to the SDLC.
Following that introduction, we will install Docker on our computers and look at some of
the most common commands needed to use Docker.

https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/helloworld-ecs-service-cf-template.py
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py

Running Containers in AWS Chapter 7

[252]

Docker fundamentals
The best way to understand how Docker works is to compare how using Docker differs
from what we've done so far:

The preceding diagram can be explained as follows:

The first stack on the left represents what we did so far. Using the EC2 service,
we picked an AMI providing AWS Linux, and, with the help of the user data
field, we installed Ansible to configure our system. When Ansible kicks in, it
installs and configures the system, so that later, CodeDeploy can deploy and run
our application.
The middle stack represents what it means to use Docker on top of EC2. The
process starts the same way with an AMI running AWS Linux. However, this
time, instead of relying on Ansible and CodeDeploy, we will simply install the
Docker server application. After that, we will deploy Docker containers, which
will have everything that was previously provided by Ansible and CodeDeploy.
Finally, the big win of that architecture is what we see on the last stack on the
right. No matter what the underlying technology is, as long as we can run a
Docker server, we can run the exact same container. This means that we can
easily test what we will deploy on EC2. Similarly, if an issue happens in a
container running on an EC2 instance, we can pull the exact same container and
run it locally to possibly troubleshoot the issue.

Running Containers in AWS Chapter 7

[253]

In order to make that happen, Docker relies on a couple of key concepts, as shown in the
following diagram:

At its core, Docker runs a daemon that loads images (templates describing the stack of the
application, including the operating system, application code, and everything in between)
and runs them in self-contained directories called containers. When working in Docker, as a
developer, your work mostly consists of building new images by layering new commands
on top of pre-existing images. Images are stored in external registries. Those registries can
be public or private. Finally, all the interaction is done through a RESTful API, usually
using the command-line interface.

Running Containers in AWS Chapter 7

[254]

Docker in action
To see Docker in action, we will start by installing it on our computer. The installation of
Docker is very straightforward; you can follow the instructions found at http:/ ​/​dockr. ​ly/
2iVx6yG to install and start Docker on Mac, Linux, and Windows. Docker provides two
offerings: Docker Community Edition (CE) and Docker Enterprise Edition (EE).
Throughout this book, we are going to focus on open source tools, as well as using Docker
CE, which is free of cost. Again, we will be demonstrating the following examples on a
Linux based Centos 7.x distribution. If you are also following the same operating system
then follow the instructions available at https:/ ​/​docs. ​docker. ​com/ ​install/ ​linux/
docker-​ce/​centos/ ​ to set up Docker locally on your system. When you are done with the
installation of Docker CE, verify the installed Docker version using the docker utility. At
the time of writing this book, 18.06 is the latest version of Docker, although you might see
a newer version on your system now:

$ docker –version
Docker version 18.06.1-ce, build e68fc7a

Once Docker is up and running, we can start using it as follows:

The first thing that we will do is pull an image from a registry. By default,1.
Docker points to Docker Hub (https:/ ​/​hub. ​docker. ​com), which is the official
Docker registry from the company Docker Inc. In order to pull an image, we will
run the following command:

$ docker pull alpine

We will use the latest default tag, as follows:

Using default tag: latest
latest: Pulling from library/alpine
8e3ba11ec2a2: Pull complete
Digest:
sha256:7043076348bf5040220df6ad703798fd8593a0918d06d3ce30c6c93b
e117e430
Status: Downloaded newer image for alpine:latest

In a matter of seconds, Docker will download the image called alpine from the2.
registry, which is a minimal Docker image based on Alpine Linux with a
complete package index. This is only 4.41 MB in size:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
alpine latest 11cd0b38bc3c 2 months ago 4.41 MB

http://dockr.ly/2iVx6yG
http://dockr.ly/2iVx6yG
http://dockr.ly/2iVx6yG
http://dockr.ly/2iVx6yG
http://dockr.ly/2iVx6yG
http://dockr.ly/2iVx6yG
http://dockr.ly/2iVx6yG
http://dockr.ly/2iVx6yG
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/

Running Containers in AWS Chapter 7

[255]

When working with Docker, the size of a container matters. Consequently,
working with smaller base images, such as Alpine Linux, is highly recommended.

We can now run our container. In order to do this, we will start with the3.
following simple command:

$ docker run alpine echo "Hello World" Hello World

On the surface, not a lot seems to have happened here, and we were left with the4.
same output as we had when running echo Hello World without Docker. What
really happened behind the scenes is a lot more interesting; Docker loaded the
alpine Linux image that we previously pulled, and used the Alpine operating
system echo command to print Hello World. Finally, because the echo
command completed, the container was terminated.

Containers can also be used in a more interactive way, as follows:

We can, for example, start a shell and interact with it by using the following
command:

$ docker run -it alpine /bin/sh

The -i option means interactive; this allows us to type commands in our
container while the -t option allocates a pseudo TTY to see what we are typing as
well as the output of our commands.

Containers can also be run in the background by using the -d option, which will
detach our container from the Terminal:

$ docker run -d alpine sleep 1000
c274537aec04d08c3033f45ab723ba90bcb40240d265851b28f39122199b060
0

This command returns a 64-bit long ID of the container running the alpine
image and the sleep 1000 command.

We can keep track of the different running containers running by using the
following command:

$ docker ps

Running Containers in AWS Chapter 7

[256]

The output of running the preceding command is as follows:

Running containers can be stopped using the stop option followed by the
container name or ID (adapt the ID and name based on the output of your
docker ps command):

$ docker stop c274537aec04 c274537aec04

You can also use the following command:

$ docker stop friendly_dijkstra friendly_dijkstra

Stopped containers can be started again with the start option, as follows:

$ docker start friendly_dijkstra friendly_dijkstra

Finally, containers can be removed by using the the rm command, but always
stop the container before removing them:

$ docker stop <ID/NAME>
$ docker rm <ID/NAME>

The output of the preceding command is as follows:

Running Containers in AWS Chapter 7

[257]

This brief overview should provide us with the knowledge we need when reading this
chapter. We will discover a few more commands along the way, but for a complete list of
options, you can use the docker help command or consult the Docker CLI documentation
at http:/​/​dockr.​ly/ ​2jEF8hj. Running simple commands through containers is sometimes
useful but, as we know, the real strength of Docker is its ability to handle any code,
including our web application. In order to make that happen, we will use another key
concept of Docker: a Dockerfile.

Creating our Dockerfile
Dockerfiles are text files that are usually collocated with applications that instruct Docker
on how to build a new Docker image. Through the creation of those files, you have the
ability to tell Docker which Docker image to start from, what to copy on the container
filesystem, what network port to expose, and so on. You can find the full documentation of
the Dockerfile at http:/ ​/​dockr. ​ly/ ​2jmoZMw. We are going to create a Dockerfile for our
Hello World application, at the root of the helloworld project that we created in our
GitHub repository, using the following commands:

$ cd helloworld
$ touch Dockerfile

The first instruction of a Dockerfile is always a FROM instruction. This tells Docker which
Docker image to start from. We could use the Alpine image, as we did, but we can also save
some time by using an image that has more than just an operating system. Through Docker
Hub, the official Docker registry, Docker provides a number of curated sets of Docker
repositories called official. We know that in order to run our application, we need Node.js
and npm. We can use the Docker CLI to look for an official node image. To do that, we will
use the docker search command and filter only on official images:

$ docker search --filter=is-official=true node
NAME DESCRIPTION STARS OFFICIAL
 AUTOMATED
node Node.js is a JavaScript-based platform for s… 6123 [OK]

http://dockr.ly/2jEF8hj
http://dockr.ly/2jEF8hj
http://dockr.ly/2jEF8hj
http://dockr.ly/2jEF8hj
http://dockr.ly/2jEF8hj
http://dockr.ly/2jEF8hj
http://dockr.ly/2jEF8hj
http://dockr.ly/2jEF8hj
http://dockr.ly/2jEF8hj
http://dockr.ly/2jmoZMw
http://dockr.ly/2jmoZMw
http://dockr.ly/2jmoZMw
http://dockr.ly/2jmoZMw
http://dockr.ly/2jmoZMw
http://dockr.ly/2jmoZMw
http://dockr.ly/2jmoZMw
http://dockr.ly/2jmoZMw
http://dockr.ly/2jmoZMw

Running Containers in AWS Chapter 7

[258]

Alternatively, we can also search for this using our browser. As a result, we would end up
with that same image, https:/ ​/​hub. ​docker. ​com/ ​_​/​node/ ​. As we can see, the following
screenshot comes in a variety of versions:

Docker images are always made up of a name and a tag, using the syntax name:tag. If the
tag is omitted, Docker will default to latest. From the preceding docker pull command,
we can see how the output says Using default tag: latest. When creating a
Dockerfile, it is best practice to use an explicit tag that doesn't change over time (unlike the
latest tag).

If you are trying to migrate an application currently running on AWS
Linux and make a certain number of assumptions based on that OS, you
may want to look into using the official AWS Docker image. You can read
more about this at http:/ ​/​amzn. ​to/​2jnmklF.

https://hub.docker.com/_/node/
https://hub.docker.com/_/node/
https://hub.docker.com/_/node/
https://hub.docker.com/_/node/
https://hub.docker.com/_/node/
https://hub.docker.com/_/node/
https://hub.docker.com/_/node/
https://hub.docker.com/_/node/
https://hub.docker.com/_/node/
https://hub.docker.com/_/node/
https://hub.docker.com/_/node/
https://hub.docker.com/_/node/
https://hub.docker.com/_/node/
https://hub.docker.com/_/node/
https://hub.docker.com/_/node/
https://hub.docker.com/_/node/
http://amzn.to/2jnmklF
http://amzn.to/2jnmklF
http://amzn.to/2jnmklF
http://amzn.to/2jnmklF
http://amzn.to/2jnmklF
http://amzn.to/2jnmklF
http://amzn.to/2jnmklF
http://amzn.to/2jnmklF
http://amzn.to/2jnmklF

Running Containers in AWS Chapter 7

[259]

On the first line of our file, we will add the following:

FROM node:carbon

This will tell Docker that we want to use that specific version of the node image. This
means that we won't have to install node or npm. Since we have the OS and runtime
binaries needed by our application, we can start looking into adding our application to this
image. First, we will want to create a directory on top of the node:carbon image's
filesystem, to hold our code. We can do that using the RUN instruction, as follows:

RUN mkdir -p /usr/local/helloworld/

We now want to copy our application files onto the image. We will use the COPY directive
to do that:

COPY helloworld.js package.json /usr/local/helloworld/

Make sure that you copy the helloworld.js and package.json files
inside the /helloworld project directory where you are locally
developing Dockerfile. The files are placed at https:/ ​/​github. ​com/
yogeshraheja/ ​helloworld/ ​blob/ ​master/ ​helloworld. ​js and https:/ ​/
github. ​com/ ​yogeshraheja/ ​helloworld/ ​blob/ ​master/ ​package. ​json.

We will now use the WORKDIR instruction to set our new working directory to be that
helloworld directory:

 WORKDIR /usr/local/helloworld/

We can now run the npm install command to download and install our dependencies.
Because we won't use that container to test our code, we can just install the npm packages
needed for production, as follows:

RUN npm install --production

Our application uses port 3000. We need to make this port accessible to our host. In order
to do that, we will use the EXPOSE instruction:

EXPOSE 3000

Finally, we can start our application. For that, we will use the ENTRYPOINT instruction:

ENTRYPOINT ["node", "helloworld.js"]

https://github.com/yogeshraheja/helloworld/blob/master/helloworld.js
https://github.com/yogeshraheja/helloworld/blob/master/helloworld.js
https://github.com/yogeshraheja/helloworld/blob/master/helloworld.js
https://github.com/yogeshraheja/helloworld/blob/master/helloworld.js
https://github.com/yogeshraheja/helloworld/blob/master/helloworld.js
https://github.com/yogeshraheja/helloworld/blob/master/helloworld.js
https://github.com/yogeshraheja/helloworld/blob/master/helloworld.js
https://github.com/yogeshraheja/helloworld/blob/master/helloworld.js
https://github.com/yogeshraheja/helloworld/blob/master/helloworld.js
https://github.com/yogeshraheja/helloworld/blob/master/helloworld.js
https://github.com/yogeshraheja/helloworld/blob/master/helloworld.js
https://github.com/yogeshraheja/helloworld/blob/master/helloworld.js
https://github.com/yogeshraheja/helloworld/blob/master/helloworld.js
https://github.com/yogeshraheja/helloworld/blob/master/helloworld.js
https://github.com/yogeshraheja/helloworld/blob/master/helloworld.js
https://github.com/yogeshraheja/helloworld/blob/master/helloworld.js
https://github.com/yogeshraheja/helloworld/blob/master/helloworld.js
https://github.com/yogeshraheja/helloworld/blob/master/helloworld.js
https://github.com/yogeshraheja/helloworld/blob/master/package.json
https://github.com/yogeshraheja/helloworld/blob/master/package.json
https://github.com/yogeshraheja/helloworld/blob/master/package.json
https://github.com/yogeshraheja/helloworld/blob/master/package.json
https://github.com/yogeshraheja/helloworld/blob/master/package.json
https://github.com/yogeshraheja/helloworld/blob/master/package.json
https://github.com/yogeshraheja/helloworld/blob/master/package.json
https://github.com/yogeshraheja/helloworld/blob/master/package.json
https://github.com/yogeshraheja/helloworld/blob/master/package.json
https://github.com/yogeshraheja/helloworld/blob/master/package.json
https://github.com/yogeshraheja/helloworld/blob/master/package.json
https://github.com/yogeshraheja/helloworld/blob/master/package.json
https://github.com/yogeshraheja/helloworld/blob/master/package.json
https://github.com/yogeshraheja/helloworld/blob/master/package.json
https://github.com/yogeshraheja/helloworld/blob/master/package.json
https://github.com/yogeshraheja/helloworld/blob/master/package.json
https://github.com/yogeshraheja/helloworld/blob/master/package.json
https://github.com/yogeshraheja/helloworld/blob/master/package.json

Running Containers in AWS Chapter 7

[260]

We can now save the file. It should look like the template at https:/ ​/ ​github. ​com/
yogeshraheja/​helloworld/ ​blob/ ​master/ ​Dockerfile. We can now build our new image.

Back in the Terminal, we will again use the docker command, but this time with the build
argument. We will also use the -t option to provide the name helloworld to our image,
followed by a (.) dot that indicates the location of our Dockerfile:

$ docker build -t helloworld .
Sending build context to Docker daemon 4.608kB
Step 1/7 : FROM node:carbon
carbon: Pulling from library/node
f189db1b88b3: Pull complete
3d06cf2f1b5e: Pull complete
687ebdda822c: Pull complete
99119ca3f34e: Pull complete
e771d6006054: Pull complete
b0cc28d0be2c: Pull complete
9bbe77ca0944: Pull complete
75f7d70e2d07: Pull complete
Digest:
sha256:3422df4f7532b26b55275ad7b6dc17ec35f77192b04ce22e62e43541f3d28eb3
Status: Downloaded newer image for node:carbon
 ---> 8198006b2b57
Step 2/7 : RUN mkdir -p /usr/local/helloworld/
 ---> Running in 2c727397cb3e
Removing intermediate container 2c727397cb3e
 ---> dfce290bb326
Step 3/7 : COPY helloworld.js package.json /usr/local/helloworld/
 ---> ad79109b5462
Step 4/7 : WORKDIR /usr/local/helloworld/
 ---> Running in e712a394acd7
Removing intermediate container e712a394acd7
 ---> b80e558dff23
Step 5/7 : RUN npm install --production
 ---> Running in 53c81e3c707a
npm notice created a lockfile as package-lock.json. You should commit this
file.
npm WARN helloworld@1.0.0 No description

up to date in 0.089s
Removing intermediate container 53c81e3c707a
 ---> 66c0acc080f2
Step 6/7 : EXPOSE 3000
 ---> Running in 8ceba9409a63
Removing intermediate container 8ceba9409a63
 ---> 1902103f865c
Step 7/7 : ENTRYPOINT ["node", "helloworld.js"]

https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile

Running Containers in AWS Chapter 7

[261]

 ---> Running in f73783248c5f
Removing intermediate container f73783248c5f
 ---> 4a6cb81d088d
Successfully built 4a6cb81d088d
Successfully tagged helloworld:latest

As you can see, each command produces a new intermediary container with the changes
triggered by that step.

We can now run our newly created image to create a container with the following
command:

$ docker run -p 3000:3000 -d helloworld
e47e4130e545e1b2d5eb2b8abb3a228dada2b194230f96f462a5612af521ddc5

Here, we are adding the-p option to our command to map the exposed port of our
container to a port on our host. There are a few ways to validate that our container is
working correctly. We can start by looking at the logs produced by our container (replace
the container ID with the output of the previous command):

$ docker logs
e47e4130e545e1b2d5eb2b8abb3a228dada2b194230f96f462a5612af521ddc5
Server running

We can also use the docker ps command to see the status of our container:

$ docker ps

The output of the preceding command is as follows:

And, of course, we can simply test the application with the curl command:

$ curl localhost:3000
Hello World

Running Containers in AWS Chapter 7

[262]

Also, if your host has a public IP then you can even verify the outputs on the browser with
<ip:exposedport>, which in my case is 54.205.200.149:3000:

Finally, kill the container using the docker kill command and container ID:

$ docker kill e47e4130e545
e47e4130e545

Since our image is working correctly, we can commit the code to GitHub:

$ git add Dockerfile
$ git commit -m "Adding Dockerfile"
$ git push

In addition, you can now create an account (for free) on Docker Hub and upload that new
image. If you want to give it a try, you can follow the instructions at http:/ ​/​dockr. ​ly/
2ki6DQV.

Having the ability to easily share containers makes a big difference when collaborating on
projects. Instead of sharing code and asking people to compile or build packages, you can
actually share a Docker image. For instance, this can be done by running the following:

docker pull yogeshraheja/helloworld

The output of running the preceding command is as follows:

You can experience the Hello World application, the exact way I see it, no matter what your
underlying architecture is. This new way of running applications makes Docker a very
strong solution for sharing work or collaborating on projects. Docker's strengths do not end
with work collaboration, however. As we are about to see, using containers in production is
also a very interesting option. In order to easily implement such solutions, AWS created the
EC2 container service. We are going to use it to deploy our newly created helloworld
image.

http://dockr.ly/2ki6DQV
http://dockr.ly/2ki6DQV
http://dockr.ly/2ki6DQV
http://dockr.ly/2ki6DQV
http://dockr.ly/2ki6DQV
http://dockr.ly/2ki6DQV
http://dockr.ly/2ki6DQV
http://dockr.ly/2ki6DQV

Running Containers in AWS Chapter 7

[263]

Using the EC2 container service
We just went over creating a Docker image for our application. Here, we saw how easy and
fast it is to start a container using Docker. This is a very transformative experience
compared to using only virtual machine technologies such as EC2. One possibility that we
haven't explicitly mentioned so far is that you can start multiple containers with the same
image. We can, for example, start our helloworld container five times, binding five
different ports using the following command (adapt the ID based on the image ID you
built. If needed, run Docker images to find its ID):

$ for p in {3001..3005}; do docker run -d -p ${p}:3000 4a6cb81d088d; done

We can validate that everything is working using the ps and curl commands:

$ docker ps
$ curl localhost:3005

The output of running the preceding command is as follows:

Cleaning up containers:
We can clean up everything by stopping and removing all containers with
these two handy one-line commands:

$ docker stop $(docker ps -a -q)

$ docker system prune

Running Containers in AWS Chapter 7

[264]

The output of running the preceding commands is as follows:

This ability to start multiple containers on a single host with almost no overhead or latency
makes Docker an ideal candidate for production. In addition, more and more companies
are deciding to take the service-oriented architecture approach to an all-new level by
breaking out each business function into a separate service. This is often called a
microservices approach. Docker is a natural fit for microservices and for managing
microservice architecture. This is because it provides a platform that is language agnostic
(you can start any type of application written in any language inside your container), able
to scale horizontally and vertically with ease, and a common story around deployment as
we deploy containers instead of a variety of services. We will implement our container
architecture using the Infrastructure as Code (IaC) best practices and use CloudFormation
through the intermediary of Troposphere. The first service we are going to look at is AWS's
ECR.

Running Containers in AWS Chapter 7

[265]

Creating an ECR repository to manage our
Docker image
In the first part of this chapter, we used the Docker Hub public registry. AWS provides a
similar service to this called ECR. This allows you to keep your images in a private registry
called a repository. ECR is fully compatible with the Docker CLI but also integrates deeply
with the remaining ECS services. We are going to use this to store our helloworld images.

As mentioned, we will rely heavily on CloudFormation to make our changes. Unlike what
we saw previously, because of its nature, the ECS infrastructure we are going to build
needs to be very modular. This is because, in practice, we will want to share some of those
components with other services. Consequently, we will create a number of templates and
link them to one another. One good way to do that is to rely on CloudFormation's export
ability, which allows us to do cross-stack referencing.

One of the added bonuses that export provides is a fail-safe mechanism.
You can't delete or edit a stack if another stack references an exported
output.

To generate our template, we will create a new Troposphere script. To do this, go to the
EffectiveDevOpsTemplates repository and create a new script named ecr-
repository-cf- template.py.

We will start by importing a number of modules, including the Export mentioned earlier
and the ecr module, in order to create our repository. We will also create our template
variable, t, as we did in previous chapters:

"""Generating CloudFormation template."""

from troposphere import (
Export,
Join,
Output,
Parameter,
Ref,
Template
)
from troposphere.ecr import Repository
t = Template()

Running Containers in AWS Chapter 7

[266]

Since we are going to create a number of CloudFormation templates in this chapter, we will
add a description so that it's easier to understand which template does what when looking
at them in the AWS console:

t.add_description("Effective DevOps in AWS: ECR Repository")

We will create a parameter for the name of the repository so that we will be able to reuse
that CloudFormation template for every repository we create:

t.add_parameter(Parameter(
 "RepoName",
 Type="String",
 Description="Name of the ECR repository to create"
))

We can now create our repository as follows:

t.add_resource(Repository(
 "Repository",
 RepositoryName=Ref("RepoName")
))

We are keeping the code very simple here and not enforcing any particular permissions. If
you need to restrict who can access your repository and see more complex configurations,
you can refer to the AWS documentation and, in particular, http:/ ​/ ​amzn. ​to/
2j7hA2P. Lastly, we will output the name of the repository we created and export its value
through a template variable t:

t.add_output(Output(
 "Repository",
 Description="ECR repository",
 Value=Ref("RepoName"),
 Export=Export(Join("-", [Ref("RepoName"), "repo"])),
))
print(t.to_json())

We can save our script now. It should look like this: https:/ ​/​github. ​com/ ​yogeshraheja/
EffectiveDevOpsTemplates/ ​blob/ ​master/ ​ecr-​repository- ​cf-​template. ​py. We will now
generate the CloudFormation template and create our stack as follows:

$ python ecr-repository-cf-template.py > ecr-repository-cf.template
$ aws cloudformation create-stack \
 --stack-name helloworld-ecr \
 --capabilities CAPABILITY_IAM \
 --template-body file://ecr-repository-cf.template \
 --parameters \ ParameterKey=RepoName,ParameterValue=helloworld

http://amzn.to/2j7hA2P
http://amzn.to/2j7hA2P
http://amzn.to/2j7hA2P
http://amzn.to/2j7hA2P
http://amzn.to/2j7hA2P
http://amzn.to/2j7hA2P
http://amzn.to/2j7hA2P
http://amzn.to/2j7hA2P
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecr-repository-cf-template.py

Running Containers in AWS Chapter 7

[267]

After a few minutes, our stack will be created. We can validate that the repository was
correctly created as follows:

$ aws ecr describe-repositories
{
 "repositories": [
 {
 "registryId": "094507990803",
 "repositoryName": "helloworld",
 "repositoryArn": "arn:aws:ecr:us-east-
 1:094507990803:repository/helloworld",
 "createdAt": 1536345671.0,
 "repositoryUri": "094507990803.dkr.ecr.us-east-
 1.amazonaws.com/helloworld"
 }
]
}

We can see our exported output with the following command:

$ aws cloudformation list-exports
{
 "Exports": [
 {
 "ExportingStackId": "arn:aws:cloudformation:us-east-
 1:094507990803:stack/helloworld-ecr/94d9ed70-b2cd-11e8-
 b767-50d501eed2b3",
 "Value": "helloworld",
 "Name": "helloworld-repo"
 }
]
}

Our repository can now be used to store our helloworld image. We will use the Docker
CLI to do that. The first step of that process is to log in to the ecr service. You can do this
with the following handy one-line command:

$ eval "$(aws ecr get-login --region us-east-1 --no-include-email)"

The output of running the preceding command can be shown as follows:

Running Containers in AWS Chapter 7

[268]

Back in our helloworld directory where the Dockerfile is, we will tag our image as
follows:

$ cd helloworld

It is a common practice to use the latest tag to designate the most recent version of an
image. In addition, you need to adapt the following command based on the output of the
aws ecr describe-repositories output (we assume here that you have already built
your image):

$ docker tag helloworld:latest 094507990803.dkr.ecr.us-
east-1.amazonaws.com/helloworld:latest

We can now push that image to our registry as follows:

$ docker push 094507990803.dkr.ecr.us-
east-1.amazonaws.com/helloworld:latest
The push refers to repository [094507990803.dkr.ecr.us-
east-1.amazonaws.com/helloworld]
c7f21f8d59de: Pushed
3c36cf19a914: Pushed
8faa1d9821d6: Pushed
be0fb77bfb1f: Pushed
63c810287aa2: Pushed
2793dc0607dd: Pushed
74800c25aa8c: Pushed
ba504a540674: Pushed
81101ce649d5: Pushed
daf45b2cad9a: Pushed
8c466bf4ca6f: Pushed
latest: digest:
sha256:95906ec13adf9894e4611cd37c8a06569964af0adbb035fcafa6020994675161
size: 2628

We can see how each layer of our image is pushed in parallel to our registry. Once the
operation completes, we can validate that the new image is present in our registry as
follows:

$ aws ecr describe-images --repository-name helloworld
{
 "imageDetails": [
 {
 "imageSizeInBytes": 265821145,
 "imageDigest":
"sha256:95906ec13adf9894e4611cd37c8a06569964af0adbb035fcafa6020994675161",
 "imageTags": [
 "latest"

Running Containers in AWS Chapter 7

[269]

],
 "registryId": "094507990803",
 "repositoryName": "helloworld",
 "imagePushedAt": 1536346218.0
 }
]
}

At this point, our image is now available to the rest of our infrastructure. We are going to
move on to the next step of our process, which is the creation of the ECS cluster.

Creating an ECS cluster
Creating an ECS cluster is a very similar process to the one in Chapter 6, Scaling Your
Infrastructure, when we created an Auto Scaling Group to run our Hello World application.
The main difference is that there is one more level of abstraction. ECS will run a number of
services called tasks.

Each of those tasks may exist multiple times in order to handle the traffic:

Running Containers in AWS Chapter 7

[270]

In order to do that, the ECS service provides an orchestration layer. That orchestration layer
is in charge of managing the life cycle of containers, including upgrading or downgrading
and scaling your containers up or down. The orchestration layer also distributes all
containers for every service across all instances of the cluster optimally. Finally, it also
exposes a discovery mechanism that interacts with other services such as ALB and ELB to
register and deregister containers.

Task placement strategies:
By default, the entire orchestration system is managed by AWS. However,
you also have the ability to customize it through the creation of a task
placement strategy. This will let you configure the orchestration to
optimize for instance count, for load distribution, to add constraints, and
make sure that certain tasks are launched on the same instances.

We will create a new script to generate our ECS cluster. The filename will be ecs-
cluster-cf-template.py. This template starts almost exactly like the template we
created in Chapter 6, Scaling Your Infrastructure, for the Auto Scaling Group:

"""Generating CloudFormation template."""

from ipaddress import ip_network from ipify import get_ip
from troposphere import (
 Base64,
 Export,
 Join,
 Output,
 Parameter,
 Ref,
 Sub,
 Template,
 ec2
)

from troposphere.autoscaling import (
 AutoScalingGroup,
 LaunchConfiguration,
 ScalingPolicy
)

from troposphere.cloudwatch import (
 Alarm,
 MetricDimension
)
from troposphere.ecs import Cluster
from troposphere.iam import (
 InstanceProfile,

Running Containers in AWS Chapter 7

[271]

 Role
)

The only new import is the cluster one from the ECS module. Just like we did in Chapter 6,
Scaling Your Infrastructure, we will extract our IP address in order to use it later for the SSH
security group, create our template variable, and add a description to the stack:

PublicCidrIp = str(ip_network(get_ip()))
t = Template()
t.add_description("Effective DevOps in AWS: ECS Cluster")

We will now proceed with adding our parameters, which are the the same parameters as
used in Chapter 6, Scaling Your Infrastructure. This includes the SSH key-pair, the VPC ID,
and its subnets:

t.add_parameter(Parameter(
 "KeyPair",
 Description="Name of an existing EC2 KeyPair to SSH",
 Type="AWS::EC2::KeyPair::KeyName",
 ConstraintDescription="must be the name of an existing EC2
 KeyPair.",
))

t.add_parameter(Parameter(
 "VpcId",
 Type="AWS::EC2::VPC::Id",
 Description="VPC"
))

t.add_parameter(Parameter(
 "PublicSubnet",
 Description="PublicSubnet",
 Type="List<AWS::EC2::Subnet::Id>",
 ConstraintDescription="PublicSubnet"
))

Next, we will look at creating our security group resources:

t.add_resource(ec2.SecurityGroup(
 "SecurityGroup",
 GroupDescription="Allow SSH and private network access",
 SecurityGroupIngress=[
 ec2.SecurityGroupRule(
 IpProtocol="tcp",
 FromPort=0,
 ToPort=65535,
 CidrIp="172.16.0.0/12",
),

Running Containers in AWS Chapter 7

[272]

 ec2.SecurityGroupRule(
 IpProtocol="tcp",
 FromPort="22",
 ToPort="22",
 CidrIp=PublicCidrIp,
),
],
 VpcId=Ref("VpcId")
))

There is one important difference here. In Chapter 6, Scaling Your
Infrastructure, we opened up port 3000 since that's what our application is
using. Here, we are opening every port to the CIDR 1 72.16.0.0/12,
which is the private IP space of our internal network. This will give our
ECS cluster the ability to run multiple helloworld containers on the
same hosts, binding different ports.

We will now create our cluster resource. This can simply be done with the following
command:

t.add_resource(Cluster(
 'ECSCluster',
))

Next, we will focus on configuring instances of the cluster, starting with their IAM role.
Overall, this is one of the more complex resources to create in ECS as the cluster will need
to perform a number of interactions with other AWS services. We can create a complete
custom policy for it or import the policies AWS created as follows:

t.add_resource(Role(
 'EcsClusterRole',
 ManagedPolicyArns=[
 'arn:aws:iam::aws:policy/service-role/AmazonEC2RoleforSSM',
 'arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryReadOnly',
 'arn:aws:iam::aws:policy/service-
role/AmazonEC2ContainerServiceforEC2Role',
 'arn:aws:iam::aws:policy/CloudWatchFullAccess'
],
 AssumeRolePolicyDocument={
 'Version': '2012-10-17',
 'Statement': [{
 'Action': 'sts:AssumeRole',
 'Principal': {'Service': 'ec2.amazonaws.com'},
 'Effect': 'Allow',
 }]
 }
))

Running Containers in AWS Chapter 7

[273]

We can now tie our role with the instance profile as follows:

t.add_resource(InstanceProfile(
 'EC2InstanceProfile',
 Roles=[Ref('EcsClusterRole')],
))

The next step is to create our launch configuration. The following code snippet shows what
it looks like:

t.add_resource(LaunchConfiguration(
 'ContainerInstances',
 UserData=Base64(Join('', [
 "#!/bin/bash -xe\n",
 "echo ECS_CLUSTER=",
 Ref('ECSCluster'),
 " >> /etc/ecs/ecs.config\n",
 "yum install -y aws-cfn-bootstrap\n",
 "/opt/aws/bin/cfn-signal -e $? ",
 " --stack ",
 Ref('AWS::StackName'),
 " --resource ECSAutoScalingGroup ",
 " --region ",
 Ref('AWS::Region'),
 "\n"])),
 ImageId='ami-04351e12',
 KeyName=Ref("KeyPair"),
 SecurityGroups=[Ref("SecurityGroup")],
 IamInstanceProfile=Ref('EC2InstanceProfile'),
 InstanceType='t2.micro',
 AssociatePublicIpAddress='true',
))

In this example, we don't install Ansible like we did before. Instead, we are using an ECS-
optimized AMI (you can read more about this at http:/ ​/​amzn. ​to/ ​2jX0xVu) that lets us use
the UserData field to configure the ECS service, and then starting it. Now that we have our
launch configuration, we can create our Auto Scaling Group resources.

When working with ECS, scaling is needed at two levels:

The containers level, as we will need to run more containers of a given service if
the traffic spikes
The underlying infrastructure level

http://amzn.to/2jX0xVu
http://amzn.to/2jX0xVu
http://amzn.to/2jX0xVu
http://amzn.to/2jX0xVu
http://amzn.to/2jX0xVu
http://amzn.to/2jX0xVu
http://amzn.to/2jX0xVu
http://amzn.to/2jX0xVu
http://amzn.to/2jX0xVu

Running Containers in AWS Chapter 7

[274]

Containers, through the intermediary of their task definitions, set a requirement for CPU
and memory. They will require, for example, 1024 CPU units, which represents one core,
and 256 memory units, which means 256 MB of RAM. If the ECS instances are close to
being filled up on one of those two constraints, the ECS Auto Scaling Group needs to add
more instances:

In terms of implementation, the process is very similar to what we did in Chapter 6, Scaling
Your Infrastructure. Here, we first create the Auto Scaling Group resource, as follows:

t.add_resource(AutoScalingGroup(
 'ECSAutoScalingGroup',
 DesiredCapacity='1',
 MinSize='1',
 MaxSize='5',
 VPCZoneIdentifier=Ref("PublicSubnet"),
 LaunchConfigurationName=Ref('ContainerInstances'),
))

Running Containers in AWS Chapter 7

[275]

Next, we will create scaling policies and alarms to monitor the CPU and memory
reservation metrics. In order to accomplish that, we will take advantage of Python to
generate our stack and create for loops as follows:

states = {
 "High": {
 "threshold": "75",
 "alarmPrefix": "ScaleUpPolicyFor",
 "operator": "GreaterThanThreshold",
 "adjustment": "1"
 },
 "Low": {
 "threshold": "30",
 "alarmPrefix": "ScaleDownPolicyFor",
 "operator": "LessThanThreshold",
 "adjustment": "-1"
 }
}

for reservation in {"CPU", "Memory"}:
 for state, value in states.iteritems():
 t.add_resource(Alarm(
 "{}ReservationToo{}".format(reservation, state),
 AlarmDescription="Alarm if {} reservation too {}".format(
 reservation,
 state),
 Namespace="AWS/ECS",
 MetricName="{}Reservation".format(reservation),
 Dimensions=[
 MetricDimension(
 Name="ClusterName",
 Value=Ref("ECSCluster")
),
],
 Statistic="Average",
 Period="60",
 EvaluationPeriods="1",
 Threshold=value['threshold'],
 ComparisonOperator=value['operator'],
 AlarmActions=[
 Ref("{}{}".format(value['alarmPrefix'], reservation))]
))
 t.add_resource(ScalingPolicy(
 "{}{}".format(value['alarmPrefix'], reservation),
 ScalingAdjustment=value['adjustment'],
 AutoScalingGroupName=Ref("ECSAutoScalingGroup"),
 AdjustmentType="ChangeInCapacity",
))

Running Containers in AWS Chapter 7

[276]

Finally, we will provide a small amount of resource information, namely the stack ID, the
VPC ID, and the public subnets:

t.add_output(Output(
 "Cluster",
 Description="ECS Cluster Name",
 Value=Ref("ECSCluster"),
 Export=Export(Sub("${AWS::StackName}-id")),
))

t.add_output(Output(
 "VpcId",
 Description="VpcId",
 Value=Ref("VpcId"),
 Export=Export(Sub("${AWS::StackName}-vpc-id")),
))

t.add_output(Output(
 "PublicSubnet",
 Description="PublicSubnet",
 Value=Join(',', Ref("PublicSubnet")),
 Export=Export(Sub("${AWS::StackName}-public-subnets")),
))

print(t.to_json())

CloudFormation provides a number of pseudo-parameters, such as
AWS::StackName. Throughout the chapter, we will rely on it to make our
template generic enough to be used across different environments and
services. In the preceding code, we created an ECR repository for our
helloworld container. The name was generated by the stack creation
command. If required, we can reuse that exact same template to create
another repository for another container.

The script is now complete, and should look like the script at: https:/ ​/​github. ​com/
yogeshraheja/​EffectiveDevOpsTemplates/ ​blob/ ​master/ ​ecs- ​cluster- ​cf-​template. ​py.

As before, we can now commit our script and create our stack by first generating our
template, as follows:

$ git add ecs-cluster-cf-template.py
$ git commit -m "Adding Troposphere script to generate an ECS cluster"
$ git push
$ python ecs-cluster-cf-template.py > ecs-cluster-cf.template

https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/ecs-cluster-cf-template.py

Running Containers in AWS Chapter 7

[277]

To create our stack, we need three parameters; the key-pair, the VPC ID, and the subnets. In
the previous chapters, we used the web interface to create those stacks. Here, we will look
at how to get that information using the CLI.

To get the VPC ID and the subnet IDs, we can use the following commands:

$ aws ec2 describe-vpcs --query 'Vpcs[].VpcId'
[
 "vpc-4cddce2a"
]
$ aws ec2 describe-subnets --query 'Subnets[].SubnetId'
[
 "subnet-e67190bc",
 "subnet-658b6149",
 "subnet-d890d3e4",
 "subnet-6fdd7927",
 "subnet-4c99c229",
 "subnet-b03baebc"
]

We can now create our stack by combining the preceding outputs. Since ECS clusters can
run a variety of containers and a number of applications and services, we will aim for one
ECS cluster per environment, starting with staging. In order to differentiate each
environment, we will rely on the stack names. Consequently, it is important to call your
staging-cluster stack, as shown here:

$ aws cloudformation create-stack \
 --stack-name staging-cluster \
 --capabilities CAPABILITY_IAM \
 --template-body file://ecs-cluster-cf.template \
 --parameters \
 ParameterKey=KeyPair,ParameterValue=EffectiveDevOpsAWS \
 ParameterKey=VpcId,ParameterValue=vpc-4cddce2a \
 ParameterKey=PublicSubnet,ParameterValue=subnet-e67190bc\\,subnet-
 658b6149\\,subnet-d890d3e4\\,subnet-6fdd7927\\,subnet-
 4c99c229\\,subnet-b03baebc
{
 "StackId": "arn:aws:cloudformation:us-east-
 1:094507990803:stack/staging-cluster/581e30d0-b2d2-11e8-b48f-
 503acac41e99"
}

We will now add a load balancer. In the previous chapter, we used an ELB for our Auto
Scaling Group. Later, we also mentioned the existence of the ALB service. This time, we
will create an ALB instance to proxy our application traffic.

Running Containers in AWS Chapter 7

[278]

Creating an ALB
As mentioned previously, ECS provides an orchestrator that takes care of allocating the
containers across our Auto Scaling Group. It also keeps track of which port each container
uses and integrates with ALB so that our load balancer can correctly route the incoming
traffic to all containers running a given service. ECS supports both the ELB and ALB
services but the ALB gives more flexibility when working with containers. We will
demonstrate how to create an ALB using CloudFormation through Troposphere.

We will start by creating a new file and calling it helloworld-ecs-alb-cf-
template.py. We will then put our usual import, and will create our template variable
and add a description, as follows:

"""Generating CloudFormation template."""

from troposphere import elasticloadbalancingv2 as elb

from troposphere import (
 Export,
 GetAtt,
 ImportValue,
 Join,
 Output,
 Ref,
 Select,
 Split,
 Sub,
 Template,
 ec2
)

t = Template()

t.add_description("Effective DevOps in AWS: ALB for the ECS Cluster")

We are now going to create our security group. No surprises here; we are opening
TCP/3000 to the world, as we did in Chapter 6, Scaling Your Infrastructure, with the ELB:

t.add_resource(ec2.SecurityGroup(
 "LoadBalancerSecurityGroup",
 GroupDescription="Web load balancer security group.",
 VpcId=ImportValue(
 Join(
 "-",
 [Select(0, Split("-", Ref("AWS::StackName"))),
 "cluster-vpc-id"]

Running Containers in AWS Chapter 7

[279]

)
),
 SecurityGroupIngress=[
 ec2.SecurityGroupRule(
 IpProtocol="tcp",
 FromPort="3000",
 ToPort="3000",
 CidrIp="0.0.0.0/0",
),
],
))

The main difference from what we did previously is that instead of starting with a
parameter section and requesting, yet again, to provide the VPC ID and public subnets, we
are taking advantage of the value that we exported before. When we launch this stack, we
will call it staging-alb. The block of code inside the ImportValue parameter does the
following:

First, we get the name of our stack. We will launch that stack under the name1.
staging-alb.
The Split function breaks the stack name on the character -, meaning that we2.
end up with [staging, alb].
The Select function takes the first element of the list: staging.3.
The Join function concatenates that element with the string cluster-vpc-id.4.
In the end, we get Import("staging-cluster-vpc-id"), which is the name
of the key we defined to export the VPC ID when we created our ECS cluster:

We will now create our ALB. ALB, being more flexible and feature-rich than ELB, requires a
bit more effort when it comes to configuration. ALB works through the intermediary of
three different resources. The first one is the ALB resource, which handles incoming
connections. On the opposite side, we can find the target groups, which are the resources
used by the ECS clusters registered to those ALBs. Finally, in order to tie the two, we find
the listener's resources. We will first define our load balancer resource, as follows:

t.add_resource(elb.LoadBalancer(
 "LoadBalancer",
 Scheme="internet-facing",
 Subnets=Split(

Running Containers in AWS Chapter 7

[280]

 ',',
 ImportValue(
 Join("-",
 [Select(0, Split("-", Ref("AWS::StackName"))),
 "cluster-public-subnets"]
)
)
),
 SecurityGroups=[Ref("LoadBalancerSecurityGroup")],
))

We use a very similar series of calls to the function to import our subnet as
we did just before for the VPC ID.

We will now create our target group and configure our health check, as follows:

t.add_resource(elb.TargetGroup(
 "TargetGroup",
 DependsOn='LoadBalancer',
 HealthCheckIntervalSeconds="20",
 HealthCheckProtocol="HTTP",
 HealthCheckTimeoutSeconds="15",
 HealthyThresholdCount="5",
 Matcher=elb.Matcher(
 HttpCode="200"),
 Port=3000,
 Protocol="HTTP",
 UnhealthyThresholdCount="3",
 VpcId=ImportValue(
 Join(
 "-",
 [Select(0, Split("-", Ref("AWS::StackName"))),
 "cluster-vpc-id"]
)
),
))

Finally, we will add the listener to connect our target group to our load balancer:

t.add_resource(elb.Listener(
 "Listener",
 Port="3000",
 Protocol="HTTP",
 LoadBalancerArn=Ref("LoadBalancer"),
 DefaultActions=[elb.Action(
 Type="forward",

Running Containers in AWS Chapter 7

[281]

 TargetGroupArn=Ref("TargetGroup")
)]
))

Lastly, we will want to create two outputs. The first output is the target group. We will
export its value so that our application can register to the group. The second output is the
DNS record of the ALB. This will be the entry point to our application:

t.add_output(Output(
 "TargetGroup",
 Description="TargetGroup",
 Value=Ref("TargetGroup"),
 Export=Export(Sub("${AWS::StackName}-target-group")),
))

t.add_output(Output(
 "URL",
 Description="Helloworld URL",
 Value=Join("", ["http://", GetAtt("LoadBalancer", "DNSName"), ":3000"])
))

print(t.to_json())

The file is now ready, and should look like the file at: https:/ ​/​github. ​com/​yogeshraheja/
EffectiveDevOpsTemplates/ ​blob/ ​master/ ​helloworld- ​ecs- ​alb-​cf- ​template. ​py. We can
now generate our template and create our stack, as follows:

$ git add helloworld-ecs-alb-cf-template.py
$ git commit -m "Adding a Load balancer template for our helloworld
application on ECS"
$ git push
$ python helloworld-ecs-alb-cf-template.py > helloworld-ecs-alb-cf.template
$ aws cloudformation create-stack \
 --stack-name staging-alb \
 --capabilities CAPABILITY_IAM \
 --template-body file://helloworld-ecs-alb-cf.template
 {
 "StackId": "arn:aws:cloudformation:us-east-
 1:094507990803:stack/staging-alb/4929fee0-b2d4-11e8-825f-
 50fa5f2588d2"
}

As mentioned, it is important to call the stack staging-alb, and that first word is used to
import the VPC ID and subnets. The last stack we need is the creation of our container
service.

https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-alb-cf-template.py

Running Containers in AWS Chapter 7

[282]

Creating our ECS hello world service
We have an ECS cluster and a load balancer ready to take on traffic on one side and an ECR
repository containing the image of our application on the other side. We now need to tie the
two together. This is done by creating an ECS service resource. We will create a new file
called helloworld-ecs-service-cf-template.py and start as usual with its imports,
template variable creation, and template description:

"""Generating CloudFormation template."""

from troposphere.ecs import (
 TaskDefinition,
 ContainerDefinition
)
from troposphere import ecs
from awacs.aws import (
 Allow,
 Statement,
 Principal,
 Policy
)
from troposphere.iam import Role

from troposphere import (
 Parameter,
 Ref,
 Template,
 Join,
 ImportValue,
 Select,
 Split,
)

from awacs.sts import AssumeRole

t = Template()

t.add_description("Effective DevOps in AWS: ECS service - Helloworld")

Running Containers in AWS Chapter 7

[283]

Our template will take one argument, which is the tag of the image we want to deploy. Our
repository currently only has one image tagged as the latest, but in the next section we will
update our deployment pipeline and automatize the deployment of our service to ECS:

t.add_parameter(Parameter(
 "Tag",
 Type="String",
 Default="latest",
 Description="Tag to deploy"
))

In ECS, applications are defined by their task definitions. This is where we declare which
repository to use to get our image, how much CPU and memory the application needs, and
all other system properties such as port mapping, environment variables, mount points,
and so on. We will keep our task definition minimal; in order to select the proper image, we
will utilize the ImportValue function (we previously exported the repository name)
combined with a Join function to craft the repository URL. We will require 32 MB of RAM
and one-quarter of a core to run our application. Finally, we will specify that port 3000
needs to be mapped onto the system:

t.add_resource(TaskDefinition(
 "task",
 ContainerDefinitions=[
 ContainerDefinition(
 Image=Join("", [
 Ref("AWS::AccountId"),
 ".dkr.ecr.",
 Ref("AWS::Region"),
 ".amazonaws.com",
 "/",
 ImportValue("helloworld-repo"),
 ":",
 Ref("Tag")]),
 Memory=32,
 Cpu=256,
 Name="helloworld",
 PortMappings=[ecs.PortMapping(
 ContainerPort=3000)]
)
],
))

Running Containers in AWS Chapter 7

[284]

As for most of the AWS managed services, the ECS service needs a certain set of
permissions provided by the intermediary of a role. We will create that role and use the
vanilla policy for the ECS service role, as follows:

t.add_resource(Role(
 "ServiceRole",
 AssumeRolePolicyDocument=Policy(
 Statement=[
 Statement(
 Effect=Allow,
 Action=[AssumeRole],
 Principal=Principal("Service", ["ecs.amazonaws.com"])
)
]
),
 Path="/",
 ManagedPolicyArns=[
 'arn:aws:iam::aws:policy/service-
role/AmazonEC2ContainerServiceRole']
))

We will complete the creation of our template with the addition of the ECS service resource,
which ties the task definition, the ECS cluster, and the ALB together:

t.add_resource(ecs.Service(
 "service",
 Cluster=ImportValue(
 Join(
 "-",
 [Select(0, Split("-", Ref("AWS::StackName"))),
 "cluster-id"]
)
),
 DesiredCount=1,
 TaskDefinition=Ref("task"),
 LoadBalancers=[ecs.LoadBalancer(
 ContainerName="helloworld",
 ContainerPort=3000,
 TargetGroupArn=ImportValue(
 Join(
 "-",
 [Select(0, Split("-", Ref("AWS::StackName"))),
 "alb-target-group"]
),
),
)],
 Role=Ref("ServiceRole")
))

Running Containers in AWS Chapter 7

[285]

Finally, as always, we will output the template generated by our code using the following
command:

print(t.to_json())

The script is now ready and should look like the script at: https:/ ​/​github. ​com/
yogeshraheja/​EffectiveDevOpsTemplates/ ​blob/ ​master/ ​helloworld- ​ecs- ​service- ​cf-
template.​py.

We will now generate the template and create our stack, as follows:

$ git add helloworld-ecs-service-cf-template.py
$ git commit -m "Adding helloworld ECS service script"
$ git push
$ python helloworld-ecs-service-cf-template.py > helloworld-ecs-service-
cf.template
$ aws cloudformation create-stack \
 --stack-name staging-helloworld-service \
 --capabilities CAPABILITY_IAM \
 --template-body file://helloworld-ecs-service-cf.template \
 --parameters \ ParameterKey=Tag,ParameterValue=latest

After a few minutes, the stack should be created. We can circle back to the output of the
ALB stack to get the URL of our newly deployed application and test its output, as follows:

$ aws cloudformation describe-stacks \
 --stack-name staging-alb \
 --query 'Stacks[0].Outputs'

[
 {
 "Description": "TargetGroup",
 "ExportName": "staging-alb-target-group",
 "OutputKey": "TargetGroup",
 "OutputValue": "arn:aws:elasticloadbalancing:us-east-
 1:094507990803:targetgroup/stagi-Targe-
 ZBW30U7GT7DX/329afe507c4abd4d"
 },
 {
 "Description": "Helloworld URL",
 "OutputKey": "URL",
 "OutputValue": "http://stagi-LoadB-122Z9ZDMCD68X-1452710042.us-
 east-1.elb.amazonaws.com:3000"
 }
]

$ curl
http://stagi-LoadB-122Z9ZDMCD68X-1452710042.us-east-1.elb.amazonaws.com:300

https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-ecs-service-cf-template.py

Running Containers in AWS Chapter 7

[286]

0
Hello World
Also the same can be confirmed from the browser.

This can also be confirmed from the browser, as shown in the following screenshot:

We have completed the creation of our staging ECS environment. At this point, we can
easily manually deploy new code to our staging, as follows:

Make the changes in the helloworld code, locally. For example, change Hello1.
World to Hello From Yogesh Raheja, as shown in the following screenshot:

Log in to the ecr registry, as follows:2.

$ eval "$(aws ecr get-login --region us-east-1 --no-include-
email)"

Build your Docker container, as follows:3.

$ docker build -t helloworld

Running Containers in AWS Chapter 7

[287]

Pick a new unique tag, and use it to tag your image. For example, let's suppose4.
that your new tag is foobar, as shown in the following code:

$ docker tag helloworld 094507990803.dkr.ecr.us-
east-1.amazonaws.com/helloworld:foobar

Push the image to the ecr repository, as follows:5.

$ docker push 094507990803.dkr.ecr.us-
east-1.amazonaws.com/helloworld:foobar

Update the ECS service CloudFormation stack, as follows:6.

$ aws cloudformation update-stack \
 --stack-name staging-helloworld-service \
 --capabilities CAPABILITY_IAM \
 --template-body file://helloworld-ecs-service-cf.template \
 --parameters \
 ParameterKey=Tag,ParameterValue=foobar

Check the outputs after it updates, as follows:7.

$ curl
http://stagi-LoadB-122Z9ZDMCD68X-1452710042.us-east-1.elb.amazo
naws.com:3000

Hello From Yogesh Raheja

The browser output also reflects the updated image response:

Using this sequence of events, we are going to automate the deployment process and create
a new continuous integration/continuous deployment pipeline.

Running Containers in AWS Chapter 7

[288]

Creating a CI/CD pipeline to deploy to ECS
As we know, having the ability to continuously deploy code across our environments is a
very powerful tool as it helps to break out those traditional Dev versus Ops silos and
improve the velocity at which new code is being released. We created a pipeline that allows
us to automatically deploy new changes from our Hello World application to our Auto
Scaling Groups for staging and production. We will create a similar pipeline but, this time,
it will deploy changes to ECS. Our ECS infrastructure will be as follows:

Reusing the CloudFormation templates produced in the previous section will create a
production environment identical to the staging one. Note that the ecr repository is meant
to be unique for a given application, and therefore will share it across our environments. In
addition, we will follow the best practices learned in Chapter 3, Treating Your Infrastructure
As Code, and create our pipeline through a CloudFormation stack. Our first step will be to
create an ECS cluster for production.

Running Containers in AWS Chapter 7

[289]

Creating our production ECS cluster
Thanks to the upfront work we did with our CloudFormation templates, adding a new
environment will be trivial. We will start by launching a production ECS cluster:

$ aws cloudformation create-stack \
 --stack-name production-cluster \
 --capabilities CAPABILITY_IAM \
 --template-body file://ecs-cluster-cf.template \
 --parameters \
 ParameterKey=KeyPair,ParameterValue=EffectiveDevOpsAWS \
 ParameterKey=VpcId,ParameterValue=vpc-4cddce2a \
 ParameterKey=PublicSubnet,ParameterValue=subnet-
 e67190bc\\,subnet-658b6149\\,subnet-d890d3e4\\,subnet-
 6fdd7927\\,subnet-4c99c229\\,subnet-b03baebc
{
 "StackId": "arn:aws:cloudformation:us-east-
 1:094507990803:stack/production-cluster/1e1a87f0-b2da-11e8-8fd2-
 503aca4a58d1"
}

We need to wait for the creation of the stack to complete as we need to get some of the
exported values from the cluster creation. We can run the following command to get our
Terminal to hang until we can create our next stack:

$ aws cloudformation wait stack-create-complete \
 --stack-name production-cluster

In the meantime, we create our ALB and wait for the creation process to complete:

$ aws cloudformation create-stack \
 --stack-name production-alb \
 --capabilities CAPABILITY_IAM \
 --template-body file://helloworld-ecs-alb-cf.template
{
 "StackId": "arn:aws:cloudformation:us-east-
 1:094507990803:stack/production-alb/bea35530-b2da-11e8-a55e-
 500c28903236"
}

$ aws cloudformation wait stack-create-complete --stack-name production-alb

Running Containers in AWS Chapter 7

[290]

Finally, we can create our service with the following code:

$ aws cloudformation create-stack \
 --stack-name production-helloworld-service \
 --capabilities CAPABILITY_IAM \
 --template-body file://helloworld-ecs-service-cf.template \
 --parameters \ ParameterKey=Tag,ParameterValue=latest
{
 "StackId": "arn:aws:cloudformation:us-east-
 1:094507990803:stack/production-helloworld-service/370a3d40-b2db-
 11e8-80a8-503f23fb5536"
}

$ aws cloudformation wait stack-create-complete \
 --stack-name production-helloworld-service

At this point, our production environment should be working. We can get its URL by
looking at the output of the ALB stack creation, and we can CURL the endpoint to ensure
that the application is up and running:

$ aws cloudformation describe-stacks \
 --stack-name production-alb \
 --query 'Stacks[0].Outputs'
[
 {
 "Description": "TargetGroup",
 "ExportName": "production-alb-target-group",
 "OutputKey": "TargetGroup",
 "OutputValue": "arn:aws:elasticloadbalancing:us-east-
 1:094507990803:targetgroup/produ-Targe-
 LVSNKY9T8S6E/83540dcf2b5a5b54"
 },
 {
 "Description": "Helloworld URL",
 "OutputKey": "URL",
 "OutputValue": "http://produ-LoadB-40X7DRUNEBE3-676991098.us-
 east-1.elb.amazonaws.com:3000"
 }
]

$ curl
http://produ-LoadB-40X7DRUNEBE3-676991098.us-east-1.elb.amazonaws.com:3000
Hello World

Running Containers in AWS Chapter 7

[291]

The output will be as follows:

Now that our production environment is ready, we will look into automating the creation
of containers. In order to accomplish that, we will rely on the CodeBuild service.

Automating the creation of containers with
CodeBuild
AWS CodeBuild is a managed service geared toward compiling source code. It is
comparable to Jenkins but since it's a managed service that conforms to AWS standards, it
presents a different set of features and benefits. In our case, using CodeBuild over Jenkins
will allow us to create containers without needing to spin up and manage an extra EC2
instance. The service also integrates well with CodePipeline, which, as before, will drive
our process.

We will use CloudFormation through the intermediary of Troposphere to create our
CodeBuild project.

We will also create a new script and call it helloworld-codebuild-cf-template.py.
We will start with our usual import, template variable creation, and description, shown as
follows:

"""Generating CloudFormation template."""

from awacs.aws import (
 Allow,
 Policy,
 Principal,
 Statement
)

from awacs.sts import AssumeRole

from troposphere import (
 Join,
 Ref,

Running Containers in AWS Chapter 7

[292]

 Template
)

from troposphere.codebuild import (
 Artifacts,
 Environment,
 Project,
 Source
)
from troposphere.iam import Role

t = Template()

t.add_description("Effective DevOps in AWS: CodeBuild - Helloworld
container")

We will now define a new role to grant the proper permissions to our CodeBuild project.
The CodeBuild project will interact with a number of AWS services such as ECR,
CodePipeline, S3, and CloudWatch logs. To speed up the process, we will rely on the AWS
vanilla policies to configure the permissions. This gives us the following code:

t.add_resource(Role(
 "ServiceRole",
 AssumeRolePolicyDocument=Policy(
 Statement=[
 Statement(
 Effect=Allow,
 Action=[AssumeRole],
 Principal=Principal("Service", ["codebuild.amazonaws.com"])
)
]
),
 Path="/",
 ManagedPolicyArns=[
 'arn:aws:iam::aws:policy/AWSCodePipelineReadOnlyAccess',
 'arn:aws:iam::aws:policy/AWSCodeBuildDeveloperAccess',
 'arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryPowerUser',
 'arn:aws:iam::aws:policy/AmazonS3FullAccess',
 'arn:aws:iam::aws:policy/CloudWatchLogsFullAccess'
]
))

Running Containers in AWS Chapter 7

[293]

CodeBuild projects require defining a number of elements. The first one we will define is
the environment. This tells CodeBuild what type of hardware and OS we need to build our
project, and what needs to be preinstalled. It will also let us define extra environment
variables. We will use a Docker image provided by AWS, which will give us everything we
need to get our work done. The Docker image comes with the AWS and Docker CLI
preinstalled and configured. We will also define an environment variable to find our ecr
repository endpoint:

environment = Environment(
 ComputeType='BUILD_GENERAL1_SMALL',
 Image='aws/codebuild/docker:1.12.1',
 Type='LINUX_CONTAINER',
 EnvironmentVariables=[
 {'Name': 'REPOSITORY_NAME', 'Value': 'helloworld'},
 {'Name': 'REPOSITORY_URI',
 'Value': Join("", [
 Ref("AWS::AccountId"),
 ".dkr.ecr.",
 Ref("AWS::Region"),
 ".amazonaws.com",
 "/",
 "helloworld"])},
],
)

In CodeBuild, most of the logic is defined in a resource called a buildspec. The
buildspec section defines the different phases of the build and what to run during those
phases. It is very similar to the Jenkins file we created in Chapter 5, Adding Continuous
Integration and Continuous Deployment. The buildspec section can be created as part of the
CodeBuild project or added as a YAML file to the root directory of the projects that are
being built. We will opt for the first option and define buildspec inside our
CloudFormation template. We will create a variable and store a YAML string into it. Since
it's going to be a multiline variable, we will use the Python triple quote syntax.

Running Containers in AWS Chapter 7

[294]

The first key-pair we need to specify is the version of the template. The current version of
CodeBuild templates is 0.1:

buildspec = """version: 0.1

The goal of our build process is to generate a new container image, tag it, and push it to the
ecr repository. This will be done in three phases:

Pre-build: This will generate the container image tag and log in to ECR
Build: This will build the new container image
Post-build: This will push the new container image to ECR and update the
latest tag to point to the new container

In order to easily understand what is in each container, we will tag them with the SHA of
the most recent Git commit in the helloworld project. This will help in understanding
what is in each container, as we will be able to run commands such as git checkout
<container tag> or git log <container tag>. Due to how CodeBuild and
CodePipeline are architected, getting this tag in CodeBuild requires a bit of work. We will
need to run two complex commands as follows:

The first one will extract the execution ID of the current code pipeline execution.
This is achieved by combining the AWS CLI and the environment variables
CODEBUILD_BUILD_ID and CODEBUILD_INITIATOR, which are defined by the
CodeBuild service when a build starts.
Next, we will use that execution ID to extract the artifact revision ID, which
happens to be the commit SHA we are looking for.

These commands use some of the most advanced features of the --query filter option. You
can read more about this at the following link: http:/ ​/​amzn. ​to/ ​2k7SoLE.

In CodeBuild, each command runs in its own environment, and therefore the
easiest way to share data across steps is to use temporary files.

http://amzn.to/2k7SoLE
http://amzn.to/2k7SoLE
http://amzn.to/2k7SoLE
http://amzn.to/2k7SoLE
http://amzn.to/2k7SoLE
http://amzn.to/2k7SoLE
http://amzn.to/2k7SoLE
http://amzn.to/2k7SoLE
http://amzn.to/2k7SoLE

Running Containers in AWS Chapter 7

[295]

Right after the buildspec version definition, add the following to generate the first part of
our pre-build phase and extract the tag:

phases:
 pre_build:
 commands:
 - aws codepipeline get-pipeline-state --name
"${CODEBUILD_INITIATOR##*/}" --query
stageStates[?actionStates[0].latestExecution.externalExecutionId==\`$CODEBU
ILD_BUILD_ID\`].latestExecution.pipelineExecutionId --output=text >
/tmp/execution_id.txt
 - aws codepipeline get-pipeline-execution --pipeline-name
"${CODEBUILD_INITIATOR##*/}" --pipeline-execution-id $(cat
/tmp/execution_id.txt) --query
'pipelineExecution.artifactRevisions[0].revisionId' --output=text >
/tmp/tag.txt

Our tag is now present in the /tmp/tag.txt file. We now need to generate two files as
follows:

The first one will contain the argument for the docker tag command (this will
be something like <AWS::AccountId>.dkr.ecr.us-
east-1.amazonaws.com/helloworld:<tag>). To do that, we will take
advantage of the environment variable defined earlier in our template.
The second file will be a JSON file that will define a key-value pair with the tag.
We will use that file a bit later when we work on deploying our new containers
to ECS.

After the previous commands, add the following commands to generate those files:

printf "%s:%s" "$REPOSITORY_URI" "$(cat /tmp/tag.txt)" > /tmp/build_tag.txt
 - printf '{"tag":"%s"}' "$(cat /tmp/tag.txt)" > /tmp/build.json

To conclude the pre_build section, we will log in to our ecr repository:

- $(aws ecr get-login --no-include-email)

We will now define our build phase. Thanks to the build_tag file created earlier, the build
phase will be straightforward. We will call the docker build command in a similar way
to how we did in the first section of this chapter:

 build:
 commands:
 - docker build -t "$(cat /tmp/build_tag.txt)" .

Running Containers in AWS Chapter 7

[296]

We will now add the post_build phase to complete the build. In this section, we will push
the newly built container to our ecr repository as follows:

post_build:
 commands:
 - docker push "$(cat /tmp/build_tag.txt)"
 - aws ecr batch-get-image --repository-name $REPOSITORY_NAME --image-
ids imageTag="$(cat /tmp/tag.txt)" --query 'images[].imageManifest' --
output text | tee /tmp/latest_manifest.json
 - aws ecr put-image --repository-name $REPOSITORY_NAME --image-tag
latest --image-manifest "$(cat /tmp/latest_manifest.json)"

In addition to the phases, one of the sections that is also defined in a buildspec is the
artifacts section. This section is used to define what needs to be uploaded to S3 after the
build succeeds, as well as how to prepare it. We will export the build.json file and set the
discard-paths variable to true so we don't preserve the /tmp/ directory information.
Finally, we will close our triple quote string as follows:

artifacts:
 files: /tmp/build.json
 discard-paths: yes
"""

Now that our buildspec variable is defined, we can add our CodeBuild project resource.
Through the instantiation of the project, we will set a name for our project, set its
environment by calling the variable previously defined, set the service role, and configure
the source and artifact resources, which define how to handle the build process and its
output:

t.add_resource(Project(
 "CodeBuild",
 Name='HelloWorldContainer',
 Environment=environment,
 ServiceRole=Ref("ServiceRole"),
 Source=Source(
 Type="CODEPIPELINE",
 BuildSpec=buildspec
),
 Artifacts=Artifacts(
 Type="CODEPIPELINE",
 Name="output"
),
))

Running Containers in AWS Chapter 7

[297]

As always, we will conclude the creation of the script with the following print command:

print(t.to_json())

Our script is now complete and should look like this: https:/ ​/​github. ​com/ ​yogeshraheja/
EffectiveDevOpsTemplates/ ​blob/ ​master/ ​helloworld- ​codebuild- ​cf-​template. ​py.

We can save the file, add it to git, generate the CloudFormation template, and create our
stack as follows:

$ git add helloworld-codebuild-cf-template.py
$ git commit -m "Adding CodeBuild Template for our helloworld application"
$ git push
$ python helloworld-codebuild-cf-template.py > helloworld-codebuild-
cf.template
$ aws cloudformation create-stack \
 --stack-name helloworld-codebuild \
 --capabilities CAPABILITY_IAM \
 --template-body file://helloworld-codebuild-cf.template

In a matter of minutes, our stack will be created. We will now want to take advantage of it.
To do so, we will turn to CodePipeline once again and create a brand new, container-aware
pipeline.

Creating our deployment pipeline with
CodePipeline
We will use AWS CodePipeline to build a pipeline very similar to the one we created in
Chapter 5, Adding Continuous Integration and Continuous Deployment:

https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codebuild-cf-template.py

Running Containers in AWS Chapter 7

[298]

We will start with a Source step where we will connect to GitHub and trigger new pipelines
that run automatically when the code changes. After this, we will build a new container
and push it to our ecr repository rely upon the CodeBuild project we just created. We will
then deploy the new container to staging. To do that, we will use the CloudFormation
integration provided by CodePipeline, combined with the build.json file produced in the
buildspec section of our CodeBuild project. You may recall that our helloworld service
templates take the tag to deploy as an argument. We will trigger a stack update action and
override the default value for that parameter with what's defined in the build.json file.
After that, we will add a manual approval step before triggering the same deployment
again, but this time for production.

Deploying and updating CloudFormation templates through CodePipeline will require
specifying the location of the template within the inputs. In order to easily provide it, we
will first start by adding the CloudFormation template to our source.

Adding the CloudFormation template to our code
base
ECS changes are driven by the task definition present in our helloworld-ecs-service-
cf.template file. So far we have only stored our Python script in GitHub. We will have to
make a special case for that template and store the JSON output of it so that CodePipeline
can interact with our stack. We will add this file to our Git repository in a new directory as
follows:

$ cd helloworld
$ mkdir templates
$ curl -L
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTemplates/mas
ter/helloworld-ecs-service-cf-template.py | python > templates/helloworld-
ecs-service-cf.template
$ git add templates
$ git commit -m "Adding CloudFormation template for the helloworld task"
$ git push

Now that our template is present in our source, we can create our CloudFormation
template for our pipeline.

Running Containers in AWS Chapter 7

[299]

Creating a CloudFormation template for
CodePipeline
We will start by creating a file called helloworld-codepipeline-cf- template.py
inside EffectiveDevOpsTemplates locally.

We will start the script with our boilerplates:

"""Generating CloudFormation template."""

from awacs.aws import (
 Allow,
 Policy,
 Principal,
 Statement,
)
from awacs.sts import AssumeRole
from troposphere import (
 Ref,
 GetAtt,
 Template,
)
from troposphere.codepipeline import (
 Actions,
 ActionTypeId,
 ArtifactStore,
 InputArtifacts,
 OutputArtifacts,
 Pipeline,
 Stages
)
from troposphere.iam import Role
from troposphere.iam import Policy as IAMPolicy

from troposphere.s3 import Bucket, VersioningConfiguration

t = Template()

t.add_description("Effective DevOps in AWS: Helloworld Pipeline")

Running Containers in AWS Chapter 7

[300]

The first resource we will create is the S3 bucket that the pipeline will use to store all the
artifacts produced by each stage. We will also turn on versioning on that bucket:

t.add_resource(Bucket(
 "S3Bucket",
 VersioningConfiguration=VersioningConfiguration(
 Status="Enabled",
)
))

We will now create the IAM roles needed as follows:

The first role we are going to define will be for the CodePipeline service:1.

t.add_resource(Role(
 "PipelineRole",
 AssumeRolePolicyDocument=Policy(
 Statement=[
 Statement(
 Effect=Allow,
 Action=[AssumeRole],
 Principal=Principal("Service",
["codepipeline.amazonaws.com"])
)
]
),
 Path="/",
 Policies=[
 IAMPolicy(
 PolicyName="HelloworldCodePipeline",
 PolicyDocument={
 "Statement": [
 {"Effect": "Allow", "Action":
"cloudformation:*", "Resource": "*"},
 {"Effect": "Allow", "Action":
"codebuild:*", "Resource": "*"},
 {"Effect": "Allow", "Action":
"codepipeline:*", "Resource": "*"},
 {"Effect": "Allow", "Action": "ecr:*",
"Resource": "*"},
 {"Effect": "Allow", "Action": "ecs:*",
"Resource": "*"},
 {"Effect": "Allow", "Action": "iam:*",
"Resource": "*"},
 {"Effect": "Allow", "Action": "s3:*",
"Resource": "*"},
],
 }

Running Containers in AWS Chapter 7

[301]

),
]
))

The second role will be used by the deploy stages to perform CloudFormation2.
changes:

t.add_resource(Role(
 "CloudFormationHelloworldRole",
 RoleName="CloudFormationHelloworldRole",
 Path="/",
 AssumeRolePolicyDocument=Policy(
 Statement=[
 Statement(
 Effect=Allow,
 Action=[AssumeRole],
 Principal=Principal(
 "Service",
["cloudformation.amazonaws.com"])
),
]
),
 Policies=[
 IAMPolicy(
 PolicyName="HelloworldCloudFormation",
 PolicyDocument={
 "Statement": [
 {"Effect": "Allow", "Action":
"cloudformation:*", "Resource": "*"},
 {"Effect": "Allow", "Action": "ecr:*",
"Resource": "*"},
 {"Effect": "Allow", "Action": "ecs:*",
"Resource": "*"},
 {"Effect": "Allow", "Action": "iam:*",
"Resource": "*"},
],
 }
),
]
))

Running Containers in AWS Chapter 7

[302]

We can now create our pipeline resource. We will first configure its name and 3.
specify the role Amazon Resource Name (ARN) of the role we just created:

t.add_resource(Pipeline(
 "HelloWorldPipeline",
 RoleArn=GetAtt("PipelineRole", "Arn"),

After this, we will reference the S3 bucket created earlier so that we have a place4.
to store the different artifacts produced through the pipeline execution:

 ArtifactStore=ArtifactStore(
 Type="S3",
 Location=Ref("S3Bucket")

We will now define each stage of the pipeline. The CloudFormation structure5.
reflects what we did previously using the web interface. Each stage has a unique
name and is composed of actions. Each action is defined by a name, a category, a
configuration, and, optionally, input and output artifacts:

Our first stage will be the GitHub stage, as follows:

Stages=[
 Stages(
 Name="Source",
 Actions=[
 Actions(
 Name="Source",
 ActionTypeId=ActionTypeId(
 Category="Source",
 Owner="ThirdParty",
 Version="1",
 Provider="GitHub"
),
 Configuration={
 "Owner": "ToBeConfiguredLater",
 "Repo": "ToBeConfiguredLater",
 "Branch": "ToBeConfiguredLater",
 "OAuthToken": "ToBeConfiguredLater"
 },
 OutputArtifacts=[
 OutputArtifacts(
 Name="App"
)
],
)
]
),

Running Containers in AWS Chapter 7

[303]

We will create a first artifact called App with the content of the repository. In6.
order to avoid hardcoding any OAuthToken, we will configure the GitHub
integration after creating the CloudFormation stack.

Our next step will be to configure our build. As mentioned, we will simply call
out to the CodeBuild stack we spawned up in the last section. We will store the
output artifact under the name BuildOutput, meaning that we now have two
artifacts: the App artifact and BuildOutput, which contains the tag.json file
produced by CodeBuild:

Stages(
 Name="Build",
 Actions=[
 Actions(
 Name="Container",
 ActionTypeId=ActionTypeId(
 Category="Build",
 Owner="AWS",
 Version="1",
 Provider="CodeBuild"
),
 Configuration={
 "ProjectName": "HelloWorldContainer",
 },
 InputArtifacts=[
 InputArtifacts(
 Name="App"
)
],
 OutputArtifacts=[
 OutputArtifacts(
 Name="BuildOutput"
)
],
)
]
),

Running Containers in AWS Chapter 7

[304]

We will now create our staging deployment. Unlike before, we won't use7.
CodeDeploy but will directly update our CloudFormation template. In order to
accomplish that, we will need to provide the location of the template to the
configuration of our action. Since we added it to our helloworld GitHub
repository, we can reference it with the help of the App artifact. Our template is
present under <directory root>/templates/helloworld-ecs-service-
cf.template, which in turn means for CodePipeline
App::templates/helloworld-ecs-service-cf.template.

The next trick in configuring our CloudFormation action relies on the fact that we
can override the parameters provided for the stack. CloudFormation provides a
couple of functions to help with dynamic parameters. You can read more about
those at http:/ ​/​amzn. ​to/ ​2kTgIUJ. We will focus on a particular one here:
Fn::GetParam. This function returns a value from a key-value pair file present in
an artifact. This is where we take advantage of the file we created in CodeBuild,
as it will contain a JSON string in the format { "tag": "<latest git commit
sha>" }:

Stages(
 Name="Staging",
 Actions=[
 Actions(
 Name="Deploy",
 ActionTypeId=ActionTypeId(
 Category="Deploy",
 Owner="AWS",
 Version="1",
 Provider="CloudFormation"
),
 Configuration={
 "ChangeSetName": "Deploy",
 "ActionMode": "CREATE_UPDATE",
 "StackName": "staging-helloworld-ecs-
service",
 "Capabilities": "CAPABILITY_NAMED_IAM",
 "TemplatePath":
"App::templates/helloworld-ecs-service-cf.template",
 "RoleArn":
GetAtt("CloudFormationHelloworldRole", "Arn"),
 "ParameterOverrides": """{"Tag" : {
"Fn::GetParam" : ["BuildOutput", "build.json", "tag"] } }"""
 },
 InputArtifacts=[
 InputArtifacts(

http://amzn.to/2kTgIUJ
http://amzn.to/2kTgIUJ
http://amzn.to/2kTgIUJ
http://amzn.to/2kTgIUJ
http://amzn.to/2kTgIUJ
http://amzn.to/2kTgIUJ
http://amzn.to/2kTgIUJ
http://amzn.to/2kTgIUJ
http://amzn.to/2kTgIUJ

Running Containers in AWS Chapter 7

[305]

 Name="App",
),
 InputArtifacts(
 Name="BuildOutput"
)
],
)
]
),

After the staging deployment completes, we will request a manual approval, as8.
follows:

 Stages(
 Name="Approval",
 Actions=[
 Actions(
 Name="Approval",
 ActionTypeId=ActionTypeId(
 Category="Approval",
 Owner="AWS",
 Version="1",
 Provider="Manual"
),
 Configuration={},
 InputArtifacts=[],
)
]
),

Finally, we will create a last stage to run the production deployment. The code is9.
exactly the same here as it is for staging, except for the name of the stage and the
stack targeted by our configuration:

Stages(
 Name="Production",
 Actions=[
 Actions(
 Name="Deploy",
 ActionTypeId=ActionTypeId(
 Category="Deploy",
 Owner="AWS",
 Version="1",
 Provider="CloudFormation"
),
 Configuration={
 "ChangeSetName": "Deploy",
 "ActionMode": "CREATE_UPDATE",

Running Containers in AWS Chapter 7

[306]

 "StackName": "production-helloworld-
ecs-service",
 "Capabilities": "CAPABILITY_NAMED_IAM",
 "TemplatePath":
"App::templates/helloworld-ecs-service-cf.template",
 "RoleArn":
GetAtt("CloudFormationHelloworldRole", "Arn"),
 "ParameterOverrides": """{"Tag" : {
"Fn::GetParam" : ["BuildOutput", "build.json", "tag"] } }"""
 },
 InputArtifacts=[
 InputArtifacts(
 Name="App",
),
 InputArtifacts(
 Name="BuildOutput"
)
],
)
]
)
],
))

Our pipeline resource has now been created. We can conclude the creation of our10.
script by printing out our template:

print(t.to_json())

The script is now ready to be used. It should look like the script at: https:/ ​/​github. ​com/
yogeshraheja/​EffectiveDevOpsTemplates/ ​blob/ ​master/ ​helloworld- ​codepipeline- ​cf-
template.​py.

We can now create our pipeline.

https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py
https://github.com/yogeshraheja/EffectiveDevOpsTemplates/blob/master/helloworld-codepipeline-cf-template.py

Running Containers in AWS Chapter 7

[307]

Starting and configuring our CloudFormation
stack
We will proceed as usual for the first part of our pipeline's creation, as follows:

$ git add helloworld-codepipeline-cf-template.py
$ git commit -m "Adding Pipeline to deploy our helloworld application using
ECS"
$ git push
$ python helloworld-codepipeline-cf-template.py > helloworld-codepipeline-
cf.template
$ aws cloudformation create-stack \
 --stack-name helloworld-codepipeline \
 --capabilities CAPABILITY_NAMED_IAM \
 --template-body file://helloworld-codepipeline-cf.template

We are using the CAPABILITY_NAMED_IAM capability in this case, as we are
defining custom names at the IAM level.

This will create our pipeline. However, a small catch is that we didn't specify the GitHub
credentials in the pipeline. This is because we don't want to store it in clear text in GitHub.
AWS offers a service within IAM to do encryption, but we won't cover that in this book.
Consequently, we will simply edit the pipeline the first time around, as follows:

Open https:/ ​/​console. ​aws. ​amazon. ​com/ ​codepipeline in your browser1.
Select your newly created pipeline2.
Click on Edit at the top3.
Click on the pen icon on the GitHub action:4.

Click on Connect to GitHub on the right-hand-side menu and follow the steps to5.
authorize AWS CodePipeline
Select your helloworld project in the repository step and the master branch6.
Click on Update, save the pipeline changes, and finally, Save and Continue7.

https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline
https://console.aws.amazon.com/codepipeline

Running Containers in AWS Chapter 7

[308]

After a few seconds, your pipeline will trigger, and you should see your first deployment
going through. This concludes the creation of our CI/CD pipeline:

You will also be able to see all of the CloudFormation stack details on the AWS console
with the CREATE_COMPLETE status, as shown in the following screenshot:

Running Containers in AWS Chapter 7

[309]

Summary
In this chapter, we explored the concept of containers, using Docker and ECS. After
exploring the basics of how Docker works, we created a container for our application. After
running it locally, we created a new set of resources to run Docker containers on AWS. We
did that using the DevOps best practices and used CloudFormation to generate our
resources, treating our infrastructure as code. This allows us to keep those changes under
source control. Resource-wise, we created an ECR repository to manage the different
revisions of our containers. We also created two ECS clusters with auto scaling capabilities
for staging and production, two ALBs to proxy the traffic to our containers, a set of tasks,
and an ECS service, to configure and deploy our application.

Finally, we re-implemented a CI/CD pipeline. We did that by using CodeBuild,
CodePipeline, and their integrations with CloudFormation.

We will continue improving our systems and we will implement one of the last key
characteristics of DevOps; measuring everything. By taking advantage of a number of
features that are present in the different services that we use, and by coupling them with
other AWS services (such as CloudWatch), we will be able to implement a monitoring
strategy for our infrastructure and services.

Running Containers in AWS Chapter 7

[310]

Questions
What is Docker? List the important components of Docker Engine.1.
Can you install and configure the latest Docker CE on any supported2.
platform/OS of your choice?
Can you create a Docker image and use the same image to create a web server3.
container?
Can you create ECR and ECS using AWS webconsole to get familiar with ECS4.
terminologies?

Further reading
Refer to the following links for further information:

Docker Documentation: https:/ ​/ ​docs. ​docker. ​com

Docker Hub: https:/ ​/​hub. ​docker. ​com

AWS CodeBuild: https:/ ​/ ​aws. ​amazon. ​com/​codebuild/ ​

AWS CodePipeline: https:/ ​/ ​aws.​amazon. ​com/​codepipeline/ ​

AWS Elastic Container Service: https:/ ​/​aws. ​amazon. ​com/ ​ecs/ ​

https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/

8
Hardening the Security of Your

AWS Environment
In this chapter, we will focus on how to secure our AWS account and application. The
cloud and security are two concepts that don't always go together. This is not because of the
cloud's nature, but because of the idea that a server on the premises is more secure than a
server on the cloud. This is because you know exactly where an on-premise server is, and
how the connections to it reach there. The purpose of this chapter is to look at some
practical tools and information to demonstrate that a well-managed AWS cloud can be
more secure than an on-premise environment.
First we will look at how to secure access for our IAM users. Then, we will look at how to
enable logging on for IAM usage with CloudTrail, and, at the network level, with VPC
Flow Logs. Creating the right subnets is a crucial step to undertake before placing our
application and infrastructure in the cloud. Finally, we will explore the power of a
wonderful tool provided by AWS—the web application firewall (WAF).

One of the most important security principles is that of the least privilege. This refers to
limiting the access rights of users to the minimum permissions that they need in order to
complete their work in the correct way.

In this chapter, we will implement this at many levels in the AWS infrastructure. Moving
forward, we will take a closer look at the following topics:

Identity Access Management (IAM) security
CloudTrail
Virtual Private Cloud (VPC) subnets
AWS WAF

Hardening the Security of Your AWS Environment Chapter 8

[312]

Technical requirements
The code files included within the chapter can be found on GitHub at link: https:/ ​/
github.​com/​giuseppeborgese/ ​effective_ ​devops_ ​with_ ​aws_ ​_​second_ ​edition.

IAM security
IAM enables you to securely control access to AWS services. Here, we need to implement
the least privilege principle, and monitor who does what by recording all of the users'
actions.

Root account
When you create an AWS account and log in with the root account, you will see something
like the following screenshot:

It is important to perform all of the actions suggested by the IAM web console, and also, to
change the root account's password.

https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition
https://github.com/giuseppeborgese/effective_devops_with_aws__second_edition

Hardening the Security of Your AWS Environment Chapter 8

[313]

Root account password
First, change the root account's password. At the top right of the page, between the bell icon
and the Global drop-down menu, you will find your AWS alias or account number. Click
on this, and then click on the My Account option:

Next, click on the Edit button. The others steps are more straightforward and logical, as
follows:

For security reasons, the web page will request that you provide your login information
again. Password protection is never enough, especially for the root account; you should
absolutely activate multi-factor authentication (MFA), whether you have a virtual or
hardware device. Plenty of solutions are available on the market. Just to provide some
examples, Google Authenticator is one of the most well-known apps for Android devices. I
have also used a physical dongle made by Yubico (https:/ ​/​www. ​yubico. ​com/ ​).

https://www.yubico.com/
https://www.yubico.com/
https://www.yubico.com/
https://www.yubico.com/
https://www.yubico.com/
https://www.yubico.com/
https://www.yubico.com/
https://www.yubico.com/
https://www.yubico.com/
https://www.yubico.com/

Hardening the Security of Your AWS Environment Chapter 8

[314]

Delete your root access keys
Access keys have the same permissions as those given following access with a password, so
a more secure environment is created when this kind of access is removed from the root
account, leaving only password access for use (except in some special cases). Don't worry
about the message shown in the following screenshot:

If you created an access key for the root account and find that it was deleted, you will be
shown the following message:

Setting up a password policy for IAM users
The password policy that you should apply depends on the level of security that you want
to apply to your IAM users passwords. I would suggest something like the following, but it
will depend on your use case:

Hardening the Security of Your AWS Environment Chapter 8

[315]

Creating an administrator group and a personal IAM
user
To operate with the root account, it is more secure to create a personal IAM user and
operate through that. It is also a best practice to assign permissions to the group, and not
directly to the IAM users. Do this as follows:

Create a group called admins or something similiar.1.
Assign the administrator policy to this group.2.
Create a personal IAM user with some kind of criteria. In my case, I would3.
choose myname.mysurname giuseppe.borgese.
Insert the new IAM user in to the admins group.4.

Hardening the Security of Your AWS Environment Chapter 8

[316]

This allows other IAM users to evaluate whether to create groups with fewer privileges
than the administrator. It also allows them to assign the necessary rights, but not more than
are required. For example, if an IAM user needed to manage EC2 machines, we could give
them the predefined AmazonEC2FullAccess policy, and, correspondingly, if they needed
to manage an RDS environment, they could be given an AmazonRDSFullAccess policy.

AmazonEC2FullAccess policy
The tasks that require root account access are listed clearly on the AWS documentation
page at https:/​/ ​docs. ​aws. ​amazon. ​com/ ​general/ ​latest/ ​gr/ ​aws_ ​tasks- ​that- ​require-
root.​html. To follow is a list of these tasks:

Modifying root user details
Changing your AWS support plan
Closing an AWS account
Signing up for GovCloud
Submiting a reverse DNS for Amazon EC2 requests
Creating a CloudFront key pair
Creating an AWS created X.509 signing certificate
Transfering a route 53 domain to another AWS account
Changing the Amazon EC2 setting for longer resource IDs
Requesting the removal of the port 25 email throttle on your EC2 instance
Finding your AWS account canonical user ID

All of these operations are very rare, so it would be unusual for you to find one of these
events cropping up among your everyday tasks.

Final security status
Now that all of your tasks have been accomplished, you can log out from the root user and
start to use the IAM user with the administrator rights that you have created, as follows:

https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html

Hardening the Security of Your AWS Environment Chapter 8

[317]

If you are completely new to the cloud approach, it is worth spending some time reading
the AWS Shared Responsibility Model at https:/ ​/​aws. ​amazon. ​com/​compliance/ ​shared-
responsibility-​model/ ​. On the page, there is a clear definition of what AWS's
responsibility is (security of the cloud), and also, what our responsibility is (security in the
cloud). In a few words, it is our responsibility to ensure that what we create inside of the
cloud, and all of the tools that we use to create it, are AWS-secure.

In the past, there were many security breaches in the famous AWS S3 service, because
people configured the service to be readable/writable from anywhere in the world. AWS
guarantees that the service is always updated and patched, but the permissions we give
when accessing it are left in our court.

On YouTube, it is possible to listen to a very nice song by Kate Turchin, located at https:/ ​/
www.​youtube.​com/ ​watch? ​v= ​tIb5PGW_ ​t1o. This song explains the shared responsibility
model in an accessible way:

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://www.youtube.com/watch?v=tIb5PGW_t1o
https://www.youtube.com/watch?v=tIb5PGW_t1o
https://www.youtube.com/watch?v=tIb5PGW_t1o
https://www.youtube.com/watch?v=tIb5PGW_t1o
https://www.youtube.com/watch?v=tIb5PGW_t1o
https://www.youtube.com/watch?v=tIb5PGW_t1o
https://www.youtube.com/watch?v=tIb5PGW_t1o
https://www.youtube.com/watch?v=tIb5PGW_t1o
https://www.youtube.com/watch?v=tIb5PGW_t1o
https://www.youtube.com/watch?v=tIb5PGW_t1o
https://www.youtube.com/watch?v=tIb5PGW_t1o
https://www.youtube.com/watch?v=tIb5PGW_t1o
https://www.youtube.com/watch?v=tIb5PGW_t1o
https://www.youtube.com/watch?v=tIb5PGW_t1o
https://www.youtube.com/watch?v=tIb5PGW_t1o
https://www.youtube.com/watch?v=tIb5PGW_t1o

Hardening the Security of Your AWS Environment Chapter 8

[318]

CloudTrail
We have enabled IAM personal users and have avoided the root account. We have also
assigned the necessary IAM policy to our groups, and have assigned each user to the right
group. However, we also need to record all of their actions. To fulfill this purpose, the AWS
service to enable is CloudTrail.

Each event performed over the AWS infrastructure by an IAM user or a resource with an
IAM role assigned to it will be recorded in an S3 bucket and/or in a CloudWatch log group.
My advice is to follow the AWS documentation at: https:/ ​/​docs. ​aws. ​amazon. ​com/
awscloudtrail/​latest/ ​userguide/ ​cloudtrail- ​create- ​a-​trail- ​using- ​the- ​console-
first-​time.​html. Creating a trail from the web console will be very straightforward, if you
read this document.

VPC Flow Logs
An intrusion detection system (IDS) and an intrusion prevention system (IPS) are
common tools in a secure network. In an on-premise environment, they are not so easy or
cheap to implement, because you need dedicated hardware, and also a network structure
that accommodates this feature. By contrast, in AWS, using only one feature of the VPC
service, you can enable and disable these tools whenever and wherever you consider
appropriate. You can have these tools at three levels of your network:

The VPC level
The subnet level
The elastic network interface (ENI) level

As you know, a network interface belongs to one subnet, and one subnet belongs to a VPC.
So, if you enable tools at the subnet level, you don't have to apply them at the network
interface level, and if you enable them at the VPC level, you don't need to apply them at the
subnet level. Before you activate this feature, you need to create the following three
resources:

An empty CloudWatch group, where the data will be stored
An AWS role to perform the VPC Flow Log operation
A policy associated with the role, with the necessary permissions

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html

Hardening the Security of Your AWS Environment Chapter 8

[319]

Of course, you can create these resources manually, and all of the instructions to do this are
available on the flow logs documentation page at https:/ ​/ ​docs. ​aws.​amazon. ​com/
AmazonVPC/​latest/ ​UserGuide/ ​flow- ​logs. ​html. However, to take a more
DevOps/automated approach, we can use a Terraform module. In this case, we use a
remote module created on GitHub. As you can see in the official Terraform documentation
about module sources at https:/ ​/​www. ​terraform. ​io/​docs/ ​modules/ ​sources.
html#github, GitHub is a supported source type. However, if you want to use your own
GitHub repository, you can use ssh or https as module sources. For more information,
refer to https:/​/ ​www. ​terraform. ​io/ ​docs/ ​modules/ ​sources. ​html#github.

The code to call the module is very simple, and requires only two parameters—the source
and the prefix. The prefix will be used to name all the module resources. You can
download or look into the GitHub repository link given in the Technical requirement
section to see what this module does, in detail. However, to use it, the following few lines
are enough:

module "flow-log-prerequisite" {
 source =
"github.com/giuseppeborgese/effective_devops_with_aws__second_edition//terr
aform- modules//vpc-flow-logs-prerequisite"
 prefix = "devops2nd"
 }
output "role" { value = "${module.flow-log-prerequisite.rolename}" }
output "loggroup" { value = "${module.flow-log-
prerequisite.cloudwatch_log_group_arn}" }

The names in the output are useful to use in the web console after that.

After you have added the module lines to any of your existing files, or to a new one with a
.tf extension, it is necessary to initialize them with terraform init.

The following is the output of the terraform init command:

terraform init -upgrade
 Upgrading modules...
 - module.flow-log-prerequisite
 Updating source
"github.com/giuseppeborgese/effective_devops_with_aws__second_edition//terr
aform-modules//vpc-flow-logs-prerequisite"
Initializing the backend...
Initializing provider plugins...
....

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github
https://www.terraform.io/docs/modules/sources.html#github

Hardening the Security of Your AWS Environment Chapter 8

[320]

The terraform binary has just downloaded the module code. At this point, if it wasn't
been done beforehand, download the AWS provider information from the latest
available version. The -upgrade option forces you to use the latest available version, so
that is usually a good idea.

Now, with a terraform plan, we can see which three objects will be created:

terraform plan -out /tmp/tf11.out
 Refreshing Terraform state in-memory prior to plan...
 The refreshed state will be used to calculate this plan, but will not
 be persisted to local or remote state storage.
...
...
An execution plan has been generated and is shown below.
 Resource actions are indicated with the following symbols:
 + create
Terraform will perform the following actions:
+ module.flow-log-prerequisite.aws_cloudwatch_log_group.flow_log
 id: <computed>
 arn: <computed>
 name: "devops2nd_flowlogs"
 retention_in_days: "0"
+ module.flow-log-prerequisite.aws_iam_role.flow_role
 id: <computed>
 arn: <computed>
 assume_role_policy: "{\n \"Version\": \"2012-10-17\",\n \"Statement\": [\n
{\n \"Sid\": \"\",\n \"Effect\": \"Allow\",\n \"Principal\": {\n
\"Service\": \"vpc-flow-logs.amazonaws.com\"\n },\n \"Action\":
\"sts:AssumeRole\"\n }\n]\n}\n"
 create_date: <computed>
 force_detach_policies: "false"
 max_session_duration: "3600"
 name: "devops2nd_flowlogs"
 path: "/"
 unique_id: <computed>
+ module.flow-log-prerequisite.aws_iam_role_policy.flow_policy
 id: <computed>
 name: "devops2nd_flowlogs"
 policy: "{\n \"Version\": \"2012-10-17\",\n \"Statement\": [\n {\n
\"Action\": [\n \"logs:CreateLogGroup\",\n \"logs:CreateLogStream\",\n
\"logs:PutLogEvents\",\n \"logs:DescribeLogGroups\",\n
\"logs:DescribeLogStreams\"\n],\n \"Effect\": \"Allow\",\n \"Resource\":
\"*\"\n }\n]\n}\n"
 role: "${aws_iam_role.flow_role.id}"

Plan: 3 to add, 0 to change, 0 to destroy.

Hardening the Security of Your AWS Environment Chapter 8

[321]

This plan was saved to: /tmp/tf11.out.

To apply these actions, run the following command:

terraform apply /tmp/tf11.out

Then, create them with a terraform apply command:

tf11 apply /tmp/tf11.out
 module.flow-log-prerequisite.aws_cloudwatch_log_group.flow_log:
Creating...
 arn: "" => "<computed>"
 name: "" => "devops2nd_flowlogs"
 retention_in_days: "" => "0"
 module.flow-log-prerequisite.aws_iam_role.flow_role: Creating...
 arn: "" => "<computed>"
 assume_role_policy: "" => "{\n \"Version\": \"2012-10-17\",\n
\"Statement\": [\n {\n \"Sid\": \"\",\n \"Effect\": \"Allow\",\n
\"Principal\": {\n \"Service\": \"vpc-flow-logs.amazonaws.com\"\n },\n
\"Action\": \"sts:AssumeRole\"\n }\n]\n}\n"
 create_date: "" => "<computed>"
 force_detach_policies: "" => "false"
 max_session_duration: "" => "3600"
 name: "" => "devops2nd_flowlogs"
 path: "" => "/"
 unique_id: "" => "<computed>"
 module.flow-log-prerequisite.aws_iam_role.flow_role: Creation complete
after 2s (ID: devops2nd_flowlogs)
 module.flow-log-prerequisite.aws_iam_role_policy.flow_policy: Creating...
 name: "" => "devops2nd_flowlogs"
 policy: "" => "{\n \"Version\": \"2012-10-17\",\n \"Statement\": [\n {\n
\"Action\": [\n \"logs:CreateLogGroup\",\n \"logs:CreateLogStream\",\n
\"logs:PutLogEvents\",\n \"logs:DescribeLogGroups\",\n
\"logs:DescribeLogStreams\"\n],\n \"Effect\": \"Allow\",\n \"Resource\":
\"*\"\n }\n]\n}\n"
 role: "" => "devops2nd_flowlogs"
 module.flow-log-prerequisite.aws_cloudwatch_log_group.flow_log: Creation
complete after 3s (ID: devops2nd_flowlogs)
 module.flow-log-prerequisite.aws_iam_role_policy.flow_policy: Creation
complete after 1s (ID: devops2nd_flowlogs:devops2nd_flowlogs)
Apply complete! Resources: 3 added, 0 changed, 0 destroyed.
 Outputs:
loggroup = arn:aws:logs:us-east-1:790419456202:log-
group:devops2nd_flowlogs:*
 role = devops2nd_flowlogs

Take a note of these last two pieces of output as we need to activate the flow log.

Hardening the Security of Your AWS Environment Chapter 8

[322]

Creating the flow log for one subnet
Now, with all of the prerequisites satisfied, we are going to create a flow log for one subnet
that is open in the AWS web console for the VPC service:

Select one subnet. Now, select the Flow Logs tab, and click on the Create flow1.
log button, as shown in the following screenshot:

Insert the information as it is given in the following screenshot. The log group2.
and the role are the ones created with the Terraform module. In this example, we
are interested in seeing the traffic that is accepted, so we select the Accept option
in the Filter drop-down menu:

Hardening the Security of Your AWS Environment Chapter 8

[323]

Now that you have a situation like this in your AWS web console, take note of the subnet
number, because we will need it when it comes to verification. Of course, your subnet ID
will be different from mine, which is subnet-15a59419.

Verifying the flow logs
In order to verify whether a flow log is working, and to get practice with the flow log, we
are going to create an EC2 machine for the subnet login in SSH, and we will analyze the
traffic for that SSH login.

We won't cover the full process of creating an EC2 machine here because it is a basic task. If
you are at this point in the book, you should already know how to do it. What I suggest is
to use a t2.micro that is a free-tier eligible type. Also, it is very important to create the
machine in the subnet where you just activated the flow log, and to allow the SSH to have
access from your location.

Hardening the Security of Your AWS Environment Chapter 8

[324]

After a short period of time, you can go into the CloudWatch service, click on the Logs
option, and select the log group, devops2nd_flowlogs, created with Terraform:

Inside of that, you will find the name of the network interface associated with the EC2
instance created previously, as shown in the following screenshot:

If you have many network interfaces in the same subnet, this means that you have multiple
machines, and you need to go to the EC2 service and the Network Interfaces option, and
locate the network interface using the Instance ID column, as shown in the following
screenshot:

Hardening the Security of Your AWS Environment Chapter 8

[325]

However, you will probably only have one network interface, so click on its name. In my
case, this is eni-0d899a52e790058aa-accept.

There are many lines; to understand the details of each one, you can take a look at the
record documentation at https:/ ​/​docs. ​aws. ​amazon. ​com/ ​AmazonVPC/ ​latest/ ​UserGuide/
flow-​logs.​html#flow- ​log- ​records:

However, we want to find our SSH connection attempt, so it is necessary to recover our
laptop's public IP with a service like the one at http:/ ​/​www. ​whatsmyip. ​org/​, and put it in
the filter, as follows:

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html#flow-log-records
http://www.whatsmyip.org/
http://www.whatsmyip.org/
http://www.whatsmyip.org/
http://www.whatsmyip.org/
http://www.whatsmyip.org/
http://www.whatsmyip.org/
http://www.whatsmyip.org/
http://www.whatsmyip.org/
http://www.whatsmyip.org/
http://www.whatsmyip.org/

Hardening the Security of Your AWS Environment Chapter 8

[326]

In the first line, you can see the following items:

The public IP of my laptop is 79.1.172.1
The private IP of the EC2 instance is 172.31.61.129
The source port of my laptop is 61704
The destination port of the EC2 instance for the SSH service is port 22

VPC Flow Log consideration
We have completed a tour of the VPC Flow Log service with a working proof of concept
(PoC). Of course, there are many other options available in the service, which you can find
in the official AWS documentation. By visiting these, you can continue to explore
the potential of the VPC Flow Log.

At this point, if you ever try to do the same task performed by the VPC Flow Log in an on-
premise environment, it should be clear how easy it is to enable a full traffic monitor on the
AWS cloud compared with doing do so in an on-premise environment.

Don't forget to delete the EC2 instance that was created previously, in order to avoid
incurring any unnecessary extra charges. The other resource will not have any costs, unless
you generate a very great amount of traffic in that subnet.

VPC subnets
In this section, we will look at how to organize our VPC subnets, following the least
privileged principle. We have to expose and give access to our resources (EC2, ELB, and
RDS) in the fewest possible circumstances, in order to limit security attacks and data leaks.

In each AWS region there is already a default VPC that has been created. If you want to
know all of the details of this, I would recommend that you read the Default VPC and
Default Subnets documentation at https:/ ​/ ​docs.​aws. ​amazon. ​com/​AmazonVPC/ ​latest/
UserGuide/​default- ​vpc. ​html. However, in short, it is possible to say that everything you
put there is potentially exposed to the public network if the security group that you
configure allows that.

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html

Hardening the Security of Your AWS Environment Chapter 8

[327]

Routing and subnet types
In the official documentation
at https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Scenarios.html, the
re are four scenarios described for your VPC configuration, and it will be useful to look into
that. It is important to understand that access to the resources that you place in your
subnets is determined by the three following factors:

Routing
The Network Access Control (NAC) list (a stateless firewall)
The security group (a stateful firewall)

My advice is to not touch the NAC; leave the default one attached to each subnet, which
allows all of the inbound and outbound traffic, and use the security group as a firewall
instead. A subnet can be classified into three types, based on their security levels:

Public subnets
Private subnets with internet access
Private subnets without internet access

Accessing private subnets
The resources in public subnets can be accessed by using the public IP and enabling the
security group to receive connections. For private subnets, you have at least three ways to
do this, as follows:

Jump on a bastion host in one public subnet, and, from there, reach the private
resources.
Use site-to-site VPNs from the AWS VPN service, https:/ ​/​docs. ​aws. ​amazon.
com/​AmazonVPC/ ​latest/ ​UserGuide/ ​vpn- ​connections. ​html, to the physical
router/s in your office. You can connect two routers, for redundancy.
Place a virtual VPN software in an EC2 machine and connect your device to it.
There are countless solutions that do this, and many are in the AWS Marketplace,
ready to be used in exchange for a monthly fee.

The preferred option, if you have an office with physical routers, is always the site-to-site
solution.

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Scenarios.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html

Hardening the Security of Your AWS Environment Chapter 8

[328]

What to place in which subnet?
In my test VPC, I have six subnets—two for each type, as you can see in the following
screenshot:

What should you insert in each kind of subnet? Consider the following points:

Public subnets: This refers to all of the external Elastic Load Balancing (ELB)
with public access, the bastion host (if you have one), the virtual VPN software in
an EC2 machine, and any other resource that requires access from the internet,
and cannot be accessed in any other way.
Private subnets with internet access: This refers to all of the internal ELBs as
well as all EC2 machines behind an ELB (internal or external), that have to
download or upload something to the internet, and a database that is required to
download or upload something to the internet
Private subnets without internet access: This refers to all resources that don't
need access to the internet for any reason, and also resources whose updates are
downloaded from an internal repository

Identifying subnets from the web console
Keep the following points in mind :

Every subnet can have one associated route table
One route table can be associated with multiple subnets
If you don't explicitly associate a route table to a subnet, the default route table is
associated automatically

Hardening the Security of Your AWS Environment Chapter 8

[329]

In the following screenshot, you can see three route tables, where the Public Route is the
default route table:

In the Subnets section, you can see the route table associated with that subnet and the
single routes, but to change the content of a route table, you have to edit from the Route
Tables section. What differentiate a private route from a public route table/subnet is the
destination of the 0.0.0.0/0 route. If it's a forward internet gateway, igw-xxxxx means
that this subnet is reachable from the outside world and can connect to the internet, as well
(assuming that the security group allows for that):

Hardening the Security of Your AWS Environment Chapter 8

[330]

If it points to an NAT gateway or another EC2 instance instead, this means that it is a
private subnet with internet access, and it can access the internet in any way, and so it is
reachable from the external world. First, you have to click on the Create a NAT Gateway
button, as follows:

After that, you can change the routing table and have a situation like the one shown in the
following screenshot:

Hardening the Security of Your AWS Environment Chapter 8

[331]

If the 0.0.0.0/0 isn't present, as shown in the preceding screenshot, it is a completely
private subnet:

Endpoint routing
If a database has to upload a backup to a private S3 bucket in the same region, it should
never use internet access, but should take a private, internal route. This is called a VPC
endpoint. With this kind of route, you can avoid passing through the internet to reach an
AWS service, such as S3, DynamoDB, or CloudWatch, and gain speed, security, and cost
savings (internet traffic has a cost). To see all of the services with a VPC endpoint, you can
take a look at the official documentation at https:/ ​/​docs. ​aws. ​amazon. ​com/ ​AmazonVPC/
latest/​UserGuide/ ​vpc- ​endpoints. ​html.

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html

Hardening the Security of Your AWS Environment Chapter 8

[332]

Here, we will configure the first VPC endpoint available for the S3 service, as follows:

Go to VPC | Endpoints | Create Endpoint:1.

Leave the default AWS service and select the S3 service, as seen in the following2.
screenshot:

Hardening the Security of Your AWS Environment Chapter 8

[333]

Select the VPC that you are working on, and all of the route tables to modify:3.

Now, you can see a new route rule, as shown in the following screenshot:4.

Hardening the Security of Your AWS Environment Chapter 8

[334]

Keep in mind that this will work for all of the buckets created in the same VPC region. In
this example, it is us-east-1, North Virginia.

In the AWS documentation for the Endpoints for Amazon S3 at https:/ ​/​docs. ​aws. ​amazon.
com/​AmazonVPC/​latest/ ​UserGuide/ ​vpc- ​endpoints- ​s3. ​html, there is an interesting
hardening rule for the S3 bucket policy, as follows:

{
 "Version": "2012-10-17",
 "Id": "Policy1415115909152",
 "Statement": [
 {
 "Sid": "Access-to-specific-VPCE-only",
 "Principal": "*",
 "Action": "s3:*",
 "Effect": "Deny",
 "Resource": ["arn:aws:s3:::my_secure_bucket",
 "arn:aws:s3:::my_secure_bucket/*"],
 "Condition": {
 "StringNotEquals": {
 "aws:sourceVpce": "vpce-039f31bfec07367ea"
 }
 }
 }
]
 }

I have changed this by adding my VPC endpoint ID, vpce-039f31bfec07367ea instead of
the one in the documentation. With this rule, the bucket my_secure_bucket will be only
reachable from the VPCs that are associated with that endpoint.

AWS WAF
You restrict access by using security groups and private subnets for all your resources. All
of the monitor logs, VPC Flow Logs, and CloudTrails are active. IAM policies are enforced,
everything is correctly secured, and nothing is exposed. This is because you have the VPN
service to access any resources. However, if you want to provide an internet service, you
have to open at least one point of access to the external world. As we already discussed in
the VPC Subnets section, you should expose as few resources in the public subnet as
possible, with the 0.0.0.0/0 security group rule open. If possible, only an ELB should
stay in this situation, passing connections to the EC2 machines in private subnets, since the
EC2 machines communicate with the RDS databases with strict security rules.

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints-s3.html

Hardening the Security of Your AWS Environment Chapter 8

[335]

This is the most classic AWS application, and it is not necessary to explain it in detail here.
Instead, we want to focus on increasing the security of the ELB with the AWS WAF. For
more information, refer to https:/ ​/ ​aws. ​amazon. ​com/​waf/ ​. AWS WAF is a firewall that
works at the application level and can protect at level 7 of the TCP/IP stack protocol, rather
than at level 4 of the TCP/IP stack, where the security groups work.

What can the WAF do that a security group can't? Consider the following answers to this
question:

Protect against SQL injection and cross-site scripting
Block denial-of-service (DoS) and distributed denial-of-service (DDoS)
Protect a part of the URL of your web application, such as
www.mywebsite/admin

In this chapter, we will create two practical POCs with Terraform about DoS and a sub-
URL. To do this, we are going to create a web application playground, apply the WAF, and
test the rules to trigger its protection. Keep in mind that when this part of the book was
being written, the WAF could only be applied to the application load balancer (ALB) and
CloudFront, but AWS continuously updates its services, so there is no knowing what might
be done in the near future.

Web application playground
Our test playground will be an ALB and an EC2 machine with an Apache2 web
server installed. In this section, we will only create the environment and test it, without any
WAF configuration. In the next section, however, we will add the WAF level on the ALB.

https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/
https://aws.amazon.com/waf/

Hardening the Security of Your AWS Environment Chapter 8

[336]

To create the following playground, we will use a Terraform module that is available on
GitHub:

Start by adding the following code to your main.tf file:

module "webapp-playground" {
 source =
"github.com/giuseppeborgese/effective_devops_with_aws__second_edition//terr
aform-modules//webapp-playground"
 subnet_public_A = "subnet-a94cabf4"
 subnet_public_B = "subnet-54840730"
 subnet_private = "subnet-54840730"
 vpc_id = "vpc-3901d841"
 my_ami = "ami-b70554c8"
 pem_key_name = "effectivedevops"
}

Some things to keep in mind are as follows:

The ALB must always live in at least two subnets, in two different availability
zones.
This ALB is reachable on port 80 and uses an HTTP listener that can be
acceptable for a PoC. However, in your real environment, it is best to register a
public domain with AWS Route 53, create an SSL certificate with AWS Certificate
Manager, associate this certificate to the ALB, and use an HTTPS listener.

Hardening the Security of Your AWS Environment Chapter 8

[337]

The security group settings are very strict, and you can take a look at the module
code to see that the ALB security group ingress is reachable only from port 80 to
the whole internet, 0.0.0.0/0, and this can be reached in egress only from port
80 of the EC2 security group.

As usual, to create the resource you need to run the following commands:

terraform init -upgrade
terraform plan -out /tmp/tf11.out
Plan: 12 to add, 0 to change, 0 to destroy.
terraform apply /tmp/tf11.out

Find the DNS ALB name, as shown in the following screenshot, and copy it:

Open it from your browser, as follows:

Hardening the Security of Your AWS Environment Chapter 8

[338]

There is also a subdirectory that we can use to test our WAF later:

If you don't use it quickly enough, your playground will destroy it with
the terraform command, to avoid incurring any unnecessary charges. If you want to
destroy just the playground, but not the other resources that were created, you can use a
selective destroy module, as follows:

terraform destroy -target module.webapp-playground

If you confirm with a Yes, then the 12 module resources will be destroyed.

Allow a sub-URL to be accessible only from an IP
Usually, in your web application, you have an admin area, and it could be the case that this
part of your portal isn't accessible by everyone. Of course, you have a username and
password, but an attacker can steal those credentials in many ways.

If it is a sensitive application, for the principle of least privilege to be followed, it is
convenient to restrict access to the locations where this kind of admin access needs to be
used; for example, from the office. If you can have different access for the admin section
you can put this behind an internal load balancer and connect the VPC to your office by
using a VPN service, as discussed in previous sections. The internal load balancer DNS
name is converted with the private IPs of your VPC, and, in this way, you can assure that
connections are only made from a trusted source, such as your office.

However, many times, you won't have this option, because the application is all in one
bundle, and you cannot separate the admin sub-URL from the main part. In such cases, the
only change available is to use an AWS WAF and apply a filter to the admin sub-URL only.
We need to create a WAF and attach it to the ALB for our playground web app.

To do this, I have created a terraform module, and you can use it in your code with the
following lines:

module "limit_admin_WAF" {
 source =
"github.com/giuseppeborgese/effective_devops_with_aws__second_edition//terr
aform-modules//limit-the-admin-area"
 alb_arn = "${module.webapp-playground.alb_arn}"

Hardening the Security of Your AWS Environment Chapter 8

[339]

 my_office_ip = "146.241.179.87/32"
 admin_suburl = "/subdir"
}

Of course, don't forget to replace your office IP or home connection public IP in the
my_office_ip field, and to use the subnet mask /32 if it is a single IP, as in my case.

The commands are the usual ones, as follows:

terraform plan -out /tmp/tf11.out
terraform init -upgrade
terraform apply /tmp/tf11.out

To facilitate the test, I have added an alb_url output variable, as follows:

alb_url = playground-1940933132.us-east-1.elb.amazonaws.com
loggroup = arn:aws:logs:us-east-1:790419456202:log-
group:devops2nd_flowlogs:*
role = devops2nd_flowlogs
giuseppe@Giuseppes-MacBook-Air ~/p/effectivedevops>

Now, the WAF is associated to the ALB, and all of the requests will be filtered.

Testing with the command line
This time, we are going to test it using the command-line tool, curl. As you can see from
my office IP, no issues arose when trying to reach both the root directory and the sub-URL:

giuseppe@Giuseppes-MacBook-Air ~> curl
http://playground-1940933132.us-east-1.elb.amazonaws.com/subdir/
 This is a sub directory
giuseppe@Giuseppes-MacBook-Air ~> curl
http://playground-1940933132.us-east-1.elb.amazonaws.com/
 This is a playground main directory
giuseppe@Giuseppes-MacBook-Air ~>

Instead, when I used a virtual machine with another public IP, I got back the following
result:

[ec2-user@ip-172-31-6-204 ~]$ curl
http://playground-1940933132.us-east-1.elb.amazonaws.com/
 This is a playground main directory
 [ec2-user@ip-172-31-6-204 ~]$ curl
http://playground-1940933132.us-east-1.elb.amazonaws.com/subdir/
 <html>
 <head><title>403 Forbidden</title></head>
 <body bgcolor="white">

Hardening the Security of Your AWS Environment Chapter 8

[340]

 <center><h1>403 Forbidden</h1></center>
 </body>
 </html>

Identifying the WAF from the web console
Take a look at the resource created, that is, the service WAF, as follows:

Hardening the Security of Your AWS Environment Chapter 8

[341]

View the Web ACLs option, and select the region where you are working from the
Filter menu. You can see what the Terraform module creates, as follows:

In the Rules section, it is possible to see the filter itself, and the IP that is allowed to access
the restricted area:

Hardening the Security of Your AWS Environment Chapter 8

[342]

Blocking DoS/DDoS attacks
A DoS attack is an old problem for our applications, especially in their distributed versions,
the DDoS, where multiple sources (usually hacked devices of many kinds, that form a
botnet) try to run a DoS by running so many queries at the same time that a network
becomes overloaded. In this case, to defend and continue to serve traffic to legitimate users,
it is fundamental to identify and block malicious sources.

It is worth spending a little bit of time reading the official documentation on Denial of
Service Attack Mitigation on AWS, at https:/ ​/​aws. ​amazon. ​com/ ​answers/ ​networking/ ​aws-
ddos-​attack-​mitigation/ ​. What we want to do here is to focus on a practical example of
using WAF.

The AWS WAF can block a single public IP that is sending too many requests. The question
that should pop up in your mind is, how many requests are too many? This depends on your
web application, so what you should do before applying any filter of this kind is measure
the number of requests received from a single IP in a five-minute time range.

Keep in mind that the AWS WAF lower limit that it is 2,000 requests and also according to
my tests, though request 2001 will be not blocked, after a while, you will see a number of
subsequent requests blocked. As we did for the other examples, we will not trust what
AWS declares, but we will test our PoC after its creation. To immediately see whether the
system is working, we will set up the AWS limit for our
sub-
URL: http://playground-1940933132.us-east-1.elb.amazonaws.com/subdir/.
We are not going to apply anything on the main page, at
http://playground-1940933132.us-east-1.elb.amazonaws.com.

Creating AWS WAF with Terraform
Destroy the limit_admin_WAF module to avoid conflicts. You can do so with the following
command:

terraform destroy -target module.limit_admin_WAF

Next, comment on the module in your code, using /* */:

/* module "limit_admin_WAF" {
 source
.............
} */

https://aws.amazon.com/answers/networking/aws-ddos-attack-mitigation/
https://aws.amazon.com/answers/networking/aws-ddos-attack-mitigation/
https://aws.amazon.com/answers/networking/aws-ddos-attack-mitigation/
https://aws.amazon.com/answers/networking/aws-ddos-attack-mitigation/
https://aws.amazon.com/answers/networking/aws-ddos-attack-mitigation/
https://aws.amazon.com/answers/networking/aws-ddos-attack-mitigation/
https://aws.amazon.com/answers/networking/aws-ddos-attack-mitigation/
https://aws.amazon.com/answers/networking/aws-ddos-attack-mitigation/
https://aws.amazon.com/answers/networking/aws-ddos-attack-mitigation/
https://aws.amazon.com/answers/networking/aws-ddos-attack-mitigation/
https://aws.amazon.com/answers/networking/aws-ddos-attack-mitigation/
https://aws.amazon.com/answers/networking/aws-ddos-attack-mitigation/
https://aws.amazon.com/answers/networking/aws-ddos-attack-mitigation/
https://aws.amazon.com/answers/networking/aws-ddos-attack-mitigation/
https://aws.amazon.com/answers/networking/aws-ddos-attack-mitigation/
https://aws.amazon.com/answers/networking/aws-ddos-attack-mitigation/
https://aws.amazon.com/answers/networking/aws-ddos-attack-mitigation/
https://aws.amazon.com/answers/networking/aws-ddos-attack-mitigation/
https://aws.amazon.com/answers/networking/aws-ddos-attack-mitigation/
https://aws.amazon.com/answers/networking/aws-ddos-attack-mitigation/
https://aws.amazon.com/answers/networking/aws-ddos-attack-mitigation/

Hardening the Security of Your AWS Environment Chapter 8

[343]

Create the new module with the following code:

 module "limit_admin_WAF" {
 source =
"github.com/giuseppeborgese/effective_devops_with_aws__second_edition//terr
aform-modules//ddos_protection"
 alb_arn = "${module.webapp-playground.alb_arn}"
 admin_suburl = "subdir"
 }

As usual, include the following code snippet:

terraform init --upgrade
terraform plan -out /tmp/tf11.out
terraform apply /tmp/tf11.out
 Outputs:
alb_url = playground-1757904639.us-east-1.elb.amazonaws.com

Take the DNS name from the output and test that everything is working with the curl
command, as follows:

 curl playground-1757904639.us-east-1.elb.amazonaws.com

The following is a playground main directory:

curl playground-1757904639.us-east-1.elb.amazonaws.com/subdir/

This is a subdirectory. Log in to the web console, go to the WAF service, select the Virginia
region, and note the subdir rule of the Rate-based type, as shown in the following
screenshot:

Hardening the Security of Your AWS Environment Chapter 8

[344]

Also, in the Rules section, you will notice that right now, there aren't any IPs blocked:

Keep in mind that any kind of DoS test is forbidden by AWS by default, and it can be
blocked, because it violates the terms and conditions. For more information on the AWS
Service Terms, refer to https:/ ​/​aws. ​amazon. ​com/ ​service- ​terms/ ​. In our case, we are going
to run 2,000/4,000 requests from a single IP in a short period of time. It is not so large an
amount that it will trigger the AWS alarm. If you have a very good internet connection, you
can run this script from your laptop, but my advice is to use an Amazon Linux EC2
machine in a public subnet directly exposed to the internet, so that we have the same
conditions of experimentation.

Log in on your machine and download the script with the following command:

curl -O
https://raw.githubusercontent.com/giuseppeborgese/effective_devops_with_aws
__second_edition/master/terraform-
modules/ddos_protection/test_protection.sh
chmod +x test_protection.sh
./test_protection.sh ...

This will run 4,000 requests to your ALB playground. From the output, you can see that the
first 2,000/3,000 requests will be successful:

This is a subdirectory
 538

https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/

Hardening the Security of Your AWS Environment Chapter 8

[345]

This is a subdirectory
 539
This is a subdirectory
 540
This is a subdirectory
 541
This is a subdirectory

However, you will then start to receive rejected requests like the following:

259
 <html>
 <head><title>403 Forbidden</title></head>
 <body bgcolor="white">
 <center><h1>403 Forbidden</h1></center>
 </body>
 </html>
 260
 <html>
 <head><title>403 Forbidden</title></head>
 <body bgcolor="white">
 <center><h1>403 Forbidden</h1></center>
 </body>
 </html>

If you don't see this during the first run, you will have to run the script again to trigger the
requests. You can log in with the web console in the WAF service, and you will see the
public IP of your EC machine in the Rules section:

Hardening the Security of Your AWS Environment Chapter 8

[346]

Still, if you run a curl to the root directory, you will see that it is still accessible from your
EC2 machine. If you try to access it from your laptop, the subdir URL will still be
accessible. If you don't send any more requests for a while, the public IP of your EC2
machine will be removed from the blacklist, and this is correct, because that IP is not a
threat if it returns to transmitting normal traffic amounts.

DDoS attach consideration
AWS WAF can be a very useful tool for mitigating DOS and DDOS attacks, but before
starting to use it, it's convenient to do the following:

Read and observe how to implement the DoS attack mitigation on AWS
Know your application, and set up a good limit for concurrent connections, to
avoid blocking valid traffic and getting false positive responses
Build a scalable web application, to respond to requests until the WAF
understands that it is under attack and triggers its filters

WAF for SQL Injection (SQLi)
We created and tested the WAF features for rate rules and sub-URL limits. As we said at
the beginning, there is also the SQLi feature, and it is possible to find some CloudFormation
templates related to this on the official AWS website at https:/ ​/​github. ​com/​aws- ​samples/
aws-​waf-​sample GitHub repository.

Summary
In this chapter, we applied the least privilege principle at different level. In the IAM section,
you learned how to lock in your root account and pass control to IAM users, by configuring
a password policy and setting up permissions and groups. Enabling CloudTrail, we tracked
and monitored every action performed on our infrastructure by an IAM user or by a
service, in our environment. With VPC Flow Logs, we observed a powerful network
monitor applicable at any point of our VPC, and we also created our prerequisites using
Terraform, a wonderful tool for growing our practice. . We also covered the concept of the
Terraform module. In the VPC subnets section, we looked at the three kinds of subnet that
we can use in our AWS cloud, and where to place the different kinds of resources available
in our infrastructure, exposing it to the internet as little as possible and keeping as much as
possible in private zones.

https://github.com/aws-samples/aws-waf-sample
https://github.com/aws-samples/aws-waf-sample
https://github.com/aws-samples/aws-waf-sample
https://github.com/aws-samples/aws-waf-sample
https://github.com/aws-samples/aws-waf-sample
https://github.com/aws-samples/aws-waf-sample
https://github.com/aws-samples/aws-waf-sample
https://github.com/aws-samples/aws-waf-sample
https://github.com/aws-samples/aws-waf-sample
https://github.com/aws-samples/aws-waf-sample
https://github.com/aws-samples/aws-waf-sample
https://github.com/aws-samples/aws-waf-sample
https://github.com/aws-samples/aws-waf-sample
https://github.com/aws-samples/aws-waf-sample
https://github.com/aws-samples/aws-waf-sample
https://github.com/aws-samples/aws-waf-sample

Hardening the Security of Your AWS Environment Chapter 8

[347]

While discussing the WAF service, we explored one of the most powerful services for
security available in the AWS world. Protecting some sensitive parts of your web
application can be useful. DoS protection is something that should always be present in
professional web service. Configuring WAF is not always easy, but thanks to the power of
Terraform automation and to the PoC modules available in this book, understanding the
principles and configuring accordingly is only some terraform and git commands away.

Questions
Suppose that I have just registered to the AWS cloud and received my password1.
by email. Can I start to build my infrastructure, or do I have to follow some best
practice beforehand?
What type of logging in should I enable in my AWS account?2.
Are security groups and NACL the only firewalls available in AWS?3.
How can I protect my web application from DDoS attacks by using AWS? 4.
Can I put all of my resources in one subnet?5.

Further reading
Security is a very wide field and one chapter cannot be exhaustive. Further resources are
available at https:/ ​/ ​aws. ​amazon. ​com/ ​whitepapers/ ​aws- ​security- ​best- ​practices/ ​.

The Center for Internet Security (CIS) Benchmark for AWS Foundation is a security
hardening guideline for securing AWS accounts/environments. Refer to the following links:

CIS Amazon Web Services Foundations at https:/ ​/​d0. ​awsstatic. ​com/
whitepapers/ ​compliance/ ​AWS_ ​CIS_​Foundations_ ​Benchmark. ​pdf

CIS Script to check benchmark against the AWS API at https:/ ​/​github. ​com/
awslabs/ ​aws- ​security- ​benchmark

For more information on AWS Certified Security - Specialty, refer to https:/ ​/​aws. ​amazon.
com/​certification/ ​certified- ​security- ​specialty/ ​.

https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://d0.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_CIS_Foundations_Benchmark.pdf
https://github.com/awslabs/aws-security-benchmark
https://github.com/awslabs/aws-security-benchmark
https://github.com/awslabs/aws-security-benchmark
https://github.com/awslabs/aws-security-benchmark
https://github.com/awslabs/aws-security-benchmark
https://github.com/awslabs/aws-security-benchmark
https://github.com/awslabs/aws-security-benchmark
https://github.com/awslabs/aws-security-benchmark
https://github.com/awslabs/aws-security-benchmark
https://github.com/awslabs/aws-security-benchmark
https://github.com/awslabs/aws-security-benchmark
https://github.com/awslabs/aws-security-benchmark
https://github.com/awslabs/aws-security-benchmark
https://github.com/awslabs/aws-security-benchmark
https://aws.amazon.com/certification/certified-security-specialty/
https://aws.amazon.com/certification/certified-security-specialty/
https://aws.amazon.com/certification/certified-security-specialty/
https://aws.amazon.com/certification/certified-security-specialty/
https://aws.amazon.com/certification/certified-security-specialty/
https://aws.amazon.com/certification/certified-security-specialty/
https://aws.amazon.com/certification/certified-security-specialty/
https://aws.amazon.com/certification/certified-security-specialty/
https://aws.amazon.com/certification/certified-security-specialty/
https://aws.amazon.com/certification/certified-security-specialty/
https://aws.amazon.com/certification/certified-security-specialty/
https://aws.amazon.com/certification/certified-security-specialty/
https://aws.amazon.com/certification/certified-security-specialty/
https://aws.amazon.com/certification/certified-security-specialty/
https://aws.amazon.com/certification/certified-security-specialty/
https://aws.amazon.com/certification/certified-security-specialty/
https://aws.amazon.com/certification/certified-security-specialty/

Assessment

Chapter 1: The Cloud and DevOps
Revolution

DevOps is a framework and a methodology concerned with adopting the right1.
culture for developers and the operations team to work together.
DevOps – IaC stands for DevOps – Infrastructure as Code, where we should2.
treat and manage our vertical infrastructure in the form of code, helping us with
repeatable, scalable, and manageable infrastructure.
The key characteristics of a DevOps culture3.

Source controlling everything
Automated testing
Automated provisioning
Configuration management
Automated deployment
Measuring
Adaptation to virtualization (public/private cloud)

The three major service models in the cloud:4.
Infrastructure as a Service (IaaS)
Platform as a Service (PaaS)
Software as a Service (SaaS)

AWS is the largest public cloud service platform available today. AWS offers5.
multiple services, from computing and storage to machine learning and
analytics, all of which are highly scalable and reliable. The most important part of
using AWS is the pay-per-use model. You need not invest in any hardware.
Instead, deploy the services, and pay for them until you are using the services.
The day you shut down and remove the services, no charges will be applicable -
which is great.

Assessment

[349]

Chapter 2: Deploying Your First Web
Application

If you don't have an AWS cloud account, go to www.aws.amazon.com and create a1.
free-tier account. Follow the step-by-step instructions at https:/ ​/​aws. ​amazon.
com/​. You need to provide your credit or debit card details in order to create an
AWS account.
Go to console.aws.amazon.com and choose AWS compute services to create2.
your first EC2 instance. Click on the Launch Instance button on the console and
follow the steps to select an AMI, instance type (select free-tier in this case),
followed by instance details, storage details, tags, and security group. For this
exercise, you can select default options as our AIM is just to get familiar with the
console portal so that we can automate this process using DevOps practices.
Follow the step-by-step instructions provided under the Creating our first web3.
server section in the chapter to create your first AWS instance using AWS CLI.
Follow the steps mentioned in the Creating a simple Hello World web4.
application section in the chapter. You can download the sample code of the
application from the following links:

https:/ ​/ ​raw. ​githubusercontent. ​com/ ​yogeshraheja/ ​Effective-
DevOps- ​with- ​AWS/ ​master/ ​Chapter02/ ​helloworld. ​js.
https:/ ​/ ​raw. ​githubusercontent. ​com/ ​yogeshraheja/ ​Effective-
DevOps- ​with- ​AWS/ ​master/ ​Chapter02/ ​helloworld. ​conf.

Find the instance ID of your AWS instance using ec2-metadata --instance-5.
id and then execute the mentioned command by amending your instance
ID: aws ec2 terminate-instances --instance-ids <YOUR AWS
INSTANCE ID>.

Chapter 3: Treating Your Infrastructure as
Code

IaC stands for Infrastructure as Code. This is a process of treating your1.
infrastructure objects, such as EC2 instances, VPC network, subnets, load
balancers, storage, application deployment and orchestration, and in the form of
infrastructure codes. IaC allows the infrastructure vertical to change, replicate,
and roll back changes in the entire environment in a very short space of time.

https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://us-east-1.signin.aws.amazon.com/oauth?SignatureVersion=4&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAJMOATPLHVSJ563XQ&X-Amz-Date=2018-08-27T09%3A42%3A05.017Z&X-Amz-Signature=9a2851741438a5ac794ebce02b2f9dac6adf96b92ec4e336cc5a35322ede9064&X-Amz-SignedHeaders=host&client_id=arn%3Aaws%3Aiam%3A%3A015428540659%3Auser%2Fhomepage&redirect_uri=https%3A%2F%2Fconsole.aws.amazon.com%2Fconsole%2Fhome%3Fstate%3DhashArgs%2523%26isauthcode%3Dtrue&response_type=code&state=hashArgs%23
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.js
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter02/helloworld.conf

Assessment

[350]

Open the CloudFormation template at https:/ ​/​console. ​aws.​amazon. ​com/2.
cloudformation and click on Create Stack button. Now create a helloworld-
cf.template template file, using the Python file located at https:/ ​/​raw.
githubusercontent. ​com/ ​yogeshraheja/ ​Effective- ​DevOps- ​with- ​AWS/​master/
Chapter03/ ​EffectiveDevOpsTemplates/ ​helloworld- ​cf- ​template- ​part- ​1.​py.
After doing this, upload a template to Amazon S3. Provide a name to your stack,
followed by an SSH key-pair, and other additional information that can be taken
as default here. Now review the information and click on Create. When the
creation of the template is complete, click on the Outputs tab and click
on Weburl, which will take you to the application home page.

Hint: Generate the CloudFormation template by saving the output of the
script in the python helloworld-cf-template.py > helloworld-
cf.template file.

There are multiple SCM offerings available on the market, including GitLab,3.
BitBucket, GitHub, and even SCM offerings by public clouds. Here, we will use
one of the most popular SCM offerings: GitHub. Create your free account on
Github at https:/ ​/​github. ​com. Once you have done this, log into your GitHub
account and create your first public repository with the name helloworld.
Install a Git package for your supported platform and clone the previously4.
created GitHub repository here using git clone <github repository URL>,
which you can find from the GitHub console for your repository. Now copy
your helloworld-cf.template in the repository followed by the git
add and git commit operations. Now you are in a position to push your local
repository file to your GitHub account. To do this, execute git push to push
your committed file and confirm this by checking your GitHub repository.
Ansible is a simple, powerful, and easy-to-learn configuration management tool5.
used by the system/cloud engineers and DevOps engineers to automate their
regular repetitive tasks. The installation of Ansible is very simple and works as
an agentless model.

In Ansible, modules are the fundamental building blocks for creating Ansible
code files written in YAML. These files, written in YAML, are called Ansible
Playbooks. Multiple Ansible playbooks are arranged in well defined directory
structures, called roles in Ansible, where roles are the structure directories for
Ansible codes that contain Ansible playbooks, variables, static/dynamic files, and
so on. There are also a number of other objects in Ansible, including Ansible
Vault, Ansible Galaxy, and a GUI for Ansible called Ansible Tower. You can
further explore these objects at https:/ ​/ ​docs. ​ansible. ​com.

https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://raw.githubusercontent.com/yogeshraheja/Effective-DevOps-with-AWS/master/Chapter03/EffectiveDevOpsTemplates/helloworld-cf-template-part-1.py
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/

Assessment

[351]

Chapter 4: Infrastructure as Code with
Terraform

Terraform is a high level infrastructure tool that is primarily used for building,1.
changing, and versioning infrastructure safely and efficiently. Terraform is not a
configuration management tool as it focuses on the infrastructure layer and
allows tools such as Puppet, Chef, Ansible, and Salt to perform application
deployment and orchestration.
HashiCorp does not provide native packages for operating systems. Terraform is2.
distributed as a single binary, packaged inside a ZIP archive, which can be
downloaded from https:/ ​/​www. ​terraform. ​io/​downloads. ​html. Once
downloaded, extract the .zip file and place it under the /usr/bin
Linux binary path. Once this is done, run terraform -v to confirm the installed
Terraform version.
In order to provision AWS instances using Terraform, you need to initialize the3.
AWS provider by creating a provider block inside the .tf file. You then have
to run terraform init. Upon successful initialization, you need to proceed by
developing a Terraform template with resources. In this case, you need to use
the aws_instance resource type with the appropriate attribute. Once this is
done, validated, and planned, apply your Terraform template to create your first
AWS instance.
In order to configure Terraform with Ansible, you need to use a provider, to4.
initialize the platform; resources, to create the platform-related services; and
finally provisioner, to establish a connection with the created service to install
Ansible and to run ansible-pull to run Ansible code on the system. You may
refer to the following link for a sample Terraform template: https:/ ​/​raw.
githubusercontent. ​com/ ​yogeshraheja/ ​EffectiveDevOpsTerraform/ ​master/
fourthproject/ ​helloworldansiblepull. ​tf.

https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf
https://raw.githubusercontent.com/yogeshraheja/EffectiveDevOpsTerraform/master/fourthproject/helloworldansiblepull.tf

Assessment

[352]

Chapter 5: Adding Continuous Integration
and Continuous Deployment

The terms CI, CD and continuous delivery can be defined as follows:1.
Continuous Integration: A CI pipeline will allow us to test proposed
code changes automatically and continuously. This will free up the
time of developers and QAs who no longer have to carry out as much
manual testing. It also makes the integration of code changes much
easier.
Continuous Deployment: In CD, you drastically accelerate the
feedback loop process that DevOps provides. Releasing new code to
production at high speed lets you collect real customer metrics, which
often leads to exposing new and unexpected issues.
Continuous Delivery: In order to build our continuous delivery
pipeline, we are first going to create a CloudFormation stack for a
production environment. We will then add a new deployment group
in CodeDeploy, which will provide us with the ability to deploy code
to the new CloudFormation stack. Finally, we will upgrade the
pipeline to include an approval process to deploy our code to
production and the production deployment stage itself.

Jenkins is one of the most widely used integration tools to run our CI pipeline.2.
With over 10 years of development, Jenkins has been the leading open-source
solution to practice continuous integration for a long time. Famous for its rich
plugin ecosystem, Jenkins has gone through a major new release (Jenkins 2.x),
which has put the spotlight on a number of very DevOps centric features,
including the ability to create native delivery pipelines that can be checked in
and version-controlled. It also provides better integration with source control
systems such as GitHub
In order to implement our continuous deployment pipeline, we are going to look3.
at two new AWS services—CodePipeline and CodeDeploy:

CodePipeline lets create our deployment pipeline. We will tell it to
take our code from GitHub, like we did before, and send it to Jenkins
to run CI testing on it. Instead of simply returning the result to
GitHub, however, we will then take the code and deploy it to our EC2
instance with the help of AWS CodeDeploy.

Assessment

[353]

CodeDeploy is a service that lets us properly deploy code to our EC2
instances. By adding a certain number of configuration files and
scripts, we can use CodeDeploy to deploy and test our code reliably.
Thanks to CodeDeploy, we don't have to worry about any kind of
complicated logic when it comes to sequencing our deployment. It is
tightly integrated with EC2 and knows how to perform rolling updates
across multiple instances and, if needed, perform a rollback.

For more details, please refer to Building a continuous deployment pipeline section of
this chapter

Chapter 6: Scaling Your Infrastructure
No, it is not always the best choice because a multi-level application means more1.
components to manage. If your application works well as a monolith, you
can accept a short period of downtime and the traffic will not increase over time.
You can also consider letting it run as it is.
In the multi-level approach used in this book, all software is in one ZIP2.
file, instead in a microservices and more in the serverless approach it is broken in
multiple parts. For example, in an e-commerce software (the software used to
show the content to the users in one service), the part to manage the backend to
place a new product is in one service, while the part to manage the payment is in
another service, and so on.
If you are not familiar with the service, it can be difficult. However, AWS is full3.
of documentation and video. Furthermore, in this book we demonstrated how to
use a set of basic services to break the classic monolith approach in multi-level.
This is true for an NLB but you need to pre-warm it if you use an ALB or a CLB.4.
You must also do this if your traffic goes up to more than 50 percent every five
minutes.
Using the Certificate Manager is free unless you want to Request a private5.
certificate, a classic SSL * certificate can also cost 500 dollars a year.
Each AWS Region is organized in AZs and each zone is a separate datacenter.6.
Consequently, it is rare that there are issues in one zone but it is not likely
multiple issues in the same moment. Each subnet can belong to only one zone so
it is convenient to place each component in at least two, or preferably
three, zones.

Assessment

[354]

Chapter 7: Running Containers in AWS
Docker is a container platform to build, ship and run containerized applications.1.
The four important components of Docker Engine are as follows:

Containers: A read write template
Images: A read only template
Network: A virtual network for containers
Volumes: A persistent storage for containers

Docker CE can be installed on many platforms including Linux, Windows, and2.
MacOS. Refer to https:/ ​/ ​docs. ​docker. ​com/ ​install/ ​, the official Docker link,
click on your choice of platform, and follow the instructions to install and
configure the latest version of Docker CE on your system.

Confirm the installed Docker CE version by running docker --
version command.

Use a Dockerfile https:/ ​/​github. ​com/ ​yogeshraheja/ ​helloworld/ ​blob/ ​master/3.
Dockerfile and create an image using docker build command. This newly
created image is an image for Hello World application. Create a container by
exposing the port outside using docker run -d -p 3000:3000 <image-
name>. Once done, check and confirm the webserver outputs either
using curl or using your public IP with port 3000 from the web browser.
Login to your AWS account using your credentials and select ECS service from4.
the services tab. There you will find options to Create Amazon ECS Cluster and
Amazon ECR repository. At this point, click on Repository and create your first
ECR repository. The screen will also display some of the commands that you can
use to perform an operation on ECR. Similarly, click on the Cluster tab followed
by create cluster on the ECS screen. From here, select your choice of cluster for
Windows or Linux or Network only, click 'next step', and fill in the details of
your choice. These details include cluster name, provisioning model, EC2
instance type, number of instance, and so on. To complete the
process, click Create. Once a few minutes have passed, your ECS cluster will be
ready to use. In this chapter, we have demonstrated this using CloudFormation.
If you are interested in setting up an ECS cluster using the same process, feel free
to follow the steps provided in the chapter in Creating an ECS cluster section.

https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile
https://github.com/yogeshraheja/helloworld/blob/master/Dockerfile

Assessment

[355]

Chapter 8: Hardening the Security of Your
AWS Environment

Before starting to build your infrastructure, it is strongly recommended that1.
you lock in your root account (that is, the account bound to your registration
email). Then, create IAM users and groups with the necessary privileges, and use
MFA (instead of just usernames and passwords) for root and IAM users.
You should enable CloudTrail for registering IAM users and role actions, and2.
VPC Flow Logs for monitoring and logging network traffic.
No; there is also WAF, an application firewall that works at level 7 of the TPC/IP3.
protocol.
You have to follow some best practices to configure your application, expose the4.
least possible surface of the app to the internet and scale up and down. There are
also WAF rate rules that help to limit malicious DDoS attacks.
In theory, you can, but it is convenient to split them between private and public5.
subnets, to expose only the necessary resources to the internet. Anything else
should stay private. Also, it is a best practice to spread parts of your application
over multiple availability zones. This means, in practice, using multiple data
centers. For these reasons, and also because one subnet can be in a single AZ, you
have to use multiple subnets.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Security in DevOps
Tony Hsu

ISBN: 978-1-78899-550-4

Understand DevSecOps culture and organization
Learn security requirements, management, and metrics
Secure your architecture design by looking at threat modeling, coding tools and
practices
Handle most common security issues and explore black and white-box testing
tools and practices
Work with security monitoring toolkits and online fraud detection rules
Explore GDPR and PII handling case studies to understand the DevSecOps
lifecycle

https://www.packtpub.com/networking-and-servers/hands-security-devops

Other Books You May Enjoy

[357]

Expert AWS Development
Atul V. Mistry

ISBN: 978-1-78847-758-1

Learn how to get up and running with AWS Developer Tools.
Integrate the four major phases in the Release Processes. Source, Build, Test and
Production.
Learn how to integrate Continuous Integration, Continuous Delivery, and
Continuous Deployment in AWS.
Make secure, scalable and fault tolerant applications.
Understand different architectures and deploy complex architectures within
minutes

https://www.packtpub.com/virtualization-and-cloud/expert-aws-development

Other Books You May Enjoy

[358]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

1
1Password
 reference link 28

A
ALB access/error logs
 reference link 232
Amazon Inspector 22
Amazon Machine Image (AMI) 40, 41, 60, 109
Amazon Resource Name (ARN) 302
Amazon SNS service 22
Amazon Web Services (AWS)
 about 7, 198
 deploying 20
 ecosystem, advantage 20
 for automated provisioning 109
 integrating 129
 synergize, with DevOps culture 20, 21, 22
AmazonEC2FullAccess policy 316
Ansible playbooks
 about 87
 canary-testing changes 96
 creating 87
 creating, for Jenkins server 141, 143, 145
 executing 93, 95
 file, creating 92
 role, creating to deploy web application 88, 89,

92

 role, creating to start web application 88, 89, 92
Ansible playground
 creating 83
Ansible repository
 creating 83, 85
Ansible
 about 105
 executing, in pull mode 97

 installing, on EC2 instance 98
 integrating 129
 monitoring 102
 used, for creating Jenkins 141
Apache Solr 206
Application Load Balancer (ALB) 250, 335
approval 191
arbitrary commands
 executing 87
Authy
 reference link 28
Auto Scaling
 configuring 234
 created instance, removing from balancer 246
 example 235
 group 238, 240
 group, modifying 244, 245
 image, preparing 236
 policies 240, 241, 242, 243, 244
 wizard launch configuration part, using 237
automating testing
 integration testing 16
 system testing 16
 unit testing 16
 user interface testing 16
availability zone (AZ) 214
AWS account
 command-line interface (CLI), configuring 32
 command-line interface (CLI), installing 32
 configuring 25
 creating 25
 MFA, enabling on root account 27, 28
 new user, creating in IAM 29, 30, 31, 32
 signing up 25, 27
AWS Certification Manager (ACM) 198
AWS CLI
 used, for deploying AWS instances 111

[360]

AWS CloudFormation Designer 61, 62
AWS CloudWatch 22
AWS CodeBuild 22
AWS CodeCommit
 reference link 72
AWS CodeDeploy
 about 22, 139
 custom library, importing to Ansible 170, 171
AWS CodePipeline
 about 22, 139
 used, for building deployment pipeline 182
AWS Elastic File System
 reference 233
AWS instances
 deploying, with AWS CLI 111
 deploying, with AWS Management Console 109,

111

 Terraform template 114, 116, 118, 121, 124
AWS Kinesis 22
AWS Management Console
 used, for deploying AWS instances 109, 111
AWS provider
 reference link 114
AWS S3
 reference 233
AWS service terms
 reference link 344
AWS Simple Storage Service (S3) 22
AWS Trusted Advisor 22
AWS WAF
 about 334
 creating, with Terraform 342, 344, 346
 DDoS attach consideration 346
 DoS/DDoS attacks, blocking 342
 for SQL Injection (SQLi) 346
 reference link 335
 web application playground, creating 335, 338

C
canary testing 96
change sets 78, 79
CI environment
 access token, adding to credentials in Jenkins

server 153
 GitHub organization, creating 150, 152

 GitHub personal access token, creating 153
 Jenkins job, creating to execute builds 154, 157
 preparing 150
 repository, creating 150, 152
 used, for implementing helloworld application

157

CI pipeline
 building 140, 141
 Jenkins server, creating with Ansible 141
 Jenkins server, creating with CloudFormation

141

 productionizing 167, 168
CI/CD pipeline
 CloudFormation stack, configuring 307, 308
 CloudFormation stack, initiating 307, 308
 CloudFormation template, adding to code base

298

 CloudFormation template, creating for
CodePipeline 299, 301, 302, 304

 creating, to deploy in ECS 288
 creation of containers, automating with

CodeBuild 291, 293, 294, 295, 296, 297
 deployment pipeline, creating with CodePipeline

297, 298
 production ECS cluster, creating 289, 290, 291
Classless Inter-Domain Routing (CIDR) 75, 217
CLB access/error logs
 reference link 232
cloud, services
 Infrastructure as a Service (IaaS) 12
 Platform as a Service (PaaS) 12
 Software as a Service (SaaS) 12
cloud
 about 8
 cost analysis 9
 hardware, deploying 8, 9
 just-in-time infrastructure 9, 10, 11
 layers 12
CloudFormation console
 change sets 78, 79
 stack, creating 71
CloudFormation stack
 deleting 79, 80
 Python script, updating 74, 76
 updating 74, 77, 78
CloudFormation template

[361]

 about 112
 adding, to source control system 72, 74
 creating, for Jenkins server 146, 148
 Python script, creating with troposphere 66, 68,

70, 71
CloudFormation
 about 59
 CloudFormer 63, 64, 65
 Hello World example, recreating 66
 monitoring 102
 used, for creating Jenkins 141
 used, for managing infrastructure 59
CloudFormer 62, 63, 64, 65
CloudTrail
 about 318
 creating, reference link 318
 flow logs, creating for one subnet 322, 323
 VPC Flow Logs 318, 321
 VPC Flow Logs, consideration 326
 VPC Flow Logs, verifying 323, 325, 326
CodeDeploy Ansible role
 creating 171, 172
CodeDeploy
 used, for integrating helloworld application 174
CodePipeline Jenkins plugin
 installing 187, 188
 using 187, 188
CodePipeline pipeline
 IAM profile, updating with CloudFormation 186,

187

 Jenkins, integrating 185
 test stage, adding 188, 189
command-line interface (CLI)
 about 109
 AWS CLI package, installing 38
 AWS CLI, configuring 39
 configuring 32
 installing 32
 Windows Subsystem for Linux (WSL), installing

33, 34, 35, 36, 37, 38
Community Edition (CE) 254
configuration management system
 about 57
 adding 81
 Ansible 82

 Ansible playbooks 87
 Ansible playground, creating 83
 Ansible repository, creating 83, 85
 Ansible, installing 82
 arbitrary commands, executing 87
 modules, executing 86
containers 251
continuous delivery pipeline
 building, for production 189
 CloudFormation stack, creating for production

189

 CodeDeploy group, deploying to production 190
 step, adding 191, 192
continuous deployment (CD) 139
continuous deployment pipeline
 building 169
 CodeDeploy Ansible role, creating 171, 172
 creating, for staging 182, 183
 custom library, importing to Ansible for AWS

CodeDeploy 170, 171
 web server CloudFormation template, creating

173

 web servers, creating 170
 web servers, launching 174
continuous deployment system 17
continuous deployments in production
 canary deployment 193
 fail fast 193
 feature flags 195
 strategies 193
continuous integration (CI) 138

D
Dashlane
 reference link 28
database
 about 206, 207, 208
 backup 213
 ElastiCache 214
 moving, to RDS 208, 210, 211, 212, 213
 multi-AZ 214
 RDS type, selecting 213
Denial of Service Attack Mitigation on AWS
 reference link 342
denial-of-service (DoS) 335

[362]

deployment configuration 177
deployment pipeline
 building, with AWS CodePipeline 182
developers versus operations dilemma, DevOps

culture
 code changing 14
DevOps culture
 adopting 13
 automating deployment 17
 automating infrastructure, configuring 17
 automating infrastructure, provisioning 17
 automating testing 16
 developers, versus operations dilemma 14
 key characteristics 16
 measuring 18, 19
 origin 13, 14
 production environment, differences 15
 source control 16
distributed denial-of-service (DDoS) 335
Docker 250
Don't Repeat Yourself (DRY) 66
DoS/DDoS attacks
 blocking 342

E
EC2 Container Registry (ECR) 250
EC2 container service
 ALB, creating 278, 281
 ECR repository, creating to manage Docker

image 265, 266, 267, 268
 ECS cluster, creating 269, 270, 273, 274, 276,

277

 ECS hello world service, creating 282, 283, 284,
285, 287

 using 263, 264
EC2 instance
 Ansible, configuring to execute on localhost 98
 Ansible, installing 98
 Ansible, integrating with CloudFormation 99, 102
 connecting, SSH used 49
 cron job adding 99
 Git, installing 98
 launching 46, 49
EC2 machine
 AWS Elastic File System 233

 AWS S3 233
 logs, pushing 233
 state, moving 233
Elastic Compute Cloud (EC2) 22
Elastic Container Service (ECS) 22, 250
Elastic Load Balancer (ELB)
 about 215, 216, 328
 access/error logs 232
 ALB, integrating with Auth0 231
 Application Load Balancer (ALB) 216
 Classic Load Balancer (CLB) 216
 deploying 217, 219, 220, 222, 223, 224
 pre-warm 231, 232
 RDS, deploying in multi-AZ 233
 selecting 216, 217
 SSL certificate, configuring 224, 225, 226, 228,

230, 231
Elastic Network Interface (ENI) 53, 318
ElastiCache
 about 214
 Memcached 214
 Redis 214
 reference 214
endpoint routing 331, 334
Endpoints for Amazon S3
 reference link 334
Enterprise Edition (EE) 254
Extra Packages for Enterprise Linux (EPEL) 51

G
Git
 installing, on EC2 instance 98
Google Authenticator 27
GovCloud 25
Groovy
 reference link 163

H
HashiCorp 106
HashiCorp Configuration Language (HCL) 107
Heating, Ventilation, and Air Conditioning (HVAC)

8

Hello World application
 deploying, with Terraform template 125, 127,

129

[363]

 Docker fundamentals 252, 253
 Docker in action 254, 255, 256, 257
 Docker, initiating 251
 Dockerfile, creating 257, 258, 259, 260, 262
 dockerizing 251
Hello World web application
 code, turning into service upstart used 53
 creating 50, 51
 Node.js, executing 51, 52
 Node.js, installing 51
helloworld application implementation, with CI

environment
 developing 162, 163
 functional test, creating with Mocha 158, 160,

162

 project, initializing 157, 158
helloworld application integration, with CodeDeploy
 configuration, adding to repository 177, 179,

181

 creating 176, 177
 IAM service role, creating 175
 scripts, adding to repository 177, 179, 181
helloworld application
 implementing, with CI environment 157
 integrating, with CodeDeploy 174

I
IAM administrator group
 creating 315, 316
IAM security
 about 312
 root access keys, deleting 314
 root account 312
 root account password, changing 313
IAM user
 AmazonEC2FullAccess policy 316
 creating 315, 316
 password policy, setting up 314
 security status 316, 317
IBM Db2 207
Identity Access Management (IAM) 27, 28, 311
Infrastructure as Code (IAC) 57, 105, 264
infrastructure
 managing, with CloudFormation 59
instance types 41

Integration Hell 140
intrusion detection system (IDS) 318
intrusion prevention system (IPS) 318

J
Jenkins server
 Ansible playbook, creating 141, 143, 145
 CloudFormation template, creating 146, 148
 configuring 148, 150
 stack, launching 148, 150
Jenkins
 about 138
 CI pipeline, creating 163, 166
JMESPath query language 41

M
master-slave technique 214
Mean Time to Resolution (MTTR) 18
microservices
 using 246
Mocha
 reference link 158
 used, for creating functional test 158, 160, 162
monolithic application
 about 199, 200, 201, 202, 203
 advantages 206
 DNS name, associating 203, 204
 scaling 204, 205
Mozilla Public License (MPL) 106
Multi-AZ 214
multi-factor authentication (MFA) 27

N
Network Access Control (NAC) 327
Network Attached Storage (NAS) 9

P
production environment, DevOps culture
 communication 15
proof of concept (PoC) 326
pull-based approach
 Terraform with Ansible 133, 136
push-based approach
 Terraform with Ansible 129, 131, 133

PyPA 38

R
Red Hat Enterprise Linux (RHEL) 51
repository 265
root access keys
 deleting 314
root account
 about 27, 312
 password, changing 313

S
security groups 42, 43
serverless
 using 246
service models 12
software development life cycle (SDLC) 249
Source Code Manager (SCM) 16
source control system
 CloudFormation template, adding 72, 74
SSH keys
 generating 44, 45
stack
 creating, in CloudFormation console 71
Storage Area Network (SAN) 9
System-V bootup 53

T
Terraform file 114
Terraform Provisioner 126
Terraform repository
 creating 112, 113
Terraform template
 for AWS instances 114, 116, 118, 121, 124
 used, for deploying Hello World application 125,

127, 129
Terraform
 about 105, 106, 107
 for automated provisioning 109
 integrating 129
 used, for creating AWS WAF 342, 344, 346
troposphere
 used, for creating Python script 66, 68, 70, 71

U
union capable filesystem (UCF) 251

V
Virtual Machines (VMs) 12
Virtual Private Cloud (VPC) 42, 311
VPC Endpoints
 reference link 331
VPC Flow Logs
 about 318, 321
 consideration 326
 creating, for one subnet 322, 323
 verifying 323, 325, 326
VPC subnets
 about 326, 328
 endpoint routing 331, 334
 identifying, from web console 328, 330, 331
 private subnets, accessing 327
 routing 327
 types 327

W
web application firewall (WAF) 311
web application playground, AWS WAF
 command line, testing 339
 identifying, form web console 340, 341
 sub-URL, allowing to access from IP 338, 339
web application playground
 creating 335, 338
web server CloudFormation template
 creating 173
web server
 Amazon Machine Image (AMI) 40, 41
 creating 40
 EC2 instance, connecting SSH used 49
 EC2 instance, launching 46, 49
 EC2 instance, terminating 54
 Hello World web application, creating 50, 51
 instance types 41
 security groups 42, 43
 SSH keys, generating 44, 45
web servers
 creating, for continuous deployment pipeline 170
Windows Subsystem for Linux (WSL) 32

	Cover

	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: The Cloud and DevOps Revolution
	Thinking in terms of the cloud, and not infrastructure
	Deploying your own hardware versus in the cloud
	Cost analysis
	Just-in-time infrastructure
	The different layers of a cloud

	Adopting a DevOps culture
	The origin of DevOps
	The developers versus operations dilemma
	Too much code changing at once

	Differences in the production environment
	Communication

	Key characteristics of a DevOps culture
	Source control everything
	Automating testing
	Automating infrastructure provisioning and configuration
	Automating deployment
	Measuring everything

	Deploying in AWS
	How to take advantage of the AWS ecosystem?
	How does AWS synergize with a DevOps culture?

	Summary
	Questions
	Further reading

	Chapter 2: Deploying Your First Web Application
	Technical requirements
	Creating and configuring your account
	Signing up
	Enabling MFA on the root account
	Creating a new user in IAM
	Installing and configuring the command-line interface (CLI)
	Installing WSL (Windows only)
	Installing the AWS CLI package
	Configuring the AWS CLI

	Creating our first web server
	Amazon Machine Images (AMIs)
	Instance types
	Security groups
	Generating your SSH keys
	Launching an EC2 instance
	Connecting to the EC2 instance using SSH
	Creating a simple Hello World web application
	Installing Node.js
	Running a Node.js Hello World application
	Turning our simple code into a service using upstart

	Terminating our EC2 instance

	Summary
	Questions
	Further reading

	Chapter 3: Treating Your Infrastructure as Code
	Technical requirements
	Managing your infrastructure with CloudFormation
	Getting started with CloudFormation
	AWS CloudFormation Designer
	CloudFormer
	Recreating our Hello World example with CloudFormation
	Using Troposphere to create a Python script for our template

	Creating the stack in the CloudFormation console
	Adding our template to a source control system
	Updating our CloudFormation stack
	Updating our Python script
	Updating our stack

	Change sets
	Deleting our CloudFormation stack

	Adding a configuration management system
	Getting started with Ansible
	Installing Ansible on your computer
	Creating our Ansible playground
	Creating our Ansible repository
	Executing modules
	Running arbitrary commands
	Ansible playbooks
	Creating a playbook
	Creating roles to deploy and start our web application
	Creating the playbook ﬁle
	Executing a playbook
	Canary-testing changes
	Running Ansible in pull mode

	Installing Git and Ansible on our EC2 instance
	Configuring Ansible to run on localhost
	Adding a cron job to our EC2 instance
	Integrating Ansible with CloudFormation

	Monitoring

	Summary
	Questions
	Further reading

	Chapter 4: Infrastructure as Code with Terraform
	Technical requirements
	What is Terraform?
	Getting started with Terraform
	Terraform and AWS for automated provisioning
	Deployment using AWS Management Console
	Deployment using AWS CLI

	Creating our Terraform repository
	First Terraform template for AWS instance provisioning
	A second Terraform template for deploying a Hello World application

	Integrating AWS, Terraform, and Ansible
	Terraform with Ansible using a push-based approach
	Terraform with Ansible using the pull-based approach

	Summary
	Questions
	Further reading

	Chapter 5: Adding Continuous Integration and Continuous Deployment
	Technical requirements
	Building a CI pipeline
	Creating a Jenkins server using Ansible and CloudFormation
	Creating the Ansible playbook for Jenkins
	Creating the CloudFormation template
	Launching the stack and configuring Jenkins

	Preparing our CI environment
	Creating a new GitHub organization and repository
	Creating a GitHub personal access token
	Adding the access token to the credentials in Jenkins
	Creating the Jenkins job to automatically run the builds

	Implementing the helloworld application using our CI environment
	Initializing the project
	Creating a functional test using Mocha
	Developing the remainder of the application
	Creating the CI pipeline in Jenkins

	Productionizing the CI pipeline

	Building a continuous deployment pipeline
	Creating new web servers for continuous deployment
	Importing a custom library to Ansible for AWS CodeDeploy
	Creating a CodeDeploy Ansible role
	Creating the web server CloudFormation template
	Launching our web server

	Integrating our helloworld application with CodeDeploy
	Creating the IAM service role for CodeDeploy
	Creating the CodeDeploy application
	Adding the CodeDeploy configuration and scripts to our repository

	Building our deployment pipeline with AWS CodePipeline
	Creating a continuous deployment pipeline for staging
	Integrating Jenkins to our CodePipeline pipeline
	Updating the IAM profile through CloudFormation
	Installing and using the CodePipeline Jenkins plugin
	Adding a test stage to our pipeline

	Building a continuous delivery pipeline for production
	Creating the new CloudFormation stack for production
	Creating a CodeDeploy group to deploy to production
	Adding a continuous delivery step to our pipeline

	Strategies to practice continuous deployments in production
	Fail fast
	Canary deployment
	Feature flags

	Summary
	Questions
	Further reading

	Chapter 6: Scaling Your Infrastructure
	Technical requirements
	A monolithic application
	What is a monolithic application?
	Associating a DNS name

	Scaling a monolithic application
	Advantages of a monolith

	The database
	Moving the database to the RDS
	Choose the RDS type
	Backup
	Multi-AZ
	ElastiCache

	Elastic Load Balancer (ELB)
	Choosing the right ELB
	Deploying the balancer
	Step 1 – open the access for the port 8080 from the whole VPC CIDR
	Step 2 – Creating the ALB and associate to the EC2 machine
	Step 3 – creating an alias for the ELB
	Step 4 – removing the Apache software from the machine

	Configuring the SSL certificate
	ALB and integration with Auth0
	Pre-warming a load balancer
	Access/error logs
	The next step

	Moving the state outside the EC2 machine
	Pushing the logs out

	Configure Auto Scaling
	Moving our example inside Auto Scaling
	Preparing the image
	Using the wizard launch configuration part
	Auto Scaling group part
	Scaling policies
	Modifying the Auto Scaling group
	Removing the manually created instance from the balancer

	Using microservices and serverless
	Summary
	Questions
	Further reading

	Chapter 7: Running Containers in AWS
	Technical requirements
	Dockerizing our Hello World application
	Getting started with Docker
	Docker fundamentals
	Docker in action
	Creating our Dockerfile

	Using the EC2 container service
	Creating an ECR repository to manage our Docker image
	Creating an ECS cluster
	Creating an ALB
	Creating our ECS hello world service

	Creating a CI/CD pipeline to deploy to ECS
	Creating our production ECS cluster
	Automating the creation of containers with CodeBuild
	Creating our deployment pipeline with CodePipeline
	Adding the CloudFormation template to our code base
	Creating a CloudFormation template for CodePipeline
	Starting and configuring our CloudFormation stack

	Summary
	Questions
	Further reading

	Chapter 8: Hardening the Security of Your AWS Environment
	Technical requirements
	IAM security
	Root account
	Root account password
	Delete your root access keys

	Setting up a password policy for IAM users
	Creating an administrator group and a personal IAM user
	AmazonEC2FullAccess policy
	Final security status

	CloudTrail
	VPC Flow Logs
	Creating the flow log for one subnet
	Verifying the flow logs
	VPC Flow Log consideration

	VPC subnets
	Routing and subnet types
	Accessing private subnets
	What to place in which subnet?
	Identifying subnets from the web console

	Endpoint routing

	AWS WAF
	Web application playground
	Allow a sub-URL to be accessible only from an IP
	Testing with the command line
	Identifying the WAF from the web console

	Blocking DoS/DDoS attacks
	Creating AWS WAF with Terraform
	DDoS attach consideration

	WAF for SQL Injection (SQLi)

	Summary
	Questions
	Further reading

	Assessment
	Other Books You May Enjoy
	Index

