Azure DevOps
Server 2019

COO kbOOk Second Edition

Tarun Arora and Utkarsh Shigihalli

Azure DevOps Server 2019
Cookbook
Second Edition

Proven recipes to accelerate your DevOps journey with Azure
DevOps Server 2019 (formerly TFS)

Tarun Arora
Utkarsh Shigihalli

BIRMINGHAM - MUMBAI

Azure DevOps Server 2019 Cookbook
Second Edition

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Meeta Rajani

Content Development Editor: Ronn Kurien
Technical Editor: Mohd Riyan Khan

Copy Editor: Safis Editing

Project Coordinator: Jagdish Prabhu
Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Graphics: Tom Scaria

Production Coordinator: Jyoti Chauhan

First published: January 2016
Second edition: May 2019

Production reference: 1020519
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78883-925-9

www.packtpub.com

http://www.packtpub.com

A Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt .com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors

Tarun Arora is obsessed with high-quality working software, continuous delivery, and
Agile practices. He has worked on various industry-leading programs for fortune 500
companies in the financial and energy sectors. For many years, Tarun has been a Microsoft
Most Valuable Professional in Visual Studio and Development Technologies. His core
strengths are designing application architecture for cloud scale and everything DevOps. He
was recognized as an MVP by Microsoft in 2014 for going over and above in supporting the
product teams and community with his contributions. Tarun is an active open source
community contributor, speaker, and Blogger. Follow Tarun on Twitter @arora_tarun for
the latest and greatest updates in DevOps.

To my 6-month-old son Ryan and my beautiful wife Annu. You both are the best part of
my life!

Utkarsh Shigihalli is passionate about technology and has a keen interest in developing
tools and extensions. Currently working for Avanade in the United Kingdom, he has
experience in the areas of Azure, DevOps, Agile, and Architecture. Over the years he has
worked for many top companies as an architect, independent consultant, and as a DevOps
coach in India, the United States, Netherlands, and United Kingdom.

He has been awarded as Microsoft Most Valuable Professional five times. He regularly
writes at Visual Studio Geeks and you can follow him on Twitter at @onlyutkarsh.

I would like to thank my father Dr. Balanna Shigihalli and my mother Mrs. Padmaja
Shigihalli for their love, care, and encouragement. I am extremely thankful to my wife
Rajeshwari for her patience and continuing support to complete this book. My lovely
daughter Kruti for her smiles and hugs. I also like to express my thanks to my sister
Kavya, brother-in-law Piyush for all their support and my niece Stuti and nephew Vismay
for their love.

About the reviewer

Michael Jufek, after working for Microsoft for many years, is now a freelance consultant
specializing in the software development life cycle and DevOps tools and principles. Other
areas of his professional interests include software architecture and PaaS technologies in
the cloud. In his free time, Michael has various hobbies, such as volleyball, skiing,
astronomy, and bee-keeping.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface

Chapter 1: Planning and Tracking Work
Creating a team project for an Agile team
Getting ready
How to do it...
How it works...
There's more...
Importing requirements from Excel
Getting ready
How to do it...
How it works...
There's more...
Getting social with work items
Getting ready
How to do it...
How it works...
There's more...
Portfolio backlog hierarchies and decomposing work
Getting ready
How to do it...
How it works...
There's more...
Configuring and customizing backlog boards
Getting ready
How to do it...
How it works...
There's more...
Preparing and planning a sprint
Getting ready
How to do it...
How it works...
There's more...
Visualizing progress in a sprint
Getting ready
How to do it...
How it works...
There's more...
Delivery plans to track multiple teams
Getting ready

11
13
13
15
16
17
17
18
21
22
24
25
25
28
31
32
33
34
35
37
38
38
39
41
42
43
43
45
49
50
51
52
53
54
55
55
56

Table of Contents

How to do it...
How it works...
There's more...
Dashboards for planning and tracking work
Getting ready
How to do it...
How it works...
There's more...

Chapter 2: Source Control Management
Migrating from TFVC to Git with code history
Getting ready
How to do it...
How it works...
There's more...
Accessing Azure DevOps Git repositories using SSH
Getting ready
How to do it...
How it works...
There's more...
Importing a Git repository from GitHub into Azure DevOps Server
Getting ready
How to do it...
How it works...
There's more...
Basic Git operations using Visual Studio Code
Getting ready
How to do it...
How it works...
There's more...
Pull request for code review using branch policies
Getting ready
How to do it...
How it works...
There's more...
Using Git hooks with Azure DevOps Server
Getting ready
How to do it...
How it works...
There's more...
See also
Managing and storing large files in git
Getting ready
How to do it...
How it works...

57
59
60
60
60
61
62
62

63
67
68
68
70
70
70
72
72
75
75
76
76
77
78
79
80
80
81
84
85
86
86
87
90
95
95
96
97
97
98
98
98
99
100
100

[ii]

Table of Contents

See also
Git branching model for continuous delivery
Getting ready
How to do it...
How it works...
Configuring code search as a search engine
Getting ready
How to do it...
How it works...
There's more...
Using Git forks and sync changes with upstream PR
Getting ready
How to do it...
How it works...

Chapter 3: Build and Release Agents
Unattended configuration of build agents using PowerShell
Getting ready
How to do it...
How it works...
Downloading agents using the GitHub release API
Getting ready
How to do it...
How it works...
Configuring deployment groups
Getting ready
How to do it...
How it works...
Configuring the agent to use a proxy
Getting ready
How to do it...
How it works...
Analyzing build usage data
Getting ready
How to do it...
How it works...
See also
Automating agent pool maintenance
Getting ready
How to do it...
How it works...
There's more...
Configuring build and release retention policies
Getting ready
How to do it...

103
103
104
106
113
113
113
114
115
116
117
118
118
121

122
124
124
125
126
127
128
129
130
131
132
133
134
135
135
136
137
137
137
138
139
140
140
141
141
142
143
143
144
144

[iii]

Table of Contents

How it works... 146
Agent capabilities and build demands for special builds 147
Getting ready 147
How to do it... 147
How it works... 149
Managing agent permissions using role-based access 149
Getting ready 150
How to do it... 150
How it works... 151
Chapter 4: Continuous Integration and Build Automation 153
Configuring one build definition for all branches of a Git repository 154
Getting ready 154
How to do it... 155
How it works... 158
See also 160
Reflecting the branch quality in the build name 160
Getting ready 160
How to do it... 160
How it works... 163
Using web deploy to create a package in an ASP.NET build pipeline 163
Getting ready 164
How to do it... 164
How it works... 166
There's more... 167
Organizing build output into separate folders 167
Getting ready 168
How to do it... 170
How it works... 170
Configuring assembly version info in build pipelines 171
Getting ready 172
How to do it... 172
How it works... 175
Setting up a build pipeline for a .NET core application 176
Getting ready 176
How to do it... 177
How it works... 179
There's more... 181
Setting up build pipeline for a Node.js application 181
Getting ready 182
How to do it... 182
How it works... 186
There's more... 188
Setting up a build pipeline for your database projects 189
Getting ready 189

[iv]

Table of Contents

How to do it... 190
How it works... 192
Integrating SonarQube in build pipelines to manage technical debt 193
Getting ready 193
How to do it... 194
How it works... 196
There's more... 198
Chapter 5: Continuous Testing 199
Running NUnit tests using Azure Pipelines 202
Getting ready 202
How to do it... 205
How it works... 210
Using feature flags to test in production 212
Getting ready 213
How to do it... 214
How it works... 216
There's more... 217
Distributing multi-configuration tests against agents 217
How to do it... 218
How it works... 220
There's more... 221
Configuring parallel execution of tests using Azure Pipelines 221
Getting ready 221
How to do it... 222
How it works... 224
There's more... 225
Running SpecFlow tests using Azure Pipelines 225
Getting ready 225
How to do it... 225
How it works... 227
There's more... 228
Analyzing test execution results from Runs view 229
Getting ready 230
How to do it... 230
How it works... 232
Exporting test artifacts and test results from Test Hub 232
Getting ready 233
How to do it... 233
How it works... 234
There's more... 236
Charting testing status on the dashboard in team portal 237
Getting ready 237
How to do it... 237
How it works... 238

[v]

Table of Contents

Chapter 6: Continuous Deployments 239
Deploying the database to Azure SQL using the release pipeline 239
Getting ready 240
Creating a database project and importing the database 241
Creating a build definition 243

How to do it... 247
Creating Azure Resource Manager (ARM) templates 248
Creating the release pipeline 252

How it works... 258
Consuming secrets from Azure Key Vault in your release pipeline 259
Getting ready 259
Creating a key vault in Azure 259
Creating a variable group and linking it to Azure Key Vault 262

How to do it... 268
How it works... 270
There's more... 270
See also 270
Deploying the .NET Core web application to the Azure App Service 271
Getting ready 271
Creating the ASP.NET Core application 271

How to do it... 274
Creating ARM templates 274
Creating the release pipeline 277

How it works... 281
There's more... 281
See also 282
Deploying an Azure Function to Azure 282
Getting ready 282
Creating a sample Azure Function 283
Creating the build pipeline 287

How to do it... 289
Creating the ARM template 289

How it works... 292
See also 294
Publishing secrets to Azure Key Vault 294
Getting ready 294
How to do it... 295
How it works... 298
There's more... 298
See also 299
Deploying a static website on Azure Storage 299
Getting ready 300
Creating a storage account from the Azure portal 301
Creating an Azure Storage Account ARM templates 301

How to do it... 304
How it works... 309

[vil

Table of Contents

There's more...
See also
Deploying an Azure Virtual Machine to Azure Dev Test Lab (DTL)

Getting ready

How to do it...

How it works...

There's more...

See also

Chapter 7: Azure Artifacts and Dependency Management
Publishing a NuGet package to Artifacts
Getting ready
Creating an Artifact feed in Azure Artifacts
How to do it...
Creating a build definition to produce the NuGet package
Creating a release pipeline to publish a NuGet package to the feed
Granular feed permissions in feed settings
How it works...
There's more...
See also
Consuming a NuGet package in Visual Studio from the Artifacts
feed
Getting ready
How to do it...
Connecting to the feed in Artifacts
How it works...
There's more...
See also
Testing a NuGet package using Artifact views
Getting ready
How to do it...
How it works...
There's more...
See also
Publishing NPM packages to Artifacts
Getting ready
Creating NPM package
How to do it...
Creating the build pipeline to update the package version
Creating the release pipeline to publish the npm package
How it works...
There's more...
See also
Consuming NPM package from the Artifacts feed
Getting ready
How to do it...

309
309
310
311
312
317
318
319

320
322
322
323
325
326
328
331
332
332
332

332
333
333
333
338
339
339
339
340
341
344
344
344
344
345
345
346
346
347
349
349
350
350
351
352

[vii]

Table of Contents

How it works...

There's more...

See also

Scanning for vulnerabilities in your package using WhiteSource

Getting ready

How to do it...

How it works...

There's more...

See also

Chapter 8: Azure DevOps Extensions
Creating the VS Marketplace publisher
Getting ready
How to do it...
Creating a simple task to clean folders
Getting ready
How to do it...
Creating manifest
Installing dependencies
Creating the task.json file
Creating the script (index.js) file
How it works...
See also
Creating a Ul extension
Getting ready
How to do it...
Creating manifest.json
Creating the HTML page to host initialization code
Creating the script file
How it works...
How it works...
There's more...
Creating a service connection extension to connect to GitLab
Getting ready
How to do it...
How it works...
See also
Creating a pipeline task to consume a custom service connection
Getting ready
How to do it...
Installing dependencies
Adding task.json
Creating a core script to download a source from GitLab
How it works...
See also
Publishing extensions to the marketplace

354
354
354
354
355
356
357
358
358

359
362
362
364
366
367
367
367
368
369
371
372
372
372
373
374
375
377
378
380
383
384
384
388
389
390
394
394
395
396
396
396
398
399
404
404

[viii]

Table of Contents

Getting ready 405

How to do it... 407
Creating the build pipeline 407

Creating the release pipeline 410

Publishing to VS Marketplace 417

How it works... 420
There's more... 421
Other Books You May Enjoy 422
Index 425

[ix]

Preface

Development teams are judged by the speed at which they can convert an idea into
working software. Operations teams are judged on the uptime and stability of the
production environment. One wants to deploy changes all the time, the other doesn't want
any changes at all. These conflicting goals result in development teams and operation teams
working against each other. The introduction of Agile practices has demonstrated that
iterative feedback-driven development helps teams cope with changes in business and user
requirements. Agile practices help development teams accelerate the creation of ready-to-
ship software. Software that's ready to ship but hasn't shipped doesn't provide any value to
users.

DevOps has been an emerging trend in the software development world for the past few
years. While the term may be relatively new, it is really a convergence of a number of
practices that have been evolving for decades. DevOps is a revolutionary way to ship
working software quickly and efficiently while maintaining a high level of security.
DevOps advocates that everyone and everything that's needed to ship working software to
of end users needs to be part of the software development life cycle. Building software is an
iterative process; therefore, a high level of automation is needed to make the process of
developing, testing, releasing, and monitoring software easily repeatable. The emphasis is
on delivering value to end users by collaborating, automating, learning, and constantly
improving the software. Simply put, DevOps is the union of people, processes, and
products to enable the continuous delivery of value to end users.

While DevOps isn't just a tool you can buy and install, tooling is an integral part of
DevOps. Microsoft Azure DevOps Server 2019, formerly known as Team Foundation
Server, is a set of collaborative software development tools, hosted on-premises. Azure
DevOps Server integrates with your existing IDE or editor, enabling your cross-functional
team(s) to work effectively on projects of all sizes. Azure DevOps Server works for any
language, and on any platform. Azure DevOps Server has everything you need to turn an
idea into a working piece of software. You can plan your project with Agile tools, you can
manage your test plans, version your code using Git, and deploy your solution using an
incredible cross-platform CI-CD system, all while getting full traceability and visibility
across your development activities.

Preface

Starting your DevOps journey may seem overwhelming with a product that's so diverse
and an ecosystem that's so vibrant. With over 70 hands-on tooling recipes, you'll learn how
to accelerate your journey of DevOps by planning, coding, building, testing, and releasing
high-quality working software using effective automation techniques with Azure DevOps
Server 2019.

Who this book is for

This book is for all software professionals, including developers, operations, testers,
architects, managers, and configuration analysts, who are using or planning to use Azure
DevOps Server.

What this book covers

Chapter 1, Planning and Tracking Work, explains how to create and set up a scrum team
project, import requirements as work items from Excel, use work items for collaboration,
set up hierarchical backlogs, configure and customize kanban boards, prepare and plan a
sprint, use delivery plans to track multiple teams, and use dashboards for planning and
tracking work.

Chapter 2, Source Control Management, covers the differences between Git and TFVC, why
Git is more suited for greenfield projects with distributed teams working on small
codebases, how to migrate from TFVC to Git with history, how to access Azure DevOps Git
repositories using SSH, and how to import a Git repository from GitHub into Azure
DevOps Server. It also explains how to perform Git operations using the command line and
Visual Studio Code, how to configure branch policies and use pull requests to review code,
how to configure and use Git Hooks, how to manage and store large files in Git, how to use
Git branching strategies for CD, and how to search code in Azure DevOps using the code
search service.

Chapter 3, Build and Release Agents, explains how to set up build and release agents,
automate the setup of build and release agents using unattended installation with
PowerShell, download agents from GitHub using the GitHub release API, configure
deployment groups, run an Azure DevOps agent behind a corporate enterprise proxy,
analyze build usage data, automate agent pool maintenance, and configure retention
policies for builds and releases. In this chapter, you'll also learn how to use agent
capabilities and demands to map build definitions to specific agents in pools, and finally,
how to manage and permission agent usage using role-based access control.

[2]

Preface

Chapter 4, Continuous Integration and Build Automation, defines continuous integration. It
also explains how to configure one build pipeline to build all branches of a code repository,
how to reflect the branch quality in the build name by dynamically updating the build
name during pipeline execution, how to use web deploy to create a package in an ASP.NET
build pipeline, how to organize the output from a build into logical folders, how to use an
assembly version to stamp assemblies in a pipeline, how to set up a build pipeline for a
NET Core application, how to set up a build pipeline for a Node.js application, and how to
set up a build pipeline for database projects. You'll also learn how to use SonarQube in a
build pipeline to manage technical debt.

Chapter 5, Continuous Testing, shows the direction Microsoft is taking with its testing tools,
along with the rationale behind discontinuing some of the testing tools. It also shows how
to run NUnit-based unit tests in a pipeline, how to use feature flags to test in production,
how to distribute multi-configuration tests on agent pools, how to configure parallel
execution of automated tests to speed up overall test execution, how to run functional
Specflow tests using Azure pipelines, how to analyze test execution results from the runs
view. You'll also learn how to export test artifacts and test results from Test Hub, and
finally, how to chart test results on dashboards in Azure DevOps Server team projects.

Chapter 6, Continuous Deployments, defines continuous deployment. It also explains how to
deploy the database to SQL Azure using Azure release pipelines, how to consume secrets in
Azure pipelines from the Azure Key Vault, how to deploy a .NET Core app into Azure App
Service, how to deploy an Azure Function using Azure Pipelines, and how to publish
secrets to Azure Key Vault. In this chapter, you'll also learn how to deploy a static website
on Azure Storage, and finally, deploy a VM to Azure DevTest Labs.

Chapter 7, Azure Artifacts and Dependency Management, explains how to leverage artifacts to
break down monolithic applications into microservices, how to publish a NuGet package to
artifacts, how to consume a NuGet package feed in Visual Studio, how to publish an NPM
package to an artifact feed in Azure DevOps Server, how to test NuGet packages using
artifact views, and how to secure your packages by scanning for known vulnerabilities in
your dependencies using WhiteSource.

Chapter 8, Azure DevOps Extensions, explains how to leverage the Azure DevOps Server
APIs to extend Azure DevOps Server, how to create a new publisher in Visual Studio
Marketplace, how to create a simple task to clean folder, how to create a Ul extension, how
to create a service connection to connect to GitLab, how to create a pipeline task to consume
the custom service connection and download GitLab sources and finally how to publish
extensions to Visual Studio Marketplace using Azure Pipelines.

[3]

Preface

To get the most out of this book

The book assumes you have a working setup of Azure DevOps Server 2019, basic
knowledge of DevOps, and some familiarity with Azure DevOps Server. A free trial of the
Azure subscription may be needed to try out some of the recipes.

Download the example code files

You can download the example code files for this book from your account at
www .packt . com. If you purchased this book elsewhere, you can visit
www . packt . com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Azure-DevOps-Server—-2019-Cookbook-Second-Edition. In case there's
an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "Create a new file called azure-pipelines.yml."

[4]

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

A block of code is set as follows:

var printaz = require ("print-azure-devops")
printaz.printAzureDevOps () ;

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

var colors = require("colors")
exports.printAzureDevOps = function () {
console.log ("Azure DevOps Server 2019".blue)

}

Any command-line input or output is written as follows:

C:\Users\utkarsh>node -v
v10.15.3

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"To do this, first, head to the Artifacts hub and click on the + New Feed button.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections

In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There’s more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready

This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

[5]

Preface

How to do it...

This section contains the steps required to follow the recipe.

How it works...

This section usually consists of a detailed explanation of what happened in the previous
section.

There's more...

This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

[6]

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Preface

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[7]

http://www.packt.com/

Planning and Tracking Work

The best software teams ship early and often. In order to successfully plan and track a
software project, it is important to understand the types of work involved in software
delivery. All work that's undertaken for software delivery can be categorized into one of
the following four categories:

* Make
money

Internal IT
Projects

Business

Projects

Unplanned

Changes Work

¢ Keep the
lights on

* Technical
Debt

Planning and Tracking Work Chapter 1

Technical debt is a metaphor for the eventual consequences of poor software or
infrastructure within your organization. It is considered debt because it is work that needs
to be done before a particular project can be considered complete. If you don't pay down
technical debt, then your unplanned work will continue to increase. Left unchecked,
technical debt will ensure that the only work that gets done is unplanned work.

Azure DevOps Server allows you to plan and track work using work items. Work items can
be used to classify work into different categories. Work items allow you to decompose
high-level ideas into smaller, workable units. These can then be prioritized, planned, and
scheduled into iterations. Every team has a unique process for shipping software.
Regardless of whether you follow Agile or Waterfall, Azure DevOps Server offers a range
of out-of-the-box process workflows, along with giving you the option to create your own
custom process workflows.

Over the last decade, agile software methodologies such as Scrum and Kanban have mostly
displaced traditional Waterfall-driven software delivery for complex systems with evolving
system requirements. Agile methodologies feature self-organizing teams that are
empowered to achieve specific business objectives. Agile methodologies focus on the rapid
and frequent delivery of partial solutions (also known as minimum viable products) that
can be evaluated and used to determine the next steps for the business. In this way,
solutions are built in an iterative and incremental manner. Agile methodologies have been
shown to deliver higher-quality products in less time, resulting in improved customer
satisfaction. The annual Agile survey report available here http://bit.1y/

agileReport (refer to page 8) shows why organizations are adopting Agile software
development over traditional methodologies.

While most organizations are very diligent when tracking planned work, unplanned work
doesn't always get tracked. Work is work — whether it's planned or unplanned, it needs to
be tracked. Hidden work robs you of focus. The primary goal of any DevOps setup within
an organization is to improve the delivery of value for customers and the business; things
that aren't tracked aren't measured. In the famous words of Peter Drucker, “you can’t
manage what you can’t measure.”

[9]

http://bit.ly/agileReport
http://bit.ly/agileReport
http://bit.ly/agileReport
http://bit.ly/agileReport
http://bit.ly/agileReport
http://bit.ly/agileReport
http://bit.ly/agileReport
http://bit.ly/agileReport

Planning and Tracking Work Chapter 1

We've all been on a project where no data of any kind was tracked, and it was hard to tell
whether we were on track for release or getting more efficient as we went along. On the
other hand, many of us have had the misfortune of being on projects where stats were used
as a weapon, pitting one team against another to justify mandatory weekend work. So, it's
no surprise that most teams have a love/hate relationship with metrics. There are as many
ways to measure a project as there are to build it. If you only measure one key metric, it is
easy to get tunnel vision. Whether the teams are focusing on just making the metric better
(often through gaming the system) or management is using the measure to drive all
decisions, you can end up with a product or organization that looks good but is really
driving off a cliff. To foster a culture of continuous improvement, Agile teams tend to focus
on the following metrics:

Lead time

Cycle time
Cumulative flow

Velocity

Product burn-down and product burn-up

We'll cover some of these metrics and how they can be tracked using Azure DevOps in
detail later on in this chapter. Read on to learn how work items allow you to plan and track
work in your software projects.

In this chapter, we will cover the following recipes:

¢ Creating a team project for an Agile team

e Importing requirements from Excel

¢ Getting social with work items

e Portfolio backlog hierarchies and decomposing work
¢ Configuring and customizing backlog boards

¢ Preparing and planning a sprint

e Visualizing progress in a sprint

e Delivery plans to track multiple teams

¢ Dashboards for planning and tracking work

[10]

Planning and Tracking Work Chapter 1

Creating a team project for an Agile team

Azure DevOps Server provides a set of integrated tools that allow teams to effectively
manage the life cycle of their software project. The team in Azure DevOps Server is
encapsulated within the container of a team project. A team project is a logical container
that's used to isolate all tools and artifacts associated with a software application in a single
namespace.

The conceptual boundary that was introduced through the team project eliminates the
problem of having access to unrelated artifacts such as code, work items, or release
information that isn't relevant to your application's development. Related team projects can
be grouped together into a team project collection. Team project collections can be used to
introduce a physical separation between a group of related team projects by hosting

them in separate databases.

An instance of Azure DevOps Server is capable of supporting multiple team project
collections, and each team project collection can internally host multiple team projects. A
team project can house multiple teams. As illustrated in the following diagram, the process
template is scoped at the team project level. Multiple team projects in a team project
collection can use different process templates; however, multiple teams within a single
team project will need to use the same process. Teams, however, have autonomy on the
level of the backlogs they choose and the workflows on the Kanban board. The delivery
framework of choice is applied through the Process Template, which, in turn, applies the
delivery framework-specific terminology, artifacts, and workflows to the team project and
all teams within the team project:

[11]

Planning and Tracking Work Chapter 1

Azure DevOps Server

TFS Data Warehouse

Team Project Collection 1

Process Template

SharePoint
Team Site

£ =
i
23
@ 3
v

(] (os]
= =
omo
il BT
2 a
=1 G
oo
il
a .o
cRE
o [«
EQRE
il
=gy =

sumiss
weaj

The process template defines the set of work item types, queries, and reports that can
be used to plan and track the project. In this recipe, we'll learn how to create a
new Team Project using the Scrum template.

TFS 2018 and later versions no longer support native integration with
SharePoint products. If you're planning to upgrade to Azure DevOps
Server 2019, read About SharePoint integration (https://docs.microsoft.
com/en-us/azure/devops/report/sharepoint-dashboards/about—
sharepoint-integration?view=azure-devops) to learn about the options
available to you.

[12]

https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops

Planning and Tracking Work Chapter 1

Getting ready

To create a team project, you need to be a member of the Project Collection Administrators
group. If you aren't already part of this group, gain membership by following the steps
pI‘OVided here nttps://docs.microsoft.com/en-us/vsts/security/set-project-
collection-level-permissions. Alternatively, follow the steps provided at https://
docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions

to be added to one.

How to do it...

To create a new team project from the web, follow these steps:

1. Launch a browser and navigate to the Azure DevOps Server Portal.
2. From the top right side, click the +Create project button:

Search pel = O W
DefaultCollection
Projects My work items My pull requests e

PartsUnlimited
This is the project area for Parts Unlimited product

team

[13]

https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions

Planning and Tracking Work Chapter 1

3. Provide a name for your new team project, select its initial source control type,
and select a process to create a team project. The work item process is a one time
choice and cannot be changed once set. See Choosing the right version control for
your project (https ://docs.microsoft.com/en-us/azure/devops/repos/tfvc/

comparison—-git-tfvc ?viewzazure—devops) and Choose a process (https ://docs.
microsoft.com/en-us/azure/devops/boards/work—items/guidance/choose-

process?view=azure-devops) for guidance:

Create new project

Projects contain your source code, work items, automated builds and more.

Collection name

Project name *

PartsUnlimited v

Description

This is the project area for Parts Unlimited product team

Wersion control

Git v @

Wark item process

Agile v @

[14]

https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops

Planning and Tracking Work Chapter 1

The ability to work from both Git and TFVC repositories from the same
team project has been supported since TFS 2015 Update 1. See Git team
projects (https://docs.microsoft.com/en-us/azure/devops/repos/git/

team-projects?view=azure—-devops) or TFVC team projects (https://
docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?
view=azure-devops) for more information.

How it works...

The following items are created for you as part of the team project creation process:

e Dashboards: A canvas to bring key information radiators to raise visibility
within and outside the team

e Code: A code repository (Git/TFVC) based on your selection is provisioned

e Work: All agile planning and tracking tools are nested under this hub.
e Team: A default team with the same name as the team project is
provisioned.

o Area Path: A default Area Path with the same name as the name of
the Team is provisioned. The teams' backlog is configured to show
work items assigned to this Area Path.

e Iteration Path: The set of iterations is pre-created for the team.

e Team Portal: The Team Portal allows the Team members to
connect to TFS to manage source code and work items, and build
and test efforts.

¢ Build & Release: Automated pipelines to build and release your application
e Test: Plan, track, and execute tests
e Wiki: To share knowledge and documentation with the team

[15]

https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops

Planning and Tracking Work

Chapter 1

These are shown in the following screenshot:

CJ Azure DevOps
ﬂ PartsUnlimited

n Overview

@ Summary

@ Dashboards
Analytics views
B wiki

i Boards
Repos

q Pipelines

A Test Plans

F; Artifacts

DefaultCollection PartsUnlimited Overview Summary

1=

ﬂ PartsUnlimited

About this project

This is the project area for Parts Unlimited product team

We couldn't find Readme.md
Seems like the file has not been created or was deleted.

Project stats

Boards

Search

o]
= Work items createc

Repos

o o]

Pull requests openec

Pipelines

0

]
=]
&

Last 7 days

Azure DevOps server simplifies navigation across the portal, and for
those who prefer the keyboard to the mouse, there is a great support for
navigation through the keyboard in both global and local hubs. Hold Shift
+? in the portal to see the full list of supported keyboard shortcuts.

There's more...

Azure DevOps Server makes the process of setting up a new team project very
straightforward—so much so that you may be inclined to create a new team project for
every software project. I would generally not recommend this; with support for multiple
teams and backlog isolation at the team level, it is possible to have a logical separation,
along with the ability to share within a team project. In principle, you should consider a
team project for each product, and a team for each work stream. The only time you should
consider splitting a product team out into a separate team project is if it needs to follow a
unique process, since process templates are scoped at the team project rather than at the

team level.

[16]

Planning and Tracking Work Chapter 1

If you find yourself organically needing to grow out into a new team project to use a
different process template, you can consider leveraging the VSTS Migration Toolkit (https:/
/nkdagility.com/vsts—sync-migration-tools/) to carry out a full fidelity migration.

Importing requirements from Excel

In Scrum, the taskboard is a visual display of the progress of the Scrum team during a
sprint. It presents a snapshot of the current sprint backlog, allowing everyone to stay
synchronized and focused on the work to be done. Most of the time, smaller teams are
distributed across multiple locations, and in these situations, tracking work with a digital
tool helps distributed teams synchronize more effectively. Some of us are lucky enough to
land on green field projects, which gives us the opportunity to start tracking the
requirements of work items from inception. Other times, projects are planned in tools that
don't natively support integration with Azure DevOps Server. Luckily, most planning tools
allow you to extract the data to Excel. Azure DevOps Server natively supports importing
work items through Excel, but the challenge is mostly working out which fields in the
spreadsheet should map out to work items in Azure DevOps Server. In this recipe, we'll
learn how to import requirements from Excel into work items and refresh updates from
work items back into Excel.

Getting ready

If you don't have Office Excel, install it. For Azure DevOps Server 2019, you'll need Office
2013 or a later version. The Excel plugin for Azure DevOps Server is installed by installing
one of the latest editions of Visual Studio or the Azure DevOps Server Standalone Office
Integration installer. Azure DevOps Server Standalone Office Integration supports
connecting to Azure DevOps Server from Excel, Microsoft Project, and the PowerPoint-
based storyboard tool.

[17]

https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/

Planning and Tracking Work Chapter 1

If you don't intend to install Visual Studio but need Office integration, download and
install Azure DevOps Server Standalone Office Integration (free) from https://www.
visualstudio.com/downloads/. Once the installation is complete, the Excel Plugin will
show up under the Team ribbon in Excel, as shown in the following screenshot:

2 - Bookl - Excel

Home Insert Draw Page Layout Formulas Data Review View Add-ins Power Pivot Team

Work ltems

If you don't see the Team ribbon, perform the following steps to enable it:

1. Click the File tab in Excel and choose Options.

In the Categories pane, click Add-ins, and verify that Team Foundation Add-in
shows up in the Disabled Application Add-ins section.

3. In the manage box, select disabled items and click Go.

4. Select the Azure DevOps Server Add-in and click Enable. Finally, exit the dialog
by clicking Close.

If you are continuing to run into issues with Add-in not showing up in
Excel, you may be able to resolve the issue with the procedures provided
atﬂlefoﬂovvh1g1h1k:https://docs.microsoft.com/en—us/vsts/work/

backlogs/office/tfs-office-integration-issues.

How to do it...

Now that we have the Azure DevOps Sever excel plugin installed, in this section we'll learn
how to use it.

Start by performing the following steps:

1. Launch Excel and start with a blank sheet. Navigate to the Team ribbon.
2. Click on New List to connect to your project in TES.

[18]

https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues

Planning and Tracking Work Chapter 1

3. If you are connecting to Azure DevOps Server from Excel for the first time, you
will have to add your server details to the list of recognized servers. The steps for
this are shown in the following screenshot:

Home Insert Draw Page Layout Formulas

Select a Team Foundation Server:

Team Project Collections:

O selecta Team Founda

Team Foundation Server list:

Project Collections 3
MName URL Add...
Add Team Foundation Server ? >
Remove
2 MName or URL of Team Foundation Server:
Close
ﬂazsu-p-tstD‘IS] |
| —

Connectien Details

Path: |tf5 |
Port number: EI
Protocol: @HTTP (O HTIPS

Preview: |http:ffazsu-p-tfs?_01&ftfs

4 5 | oK Cancel

4. Select the PartsUnlimited team project and click Connect:

Connect to Team Foundation Server 7 *

Select a Team Foundation Server:

azsu-p-tfs2018.westeurope.cloudapp.azure.com ~ Servers..,
Team Project Collections: Teamn Projects:
ws DefaultCollection PartsUnlimited

[19]

Planning and Tracking Work Chapter 1

5. When asked which type of work item list you want to create, choose Input list.
An Input list gives you a blank template that is linked to your team project:

Mew List ? *

Select which type of work item list you want to create:

() Query list
Fill and update the list with all work items that match the following query:

<Select a Query>

(®) Input list

Enter new or get individual work items.

Coc

6. Your worksheet will now be bound to your team project as a flat list. What this
means is that you can add work items to the team project from the worksheet or
add work items to the worksheet from the team project. Fill out the details of the
work items you want to add and their work item type. The Excel plugin defaults
the list type to flat, but you can change it to a tree list if you wish. A tree list
allows you to create and view hierarchically linked work items, like so:

Project: PartsUnlimited Server: azsu-p-tfs2018.westeurope.cloudapp.azure.com\DefaultCollection Query: [None] List type: Flat

1D n Title ﬂ Work Item Type ﬂ State n Reason ﬂ Assigned To hd
Recipe 2: Import Workitems from excel Feature Mew Mew Tarun Arora

7. Publish the changes by clicking the Publish button from the Team ribbon.

You can add more work item fields as columns to this template. Right-
click within the table mapped to Azure DevOps Server, and then from the
context menu, select Team | Choose columns.

[20]

Planning and Tracking Work Chapter 1

How it works...

To validate whether the changes have been synchronized to Azure DevOps Server, launch
the web portal in a browser, and navigate to the work hub in the PartsUnlimited team
project. The newly added work item should show up under the features backlog, as shown
in the following screenshot:

Backlogs Queries Requirements
g

- Features
22" Features eatures
= Stories Backlog Board

Current MNew = Create query Column options &

teration 1 Order Work ltam Tvn Tit
Crde Work ltem Type tle
Future + 1 Feature ‘W Recipe 2: Import Workitems from excel

Follow these tips to keep your work in sync:

e When you first open a saved worksheet, use the Refresh button in Excel on the
Team ribbon to download the latest data from the data store

Enter data for additional fields by adding columns to the worksheet using
the Choose Column icon in Excel on the Team ribbon

To avoid data conflicts, publish your additions and modifications often

e To prevent loss of data before you publish or refresh, save your workbook
periodically

The Azure DevOps Server Excel plugin uses the Azure DevOps Server REST APIs, which
are wrapped into an SDK. This allows for safe and secure bulk editing of work items. The
plugin supports two-way updates, and changes that are made to work items in Azure
DevOps Server web portal can be refreshed back into Excel by clicking the Refresh button.
Refreshing the data does not overwrite any calculations or formatting that you may have
applied to the worksheet. If you spend a lot of time using Microsoft Project, you'll be
excited to know that the Azure DevOps Server plugin can also be used from Microsoft
Project.

[21]

Planning and Tracking Work Chapter 1

There's more...

The marketplace features the Azure DevOps Open in Excel extension (https://
marketplace.visualstudio.com/items?itemName=blueprint.vsts—-open-work—-items-in-—
excel). This is a free extension that was created by Microsoft DevLabs, and adds the option
of opening work items in Excel from various access points, such as work item queries,
backlogs, and selective work items:

Backlogs Quenies

il

New = &) Active Bugs
Results Editor Charts

) o E/ é‘ = Column options Copy query URL

add them to y.. D1 Stack Ran.. * Priorit. - Severity /] Assigned To Title

1 2 3 - Mediu.. Vania Kurniaw... ==+ I MNew bugs assigned to me are not automatically searchable

4 Team favorites

Drag shared queries here fo add th.. 2 2 3 - Mediu.. Vania Kurniawati (L. IL.SE' profile takes 24 hours to update

» My Queries
4 Shared Queries

4 Current Iteration

m

v Active Bugs

© Runquery
& Edit query

X Delets

=l Rename

Add to my favorites

Add to team favorites

+ A0dtodashooard > |[Test Cases 1 New bugs assigned to me are not automatically searchable

@ e / B Wania Kurniawati (InConsulting Inc.) 0 Add tag
ecurity..
B0 ©Openin Exce I

@ Active vaniaproject

[22]

https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel

Planning and Tracking Work Chapter 1

Another noticeable extension in the marketplace is the Requirements Integrator (https://
marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsInt egrator).
This is an open source extension that was created by Microsoft MVP Josh Garverick, which
introduces the capability of mapping external requirements into Azure DevOps Server to
create a traceability matrix with work items. This extension introduces a new sub-tab called
Requirements in the work hub, which allows you to import external requirements into TFS
using a predefined Excel template:

Backlogs Queries Requirements
L Get Latest Template nequirements
Requirements Export X Delete Requirements
teration Path Vien o e I
Gap Analysis
’ REQT-1 Parts unlimited mobile app === AniOS app for the parts unlimited service

Map Work ltem(s)

& Visualize Requirement

The extension allows you to do the following;:

Manage requirements to work item mapping
Display a sprint view that shows the requirements covered by a sprint

Display a traceability matrix, including gaps, for requirements that are imported
and mapped to WIs

Restrict import usage to non-CMMI process templates

Requirement visualization (visual traceability)

Export requirement information to Excel

I encourage you to look at the marketplace (https://marketplace.visualstudio.com/) as
it has a range of extensions that enhance the experience of planning, tracking, and
managing work items. While this extension isn't necessarily a replacement for the Excel
add-in, you'll find that it enhances the work planning, tracking, and management
experience.

[23]

https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/

Planning and Tracking Work Chapter 1

Getting social with work items

To provide a fresher, more modern experience in tracking work, the old and clunky work
item form has been given a makeover. Along with the noticeable responsive form layout,
the new form introduces a lot of new features. In this recipe, we'll see how to put the newly
added work item discussion control to work. The following screenshot shows the new
work item form:

B USER STORY 2 loX

2 The new work item form

B Tarun Arora 2 comments Feature X R1 X UX X + ‘8" Follow @)
State ® Active Area PartsUnlimited Updated just now
Reason B mplementation started lteration PartsUnlimited|teration 1
Details D & 3) 1]
Description Planning Development
Story Points + Add link
The new work item form provides a rich modern experience for managing " Development hasn't started on this item,
and tracking project requirements... Pricrity Create a new branch
2 Related Work
Risk
Add link ~
Interface A
Parent
Classification v E 4 Recipe 3: Using work items ...
Updated just now, ® New
Value area
S Child
Business

B 3 Improve user experience
Acceptance Criteria Updated 2 minutes aga, ® Active
Related

b 4 B 1 Recipe 2: Import Workitems ... -

It's fair to say that projects are tracked using work items, while discussions are tracked
using email. Often, decisions aren't reflected back into work items, which results in work
needing to be done later. The new work item form makes it really easy to stay on track by
letting you have conversations within a work item. The discussions control provides a rich
editor, giving you the ability to associate images, mention people, and link work items. The
power of work item search and the social features of alerts and notification follow work
items, and my work items make it really easy to stay involved and informed.

[24]

Planning and Tracking Work Chapter 1

Getting ready

Before we dig into work item discussions, let's see how easy it is to populate your team
project with sample data. The sample data widget, which can be found at https://
marketplace.visualstudio.com/items?itemName=ms—devlabs.SampleDataWidget, is a free
extension that was developed by Microsoft DevLabs, and it makes it really easy to generate
demo work items in bulk. This extension also provides an option to generate and set up
work item data inline with the Scaled Agile Framework (SAFe), giving you a great jump-
start into implementing SAFe with TFS.

Once you've installed the extension, navigate to the dashboard in the PartsUnlimited
project web portal. Add the sample data widget to the dashboard, select Getting started in
the dropdown, and click Create. Once this awesome extension has completed its magic,
you'll see your team project become populated with new features, user stories, and active
iterations—all ready for you to start playing with everything they offer.

How to do it...

Let's perform the following steps:

1. Launch the PartsUnlimited web portal and select the Search work items control:

Search code in this project 2w a A (-'ﬂ
Search wiki

2. In the work item search box, type add. The keyword add is searched across all
work items in the team project. The search results are summarized in the left-
hand side panel. The search results are ordered by relevance, and can be
reordered using a different field:

[25]

https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget

Planning and Tracking Work

Chapter 1

G PartsUnlimited v

Dashboards Code Work

Build and Release

Test Wiki

Search for
Code

Work item

¥ Projects

|#| PartsUnlimited

PartsUnlimited
* Work ltem Types

] Bug

) Epic

|| Feature

) Task

] User Story

¥ Area under PartsUnl...

add ><

Showing 12 results | Sort by: Relevance | Provide feedback

12
W 11 Add items =
Clear all
12 @ Active A, Tarun Arora
Clear ® 12 Add and edit work items
h @ Active S, Tarun Arora
Clear all

1 N 25 Add an area path

1 MNew A, Unassigned

tion: For mare information on adding area paths,
1 check out:

I BN 28 Add an iteration

W EPICTT
11 Add items
B Tarun Arora

State @ Active

B New

Reason

Description

3. The work item search understands the work item schema, which allows it to
support complex work item search queries. For example, by changing the search
query to add and s:active and t:feature, we can filter the results down to
the work item type feature and set the work item status to Active:

PartsUnlimited

Dashboards Code Work Build and Release

Test Wiki

Search for
Code

Work item

~ Projects

|« PartsUnlimited

PartsUnlimited
~ Work ltem Types

|| Feature

¥ Area under PartsUnl...

B

Provide feedback

add and s:active and t:feature

: Showing 1 result | Sort by: Relevance

W 12 Add and edit work items
B Tarun Arora

Clear all
1 ® Active

Clear

A

Clear all

1

® FEATURE 12
12 Add and edit work items
BTarun Arora

State @ Active

B New

Reason

Description

[26]

Planning and Tracking Work

Chapter 1

4. To search for work items that need review, change the search query to a new
tag: needs review. The new follow functionality allows you to subscribe to
work items and be notified when changes are made to them. Click on the Follow
button to follow one or more work items:

tags:"needs review" Xﬂ

Showing 5 results | Sort by: Relevance ~ Provide
Bl 20 Add style rules to highlight card...

New R Unassigned

M 21 Add tags to your cards

New A Unassigned

MW LUSER STCRY 20

20 Add style rules to highlight cards with color

B Unassigned ! 0 comments Needsreview X+

State MNew Area PartsUnlimited

Reason & New teration PartsUnlimited

Details)

5. Double-click the first work item in the search result and navigate to the
Discussion section in the work item form. Here, you can add a comment, use #
to link a work item, or use @ to mention a person:

[N JSER STORY 207

20 Add style rules to highlight cards with color

E Unassigned

State Mew

Reason B New

Acceptance Criteria

¥ 0 comments Needsreview X 4+

Area PartsUnlimited

[TR [TR TR |

Wi Epic 34: Areas and iterations

& Bug 33: Show bugs on backlogs and boards
& Bug 32: Create bugs

W Feature 31: Configure board

[User Story 30: Organize your backlog

I User s
I Users

ry 20: Medify an iteration

28: Add an iteration

Discussion W Feature 27: Iterations
(M| User Story 26: Modify an area path -
E @Tarun Arora has published further guid Showing 34 suggestions

read through the notes in the work item #{

[27]

Planning and Tracking Work Chapter 1

6. Click Save to persist the changes. The linked work item is automatically linked to
the work item as a related work item. This mention triggers a notification
workflow, and an email is sent out to the mentioned individual, in addition to
others who are following this work item. You can click Maximize Discussion to
enter an expanded discussion view:

Discussion r1
L J

E Maximize Discussion

Tarun Arora commented just now
@Tarun Arora has published further guidance on the style rules to be followed. Please
read through the notes in the work item W Feature 31: Configure board

7. My favorite feature is being able to paste images into the work item form without
having to save them and attach them manually. In your discussions, you can use
rich formatting, links, images, and more:

TORY 207

20 Add style rules to highlight cards with color

B Unassigned 1 comment Meedsreview X -+ ¥ Save & Close ™ @ Fallow (O

Discussion

gemini

Gemini
System Account updated issue HELP-17312 - title of anlinked item in the item detail view

an Gemini

B Tarun Arora commented just now
@Tarun Arora has published further guidance on the style rules to be followed. Please read through the notes in the work item W Feature 31: Configure board

How it works...

It is super easy for you to access artifacts that are most important for you. The redesigned
account page has a personalized experience that shows the Projects, Favorites, Work, and
Pull Requests you care about. You can go to one place and quickly find everything you
need to do and care about.

[28]

Planning and Tracking Work Chapter 1

Start your day with the My work items page to be able to easily access all the work items
that have been assigned to you across all projects. It also lets you check and access the
status of all the work items that you are following, those you have been mentioned in, or
those that you have recently viewed:

Welcome back, Tarun Arora

Projects My favorites My work items. My pull requests | &

M \}, work 'J['@ ms Filter your work items T

Assigned to me Feollowing Mentioned My activity

Doing

& 32 Create bugs ® Active PartsUnlimited ~ Updated 21 hours ago

M 13 Create new card Resolved PartsUnlimited Updated 21 hours ago a
W 12 Add and adit work items @ Active PartsUnlimited ~ Updated 21 hours ago

M 11 Add items ® Active PartsUnlimited ~ Updated 21 hours ago

Work item search allows you to search across all projects. You can scope the search and
drill down into an area path of choice. You can easily search across all work item fields,
including custom fields, which enables more natural searches. The snippet view indicates
where matches were found. Quick inline search filters let you refine work items in seconds.
The dropdown list of suggestions helps you complete your search faster. For example, a
search such as AssignedTo: Tarun WorkItemType: Bug State: Active findsall
active bugs assigned to a user named Tarun.

One of the design principles of the work item search team has been to keep the search
actionable. The work item search interface integrates with familiar controls in the Work
hub, giving you the ability to view, edit, comment, share, and much more, right from the
search results.

Notifications help you and your teams stay informed about activity in your team projects.
TFS 2018 introduced a new experience that makes it easier to manage what notifications
you and your teams receive. Users have their own account-level experience for managing
notification settings (available via the Profile menu).

This view lets you manage personal subscriptions and also view subscriptions that have
been created by team administrators for all the projects in your account:

[29]

Planning and Tracking Work Chapter 1

Security Notifications

Q) Notifications > Mine | - Newsubscription (@) Help
Code (Git)
il Vi /'

i Pull request reviewers added or removed Pull |equ§st [Tarun Arors 0 on
Naotifies you when you are added to a pull request or when a user is added or removed from... (any project)
Pull request completion failures Pull request

i . N P @& a A Tarun Arora Q On
Notifies you when a pull request you created fails to complete (any project)

You can set up new notifications by clicking on the New subscription link. This new
notification experience gives you access to WIQL so that you can create filter criteria for
specific conditions. In addition to this, you can set up notifications to be delivered to other
email addresses and soap endpoints:

X

New subscription
Description Subscriber

Awork item | created is changed Tarun Arora
Deliver to Address

Other email ~ partsunlimited-comms@contoso.com
Filter

Any team project ® A specific team project PartsUnlimited o
Filter criteria
And/Or Field Operator Value

+ X Created By v = ~ 0 [Me] e
+ X And ™ Authorized As RSS ~ 0 [Me] e
+ Add new clause

You, as an individual, also have the option of unsubscribing and opting out of a team or
OOB notification subscription. Whether you are an administrator or not, toggling a shared
team subscription from your notification settings only impacts you and not other team
members.

You must configure an SMTP sever in order for team members to see the
Notifications option from their account menu and to receive notifications.
This can be done by following the steps provided at https://docs.
microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize—

alerts.

[30]

https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts

Planning and Tracking Work Chapter 1

There's more...

The TFS marketplace features the Activity Feed extension, available at https://
marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed. This free
extension, created by Dave Smits, brings in the capability of viewing what's happening in
your team project at a glance in one place. The extension is available as a dashboard widget,
as well as a subpage in the work hub. Activity Feed gives a summary of all recent changes in
work items, commits, pull requests, and builds. It tells who changed a task, who logged a
bug, and who committed code. The extension supports configuration, so you can decide to
filter out what's not relevant or simply configure which backlogs the work updates should
be published from:

Activity Feed Work

B Dave Smits updated Product Backlog Item 2146 'Make a circle of the icon of people’, Changed state to
Committed, Moved to iteration VSTS ActivityFeed\Sprint 7, 10 minutes ago

B Dave Smits updated Product Backlog Item 2136 'Remove JQuery as dependency’, Moved to iteration VSTS
ActivityFeed\Sprint 8, 31 minutes ago

B Dave Smits updated Product Backlog Item 2137 'Stop using types/moment’, Moved to iteration VSTS
ActivityFeed\Sprint 8, 31 minutes ago

B Dave Smits updated Product Backlog Item 2130 'Use react and office fabric to get better Ul ', Moved to
iteration VSTS ActivityFeed\Sprint 8, 31 minutes ago

B Dave Smits updated Product Backlog Item 2145 'Move from home hub to work hub’, Changed state to

Done, Added a new comment, a day ago

Dave Smits completed pullrequest 72 ‘Merge feature/move-to-workhub to develop', a day ago

Dave Smits updated Product Backlog Item 2140 'Add a license’, 13 days ago

Dave Smits updated Product Backlog Item 2135 '"Minify js again’, 13 days ago

Dave Smits completed pullrequest 71 ‘Merge feature/license to develop’, 13 days ago

Dave Smits updated Bug 2139 'When too much git repositories are in team project not all should be
checked by default in the configuration’, a month ago

Dave Smits updated Product Backlog Item 2104 'Support for multiple area path's’, a month ago

Dave Smits updated Impediment 2109 'Retrieving user photo's is very inefficient', Assigned to Dave Smits ,

2 months ago

Dave Smits updated Impediment 2108 'No paging options in the wigl query’, Assigned to Dave Smits , 2
months ago

R R N ' B

8- 2:8:2:8:8-0:8-8-8-2-8

Dave Smits updated Impediment 2107 'Can't retrieve the Continuation token when using the getBuilds
function’, Assigned to Dave Smits , 2 months ago

See more updates...

[31]

https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed

Planning and Tracking Work Chapter 1

The team rooms functionality has been completely removed in TFS 2018 https://blogs.
msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms—-in-team-

services-and-tfs/. However, the introduction of social experiences built around you,
including the search, follow, and comment features in work items and the activity feed
extension, provides a far more engaging solution.

Portfolio backlog hierarchies and
decomposing work

Requirements come in all shapes and sizes! While many teams can work with a flat list of
items, sometimes, it helps to group related items into a hierarchical structure. Perhaps you
would like to start with a big picture and break it down into smaller deliverables. Or,
perhaps you've got an existing backlog and now need to organize it. No matter your
starting point, TFS offers you hierarchical backlogs so that you can bring more order to
your backlog. Two backlog levels are enabled in each team project by default—in the Agile
process template, it's features and stories. An additional backlog level—Epic—can be
enabled optionally. The user story backlog level is used for sprint planning; the feature
backlog level and the epic backlog level, also known as the Portfolio backlog, can have
multiple uses. This is shown in the following diagram for ease of understanding;

Epic

Portfolio backlog Feature

Backlog Configurable

Product backlog item

Use your backlogs in conjunction with portfolio backlogs to plan your project and do the
following;:

¢ Manage a portfolio of features that are supported by different development and
management teams

¢ Group items into a release train

¢ Minimize size variability of your deliverables by breaking down a large feature
into smaller backlog items

[32]

https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/

Planning and Tracking Work Chapter 1

With portfolio backlogs, you can quickly add and group items into a hierarchy, drill up or
down within the hierarchy, reorder and reparent items, and filter hierarchical views.

Getting ready

TFS 2018 allows you to add one-level child links to work items with ease. However, when
you are in a planning discussion, you sometimes want to rapidly create sub items at
different levels of work item hierarchies. The TFS marketplace features the decompose
extension (https://marketplace.visualstudio.com/items?itemName=cschleiden.
decompose), a free extension that was created by Christopher Schleiden, which allows you to
quickly break down work items into sub-hierarchies. Appropriately named, this extension
makes decomposing work items into sub-items very easy, and very useful during team
discussion and planning sessions. Once you've installed this extension, you'll see the
Decompose work item option in the work item context menu and the backlog and boards
work item context menu:

o' Follow)] B
[Mew linked work item
Up4
0y Create copy of work item...
Deta
1 Email work item
Development X Delste
+ Add link = Templates >
E)ex-‘el:pment hasn't stz EF Start storyboarding
Create a new branch =
& Do exploratory testing
Related Work
Request feedback
+ Add link ~
Child I New branch..
b4 Hlj SEt-:"p VTS Decompase work item
Updated 4 hours §

[33]

https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose

Planning and Tracking Work Chapter 1

How to do it...

Let's perform the following steps:

1. Launch the PartsUnlimited team portal and navigate to the work hub.

2. To configure the team settings, click the gear icon under the velocity chart in the
backlog view. The team settings window has several options to configure and
style backlogs and boards, which we'll cover in later recipes:

el

Parents Hide In progress items Show Mapping Off = NN

Configure team settings

3. In the Settings window, under the General section, click Backlogs. This presents
the backlog levels that are available to your team. This setting is configurable per
team. Adding or removing a backlog level will only affect the team for which it's
being done to, and not every team in a team project. To add the Epics backlog
level for the PartsUnlimited team, simply check the Epics backlog level and click
Save:

Settings

Backlogs
Charts

See only the backlogs your team manages.
Cumulative flow o
Backlog navigation levels

General = bpies
£=° Features
Backlogs -
o =" Stories
Working days
Werking with bugs

[34]

Planning and Tracking Work Chapter 1

4. Open an epic from the Epics backlog and choose Decompose from the context
menu. Hit Enfer to add a feature and indent to create the user story; indent again
to create the task. Once you have decomposed the work item, click Create to save
your changes:

Decompose

Epic Customize

Feature Add user profile in the i05 application L 4
I User Story Retrive the user profile for persenalization settings L 4
Task Implement a store for user settings L 4
Task Persist user settings in documentDE as a json cbject T 4
Task Add to cache and CON ¢ o»
I User Story Handle conflict scenarios for multi device users < X
Task Implement safe save to avoid overwritting changes from ¢« » 3
Task Implement temp store to avoid data loss on save challer < » 3
Feature An editor to view and edit user profile < > M
I User Story Web profile page to view profile details L 4

How it works...

The newly created work items are linked to each other. You can see this linking by
expanding the linked work items in the Epics backlog:

[35]

Planning and Tracking Work Chapter 1

Epic ~ WM Customize Mew Business
Featurs v W Add user profile in the iOS application New Business
User Story « || Retrive the user profile for personalization settings New Business
Task Implement a store for user settings Mew
Task Persist user settings in documentDB as a json object New
Task Add to cache and CDN New
User Story ~ [Ml Handle canflict scenarios for multi device users Mew Business
Task Implement safe save to avoid overwritting changes from one device Mew
Task Implement temp store to aveid data loss on save challenge MNew

With the growth in work item usage, there will be growth in the work item dependency
tree. [usually find a list of dependencies meaningful until the depth of 3, after which I hope
I could just visualize the dependency through a graph. Luckily, the TFS marketplace
features the Work Item Visualization extension (https://marketplace.visualstudio.com/
items?itemName=ms-devlabs.WorkItemVisualization), which is a free extension that was
developed by Microsoft DevLabs. It allows you to visualize work item dependencies from
within the work item form. The unique selling point of this extension is that it allows you to
see how work items relate to each other, as well as code, tests, test results, builds, and
external artifacts. You can even drill into your commits to explore the changeset details.
Among other things, the extension also allows you to annotate and export visualizations,
an example of which is provided by the following screenshot:

Add new columns
to board

Web profile page to
An editor to view and view profile details

edit user profile

@ Expedite work
@ Configure board

\.\ Organize your backlog

Show bugs on backlogs
and boards

Customize cards Customize

Add user profile in the
iOS application

Handle conflict
scenarios for
multi device users

[36]

https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization

Planning and Tracking Work Chapter 1

There's more...

Story mapping is a popular way of visualizing the product backlog with Agile teams. Story
mapping is a top-down approach of requirement gathering. Story mapping starts from an
overarching vision. A vision is achieved via goals. Goals are reached by completing
activities. To complete an activity, users needs to perform tasks. And these tasks can be
transformed into user stories for software development. Story maps are traditionally
created using sticky notes on walls or whiteboards, and have proven to be popular among
Agile development teams. However, these traditional storyboards are not without their
disadvantages: walls are not transportable and the physical nature of these maps means
they are only temporary.

The TFS marketplace features the SpecMap extension (https://marketplace.
visualstudio.com/items?itemName=techtalk. specmap), which was created by TechTalk
software, and gives you the ability to create digital storyboards. This extension allows you
to use existing work items in the system, which means that SpecMap goes further than just
depicting story maps: creating a story map in SpecMap helps you plan iterations in TFS and
structure your backlog items in the process. The following screenshot depicts a story map
of the PartsUnlimited iOS feature team, who are identifying the user journey for the new
iOS application that they are creating for both free and paid users:

38 - Retrive the user profile for
personalization settings

37 - Handle conflict scenarios for
multi device users

39 - Web profile page to view
profile details

2 - The new work item form

9 - Add team members

14 - Customize cards

18 - Add fields and update them
from your board

20 - Add style rules to highlight
cards with color

21 - Add tags to your cards

I 10 - Set team capacity

22 - Add new columns to board

* Must have
(5’ Iteration 1

07/01/2018 - 28/01/2018
3IEN)

0]

~ Nice to have
& Iteration 1

07/01/2018 - 28/01/2018

& || 5 Set-up VSTS

<§)I 31 Configure board

Backlogs Queries SpecMap
Stories ‘ios App & Updated by Tarun Arora just now
Query Backlog (Default) v|v Zoom 6% & & LT OH & e £ v L e
Filter
Register > Personalization > Sign up to Paid Subscri...

& I 4 Recipe 3: Using work items ...

2 The new work item form
Tarun Arora
Feature R1 UX

30 Organize your backlog
Needs revi...

21 Add tags to your cards
Needs revi...

9 Add team members

37 Handle conflict scenarios
for multi device users

38 Retrive the user profile for
personalization settings

10 Set team capacity

18 Add fields and update
them from your board

[371]

https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap

Planning and Tracking Work Chapter 1

Configuring and customizing backlog
boards

Backlogs display work items as a list, while boards display them as cards. In TFS, each
backlog comes with its own board. The backlog board is also known as a Kanban board. To
maximize a team's ability to consistently deliver high-quality software, Kanban emphasizes
two main practices. The first, visualize the flow of work, requires that you map your team's
workflow stages and configure your Kanban board to reflect this. The second, constrain the
amount of work in progress, requires you to set work-in-progress (WIP) limits. You're then
ready to track progress on your Kanban board and monitor key metrics to reduce lead or
cycle time.

Your Kanban board turns your backlog into an interactive signboard, providing a visual
flow of work. As work progresses from idea to completion, you update the items on the
board. Each column represents a work stage, and each card represents a user story or a bug
at that stage of work. The Kanban board has come a long way from when it was first
introduced in TFS 2012. In TFS 2018, boards offer great flexibility to adapt to the processes,
workflows, and customizations that work best for you and your teams.

Getting ready

Kanban literally translates as signboard or billboard. Accordingly, your number-one task is
to visualize your team's workflow. You do this by identifying the types of work and
handoffs that occur regularly as your team moves items off the backlog and into a
shippable state. The main workflow stages performed by our PartsUnlimited team are
captured here as Analyze, Develop, Test, Deploy, and Feedback. Each column
corresponds to a work stage the team performs on each item before it can be considered
done:

(‘wPrioritized /.m (+Clean code B m ";Deploved toinner | FeEd ba Ck

*Estimated «Clear goal *Code checked [n sExploratory Tests -g:gm oo earl sUsage telemetry
*Right-sized stories *Lint tests run sIntegration Tests Py Y *Operational usage

adopters
«Next steps defined *Cl pass «Regression Tests stats

+Customer feedback
B Backlog I Develop P Deploy

[38]

Planning and Tracking Work Chapter 1

The work item does not have all of these states, but the beauty of the Kanban board is that it
allows you to map multiple workflow stages to a work item state. So, in our example, the
develop, test, and deploy stages can be mapped to the work item state active. This can be
done right from within the Configure team settings dialog in the board view, without
having to modify the process template. Columns allow you to visualize the workflow that's
used to deliver requirements to production. Swim lanes, on the other hand, help visualize
the different streams of work. Let's see how we can set up columns and swim lanes.

How to do it...

Let's perform the following steps:

1. Launch the PartsUnlimited team portal and navigate to the work hub. Open the
Stories board and click on the gear icon to configure the team settings.

2. The Columns section in the Settings dialogue allows you to configure board
columns. Rename the Active column to Analyze and update the Definition of
done section:

Columns
Cards
Columns visualize the flow of work across the board
Fields
== Column

Styles
Tag colors New Closed
Annotations

Work in progress limit
fests Setting it to 0 specifies no limit.
Board WIPlimit 5
Columns * Split column into doing and done
Swimlanes
Card reordering State mapping

Specify the state this column maps to.
Charts Bug Active v
Cumulative flow

User Story Active o
General

Definition of done
Backlogs Enter plain text or format using markdown.
Working days

Should have -

Working with bugs + Clear goal

+ Right-sized stories
+ Next steps defined

[39]

Planning and Tracking Work Chapter 1

3. Add a new column for Develop, Test, Deploy, and Feedback, and map this to
the work item state Active. The WIP limit should be set to limit overloading a
specific team will more work than they can deliver at one time, which would only end
up creating a bottleneck in your delivery workflow. You can also track bugs on
the board, since you have the option of mapping a different workflow for bugs:

Columns visualize the flow of work across the board

=+ Column

New Analyze Develop Test Deploy Feedback Closed

4. Navigate to the Swimlanes section in the team settings dialogue. Add a new
swimlane and name it Emergency. While urgent issues will follow the same
workflow for delivery, the swimlane allows you to give them better visibility:

Swimlanes
Cards . N .

Swimlanes visualize different classes of work as horizontal lanes on the board.
Fields)

<+ Swimlane
Styles
Tag colors Emergency Swimlane name
Annatations
N

Tests IDETEUIt IEI"IE']
Board
Columns
Swimlanes I
Card reordering

5. Next up, use the fields section to add the fields you would like to see on the
cards in the Kanban board. A good idea might be to include the field for Value
Area. With this change, the cards on the backlog will display the value area the
work item delivery is contributing to.

[40]

Planning and Tracking Work Chapter 1

6. Use the styles and tag colors section to define styling rules using a combination
of fields and values. It might be a good idea to create a styling rule to show the
card background as red if there is a tag that's blocked, for example. This can be
done by using the following styling rule:

Rule Name Preview Enabled
= Blocked work o Title

Rule name

Name Blocked work

Styling

Select your style choices.

Titlestyle A B [

=

Rule criteria
Your styling choices apply to all work iterns that match all clauses of your custom criteria.

Field Operator Value
+ X Tags ~ Contains ~ Blocked ~

+ Add new clause

How it works...

Setting up a workflow using columns and streams of work with swim-lanes, in addition to
styling rules, makes visualizing requirements a lot easier. As you can see in the following
screenshot, the columns have an information icon, which reflects the Definition of done
setup through the team configuration dialog;:

Backlog Board v
New < Analyze 25 Develop 275 Test 175 Deploy 1ss Feedback O/ Closed
~ Emergency "
New item P Human and Machine feedback,
B Create bugs & Emergency change « Usage telemetry
110 38 Retrive the user profile for « Operational usage stats
personalization settings ﬂ Tarun Arora B Tarun Arora * Customer feedback
Priority 2 l Vale ATed B
Velue Area Business
03 1 19 Create VST
— = Jo—-
18 37 Handle conflict scenarios for oot 5
multi device users o
(1 2 The new work item form (1) 14 Customize cards. 1M 7 Getting started Value Area Bus
Priority 2
VeleAren Business A rorvn Avora Priority 2 A rerun avora

[41]

Planning and Tracking Work Chapter 1

I've briefly touched on WIP limits in the implementation steps. To optimize the flow of
value, you want to identify and eliminate bottlenecks. Bottlenecks indicate that waste exists
in the overall workflow process. By monitoring your Kanban board over time, you can
learn where bottlenecks occur. When several items sit in a column that hasn't worked for
several days, a bottleneck has occurred. Bottlenecks typically occur when WIP limits are too
high. On the other hand, no bottlenecks could indicate that WIP limits are too low. There is
no right answer to what the correct WIP limit is for a column; this is something that can be
discovered using empirical data by using the process and tools over time.

There's more...

The TFS marketplace features the free Query based boards extension (https://marketplace.
visualstudio.com/items?itemName=realdolmen. querybasedboards), which was created
by RealDolmen, and allows you to visualize the result of work item queries on a

board. After installing the extension, navigate to the Work hub and select Queries. When
opening a query, a new tab called Board will be available to visualize the results on a
board:

J VstsExtensions ~ “ Dashboards ~ Code Work Buildand Release Test Wikt | @& Search work items

‘Work Items* Backlogs Queries

Board

Results Editor Charts

New Active Resolved Closed

W Feature . M User Story 3 M User Story 1.

[con e A A

Resolved

« My favorites

Drag queries here to add them to y...

4 Team favorites
M User Story 2

Drag shared queries here to add th...

4 My Queries

v | TestQuery2

b Shared Queries

Task linked to feature

Custom Stat...

[42]

https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards

Planning and Tracking Work Chapter 1

The extension is available as a dashboard widget, as well as a subpage in the work hub. The
Activity Feed gives a summary of all the recent changes that have been made to work
items, commits, pull requests, and builds. It tells you who changed a task, who logged a
bug, and who committed code. The extension supports configuration, so you can decide to
filter out what's not relevant or simply configure which backlogs work updates should be
published from. Some people would agree that the more boards, the merrier!

Preparing and planning a sprint

The product backlog shows the list of work that has been planned by the team, and the
items at the top are usually more valuable. A product team constantly reviews the backlog
and pre-prioritizes the backlog based on user feedback and changing business priorities.
Agile planning tools in TFS support defining and managing work within sprints.

This process is started off by defining a time box, referred to as a sprint, that corresponds to
the cadence your team delivers. Many teams choose a two or three-week cadence.
However, you can specify a shorter or longer sprint cycle. TFS also allows you to wrap
multiple sprints into a release schedule. The sprint backlog represents a subset of the
backlog; the team builds the sprint backlog during the sprint planning meeting. Planning
meetings typically consist of two parts. In the first part, the team and product owner
identify the backlog items that the team feels it can commit to competing in the sprint.
These items get added to the sprint backlog. In the second part, your team determines how
it will develop and test each item. They then define and estimate the tasks that are required
to complete each item. Finally, your team commits to implementing some or all of the items
based on these estimates.

Getting ready

Let's start off by prioritizing the product backlog. To do this, navigate to the Backlog view
for the PartsUnlimited example team. Frequently reviewing and prioritizing your backlog
can help your team know what's most important to deliver next. Reorder your backlog by
simply dragging work items. Alternatively, if you prefer the keyboard route, hold the Alt
key and use the up and down arrows:

[43]

Planning and Tracking Work Chapter 1

Backlog Board
New = Create query Column options =
Type User Story e X
Title Add
Order Work ltem Type Title State Story Points
‘Web profile page
1 User Stary > (M| Retrive the user profile for personalization settings | '@ Viewerefle New
aetalls
2 User Story » [M| Handle conflict scenarios for multi device users New
3 User Story » [l The new work item form ® Active 1
+ 4 User Stary (1] Web profile page to view profile details New
5 User Stary > (M Create new card ® Active
6 User Story [Add team members New

A prioritized backlog without an estimate of how big the work is only half as good. It is
suggested that software development teams review and resize the backlog multiple times
in a sprint, as this keeps the backlog in a ready state for future sprint planning sessions.
While there are many sizing techniques, Fibonacci numbers are a good way to size the
work into logical buckets. Once the work items have an estimate, you can use the Forecast
tool to get an idea of how many items you can complete within a sprint. By plugging in
velocity, you can see which items are within scope for the set of sprints the team has
activated. Teams use the forecast tool to help their sprint planning efforts. By plugging in a
value for the team velocity, the Forecast tool will show which items in the backlog can be
completed within future sprints. Both tools are team-specific tools that rely on the team's
ability to estimate backlog items:

Backlog Board Forecast On

New S| Create query Column options = /

Type User Story ~ X
Title Add
Forecast Order Work ltem Type Title State Story Paints Value Area Iteration Path Tags
ar 1 User Story ~ [Retrive the user profile for personalization settings === @ New 13 Business PartsUnlimited\lteration 1
Task Implement a store for user settings New PartsUnlimited
Task Persist user settings in documentDB as a json object MNew PartsUnlimited
Iteration 2 Task Add to cache and CDN New PartsUnlimited
2 User Stary ~ [l Handle conflict scenarios for multi device users New 3 Business PartsUnlimited\lteration 1
Task Implement safe save to avoid overwritting changes from ... ® New PartsUnlimited
Task Implement temp store to avoid data loss on save challenge @ New PartsUnlimited
3 User Stary > Ml The new work item form ® Active 13 Business PartsUnlimited\lteration 1 Feature R1 UX

[44]

Planning and Tracking Work Chapter 1

With a sized and prioritized backlog in place, there is just one more thing left to do before
you start to plan the sprint. To quickly get started, you can use the default sprints, also
referred to as iterations, that were added when your team project was created. Note that
you must be a member of the Project Administrators group in order to add sprints and
schedule sprint dates. Choose Iteration under the Backlog tab and then click the dates to
edit them. With the dates configured, you are now ready for sprint planning:

< o) January 7 - January 28
= Epics PartsUnlimited Team Iteration 1 Swnrl “au remaining
Edit the dates for this iteration
£=" Features Backlog Board Capacity
" Stories New =l Create query Column options =
Current Type User Story ' X
Iteration 1 Title Add

How to do it...

Sprint planning is a real team effort and a great way to get everybody aligned. The
planning is kicked off by discussing the sprint goal. The Product Owner then shares the
vision of the sprint goal with the team. The appropriate PBIs (which should be on top of the
backlog by now) are selected to meet this sprint goal. Follow these steps to get started:

1. Begin your planning efforts by moving prioritized items from your backlog to
your current sprint, one item at a time.

2. Simply drag each item from the product backlog into the sprint, as shown in the
following screenshot:

= Epics Stories
=" Features Backlog Board
£ Stories) New = Create query Column options =
Retrive the user
Current . User Story A4 X
. ” settings
Iteration 1 Add
Future i .
Order Work Item Type Title State Story Points
Iteration 2
+ 1 User Story > (M Retrive the user profile for personalization settings New 13
Iteration 3 . . .
2 User Story » [M Handle conflict scenarios for multi device users New 3

[45]

Planning and Tracking Work Chapter 1

The Product Owner then starts reading the stories out and going through the acceptance
criteria. This is a great opportunity to briefly discuss and clarify any requirements or
acceptance criteria. Team velocity is a good measure of how many story points of backlog
items the team takes into the sprint. The TFS marketplace features the quick calc extension
(https ://marketplace.visualstudio.com/items?itemName=duffy.vst sfquickfcalcs), a
free extension that was developed by Mike Duffy and allows you to quickly see total effort,
% complete, and other metrics for a selection of work items. This is especially useful during
a sprint planning meeting when you want quick answers on the total count of story points
for the selected work items. This extension is shown in the following screenshot:

=" Features Backlog Board Capacity

£ Stories New =] Create query Column options =2

Current Type User Story ~ X
Iteration 1 Title Add
Future
Order Work Item Type Title State Story ... Value Area Iteration Path
Iteration 2
+ 1 User Story > (M| Retrive the user profile for personalization settings ses @ New 13 2 ki ration 1
lteration 3 . . i . Edit.. 3
2 User Story |8 Handle conflict scenarios for multi device users e New 3 i ration 1
£ Assign to
3 User Story 1M} Add team members === & New 5 ation 1
= Email...

£ New branch...

IE 21 points (0% complete) > I

Next, the team needs to know the total available capacity within the sprint. The availability
of each individual and their role can be tracked using the capacity tools in TFS. Whereas
velocity correlates your team estimate requirements, capacity correlates to actual task time.
Capacity takes into account variations in work hours of team members, as well as holidays,
vacation days, and non-working days. Most teams specify the capacity in terms of hours,
but you can also specify it in days if you so wish:

<
= Epics PartsUnlimited Team lIteration 1
=" Features Backlog Board Capacity
2" Stories = +
Current Add new capacity user \ x
Iteration 1 Search users
Future User Days Off Activity Capacity Per Day
Iteration 2 ﬂ Tarun Arora 2 days Development 4
Iteration 3 Design ~ L1
Teamn Days Off 0 days These days off apply to the whole team.

[46]

https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs

Planning and Tracking Work

Chapter 1

Now, you have a clear view of how much work your team can commit to. In the next part
of the sprint planning meeting, the team creates a plan of work by breaking the

requirements into tasks and then estimating them. Tasks capture the plan of action and add
as many tasks as needed to capture the work required to complete each item. Tasks can
represent different work that needs to be done, such as design, code, test, content, and sign
off. TFS makes the process of adding tasks friction free, giving you the ability to access and
add task functionality from multiple entry points without any overhead. Tasks can be
added right from the sprint backlog, the sprint board, and the product backlog board:

22" Features

=" Stories

Current
Iteration 1

Future
Iteration 2

Iteration 3

Backlog Board Capacity

New = Create query Column options =

Type User Story

Title
Order Work Item Type
- User Story
Add: Task Task
Task
Task

R X
Add
Title State
v M Retrive the user profile for personalization settings wer @ New
Implement a store for user settings Mew
Persist user settings in documentDB as a json object MNew
Add to cache and CDN New

[47]

Planning and Tracking Work

Chapter 1

You can capture as much detail as you need in the task, including the effort estimate to
complete the work. The effort estimate is netted against the actual capacity to provide a

view of whether the work has been overscheduled:

TASK 40*

40 Implement a store for user settings

E Unassigned 1comment Addtag

State New Area PartsUnlimited

Reason B New Iteration PartsUnlimited\|teration 1

Description Planning
Priority

User settings should capture, 2

- profile Activity

- preference

- region settings Development

- currency

- payment details Effort (Hours)
Original Estimate
16
Remaining
16
Completed
0

™ save &iClose ~ o

Details

Follow C) '()

Updated just now

)

9 & 1]

Development

+ Add link

Development hasn't started on this item
Create a new branch

Related Work

<+ Add link v

Parent

1 [38 Retrive the user profile fo...
Updated 3 hours ago, New

[48]

Planning and Tracking Work Chapter 1

How it works...

With the team capacity set up, the product backlog decomposed, and the tasks estimated,
the sprint plan is ready. The team members can now allocate work to themselves by
dragging the tasks to their names:

Backlog Board Capacity Work details On ¢ | 0
New =] Create query Column options = AT Work -
Team
Type User Story X
(16 of 15 h)
Title
Work By: Activity A
Order Work Item Type Title Design
1 User Story ~ (M| Retrive the user profile for personalization settings 0of3h)
Task Implement a store for user settings « Development

Task Persist user settings in documentDB as a json object (16 of 12 h)
Task Add to cache and CDN Work By: Assigned To v
2 User Story (1] Handle conflict scenarios for multi device users E Unassigned mplement a
(1 6 h] store for user
3 User Story (0] Add team members e

BTarun Arora

After you've defined all the tasks for all the items, check whether your team is at or over
capacity. If your team is under capacity, you can consider adding more items to the sprint.
If your team is over capacity, you'll want to remove items out of the backlog. Next, check
whether any team member is under, at, or over capacity, or if someone hasn't even been
assigned any work. Use the capacity bars to determine this. Once you have done this, the
sprint backlog provides a view that should allow you to start delivering your sprint with
confidence:

[49]

Planning and Tracking Work Chapter 1

A

Backlog Board Capacity ‘Work details On [,
Worlk -
= = Create Query Column Options B4 °
Team
State Assigned To Effort Remaining Work Title _ I
(51 of 105h)
Mew Jamal Hartnett 8 9 4 I Hello World Web Site
Work By: Activity v
To Do Johnnie Mcleod 2 Design welcome scr. .
Unassigned
Te Do Christie Church 2 Change background... I
Te Do Christie Church 2 About screen (51 of 105h)
To Do Jamal Hartnett 3 Standardize on form... Work By: Assigned To A
Mew Raisa Pokrovskaya 3 5 4 || slow response on form 7} Christie Church
To Do Christie Church 5 Fix performance iss. I

(15 of 30h)

MNew Raisa Pokrovskaya 8 10 4 || Add an information form
:‘; Jamal Hartnett

To Do Raisa Pokrovskaya 5 Auto-complete user's..

To Do Raisa Pokrovskaya 5 Auto save m I
MNew Christie Church 13 3 sl Change initial view i Johnnie McLeod

Te Do Christie Church 3 Add switching context - I

New Johnnie McLeod 5 8 4 I Secure sign-in (10 of 20h)

To Do Johnnie Mcleod Apply security meas... 8 Raisa Pokrovskaya

MNew Jamal Hartnett 3 16 4 || Welcome back page W I

There's more...

The TFS marketplace features the Sprint Goal extension (https://marketplace.
visualstudio.com/items?itemName=keesschollaart.sprint-goal), a free extension that
was created by Kees Schollaart allows you to record the sprint goal in sprint planning tools.
Once you've installed the extension, you'll see a new tab called Sprint goal in the sprint
planning tools. This is a great way to make the sprint goal visible to the entire team.

[50]

https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal

Planning and Tracking Work Chapter 1

Sometimes, people with unique skills are shared across multiple teams, which makes it
hard to track their available capacity. The TES marketplace features the team capacity
management extension (https://marketplace.visualstudio.com/items?itemName=tfc.
team-capacity), which was created by TFS consulting and provides an overview of the
assigned capacity of individual team members across multiple teams within a team
project. This gives you a bird's-eye view of capacity across all the teams in the team project.
It provides a single pane of glass so that you can see where the team members are active and
how much of their time has been allocated:

Backlogs Queries Team Capacity
User PartsUnlimited Team ... Team1... Team 2 ... Team 3 ... Total Capacity Per Day
5))) [
0 Tarun Arora 2 0 0 0 .

Visualizing progress in a sprint

During a sprint, the team can use the taskboard and the sprint burndown chart to track
progress. The sprint burndown chart provides you with an at-a-glance visual so that you
can determine whether your team is on track to meet their sprint plan. Your taskboard
provides a visualization of the flow and status of each sprint task. With this, you can focus
on the status of backlog items, as well as work that has been assigned to each team member.
It also summaries the total amount of remaining work to complete for a task or within a
column. The taskboard supports pivoting the work by stories and people, and further
filtering on individuals. The taskboard supports customization of the cards, which helps
you surface more information during standup or generally out to stakeholders. The
taskboard can be customized using the team settings dialogue (which we looked at earlier
for backlog board customization). The field setting gives you the option to track bugs on the
taskboard, as shown in the following screenshot:

Working with bugs
Cards

Set your team's preference for how they manage bugs. Your selection determines where bugs appear in the hierarchy and on backlogs and boards. Learn more about the
Fields bug management setting.

Styles Bugs are managed with requirements. ()

© Bugs are managed with tasks.
General - o -
Bugs appear as children of requirements and are prioritized with tasks. They are moved
Backlogs across columns on the task boards.

Woarking days

Working with bugs * |

[51]

https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity

Planning and Tracking Work Chapter 1

The Fields settings allow you to display more work item fields on the taskboard for
product backlog items, tasks, and bugs. For example, you may be interested in seeing the
priority of the bugs and which area of the application they belong to versus the board
column for the product backlog item. Additionally, you can create styling rules to configure
the style for the cards. For example, by rendering impeded work as red, you can base the
style on work items tagged as blocked:

New 167 h Active 52 h Resolved

[0 38 Retrive the user profile
for personalization settings

B azureuser 36h

40 Implement a store for
user settings

B azureuser 16

42 Persist user settings in
documentDB as a json object

B azureuser 10

& 67 The workflow hangs if
the grid has more than 10
records

ahl Tarun Arora

State ® Active Created .. g Tarun Arora Created ... g Tarun Arora)
Board C... Develop State Resolved
- Blocked Priority 2
Board L. Emergancy 41 Add to cache and CDN
Iva-"d Tarun Arora 10

Created A Tarun Arora

UserFeedback

When a lot of work is being done, it is sometimes hard to visualize the dependencies
between multiple tasks that could result in key deliverables being delayed. In this recipe,
you'll learn how you can organize tasks in a sprint on a calendar view and identify
dependencies between them.

Getting ready

The sprint burndown chart is a great indicator of whether the team will be able to complete
all remaining work within the sprint time box, and the taskboard helps you visualize the
remaining work on each task. The Sprint Drop Plan extension (https://marketplace.
visualstudio.com/items?itemName=yanivsegev. Dropfplanfextension), which was
created by Yaniv Segev, is an organizational tool that helps team members sync their tasks
by visualizing their work status and dependencies on a sprint-based calendar.

[52]

https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension

Planning and Tracking Work

Chapter 1

Once you've installed the extension from the marketplace, you'll see a new tab called Drop

Plan in the sprint tools:

<
==" Epics
£2" Features Backlog Board
22" Stories New =
Current Type User Story
Iteration 1 Title

PartsUnlimited Team Iteration 1

Capacity § Drop Plan

Create query Column options il

Add

How to do it...

1. Once you're in the Drop Plan view, you'll notice that there is a swimlane pivoted
against a calendar view for each individual, and a lane for all unassigned work.
Tasks assigned to the individual show up in their respective lane on the sprint

end date:
Backlog Board Capacity Drop Plan : B
Friday Saturday Sunday Monday Tuesday
EEIENT 2/2/2018 2/3/2018 2/4/2018 2/5/2018 2/6/2018
Unassigned Implement a store for
user settings
16
Persist user settings in
documentDB as a json
Tarun Arora object

(104 of 108h)

10

Stere control settings

30

Let the user select who
wins in the conflict

24

[53]

Planning and Tracking Work Chapter 1

2. Next, start to schedule the tasks by dragging them to the date you forecast they'll

be completed by:

Wednesday
13112018

Thursday
2/1/2018

Store control settings

Annu
30

(104 of 108h)

Add to collection and
project

Improve user
experience
Tarun Arora
10 32

(115 of 120h) Add to cache and CDN

10

Friday
2/2/2018

Persist user settings in
documentDB as a json
object

10

Purge historic data

Saturday
2/3/2018

Sunday
2/4/2018

Monday
2/5/2018

Ability to specify
security

40

Identify members and
unassigned

8

Let the user select who
‘wins in the conflict

24

Tuesday
2/6/2018

Implement a store for
user settings

16
Define conflict
definition

15
Allow manual
intervention

10
Document the changes

How it works...

When you hover over a task of interest, the drop plan will render dependency links out to
tasks that are related to the task you have selected, in addition to the product backlog item
all the tasks are linked to. In this case, you now know that the product backlog item has
three key tasks in flight, one of which is only likely to complete on the last day of the sprint.
This gives you an opportunity to discuss the order in which the tasks are scheduled. For
example, in this case, if you think the task scheduled for the last day of the sprint has more
value, it should be brought forward in place of something else. In addition to this, the
extension allows you to visualize an individual's and team's days off, as well as blocked

Backlog Board Capacity Drop Plan
Wednesday Thursday Friday Saturday Sunday Monday Tuesday
1/31/2018 20112018 2/12/2018 2/3/2018 2742018 2/5/2018 2/6/2018
Store control settings Persist user settings in Ability to specify Implement a store for
docurmentDB as a json security user settings
Annu object
30 10 40 16
(104 of 108h) Identify members and
unassigned
8
Improve user Add to colection and Purge historlc data Let the user select who Define conflict
experience project wins in the conflict definition
Tarun Arora
rs— J oo nen {Eﬁ““’ew 32 6 24 15
(115 of 120h) Add to cache and CDN Allow manual
intervention
10 10

Document the changes

[54]

Planning and Tracking Work Chapter 1

There's more...

The team foundation marketplace features the Team Calendar extension (https://
marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar), which was
created by the Microsoft DevLabs team and helps busy teams stay on track and informed
about important deadlines, sprint schedules, and upcoming milestones. Team Calendar is
the one place where you can view and manage the dates that are important to your teams,
including sprint schedule, days off (for individuals or the team), and custom events:

Backlogs Queries Calendar
5 January 2018 > PartsUnlimited Team -~ Today < Prev > Next Iterations
Iteration 1
Sunday Monday Tuesday Wednesday Thursday Friday Saturday
1 2 3 4 5 6 .
Days off
Tarun Arora
Event
Iteration 1 7 8 9 10 1 12 13 (none)
== Add event
14 1o Add days off 17 18 19 20

Delivery plans to track multiple teams

There was a certain revolution a few years back that was instigated by one single team
project that was tracking and managing work for all teams and projects. This stemmed
from the lack of tooling to track and manage work across multiple teams and projects.
When you're planning and tracking work, it's often necessary to view work across teams
and projects. While there were natural benefits from this approach, it also cluttered a single
team project with code and artifacts from multiple unrelated initiatives. With TFS 2017,
Microsoft released the delivery plans extension to address this gap. With delivery plans in
the mix, I don't really advocate one large team project. Instead, you should have a team
project for every software product in your organization.

[551]

https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar

Planning and Tracking Work Chapter 1

A delivery plan is a view of the work from multiple teams (and multiple projects) laid out
on a calendar with each team's iterations. Each row in the view represents the work from a
team's backlog, with each card corresponding to a work item — user story, feature, or

epic. As you horizontally scroll through the calendar, work in future (or past) iterations
comes into view. Like the Kanban board, a delivery plan is an interactive work board,
although one was designed for multiple teams. You can add teams from across all the
projects in your collection. If the plan needs updating, you can simply drag cards to update
the iteration path. Like the Kanban board, you can customize card fields so that you can see
relevant information for your work.

Getting ready

Install the delivery plans extension (https://marketplace.visualstudio.com/items?
itemName=ms.vss-plans) from the marketplace. Developed and maintained by Microsoft,
this extension is free for all TFS users except stakeholders. With the extension installed,
you'll see the Plans page in the work hub:

J PartsUnlimited ~ Dashboards Code Work
Backlogs Queries Plans

Plans \

Favorites All

To see all the features of the Plans extension, you need multiple teams and projects. Use the
sample data widget we discussed in the Getting social with work items recipe to create
multiple projects. Since delivery plans are based on creating a portfolio of work in flight, it
relies on a sprint's schedules for the teams.

[561]

https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans

Planning and Tracking Work Chapter 1

How to do it...

Let's perform the following steps:

1. Click on the New plan button to create a new plan. Call the plan
myDeliveryPlan:

New delivery plan

A delivery plan shows you when work will be delivered across your teams. The plan overlays each team's sprint onto a familiar calendar view. You can view
multiple backlogs and multiple teams across your whole account. Learn more (2

Name *
myDeliveryPlan
Description

My delivery plan to track the progress of feature teams across the parts unlimited, fabrikam fiber and bike 360 product teams.

2. Next, select the projects and teams you want to track in the plan, as well as the
backlog level. Optionally, specify filter criteria to filter out work items so that
they don't show up on the delivery plan. In this case, I've added a filter to ignore
bugs. Click Create to create the plan:

Project * Team * Backlog *
PartsUnlimited ~ PartsUnlimited Team ~ Features vooX
PartsUnlimited h Team 2 hd Features VX
Bike360 ~ Bike360 Team ~ Features voOX
fabrikamfiber v fabrikamfiber Team W Features v o X
+ Add team

Field Criteria

Use field criteria to limit the work items appearing on your plan. This criteria applies to all users of the plan.

Field Operator Value

Work Item Type ~ <> e Bug v ooX

=+ Add criteria

[571

Planning and Tracking Work Chapter 1

3. The delivery plan brings the feature backlogs of the selected teams onto the
canvas. You'll notice in the following screenshot that the sprint cadence of the
PartsUnlimited team is different from the bike 360 and Fabrikam Fiber team, but
the delivery plan makes it possible to visualize their feature backlogs on a single

canvas:
myDeliveryPlan vy Today
¥ Teams 4 January 2018
|
~ PartsUnlimited Te... Iteration 1
Features 1/21 - 2411
‘W 4 Feature
|
~ Bike360 Team Iteration 1
Features 1/18 - 2/4
‘W 3 Feature
|
~ fabrikamfiber Team Iteration 1
Features 1/18 - 2M1
W & Feature
]

4. Next, click the Configure plan settings gear icon on the top right-hand side of the
page to personalize the delivery plan. Add Markers * for key milestones, such as
bug bash, scrum of scrums, team review, and any other key dates:

Configure plan markers

General

Plan markers are key dates and events you want to track.
Overview

=+ Add marker

Teams
Field criteria Date * Label * Color *
Markers * I Thursday, January 25, 2018 Architecture review - v X
Cards Sunday, January 21, 2018 | Scrum of Scrum v X
Fields

Tuesday, January 23, 2018 Bug Bush voooX

[581]

Planning and Tracking Work

Chapter 1

Last but not least, similar to other boards, the plans also support customizing cards. This
allows you to surface more information by including more fields in work item cards.

How it works...

With the configuration for the plan complete, the final result is a delivery board that rolls
up the work items from multiple teams and projects into a single view along with markers.
The board supports all drag and drop operations and makes it really easy to use this view
to take actions during planning and tracking sessions. As teams continue to become more
distributed and the size/scope of work continues to grow, delivery plans make it easy to

visualize your portfolio of teams and projects from across the organization:

Backlogs Queries Plans

myDeliveryPlan ¥

% Teams < May

~ PartsUnlimited Te...

Features
Build settings experience
B Mark Watney
State ® Closed
Refresh web look and feel
@ Kathoyn Eliott
State @ Closed
I
~ Bike360 Team Sprint G Sprint H
Stories 5/8 - 5/19 5/22 - 6/2
I
~ fabrikamfiber Team Sprint 12
Stories 5/ 6
H Bug n User Story

Today

June

Sprint 12

5/29 - 6/16

Convert legacy data

B Rick Martinez

Sprint 14

6/19 - 7/7

Maobile browser support

£ Beth Johanssen
-t

State ® Active State New
[|
Delivery service hooks S
0 Beth Johanssen Martinez
an
State New New
Sprint | Sprint J
/5 - 6/16 6/19 - 6/30
Sprint 13 Sprint 14
5/29 - 6/16 6/19-7/7
n Bug ﬂ User Story H User Story

I
Sprint K

7/3-7/14

[591]

Planning and Tracking Work Chapter 1

There's more...

The plans view allows you to create as many plans as you want, while the search
functionality makes it really easy to search for your plan. The Mark as favorite feature
allows you to get to your favorite plans quickly.

Dashboards for planning and tracking work

Dashboards in TFS provide a customizable canvas that allows your team to visualize and
monitor progress. Dashboards replace the previous Team Overview page, providing easy-
to-read, real-time information. At a glance, you can make informed decisions without
having to drill down into other parts of your team project. Visibility of work is a core
concept of Agile software development, and dashboards make it really easy to create an
information radiator for your team and stakeholders.

Getting ready

Every team project is created with a default dashboard. You can access the PartsUnlimited
dashboard by navigating to the dashboard hub. Anyone with access to the team project,
including stakeholders, can view dashboards. Dashboards use widgets to surface
information. There is no limit on how many dashboards you can create. Let's start off by
creating a new dashboard for sprint 1. At this point, don't add any widgets to the
dashboard. Click the Settings icon in the top right-hand corner of the page and select the
option to auto-refresh the sprint 1 dashboard. Auto-refresh keeps the dashboard up-to-date;
it's fantastic if you intend to project the dashboard view on a television screen.

The TFS marketplace features the Product Vision widget (https://marketplace.
visualstudio.com/items?itemName=agile-extensions.product-vis ion), a free extension
that was developed by Agile extensions and allow you to make product vision visible to the
whole team by surfacing it to a dashboard via a widget. The sprint countdown widget
(https ://marketplace.visualstudio.com/items?itemName=ms-devlabs.
CountdownWidget) is also a free extension and was developed by the Microsoft DevLabs
team, and allows you to count down to a configurable moment in time, or down to the end
of the current sprint.

[60]

https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget

Planning and Tracking Work Chapter 1

How to do it...

Let's perform the following steps:

1. Open the Sprint 1 dashboard and click the + icon from the lower right-hand side
of the page. This launches the Add widget pane.

2. Search and add the sprint countdown, product vision, markdown widget, sprint
capacity, charts widget, query results widget, sprint burn down, and the sprint
overview widget, as shown in the following screenshot:

Overview Sprint 1

Countdown Spr... PartsUnlimited Team Iteration 1 Iteration 1
January 21 - February 11)

Product Vision
aaaaa y 21 - February 11

15 days remaining
144 of 347 h
Stories: 14 not started, 2 in progress

20 work items not started I

Configure me to enter your

product vision.

Markdown Iteration 1
January 21 - February 11
Add content using the markdown widget.
«+ Bold
« Italic
- Links
Query Tile Query Tile Chart for Work Items Query Results
Configure widget Configure widget
?}‘ﬁ ?}ﬁ Configure widget Configure widget

& &
Query Tile Query Tile ﬁ_& _n_ﬁ'

Configure widget Configure widget
B B

3. With the relevant widgets on the board, click on individual widgets to start
configuring them. The Configure workflow on all the tasks option is very
intuitive, for example, the query tile allows you to configure a work item query
to it and specify a styling rule to change the color of the widget based on the
number of work items returned by the query. The chart for the work items query
allows you to render the results of the work item query as a chart of your choice,
with further customization options for colors. The query result returns the work
item list for the work item query that was configured by you, giving you the
option of which columns to return.

[61]

Planning and Tracking Work

Chapter 1

How it works...

Widgets use the TFS REST API to retrieve information. The dashboard canvas allows you to
move widgets around and scale them to different sizes. Widgets support interactivity; for
example, clicking on the Query Tile would take you straight into the Work Item Query

window. Once the widgets on the dashboard have been configured, you'll see output

similar to the following;:

Overview Sprint 1

Product Vision

A marketplace for buying,
selling and trading parts
that provides an friendly &
extensible experience that
spawns across all devices
and platforms...

Feedback

5

Work items

Open Issues Completed Tasks

4

Work items

0

Work items

Iteration 1
January 21 - February 11

Countdown Spr...

21

PartsUnlimited Team

15 days remaining

20 work items not started

I

days remaining

Sprint 1 - Goal

Create an i0S app that allows customers to seamlessly search and bookmark parts of
Interest. Consume search data to give better search suggestions that span across web &
mobile.

Tarun Arora - Scrum Master | Jon Smith - Product Owner

Active Tasks

5 D
38 13

2 13

15 16 17 18
Jan

Iteration 1
January 21 - February 11

144 of 347 h
Stories: 14 not started, 2 in progress

Iteration 1
January 21 - February 11

Open User Staries (2)

Story Points Title

1M Retrive the user profile for personalization settings

I The new work item form

View query

There's more...

The TES marketplace (https ://marketplace.visualstudio.com/search?term=widget
target=VSTScategory=All%20categorieshosting=onpremi sessortBy=Relevance) features
a lot of useful widgets, with an evergrowing collection of widgets — some of which will be

of interest to you.

[62]

https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance

Source Control Management

Code repositories allow developers to write code confidently. More developers are using
source control than ever before. The most obvious benefits of the code repository can be
seen when multiple developers are collaborating on code. Many hands in the pot means
there's a greater need to manage and understand revisions. Code doesn't exist unless it's
committed into source control. Source control is the fundamental enabler of Continuous
Delivery. If you ever have to make an argument to support source control, ask the
following have you ever questions:

¢ Made changes to the code, realized the mistake, and wanted to revert back?
¢ Lost some code or had a backup that was too outdated?

¢ Had to maintain version histories of a product?

e Wanted to see the difference between two (or more) versions of your code?
e Wanted to prove that a particular change broke or fixed a piece of code?

e Wanted to review the version history of some code?

e Wanted to deploy changes to someone else's code?

e Wanted to share your code, or let other people access your code?

e Wanted to see the progress on work being done, and where, when and by
whom?

e Wanted to experiment with new features without tampering with working code?

Source Control Management Chapter 2

Managing code is an essential part of managing the application life cycle, which spans
indiscriminately across programming languages and frameworks. Source-control systems
can broadly be distinguished as centralized or distributed. We'll cover the differences
between the two, but before that, take a look at this trend chart for SVN versus Git, which
was created using Google search data. SVN is a centralized version control system. You'll
notice that SVN as a search keyword was very popular during the time of waterfall-based
project deliveries. It started losing its popularity to Git (a distributed version control
system) during early 2010 when Agile became mainstream. The popularity of Git grew
exponentially with the adoption of Open Source Software (OSS):

Google Trend: svn (centralized) vs git (distributed)
%: Distributed
o)

—a—syn repository: (Worldwide) —a— git repository: (Worldwide)

2004-01 2006-01 2008-01 201001 2012:01 2014-01 201601 @
Let's look at both of the version-control systems to understand how they work.
A Centralized Version-Control System (CVCS) maintains a single central copy of your
source code on a server repository. When working with a CVCS, the developer downloads
the code from the server to a local workspace. Once changes to the code have been made
locally, they are pushed to the centralized copy. Since each of the files in the local
workspace is connected to the server, the server is aware that they are being modified,
which can be useful if you intend to block someone else from making the changes while
you are editing the files. Any functions against the repository (such as branching, merging,
and shelving) also take place on the server, and require a connection to the server.
Foundation Version Control (TFVC) is a centralized version-control system. When
working with TFVC using Visual Studio or Eclipse, the IDE is in frequent communication
with the server. Basic operations, such as getting the latest code or seeing the full list of
history changes, cannot be done without an active connection to the server.

[64]

Source Control Management Chapter 2

A Distributed Version Control System (DVCS) does not necessarily rely on a central
server to store all the versions of a project's files. Instead, every developer clones a copy of
a repository and has the full history of the project on their own hard drive. This copy
(clone) contains all of the data in the repository — all of the branches and all of the commit
history. Git is a distributed version control system. Most operations (except pushing and
pulling) can be performed without an active connection to the server.

Both centralized and distributed version control systems have their pros and cons.
Consider the strengths of the source control system to determine the viability of using it in
your project. CVCS is best suited for very large codebases, where you need granular access
control, and especially if you need to audit usage. Consider using CVCS on codebases that
are hard to merge:

Centralized Source Control System (TFVC)

Strengths Best used for

Centralized

Easily scales for very large codebases
Granular permission control
Permits monitoring of usage

Allows exclusive file locking

Large integrated codebases
Audit & Access control down to file level

Hard to merge file types

DVCS, on the other hand, is suited for highly distributed teams working across platforms.
It provides portable history, and works best with greenfield codebases where the codebase
is structured in small modules:

Distributed

Distributed Source Control System (Git)

‘ Strengths

Best used for

Cross Platform support

An open source friendly code review
model via pull requests

Complete offline support
Portable history

An enthusiastic growing user base

Small & Modular codebases

Evolving through open source

Highly distributed teams
Teams working across platforms

Green field codebases

[65]

Source Control Management

Every business is a technology business, and software is seen as the propeller for
innovation. Being able to innovate quickly and cheaply, testing ideas and products with the
consumers, refining them, and releasing them on a regular basis has become a competitive
advantage. Your speed to convert ideas into working products can sometimes be the
difference between success and failure in this very competitive marketplace. Development
teams are constantly under pressure to deliver better-quality software faster. The speed is
usually a byproduct of a good quality codebase, backed by unit tests. A good source control
system can significantly contribute to the quality of the software, but it requires much more
than just a good source-control system to drive quality. No code standards, a lack of unit
tests, too many tactical implementations, and not addressing underlying architecture issues
are major contributors to Technical Debt. Technical debt doesn't hit you overnight—it's a
slow and gradual process. Unlike financial debt, technical debt is very hard to recognize.

Technical debt slows your ability to deliver value.

In this chapter, we will cover the following recipes:

Migrating from TFVC to Git keeping with code history
Accessing Azure DevOps Server Git repositories using SSH
Importing a Git repository from GitHub into Azure DevOps Server
Basic Git operations using Visual Studio Code

Setting up Git branches for continuous delivery

Pull request for code review using branch policies

Using Git hooks with Azure DevOps Server

Managing and storing large files in Git

Git branching model for Continuous Delivery

Configuring code search as a search engine

Using Git forks and sync changes with upstream PR

[66]

Source Control Management Chapter 2

Migrating from TFVC to Git with code history

To make it easier for you to switch from TFVC to Git, Azure DevOps server now provides
an out-of-the-box migration workflow, called import repository. The import repository
option can be reached from the code hub. This allows you to migrate a TFVC repository
into Git with history. However, the tool only allows you to migrate up to 180 days' worth of
history from your TFVC repository. Not being able to migrate the entire history from the
TFVC repository may be a dealbreaker for some. The following image shows you how to
get to the import repository dialogue, the image also shows the migrate history options
available to you:

J PartsUnlimited

© PartsUnlimited ~ Files Import from TFVC .

LIS

Source type

Favorites All repositories

rilter repositories

4 PartsUnlimited o

+ New repository TFVC v

T Import repositary

(1) Migrating from TFVC to Git can be disruptive. Before starting the import, we suggest
£# Manage repositories - reading our documentation

Path *

e.g. $/Contoso/HelloWorld

Migrate History
For 180 days

MName *

Name your new Git repository.

[671]

Source Control Management Chapter 2

The import repository also allows you to import a Git repository, which is
especially useful if you are looking to move your Git repositories from
GitHub or any other public or private hosting spaces into Azure DevOps
Server.

You may also come across use cases where you need to migrate from the TFVC repository
that is hosted in an Azure DevOps server that your new Azure DevOps server doesn't have
direct access to through the network. In this recipe, we'll learn how to use the open source
command line git-tf to migrate your TFVC projects with complete history into Git, and then
publish the local Git repository into a new Git repository in Azure DevOps Server.

Getting ready

In this section, we'll cover how to download and set up git-tf to prepare for the migration:

1. Download the git-tf command-line tools from the Microsoft Download Center
(http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC—
15B7A078ATF4/git-tf-2.0.3.20131219.zip), and then extract the ZIP file into
the C:\git-tf folder

2. To access git-t £ directly from the command line, add the C: \git-tf path to
your path environment variable

3. Create a folder, C: \migrated, to store the migrated repositories

In this example, we'll assume that the host TFVC repository that needs to be migrated is
hosted on the http://myOldAzure DevOps ServerServer/Azure DevOps
Server/DefaultCollection Azure DevOps Server server in the

$/0ldTeamProject /App2BeMigrated folder.

How to do it...

In this section we'll cover the steps for migrating the code from TFVC to git with history:

1. Launch the command line and run the following command; --deep is used to
extract the entire history from this repository. This operation may take longer to
complete, depending on the size and depth of history of the source repository:

git-tf clone --deep http://myOldAzure DevOps ServerServer/Azure
DevOps Server/DefaultCollection $/0ldTeamProject/App2BeMigrated
C:\migrated\App2BeMigrated

[68]

http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip

Source Control Management Chapter 2

2. In the command line, change the directory to C: \migrated\App2BeMigrated
and run the following command. This will clean the Git metadata from the
commit messages:

git filter-branch -f --msg-filter "sed 's/~git-Azure DevOps
Server-id:.*;C\ ([0-9]*\) $/Changeset:\1/g'" -- --all

3. Delete the .git/refs/original folderin C:\migrated\App2BeMigrated to
delete the old branches as they are not needed anymore. To publish the local
migrated Git repository in Azure DevOps Server, you'll need to create a new Git
repository in Azure DevOps Server. To do this, navigate to the PartsUnlimited
team project in the team portal and create a new Git code
repository, MyMigratedApp:

Create a new repository

Type
& Git N
Repository name *

MyMigratedApp

Add a README to describe your repository

Add a .gitignore:

Mone ~

4. Run the following command to add the newly created Git repository as an origin
to the migrated Git repository:

git remote add origin http://Azure DevOps Server2018/Azure
DevOps
Server/DefaultCollection/PartsUnlimited/_git/MyMigratedApp

5. Run the following command to push the new Git repository to the remote origin:

git push -u origin -all

[69]

Source Control Management Chapter 2

How it works...

While most of the other commands are pretty self explanatory, the emphasis here is on
the -—deep switch:

1. By including the ——-deep switch, the entire history of the TFVC repository is
consumed during the migration process. If this keyword is left out, only the most
recent changeset will be fetched, which you wouldn't want in the scenario of a
full export.

There's more...

Another situation you may keep running into is that the committer names are different on
Azure DevOps Server and Git. As a rule, Git recognizes committers by their designed
email address, while Azure DevOps Server ordinarily utilizes your Windows character.
Accordingly, a similar individual may be spoken to by two different committers on the Git
store. Use the Azure DevOps Server username for the import and the genuine Git client for
new submits that are made on the Git storehouse. Utilize the below command to remap the

names:
git filter-branch -f —--commit-filter "
if ["$GIT_COMMITTER_NAME" = "<old Azure DevOps Server

user>" 1;
then GIT_COMMITTER_NAME="<new name>";

GIT_AUTHOR_NAME='"<new name>";
GIT_COMMITTER_EMAIL="<new — email>";
GIT_AUTHOR_EMAIL="<new - email>";
git commit-tree "$Q@";

else git commit-tree "$Q";

£i" HEAD

Accessing Azure DevOps Git repositories
using SSH

Azure DevOps Server supports three secure ways to connect to your Git repositories—the
first two work over HTTPS and the third option uses SSH:

¢ Git Credential Manager
¢ Personal Access Token
e SSH Public Keys

[70]

Source Control Management Chapter 2

Git credential manager is the preferred option, since it lets you use the same credentials
that you use with Azure DevOps Server web portal and also supports multi-factor
authentication. In addition to supporting multi-factor authentication with Azure DevOps
Server, the credential managers also support two-factor authentication for GitHub
repositories. Once authenticated, the credential manager creates and caches a personal
access token for future connections to the repo. Git commands that connect to this account
won't prompt for user credentials until the token expires or is revoked through Azure
DevOps Server. If you are accessing your Azure DevOps Server Git repositories

through Team Explorer in Visual Studio, Visual Studio Code, Intelli] and Android Studio
with the Azure DevOps Server Plugin for Intelli], and Eclipse (with the Team Explorer
Everywhere plugin), you'll be using the Git credentials manager under the hood.

You are probably wondering, "What's the use case for using PAT or SSH keys for
authentication?" If you are using an environment that doesn't have an integration plugin
available with Azure DevOps Server, configure your IDE to use a Personal Access Token or
SSH keys to connect to your repos in Azure DevOps Server. The Git credential manager
creates and caches a PAT after initial authentication, which is what it uses for future
connections to the repository. The difference here is that if you use PAT for authentication
from an environment that doesn't support Git credential manager, then you're responsible
for generating and managing the PAT yourself. PATs are a perfect fit when you're trying to
authenticate from command-line tools, tasks in build pipelines, or using REST

APIs. Personal access tokens are alternate passwords that you create in a secure way using
your normal authentication, and they support expiration dates and the scope of access. You
can put them into environment variables so that scripts do not hardcode passwords.

If you are coming from a non-Windows ecosystem, you are probably more used to using
SSH keys for authentication. SSH keys provide you with secure access to your Git
repositories hosted in Azure DevOps Server without having to enter a password. SSH keys
work across platforms: you can use one SSH key to connect to multiple systems, such as
Azure DevOps Server, Azure DevOps, GitHub, and any other systems that support SSH
access. This is especially useful for system administrators who need to access multiple
systems and would otherwise find entering passwords tedious. SSH public key
authentication works with a pair of generated encryption keys. The public key is shared
and used to encrypt messages. The private key is kept safe and secure on your system and
is used to read messages encrypted with the public key. As of Visual Studio 2017, Visual
Studio provides native support for SSH access to Git repositories.

[71]

Source Control Management Chapter 2

Now that we are clear on the different types of secure access supported by Azure DevOps
Server and when you should use which, let's see how to set up SSH public key access with
Azure DevOps Server.

Getting ready

Two important things to do in preparation for setting up SSH:

1. If you are using Windows, install Git for Windows. The Git for windows
installation (http://gitforwindows.org/) adds a shortcut to Git Bash in the Start
menu.

2. When you generate SSH keys they are stored in a default folder in your machine,
In this recipe, we'll use Bash to generate the SSH keys. Alternatively, you can use
other shell environments to generate SSH keys as well. Be careful if you have any
existing SSH keys on your machine, generating SSH keys in the default folder
location will overwrite any existing SSH keys in that folder.

How to do it...

In this section we'll go through the commands for generating SSH keys:

1. The following commands will let you create new default SSH keys. Running this
command will overwrite any existing default keys. Launch bash and use the
ssh-keygen command as follows. This produces the two keys that are needed
for SSH authentication: your private key (1d_rsa) and the public key
(id_rsa.pub):

ssh-keygen -C "tarun@contoso.com"

Generating public/private rsa key pair.

Enter file in which to save the key (/home/tarun/.ssh/id_rsa):
/home/tarun/.ssh/id_rsa

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/tarun/.ssh/id_rsa.
Your public key has been saved in /home/tarun/.ssh/id_rsa.pub.

It is important to never share the contents of your private key. If the
private key is compromised, attackers can use it to trick servers into
thinking the connection is coming from you.

[72]

http://gitforwindows.org/
http://gitforwindows.org/
http://gitforwindows.org/
http://gitforwindows.org/
http://gitforwindows.org/
http://gitforwindows.org/
http://gitforwindows.org/
http://gitforwindows.org/

Source Control Management Chapter 2

2. Add the public SSH key to the user ID in Azure DevOps Server. To do this,
navigate to Security first:

a Tarun Arora
b-d contoso\tarun.arora

My profile

1 Notification settings

Q Security

Sign in as...

Sign out

3. Select SSH public keys, click Add, copy the content of id_rsa.pub from the
.ssh folder, and save your changes:

Add an SSH public key

Description | HomeMac-key

Key Data ssh-rsa

AAAABINZAC Tyc2 EAAAADAQABAAABAQDV W3 6apFBEChebrQGhBytel AKQVg TVZERNEufiq5
1pSdgFisTUFRfahY9r3gEDtmwo8smPsiKblOs4c8TyR+ PUSIMAPtIAM3R3ELRDhkSuboR 14ved|
J9PTL/DDSbdEQGmbED+Hynlag2NEHwI Tky) +fkCOs4Xpr+uQ¥4U2a7 A)57UPeUowrgC9oFpl
uP3zpCkulZvivPConyV/DvRgLidOuElwGNGCZ rgbZrCX0ObPRRVXMOGN/NE3nL3ERCodevPi
XIrrM/apyskgnCvppgholVEAVSLFGbdDETu/ refkky DZpXKdfm 1s5Bno0h 501 DOPRNWWGK

A

Save Cancel

[73]

Source Control Management Chapter 2

4. You are now ready to clone the Git repository using your all-new SSH
keys. Navigate to the code hub in the parts unlimited team project. You'll notice
that the clone dialogue has a clone URL for HTTP and SSH. Select SSH and copy
the URL:

Search code

& Fork [Clone

Clone repo

Clone git repo using command line or IDE

Command line /

ssh://azsu-p-tfs2018:22/tfs/DefaultCollection/Parts... Iy

@, Manage SSH keys | Learn more about SSH 2

IDE

Clone in Android Studio ~

Having problems authenticating in Git? Be sure to get the latest
version of Git for Windows or our plugins for Intelli), Eclipse, Android

Studio or Mac & Linux terminal

5. Run git clone from the command line to clone the Git repository using SSH:

git clone ssh://azdo2019:22/Azure DevOps
Server/DefaultCollection/PartsUnlimited/_git/MyMigratedApp

[74]

Source Control Management Chapter 2

How it works...
Let's go through the steps to understand how this works:

1. The SSH key setup process prompts you to validate the fingerprint on the SSH
public key the first time you use it, this is for your own protection to avoid any
malicious use. When you run git clone to clone using the SSH URL of the Git
repository, you will be prompted to verify that the SSH fingerprint for the server
you are connecting to. This is done to protect you from the man-in-the-middle
attacks, you can learn more about this at this link
at https://technet.microsoft.com/en-us/library/cc959354.aspx. Once you
accept the host's fingerprint, SSH will not prompt you again unless the
fingerprint changes.

2. The ssh-keygen command creates a 2,048-bit RSA key for use with SSH. The
command gives you an option to add a passphrase for your private key—this
provides another layer of security for your private key. If you specify a
passphrase, be sure to configure the SSH agent to cache your passphrase so that
you don't have to enter it every time you connect.

3. The ssh-keygen command in the preceding example has been run with the -

c switch. This allows you to add a comment field in the key file — for convenience
to the user to help identify the key. The comment can tell what the key is for, or
whatever is useful. The comment is initialized to user@host when the key is
created, but can be changed using the —c option.

There's more...

Putty is a very popular telnet client for windows, if instead of using ssh-keygen on bash,
you plan on using putty as your SSH client. You'll need to convert your keys into OpenSSH
format, this can be done using PuTTYgen. Simply load the private key into PuTTYgen, go
to the Conversions menu, and select Export OpenSSH key. Then, save the private key file
and perform the following steps to set up non-default keys with Azure DevOps server Git
repositories. These steps should also be followed if you generate ssh keys using ssh-
keygen, but don't save them to the default . ssh folder in your profile.

The most important step, which is what gets overlooked the most, is that the keys must be
in a folder that only you can read or edit. If the folder has wider permissions, SSH will not
use the keys. Since these keys have not been generated using the standard process or saved
in the default location, you'll need to make SSH aware of these keys. This can be done by
running the following command which is used to start the ssh agent.

[75]

https://technet.microsoft.com/en-us/library/cc959354.aspx
https://technet.microsoft.com/en-us/library/cc959354.aspx
https://technet.microsoft.com/en-us/library/cc959354.aspx

Source Control Management Chapter 2

Windows users need to run the start-ssh-agent . cmd command before

running the following command:
ssh—add /home/tarun/myBespokeFolder/.ssh/id_tarun.rsa

Now, your custom keys are ready to be used for connectivity with Git repositories in Azure
DevOps Server.

Importing a Git repository from GitHub into
Azure DevOps Server

If you already have a Git repository on GitHub that you want to port to Azure DevOps
Server, you'll be delighted to know that Azure DevOps Server natively supports importing
a Git repository with history from any Git-hosting platform, including GitHub. In this
recipe, you'll learn how to import the parts unlimited GitHub repository with its complete
history, including branches and tags, into Azure DevOps Server.

Getting ready

The PartsUnlimited GitHub repository (https://github.com/Microsoft/PartsUnlimited)
that we'll be porting across needs to be accessible from the environment you are accessing
in the Azure DevOps Server web portal. In the image below you can see the PartsUnlimited
GitHub repository hosted under the Microsoft organization.

LI Microsoft / PartsUnlimited ® Watch~ 135 J Star 331 YFork 248

<> Code Issues 11 Pull requests & Projects 0 Wiki Insights

.Net Core + SQL Azure app for DevOps Scenarios https://microsoft.github.io/PartsUnili...

P 194 commits 712 branches > Oreleases A8 21 contributors
Branch: master ~ New pull request Create new file Upload files Find file Clone or download ~
eamonnk updated lab files m03 Latest commit ceb2cel 9 days ago
Bl Labfiles updated lab files m03 9 days ago
8 docs updated files 4 months ago
B env udpated app source files 4 months ago

[761]

https://github.com/Microsoft/PartsUnlimited
https://github.com/Microsoft/PartsUnlimited
https://github.com/Microsoft/PartsUnlimited
https://github.com/Microsoft/PartsUnlimited
https://github.com/Microsoft/PartsUnlimited
https://github.com/Microsoft/PartsUnlimited
https://github.com/Microsoft/PartsUnlimited
https://github.com/Microsoft/PartsUnlimited
https://github.com/Microsoft/PartsUnlimited
https://github.com/Microsoft/PartsUnlimited
https://github.com/Microsoft/PartsUnlimited

Source Control Management Chapter 2

The clone URL for this repository can be retrieved by clicking on the green Clone or
download button in GitHub.

How to do it...

1. Open the Azure DevOps Server parts unlimited team project in the web portal
and navigate to the code hub. From the parts unlimited Git repository list, choose
to import a repository. In the import window, enter the clone URL of the
PartsUnlimited GitHub project and specify a unique name for the target
repository to be created, MyPartsUnlimited. Click Import to start the import
workflow:

J PartsUnlimited .
Import a Git repository

LI

Source type

4> PartsUnlimited ~ Files

Favorites All repositories

‘ hlter repositories

4 PartsUnlimited b . ot y

-+ New repository Clone URL *

$ Import repository https://github.com/Microsoft/PartsUnlimited.git

#* Manage repositories Requires authorization

MName *

MyPartsUnlimited

[77]

Source Control Management Chapter 2

The import process works asynchronously and sends you an email
notification once the import has successfully completed. The import
process is usually quick, but can take longer, depending on the size and
depth of the repository you are importing.

How it works...

Let's see how it works:

1. The Azure DevOps Server Activity log and Job monitoring page isn't featured in
the menu, so not many people are aware of it. Navigate to the Azure DevOps
Server activity and job monitor page by browsing to http://<YourAzure
DevOps ServerServer>/Azure DevOps Server/_oi/.The Azure
DevOps Activity log lists all recorded activities. The Job monitoring page shows
the execution processing and history of all jobs that have been submitted to
Azure DevOps Server:

Activitylog Job monitoring
Activity Log
Host: DefaultCollection V| Identity Name:

G | Export

id - Application Command Status Start Time Execution Time Identity Name 1P Address Unigue Identifier User Agent Command Iden... Execution Count ~Authentication ... ResponseCode

7128 Git I GitimportRequests.GetimportRequest | @ @ 1/28/2018 6:46 PM 16465 contoso\tarunarora 2120157.145 68411653-204... Mozilla/5.0 (M... 2 NTLM 200

2. From the Job History view, you'll see that the import Git repository is processed
as a job. Subsequent to that, other jobs are executed to send email notifications on
completion of the import process and the execution of code sense catchup jobs:

Job History
The grid below shows the job history results over the stated peried of time (up to 500 entries). Below is the st of fiters which may be limiting the data which is returned, By default, the successful jobs ARE NOT shown to minimize distractions when reviewing the results.
Filters:

« Job Name: Al
« Result Type: All

Historyld Priority Result Host Name Job Name Queue Time Time in Queue Run Time
2627 7 Disabled [TEAM FOUNDATION]DefaultCollection Code Sense Catchup Job 1/28/20185:51PM 0:00:01.11 0:00:00
2625 13 PartiallySucceeded [TEAM FOUNDATION]DefaultCollection Notifications E-Mail Delivery 1/28/20185:43PM 0:00:00.5 0:00:00.046
2623 12 PartiallySucceeded [TEAM FOUNDATION]DefaultCollection Notifications E-Mail Delivery 1/28/20185:42 PM 0:00:00.51 0:00:00.047
2614 12 PartiallySucceeded +-+[TEAM FOUNDATION]DefaultCollection Git User Delivery 1/28/20185:40PM 0:00:00956 0:00:00.03

[78]

Source Control Management

Chapter 2

3. The Git repository, with all its history branches and tags, is migrated across from
GitHub into a new Git repository in Azure DevOps Server:

4 MyPartsUnlimited ~ Files Commits Pushes Branches Tags

¥ master v MyPartsUnlimited / Type to find a file or folder..

Mine All branches Tags

s History README

| b ilter branches |

» history (... Author

accelerator
aspnet4s } TE£8£d036
build-bash] b3led2ef8
h-pages
gh-pag L] Da8cf8lc
master

L4 d928baa%
5ql2014

L 95983255
supressCS0618warnings

L] 28d918f4
update-doc

L] 9e08c349
update-doc2

L] 62adicl?
update-NETCore2.0

L d5871889
<+ New branch

L] d3bf3683

[9 LICENSE

Pull Requests

ra -
~ | | From date To date

Merge pull request #101 from Intergen-NZ/feature/ms-advanced-feature-flags
Added escaping to force html tag to display in rendered markdown

Adding pr fixes

minor text fix

adding confirmation modal

Adding missing store controller section

Updating advanced ff lab based on PR changes

Adding fixes based on PR

Adding using statements to feature manager

Fixing broken png links

There's more...

The Azure DevOps Server marketplace features the Commit Network extension (https://
marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork). This free
extension, created by Swapnil Athawale, brings in visualization capabilities to the branch
commits and the flow of code. Visualizations include the following:

e Pie chart of code commits by members

e Flow network of commits

e Graphical representations of work by each member

[79]

https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork

Source Control Management Chapter 2

Basic Git operations using Visual Studio
Code

Git and Continuous Delivery is one of those delicious chocolate & peanut

butter combinations we occasionally find in the software world: two great tastes that taste
great together! Continuous Delivery of software demands a significant level of automation.
It's hard to deliver continuously if you don't have a quality codebase. Git provides you with
the building blocks to really take charge of quality in your codebase; it gives you the ability
to automate most of the checks in your codebase even before committing the code into your
repository. To fully appreciate the effectiveness of Git, you must first understand how to
carry out basic operations on Git, such as clone, commit, push, and pull.

The natural question is, how do we get started with Git? One option is to go native with the
command line or look for a code editor that supports Git natively. Visual Studio Code is a
cross-platform open source code editor that provides a powerful developer tooling for
hundreds of languages. To work in the open source, you need to embrace open source
tools. In this recipe, we'll start off by setting up the development environment with Visual
Studio Code, create a new Git repository, commit code changes locally, and then push
changes to a remote repository on Azure DevOps Server.

Getting ready

In this recipe, we'll see how we can initialize a Git repository locally, and then we'll use the
ASP.NET Core MVC project template to create a new project and version it in the local Git
repository. We'll then use Visual Studio Code to interact with the Git repository to perform
basic operations of commit, pull, and push. You'll need to set up your working
environment with the following;:

e NET Core 2.0 SDK or later: https://www.microsoft.com/net/download/macos
Visual Studio Code: https://code.visualstudio.com/download

C# Visual Studio Code extension: https://marketplace.visualstudio.com/
items?itemName=ms-vscode.csharp

Git: https://git-scm.com/downloads

Git for Windows (if you are using Windows): https://gitforwindows.org/

[80]

https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://gitforwindows.org/
https://gitforwindows.org/
https://gitforwindows.org/
https://gitforwindows.org/
https://gitforwindows.org/
https://gitforwindows.org/
https://gitforwindows.org/
https://gitforwindows.org/

Source Control Management Chapter 2

The Visual Studio Marketplace features several extensions for Visual Studio Code that you
can install to enhance your experience of using Git:

. CﬁtLens(https://marketplace.visualstudio.com/items?itemName=eamodio.
gitlens): This extension brings visualization for code history by leveraging Git
blame annotations and code lens. The extension enables you to seamlessly
navigate and explore the history of a file or branch. In addition to that the
extension allows you to gain valuable insights via powerful comparison
commands, and so much more.

. Cﬁtfiﬁﬂory(https://marketplace.visualstudio.com/items?itemName=
donjayamanne.githistory): Brings visualization and interaction capabilities
to view the Git log, file history, and compare branches or commits.

How to do it...

1. Open the Command Prompt and create a new working folder:

mkdir myWebApp
cd myWebApp

2. In myWebApp, initialize a new Git repository:
init git

3. Configure global settings for the name and email address to be used when
committing in this Git repository:

git config —--global user.name "Tarun Arora"
git config —-—-global user.email "tarun.arora@contoso.com"

If you are working behind an enterprise proxy, you can make your Git
repository proxy-aware by adding the proxy details in the Git global
configuration file. There are different variations of this command that will
allow you to set up an HTTP/HTTPS proxy (with username/password)
and optionally bypass SSL verification. Run the below command to
configure a proxy in your global git config.

git config —--global http.proxy
http://proxyUsername:proxyPassword@proxy.server.com:port

[81]

https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory

Source Control Management Chapter 2

4. Create a new ASP.NET core application. The new command offers a collection of
switches that can be used for language, authentication, and framework selection
(more details can be found on Microsoft docs: https://docs.microsoft.com/en—

us/dotnet/core/tools/dotnet-new?tabs=netcore2x):

dotnet new mvc

Launch Visual Studio Code in the context of the current working folder:

code .

5. When the project opens up in Visual Studio Code, select Yes for the Required
assets to build and debug are missing from 'MvcMovie'. Add them? warning
message. Select Restore for the There are unresolved dependencies info
message. Hit F5 to debug the application. Then, mywebApp will load in the
browser, as shown in the following screenshot:

|

File Edit Selection View Go Debug Tasks Help

P .NET Core Launch (web) ¥ o S| £ lounchjson %

4 VARIABLES

| Home Page - myWebAp X

C | @ localhost:5000

You'll notice that the . vscode folder has been added to your working folder. To
avoid committing this folder into your Git repository, you can include this in the
.gitignore file. With the .vscode folder selected, hit F1 to launch the
command window in Visual Studio Code, type gitIgnore, and accept the option
to include the selected folder in the .gitIgnore file:

) launch.json - myWebApp - Visual Studie Code
File Edit Se

ion View Go Debug Tasks Help

@ E = launchjs >gif]

4 OPEN EDITORS 1 - Add File to .gitignore
: Chey

4 MYWEBAPP

by

[82]

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x

Source Control Management Chapter 2

6. To stage and commit the newly created myWebApp project to your Git repository
from Visual Studio Code, navigate to the Git icon from the left panel. Add a

commit comment and commit the changes by clicking the checkmark icon. This
will stage and commit the changes in one operation:

) launch.json - myWebApp - Visual Studic Code
File Edit Selection View Go Debug Tasks Help

v O

New project from template

CHANGES 74

{} appsettin
{} ap tings.Development.,json
{}

7. Open Program. cs; you'll notice that Git lens decorates the classes and functions

with the commit history and also brings this information inline to every line of
code:

Main([1 args)

BuildWebHost(args).Run();

ebHost BuildWebHost(
eateDefaultBuilder()
.UseStartup<Startup>()
.Build();

8. To share your Git repository with others, it needs to be published to a remote
repository. Create a new Git repository in the Azure DevOps
Server's partsunlimited team project and call it myWebApp. Don't initialize the
Git repository by adding a readme . md file.

[83]

Source Control Management Chapter 2

If you have a reinitialized repository on the server that you want to
associate with an unrelated local Git repository, you'll need to merge
unrelated histories — refer to the There’s more section to learn how to do

this.

9. Add the newly created Git repository in the Azure DevOps Server as the remote
for the local Git repository:

git remote add origin http://Azure DevOps Server2018/Azure
DevOps Server/DefaultCollection/PartsUnlimited/_git/MyWebApp

10. In order to validate the URL of the remote git branch run the following
command:

git origin -v

Visual Studio Code detects that the local Git repository is associated with a remote Git
repository in Azure DevOps Server. It gives you the option to push the local changes to the
origin right from within the Visual Studio Code status bar:

I master| &> @0 A0 P .NET Core Launch [web)

How it works...

The easiest way to understand how the steps work is to check the history of the operation.
Let's have a look at how to do this...

Navigate to the myWebApp Git repository in Azure DevOps Server's partsunlimited web
portal, and then click on History to see the history of changes that have been pushed from
the local to the server:

&

J PartsUnlimited ~ ~ Dashboards Code Work Build and Release Test Wiki

4 MyWebApp ~ Files Commits Pushes Branches Tags Pull Requests

¥ master ~ MyWebApp / Type to find a file or folder

Contents History

© MyWebApp
bin/Debug/netcoreapp2.0 Simple history (... Authaor v From date ﬁ To date E
Controllers
Graph Commit Message
Models)
L edlccdaa New project template

oby)

[84]

Source Control Management Chapter 2

There's more...

If the Git repository was initialized at the time of creation by having a new README . md file
added to it, then the Git repository on the server and the local will have a history that is
unrelated:

Create a new repository
Type
¢ Git W

Repository name *

MyWebApp

H Add a README to describe your repository

Add a .gitignore:

VisualStudio ~

In this situation, you'll have to explicitly link the local branch with the branch on the
remote. Associate the local branch with an upstream branch:

git branch --set-upstream-to=origin/master

Visual Studio Code detects that a remote has been added for this local Git repository and
that the local branch and the upstream branch are not in sync. Since the history in the
remote repository and the history in the local repository aren't related yet, use the —-
allow-unrelated-histories switch to pull the changes from the remote repository into
the local repository:

git pull origin master —--allow-unrelated-histories

Push the changes from your local repository into the remote by clicking on the push icon in
the Visual Studio Code status bar:

i# master| 0121 | PartsUnlimited [10 - ##%53 9 ©0A0 P NET Core Launch (web)

[85]

Source Control Management Chapter 2

Navigate to the myWebApp Git repository in Azure DevOps Server's partsunlimited web
portal, then click on History to see the history of changes. The graph of history reflects
that the code histories of the local repository and the remote were not related before being
pushed into the remote repository:

':l PartsUnlimited ~ Dashboards Code Work Build and Release Test Wiki | o1}
4 MyWebApp v Files Commits Pushes Branches Tags Pull Requests
I* master v MyWebApp / Type to find a file or folder.
Contents History = README
¥ MyWebApp
bin/Debug/netcoreapp2.0 Simple history (... Author e From date E To date
Controllers
Graph Commit Message
Models
b L4 98d28009 Merge branch ‘master’ of http://azsu-p-tfs2018/tfs/DefaultCollection/PartsUnlimited/_git/MyWebApp
obj R
y L] c10d4996 Added README.md, gitignore (VisualStudio) files
iews
L adb65178 New project from template
wwwroot
[gitignore

Pull request for code review using branch
policies

Code issues that are found sooner are both easier and cheaper to fix. Therefore,
development teams strive to push code quality checks as far left into the development
process as possible. As the name suggests, branch policies give you a set of out-of-the-box
policies that can be applied to the branches on the server. Any changes being pushed to the
server branches need to comply with these policies before the changes can be

accepted. Policies are a great way to enforce your team's code quality and change-
management standards. In this recipe, you'll learn how to configure branch policies on your
master branch.

Getting ready

The out-of-the-box branch policies include several policies, such as build validation and
enforcing a merge strategy. In this recipe, we'll only focus on the branch policies that are
needed to set up a code-review workflow.

[86]

Source Control Management Chapter 2

How to do it...

1. Open the branches view for the myWebApp Git repository in the parts unlimited
team portal. Select the master branch, and from the pull-down context menu,
choose Branch policies:

J PartsUnlimited # Dashboards Code Work Build and Release Test Wiki
¥ MyWebApp ~ Files Commits Pushes Tags Pull Requests
Branches

Mine All Stale
Branch Commit
I* master Default Compare ed3ccdaa
-+ MNew branch

1% New pull request

Delete branch

View files

@ O =

View history

Lock

Branch policies

@] =)

Branch security

2. In the policies view, check the option to protect this branch:

Overview Work Security Version Control Policies ~ Agent Queues Notifications Service Hooks Services Test Release

8 Policies for: PartsUnlimited > MyWebApp > master

E Protect this branch
* Code changes must be submitted via pull request
* This branch cannot be deleted
* Manage permissions for this branch on the Security page

[871]

Source Control Management Chapter 2

3. This presents the out-of-the-box policies. Check this option to select a minimum
number of reviewers. Set the minimum number of reviewers to 1 and check the
option to reset the code reviewer's votes when there are new changes:

Require a minimum number of reviewers

Reguire dpprova from a specified number of reviewers on pull requests.
Minimum number of reviewers | 1

Allow users to approve their own changes.

Allow completion even if some reviewers vote "Waiting” or “Reject”.

Reset code reviewer votes when there are new changes.

The Allow users to approve their own changes option allows the
submitter to self-approve their changes. This is OK for mature teams,
where branch policies are used as a reminder for the checks that need to
be performed by the individual.

4. Use the review policy in conjunction with the comment resolution policy. This
allows you to enforce that the code review comments are resolved before the
changes are accepted. The requester can take the feedback from the comment and
create a new work item and resolve the changes. This at least guarantees that
code review comments aren't just lost with the acceptance of the code into the
master branch:

Check for comment resolution

Check to see that all comments have been resolved on pull requests

Policy requirement

@ Required

Block pull requests from being completed while any comments are active

Optiona

Warn if any comments are active, but allow pull requests to be completed.

[881]

Source Control Management Chapter 2

5. A code change in the team project is instigated by a requirement. If the work item
that triggered the work isn't linked to the change, it becomes hard to understand
why the changes were made over time. This is especially useful when reviewing
the history of changes. Configure the Check for linked work items policy to
block changes that don't have a work item linked to them:

Check for linked work items

Encourage traceability by checking for linked work items on pull requests.

Policy requirement

@ Required

Block pull requests from being completed unless they have at least one linked work item

Optiona

Warn if there are no linked work items, but allow pull requests to be completed.

6. Select the option to automatically add code reviewers when a pull request is
raised. You can map which reviewers are added based on the area of the code
being changed:

Add automatic reviewers

Reviewer(s) *

EJimmy Choo X

Search users and groups

Paths *

MyWebApp/Controllers/*

Learn more

Policy requirement
@ Required
All reviewers must approve to CC"1]|J|E'.L’ pull requests.

Optiona
Revi
required to complete pull requests.

rers will be added automatically for configured paths, but approvals are not

Custom message

Changes proposed in Controllers

[891]

Source Control Management Chapter 2

How it works...

With the branch policies in place, the master branch is now fully protected. The only way to
push changes to the master branch is by first making the changes in another branch and
then raising a pull request to trigger the change-acceptance workflow. From one of the
existing user stories in the work item hub, choose to create a new branch. By creating a new
branch from a work item, that work item automatically gets linked to the branch. You can
also include more than one work item with a branch as part of the create workflow:

Backlog Board Capacity

Create a branch

New 90 h
4 Name

[B0] 38 Retrive the user pro- === 40 Implement a
for personalization settings Open sprint1/38-userProfilePersonalizationSettings
B azureuser 3
i # Edit title Based on
State ® Active u
Board C.. Develop X Delete < MyWebApp ~ ¥ master ~
Board L.. Emergency 2

§# New branch... .

Work items to link
& Do exploratory testing

— ._ Search work items by ID or title ~

1] [28 Retrive the user profile for personalization settings
Updated 1/21/2018, @ Active

Prefix / in the name when creating the branch to make a folder for the
branch to go in. In the preceding example, the branch will go in

the sprint1 folder. This is a great way to organize branches in busy
environments.

With the newly created branch selected in the web portal, edit the HomeController.cs
file to include the following code snippet and commit the changes to the branch. In the
image below you'll see that after editing the file, you can directly commit the changes by
clicking the commit button.

[90]

Source Control Management Chapter 2

The file path control in team portal supports search. Start typing Home in
the file path to see all the files in your Git repository under that directory
starting with these letters. They will show up in the file path search results
dropdown.

Contents

0O~ v WU 5 W ke

w

10
11
12
13
14
15
16
17
18
19
20
21
22

Highlight changes H Commit..

using System;

using System.Collections.Generic;
using System.Diagnostics;

using System.Ling;

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using mywebapp.Models;

namespace mywebapp.Controllers

{

public class HomeController : Controller

{

public IActionResult Index()

{

}

return View();

{

private string JoinTwoStrings(string one, string two)

var NewString = string.Concat(one, two);
return NewString;

The code editor in web portal has several new features in Azure DevOps
Server 2018, such as support for bracket matching and toggle white space,
and so on. You can load the command palette by pressing F1. Among
many other new options, you can now toggle the file using a file mini-
map, collapse and expand, as well as other standard operations.

[91]

Source Control Management Chapter 2

To push these changes from the new branch into the master branch, create a pull request
from the pull request view. Select the new branch as the source and the master as the target
branch. The new pull request form supports markdown, so you can add the description
using the markdown syntax. The description window also supports @ mentions and # to
link work items:

Description

+ __Added__ a new method for concatenating two strings

Markdown supported.

Aav B I & w T i = @ #

Updated HomeController.cs

* Added a new method for concatenating two strings

Reviewers

H [PartsUnlimited]\PartsUnlimited Team X Search users and groups to add as reviewers
Work Items X
Search work items by ID or title s

LL] E 38 Retrive the user profile for personalization settings

[92]

Source Control Management Chapter 2

The pull request will be created; the overview page summarizes the changes and the status
of the policies. The Files tab shows you a list of changes, along with the difference between
the previous and the current versions. Any updates that are pushed to the code files will
show up in the updates tab, and a list of all the commits is shown under the Commits tab:

¥ MyWebApp ~ Files Commits Pushes Branches Tags Pull Requests

3191 Updated HomeController.cs
% Tarun Arora § sprint1/38-userProfilePersonalizationSettings into 3 master

Overview Files Updates Commits

Palicies)
Description
Required
Xq 0 of 1 reviewers approved U pd a-tEd Homeco ﬂtrOl | erCS

v Work items linked

* Added a new method for concatenating twao strings
v All comments resolved

Work Items X =+ Show everything

LL] B 38 Retrive the user profile for personal...
= -?h; Add a comment...

Reviewers = —

E Jimmy Choo was added as a reviewer by .‘}4 Tarun Arora.

Search users and groups

E PartsUnlimited Team Created by &‘}. Tarun Arora

B Jimmy Cheo

[93]

Source Control Management Chapter 2

Open the Files tab: this view supports code comments at the line level, file level, and
overall. The comments support both @ for mentions and # to link work items, and the text
supports markdown syntax:

191 Updated HomeController.cs
-&G Tarun Arora §9sprint1/38-userProfilePersonalizationSettings into §» master

Overview Files Updates Commits

All updates ~ [Active (2)
Showing 1 file change: 1 edit
A Find a file or folder

/Controllers C HomeController.cs +5
/Controllers/HomeControllercs
<# HomeControllercs
4 * Move to a utility class, don't creat...

Use camel casing instead

woStrings (string one, string two)

X ;L, Move to a utility class, don't create helper functions in the controller class :see_no_evil: These are
needed across controllers and should be in a utility or extension class. facepunch

Markdown supported. Drag & drop, paste, or select files to insert.

Move to a utility class, don’t create helper functions in the controller class % These are needed across

A~ B I & w = =

controllers and should be in a utility or extension class. “d

A Tarun Arora 3 minutes ac Active v
MY Use camel casing instead

AN Write a reply Resolve

The code comments are persisted in the pull request workflow; the code comments support
multiple iterations of reviews and work well with nested responses. The reviewer policy
allows for a code review workflow as part of the change acceptance. This is a great way for
the team to collaborate on any code changes being pushed into the master branch. When
the required number of reviewers approve the pull request, it can be completed. You can
also mark the pull request to auto-complete after your review. This auto-completes the pull
requests once all the policies have been successfully compiled to.

[94]

Source Control Management Chapter 2

There's more...

Have you ever been in a state where a branch has been accidentally deleted? It can be
difficult to figure out what happened. Azure DevOps Server now supports searching for
deleted branches. This helps you understand who deleted it and when, the interface also
allows you to recreate the branch it if you wish.

To cut out the noise from the search results, deleted branches are only shown if you search
for them by their exact name. To search for a deleted branch, enter the full branch name
into the branch search box. It will return any existing branches that match that text. You
will also see an option to search for an exact match in the list of deleted branches. If a match
is found, you will see who deleted it and when. You can also restore the branch. Restoring
the branch will recreate it at the commit to which is last pointed. However, it will not
restore policies and permissions.

Using Git hooks with Azure DevOps Server

Ryan Hellyer accidentally leaked his Amazon AWS access keys to GitHub and woke up to
a $6,000 bill the next morning. Wouldn't you just expect a source control as clever as Git to
stop you from making such a blunder? Well, in case you didn't know, you can put Git
Hooks to work to address not just this but many similar scenarios. In the spirit of pushing
quality left into the development process, you want to enable developers to identify and
catch code quality issues when they are developing the code locally in their repository,
even before raising the pull request to trigger the branch policies. Git hooks allow you to
run custom scripts whenever certain important events occur in the Git life cycle, such as
committing, merging, and pushing. Git ships with a number of sample hook scripts in the
repo\.git\hooks directory.

Since Git snares simply execute the contents on the particular occasion type they are
approached, you can do practically anything with Git snares. Here are a few instances of
where you can utilize snares to uphold arrangements, guarantee consistency, and control
your environment:

¢ Enforcing preconditions for merging

e Verifying work Item ID association in your commit message

¢ Preventing you and your team from committing faulty code

¢ Sending notifications to your team's chatroom (Teams, Slack, HipChat)

In this recipe, we'll look at using the pre-commit Git hook to scan the commit for keywords
from a predefined list to block the commit if it contains any of these keywords.

[95]

Source Control Management Chapter 2

Getting ready

Let's start by exploring client-side Git hooks. Navigate to
the repo\.git\hooks directory — you'll find that there a bunch of samples, but they are

disabled by default. For instance, if you open that folder, you'll find a file called pre-
commit .sample. To enable it, just rename it to pre-commit by removing

the . sample extension and make the script executable. When you attempt to commit
using git commit, the script is found and executed. If your pre-commit script exits with a
0 (zero), you commit successfully; otherwise, the commit fails:

T Automation through
- Source Control...

MName
| applypatch-msg.sample
| commit-msg.sample

| post-update.sample

| pre-applypatch.sample "Using #Git hooks is like having little
| pre-commit.sample robot minions to carry out your
| prepare-commit-msg.sample every wish..."

| pre-push.sample
| pre-rebase.sample

| pre-receive.sample

| update.sample

If you are using Windows, simply renaming the file won't work. Git will fail to find the
shell in the designated path as specified in the script. The problem is lurking in the first line
of the script, that is, in the shebang declaration:

#!/bin/sh

On Unix-like OSes, the #! tells the program loader that this is a script to be interpreted,
and /bin/sh is the path to the interpreter you want to use, which is sh in this case.
Windows is definitely not a Unix-like OS. Git for Windows supports Bash commands and
shell scripts via Cygwin. By default, what does it find when it looks

for sh.exe at /bin/sh? Yup, nothing-nothing at all. Fix it by providing the path to

the sh executable on your system. I'm using the 64-bit version of Git for Windows, so my
shebang line looks like this:

#!C:/Program\ Files/Git/usr/bin/sh.exe

[961]

Source Control Management Chapter 2

How to do it...

Let's go back to the example we started with—how could have Git hooks stopped Ryan
Hellyer from accidentally leaking his Amazon AWS access keys to GitHub? You can invoke
a script at pre-commit using Git hooks to scan the increment of code being committed into
your local repository for specific keywords:

1. Replace the code in this pre-commit shell file with the following code:

#!C:/Program\ Files/Git/usr/bin/sh.exe

matches=$ (git diff-index —--patch HEAD | grep '~+' | grep -Pi
'password|keyword2 | keyword3")

if [! -z "Smatches"]

then

cat <<\EOT
Error: Words from the blacklist were present in the diff:

EOT
echo S$matches
exit 1

fi

You don't have to build the full keyword scan list in this script. Instead,
you can branch off to a different file by referring it here that you could
simply encrypt or scramble if you wanted to.

How it works...

In the script, Git diff-index is used to identify the code increment being committed. This
increment is then compared against the list of specified keywords. If any matches are
found, an error is raised to block the commit; the script returns an error message with the
list of matches. In this case, the pre-commit script doesn't return 0 (zero), which means the

commit fails.

[97]

Source Control Management Chapter 2

There's more...

The repo\ .git\hooks folder is not committed into source control, so you may wonder
how you share the goodness of the automated scripts you create with the team. The good
news is that, from Git version 2.9, you now have the ability to map Git hooks to a folder
that can be committed into source control. You could do that by simply updating the global
settings configuration for your Git repository:

git config -—-global core.hooksPath '~/.githooks'

If you ever need to overwrite the Git hooks you have set up on the client side, you can do
so by using the no-verify switch:

git commit --no-verify

You can also use PowerShell scripts in your Git hooks — refer to the
walkthrough on how to implement it here: https://www.
visualstudiogeeks.com/DevOps/
UsingPowerShellForGitHooksWithVstsGitOnWindows.

See also

So far, we have looked at the client-side Git hooks on Windows, Azure DevOps Server also
exposes server-side hooks. Azure DevOps Server uses the same mechanism to create pull
requests. You can read more about the git.push server-side event here: https://docs.

microsoft.com/en-us/vsts/service-hooks/events#git.push.

Managing and storing large files in git

It is not uncommon for projects to have include high quality images and videos that are
large in size. If you have large files in your repository, such as images and videos, Git will
keep a full copy of the file in the repo every time you commit a change to the file. Git is
ultimately versioning the file, if many versions of these files exist in your repo, they will
dramatically increase the time to check out, branch, fetch, and clone the code.

Luckily git has solved this problem using Git Large File System (LFS). LFS is an extension
to Git; it replaces large files, such as audio samples, videos, datasets, and graphics, with text
pointers inside Git, while storing the file's contents on a remote server which commits data
that describes the large files in a commit to your repo, and stores the binary file contents
into separate remote storage.

[981]

https://www.visualstudiogeeks.com/DevOps/UsingPowerShellForGitHooksWithVstsGitOnWindows
https://www.visualstudiogeeks.com/DevOps/UsingPowerShellForGitHooksWithVstsGitOnWindows
https://www.visualstudiogeeks.com/DevOps/UsingPowerShellForGitHooksWithVstsGitOnWindows
https://www.visualstudiogeeks.com/DevOps/UsingPowerShellForGitHooksWithVstsGitOnWindows
https://www.visualstudiogeeks.com/DevOps/UsingPowerShellForGitHooksWithVstsGitOnWindows
https://www.visualstudiogeeks.com/DevOps/UsingPowerShellForGitHooksWithVstsGitOnWindows
https://www.visualstudiogeeks.com/DevOps/UsingPowerShellForGitHooksWithVstsGitOnWindows
https://www.visualstudiogeeks.com/DevOps/UsingPowerShellForGitHooksWithVstsGitOnWindows
https://www.visualstudiogeeks.com/DevOps/UsingPowerShellForGitHooksWithVstsGitOnWindows
https://www.visualstudiogeeks.com/DevOps/UsingPowerShellForGitHooksWithVstsGitOnWindows
https://www.visualstudiogeeks.com/DevOps/UsingPowerShellForGitHooksWithVstsGitOnWindows
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push

Source Control Management Chapter 2

When you clone and switch branches in your repo, Git LFS automatically downloads the
correct version from that remote storage. Your local development tools will transparently
work with the files as if they were committed directly to your repo.

Git LFS provides your teams with a seamless experience, as they can use the familiar end-
to-end Git workflow no matter whether they work on small or large files. LFS files can be as
big as you need them to be. As of version 2.0, Git LES now also supports file-locking
(https://github.com/git-1fs/git-1fs/wiki/File-Locking) to help your team work on
large, undefiable assets, such as videos, sounds, and game maps.

You should be aware of a few things before using Git LFS:

e Every Git client used by your team must install the Git LFS client and understand
its tracking configuration (https://github.com/github/git-1fs/tree/master/

docs).

e If the Git LFS client is not installed and configured correctly, you will not see the
binary files committed through Git LES when you clone your repo. Git will
download the data that describes the large file (which is what Git LFS commits to
the repo) and not the actual binary file. Committing large binaries without the
Git LFS client installed will push the binary to your repo.

e Git cannot merge the changes from two different versions of a binary file even if
both versions have a common parent. If two people are working on the same file
at the same time, they must work together to reconcile their changes to avoid
overwriting the other's work. Git LFS provides file-locking to help. Users must
still take care to always pull the latest copy of a binary asset before beginning
work.

e Azure DevOps server currently does not support using SSH in repos with Git
LFS tracked files.

Getting ready

In order to use Git LFS (https://git-1fs.github.com/), you need to download and install
it once:

git 1lfs install

[991]

https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/

Source Control Management Chapter 2

How to do it...

For Git LFS to work, it needs to know what file types you want to be tracked using Git LFS.
Git LFS stores this setting in the . gitattributes file. This file is committed to the
repository; this way everyone on your team that uses Git will be using the same LFS

configuration. Let's get started:
1. Configure Git LFS to track all MP4 files:
git 1lfs track "*.mp4"
2. Track the changes in your .gitattribute file:
git add .gitattributes

3. Commit and push the changes in your .gitattribute file to the remote
repository:

git commit -m "Track all mp4 files in git LFS"
git push origin master

How it works...

Validate the version of Git LFS in your environment:

> git 1lfs version
git-1fs/2.3.4 (GitHub; windows amdé64; go 1.8.3; git d2£f6752f)

Verify the changes in the . gitattribute file:

\MyWebApp> type .gitattributes
*.mpd4 filter=1lfs diff=1fs merge=1lfs -text

Create a folder to store videos and store an MP4 video in this folder:
\MyWebApp> mkdir videos
\MyWebApp> cd videos
\MyWebApp> copy c:\tmp\HandsOnDemo-vLog.mp4 .\videos
Check the size of the video file (the video size is over 640 MB):

MyWebApp\videos> dir HandsOnDemo-vLog.mp4

02/07/2018 11:53 AM 6,472,920 HandsOnDemo-vLog.mp4
1 File(s) 6,472,920 bytes

[100]

Source Control Management Chapter 2

Stage the changes and check the status:
MyWebApp> git add

MyWebApp>git status
On branch master
Your branch is up-to-date with 'origin/master'.

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

new file: videos/HandsOnDemo-vLog.mp4

When committing changes, Git LFS may give you an error message. Your
username must be of the form DOMAIN\user. It is currently
tarun.arora@contoso.com. This happens because Git is using Kerberos
to authenticate and LFS does not support Kerberos, so you will get errors
that say Your user name must be of the form DOMAIN\user. To get out
of this state, you will need to remove the Kerberos credential and let Git
pick up a new NTLM credential instead. To do this, simply remove your
Git credentials from the Windows Credential Manager.

i@l » Control Panel » User Accounts » Credential Manager

View and delete your saved logon information for websites, connected applications and networks.

i

e
"ﬁl Web Credentials %@Ir Windows Credentials
. =

Back up Credentials Restore Credentials

I git:http://azsu-p-tfs2018 I Modified: Today

Internet or network address: git:http://azsu-p-tfs2018
User name: tarun.arora@contoso.com
Password: sesessss

Persistence: Local computer

Edit Remove h

[101]

Source Control Management Chapter 2

Commit the video to your local repository:

MyWebApp> git commit -m "Vlab for hands on demo"
[master 47b4370] V1ab for hands on demo

1 file changed, 3 insertions(+)

create mode 100644 videos/HandsOnDemo-vLog.mp4

Push the changes to the remote repository. Git LFS will kick in as it detects configuration
settings for .mp4 type files:

MyWebApp> git push remote origin

Locking support detected on remote "origin". Consider enabling it with:
$ git config lfs.http://Azure DevOps Server2018/Azure DevOps
Server/DefaultCollection/PartsUnlimited/_git/MyWebApp.git/info/lfs.locksver
ify true
Git LFS: (1 of 1 files) 6.17 MB / 6.17 MB
Counting objects: 4, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (4/4), 444 bytes | 444.00 KiB/s, done.
Total 4 (delta 1), reused 0 (delta 0)

remote: Analyzing objects... (4/4) (11 ms)
remote: Storing packfile... done (42 ms)
remote: Storing index... done (68 ms)

To http://azsu-p-Azure DevOps Server2018/Azure DevOps
Server/DefaultCollection/PartsUnlimited/_git/MyWebApp
9304fal..47b4370 master —> master

To investigate the contents of the commit history, use the —p switch with the Git log
command:

MyWebApp> git log -p

commit 47b4370d539£85eeb765b45a51021dbd51¢c33634 (HEAD -> master,
origin/master, origin/HEAD)

Author: tarun arora <tarun.arora@outlook.com>

Date: Wed Feb 7 12:12:50 2018 +0000

Vlab for hands on demo

diff --git a/videos/HandsOnDemo-vLog.mp4 b/videos/HandsOnDemo-vLog.mp4
new file mode 100644

index 0000000..d67c622

——— /dev/null

+++ b/videos/HandsOnDemo-vLog.mp4

@@ -0,0 +1,3 @@

+version https://git-1lfs.github.com/spec/vl

[102]

Source Control Management Chapter 2

+oid
sha256:62388612f4e5f2abe80d50fa24a4160dd0de3dc20dee75762a7135549¢c164a6¢c
+size 6472920

The important part of the commit log details is the Git LFS URL for the HandsOnDemo-
vLog.mp4 file. The GitHub URL included for the version value only defines the LFS pointer
file type, and is not a link to your binary file. The URL tracks the version of Git LFS you're
using, followed by a unique identifier for the file (OID). It also stores the size of the final
file.

See also

We've been talking about storing large files in a Git repository. if you have a Git repository
that is too big due to the architecture of the product you will find that normal Git
operations, such as clone and commit, take too long. Microsoft has innovated the
virtualization of Git repositories to address an internal problem found in adopting Git for
the Windows product development team that has Git repositories which are over hundreds
of GB in size. Microsoft has contributed this innovation to the open source under the GVFS
project. Git Virtual File System (GVEFS) is the open source system that enables Git to
operate at enterprise-scale. It makes using and managing massive Git repositories

possible. GVES virtualizes the filesystem beneath your Git repository so that Git tools see
what appears to be a normal repository when, in fact, the files are not actually present on
disk. GVFES only downloads files as they are needed. GVFS also manages Git's internal state
so that it only considers the files you have accessed, instead of having to examine every file
in the repository. This ensures that operations, such as status and checkout, are as fast as
possible. Learn more about GVES here: https://gvfs.io/.

Git branching model for continuous
delivery

The purpose of writing code is to ship enhancements to your software. A branching model
that introduces too much process overhead does not help in increasing the speed with
which you can get changes out to customers. It is therefore important to come up with a
branching model that gives you enough padding to not ship poor-quality changes but at
the same time not introduce too many processes to slow you down. The internet is full of
branching strategies for Git; while there is no right or wrong, a perfect branching strategy is
one that works for your team! In this recipe, we'll learn how to use a combination of feature
branches and pull requests to always have a ready-to-ship master branch and how to sync
bug fixes fixed in fix of fail branches back into master to avoid regression.

[103]

https://gvfs.io/
https://gvfs.io/
https://gvfs.io/
https://gvfs.io/
https://gvfs.io/
https://gvfs.io/
https://gvfs.io/
https://gvfs.io/

Source Control Management Chapter 2

Getting ready

Let's cover the principles of what is being proposed:

¢ The master branch:
¢ The master branch is the only way to release anything to
production.

The master branch should always be in a ready-to-release state.

Protect the master branch with branch policies.

Any changes to the master branch flow through pull requests only.

Tag all releases in the master branch with Git tags.
¢ The feature branch:
e Use feature branches for all new features and bug fixes.
¢ Use feature flags to manage long-running feature branches.
¢ Changes from feature branches to the master only flow through
pull requests.
e Name your feature to reflect their purpose, like so:

List of branches:

features/feature—-area/feature—name
users/username/description
users/username/workitem
bugfix/description
features/feature—-name
features/feature—-area/feature—name
hotfix/description

¢ Pull requests:
¢ Review and merge code with pull requests.

e Automate what you inspect and validate as part of pull requests.

e Track pull request completion duration and set goals to reduce the
time it takes.

[104]

Source Control Management Chapter 2

In this recipe, we'll be using the myWebApp we created in the Pull Request for code review
using branch policies recipe. If you haven't already, follow that recipe to lock down the
master branch using branch policies. In this recipe, we'll also be using two very popular
extensions from the marketplace:

e The VSTS CLI (https://marketplace.visualstudio.com/items?itemName=ms—
vsts.cli): This is a new command-line experience for Azure DevOps
(AzDo) and Azure DevOps Server (AzDos), and was designed to seamlessly
integrate with Git, CI pipelines, and Agile tools. With the VSTS CLI, you can
contribute to your projects without ever leaving the command line. VSTS CLI
runs on Windows, Linux, and Mac.

¢ Git Pull Request Merge Conflict (https://marketplace.visualstudio.com/
items?itemName=ms-devlabs.conflicts—tab): This open source extension that
was created by Microsoft DevLabs allows you to review and resolve pull request
merge conflicts on the web. Before a Git pull request can complete, any conflicts
with the target branch must be resolved. With this extension, you can resolve
these conflicts on the web, as part of the pull request merge, instead of
performing the merge and resolving conflicts in a local clone.

In order to use the VSTS-CLI, you'll need to log in with your PAT token. To make full use of
the VSTS CLI, you should check the All scopes option when generating the PAT. Since the
URL of the Azure DevOps Server instance needs to be used in most commands, it's best to
store it as a variable and reference it when required. You can get a list of all the Git
repositories in the parts unlimited team project:

SAzure DevOps Server = "https://Azure DevOps
Server2018.westeurope.cloudapp.azure.com/Azure DevOps Server"
vsts login —--token xxxxxxx ——-instance S$Azure DevOps Server

Sprj = "PartsUnlimited"

vsts code repo list -—-instance $i —--project $prj —-output table

vsts code repo list --instance %i --project $prj --output table
1D Default Branch

9b0D8d519-37a6-4aed-B4e6-3a2712F742a9 MyWebApp
b2c65132-d148-49e0-81laa-cel06fbf3747 PartsUnlimited PartsUnlimited

The VSTS CLI supports returning the results of the query in
JSON, JSONC, table, and TSV format. You can configure your preference
by using the VSTS configure command.

[105]

https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab

Source Control Management Chapter 2

How to do it...

1.

After you've cloned the master branch into a local repository, create a new
feature branch, myFeature-1:

myWebApp> git checkout -b feature/myFeature-1
Switched to a new branch 'feature/myFeature-1'

Run the Git branch command to see all the branches. The branch showing up
with an asterisk is the currently-checked-out branch:

myWebApp> git branch

* feature/myFeature-1
master

Make a change to the Program. cs file in the feature/myFeature-1 branch:
myWebApp> notepad Program.cs

Stage your changes and commit locally, then publish your branch to the remote
server:

myWebApp> git status

On branch feature/myFeature-1
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git checkout —-- <file>..." to discard changes in working
directory)

modified: Program.cs
myWebApp> git add
myWebApp> git commit -m "Feature 1 added to Program.cs"

[feature/myFeature-1 70£67b2] feature 1 added to program.cs
1 file changed, 1 insertion(+)

myWebApp> git push -u origin feature/myFeature-1

Delta compression using up to 8 threads.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 348 bytes | 348.00 KiB/s, done.
Total 3 (delta 2), reused 0 (delta 0)

remote: Analyzing objects... (3/3) (10 ms)
remote: Storing packfile... done (44 ms)
remote: Storing index... done (62 ms)

[106]

Source Control Management Chapter 2

To http://Azure DevOps Server2018/Azure DevOps
Server/DefaultCollection/PartsUnlimited/_git/MyWebApp

* [new branch] feature/myFeature-1 -> feature/myFeature-1
Branch feature/myFeature-1l set up to track remote branch
feature/myFeature-1 from origin.

The remote shows the history of the changes:

¥ feature/myFeature-1 ~ MyWebApp / Type to find a file or folder.

<
(@ You updated §° feature/myFeature-1 just now — Create a pull request

© MyWebApp
bin/Debug/netcoreapp2.0 Contents History
Controllers
Simple history (.. Author ~ From date @ To date
Models
Obj Graph Commit Message /
videos ® 70£67b28 feature 1 added to program.cs
Views ® 47b4370d Wlab for hands on demo

5. Create a new pull request (using the VSTS CLI) to review the changes in
the feature-1 branch:

> vsts code pr create —--title "Review Feature-l1 before merging
to master" --work-items 38 39 °

-d "#Merge feature-1 to master"

-s feature/myFeature-1 -t master —-r myWebApp -p
$prj -i $i

Use the ——open switch when raising the pull request to open the pull
request in a web browser after it has been created. The —~delete-
source-branch switch can be used to delete the branch after the pull
request is complete. Also, consider using ——auto-complete to complete
automatically when all policies have passed and the source branch can be
merged into the target branch.

[107]

Source Control Management Chapter 2

The team jointly reviews the code changes and approves the pull request:

Review Feature-1 before merging to master
lﬂ Tarun Arora ¥ feature/myFeature-1 into §2 master

Overview Files Updates Commits Conflicts

Policies
_ Tarun Arora completed the pull request on 2/7/2018 4:14 PM (just now).
equire

1 reviewer approved

b2eed332 ¢ W Merged PR 9: Review Feature-1 before merging to master...

' All comments resolved

The master is ready to release, team tags master branch with the release number:

Create a tag

MName *

release_feature1

Tag from

£ master ~

Description *

Tagging the master for feature 1 releasel

[108]

Source Control Management Chapter 2

6. Start work on Feature 2. Create a branch on remote from the master branch and
do the checkout locally:

myWebApp> git push origin origin:refs/heads/feature/myFeature-2

Total 0 (delta 0), reused 0 (delta 0)
To http://azsu-p-Azure DevOps Server2018/Azure DevOps
Server/DefaultCollection/PartsUnlimited/_git/MyWebApp

* [new branch] origin/HEAD -> refs/heads/feature/myFeature-2

myWebApp> git checkout feature/myFeature-2
Switched to a new branch 'feature/myFeature-2'
Branch feature/myFeature-2 set up to track remote branch

feature/myFeature-2 from origin.

7. Modify Program.cs by changing the same line of code that was changed in
feature-1:

public class Program

{ &~
J// Editing the same line (file from feature-2 branchﬂ
public static void Main(string[] args)

{
¥

BuildWebHost(args).Run();

public static IWebHost BuildWebHost(string[] args) =>
WebHost.CreateDefaultBuilder(args)
.UseStartup<Startup>()
.Build();

8. Commit the changes locally, push them to the remote repository, and then raise a
pull request to merge the changes from feature/myFeature-2 to the master
branch:

> vsts code pr create —-title "Review Feature-2 before merging
to master" —--work-items 40 42

-d "#Merge feature-2 to master"

-s feature/myFeature-2 -t master —-r myWebApp -p
$prj -i $i

[109]

Source Control Management Chapter 2

With the pull request in flight, a critical bug is reported in production against the
feature-1 release. In order to investigate the issue, you need to debug against
the version of code that's currently being deployed in production. To investigate
this issue, create a new fof branch using the release_featurel tag:

myWebApp> git checkout -b fof/bug-1l release_featurel
Switched to a new branch 'fof/bug-1'

9. Modify Program.cs by changing the same line of code that was changed in
the feature-1 release:

// Editing this file from [feature-fof I:Jr'anch]| h

public static void Main(string[] args)

{
¥

BuildWebHost(args).Run();

public static IWebHost BuildWebHost(string[] args) =»
WebHost.CreateDefaultBuilder(args)
.UseStartup<Startup>()
LBuild();

10. Stage and commit the changes locally, then push changes to the remote
repository:

myWebApp> git add .
myWebApp> git commit -m "Adding FOF changes"
myWebApp> git push —u origin fof/bug-1

To http://azsu-p-Azure DevOps Server2018/Azure DevOps
Server/DefaultCollection/PartsUnlimited/_git/MyWebApp

* [new branch] fof/bug-1 -> fof/bug-1
Branch fof/bug-1 set up to track remote branch fof/bug-1 from
origin.

11. Immediately after the changes have been rolled out to production, tag the
fof\bug-1 branch with the release_bug-1 tag, then raise a pull request to
merge the changes from fof/bug-1 back into the master:

> vsts code pr create —--title "Review Bug-l1l before merging to
master" —--work-items 100

-d "#Merge Bug-1l to master"

-s fof/Bug-1l -t master -r myWebApp -p $prj -i $i

[110]

Source Control Management Chapter 2

As part of the pull request, the branch is deleted; however, you can still reference
the full history to that point using the tag:

© MyWebApp ~ Files Commits Pushes Branches Tags Pull Requests

& release_bugl v MyWebApp / Type to find a file or folder.

Mine All branches Tags

s History
| Hiew tags
remsaThn 2history (.. ™ || Author ~ || From date E&] || Todate =
release_feature1 Commit Message Author Authored Date Pull Request
~+ New branch bd778abs Adding FOF changes release bu... iy tarun arora 18 minutes ago 3911
videos $ breet3nz Merged PR 9: Review Feature-1 before merging ta master release_fea...[7 Tarun Arora 57 minutes ago %9
Views < 70£67b28 feature 1 added to program.cs g tarunarora £99
I L] 47b4370d Vlab for hands on demo g tarunarora
With the critical bug fix out of the way, let's go back to the review of
the feature-2 pull request. The Branches page makes it clear that the
feature/myFeature-2 branch is one change ahead of the master and two
changes behind the master:
& MyWebApp ~ Files Commits Pushes Branches Tags Pull Requests
Branches
Mine Al Stale
Branch Commit Author Authored Date Behind | Ahead Build Pull Request
v feature
¥# myFeature-2 W f8efdb74 43 tarun arora 44 minutes ago 2 l_T i9 10
¥ master Default compare & fdeed 165 H Tarun Arora 14 minutes ago

[111]

Source Control Management

Chapter 2

If you tried to approve the pull request, you'll see an error message informing you

of a merge conflict:

19 10 Review Feature-2 before merging to master
b# Tarun Arora §° feature/myFeature-2 into §* master

Overview Files Updates Commits Conflicts

Policies
n conflict prevents automatic merging
Required

' 1 reviewer approved

c# Program.cs
+" All comments resolved 9

Edited in both

Next steps: Manually resolve these conflicts and push new changes to the source branch.

Work Items X +
B 40 Implement a store for user settings Description

Merge feature-2 to master

A 42 Persist user settings in documentDB..

12. The Git Pull Request Merge Conflict resolution extension makes it possible to
resolve merge conflicts right in the browser. Navigate to the Conflicts tab and

click on Program. cs to resolve the merge conflicts:

£9 10 Review Feature-2 before merging to master

bﬁ‘ Tarun Arora §? feature/myFeature-2 into ¥ master

Overview Files Updates Commits

g

% Filter v TTree v I—‘j Program.cs [both modified] Sibiiichierge; I Take Source Fie
x fProgram.cs
2 Find a file or folder g Y USLNYG MICTUSUT L. EXCENS 1005 . LOYYLny; = FU]
e 10 11 11 namespace mywebapp
v MyWebApp 11 11 namespace mywebapp 12 12 {
. 12 12 { 13 13 public class Pr
<) Program.cs 13 13 public class Program 14 14 {
14 14 { 15 = // Editing this
15 - // Editing this file from feature=1 branch 15 + // Editing this
15+ // Editing the same line (file from feature-2 branch) 6 16 public stat
16 16 public static void Main(string[] args) 17 17 {
17 17 i 8 18 BuildWe
18 18 BuildwebHost(args).Run(}; 19 19 }
19 19 } 20 20
28 20 21 21 public stat
21 21 public static IWebHost BuildWebHost(string[] args) => 2 2 WebHost
A T WohHact FroateNafanltRuildariarnc) hd 22 72
3 Us g rircrosor O ERNAE T AISGSTIRY,
1e
11 namespace mywebapp
12 {
13 public class Program
14 {
A 15 master
@ 16 // Editing this file from [feature-fof branch]
A 17
/ ® 18 // Editing the same line (file from feature-2 branch)
L 19 feature/myFeature-2
20 public static void Main(string[] args)

[112]

Source Control Management Chapter 2

The user interface gives you the option to take the source version, target version, or add
custom changes and review and submit the merge. With the changes merged, the pull
request is completed.

How it works...

In this recipe, we learned how the Git branching model gives you the flexibility to work on
features in parallel by creating a branch for each feature. The pull request workflow allows
you to review code changes using the branch policies. Git tags are a great way to record
milestones, such as the version of code that was released; tags give you a way to create
branches from tags. We were able to create a branch from a previous release tag to fix a
critical bug in production. The branches view in the web portal makes it easy to identify
branches that are ahead of the master, and forces a merge conflict if any ongoing pull
requests try to merge to the master without first resolving the merge conflicts. A lean
branching model such as this allows you to create short-lived branches and push quality
changes to production faster.

Configuring code search as a search engine

Search engines have become such an integral part of our life that we just expect to be able to
search for everything. Noticing this, Microsoft has delivered an intelligent, integrated
search experience that allows for semantic search across all your code repositories and
projects in the team project collection. Code search is pre-installed as an extension in the
Azure DevOps Server web portal. The search functionality is very intuitive; you can learn
more about the advanced search capabilities on Microsoft docs: https://docs.microsoft.
com/en-us/vsts/search/code/advanced-search. In this recipe, we'll learn how to
configure code search as a search engine in Google Chrome.

Getting ready

While code search works natively in the web portal on all browsers, across devices and
platforms, configuring code search as a search engine is only supported in Google Chrome.
This recipe requires that you have Google Chrome installed on the machine where you
intend to set up code search as the default search engine in the browser.

[113]

https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search

Source Control Management Chapter 2

How to do it...

1. Open Google Chrome, navigate to Settings, and then click on Manage search
engines:

& C' @ Chrome chrome://settings/searchEngines

= Settings Q, Search settings

& Manage search engines

Q, Search
Default search engines
Search engine Keyword Query URL
(5 Google (Default) google.com {google:baseURL}search?q=%s8&{go...

D Yahoo! UK & Ireland ~ uk.yahoo.com https://uk.search.yahoo.com/search...

Other search engines ﬁ ADD

2. Click on ADD to add a new search engine and set the name as Azure DevOps
Server Code Search, which is a keyword that will invoke the search engine
and the code-search URL. The %s in the URL is replaced with the search

keyword. The Azure DevOps Serverc keyword triggers this specific search
engine:

[114]

Source Control Management Chapter 2

Edit search engine X

Search engine
TFS Code Search

Keyword
tfsc

LURL with %s in place of query
http:/fazsu-p-tfs2018 . westeurope.cloudapp.azure.com/tfs/DefaultCollection/_searc

CANCEL SAVE
http://<Azure DevOps Server>/Azure DevOps

Server/<collection>/_search?type=Codeé&lp=apps—account&text=%s&_a=contents

How it works...

Open Google Chrome and type Azure DevOps Server (follow this with a space) in the
search box to trigger the Azure DevOps Server Code Search engine. Follow this with the
keyword you intend to search across the code base and hit Enter:

MNew Tab

C | Search TFS Code Search = program

Q, program - TFS Code Search Search ?

Q, tfsc program - Google Search

[115]

Source Control Management Chapter 2

You'll see that the search keyword is replaced with the %s in the search engine URL we
configured earlier in this recipe:

- (&) = lmTrivEmiE £ _

< C @ azsu-p-tfs2018.westeurope.cloudapp.azure.com/tfs/DefaultCollection/_search?type=Code&lp=apps-account&text=programé&result=DefaultCollection%2FPa
J DefaultCollection ~ Projects My favorites My workitems My pull requests |
Search for program Program.cs
Cod =) i
o Showing 5 results Provide feedback Contents History ~ Compare
Work item
Program.cs PartsUnlimited > MyWebApp 1 match i Download
~ Projects Clear all

/Program.cs

using System;

PartsUnlimited 5 :
ba . e ts o mited - 10 mate 2 using System.Collections.Generic;
mywel .csproj.nuget.g.targe artsUnlimited > MyW. - R
~ Code Type Clear all ywebapp.csprojnuget.g.targ 3 using System.IO;
Jobj/mywebapp.csproj nuget.g targets 4 using System.Linq;
Class 1 5 using System.Threading.Tasks;
Definition 1 project.assetsjson PartsUnlimited » MyWebApp 7 matches 6 using Microsoft.AspNetCore;
/abjfprojectassets json 7 using Microsoft.AspNetCore.Hosting;
8 using Microsoft.Extensions.Configuration;

mywebapp.csproj.nuget.g.props PartsUnlimited = Myweb 4 match 9 using Microsoft.Extensions.Logging;
18

‘'obj/mywebapp.csproj.nuget.g.props

fobj/myw PP.C5Proj.nUget.g.prop: 11 namespace mywebapp

. . 12 {
mywebapp.runtimeconfig.devjson Partsunlimited » Myw 2 matc.
wetapp 9 4 SR : 13 public class Program

/bin/Debug/netcoreapp2.0/mywebapp runtimeconfig.dev.json 14 {
15 // Editing the same line (file from feature-2 branch)
16 public static void Main(string[] args)
17 {
18 BuildwebHost(args).Run();
19 }

There's more...

Search in Azure DevOps Server allows you to search code semantically; for example, you
can filter the search results to functions, classes, callers, and more. In addition, you can
right-click on the search result to find the references and caller, see the file history, and
compare it with previous versions:

[116]

Source Control Management

Chapter 2

arg:test extjs

Filter by scope (e.g., Activity ext.cs)

ext: With file extension
file: Filename

path: Under path

proj: Inside project
repo: Inside repasitory

Filter by code type (e.g., funcApiRoot)

arg: Argument
basetype: Basetype

caller: Caller

class: Class

classdecl: Class Declaration
classdef: Class Definition
comment Comment

ctor: Constructor
decl: Declaration

def: Definition

= Show more
Operators (e.g., ToDo OR revisit)
AND NOT OR

d °

7

jqueryjs
Contents Histary Compare

i Download
685 f/ Support: Firefox<24
686 f/ Workaround erroneou
687 return high !== high |
688 escaped :
689 high < @ ?
6980 // BMP codepoi
691 5tring. fromCha
692 /f Supplementa
693 String. fromCha
694 }
695
696 // Used for iframes
697 // See setDocument()
698 // Removing the function w
699 // error in IE
708 unloadHandler = function()
701 setDocument();

Using Git forks and sync changes with

upstream PR

People fork repositories when they want to change the code in a repository they don't have
write access to. Clearly, if you don't have write access, you really aren't part of the team
contributing to that repository, so why would you want to modify the code repository? In
our line of work, we tend to look for technical reasons to improve something.

[117]

Source Control Management Chapter 2

You may find a better way of implementing the solution or may simply want to enhance
the functionality by contributing to or improving an existing feature. Personally, I fork
repositories in the following situations:

¢ [want to make a change.
e [think the project is interesting and may want to use it in the future.

e [want to use some or all of the code in that repository as a starting point for my
own project.

Software teams are encouraged to contribute to all projects internally, not just their own
software projects. Forks are a great way to foster a culture of inner open source. Forks are a
recent addition to the Azure DevOps Server-hosted Git repositories. In this recipe, we'll
learn how to fork an existing repository and contribute changes back upstream via a pull
request.

Getting ready

A fork starts with all the contents of its upstream (original) repository. When you create a
fork in the Azure DevOps Server, you can choose whether to include all branches or limit
them to only the default branch. A fork doesn't copy the permissions, policies, or build
definitions of the repository being forked. After a fork has been created, the newly created
files, folders, and branches are not shared between the repositories unless you start a pull
request. Pull requests are supported in either direction: from fork to upstream, or upstream
to fork. The most common direction for a pull request will be from fork to upstream.

How to do it...

1. Choose the Fork button (1), then choose the project where you want the fork to
be created (2). Give your fork a name and choose the Fork button (3):

[118]

Source Control Management Chapter 2

Fork FabrikamForks toe

Repository name *

FabrikamForks.frances.fork

Project

= FabrikamForks

2. Once your fork is ready, clone it using the command line (https://docs.
microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line) Or an
IDE, such as Visual Studio (https://docs.microsoft.com/en-us/vsts/git/
tutorial/clone). The fork will be your origin remote. For convenience, you'll
want to add the upstream repository (where you forked from) as a remote
named upstream. On the command line, type the following;:

git remote add upstream {upstream url}

It's possible to work directly in the master — after all, this fork is your personal
copy of the repo. We recommend, you still work in a topic branch, though. This
allows you to maintain multiple independent workstreams simultaneously. Also,
it reduces confusion later when you want to sync changes into your fork.

[119]

https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone

Source Control Management Chapter 2

3. Make and commit your changes as you normally would. When you're done with
the changes, push them to origin (your fork).

4. Open a pull request from your fork to the upstream repository. All the policies,
required reviewers, and builds will be applied in the upstream repo. Once all the

policies are satisfied, the PR can be completed and the changes become a
permanent part of the upstream repo:

‘:J FabrikamForks ~ Dashboards Code Work

¢ FabrikamForks.frances.Fork ~ Files History Branches Tags Pull Requests

£% New Pull Request

< FabrikamForks frances.Fork ~ | §® featurel ~ | into | 4 FabrikamForks ~ | ¥ master ~ | &

Title *

Added a new option to the settings page

Description

Add a new option to the settings page

Adds a new option for users to manage delivery preferences. Tested the following:
- [] Opt out of email

=[] Optinto email

- [] Specify an alternate address|

Markdown supported.

Aav B I ¢ « = = E @ #
Add a new option to the settings page
Adds a new option for users to manage delivery preferences. Tested the following:

Opt out of email
Opt into email
Specify an alternate address

Reviewers

E [FabrikamForks]\FabrikamForks Tearn X Search users and groups to add as reviewers

Work Items

Search work items by 1D or title

[120]

Source Control Management Chapter 2

5. When your PR is accepted into upstream, you'll want to make sure your fork
reflects the latest state of the repo. We recommend rebasing on the upstream's
master branch (assuming that the master is the main development branch). On
the command line, run the following:

git fetch upstream master
git rebase upstream/master
git push origin

How it works...

The forking workflow lets you isolate changes from the main repository until you're ready
to integrate them. When you're ready, integrating code is as easy as completing a pull
request.

[121]

Build and Release Agents

The build system in Azure DevOps Server known as Azure Pipelines is an open source,
cross-platform, extensible, task-based execution system with a rich web interface that
allows us to author, queue, and monitor builds. The new JSON-based build system was
first introduced in TFS 2015, and it has since been rewritten for the .INET Core CLR as one
code base in C#. The modern platform continues to evolve through the open source
ecosystem, with new features and enhancements rolling out every other week. The build
system is set to evolve further with the new multi-phase builds and a build-definition-as-
code functionality that was introduced through YAML-based builds in Azure DevOps.
These features have been recently introduced into Azure DevOps Server with the update 1
of Azure DevOps server 2019. In the following screenshot you can see the evolution of the
build system over the last 10 years:

Generation 1 MS Build ML TFS 2005

Generation 2 XAML Build WWF TFS 2010

Generation 3 TFBuild JSON TFS 2015

Build and Release Agents Chapter 3

The build system allows you to install multiple agents on a host. An agent can be registered
to an agent pool. An agent pool can be mapped out to a queue which can be scoped to a
project. The following diagram illustrates the architecture of the new build system:

Machine 1
" Build ™y 3 L
e | 5E[DefniionN | |
L
s & : = ~ |
= T 3
2 o1 BeildTTH --- @ E
8 | 5§ | Definition7 | | g |
5 & e | Build i
Hi & I 2
— Definition 6_. -~
g —~. (4 I
o - b o — -
e |Egl—u . - A
O] s T .
" < | Definition5 | | i) | |
I o
—— 3k
I
s I % 2
= = | =] Ll A I
g o ezt A o Machine 2
o g - Build 7 L__| w® |
§ 35 | 5 & Definition1 | | g | |
e i iy Build | U/ i *| Agent 1
* | Definitien2__ -~ I
Ll -

Let's review the diagram:

e Multiple agents can be configured on one machine

e Agents from across different machines or multiple agents on the same machine
can be grouped into a pool. This allows you to host more than 1 instance of the
agent on a host, helping you maximize the utilization of a server.

¢ Each pool can have only one queue, which is mapped to a project.

We'll cover some great features for configuring and automating the build system setup that
will help you scale your build system efficiently.

[123]

Build and Release Agents Chapter 3

In this chapter, we will cover the following recipes:

e Unattended configuration of build agents using PowerShell
¢ Downloading agents using the GitHub release API

¢ Configuring deployment groups

¢ Configuring the agent to use a proxy

e Analyzing build usage data

¢ Automating agent pool maintenance

e Configuring build and release retention policies

¢ Agent capabilities and build demands for special builds

e Managing agent permissions using role-based access

Unattended configuration of build agents
using PowerShell

Azure DevOps Server Build and Release agents are the engines of your build system; the
size of the infrastructure translates to the speed at which you can run and scale the build
process. As you ramp up the use of the build system to automate Continuous Integration
pipelines, you are going to need more agents. An automated process to add and remove
build agents allows you to scale up and scale down the agents on demand. The build
system has native support for unattended installation. In this recipe, we'll learn how to
configure a build agent programmatically in an unattended mode using PowerShell.

Getting ready

To configure a build agent, you should be a member of the build administrators group and
an administrator on the target machine. If the target machine is Windows 10 or beyond
(x64), all the prerequisites will already be in place. If the target machine is Windows 7 to
Windows 8.1, or Windows Server 2008 R2 SP1 to Windows Server 2012 R2 (64-bit), you will
need to ensure that PowerShell version 3 or newer is available on the target system. Even
though not technically required by the agent, many build scenarios require that Visual
Studio be installed to get all the tools. It is recommended that you use Visual Studio 2015 or
later.

[124]

Build and Release Agents Chapter 3

Microsoft has open sourced its build system on GitHub under the Microsoft/azure-
pipelines-agent project name. You can download the latest version of the agent directly
from the GitHub repository (https://github.com/Microsoft/azure-pipelines-agent) Or
from the Agent Pools page under the collection administration page in the team portal:

J DefaultCollection ~ Projects My favorites My work items My pull requests

Overview Users Security Process Build and Release Agent Pools Naotifications Extensions

<

New paol... Agents for pool Default | Download agent h

Agents Roles Settings Maintenance history
All Pools - — -
No agents are registered or you do not have permission to view the agents.

& Default

How to do it...

1. Launch PowerShell in elevated mode and execute the following command:

> mkdir tfs_al && cd tfs_al

tfs_al> Add-Type —-AssemblyName System.IO.Compression.FileSystem
[System.IO.Compression.ZipFile] : :ExtractToDirectory ("$HOME\Down
loads\vsts—agent-win-x64-2.129.0.zip", "$PWD")

In the preceding command, replace the version of the agent (vsts-
agent-win-x64-2.129.0.zip) with the version you intend to
configure.

2. Configure the agent to run as a Windows service:

tfs_al> .\config.cmd --unattended °

>> ——url http://t£s2018.westeurope.cloudapp.azure.com/tfs

>> ——auth pat —--token XXXXXXXx

>> ——pool default —-—agent tfs_al

>> ——runAsService —--windowsLogonAccount contoso\zz_tfs-build —--
windowsLogonPassword XXXxxX

>> Connect:

[125]

https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent

Build and Release Agents Chapter 3

Connecting to server
>> Register Agent:

Scanning for tool capabilities.
Connecting to the server.
Successfully added the agent

Testing agent connection.

2018-02-15 11:05:52Z: Settings Saved.

How it works...

In the preceding command, we are simply creating a new directory and then instructing the
ZIP file to be extracted in this new directory:

\tfs_al\
> Add-Type System.IO.Compression.FileSystem ; [System.IO.Compression.ZipFile]::ExtractToDirect

p:
PS C:\tfs_al> A < | ths.al

Home Share View

« 4 | > ThisPC > Local Disk(C) » tfsal

Name Date modified Type
s Quick access
I Desktop
& Downloads

= Documents

bin 2/15/20 0:38 AM File folde:
edemals
[%] config

run

To configure the agent in unattended mode, all the configuration for the installation needs
to be specified through the command-line switches. In the —~—unattended command, we
are simply passing the details of the Azure DevOps server's URL, the type of authentication
to use, and the pool the agent needs to be configured into. When selecting the
authentication type as PAT, you'll need to pass the PAT account that will be used by the
agent to authenticate with TFS. In addition, you have the option of running the agent as a
Windows service under a Windows domain account, which is what we are passing through
in the -—-runAsService, ~—windowsLogonAccount, and ——

windowsLogonPassword switches.

In order to use basic authentication while configuring the agent, you need
to have a secure connection (SSL) with the TFS server. If you don't have a
secure connection, the preceding command will fail with an error
message: Basic authentication requires a secure connection to the server.

[126]

Build and Release Agents Chapter 3

If you do not have SSL configured for your TFS server, you can configure the agent using
integrated authentication. Once the command has been successfully executed, you'll see the
agent show up in the Agent Pools page, as shown in the following screenshot:

tfs_al> .\config.cmd --unattended °

>> ——url http://t£s2018.westeurope.cloudapp.azure.com/tfs °
>> ——auth integrated °

>> ——pool default °

>> ——agent tfs_al

£
New pool.. Agents for pool Default . Download agent

Agents Roles Settings Maintenance history
All Pools
n Enabled MName State Current Status
& Default
I tfs_al Online Idle X

Downloading agents using the GitHub
release API

In a big move to embrace open source, Microsoft transitioned a lot of its key projects to
GitHub. By developing products in an open source and contributing back to the open
source communities, Microsoft is starting to change its negative public perception. This has
resulted in some very surprising partnerships and an overall growth story for Microsoft,
which is reflected in its stock price going up significantly over the last couple of years.

The azure-pipelines-agent and azure-pipelines-tasks projects are also hosted on
GitHub. How does this benefit you? You can see all of the product's code, see the quality and
architecture of the patterns used, have visibility of the product roadmap, contribute to the
product's development, and engage with the product team by raising feedback and issues
through GitHub. Both experimental and long-term supported versions of the agents are
released on GitHub. Based on the pace at which the product is evolving, it is likely that the
agent version you are running today will be superseded by a newer version tomorrow with
more desirable features. Luckily, the GitHub release API supports programmatic
invocation, so you never have to manually check for updates.

[127]

Build and Release Agents Chapter 3

In this recipe, we'll learn how to use PowerShell to query the GitHub release API for the
latest version of the agent. Upon finding a long-term supported version of the agent, how
to download the agent in a designated folder path. You can optionally extend this solution
to include the PowerShell script from the previous recipe to create an end-to-end
automated process for downloading, unpacking, and installing agents programmatically
using PowerShell scripting.

Getting ready

The release API for GitHub is well-documented at https://developer.github.com/v3/
repos/releases/. The API supports various functions, including the ability to get all
releases for a repository, get a specific release, get a release by tag name, and most
importantly, to get the latest release. In this recipe, we'll be using the get latest release
functionality:

https://api.github.com/repos/Microsoft/azure-pipelines—-agent/releases/lates
t

If you invoke this URL in a browser, you'll get a JSON response that includes most of the
properties we'll be leveraging in our PowerShell script. The body of the response also
includes the https://vstsagentpackage.azureedge.net/agent URL. A download
URL can be dynamically generated for the platform of your choice using the version of the
release derived using tag_name:

€ C' | @ Secure https://api.github.com/repos/Microsoft/vsts-agent/releases/latest

"url": "https://api.github.com/repos/Microsoft/vsts-agent/releases/9354534",

"assets_url": "https://api.github.com/repos/Microsoft/vsts-agent/releases/9354534/assets"”,

"upload_url": "https://uploads.github.com/repos/Microsoft/vsts-agent/releases/9354534/assets{?name,label}",
“"html_url": "https://github.com/Microsoft/vsts-agent/releases/tag/v2.129.0",

"id": 9354534,

“tag_name": "v2.129.0",

“target_commitish": "a5d5e507ef0089917eef73bB46372£d990a76a8c",

"name”: "v2.129.0",

“draft”: false,
"prerelease”: false,

"created_at": "2018-01-23T17:21:16E",

“"published_at": "2018-01-23T18:58:402",

"assets": [],

“tarball_url": "https://api.github.com/repos/Microscft/vsts-agent/tarball/v2.129.0",

“zipball _url": "https://api.github.com/repos/Microscft/vsts-agent/zipball/v2.129.0",

"body": "## Features\r\n - use 5Channel for git during get scurce. #1377\r\n - enable process force clean by default. #1372\r\n
skip most of the web console lines for last run. #1364%\r\n - fixed issue where autologon was not working with .\\username #1343\r
\r\n\ri\n| | Package

--------------- \r\n| Windows [vsts-agent-win-x64-2.129.0.zip)(https://vstsagentpackage.azureedge.net/agent/2.129.0/vsts-agent-
(https://vstsagentpackage.azureedge.net/agent/2.129.0// -2.129.0.tar.gz) |‘\r\n| Linux | [vsts-agent=-linux-x64=-
\r\n\r\nAfter Download: \r\n\r\n## Windows\r\n\rin "~ bash\r\nC:\\> mkdir myagent k& cd myagent\r\nC:\\myagent> Add-Type -Assemb
[System.IO.Compression.ZipFile)::ExtractToDirectory(\"SHOME\\Downloads\\vsts-agent-win-x64-2.129.0.zip\", \"S$PWD\")\r\n"~ "~ “\r\n\rin
x64-2.129.0.tar.gz\r\n" " "\r\n\r\n## Linux\r\n\r\n" "~ bash\r\n-/$ mkdir myagent && cd myagent\r‘n-/myagent$ tar xzf -/Downloads/vst

[128]

https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/

Build and Release Agents Chapter 3

How to do it...

1. Launch PowerShell, and then use the Invoke—-RestMethod cmdlet to call the
GitHub release API to get the latest release of the agent:

Get the latest release of the agent from the GitHub API
S$latestRelease = Invoke-RestMethod

-Uri
"https://api.github.com/repos/Microsoft/azure-pipelines—agent/r
eleases/latest"

Value of "tag_name" : "v2.129.0"

2. The tag_name property shows the name of the tag. By simply removing the first
character, you'll get the version number of the agent:

Sv = $latestRelease.name.Substring(1l,
S$latestRelease.tag_name.Length-1)
Value of $v : "2.129.0"

3. Dynamically construct the URL needed to download the agent. As you can see in
the command below the string is being concatenated to create the download URL
of the agent for the Windows platform:

$latestReleaseDownloadUrl =
"https://vstsagentpackage.azureedge.net/agent/"
+ $v + "/vsts-agent-win-x64-" + Sv + ".zip"

Value of $latestReleaseDownloadUrl =
https://vstsagentpackage.azureedge.net/agent/2.129.0/vsts—agent
-win-x64-2.129.0.zip

4. Create a new temporary folder; if it doesn't exist, force the creation of the
temporary directory:

SagentTempFolderName = Join-Path
Senv:temp ([System.IO0.Path] ::GetRandomFileName ())

If(! (test-path $agentTempFolderName))
{
New-Item -ItemType Directory -Force -Path
SagentTempFolderName
}

[129]

Build and Release Agents Chapter 3

5. Call the Invoke-WebRequest cmdlet with the agent-download URL to
download the agent into the newly created temporary directory:
Download the agent to the temp directory
Invoke-WebRequest -Uri $latestReleaseDownloadUrl -Method Get
-OutFile "S$agentTempFolderName\agent.zip"

6. The agent will be downloaded into the newly created temporary folder:

» This PC » Local Disk (C:) * Users » tarum.arora » AppData » Local » Temp * 2 » ysbzsnkn1f0

ES

MName Date modified Type Size

: agent 272018 11:39 AM Compressed (zipp... 88,578 KB

How it works...

Bringing it all together, in this section we'll look at the complete script and how it works.
The script is wrapped up in a try catch block for error handling, and a retry procedure has
been added for resilience. In the following script, the Invoke-RestMethod cmdlet is used
to get the latest version of the agent from GitHub. The result is then consumed to generate a
download installer for the Windows-based agent. The agent is downloaded to a temporary
folder and the script checks whether the temporary folder is already in place; if not, it
creates the temporary folder before using the Invoke-WebRequest cmdlet to download
the agent to the temporary folder:

SretryCount = 3
Sretries = 1
SagentTempFolderName = Join-Path
Senv:temp ([System.IO.Path]::GetRandomFileName ())
Write-Verbose "Downloading Agent install files" -verbose
do
{
try
{
Write-Verbose "Trying to get download URL for latest agent
release..."
Get the latest release of the agent from the GitHub API
SlatestRelease = Invoke-RestMethod -Uri
"https://api.github.com/repos/Microsoft/vsts—agent/releases/latest"
Format the name to create a download URL for windows
Sv = S$latestRelease.name.Substring(l, $latestRelease.name.Length-1)
$latestReleaseDownloadUrl =

[130]

Build and Release Agents Chapter 3

"https://vstsagentpackage.azureedge.net/agent/"
+ S$v + "/vsts-agent-win-x64-" + Sv
+ ".zip"

Validate that the temp directory exists or create it
If (! (test-path $agentTempFolderName)) {
New—-Item —-ItemType Directory -Force -Path

SagentTempFolderName

}

Download the agent to the temp directory

Invoke-WebRequest -Uri $latestReleaseDownloadUrl

—Method Get -OutFile

"SagentTempFolderName\agent.zip"

Write-Verbose "Download agent successfully on attempt S$Sretries" -

Verbose
break
}
catch
{
SexceptionText = ($_ | Out-String) .Trim()
Write-Verbose "Exception occurred downloading agent:
SexceptionText in try number Sretried" -
Verbose

Sretries++
Start-Sleep —-Seconds 30

}

while (Sretries —-le SretryCount)

In case there is an exception, the exception is caught and there is logic to retry the
download. A total of 3 retries are attempted at an interval of 30 seconds before exiting the
script.

Configuring deployment groups

An application environment is composed of multiple servers in different roles, such as web,
application, and database. Scaled out versions of these environments could have multiple
servers front-ended by load balancers and availability groups. While agents in agent pools
give you a way to deploy your application, you are responsible for bringing together the
agents in the agent pool to deploy to your environment.

[131]

Build and Release Agents Chapter 3

In this model, you are responsible for managing the complexity of how the deployment
impacts the environment, such as orchestrating the rotation of the web servers as they are
being upgraded. In this model, it's hard to answer simple questions such as the version of
the release deployed on a machine. Microsoft has significantly enhanced the machine
groups feature that it first introduced in TFS 2015 and rebranded as deployment groups.

Simply put, deployment groups are a collection of agents collectively representing an
application environment, such as Dev, UAT, Pre-Prod, or Production. Each machine in the
deployment group has an agent; metadata can be associated with the agent by adding tags.
The deployment group can then be queried for this tag to return a list of agents that match
the tags. This makes deploying to a multi-server web tier very easy. As the framework is
aware of all the agents with the WebServer tag, you can specify a deployment rule to roll
out the deployment on a small subset of web servers and stop in case of any failures. All the
native agent capabilities are still available to you — for example, you can view live logs for
each server as a deployment takes place, and download logs for all servers to track your
deployments to individual machines. The deployment group records the version of the
release that was deployed in an environment and on the individual servers in the
deployment group as well. Deployment groups also provide a security context, so you can
add users and give them appropriate permissions to administer, manage, view, and use the

group.

The host machine can have one or more agents deployed on it, and each
agent can be associated with a different deployment group. This gives you
the ability to use shared environments exclusively through their own
deployment groups.

Deployment groups are not visible to build pipelines; they are only meant to be used in
release pipelines. While we'll be covering how to use deployment groups in Chapter 7,
Azure Artifacts and Dependency Management, we'll learn how to configure the Azure DevOps
agent into a deployment group.

Getting ready

To create a deployment group, you need to be a member of the build administrator and
release administrator group; membership to the project-collection administrator group also
gives you permission to perform this action across multiple team projects in a collection.

[132]

Build and Release Agents Chapter 3

How to do it...

In this section we'll cover the steps to setup an agent into a deployment group:

1. Navigate to the build and release hub in the PartsUnlimited team project portal.
Click on Deployment Groups and add a new deployment group, ps-test-01:

Search work items

Code Work Buildand Release Test Wiki | &

J PartsUnlimited ~ Dashboards

Builds Releases Packages Library Task Groups Deployment Groups Build Usage
= Deployment Groups > ps-test-01

Details Targets O Security @ Help

Deployment group name Type of target to register:
~ (@ System prerequisites 12

ps-test-01 _ Windows

Description

Registration script {(PowerShell)

The Parts Unlimited Test 01 environment

1 Prompt"};If(-NOT
)) {mkdir $e stemDrive\ 'vs
t'; for($i=1; $i -1t 100; $i++)

2. Copy the PowerShell script, then navigate to the target machine you intend to
add to this deployment group. Run PowerShell in elevated mode and execute the
script. The script downloads the agent and configures the agent as a deployment
group. Run this script on other machines you intend to join this deployment

group:

\/ 3

GetCurrent()).IsInRole(
}If(
e\ 'vstsagent'; §
)) {mkdir ;ed 5 &R
) ; Add-Type ystem.IO.Compression

Co .ZipFile]: :ExtractToDirectory();.\config.cmd --deploymen up --agent psweb
e i —-url --collectionname --projectname
oymentgroupname --auth Integrated; Remove-Item

Directory: C:\vstsagent

LastWriteTime Length Name

2/18/2018 4:45 pM

[133]

Build and Release Agents Chapter 3

3. Flip over to the Targets tab for the ps-test-01 deployment group in the
PartsUnlimited team portal. This will show you the list of all the target machines

joined into this deployment group:

Builds Releases Packages Library Task Groups Deployment Groups Build Usage

& Deployment Groups > ps-test-01

Details Targets U Security @ Help
Machine Name Tags Latest Deployment
I psweb01 WebServer X 4 N
I psweb02 AppServer X+

How it works...

Let's look at the deployment-group-registration script in more detail. The error preference
for this script is set to stop, implying the script will stop execution on the first failure:

SErrorActionPreference="Stop";

Validate that the user executing the script is part of the administrator role on the host
machine:

If (-NOT
([Security.Principal.WindowsPrincipal] [Security.Principal.WindowsIdentity]:

:GetCurrent ()) .IsInRole([Security.Principal.WindowsBuiltInRole]

“Administrator”))
{ throw "Run command in Administrator PowerShell Prompt"};

Validate that the vstsagent folder exists in the System directory on the host machine. If
not, create a new directory for vst sagent and navigate to that directory. If an agent
already exists in the directory, create a new agent folder with a different name:

If (-NOT (Test-Path $env:SystemDrive\'vstsagent'))
{mkdir S$env:SystemDrive\'vstsagent'};
cd $env:SystemDrive\'vstsagent';

[134]

Build and Release Agents Chapter 3

for($i=1; $i -1t 100; $i++){SdestFolder="A"+$i.ToString();
if (-NOT (Test-Path (SdestFolder))) {mkdir S$destFolder;cd
SdestFolder;break; } };

Download agent . zip and unzip it into the newly created agent folder:

SagentZip="$PWD\agent.zip";

(New—-Object Net.WebClient) .DownloadFile (
'https://go.microsoft.com/fwlink/?1inkid=858950"', S$agentZip);

Add-Type —-AssemblyName

System.IO.Compression.FileSystem; [System.IO.Compression.ZipFile]::ExtractTo
Directory(S$SagentZip, "$PWD");

Configure the agent as a deployment group, use the host machine name to name the agent,
and configure the agent to run as a Windows service. Join the agent in the ps-
test-01 deployment group in the PartsUnlimited team project:

.\config.cmd —--deploymentgroup --agent $env:COMPUTERNAME --runasservice —-

work '_work' —--url 'http://tfs2018.westeurope.cloudapp.azure.com/tfs/' —--
collectionname 'DefaultCollection' --projectname 'PartsUnlimited' --
deploymentgroupname "ps-test-01" --auth Integrated;

Remove-Item $agentZip;

Remove the agent installer file from the agent directory:

Remove-Item $agentZip;

You can use the ——unattended switch we saw in the Unattended
configuration of build agents using PowerShell recipe to configure the
deployment group in unattended mode. This is useful if you want to push
the configuration of deployment groups remotely on target machines.

Configuring the agent to use a proxy

Enterprises that host their infrastructure on-premise or in a hybrid cloud setup tend to use
a multi-level security approach. This usually involves one or more firewalls that protect the
infrastructure from external traffic, and a web proxy to control the intranet and internet
traffic. In such a scaled setup, traffic generated from the agent may be blocked from
connecting to the Azure DevOps server if it is not routed through the proxy. Luckily, the
Azure DevOps agent infrastructure supports proxy configuration natively. In this recipe,
we'll learn how to configure a web proxy during agent configuration.

[135]

Build and Release Agents Chapter 3

Getting ready

Ensure you've downloaded the latest version of the agent locally on the target machine
where you intend to install and configure the agent. You'll need to be part of the build
administrators group in Azure DevOps Server to be able to connect the agent as well as an
administrator on the target machine to be able to install the agent. The TFS agent is
programmed to pick up the proxy settings configured in the . proxy file in the agent
folder. Therefore, for the agent to pick up the proxy settings, you will need to create a
.proxy file in the agent install folder ahead of configuring the agent.

How to do it...
1. Navigate to the location where the agent has been downloaded and unzipped:

> cd c:\tfs_al
tfs_al>

2. Create a .proxy file with the proxy URL:

echo http://theProxyServer:443 > .proxy

The preceding configuration is sufficient if the proxy doesn't require
authentication. This is usually the case if you are using a Windows
domain account to run the agent. However, if you are running the agent
under the default network credential or the user running the agent is
required to authenticate with a proxy, you'll need to perform the
following additional steps.

3. Provide the proxy credentials to TFS using environment variables. TFS treats
these credentials as secrets and then masks the values before passing them into

the job output:

set VSTS_HTTP_PROXY_ USERNAME=myProxyUser
set VSTS_HTTP_PROXY PASSWORD=myProxyPassword

[136]

Build and Release Agents Chapter 3

How it works...

With the proxy configured in the root folder of the build agent, you can use config.cmd,
as demonstrated in the recipe Unattended configuration of build agents using PowerShell,
to configure the agent. The agent automatically picks up the proxy configuration; if the
proxy configuration requires authentication, the agent uses the
VSTS_HTTP_PROXY_USERNAME and VSTS_HTTP_PROXY_PASSWORD environment variables
to authenticate with the proxy. Any build jobs that you run thereafter will print the proxy
URL being used by the agent in the build output.

Analyzing build usage data

Wouldn't it be great if you could get insights into how the build system is being used? For
example, which projects are using builds more than others, which definitions are
consuming most build time, and top build users. After all, data is the new currency, and
you should feel empowered to make empirical data-driven decisions. This is especially
useful if you plan to evolve the build pools and queues with empirical usage data trends. In
this recipe, we'll learn how to get insights into the usage of the build system using an open
source extension available in the marketplace.

Getting ready

The marketplace features the Build Usage extension (https://marketplace.
visualstudio.com/items?itemName=ms-devlabs. BuildandTestUsage). This open source
extension, released by the Microsoft DevLabs team, provides insights into the build
infrastructure usage at different granularities. Install this extension in the project collection
you plan to analyze the data for.

[137]

https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage

Build and Release Agents Chapter 3

How to do it...

1. Navigate to the collection administration page and open the Build Usage
page. All Team Projects gives you a headline of the total build usage across the
collection. You can drill into the specific team projects to see the build usage by
users, definitions, and agent pools. The data can be filtered to this month, last
month, the last six months, or a custom period:

Team Projects Build Usage

All Team Projects Total Build Minutes: 254

EnvHub

By Users By Build Definitions By Build Controllers / Agent Pools
Integrations —_—

T Id De o Minutes
MarketStore Build Definition Miinute
MinorEnhancements Build.Vault.Gateway 61

Azure.Provision.VstsAgent.Softwarelnstall 19
Packages

Azure.Provision.VstsAgent 43
Salesforce

2. Click the Export button to export the results into a CSV file, which you can then
use for further analysis offline. In addition, the extension also includes a
dashboard widget.

[138]

Build and Release Agents Chapter 3

How it works...

The extension is open source; you can take a look at the extension's code implementation on
GitHub at: https://github.com/ALM-Rangers/build-usage-widget-extension/blob/
master/vsts-buildusage/src/build.ts. The extension uses the build REST API to get a
list of all the build definitions across the collection and then all builds recorded against
those definitions. It then processes this data by aggregating the properties to show a view
of usage by projects, definition, user, and agent pool:

public getBuildExecutions(projectld: string, startDate: Date, finishDate: Date, successCallback, errorCallback): void {
let builds = this.getBuilds(projectId, startDate, finishDate);

builds.then(
(builds) == {
let totalTime: number = @;
let buildDataSource = new Array<BuildDetails=();

for (let i = @; i < builds.length; i++) {
let build: Tfs_Build_Contracts.Build = builds[i];
let buildDefinition: string = build.definition.name;
let buildController: string = (build.controller == null 7 build.queue.pool.name : build.controller.name);
let minutes: number = (build.finishTime.valueOf() - build.startTime.valueQf()) / 1000 / 6@;
totalTime += minutes;

buildDataSource.push(new BuildDetails(build.requestedFor.displayName, minutes, buildDefinition, buildContro
}
successCallback({ totalTime: totalTime, buildDataSource: buildDataSource });
}!
(error) => {
errorCallback(error);

[139]

https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts

Build and Release Agents Chapter 3

See also

The Azure DevOps marketplace also features the Export as PDF extension (https://
marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF). This free
extension, created by Utkarsh Shigihalli, allows you to export the build definition steps,
triggers, history, and so on in a neat report so that you can print or share it with colleagues.
The extension is especially useful if you intend to document the build setup for training or
knowledge-transfer purposes:

Definitions / ExportAsPD

ExpartAsPDF.Release

Build Options Bepository SUMMARY

M saver % build. 9 Unde

= Add build step.. Build soluti

Visual Studio Build
Build solution ExportDefinitionAsPDF.sin

> Command Line
il Aun cridiexe

ﬂ Azure PowerShell
Azure PowerShell script: §/VSExtensions/Releases

@ Azure SQL Database Deployment » Advance
-

Deploy Azure SQL DACPAC: DeploymentOnALTITFSO] J——

Enabled

HISTORY

Automating agent pool maintenance

Each build and release pipeline creates a directory under the agent working directory to
store the source code, artifacts, and test results. Some builds consume more space than
others; as projects evolve, some builds are used more than others. As you may have
guessed, this results in agent maintenance activity to clear out the agent work

directory. While you wouldn't want to remove everything from the directory, you would
certainly be looking to remove some of the less-used build folders. Luckily, the agent comes
with out-of-the-box support for pool maintenance. In this recipe, we'll learn how to
configure the agent-pool maintenance schedule to automatically free up storage from the
agent work directory by removing unused build folders.

[140]

https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF

Build and Release Agents Chapter 3

Getting ready

To configure the agent pool maintenance, you need to be part of the build collection
administrator group or in the administrator role for the specific agent pool.

How to do it...

In this section we'll look at the steps needed to configure the automated maintenance of the
agent pool:

1. Navigate to the collection administration page and open the agent pools page.

2. Select the default agent pool or any other agent pool and click settings to
configure the maintenance schedule. Set the schedule to run every day and
remove all build and release agent directories that haven't been used in the last 5
days:

New pool... Agents for pool Default | Download agent

Agents Roles Settings Maintenance history
All Pools

& Default Maintenance setting

Enable agent maintenance job
Maintenance job timeout: 60 minutes
Max percentage of agents running maintenance: 25 percent ()
Number of maintenance job records to keep: 10
Delete unused working directory after 5 days h
Schedule pool maintenance:

24htime:) 00 % :| 00 %) (UTC) Coordinated Universal Time

Sun@ Mon@ Tuel) Wed®@ Thu@ Fi@ Sat@ h

a

[141]

Build and Release Agents Chapter 3

How it works...

To trigger the maintenance schedule in an ad hoc manner, right click the agent pool, from
the context menu select queue agent maintenance. When you trigger agent pool
maintenance, this queues a new build job, the results of which are published in the build
Maintenance history. As per the settings configured, the job only takes the specified
percentage of agents out for maintenance, so the pool can still be used for builds and
releases:

Agents for pool Build 4 Download agent
Agents Roles Settings Maintenance history h

ID ® Errors and warnings Date queued Date started Date completed Target agents Duration Logs

4 @ O0Ermors, 0 Warnings 2/17/2018 12:14:03 PM 2/17/2018 12:14:01 PM 2/17/2018 12:14:17 PM 2 Agent(s) B 00:00:16 Download Logs

Since azure-pipeline-agent is open source on GitHub, you can see the code of the
product. The RunMaintenanceOperation function in the BuildDirectoryManager class
(https://github.com/Microsoft/azure-pipeline-agent/blob/
f9e5bb7337fb51lace995cafecaa8665cad638a84/src/Agent .Worker/Build/
BuildDirectoryManager.cs) goes through each of the build and release directories under
the agent work directory to identify when it was last used. If it meets the criteria, it's
marked for garbage collection. All folders marked for garbage collection are deleted, and
the overall storage space is reported at the end of the job's execution. If you download the
agent maintenance logs, you will see this reflected in the maintenance log:

##|section]Starting: Maintenance

Current agent version: '2.117.1'

Agent is running hehmd proxy server: 'http://proxy-azsu. com:8888'

Download all requlred “tasks.

##[section]Finishing: Initialize Job

##[section]Starting: Maintenance

##[section]Start maintenance: Delete unused build directories

Discover stale build directories that haven't been used for more than 5 days.
Directory expiration limit: 5 days.

Current UTC: 2018-02-17T12:14:05. 31936212

[142]

https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs

Build and Release Agents Chapter 3

There's more...

To help you keep the agents updated with the latest product version, Azure DevOps Server
offers you the ability to upgrade within the Agent Pools page directly, without having to
go through the process of removing and reconfiguring agents. To do this, you need to be
part of the collection build administrator group or in the administrator role for the agent
pool you intend to perform this operation on. From the pool context menu, simply select
Update All Agents. This will temporarily take the agents in the pool out, download the
latest version of the agent, and upgrade in-situ:

Overview Users Security Process Build and Release Agent Pools Notifications Extensions

¢
New pool... Agents for pool Default { Download agent

Agents Roles Settings Maintenance history

~ All Pools
Enabled Mame State Current Status

&7 Default
I tfs_al Online Idle
C; Update All Agents

B Queue Agent Maintenance
v Auto-provision Queues

X Delete

Configuring build and release retention
policies

In the Automating agent pool maintenance recipe, we learned how to configure maintenance
schedules on the agent machines. While that helps free up space on the agent machine,
there is maintenance activity required on the Azure DevOps Server to free up space by
removing unwanted builds and releases. An average build artifact, test results, and
associated metadata is in the range of 50 MB.

[143]

Build and Release Agents Chapter 3

If the build is run 20 times a day for 30 days, this will generate about 29 GB worth of assets!
While Azure DevOps Server does a great job in compressing and storing this data in blob
storage, it is best to offload what you don't need. In this recipe, we'll learn how to configure
a retention policy for both builds and releases at the collection level to automatically
remove builds and releases that match this criteria. We'll also learn how to overwrite the
default retention policy for a specific build or release definition.

Getting ready

To administer build resources for the collection, you need to be a member of the
Project Collection Build Administrators group.

How to do it...

1. Navigate to the collection administration page and open the Build and Release
page

2. Keep the Minimum Retention Policy as is, and change the default configuration
for the maximum retention to 15 days and the minimum to keep to 5

3. Change the days to keep the build record after deletion to 10

[144]

Build and Release Agents

Chapter 3

The retention policy applies to all builds in a Team Project Collection.
There may, however, be a few builds that you would like to retain longer
than the maximum retention enforced by the global policy. This can be
achieved by marking a build or release for indefinite retention. Browse to
the specific build that you would like to exclude from the retention policy,
right-click the build, and set the retain indefinitely flag on the build. In
the image below you can see the editable settings to configure the
retention period.

Overview Users Security

Settings Resource limits

Maximum Retention Policy

Days to keep:
Minimum to keep:
Delete build record:
Delete source label:
Delete file share:
Delete symbols:
Delete test results:

Branch filters:
Default Retention Policy

Days to keep:
Minimum to keep:
Delete build record:
Delete source label:
Delete file share:
Delete symbols:
Delete test results:

Branch filters:

Permanently Destroy Builds

Days to keep build record after
deletion:

Process Build and Release Agent Pools Notifications Extensions

15

true
false
true
true
true

All

10

true
false
true
true
true

All

10 B

[145]

Build and Release Agents Chapter 3

How it works...

TFS has a set of background jobs that are scheduled to run to manage various operations
within TFS. You can access the TES job monitoring page by browsing to
_oi/jobmonitoring page http://<tfsInstance>/tfs/_oi/_jobmonitoring. The
build and retention policy is also orchestrated as a job. Builds and releases that match these
criteria, with the exception of those marked for indefinite retention, will be removed.

It is also possible to overwrite the global build and release policy at a build and release
level, which can be done from the retention tab in a build or release definition. With the
ability to apply branch filters, you can specify different retention schedules for different
types of branches. For example, the topic branch builds can be removed more frequently
compared to the master branch. You may want to remove the source label for topic
branches, but not necessarily for the master branch:

& - > PartsUnlimited-Cl

Tasks Variables Triggers Options Retention History

Policies T Add Settings

evaluated in order, ap
ule at the bottom mal

ing the first matching policy to each build. The

all build .
’ Branch Filters

T
Keep for 5 days, 1 good build ype Branch specification
refsmeads/featurel Include ~ ¥ master v
Keep for 10 days, 1 good build +

+ref/heads/master h i + Add

& Keep for 15 days, 5 good builds
Default

Days to keep Minimum to keep @
10 1

When cleaning up builds, delete the following:
Build record
Source label
File Share
Symbols

Automated test results @

[146]

Build and Release Agents Chapter 3

Agent capabilities and build demands for
special builds

The build and test execution of an application depends on the specific version of the
framework. For example, an application may have a component that depends on
DotNetCore 1.0 and another component may depend on DotNetCore 2.0. The build system
gives you the ability to define demands in a build definition and specify capabilities in the
agent queues. This creates a build that you can route to an agent queue by simply mapping
the demand to the capabilities. The framework leverages this capability internally; during
the agent setup, the agent collects a list of software and frameworks installed on the host
machine. These can be seen in the agent queue or Agent pools page under the Capabilities
tab. In this recipe, we'll learn how to add custom capabilities in the agent queues and
demand that in-build definitions target specific agent queues.

Getting ready

To configure the agent capabilities, you need to be part of the build administrator group or
in the administrator role for the specific agent queue.

How to do it...

1. Navigate to the admin portal for the PartsUnlimited team project, select the
Agent queues page, and click on the Capabilities tab. The page displays a list of
system capabilities, which shows you a list of all the software and frameworks
set up on the host machine. In USER CAPABILITIES, click to add a custom
capability. This gives you a key-pair; specify the dotnetcore name in the key
and the number 1 in the value, and then save the changes:

[147]

Build and Release Agents

Chapter 3

Agents Roles

Enabled Name State

I tfs_al Online Idle

Agents for pool Default

Current Status

Requests

X

Capabilities

USER CAPABILITIES

Shows information about user-defined capabilities supported by this host

el X dotnetcore 1

== Add capability

Save changes

SYSTEM

Undo changes

CAPABILITIES

Shows information about the capabilities provided by this host

Capability name Capability value
Agent.ComputerName azsu-p-tfs2018
Agent.HomeDirectory Cihtfs_al
Agent.Name tfs_al
Agent.05 Windows_NT

2. Navigate to the build hub in the PartsUnlimited team portal. Add a new build
definition and choose an empty build template. In the Options tab, under the
Demands section, add two demands: one that checks for the dotnetcore key
and another that checks for the version:

& - > PartsUnlimited-Cl

(@ Tasks Variables Triggers Options Retention History

Build properties

Define general build definition settings

Description

Build number format &

Badge enabled (@

New build request processing

@ Enabled - queue and start builds when eligible agent(s) available
Paused - queue new builds but do not start

Disabled - do not queue new builds

Automatically link new work in this build
When a build completes successfully, create links to all work items linked to

=l

Build job

Define build job authorization and timeout settings

Build job authorization scope @

Project collection

Build job timeout in minutes @

60

Build job cancel timeout in minutes (@

5

Demands
Specify which capabilities the agent must have to run this process

Disabled

Name Condition
dotnetcore exists
dotnetcore equals

Value

[148]

Build and Release Agents Chapter 3

How it works...

When you queue a new build, the build pipeline queries the system capabilities of the
queue and determines whether there is an available agent in the queue that meets the build
demands. If no agent is found, you will be notified via a warning message. If you queue the
build regardless, it will fail at the configured timeout interval if no agent is found that
meets the demands in the build definition. At build-queue-time, you have an option to add,
remove, or overwrite the build demands:

Builds Releases Packages Library Task Groups Deployment Groups

& - > PartsUnlimited-Cl Queue build for PartsUnlimited-Cl
Tasks Variables Triggers Options Retention History
Agent queue
Procfssl Default
Branch
S e P mester

Commit

+ Add Task

Variables Demands

ﬁ dotnetcore]E[exists ~

dotnetcore equals 21

+ Add

Managing agent permissions using role-
based access

The build system provides role-based access control instead of exposing the underlying
permissions directly. In this recipe, we'll learn how to permission build resources
at the pool and the queue level.

[149]

Build and Release Agents Chapter 3

Getting ready

To manage the all pools membership, you need to be a member of the Team Foundation
Administrators Group. Membership to the Team Project Collection Administrator Group is
required to manage the permissions for individual pools. In order to manage the
permissions for the queues, you need to be a member of the Project Collection Build
Administrators Group. Build Definition Administration requires membership to the Build

Administrators Group.

How to do it...

1. Launch the collection administrator page and navigate to the Agent pools page.
Click on all pools, then add the service account(s) that you intend to use in the

agent pool Service Account role:

DefaultCollection ~ Projects My favorites My work items My pull requests

Overview Users Security Process Build and Release Agent Pools Notifications Extensions Build

<
MNew pool_,_ RO'ES for EI|| pDOlS i Duwnload agent

Roles

All Pools “
&" Default + Add Add user

User

User or group Search users and groups

Role | Reader e

Reader
Service Account

Administrator

[150]

Build and Release Agents Chapter 3

2. To add a user as a reader to a specific pool, click on the specific pool and add the
user account or group to that specific pool:

Overview Users Security Process Build and Release Agent Pools Notifications Extensions ~ Build Usage

<

— Roles fo pool Defaui

Agents Roles Settings Maintenance history
All Pools

&7 Default ﬁ._.l‘Md 2 |

User

Add user

User or group Search users and groups
Role Reader

Reader can only view the agent pools.

How it works...

As illustrated in the following diagram, the new build system contains a hierarchical role-
based access-control model:

All Queues Permissions

Queusl

All
Queues

Queues

Pool 1 Pocl 2 All Pools Permissions

All Pooks

—

[151]

Build and Release Agents Chapter 3

Let's look at each of the roles and the accesses they offer:

e All queues:
e Agent Queue Administrators: Users in this role have the ability to
manage all queues within the project collection.

e Agent Queue Creators: Users in this role have the ability to create
new queues. If there is no pool with the same name as the queue,
one will be provisioned at queue-creation-time and the caller will
be added as an administrator of both the queue and the
corresponding pool. If a pool with the same name already exists,
the caller must have the Manage permission (must be a pool
administrator) on the pool to create a new queue that uses the
pool.

e Agent Queue Users: Users in this role have the ability to use all
queues for the entire collection. This means that they can assign the
queues to be used by definitions in the Build space.

¢ Individual queues:
¢ Agent Queue Administrators: Same as the preceding role, but the
permissions are restricted to the specific queue

e Agent Queue Users: Same as the preceding role, but the
permissions are restricted to the specific queue

e All pools:
e Agent Pool Administrators: Users in this role have the ability to
manage all pools within the entire account

e Agent Pool Service Accounts: Users in this role have the ability to
connect to the pool and receive messages regarding Build jobs,
including control messages such as update yourself and cancel this
job.

¢ Individual pools:
¢ Agent Pool Administrators: Same as the preceding role, but the
permissions are restricted to the specific pool

e Agent Pool Service Accounts: Same as the preceding role, but the
permissions are restricted to the specific pool

[152]

Continuous Integration and
Build Automation

As a developer compiling code and running unit tests gives you assurance that your code
changes haven’t had an impact on the existing codebase. Integrating your code changes into
the source control repository enables other to validate their changes with yours. As a best
practice teams integrate into the shared repository several times a day to reduce the risk of
introducing breaking changes or worst overwriting each other’s.

Continuous Integration (CI) is a development practice that requires
developers to integrate code into a shared repository several times a day.
Each check-in is verified by an automated build, allowing teams to detect
problems early.

The Automated build running as part of the CI process is often referred to as the CI build.
While there isn't a clear definition of what the CI build should do, at the very minimum it is
expected to compile code and run unit tests. Running the CI build on a non-developer
isolated workspace helps identify dependencies that may otherwise go unnoticed late into
the release process. We can talk endlessly about the benefits of CI; the key here is that it
enables you to have potentially deployable software at all times.

Deployable software is the most tangible asset to customers.

Continuous Integration and Build Automation Chapter 4

Moving from concept to application, in this chapter we’ll learn how to leverage the build
tooling in Azure DevOps Server to set up a quality focused Continuous Integration
process.

In this chapter, we will cover the following recipes:

¢ Configuring one build definition for all branches of a Git repository

Reflecting the branch quality in the build name

Using web deploy to create a package in an ASP.NET build pipeline
¢ Organizing build output into separate folders

Configuring assembly version info in build pipelines

Setting up a build pipeline for a .NET core application
Setting up a build pipeline for Node.js application
Setting up a build pipeline for your database projects

Integrating SonarQube in build pipelines to manage technical debt

Configuring one build definition for all
branches of a Git repository

The Git branching model and pull request workflow makes it so easy to manage the flow of
code that you will get accustomed to creating a topic branch for each new item of work.
Continuous Integration is table stakes for any organization looking to move into a DevOps
way of working. Associating a Continuous Integration flow with every new Git topic
branch you create can be cumbersome, as you'll need to create a new build definition for
each Git branch.

This becomes an operational nightmare if the topic branches are short-lived. In this recipe,
we'll learn how to use one build definition to build all your Git branches in a team project.

Getting ready

You need to be a member of the build administrator group in the team project. The build
administrator group gives you permissions to administer build resources. Members can
manage test environments, create test runs, and manage builds.

[154]

Continuous Integration and Build Automation

Chapter 4

Create the following Git branches in your team project:

¢ master: Mainline for production
e develop: Integration for all features
e feature/myFeature-1: Feature development branch

How to do it...

1. Navigate to the Builds and Releases hub in the parts unlimited team portal.
From the Builds page, click New to create a new build definition.

2. Select the empty process to start with an empty build definition.

Name the build definition part sunlimited.web, choose the Default agent

queue, and save the build definition, as shown in the following screenshot:

Builds Releases Packages Library Task Groups Deployment Groups Build Usage
& - > partsunlimited.web Save & queue
Tasks Variables Triggers Options Retention History
Process
Build process Name *
partsunlimited.web
== Get sources
© Mmywebapp = masher Agent queue | Manage 12
Default v
+ Add Task O
Parameters ®
This definition doesn't have any process parameters yet. You can create and use

them to promote the most important settings in your process.

Learn more 2

[155]

Continuous Integration and Build Automation Chapter 4

In the Get sources step, you'll see that the build is configured to use the
MyWebApp Git repository and the master branch, which signifies that this build
definition is linked to the master branch of the MywWebapp Git repository only.
However, it is a little-known secret that this setting can be overridden.

4. Navigate to the Triggers tab in the build definition and enable the Continuous
Integration trigger for this build definition, as shown in the following screenshot:

& - > partsunlimited.web Save & queue

Tasks Variables Triggers Options Retention History

Continuous Integration Scheduled

Build every change to matching branches Build matching branches for each schedule
Trigger status Trigger status

Q Enabled [] Disabled

Repositories

0 MyWebApp ~
Build when any branch changes

Batch changes while a build is in progress

Branch Filters

Type Branch specification
Include hd §# master v
+ Add
Path Filters
+ Add

After enabling the Continuous Integration trigger, you can now see you have the
option to configure the branches this Continuous Integration trigger is
configured against.

[156]

Continuous Integration and Build Automation

Chapter 4

5. In the branch specification, type * and hit Enter. Save the build definition:

Repositories

0 MyWebApp -

Build when any branch changes

Branch Filters

Batch changes while a build is in progress

Type Branch specification
Include e $* master
Mine All branches
+ Add
Path Filters Press Enter to search in 'Al
+ Add

The branch specification drop-down menu does not have an option to
select all; you'll need to type * in the branch selector search box and hit
the Enter key immediately. If this does not work, disable and re-enable the
Continuous Integration trigger, select the branch selector drop-down,
type *, and press Enter. This will enforce this build to be configured for a
Continuous Integration trigger for all Git branches of the Git repository.

While the build definition is defaulted to the master branch in the Get sources

step, it will get the source from the branch the Continuous Integration is

triggered from.

6. By changing the Continuous Integration filter to *, this build definition is now

configured to work with all branches of the Git repository:

‘) MyWebApp -~

Build when any branch changes

Branch Filters

Include e

+ Add

Batch changes while a build is in progress

Type Branch specification

[157]

Continuous Integration and Build Automation Chapter 4

You can optionally add multiple branches using the + Add link if you only
intend to configure a build definition for multiple Git branches and not all

of them.

How it works...

To better understand how this works, in this section we'll test the configuration and go
through its implementation. Let's start by testing that the build definition is correctly
configured to work against all branches in the MywebApp Git repository. Navigate to the
code hub, open the MywebApp Git repository, and select the feature/myFeature-1
branch. Edit the Program. cs file by adding a comment. Commit the changes to trigger the

CI build for this branch:

x

Commit

Comment Updated Program.cs

Branch name

feature/myFeature-1

Work items to link

Search work items by 1D or title

[158]

Continuous Integration and Build Automation

Chapter 4

Navigate to the build hub and open the partsunlimited.web build definition. You'll
notice that the CI build execution was triggered from the last commit for
the feature/myFeature-1 branch:

v Build 4
+ Build

+ Initialize Job
+/ Get Sources
~* Post Job Cleanup

+ Finalize build

+* Report build status

partsunlimited.web / Build 4

f Edit build definition EP Queue new build... & Download all logs as zip ﬂ Retain indefinitely

Build succeeded

II Build 4 &
Ran for 6 seconds (Default), completed 75 seconds ago

Summary Timeline Tests

Build details

Definition
Source

Source version
Requested by
Queue name
Queued
Started
Finished
Retained state

partsunlimited.web (edit)

feature/myFeature-1 /

Commit 2aa8923d

Microsoft.TeamFoundation.System on behalf of Tarun Arora
Default

Saturday, March 24, 2018 10:00 AM

Saturday, March 24, 2018 10:00 AM

Saturday, March 24, 2018 10:00 AM

Build not retained

Associated changes z
027d239 Authored by Tarun Arora

Updated Program.cs - Adding a comment to trigger Cl.

'1n~' Release

Repeat these steps for the develop and master branch now. You'll notice that the same build
definition gets triggered and gets the sources from the correct branch by simply using the
Continuous Integration trigger:

Summary History

Details
Repository
Default queue
Queue status
Last updated by

Queued & running

MNo builds queued or runn
Recently completed

#7 « succeeded

#5 ' succeeded

#5 « succeeded

Build Definitions / partsunlimited.web v

Deleted

4 MyWebApp
Default | Manage
Enabled

Tarun Arora | Saturday, March 24, 2018 9:51 AM

ing at the moment

v passing # Queue new build... &

Branches /

19 master +/ passing
¢ develop ~/ passing
i» feature/myFeature-1 ~/ passing

§# master Tarun Arora

{# develop Tarun Arora

i feature/myFeature-1 Tarun Arora

O Security
2 minutes ago
3 minutes ago

B minutes ago

[159]

Continuous Integration and Build Automation Chapter 4

See also

This approach can be extended to link one build definition to a release definition to release
multiple branches into an environment. By using release artifact filters, you can lock down
the topic branches to dev test environments only.

Reflecting the branch quality in the build
name

Most software changes evolve from an alpha release quality to a beta release quality before
they are ready to be shipped. This is often reflected in how the code moves between Git
branches. Builds coming out of a topic branch where the change is still being matured are
mostly alpha quality, while a first cut of the develop branch (as the changes are being
integrated) where you are still soliciting feedback may be classed as beta quality before it's
moved up to master, from where you tend to do production quality releases. In this recipe,
we'll learn how to use the name of the branch to flag the quality of the build by appending
it to the build name.

Getting ready

This is an extension to the Configuring one build definition for all branches of a git
repository recipe. If you haven't already, configure a build definition to trigger all branches
for the MywebApp Git repository.

How to do it...

1. Navigate to the build view in the parts unlimited team portal and edit
the partsunlimited.web build definition.In the Options tab, change the Build
number format to 0.1.$ (DayOfYear) $ (Rev:.r), as shown in the following
screenshot:

[160]

Continuous Integration and Build Automation

Chapter 4

&

Tasks

™

Variables

Description

Build properties

Define general build definition settings

Build number format (@)
0.1.%(DayOfYear)${Rev.r)

Badge enabled @

partsunlimited.web

Triggers Options Retention Histary

Automated build for all branches of MyWebApp git repository

The build number provides various macros out of the box. More details on
the predefined variables that can be used to construct the build number
can be found here: https://docs.microsoft.com/en-us/vsts/build-

release/concepts/definitions/build/options?view=vsts#build—
number-format.

2. Click + Add Task to add a new task to the build task list. Search for the
PowerShell task and add it to the build pipeline, as shown in the following

screenshot:

g - > partsunlimited.web

Tasks Variables Triggers

Process

Build process

z= Getsources
¢ MyWebApp ¥ master

+ Add Task /

Options

Retention

History

Add tasks

Don't see what you need? Check out our Marketplace. 2

Azure PowerShell

Run a PowerShell script within an Azure environment

g PowerShell

Run a PowerShell script

by Microsoft Corporation

Summary

o

2 powershell

X

o

Add

(D Learn more

[161]

https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format

Continuous Integration and Build Automation

Chapter 4

3. Click on the PowerShell task to configure it. Change the display name to Add
branch quality to build name.Change the type of script to inline script
and add the following code snippet into the task as inline script. Click Save to

save the updates to the build definition:

write-host S$env:BUILD_SOURCEBRANCHNAME
if ($Senv:BUILD_SOURCEBRANCHNAME -eq "Develop") {

Write-Output ("##vso[build.updatebuildnumber]" +

$Senv:BUILD_BUILDNUMBER+"-beta")
Write—-host "setting version as -beta"
}
else{
if (Senv:BUILD_SOURCEBRANCHNAME -ne "master") {

Write-Output ("##vso[build.updatebuildnumber]" +

$env:BUILD_BUILDNUMBER+"—alpha")
Write-Output "setting version as —-alpha"

}

4. To test the script, make changes to the feature/myFeature-1, develop, and
master branches. This will trigger the build definition as it's associated with the
CI build for all of these branches. In the following screenshot, you can see that

the branch quality flag has been appended to the build number:

Build Definitions /| partsunlimited.web v « passing % Queue new build.. [

Summary History Deleted

Branches
MyWebAa,

Repes| ¢ My PP % master « passing
Default queue Default | Manage

Queue status Enabled §o develop ~ passing
Last updated by Tarun Arora | Saturday, March 24, 2018 11:14 AM 19 feature/myFeature-1 + passing

e /1T0Y e 551Ng

Queued & running

Mo builds queued or running at the moment
Recently completed

#0.1.083.6 v Ceeded fe master Tarun Arora

#0.1.083.5-beta +* succeeded §e develop Tarun Arora

#0.1.083.4-alpha ' succeeded i» feature/myFeature-1 Tarun Arora

O Security

just now
just now

just now

[162]

Continuous Integration and Build Automation Chapter 4

How it works...

Let's look at what the script is doing. The build exposes a number of predefined variables.
This includes a combination of system variables used internally by the build system itself
and helper variables that can be used to manage the build workflow. A list of all the pre-
defined variables can be found here: https://docs.microsoft.com/en-us/vsts/build-
release/concepts/definitions/build/variables?view=vststabs=batch.

The value of the BUILD_SOURCEBRANCHNAME build variable is read to identify if the source
branch that triggered the build definition is develop. If so, the BUILD_BUILDNUMBER build
variable is postfixed with ~beta. For all other source branches (except master), the build
number is updated as -~alpha. However, in order to update the build variable, the build
system uses the following format:

Write—-Output "##vso[task.setvariable
variable=build.variablename; issecret=bool]new value"

The statement is a simplified implementation of this format to update the build variable
that's used for the build number:

Write-Output ("##vso[build.updatebuildnumber]" + $env:BUILD_BUILDNUMBER+"-
alpha")

Using web deploy to create a package in an
ASP.NET build pipeline

The build system in Azure DevOps Server ships a set of pre-canned build templates with
all the necessary build tasks and configuration to help you get off the ground without
having to learn how the build system works. If you are creating an application that uses the
web project type in Visual Studio, then you'll be delighted to know that there is a build
template you can apply to set up a build pipeline for your web application. In this recipe,
we'll use the ASP.NET build template to create a build pipeline. In addition to building and
testing the web app, this pipeline also creates a web deploy package that can be used to
deploy to any web server, including Azure hosted app services.

[163]

https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch

Continuous Integration and Build Automation Chapter 4

Getting ready

Create a new Git repository—MyModerniebApp—in the parts unlimited team project.
Create a new ASP.NET MVC project using Visual Studio and commit the changes to the
master branch in the newly created Git repository.

How to do it...

1. Navigate to the build view in the PartsUnlimited team portal. Create a new
build definition by clicking the + New button. This will show you a list of all the
pre-canned build templates.

2. From the featured section, apply the ASP.NET build template, as shown in the
following screenshot:

J PartsUnlimited ~ Dashboards Build and Release -+ Search code
Builds Releases Packages Library Task Groups Deployment Groups Build Usage
Select a template P search
Or start with an gy Empty process

Build ASPNET web applications

od ASPNET (PREVIEW) —

3] ASP.NET Core

s
B B.ild ASPNET Core web applications

e web applications targeting the full .NET

Ddl ASPNET Core ((NET Framework)
Build ASPNET Cor

Framework

3. Name the build modern.webapp, select the default agent queue, and save the
build definition. As you look around in the build definition, you'll see that the
pre-canned pipeline has all the necessary tasks to restore the NuGet packages, as
well as build, test, and publish a build artifact. The NuGet restore build task is
configured to execute all . s1n files from the source. The test step, on the other
hand, is configured to operate on all DLL files that can be found in the bin folder
using the *test*.d11 convention and the publish artifact step publishes the bin
folder of all projects associated to the solution. The build solution step also has a
set of MSBuild arguments. It is these MSBuild arguments that trigger the
generation of the Web Deploy package.

[164]

Continuous Integration and Build Automation

Chapter 4

4. Queue a new build for this build definition without making any changes to the
pre-canned build template:

/p:DeployOnBuild=true /p:WebPublishMethod=Package
/p:PackageAsSingleFile=true /p:SkipInvalidConfigurations=true
/p:PackageLocation="$ (build.artifactstagingdirectory) \\"

You'll be able to see live updates of the build execution from the build console.
The logs are still available after the build execution and are especially useful
when troubleshooting build failures. Once the build execution completes, you'll
see the following view:

v Build 20180324.4
v+ Build

v

v
v
4
v
i
v
v
v

Initialize Job

Get Sources

Use NuGet 4.3.0
MNuGet restore

Build solution

Test Assemblies
Publish symbols path
Publish Artifact

Post Job Cleanup

¥ + Finalize build

]

Report build status

modern.webapp / Build 20180324.4 / Build

ﬂ Edit build definition @ Queue new build.. i Download all logs as zip ﬁ Retain indefinitely -1.1- Release

Build succeeded

I | Build &
=8 Ran for 42 seconds (tfs_a1), completed 1 seconds ago

Console Logs Timeline

a file share

More Information]

5. Navigate into the build summary view by clicking the build number in the build
crumb. This view gives you the gist of the associated changes, test results,
timeline of build execution (details of time spent on each step), and the artifacts

section.

[165]

Continuous Integration and Build Automation Chapter 4

6. Click on the Artifacts section to see the web deploy package generated by this
build execution:

modern.webapp / Build 20180324.4 .
Artifacts Explorer
& Editbuild definiion & Queue new build.. |- Download all logs as zip
I Build 20180324.4 2 [MyModernWebApp.deploy-readme.txt
-I Ran for 46 sechault}, completed 112 seconds al [MyModernWebApp.deploy.cmd
Summary Timeline Artifacts Tests 3 MyModernWebApp.SetParameters.xml
Name T (O MyModernWebApp.SourceManifest.xml
drop Download Explore O MyModernWebApp.zip

How it works...

MSBuild ships with a set of command-line switches: /p: simply means property of
MSBuild. The following MSBuild properties are used in the build step of the pipeline to
create the web deploy package, these are explained in the section below:

/p:DeployOnBuild=true /p:WebPublishMethod=Package
/p:PackageAsSingleFile=true /p:SkipInvalidConfigurations=true
/p:Packagelocation="$ (build.artifactstagingdirectory) \\"

® DeployOnBuild: This property is used to signal that the web project needs to be
packaged in this build.

e WebPublishMethod: This property ensures that the output of the publish
method is a package. This property supports other publish methods such as
publishing to the filesystem or elsewhere using MSDeploy.

® PackageAsSingleFile: This property is used to signal that the package be
zipped up into a single output file.

e SkipInvalidConfigurations: This tells the build engine to generate one or
more warning if the build encounters an invalid configuration.

e PackageLocation: This takes the path where the package needs to be
generated. We're using the default build variable to signal that the package
should be copied into the build artifact staging directory, so that the next step in
the build pipeline can pick the package from this location and publish the build
artifact and attach it to the build.

[166]

Continuous Integration and Build Automation Chapter 4

There's more...

The Azure DevOps Server marketplace features the Build Traffic Lights extension: https:/
/marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights. This
free extension, developed by 4tecture, allows you to add build traffic lights to your
dashboard to visualize the state of a specific build definition and its builds. Continuous
Integration is the foundation to Continuous Delivery, and showing the visibility of the CI
pipeline on the team dashboard is a good way to encourage people to maintain a healthy CI
pipeline:

Overview Sprint 1 Build

myweb.core -—/partsunlimited.web

@ 3/24/2018

myNodeJs.demo

201803281 III

@ 4/3/2018

Organizing build output into separate
folders

In the DevOps way of working, teams are encouraged to adopt the right tools and practices
earlier in the development lifecycle to minimize waste later. While the pre-canned build
templates make it really easy to get started with build pipelines, the generic configuration
bloats the build artifact and adds folders that you don't necessarily care about. The ones
that you do care about are folded into multiple hierarchies. While it isn't necessarily a
problem immediately, when you start to consume the build output in release pipelines,
much of the release pipeline effort is spent in organizing the build output correctly. In the
spirit of pushing more software development activities left into the lifecycle and
minimizing waste, let's see how easy it is to organize the build output into relevant folders
from the outset.

[167]

https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights

Continuous Integration and Build Automation Chapter 4

Getting ready

In this section we'll go through the pre-requisites for this recipe:

1. Extend the MyModernWebApp solution by adding two new projects of type (NET
Standard) console application and calling the first one
ExecutionEngine.Service and the other one MessagingEngine.Service.

2. Commit the changes and sync them up to the origin/master in
the MyModernWebApp Git repository:

d@ Solution ‘MyModemWebApp' (4 projects)
4 +[c¥ ExecutionEngine.Service
b + & Properties
P =m References
+¢1 App.config
+41 packages.config

P +c* Program.cs
4 +[c#] MessagingEngine.Service
b+ Properties
P =m References
+¢1 App.config
+¢ packages.config
P +c* Program.cs
b %] MyModernWebApp
b sE] MyModermnWebApp.Tests

3. In the build view, click the + New button to create a new build pipeline using the
.NET Desktop pre-canned template.

4. Choose the default agent queue, name the build definition
modern.app . framework, and queue a new build using this definition.

When the build completes, look at the build artifact: you'll see that the build output has
uploaded the test project as an artifact. The build output of ExecutionEngine.Service
and MessagingEngine. Service is tucked into bin/release folders.

[168]

Continuous Integration and Build Automation

Chapter 4

This only gets messier as you associate more projects to the solution:

modern.app.framework / Build 20180324.1
Artifacts Explorer

/ Edit build definition EP Queue new build... i Download all logs as zip

Build succeeded "

I Build 20180324.1 R
Ran for 35 seconds (Default), completed 77 seconds ag|

drop
v ExecutionEngine.Service

v bin

Summar Timeline Artifacts Tests
/ 4 Release

Name ‘T . : :
[ExecutionEngine.Service.exe

drop Download Explore
[ExecutionEngine.Service.pdb
[Topshelfdll
[Topshelfxml
v MessagingEngine.Service
» bin
v MyModernWebApp.Tests
v bin

> Release

[ExecutionEngine.Service.exe.config

Review the modern. app. framework build definition. You'll notice that the build pipeline
only has one copy step and one publish step. As you can see, it is configured to copy

everything from the source folder that matches the express
**\bin\$ (BuildConfiguration) ** in the artifact staging directory:

Use NuGet 4.3.0

NuGet Toal Installer Display name *
NuGet restore Copy Files to: $(build.artifactstagingdirectory)
MuGet
Source Folder @
Build solution *** sln

R $(build sourcesdirectory)
Visual Studio Build

VsTest - testAssemblies

Visual Studio Test

Contents * (D

*#\bin\${BuildConfiguration)**

A8 s

Publish symbols path:

®- 0 |ndex Sources & Publish Symbols
Copy Files to: $(build.artifactstagingdirec... Q i Target Folder * @
Copy Files

$(build.artifactstagingdirectory)
Publish Artifact: drop

Publish Build Artifacts

I» &

[169]

Continuous Integration and Build Automation Chapter 4

Now that you have a sense of the problem, let's see how easy it is to take back control of the
build output.

How to do it...

1. Navigate to and edit the modern. app. framework build definition.

2. Instead of overloading just one copy step to copy everything, we'll use multiple
copy steps. The source folder location needs to be fully qualified to the exact
location path from where the binaries need to be copied:

‘B NuGet restore Copy Files @ @ Link settings X Remove

NuGet

X Version 2+ v
] Build solution ***.sln

Visual Studio Build

A VsTest - testAssemblies Display name *
Visual Studio Test

Copy Files to: $(build.artifactstagingdirectory)

Publish symbols path: /
P2 Index Sources & Publish Symbols Source Folder @

$(build.sourcesdirectory)\ExecutionEngine. Service\bin\$(BuildConfiguration)

m Copy Files to: $(build.artifactstagingdirec... [

Copy Files 2

Contents * (D

IE Copy Files to: $(build.artifactstagingdirec...

Copy Files
f Publish Artifact: drop
wmm Publish Build Artifacts Target Folder * ® {
+ Add Task $(build.artifactstagingdirectory)\services\ExecutionEngine

How it works...

Queue a build for the modern. app. framework definition; you'll now notice that the build
output is a lot more organized. This has been done by removing the generic copy step and
replacing it with two purposeful copy steps that fully qualify the source folder location and
the target folder location. As a result, the test project DLL files haven't been uploaded as a
build artifact.

[170]

Continuous Integration and Build Automation Chapter 4

The two service projects are nicely organized under the services project without being
cryptically folded under the bin/release configuration:

modern.app.framewark / Build 20180324.3 .
Artifacts Explorer

& Editbuild definition P Queue new build.. L Download all logs as zip
I Build 20180324.3 & services
II Ran for 25 seconds (Default), completed 6 seconds ago ExecutionEngine
Summary Timeline Artifacts Tests [ExecutionEngine.Service.exe
Name T [ExecutionEngine.Service.exe.config
drop Download Explore [ExecutionEngine.Service.pdb

) Topshelfdll
[Topshelfxml

MessageEngine

Configuring assembly version info in build
pipelines

Azure DevOps Server provides a high level of traceability that makes it really easy to track
builds generated from a build definition through to pull request, to code changes, and
finally, back to work items. This traceability is, however, lost at the point when the binaries
are generated through the build. Wouldn't it be great if you could look at the binaries
deployed in an environment and identify the build they originated from? This could prove
to be really useful when testing for regression issues. You can also take it a step further and
display the binary version in the application, so when users log issues against your
application they can also report the version of the application they are seeing the issues in.
In this recipe, we'll learn how to configure the build number in the assemblies generated
through a build pipeline.

[171]

Continuous Integration and Build Automation Chapter 4

Getting ready

The marketplace features the Assembly Info extension. This open source task, created by
Bleddyn Richards, allows you to set assembly information such as version, copyright,
trademark, and so on, right from within the build pipeline. Install the assembly info
extension in your team project collection: https://marketplace.visualstudio.com/items?
itemName=bleddynrichards.Assembly-Info-Task.

How to do it...

1. Navigate to the build view in the parts unlimited team portal and edit the
previously created modern.webapp build definition.

2. Click + Add to add the newly installed Assembly Info task into the
modern.webapp build pipeline:

¢ - > modern.app.framework

Tasks Variables Triggers Options Retention History

Process
Build process Assembly Info ©®
Version 1* ~
z= Get sources
¢ MyModemWebApp B master
" Display name *

Set Assembly Manifest Data ®:

Assembly Info i Set Assembly Manifest Data

Use NuGet 4.3.0 Source Folder * (@

MuGet Tool Installer . .
${Build.SourcesDirectory)

NuGet restore
NuGet Source Files * @

Assemblylnfo.cs

Build solution ***.sIn Assemblylnfo.vb

Visual Studio Build

s 8§ &

[172]

https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task

Continuous Integration and Build Automation Chapter 4

3. In the Options tab, it is recommended that you configure the build number to
adigit.digit.digit.digit assembly number format. However, if you have
a different naming convention for the build number, then you can still version
the binaries by using a semantic assembly version that you can control directly in
the build pipeline:

Description

Build pipeline for modern application framework

Build number format (@)
1.0.5(DayOfYear)5(rev.rr)

Badge enabled @

Leave the default configuration for the source files to AssembyInfo.cs and
AssembyInfo.vb.

4. Update the Manifest Attributes and the Informational Attributes in the task to
what you want to reflect in the generated assemblies:

Title @
My Modern Web Application

Description (@)

This manifest information has been added using $(Build.BuildNumber) from the pipeline $(Build.DefinitionName). This binary belongs to the repository
$(Build.Repository.Name) branch ${Build.SourceBranchName) commit $(Build.SourceVersion)

Configuration @

$(BuildConfiguration)

[173]

Continuous Integration and Build Automation Chapter 4

Also, update the information attribute section of the Assembly Info task:

Informational Attributes ~

Product @

Modern App Framework

Company (O

Parts Unlimited

Copyright @

© PartsUnlimited Pvt Ltd $({dateyyyy)

Trademark @

Parts Unlimited Pvt Ltd

File Version (@

S(Build.BuildNumbaer)

Informational Version

§(System.TeamProject)_$(Build.DefinitionName)_$(Build BuildNumber)_$(Build.Repository.Name)_$(Build.SourceBranchName)_S${Build.SourceVersion)

And, finally, update the Identity Attributes:

Identity Attributes ~

Culture @)

Assembly Version (@

$(Build.BuildNumber)

You can use the pre-defined build variables to add more contextual
information in the Assembly Info injected in the assemblies generated
through the build pipeline. Information on the pre-defined build variables

can be found in the Microsoft docs at https://docs.microsoft.com/en-
us/vsts/build-release/concepts/definitions/build/variables?view=

vststabs=batch.

[174]

https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch

Continuous Integration and Build Automation Chapter 4

How it works...

1. Trigger a new build and wait for it to complete execution.

2. Download the build artifact and see the assembly property. This should correctly
reflect the configuration specified by you in the Assembly Info task:

O Mame - MyModernWebApp.dil Properties x
| Microsoft.Applicaticnlnsights.dll -
= Microsoft.Applicationlnsights.xml Gonersl | Secusty | Detals | Previous Versions
| Microsoft.CodeDom.Providers.DotMet... ' Property Value
2 Microsoft.CodeDom.Providers.DotMNet... Decarataon
*| Microsoft.Web.Infrastructure.dll Rle description My Modem Web Appiication
*| MyModernWebApp.dil Type Application extension
¥ MyModernWebApp.dil.config File version 10832
& MyModernWebApp.pdb Product name Modem App Framework
| Mewtonsoft.Json.dll mdudersion . o Pt Lig 2018
- opyTig arts Unlimite
2 Newtonsoft.Jsonxml Size 950 KB
4 System.Web.Helpers.dll Date modfied 3/24/2018 6:49 PM
= Systern.Web.Helpers.ml Language Language Neutral
| System.Web.Mvc.dll Legal trademarks Parts Unlimited Pwt Ltd
=] System.Web.Mvecxml Original filename MyModemWebApp dil

3. The Assembly Info task exposes the following fields via the build task. The
following table shows you how these map back to the attributes in the
AssemblyInfo file:

Field Attribute Function
Title AssemblyTitle Provides a friendly name for the assembly
Product AssemblyProduct Provides the product information for the
assembly
i i Provides a short description that summarizes the
Description AssemblyDescription nature and purpose of the assembly
Company AssemblyCompany Provides the company name for the assembly
. . Provides the assembly or product copyright
Copyright AssemblyCopyright information
Trademark Assembly Trademark Prov1des. the assembly or product trademark
information
Culture AssemblyCulture Provides information on what culture the
assembly supports

[175]

Continuous Integration and Build Automation Chapter 4

Field Attribute Function
Configuration AssemblyConfiguration Provides the build configuration for the assembly,
such as debug or release
Version number AssemblyVersion Provides an assembly version for the application
File version number |AssemblyFileVersion Provides a file version for the application

Informational version |AssemblyInformationalVersion|Provides a text version for the application

Setting up a build pipeline for a .NET core
application

Microsoft introduced .Net Core back in 2016. It has evolved from a framework in preview
to a framework that is running business-critical workloads in production. .Net core is an
open source, cross-platform, high-performing framework for modern, cloud-based,
internet-connected applications. While one had to handcraft build tasks for .Net core
applications in its early days, the tooling has now caught up with the pace of change in .Net
core. Azure DevOps Server fully supports .Net core and allows you to go from zero to
DevOps in a few clicks. In this recipe, we'll learn how to set up a build pipeline for a .NET
Core application that can build, unit test, and package the output as an artifact.

Getting ready

In this recipe, we'll be using a simple .Net core application that comprises a few unit tests.
To get started, simply import the .Net core sample GitHub repository https://github.
com/MicrosoftDocs/pipelines-dotnet-core into the parts unlimited team project.

[176]

https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core

Continuous Integration and Build Automation Chapter 4

How to do it...

1. Navigate to the build view in the parts unlimited team project. Click + New to
create a new build definition and apply the ASP.NET Core template:

Select a template core X

Or start with an & Empty job

Configuration as code
YAML
Looking for a better experience to configure your pipelines using YAML files? Try the new
YAML pipeline creation experience. Learn more

Others

ASP.NET Core _
dotnet

Build and test an ASP.NET Core web application

ﬂ] ASP.NET Core (.NET Framework)

Build an ASP.MET Core web application that targets the full .NET Framework

2. Configure the agent queue to use the default queue and the Get sources step to
the code repository you've imported the .Net core sample repository into.

[177]

Continuous Integration and Build Automation

Chapter 4

3. Name the definition myweb. core and save the build definition. The template is
pre-canned with all the relevant configuration to build and unit test a .Net core

application. Queue a new build to see the build definition in action:

@ #201904271: soln setup

Manually run just now by Tarun Arora 4p dotnetcore-sample §* master ¢ 7152ad1

Logs Summary Tests

Agent job 1 Job
Pool: Default - Agent: tfs_al

Prepare job - succeeded

Initialize Job - succeeded

Get Sources - succeeded

Restore - succeeded

Build - succeeded

Test - succeeded

Publish - succeeded

Publish Artifact - succeeded

Post Job Cleanup - succeeded

Report build status - succeeded

0O 0 0000 O0CDO0CUO

[178]

Continuous Integration and Build Automation Chapter 4

How it works...

Let's double-click the build process to understand the inner workings of the pipeline better.
Start with the restore step. This simply restores all the package dependencies specified in
the csproj file:

& dotnetcore-sample Contents History Compare Blame ¢ Edit =b Rename [i] Delete + Download
deploy 1 =Project Sdk="Microsoft.NET.Sdk.Web">
2
dotnetcore-sample 3 <PropertyGroup>
¢ I 4 <TargetFramework=netcoreapp2.@</TargetFramework>
ontrollers 5 </PropertyGroup>
Properties 5
7 <ItemGroup>
Views 8 <PackageReference Include="Microsoft.ApplicationInsights.AspMetCore" Version="2.1.1" />
9 <PackageReference Include="Microsoft.AspNetCore™ Version="2.0.0" />
wwwroot 10 <PackageReference Include="Microsoft.AspNetCore.Mvc" Version="2.0.0" />
11 <PackageReference Include="Microsoft.AspNetCore.StaticFiles" Version="2.0.@" />
00 .bowerrc 12 <PackageReference Include="Microsoft.Extensions.logging.Debug” Version="2.0.8" />
() appsettings.Development json 13 <PackageReference Include="Microsoft.VisualStudio.Web.BrowserLink" Version="2.0.8" />
95 4 14 </ItemGroup>
{1 appsettings.json 15 | <ItemGroup>
16 <DotNetCliToolReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Tools" Version="1.0.1" />
{} bower.json 17 </ItemGroup>
18
{1} bundleconfig.json 19 </Project>
20
& dotnetcore-sample.csproj |

You can also restore package references from NuGet. Use an
accompanying NuGet . config file in your repository to manage the
references to internal or public NuGet feed. More information on how to
set this up can be found on Microsoft docs: https://docs.microsoft.
com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x.
Version 2 of the VSTS .Net core restore task supports specifying the
NuGet feed configuration in the task directly.

[179]

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x

Continuous Integration and Build Automation Chapter 4

The build and test task simply uses the .Net core build engine to build all csproj files in
the repository. The test task uses a wildcard search to look for all csproj files that include
the name *test*. The build and test task allows you to specify additional arguments, for
example, the configuration to build in. The publish task finally creates a package that you
can optionally ZIP and include the project name in:

Version o v

Display name *
Publish

Command * (@)
publish

B rublish Web Projects @
Arguments (3)
--configuration $({BuildConfiguration) --output $(build.artifactstagingdirectory)

Zip Published Projects (D
Add project name to publish path (@)

Working through the earlier steps, you'll notice that the .Net core tooling is wrapped up
into one single VSTS build task that allows you to simply select the command you intend to
perform. The task supports the following commands:

Command * 0]

| publish

build

nuget push
pack
publish
restore

run

test

custom

[180]

Continuous Integration and Build Automation Chapter 4

There's more...

The Azure DevOps Server marketplace features the Diagnostics Tasks, which can be found
here: https://marketplace.visualstudio.com/items?itemName=andremarques023.
DiagnosticTasks. This free extension, developed by André Marques de Aratjo, provides
you with a set of useful tasks for both build and release pipelines. The log variables task is
extremely useful, especially when you are working through debugging build issues. Team
build brings a number of predefined variables that can be used in build (and release)
definitions and scripts. Variables are generated by the agent in the scope of a particular job
(prior to it starting) or generated on the server side and sent to the agent as part of the job.
This task logs these variables to the console:

Display name *
Phase 1 .
E Run on agent Log variables

- bl Agent variabl

+~ Log variables O . gent variables @
B Log variables £ Build variables @
B Use NUGE't441 Common variables (@D

Release variables (1)
6 NUGEI restore System variables (@

Setting up build pipeline for a Node.js
application

Node,js is a cross-platform, open source platform built on Chrome's JavaScript runtime for
fast and scalable server-side and networking applications. It is very popular for both
frontend as well as server-side programming. In this recipe, you'll learn how to set up a CI
pipeline for a Node.js application using gulp.

[181]

https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks

Continuous Integration and Build Automation Chapter 4

Getting ready

The focus of the recipe is to help you understand the construction of a CI pipeline for a
Node.js application. To abstract the complexity of the node application out of the recipe,
we'll be using a demo code repository from GitHub. To get started, simply import the
following code base from nhttps://github.com/nilaydshah/MochaTypescriptTest—-101/
into your team foundation server. You can also create a new Node.js code repository in
Visual Studio code using the instructions in this blog post: https://blogs.msdn.
microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-
typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome—-gulp-

travis/:

J PartsUnlimited » Dashboards Code Work Build and Release Test Wiki
4 nodejs-demo ~ Files Commits Pushes Branches Tags Pull Requests MNetwork Statistics
§® master ~ nodejs-demo / Type to find a file or folder...

Contents History README
4 nodejs-demo _

vecode Name T Last change Commits

sic wvscode 3 hours ago 4e2ch492 adding nodejs demo app tarun arora

test src 3 hours ago 4e2ch492 adding nodejs demo app tarun arora
[.gitignore test 3 hours ago 4e2ec6492 adding nodejs demo app tarun arora
[travisyml 4 .gitignore 3 hours ago 4e2c6492 adding nodejs demo app tarun arora

How to do it...

1. Navigate to the build view in the parts unlimited team project. Click + New to
create a new build definition and apply the Node.js With gulp template:

[182]

https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/

Continuous Integration and Build Automation Chapter 4

Select a template node X

Or start with an @y Empty process

Others

m Node.js With Grunt
Build Mode.js applications using Grunt task runner

m Node.js With gulp
Build Node js applications using gulp task runner Apply

2. Configure the agent queue to use the default queue and change the default
archive type to ZIP. This pre-canned template includes a task to run gulpfile in
the repository.

3. Name the definition myNodeJs . demo and save the build definition. The
configuration in place is sufficient to build and package a Node.js application
and queue a new build to see the build definition in action:

 Build 201804031 myNodeJs.demo / Build 20180403.1 / Phase 1/ Job

~ Phase 1 ¢ Editbuild definition & Queue newbuild.. - Download all logsaszip @ Retain indefinitely " Release
+ Job Build succeeded
+ Initialize Job Job &
v GetSources | m=mmmm—-- Ran for 44 seconds (tfs_a1), completed 2 seconds ago
v npm install Console Logs Timeline Tests

+ Run gulp task
+ Archive files
+ Publish Artifacts: drop
+ Post Job Cleanup
+ Finalize build

+ Report build status

lishing JUnit esults is being s

[183]

Continuous Integration and Build Automation Chapter 4

4. While the build is successful, the pipeline isn't executing the test in the
repository. To configure the test execution, update package. json, append the
below code snippet.

Include the mocha-junit-reporter dependency in package. json:

"mocha-junit-reporter": "71.17.0"

Add a test script block to execute mocha tests with mocha-junit-reporter:

"scripts": {

"test": "mocha lib/test/**/*.js —-reporter mocha-junit-
reporter —--reporter-options mochaFile=./TestResults/TEST—
RESULT.xml1"

}

5. Edit the myNodeJs . demo pipeline and add a NPM task after the gulp task,
configure it to run the custom task type, and set the Command and arguments
to test.

6. Uncheck test execution in the run gulp task, as the newly added NPM custom
task will be doing this for us:

Display name *

Phase 1
£ Runon agent _|_ npm test
m npm install Command * @ (
e custom N
Run gulp task
Gulp 9up Working folder with package json @
m npm test Qi (
ERC t Command and arguments * @
Archive files test

B0 Archive Files

Custom registries and authentication ~
f Publish Artifacts: drop
w— PUBlish Build Artifacts Control Optians v

[184]

Continuous Integration and Build Automation

Chapter 4

7. To publish the test results into the build output, add the publish test
results task after the NPM test task.

8. Configure the test results filename to **\TEST-RESULT . xm1:

Phase 1

E Run on :)(.|l"ll

n
n
U

F

npm install
Rpm

Run gulp task

Gulp

npm test

npm

Publish Test Results **\TEST...

Publish Test Results

Archive files

Archive Files

Publish Artifacts: drop

Publish Build Artifacts

+

o

o

Display name *
Publish Test Results **\TEST-RESULT.xml
Test result format * (@

JUnit

Test results files* (@ ’

*\TEST-RESULT.xml

Search folder (@

$(System.DefaultWorkingDirectory)
D Merge test results (@

Test run title @O

[185]

Continuous Integration and Build Automation

Chapter 4

9. Queue a new build to see your Node.js continuous integration pipeline in action.
The pipeline will build, run tests, publish test results, and package the output
into a ZIP file that will be attached as an artifact with the build:

myNodels.demo / Build 20180403.3

/ Edit build definition EP Queue new build...

Build 20180403.3 R

Summary Timeline Artifacts Tests

Build details
Definition myModels.demo (edit)
master

Commit 3deb8973
Tarun Arora

Default

Source

Source version
Requested by
Queue name

Queued Tuesday, April 3, 2018 9:21 PM
Started Tuesday, April 3, 2018 9:21 PM
Finished Tuesday, April 3, 2018 9:22 PM

Retained state Build not retained

Associated changes
No changes associated with this build.

| Download all logs as zip

Ran for 30 seconds (Default), completed 101 seconds ago

& Retain indefinitely

Build succeeded

.1n~. Release

Test Results ’

Completed Runs
Total tests

3
(+3)

Pass percentage

100%
(+100%)

B Passed (3)
B Failed (o)
B Others (0)

Run duration

Os
(+0)

Failed tests

0
(+0)

B New (0)
Existing (0)

How it works...

The package. json file is the glue in the Node.js build pipeline. Let's double-click in the
build pipeline to understand how this is working under the hood. The first task in the npm
install pipeline reads package. json to identify the application dependencies and
restores the packages into the build environment. In the package management chapter,
we'll also learn how to plug in a private NPM feed to the build pipeline to restore the

package dependencies:

[186]

Continuous Integration and Build Automation Chapter 4

z= Get sources Version 1% v
] nodejs-demo ¥ master .
"devDependencies": {
Disol. . n@types/chai: "~4.0.5",
Phase 1 o spley name "gtypes/mocha": "~2.2.44",
B Run on agent / npm install :;h?l": ";4élé2“,
el": "~3.0.0",
i T Command * O “gulp": "~3.9.1",
m L1 iz o "gulp-typescript": "~3.2.3",
it " install "mocha": "~4.0.1",
R Io task "mochawesome”: "~2.3.1",
un gulp tas " R "y ma "
Gulp = Working folder with package.json @) mocha-junit-reporter”: "*1.17.9
m npm test
npm o o
Custom registries and authentication ~

The run gulp task executes the gulpfile. js file. Gulp is a JavaScript task runner that lets
you automate tasks such as bundling and minifying libraries and stylesheets. In this case,
gulp creates a TypeScript project using the configuration settings in t sconfig. json. Most
of this is the standard configuration that you can use across multiple node projects:

§* master nodejs-demo / gulpfile.js

Contents History Compare Blame
4 nodejs-demo —

1 "use strict";
wvscode 2 var gulp = require('gulp');
3 var ts = require('gulp-typescript®);
src 4 var del = require('del');
5 wvar tsProject = ts.createProject("tsconfig.json");
test 6
0 gitignore 7 // task to clean all files in lib (which is out folder for containing all javascripts)
8 gulp.task("clean:1ib", function() {
[travisyml 9 return del(['lib/++/%"'1);
10 });
[chromedriver 11
. 12 // task to build({transpile) all typesc ript|; into javascripts in lib folder
[chromedriver.exe 13 gulp.task("tsc", function () {
35 gulpfilejs 14 return .tsPrajec'F.sch
15 .pipe(tsProject())
[LICENSE 16 JJs.pipe(gulp.dest("Llib"));
17)
{1 package-vstsjson 18
19 // adding default tasks as clean and build
{} packagejson 20 gulp.task('default’, ['clean:lib','tsc'], function () {
21)

ms+ README.md (

{1 tsconfig.json

[187]

Continuous Integration and Build Automation Chapter 4

The package. json file also includes the custom script to test the application. This calls the
mocha test framework and specifies the test output format as TEST-RESULT . xm1. The
output file generated here is compatible with the open test result syntax supported by the
build system:

"scripts: {
"test": "mocha lib/test/s%/%.js —-reporter mocha-junit-reporter --reporter-options mochaFile=./TestResults/TEST-RESULT.xml"

t

This allows the build systems to consume the TEST-RESULT . xm1 file through the publish
test result task and process it to render the test results visually as part of the build output.
Finally, the archive task takes the output processed through the gulp task executor and
packages it up into a ZIP file, which is then published as an artifact into the build.

There's more...

You can optionally use the Node Tool Installer task to configure the version of Node used
by your build pipeline. This task allows you to specify the configuration of the node version
to be used in the build pipeline; it accepts the less than, equal to, and greater than
expressions. The task finds or downloads and caches the specified version of Node.js and
adds it to the path on the build agent host machine:

Process

Build process Node Tool Installer @
== Get sources Version | 0.* hd

» nodejs-demo ¥ master
Display name *
Phase 1 !
& Run on agent Use Node 6.x
Version Spec of version to get. Examples: 6x, 4x, 6.10.0, >=6.100
Use Node 6.x ®i Version Spec* @
\ Mode Tool Installer i 6.x Link
m npm install I:‘ Check for Latest Version (@

[188]

Continuous Integration and Build Automation Chapter 4

Setting up a build pipeline for your database
projects

A continuous integration pipeline ensures code and related resources are integrated
regularly and tested by an automated build system. CI is becoming a standard in modern
software development. While teams are quick to set up a CI pipeline for their application,
the database usually gets sidelined in this equation. The benefits of CI can be applied to
brownfield as well as greenfield databases. In this recipe, we'll learn how to set up a
pipeline for a database project that generates a dacpac file as a build artifact.

A DAC is a self-contained unit of SQL Server database deployment that
enables data-tier developers and database administrators to package SQL
Server objects into a portable artifact called a DAC package, also known as
a DACPAC.

Getting ready

The focus of the recipe is to help you understand the construction of a pipeline for a
database project. If you don't have a database project for your database already, you can
generate a database project from an existing database using the steps listed here: https://
msdn.microsoft.com/en-us/library/hh864423 (v=vs.103) .aspx. In this recipe, we'll be
using a simple demo database project from GitHub: https://github.com/Microsoft/sql-
server-samples.git. To get started, simply import the GitHub repository into the parts
unlimited team project:

4 mydatabase-demo ~ Files Commits Pushes Branches Tags Pull Requests Network — Statistics

g master v mydatabase-demo / Type to find a file or folder...

Contents History ~ README
¥ mydatabase-demo

Name | Last change Commits

media

samples media 11 minutes ago 82babea? my demo database tarun arora
[3 .gitattributes samples 11 minutes ago @2bae@ag my demo database tarun arora
[3 .gitignore [.gitattributes 11 minutes ago @2bae@ad my demo database tarun arora
0 license.tet [.gitignore 11 minutes ago @2bad@a2 my demo database tarun arora

[189]

https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git

Continuous Integration and Build Automation

Chapter 4

We'll be using the wwi-ssdt solution, which already includes
the wideWorldImporters.sqglproj database project sample:

¥ master mydatabase-demo

<
© mydatabase-demo
media
samples
applications

databases

/ samples / databases / wide-world-importers /
Contents History = README
MName T Last change
wwi-ssdt 17 minutes ago

ms+ README.md 17 minutes ago

] WideWorldimporters.sin 17 minutes ago

wwi-ssdt

Commits

82ba@@as my demo database tarun arora
@2baeead my demo database tarun arora
@2batead my demo database tarun arora

How to do it...

1. Navigate to the build view in the parts unlimited team project. Click + New to
create a new build definition and apply the .NET Desktop build template:

Select a template

Or start with an & Empty process

Featured

L search

.NET Desktop

Build and run tests for .NET Desktop or Windows Classic Desktop solutions. This template
requires that Visual Studio be installed on the build agent.

Apply

2. Configure the agent queue to use the default queue and, in the process, update
the path of the solution file to samples/databases/wide-world-
importers/wwi-dw-ssdt/WideWorldImportersDW.sln.

[190]

Continuous Integration and Build Automation Chapter 4

3. Name the definition myDb . demo and save the build definition:

Tasks Variables Triggers Options Retention History

Process

Build process
Name *

z= Get sources
o mydatabase-demo ¥ master mydb.demo

Agent queue * @ | Manage L2

Phase 1 4

B Run on agent Default ~ O

Use NuGet 4.4.1
* o Jriosiuirinibl Parameters © | @ Unlinkall

= Solution *
B NuGet restore
NuGet

samples/databases/wide-world-importers/wwi-dw-ssdt/WideWorldimportersDW.sIn

l,ql Build solution samples/databases...

Visual Studio Build

The configuration in place is sufficient to build and package an SQL database project; queue
a new build to see the build definition in action. The build successfully generates a dacpac
file and attaches it as an artifact:

! : X
) mydb.demo / Build 20180404.1 .
v Build 201804041) Artifacts Explorer

it buil efinition ueue new bdu
v Phasel & Edit build definiti @ q b

¥dob Build succeeded v W drop

+ Initialize Job

Publish symbols path

o Release ,
Copy Files to: ${build artifactst... [WideWorldimportersDW.dacpac ‘

Build 20180404.1 & ¥ Wl samples
v GetSources | mm=eme——e- Ran for 97 secongg (Defi v @ databases
" Use NuGet 4.4.1 Summary Timeline Artifacts Tests > wide-world-importers
+ NuGet restore Name T v wwi-dw-ssdt
+" Build solution samples/databas.. drop v wwi-dw-ssdt
+ VsTest - testAssemblies v bin
v
v

[191]

Continuous Integration and Build Automation Chapter 4

How it works...

Open the samples/databases/wide-world-importers/wwi-dw—
ssdt/WideWorldImportersDW.sln solution in visual studio, right-click on

the WideWorldImporters.dbproj file, and view properties. In the Build tab you'll see
that the project is configured to generate an output (dacpac) in the bin\Release or
bin\Debug folder:

wactoramporers =~ I

Project Settings

LConfiguration: | Active (Debug) w Platform: | Active (Any CPU) ~

SQLCLR
SQOLCLR Build Build output path: ’
SQLCMD Variables Build output file name: (

Build Events |WideWorIdImporter5 |
Debug

[] Treat Transact-SQL warnings as errors
Reference Paths

Suppress Transact-50L warnings:

Code Analysis | |

The build pipeline uses the same setting to generate the dacpac file. Download the dacpac
file generated in the build artifact and rename its extension from .dacpac to . zip. You'll
notice that it simply contains the database model wrapped up into an XML file and the
post-deployment scripts in a postdeployment . sql file:

Debug » WideWorldimporters.zip

A [Name - =] C\Users\tarun.arora\AppData'Local\Temp\2\Temp1_WideWorldimporters.zip\model.xml
</Relationship>
=] [Content_Types]xml </Element>

- <Element Name="[Application].[Configuration_ApplyAuditing]" Type="SqlProcedure"=

= DacMetadataxml
- <Property Name="BodyScript">

T m'_’d_e"xm' - <Value AnsiNulls="True" QuotedIdentifiers="True">
2 Originaml - <![CDATA[
| postdeploy.sql
BEGIN

SET NOCOUNT ON;
SET XACT_ABORT ON;

[192]

Continuous Integration and Build Automation Chapter 4

The dacpac file can be used at deploy time to compare the database against the current
state of the schema to generate the incremental delta script for deployment. Refer

to Deploying the database to Azure SQL using the release pipeline recipe in Chapter 6,
Continuous Deployments, to learn how to deploy dacpac to a sql azure database using Azure
Pipelines.

Integrating SonarQube in build pipelines to
manage technical debt

Technical debt can be classified as the measure between the codebase's current state and an
optimal state. Technical debt saps productivity by making code hard to understand, easy to
break, and difficult to validate, in turn creating unplanned work, ultimately

blocking progress. Technical debt is inevitable! It starts small and grows over time through
rushed changes, lack of context, and lack of discipline. Organizations often find that more
than 50% of their capacity is sapped by technical debt. The hardest part of fixing technical
debt is knowing where to start. SonarQube is an open source platform that is the de facto
solution for understanding and managing technical debt. In this recipe, we'll learn how to
leverage SonarQube in a build pipeline to identify technical debt.

Getting ready

SonarQube is an open platform to manage code quality. As such, it covers the seven axes of
code quality as illustrated in the following diagram. Originally famous in the Java
community, SonarQube now supports over 20 programming languages. The joint
investments made by Microsoft and SonarSource make SonarQube easier to integrate

with TFBuild and better at analyzing .NET-based applications. You can read more about
the capabilities offered by SonarQube here: http://www.sonarqube.org/resources/

In this recipe, we'll be analyzing the technical debt in one of the .Net core sample
repositories in the part sunlimited team project. If you don't already have an instance

of SonarQube, then set one up by following the instructions here: https://github.com/
SonarSource/sonar—.net-documentation/blob/master/doc/installation—and-

configuration.md.

[193]

http://www.sonarqube.org/resources/
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md

Continuous Integration and Build Automation Chapter 4

To get started with SonarQube, you'll also need to install the SonarQube build tasks to your
Azure DevOps Server Team Project collection from the marketplace: https://

marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube:

Prepare Analysis Configuration

Prepare SonarQube analysis configuration

Run Code Analysis

Run scanner and upload the results to the SonarQube server.

Publish Quality Gate Result
Publish SonarQube's Quality Gate result on the VSTS/TFS build result, to be used after the

actual analysis.

How to do it...

1. Navigate to the build view in the parts unlimited team project.

2. Choose to edit the modern.webapp build definition, click +, and add the
following tasks: Prepare analysis on SonarQube and Run Code Analysis.

3. Click on the Prepare analysis on SonarQube task and click + New to configure
the SonarQube service endpoint to be used:

Display name *
Prepare analysis on SonarQube

'B Use NuGet 4.3.0 SonarQube Server Endpoint* (@ | Manage 2 1

NuGet Tool Installer
: i X -+ New

Y NGt esore Add new SonarQube Connection
MNuGet .(

Prepare analysis on SonarQube

Prepare Analysis Configuration

Connection name sonarqube

- c S Url : ils: i)
Build solution erver Url https://mySonarQubeServerDetails:PortNumber/ @

Visual Studio Build i
Token Sersssssanssssnnsrnsiinnns @
Test Assemblies

Visual Studio Test

Run Code Analysis F
Run Code Analysis Close

Publish symbals path) 4

Index Sources & Publist

> 2

[194]

https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube

Continuous Integration and Build Automation Chapter 4

The Run Code Analysis task needs to be placed after the build solution
and test assemblies task for it to include the build and test binaries (test
results and code coverage) in the analysis.

4. The prepare analysis task further needs three configurations, namely the project
key, project name, and project version. Fill these out as highlighted in the
following screenshot:

Choose the way to run the analysis * (@

@ Integrate with MSBuild '::jl Integrate with Maven or Gradle Ii::' Use standalone scanner
Project Key * (O ’
partsunlimited.pipeclean

Project Name @

pipeclean:master

Project Version (@

£(Build.BuildMumber)

The project version is configured to use the pre-

configured $ (Build.BuildNumber) variable, which will give you
traceability between the builds in the team foundation server and the
analysis reports in SonarQube.

[195]

Continuous Integration and Build Automation Chapter 4

5. Queue a new build and wait for the build execution to complete:

i modern.webapp / Build 20180405.9 / Job / Prepare analysis on SonarQube
» Build 20180405.2 =
~ P Phase 1 f Edit build definition ° Cancel ﬁ’ Queue new build.. ~ R g zip -1.2- Releass
v B Job Build Started
+ Initialize Job .
I Prepare analysis on SonarQube A

Vv Get Sources LM Ran for 2 seconds (AZSU-D-DTL1-008), completed 3 seconds ago

v Use NuGet 4.4.1 logs Codecoverage* Tests WhiteSource Bolt Build Report

v NMNuGet restore 1 2018-84-85T16:11:28.80797987 ##[section]Starting: Prepare analysis on SonarQube
2 2018-84-85T16:11:20,00846547

+ Prepare analysis on SonarQube | 3 2018-84-85T16:11:20.80848747 Task : Prepare Analysis Configuration
4 2018-84-85T16:11:20.8085843Z Description : Prepare SonarQube analysis configuration

» Build solution 5 2818-84-85T16:11:28.80852157 Version 1 4.1.1
& 2@18-84-85T16:11:20.8@8536@8Z Author ! sonarsource

o Test Assemblies 7 201B-84-85T16:11:28.80855437 Help : [More Information](http://redirect.sonarsource.com/doc/
3 2018-84-85T16:11:20.00857617

rrode Anatin
& Run Code Analysis 9 2018-84-85T16:11:28,5717133Z [command]C:\AZSU-D-DTL1-888_Al_work'_tasks‘\SonarQubePrepare_15b84cal-
Bl s aa 19 2@18-84-85T16:11:28.6285349Z SonarScanner for MSBuild 4.1.1
& Publish symbols path 11 2018-84-85T16:11:29,6289149Z Using the .MNET Framework version of the Scanner for MSBuild

The build has successfully run, completed the SonarQube analysis, and pushed the results
into your SonarQube instance.

How it works...

The build tasks provided by SonarQube provide the underlying plumbing to leverage the
correct analyzers, generate the analysis report, and publish it to the SonarQube instance
specified in the build pipeline. The service endpoint created for SonarQube keeps track of
all the requests that make use of this service endpoint:

Endpoint: scnarqube

Details Roles Request History

Result Type Definition MName Time started Time finished |
Succeeded with issues Build modern.webapp 20180405.6 4/5/2018 213 PM 4/5/2018 2:14 PM

X Failed Build modern.webapp 20180405.5 4/5/2018 1:59 PM 4/5/2018 2:00 PM

X Failed Build modern.webapp 20180405.4 4/5/2018 12:54 PM 4/5/2018 12:57 PM

[196]

Continuous Integration and Build Automation Chapter 4

To lock down access to service endpoints, you can add users in user and
administrator roles. Only members of the service endpoint have
permissions to consume the service endpoint.

As the analysis is complete, navigate to SonarQube; you'll see a new project has been
created using the details from the prepare analysis task:

¥ arora365 ' Demo Public

Last analysis: June 13, 2018, 12:11 PM

21 2 ® 58 @ O 0.0% ® 16.0% 12k @

& Bugs @ Vulnerabilities & Code Smells Coverage Duplications JavaScript, C#

The analysis includes the version number, which maps back to the build number the
analysis was kicked off from:

Project Activity

January 15, 2019
20180115.5

January 15, 2019
20190115.4

Show More

Quality Gate

(Default) Sonar way

Quality Profiles

(C#) Sonar way
(CSS) Sonar way

[197]

Continuous Integration and Build Automation Chapter 4

The analysis shows that there are three major issues; click on the issues to see more details
about them. This view gives you the option to slice and dice the issues by various
categories. It's possible to click on the issue and see the offending line of code with details
of how this can be fixed:

Overview Issues Security Reports + Measures Code Activity ~Administration =

&« 3/3issues (&) ampl ation 262js
1208
Content/Site.css 1209 ownerDocument. createDocumentFragment = Function('h,f', 'return function(){' +
Unexpected shorthand "padding" after . N -
“padding-top” Review this "Function" call and make sure its arguments are properly validated. 3months ago ~ L1209 %
Bug Q Critical @ Vulnerability » ¢ Critical *+ (O Open~ Not assigned » 5min effort Comment % clumsy, owasp-al +
Scripte/iquery-1.10.2Je 1210 ‘var n=f.cloneNode(),c=n.createElement; ' +
SL A 1211 ‘h.shivMethods&&(' +
Review this "Function" call and make 1212 // unroll the ‘createElement’ calls
sure its arguments are properly 1213 getElements().join().replace(/\w+/g, function(nodeName) {
validated. 1214 data.createElem(nodeName) ;
@ Vulnerability @ Critical 1215 data.frag.createElement(nodeName) ;
1216 return 'c("' + nodeName + '")';
Scripts/modennizr-2.6.2.js 1217 N+
1218 ')ireturn n}'
Review this "Function” call and make 1219 J(htmls, data.frag);
sure its arguments are properly 1220 }
validated. 1221
@ Vulnerability @ Critical 1222 Ve #/
1223
3 of 3 shown 1224 Sk

The measures in SonarQube give you the ability to get a better all-around view of the
quality of your application. For example, in the duplication measure it is demonstrated that
the application is plagued by 17% of code that can be refactored to more shared functions,
as in its current state it's simply duplicated:

Duplications
11.8% 336 —

Duplications Duplicated Blocks Duplications on New Code

There's more...

You can optionally edit the pipeline to include the Publish Quality Gate Results task in the
pipeline. This task publishes a summary of the SonarQube code analysis results into the
build summary view.

[198]

Continuous Testing

Software teams are constantly under pressure to deliver more, faster. End users expect
software to simply work. Low-quality software just isn't acceptable. But you may ask
what the right level of quality is. Quality is a very subjective term; it is, therefore,
important for teams to agree on a definition of quality for their software. Teams that are
unable to define quality usually end up testing for coverage.

Microsoft has made some bold bets with Azure DevOps Server 2019. Rather than continue
to invest in features that have a very high cost of ownership and low usability footprint,
Microsoft has instead decided to deprecate those features and instead focus the energy
elsewhere. Let's see what's changing:

e Microsoft Test Manager (MTM): The toolkit in Azure DevOps Server
provides tooling for both manual and automated testing. A key part of that
tooling used to be MTM. MTM was first introduced with TFS 2010. It enabled
testers to plan, track, and run manual tests, exploratory tests, and automated
tests. While MTM fully integrated with TFS, it did not offer integration with
other testing platforms, nor did it offer APIs for extensibility. Microsoft's
ambition over the last few years has been to support every developer, every app,
and every platform; that isn't possible with tooling that can't be run on non-
Windows platforms. As a result, over the years, test tooling has gradually moved
out of MTM onto the web, which is now called Test Hub. As it stands, Test Hub
is a fully-featured test management solution spanning all stages of the testing life
cycle. It works on all platforms (such as Linux, macOS, and Windows) and all
browsers (such as Edge, Chrome, and Firefox). You can easily get started using
manual testing features right from your Kanban board and use it for more
advanced manual testing capabilities.

Continuous Testing Chapter 5

The following screenshot shows a feature-level comparison between web-based test
features and the client-based MTM. With feature parity between Test Hub and MTM, no
new versions of MTM will be released. Microsoft Test Manager 2017 (which shipped with
Microsoft Visual Studio 2017) is the last version and will be supported up to January 1,
2020:

Web-based test Client-based Microsoft Test

Test planning capability features Manager
est plan “ “
“ ™
“ ™
to test plan/test suite = ™
ign configurations)]
“
“
“

Export test plans and test suites ["]

ase referen s =

» multiple testers to test plans and test suites for user ptanc M

[200]

Continuous Testing Chapter 5

¢ Load testing: Load testing helps you ensure that your apps can scale and do not
go down when peak traffic hits. Although Microsoft has been shipping load-
testing tools and their cloud-based load-testing service for many years, the
adoption has not been growing. Some of the factors contributing to this are as
follows: load testing is typically initiated for seasonal events; load testing is more
meaningful for products operating at scale; and application complexity can
sometimes make it difficult to adopt an off-the-shelf service without a high level
of customization. With a high level of investment required to maintain the load
testing functionality and a very low adoption rate, Microsoft has announced the
deprecation of load testing in its product. Visual Studio 2019 will be the last
version of Visual Studio with web performance and load test features, and
the corresponding Azure DevOps cloud-based load testing service will shut
down on March 31, 2020. You can read more about the announcement and the
specifics of the deprecation timeline here: https://devblogs.microsoft.com/

devops/cloud-based-load-testing-service-eol/.

¢ Coded UI testing: Automated tests that drive your application through its Ul are
known as Coded UI Tests (CUITs) in Visual Studio. These tests include
functional testing of the Ul controls. They let you verify that the whole
application, including its user interface, is functioning correctly. Coded UI Tests
are particularly useful where there is validation or other logic in the user
interface, for example, in a web page. They are also frequently used to automate
an existing manual test. In addition to supporting record and playback for web
applications, Coded UI only supported Windows-based desktop
applications. Coded Ul tests worked particularly well for greenfield applications
with native controls. The success rate on automation dropped with third-party
controls and legacy implementations. With a greater push for cross-platform
support, Microsoft has acknowledged that open source frameworks such as
Selenium and Appium are the better answer here. Microsoft has therefore
announced that Coded Ul tooling for automated Ul-driven functional testing is
being deprecated. Visual Studio 2019 is the last version where the Coded Ul Test
will be available. Microsoft recommends using Selenium (https://docs.
seleniumhq.org/) for testing web apps and Appium with WinAppDriver
(https://github.com/Microsoft/WinAppDriver) for testing desktop and UWP

apps.

[201]

https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://docs.seleniumhq.org/
https://docs.seleniumhq.org/
https://docs.seleniumhq.org/
https://docs.seleniumhq.org/
https://docs.seleniumhq.org/
https://docs.seleniumhq.org/
https://docs.seleniumhq.org/
https://docs.seleniumhq.org/
https://docs.seleniumhq.org/
https://github.com/Microsoft/WinAppDriver
https://github.com/Microsoft/WinAppDriver
https://github.com/Microsoft/WinAppDriver
https://github.com/Microsoft/WinAppDriver
https://github.com/Microsoft/WinAppDriver
https://github.com/Microsoft/WinAppDriver
https://github.com/Microsoft/WinAppDriver
https://github.com/Microsoft/WinAppDriver
https://github.com/Microsoft/WinAppDriver
https://github.com/Microsoft/WinAppDriver
https://github.com/Microsoft/WinAppDriver

Continuous Testing Chapter 5

With the deprecation of MTM, load testing, and Coded UI Testing, you are probably
thinking: where is Microsoft investing in testing? I'll answer that question, but let's first
look at this interesting shift. To speed up the software delivery loop, software testing needs
to be incorporated into the continuous integration pipeline. In order to do this,

software testing needs to shift left in the development processes. Test-driven development
enables developers to write code that's maintainable, flexible, and easily extensible. Code
backed by unit tests helps identify change impact and empowers developers to make
changes confidently. In addition to this, functional testing needs to be automated. This
enables software testers to focus on high-value exploratory testing rather than just coverage
of the test matrix. The DevOps movement at large supports bringing testing into the
continuous integration pipeline. As a result, the next wave of investment is going into
improving the testing story within pipelines, specifically around unit testing: more support
for testing frameworks and enriching the analytics from test execution.

Through the recipes in this chapter, we'll learn how to leverage pipelines to execute tests
and perform distributed test execution.

In this chapter, we will cover the following recipes:

¢ Running NUnit tests using Azure Pipelines

Using feature flags to test in production

Distributing multi-configuration tests against agents

Configuring parallel execution of tests using Azure Pipelines

Running SpecFlow tests using Azure Pipelines

Analyzing test execution results from Runs view

Exporting test artifacts and test results from Test Hub

Charting testing status on dashboards in the team portal

Running NUnit tests using Azure Pipelines

NUnit is one of the many open source testing frameworks popular with cross-platform
developers. In this recipe, we'll learn how easy it is to create a pipeline for NUnit-based
tests and publish the test execution results in Azure DevOps Server.

Getting ready

In this section, we'll use the .NET CLI to create a new solution and a new class library
project, and install the NUnit test template.

[202]

Continuous Testing Chapter 5

These are the prerequisites:

e NET Core 2.1 SDK or later versions
¢ A text editor or code editor of your choice

Follow these steps:

1. Launch Command Prompt and create a new folder called ContinuousTesting:

mkdir ContinuousTesting
cd ContinuousTesting

2. Create a new solution:

dotnet new sln —-n prime

3. Create anew PrimeService directory:

mkdir PrimeService

4. Set PprimeService as the current directory and create a new project:

dotnet new classlib

5. Rename Classl.cs toPrimeService.cs. Start by copying this failing
implementation of the PrimeService class:

using System;
namespace Prime.Services

{

public class PrimeService

{

public bool IsPrime (int candidate)
{

throw new NotImplementedException ("Please create a test
first");

}

}

}

6. Change the directory back to the Cont inuousTesting directory. Run the
following command to add a reference of the class library project to the solution:

dotnet sln add PrimeService/PrimeService.csproj

[203]

Continuous Testing Chapter 5

7. Before you can use NUnit from the dotnet CLI, you'll need to install NUnit. This
can easily be done by running the following command:

dotnet new —-i NUnit.DotNetNew.Template

8. Next, create a directory for Test under the ContinuousTesting directory, and
call it PrimeService.Tests

mkdir PrimeService.Tests

9. Create anew nunit test project and add a reference for this test project into
solution. The test project will also need a reference to the class library:

dotnet new nunit

dotnet sln add ./PrimeService.Tests/PrimeService.Tests.csproj
dotnet add reference ../PrimeService/PrimeService.csproj

Let's follow the Test-Driven Development (TDD) approach. Start off by writing one failing
test and then make it pass by writing the implementation for it. In the
PrimeService.Tests directory, rename the UnitTest1.cs file to

PrimeService_IsPrimeShould.cs and replace its entire contents with the following
code:

using NUnit.Framework;
using Prime.Services;
namespace Prime.UnitTests.Services
{
[TestFixture]
public class PrimeService_IsPrimeShould
{
private readonly PrimeService _primeService;
public PrimeService_IsPrimeShould()
{
_primeService = new PrimeService();
}
[Test]
public void ReturnFalseGivenValueOfl ()
{
var result = _primeService.IsPrime(l);
Assert.IsFalse(result, "1 should not be prime");
}
}
t

[204]

Continuous Testing Chapter 5

The [TestFixture] attribute denotes a class that contains unit tests. The [Test] attribute
indicates that a method is a test method. Save this file. From the command line, execute
dotnet test; this builds the tests and the class library and then executes the tests. The
NUnit test runner contains the program entry point to run your tests. dotnet test starts
the test runner using the unit test project you've created.

Your test fails. You haven't created the implementation yet. Make this test pass by writing
the simplest code in the PrimeService class that works:

public bool IsPrime (int candidate)
{

if (candidate == 1)

{

return false;

}

throw new NotImplementedException ("Please create a test first");

}

In the ContinuousTesting directory, run dotnet test again. The dotnet test
command runs a build for the PrimeService project and then for the
PrimeService.Tests project. After building both projects, it runs this single test. It
passes.

Now that we have a working .Net core service and NUnit-based unit test, commit the code
into a Git repository (be sure to use a gitignore file to avoid staging files you don't need).
Create a remote continuoustesting.demo repository in the Parts Unlimited team
project. Push the code into the master branch on the remote.

How to do it...

1. Navigate to the Build view in the Parts Unlimited team project.

2. Click +New to create a new pipeline and apply the dotnetcore template. Name
the pipeline nunit . demo.

[205]

Continuous Testing Chapter 5

3. Select the repository as continuoustesting.repo and the branch as master:

nunit.demo

Tasks Variables Triggers Options Retention History : /D Summary

Pipeline
B eline Select a source

Get sources
T »d continuoustesting.demo ¥ master w o O

Azure Repos Git GitHub GitHub Enterprise
Server

Agent job 1
= n

Repository
Restore

continuoustesting.demo

Default branch for manual and scheduled builds

P master

NE
Clean
Publish
NE e false
Publish Artifact
Pub Tag sources (D

[206]

Continuous Testing Chapter 5

4. Click on the Test step in the pipeline and ensure that the Path to project(s) field
uses the wildcard **/* [Tt]ests/*.csproj search value and the Publish test
results and code coverage option is checked:

.NET Core (©

Get sources Tas
) . as

rsion 9=
] co 5

Display name *
CE

Command * D)

test

dotnet
. i ;J[T

Path to project(s)
Test

dotnet NET Core i *(*[Tt]

Publish
NET Y

Publish Artifac

e on $(BuildConfi
*ublish Bu cts

+ Publish test results and code coverage

Advanced -~

[207]

Continuous Testing

Chapter 5

5. Click on the Publish task and uncheck Publish Web Projects, as the sample
solution is a class library and not a web project:

Publish

NET Core

Publish Artifact

Pu t

Display name

Publish

Command * (@
publish

) Publish Web Projects (D)

1 to proje

ration) --output $(build.art

ct name to publish path (@

irectory)

[208]

Continuous Testing Chapter 5

6. Save and queue the build to run and wait for the pipeline to complete execution:

® #20190406. dotnetcore nunit demo repo Release [Artifacts v/

Manually run today at 22:18 by Tarun Arora 4p continuoustesting.demo {* master ¢ 6463c96

Logs Summary Tests WhiteSource Bolt Build Report

Agent job 1 Job

Pool: Hosted Ubuntu 1604 - Agent: Hosted ~ @ Test

Task : .NET Core

Description : Build, test, package, or publish a dotnet applicatiom, or run a custom net command. For package commanc
Prepare job - Version

Author

Initialize Agent -

Initialize job -

[command] /us.

Build star
Checkoutss Build co
Restore - Test run for /I e, / [PrimeService.Tests/bin/

Microsoft (R tion Command Line Tool Versis

Copyright (c c rporation. ALL rights reserved.
Build -

Starting test execution, please wait

Results Fi fhome/vsts/work/_tem|
Test -

i 1. Failed: 8. Skipped: @.

Publish -
tion time: 2.8911 Seconds

sults est run 'léeezes’

s remaining: 1. Test run id
Published Test Run : https://dev.azure.com/Geeks/Dev TestManagement /Runs#runTd=10802085_a=runCharts

Finalize Job -

Report build status -

7. Click on the Tests tab to see the test execution results:

° #20190407.2: git init dotnetcore nunit demo repo

Manually run just nov

Tarun Arora continuoustesting.demo master

Logs Summary | Tests

Summary A

1 Run(s) Completed (1 Passed, 0 Failed, 0 Not impacted, 0 Others)

1 1ersed 100% 18 350ms

0 @ Failed

Total tests Run duration

0 © Others
+1 ™ 100% T +1s 350ms

[209]

Continuous Testing Chapter 5

How it works...

This was simple! You didn't have to add any reference to the NUnit test runner in the
pipeline or worry about parsing the NUnit test results back into a format that is understood
by the pipeline. The Azure DevOps service does a lot of work behind the scenes to make it
seamless. To understand how it works, let's start by zooming into the Restore step in the
pipeline. The pipeline reads the csproj reference to the NUnit test adapter:

<Project Sdk="Microsoft,NET.5dk">

=PropertyGroup>
<TargetFramework=>netcoreapp?.2</TargetFramework>

<IsPackable=false</IsPackable=
</PropertyGroup=

<ItemGroup>
<PackageReference Include="nunit" Version="3.11.@" /= *ak'-_'-_‘
<PackageReference Include="NUnit3TestAdapter" Version="3.12.8" />
<PackageReference Include="Microsoft,MNET,Test.S5dk" Version="15.9.8" />
=/ItemGroup=

=ItemGroup=
=ProjectReference Include="..\PrimeService\PrimeService.csproj" /=

</ItemGroup=

<fProject>

As a result, the test runner is downloaded:

Writing lock file to disk. Path: /home/vsts/work/1/s/PrimeService/obj/project.assets.json
Writing cache file to disk. Path: /home/vsts/work/1/s/PrimeService/obj/PrimeService.csproj.nuget.cache

Build Restore completed in 742.43 ms for /home/vsts/work/1/s/PrimeService/PrimeService.csproj.

Test

Publi

GET http: r‘api.ﬂuet.oru/v3-f'I.atcontainer/nunit/S.ll.ef'nunit.:i.ll.@.nupk

Publi GET https://api.nuget.org/v3-flatcontainer/microsoft.net.test.sdk/15.9.8/microsoft.net.test.sdk.15.9.8.nupk

[210]

Continuous Testing Chapter 5

Then it is installed through the Restore step in the pipeline:

Installing Microsoft.TestPlatform.TestHost 15.9.0.

Completed installation of System.ComponentModel.Primitives 4.1.0
Acquiring lock for the installation of NUnit3TestAdapter 3.12.9
Acquired lock for the installation of NUnit3TestAdapter 3.12.8

Installing NUnit3TestAdapter 3.12.0.

Completed installation of System.ComponentModel 4.8.1

Acquiring lock Tor the installation of MicrosofTt.NET.Test.5dk 15.9.8@
Acquired lock for the installation of Microsoft.NET.Test.Sdk 15.9.@
Installing Microsoft.NET.Test.Sdk 15.9.0.

Next, let's look at how the test results from the test execution were parsed into the test run
results:

Run 1000200 - VSTest Test Run Release any cpu

Run summary Test results Filter
() /" Update comment [l Add attachment

Summa
L Outcome

© Completed 38 minutes ago, Ran f

Run type Automated
ner DevOpsContent Build Service (Geeks)
d build 20190406.2

not available
Build platform any cpu
Build flavor Release
tings Default

MTM lab environment not available

Comments

No comments

Error message

No error m

Outcome by priority

Comment

[211]

Continuous Testing Chapter 5

Azure Pipelines are highly extensible and provide a wide range of extensibility points. The
test task out-of-the-box supports the following test result formats: CTest, JUnit, NUnit 2,
NUnit 3, Visual Studio Test (TRX), and xUnit 2. The test task is executed through the
pipeline supports parsing the test results from any test execution framework as long as the
test framework can publish the test results in any of these supported formats. All the
advanced concepts of searching test results using wildcard search as well as merging test
results are handled by the pipeline itself.

Using feature flags to test in production

We are in an era of continuous delivery, where we are expected to quickly deliver software
that is stable and performant. We see development teams embracing a suite of continuous
integration/delivery tools to automate their testing and QA, all while deploying at an
accelerated cadence. No matter how hard we try to mitigate the risk of software delivery,
almost all end-user software releases are strictly coupled with some form of code
deployment. This means that companies must rely on testing and QA to identify all issues
before a release hits production. There are two key challenges when testing features in test
environments:

¢ Testing in test environments can be challenging if your test scenarios depend on
production-quality data. It can take a lot of effort to create this kind of data in test
environments and it's likely you'll still miss out on key test scenarios, since in
some cases the effort involved in creating this data outweighs the benefits.

¢ The other most common scenario is doing user testing, inspecting, and adapting
the functionality of your product based on usage data. End users may be
invested in the success of your product, but it can get increasingly difficult to get
constant feedback on every functionality in a test environment.

Once a release is in production, it is basically out in the wild. Without proper controls,
rolling back to previous versions becomes a code deployment exercise, requiring
engineering expertise and increasing the potential for downtime. One way to mitigate risk
in feature releases is to introduce feature flags (feature toggles) into the continuous delivery
process. These flags allow features (or any code segment) to be turned on or off for
particular users. Feature flags are a powerful technique, allowing teams to modify system
behavior without changing code. Innovation is the key to success, and success depends on
hypothesis testing through experimentation. By adopting a culture of continuous
experimentation, features can be tested by creating an instrumented minimal viable
product rapidly and released to a subset of customers in production for testing; this enables
the team to make fact-based decisions and quickly evolve toward an optimal solution.

[212]

Continuous Testing Chapter 5

In this recipe, we'll learn how to get into a true continuous testing culture by leveraging
feature flags.

Getting ready

1. Create a new web application using the ASP.NET Web Application template in
Visual Studio, name it MyWebApp, and save it in a new folder called
featuretoggle.demo:

Mew Project

P Recent - Sort by: Default

4 |nstalled
ASP.NET Co 'eb Application Visual C#
4 Visual CF
Get Started ASP.NET Web Application [.MET Framework) Visual C#
s Desktop

LY /=

ious Versions

MET Standard

Mot finding what you are looking for?

MNarne: MyWebApp|

Location: sitarun.b.arora\Source’Reposifeaturetoggle.demo,
Solution: Create new solution
Selution name: viyWebApp

Framewaork: .NET Framework 4.6.1

[213]

Continuous Testing Chapter 5

2. Simply build and run the website, then navigate to the Contact form:

Contact - My ASP.NET Applicatic X +

&« C @ localhost:64192/Home/Contact

Contact.

Your contact page.

One Microsoft Way
Redmond, WA 98052-6399
P; 425.555.0100

Support: Support@example.com
Marketing: Marketing@example.com

© 2019 - My ASP.NET Application

In the next section, we'll see how to use feature flags to deploy changes to the Contact form
without releasing the changes to everyone.

How to do it...

1. In the MyWebApp project, add a reference to the FeatureToggle package:

MuGet: MyWebApp + X M, bApp hd
Installed Updatesd3 NuGet Package Manager: MyWebaA...

.

featuretoggle = I-fn I:‘ Include prerelease Package source: nugetorg = 19

FeatureToggle
FeatureToggle by Jasor w e

Simple, reliable feature M App_Data
toggles in NET Version: Latest stable 402 - Install)

FeatureToggle.Core t
Simple, reliable feature v | Options
toggles in NET. This is a...)

[214]

Continuous Testing Chapter 5

2. Next, create a folder called Toggle and add a class called NewContactForm.cs.
Copy the following code into this class file:

using FeatureToggle;
namespace MyWebApp.Toggle
{

public class NewContactForm : SimpleFeatureToggle

{
}
}

3. Add a new app key in the web. config file; set the key name to
FeatureToggle.NewContactFormand the value to false. This key will be

used to control the feature flag:

4. Next, modify the Contact.cshtml page under Views\Home to include the
following code:

@
var toggle = new MyWebApp.Toggle.NewContactForm() ;

if (toggle.FeatureEnabled)

{

<img
src="https://www.incimages.com/uploaded_files/image/970x450/get
ty_459885938_144096.jpg" />

}
}

5. Build and run the project. Navigate to the Contact form page and you'll see that
it's unchanged. Update the value of the FeatureToggle.NewContactForm key
in the web.config file from false to true.

[215]

Continuous Testing Chapter 5

6. Now refresh the Contact form. You'll see the updated page with the image:

C @ localhost:564192/Home/Contact Yr

Contact.

Your contact page.

One Microsoft Way
Redmond, WA 98052-6399

How it works...

The feature toggle package includes a series of providers that can be used to control the
value of an object that can, in turn, be used to decide whether the feature is accessible. You
may ask why we use feature toggle. Well, it is easy to construct a simple if....else
condition using a config key to control when the page gets shown. While magic strings can
be used, toggles should be real things (objects), not just a loosely typed string. This helps
effectively manage the feature flags over time. When using real toggles, you can do the
following;:

¢ Find uses of the Toggle class to see where it's used
¢ Delete the Toggle class and see where a build fails

[216]

Continuous Testing Chapter 5

Feature flags allow you to decouple code deployments from feature releases. This simplifies
testing code changes in production without impacting end users. By using feature flags, it's
possible to control who can see a feature; it's also possible to phase in traffic to a new
feature rather than opening up all users at once. You can read more about feature flags and
their benefits here: https://martinfowler.com/articles/feature-toggles.html.

There's more...
The feature toggle package also provides the following feature toggle types:

e AlwaysOffFeatureToggle

e AlwaysOnFeatureToggle

® FnabledOnOrAfterDateFeatureToggle

® FnabledOnOrBeforeDateFeatureToggle

® FnabledBetweenDatesFeatureToggle

e SimpleFeatureToggle

e RandomFeatureToggle

® FnabledOnDaysOfWeekFeatureToggle

® SglFeatureToggle

® FnabledOnOrAfterAssemblyVersionWhereToggleIsDefinedToggle

More details on these feature toggle types and their usage can be found at: http://jason-
roberts.github.io/FeatureToggle.Docs/pages/usage.html.

Distributing multi-configuration tests
against agents

Pipelines are a great way of running tests. The pipeline can be used to run unit tests,
functional tests, and integration tests. If you have a large number of tests in your
application, the verification process can slow down significantly. It can get even slower if
you have a large matrix of configurations to run the tests against. For example, if you have
a collection of selenium tests that perform Ul-level verification, you may need to run these
tests against Internet Explorer, Chrome, and Firefox and run the tests on Windows, macOS,
and flavors of Linux.

[217]

https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html

Continuous Testing

Chapter 5

In this recipe, we'll learn how easy it is to use a combination of a multi-configuration
execution plan along with a pool of test agents to distribute the test execution.

How to do it...

In the Variables section in a build pipeline, define one or more variables that'll be used to
describe the test matrix:

1. In our example, we need to test against multiple browsers on multiple platforms.
So, I've created two variables, one for browsers and the other for platforms:

& o

Tasks Variables

Pipeline variables

Variable groups

Predefined variables 2

Triggers

verificationtests

Options Retention History

Mame T
BuildConfiguration
BuildPlatform
system.collectionld
system.debug
system.definitionld

system.teamProject

& Save & queue)

ey

Discard

Summary

Value

Release

any cpu
5bd0e38f-6fe8-44bc-9206-50ce73521457
false

12

PartsUnlimited

platform

browser

windows,mac, linux

internetexplorer,chrome,edge, firefox

2. Next, create an agent pool with multiple agents. For the purposes of this recipe,
I've created a build pool buildgrid-01 with two agents:

Agent pools

New agent pool...

Manage organization agent pools

Agents

All agent pools Enabled
& buildgrid-01 (buildgrid-01)
& Default (Default)

Roles Details
Name
azsu-d-dti1-001

azsu-d-dtl1-002

Agents for pool buildgrid-01

Policies

State
Online

Online

Current status
Idle

Idle

[218]

Continuous Testing Chapter 5

3. In the Agents phase in the pipeline, change the Execution plan to Multi-
configuration and set the Multipliers to the variables.

4. Set the Maximum number of agents to 2. The maximum agent count lets you
specify the number of agents from your pool the job can distribute the tests on:

Execution plan
Parallelism (7)

None .@:. Multi-configuration Multi-agent
Multipliers (D

platform, browser
Maximum number of agents * (@

2

[] continue on error

5. To pass the configuration value to your test, simply use the $ (browser) and
$ (platform) variables in the test configuration:

Restore Command * (0]
dotriet Core
test

Build
dotnet -

MET Core Path to project(s)
E Test (] **[*[Tt]ests/*.csproj

.NET Core =2
> Publish
NET Gora Arguments (D)

Publish Artifact --configuration $(BuildConfiguration)--filter TestCategory=%$platform,$browser
M publish Build Artifacts Publish test results and code coverage . W)

6. Save the changes and trigger the build. The build will distribute the matrix of
execution across the pool of agents.

[219]

Continuous Testing Chapter 5

How it works...

The comma-separated values in the plat form and browser variables are used to create the
test matrix:

Browser Internet Explorer Chrome Edge Firefox
Platform Windows Windows Windows Windows
Platform Mac Mac Mac Mac
Platform Linux Linux Linux Linux

The multi-configuration test execution plan simply iterates through the comma-separated
values one at a time and passes them to the $Splatformand $browser variables, which are
then passed in to the test configuration. As you can see in the following screenshot, the test
configuration is distributed across the two agents available in the pool:

® #20190409.3: Merge remote-tracking branch 'origin/master’

Manually run today at 23:36 by Tarun Arora eShopOnWeb §# master c0f0cf3

Logs Summary Tests

° Agent job 1 windows,internetex... Agent job 1 mac,chrome
[i r
-) Pool: Default - Agent: tfs_al

° Agent job 1 windows,chrome
Sucosedad @ Initialize Job - succeeded

Agent job 1 windows,edge Get Sources - succeeded

Succeeded

Agent job 1 windows, firefox

Build - succeeded

(]
@ Restore - succeeded
o
®

Agent job 1 mac,internetexplorer

Succeeds

Test

Agent job 1 mac,chrome info: Microsoft.EntityFrameworkCore.Infrastructure[10403]

R Entity Framework Core 2.2.3-servicing-35854 initialized 'CatalogContext’
toreName=InMemoryDbForTesting

Agent job 1 mac,edge info: Microsoft.AspNetCore.Mvc.RazorPages.Internal.PageActionInvoker([4]

Not started Executed page /Account/Login in 11.6686ms
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]

Agent job 1 mac firefox Executed endpoint 'Page: /Account/Login'

Not started info: Microsoft.AspNetCore.Hosting.Internal.WebHost [2]
Request finished in 18.9592ms 200 text/html; charset=utf-8
Agent job 1 linux,internetexplorer Results File: C:\tfs_al_work_temp\tarun.arora_azsu-p-tfs2018_2019-04-09_22_

Not d

Total tests: 10. Passed: 10. Failed: @. Skipped: @.

Agent job 1 linux,chrome Test Run Successful.
ot started Test execution time: 7.5954 Seconds

© © 66 ®0 0O

No

[220]

Continuous Testing Chapter 5

There's more...

With multi-configuration you can run multiple jobs, each with a different value for one or
more variables (multipliers). If you want to run the same job on multiple agents, then you
can use the multi-agent option of parallelism. The preceding test slicing example can be
accomplished through the multi-agent option.

Configuring parallel execution of tests using
Azure Pipelines

Running tests to validate changes to the code is key to maintaining quality. For continuous
integration practice to be successful, it is essential you have a good test suite that is run
with every build. However, as the code base grows, the regression test suite tends to grow
as well, and running a full regression test can take a long time. Sometimes, tests themselves
may be long-running - this is typically the case if you write end-to-end tests. This reduces
the speed with which customer value can be delivered, as pipelines cannot process builds
quickly enough.

Being able to divide the test execution on multiple cores across a pool of agents can
significantly reduce the time it takes to complete the test execution. While most build
servers are multi-core, the agent orchestrating the pipelines doesn't always provide an easy
way to distribute the test execution on multiple cores. In this recipe, we'll see how easy it is
to enable parallel execution of tests using Azure Pipelines.

Getting ready

Create a new pipeline using the ASP.NET Core template. This will add the Visual Studio
Test task to the pipeline.

[221]

Continuous Testing

Chapter 5

Save the pipeline as paralleltesting.demo:

@ - > paralletesting.demo

Tasks \Variables Triggers Options

Pipeline

Build pipeline

2= Get sources

T ®q eShopOnWeb ¥ master
Agent job 1

B Run on agent

Use NuGet 4.4.1

MuGet Tool Installer

MNuGet restore

MuGet

Build solution

Visual Studio Build

Save & queue

Test Assemblies
Visual Studio Test

IS S8

Publish symbols path

Index Sources & Publish Symbals

D

Publish Artifact

Publish Build Artifacts

|=

Visual Studio Test ®

Version ox* v

Display name *

Test Assemblies
Test selection
Select tests using * [0}
Test assemblies
Testfiles* (@

**\$(BuildConfiguration)*test*dll
!‘t‘\obj\tx

Search folder * 0]

$(System.DefaultWorkingDirectory)

Test filter criteria ()

How to do it...

1. In the Execution section of the Visual Studio Test task, check the option to Run

tests in parallel on multi-core machines:

[222]

Continuous Testing

Chapter 5

Execution options A

Select test platform using ()

@\ Version Specific location
Test platform version o
Latest

Settings file (&

Override test run parameters ()

Path to custom test adapters ()

Run tests in parallel on multi-core machines (D _

[] runtestsinisolation @

2. In the Advanced execution options section, check the option to Automatically
determine the batch size and set the batch size to be applied Based on number
of tests and agents:

Advanced execution options A
Batch tests 0]

Based on number of tests and agents
Batch options (0]

/i) Automatically determine the batch size

Specify a batch size

3. Save and trigger the build to execute the tests as per the settings in the Visual
Studio Test task.

[223]

Continuous Testing Chapter 5

How it works...

The Visual Studio Test task (version 2) is designed to work seamlessly with parallel job
settings. When a pipeline job that contains the Visual Studio Test task is configured to run
on multiple agents in parallel, it automatically detects that multiple agents are involved and
creates test slices that can be run in parallel across these agents. Furthermore, the task can
be configured to create test slices to suit different requirements such as batching based on
the number of tests and agents, the previous test running times, or the location of tests in

assemblies:

Advanced execution options ~

Batch tests (O

Based on past running time of tests

Based on number of tests and agents

Based on past running time of tests

Based on test assemblies

When the run parallel checkbox is checked, behind the scenes the maxcpucount value is set
to 0, which internally configures the Visual Studio Test task to enforce that the test
execution process isn't allocated affinity to just one CPU processor:

Process-parallel: Conditioned by a global value in .runsettings file.

<RunSettings>
<RunConfiguration> '
<MaxCpuCount>0</MaxCpuCount> Test Adapter
</RunConfiguration> '
</RunSettings>

Test container
(DLL/etc.)

Test container

vstest — Test Adapter) (DLL/etc.)

i Test container
) » Test Adapt: >
S LACOPIEY (DLL/ete.)

Running on a separate process affinitized to an available core.

[224]

Continuous Testing Chapter 5

There's more...

The parallelism of test execution is offered by most test frameworks. All modern test
frameworks, such as MSTest v2, NUnit, xUnit, and others, provide the ability to run tests in
parallel. Typically, tests in an assembly are run in parallel. The Visual Studio test task
already supports the previously listed testing frameworks, therefore the options of parallel
execution and slicing based on the number of agents/tests and test assemblies is available to
all supported testing frameworks.

Running SpecFlow tests using Azure
Pipelines

SpecFlow is a testing framework that lets you define application behavior in plain,
meaningful English text using a simple grammar defined by a language called Gherkin.
SpecFlow is a very popular open source framework for Behavior-Driven Development
(BDD). SpecFlow democratizes testing to non-technical users by giving them a way of
defining tests using the business domain and functional language, which can then be
fleshed out as a functional test. In this recipe, we'll learn how SpecFlow tests can be
integrated to run in Azure Pipelines.

Getting ready

Create a new pipeline using the ASP.NET Core template. In this recipe, we'll be mostly
focusing on the Test task in this pipeline.

How to do it...

SpecFlow tests don't necessarily need the SpecRunner for execution: they can be run using
MSTestv2 or any other compatible framework. However, using SpecRunner provides great
benefits: for example, you can get some very useful analysis out of the tests that wouldn't
necessarily be available if you used other test execution frameworks. Luckily, using
SpecRunner for test execution doesn't require any installation on the agent!

[225]

Continuous Testing Chapter 5

The Visual Studio Test task supports triggering a test adapter as long as it can find the path
to the custom test adapter:

1. To allow the test task to find the custom test adapter, it's best to include the test
adapter as a NuGet package reference:

specrun © M Include prerelease

b SpecRun.Runner by TechTalk
o)

Flow+Runner - supports SpecRun.SpecFlow and
SpecRun.NUnit packages.

2@ SpecRun.SpecFlow.2-2-0 by TechTalk

+Runner - a smarter integration test runner for SpecFlow.
details on the website.

2. Since the custom test adapter is added as a NuGet package, it doesn't need to be
called out as a specific path reference in the test task in the Azure Pipeline:

Path to custom test adapters Q)]
o Build solution

Visual Studio Build

Spec Execution () Run tests in parallel on multi-core machines (1)

Visual Studio Test

|:| Run tests in isolation ()
F\ COF“} SIJE‘C Ana'YﬂS [] code coverage enabled

Index Sources & Publish Symbols

Other console options ®

[226]

Continuous Testing

Chapter 5

3. If the packages are added correctly, in the Build summary for this step you'll be
able to see that the tests are executed using the SpecFlow+ Runner test adapter:

v EJI'd lOgS
v Spec Execution 31

+/ Copy Spec Analysis

5 2017-08-25T17:22:87.12928172
52 2017-08-25T17:22:07.1292817Z
53 2017-08-25T17:22:07.1292817Z
54 2017-08-25T17:22:087.1449875Z Information: SpecRun: running tests in c:\Agent2_work

Passed
Information: SpecFluﬁRurmerl execution started

Infra_Utilities_@3_True

How it works...

When SpecFlow tests are executed in Visual Studio, an analysis report is generated by

SpecFlow:

Configuration: Default

Start Time: 8/23/2017 3.39:.44 PM
Duration: 00:00:13.4372734
Test Threads: 1

« & & s s

Result: all tests passed

Success rate

Test Timeline Summary

thread
#0

0s 4s 8s

Test Result View

100% 39

Project ©anwes<diimme\\/ci Generation Specs

Test Assemblies: SentcesSB:®me \\/cf Generation Specs dlI

Tests Succeeded Failed Pending Ignored Skipped

39

0 0 0 0

[227]

Continuous Testing Chapter 5

If the Upload Attachment option is checked in the test task, the SpecFlow test execution
and analysis logs get attached to the test run results:

4 Test runs Test settings Default
382“' SpECS -20170823.1 1 MTM lab environment not available
Comments
Recent explorato Session .
No comments

Error message
No error message

Attachments (12)

Name

There's more...

By using the SpecFlow plus extension, available in the Azure DevOps Server marketplace
you can easily publish your spec tests as living documentation within Azure DevOps
Server. This can be achieved by using the SpecFlow+LivingDoc documentation (https://
marketplace.visualstudio.com/items?itemName=techtalk. techtalk—specflow—plus)
extension in your Azure Pipeline:

[228]

https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus

Continuous Testing Chapter 5

& Copy Spec Analysis

Zip Spec Analysis

N E y name
* Attach Spec Analysis
- F E Artifact: Specs (Infrastructure)
Email Spec Analysis Project file path *

Infrastructure.Specs/Gantiis st . Infrastructure. Specs.csproj

Specs (Infrastructure)
@ s (oo o

SpecFlow +LivingDoc H Project Name (@

e Specs (Services)
ARl LT i

Personally, I think the SpecFlow+LivingDoc is pretty rough and needs some more work,
but nonetheless, it provides great value even in its current state:

Test Plans Parameters Configurations Runs Machines Load test SpecFlow+
& B spec v Queue time: Aug 25, 2017 62 PM « succeedec & Queue
O " Feature: <7l. Fowes Nominations

E Include steps and descriptions for

filtering scenarios
astructure.Specs

ation

StartD uT-t eTlerTC EndDateTimeLocal EndDateTimeUTC
25 7 25/07/2 5/81/2017

2017 2
o0 5

22:00 23:30:00 22:30:00

Analyzing test execution results from Runs
vView

In Azure DevOps Server 19, test execution results of both manual and automated testing
are surfaced in the Runs page. The Runs page offers a unified experience for analyzing the

results of tests executed using any framework. In this recipe, we'll learn how to analyze and
action the test execution results in the Runs view in Team Web Portal.

[229]

Continuous Testing

Chapter 5

Getting ready

Launch the Parts Unlimited team project, navigate to the Test Hub, and click on Runs to

load the Runs page.

How to do it..

The Runs page displays the recent test runs. At first glance, you can see the test execution
status, test configuration, build number, number of failed tests, and pass rate:

DefaultCollection PartsUnlimited

<

Enter Run ID... Go

U

Recent test runs

4 Test runs

No items in this folder

Recent exploratory sessions

Test Plans Runs

Recent test runs

Test runs Filter
O
State Run L. tle Completed Date Build Number
@ Completed 57 VSTest Test Run release any cpu 4/27/2019 10:32:51 AM 201904271

1. Navigate to the filters view by clicking the Filters tab. The query is defaulted to

display the test runs from the last seven days.
2. Amend and add new clauses to show only the automated test runs for today:

+ X Created date ¥ ||>= * @Toda

+ X And * |s automated v o= ¥ lrue N
+ X And * State v = * Completed N
4+ Add

The query narrows down the test execution results to just one run:

Completed

Test Run debug any cpu 11/20/2015 122270

15 ViTest

[230]

Continuous Testing Chapter 5

3. Double-click on test run ID to open the test run for analysis. This view shows the
run summary along with charts to visualize the test results by properties, traits,
configuration, failures type, and resolution. Any attachments associated to the
test run are also available in this view:

Summary Outcome
B Pazsed W Mot executed I Failed

Run type Automated \‘

Owner Project Collection Build Service
0.15320.55
Build platform any cpu 1 ? 1 6
Build flavor debug
Test settings Default

est environment not available

4. Navigate to the Test results tab to see the list of all tests executed as part of this
test run. Prior to TFS 2015, you had to download the trx file and open it in
Visual Studio to get to this information. This view provides the next level of
detail; among other things, you can see the test execution duration and failure
error messages:

Run summary Test results Filter

(] m Create bug ,f Update analysis

€ Failed Sel_IE_Shopping 0:00:00.060 Windows 8 4TESTCI Assert.Fail failed.
@ Passed Sel_Fox_Shopping 0:00:00.000 Windows 8 4TESTCI

@ Passed Sel_Chrome_Shopping 0:00:00.000 Windows 8 4TESTCI
QFailed Sel_IE_Admin 0:00:00.002 Windows 8 4TESTCI Assert.Fail failed.

5. Select multiple tests and click on create a bug to create a bug type work item.

[231]

Continuous Testing Chapter 5

6. Click on Update analysis to add comments to the test results. You can also
double-click a test to go to the next level of detail on its test execution:

UPDATE ANALYSIS

A tarun Arora
New lssue
Configuration issue

The IE configuration is causing the integration tests to fail.

How it works...

This functionality gives you a unified test analysis experience irrespective of the framework
on which you choose to execute your tests. In summary, you can query all test runs
available in your Team Project, drill down into a specific test run to get a summary view of
that run, visualize test runs using charts, query/filter the test results within a run, drill
down to a specific test result, download attachments, and, last but not least, analyze test
failures and file bugs.

Exporting test artifacts and test results from
Test Hub

In Azure DevOps Server, test artifacts comprise test plans, test suites, test cases, and test
results. It is common to have to export the test artifacts for the purposes of sharing and
reporting. Back in the days of TFS 2013, Test Scribe delivered as a Visual Studio Extension
was the only way to export these artifacts. Test Hub now boasts the email or print test
artifacts functionality, which allows you to easily share test artifacts with stakeholders. The
feature is simple to use and can be triggered from several places within the Test Hub.

[232]

Continuous Testing Chapter 5

Getting ready

Launch the Parts Unlimited team project and navigate to the Test Hub.

How to do it...

1. Select the Test Plans and click on Email or print the test artifacts from the
toolbar:

Test Plans > [& partsunlimited.web.regression ~ %

(4

B Test suite: 1057 : New acquisition channel {{alge]¥le]g]

+r 5w @ O | S

Tests Charts

4 partsunlimited.wek q A .
P Email or print test artifacts

E= 1057 : New acquisiuon cnanne trougr rerer... + New ~ Add existing X

= 1059 : Ux enhancements for My Account in ... ~))
Outcome Order D T Title

= 1086 : Workflow to opt in to e-bills
® Active 1 1243 Trigger referral workflow

= 1092 : Add GDPR acceptance banner on New...

You can export the artifacts from the root by selecting the top-level test
suite.

Whether you chose to export from test plan or test suite in both the cases,
you will get a new form to select 'what' and 'how’, the 'what' in this case
being the artifacts, and the how being email or print. A few items are worth
highlighting in the following screenshot. The Latest test outcome option has
been added in Update 1; selecting this option also exports the test results.

[233]

Continuous Testing Chapter 5

2. Choosing Selected suite + children recursively exports all children of the
selected suite:

Export 1057 : New acquisition channel thro...

Test plan
Test plan
@ Properties
B Suite hierarchy
8 Configuratio
¥ Run settings (Test environment, test settings and build)

Test suite
Selected suite only @) Selected suite + children

s with steps
Parameter data

Latest test outcome

How it works...

Clicking on print or email starts the process of generating the extract. This may take up to a
few seconds to complete, depending on the quantity and size of the artifacts being
exported. Once the export has been completed, a form will pop up to show you the preview
of the export. You can also edit and format the values from the preview form.

[234]

Continuous Testing Chapter 5

Since we had chosen the email option, the form has a field that allows us to choose the
email address of the person we would like the export to be sent out to:

b
Test suite: 1057 : New acguisition channel through referral (Suite 1D: 123...

To

Search users

Subject

Test suite: 1057 : New acquisition channel through referral (Suite ID: 1239)

Note 0/1024 characters

TEST PLAN 1237: PARTSUNLIMITED.WEB .REGRESSION

Run settings

MANUAL RUNS AUTOMATED RUNS

Settings: MNone Settings: MNone
Environment: None Environment: None
BUILD

Definition: MNone

Quality: None

Build in use: None

As illustrated in the following screenshot, the export also includes the test steps:

TEST SUITE 1239: 1057 : NEW ACQUISITION CHANNEL THROUGH

Properties

State: In Progress

Type: Requirement-based Suite

Requirement: 1057: New acquisition channel through referral
Configurations: Windows 10

Test cases (1)

TEST CASE 1243: TRIGGER REFERRAL WORKFLOW

LINKS
ID WorkltemType Link type Title
1057 User Story Tests New acquisition channel through referral

[235]

Continuous Testing Chapter 5

There's more...

It is possible to customize the format of the export by modifying the underlying template
used by Azure DevOps Server during the export/print process. There are a few points to
keep in mind before customizing the template.

You should create a backup of the original template; for example, copy it and rename it
as TestSuite-Original.xsl. If not, when you upgrade Azure DevOps Server, the
changes you made in the TestSuite.xs1 file may get overwritten. The export does not
support customization per project and the style changes will affect all projects in your
Azure DevOps Server instance.

Follow the steps listed here to add your company logo to the export:

1. Log on to the Team Foundation Server application tier and navigate to the
following path and add your company logo (companylogo.png) in this folder
paﬂuc:\Program Files\Microsoft Team Foundation Server
14.0\Application Tier\Web
Services_tfs_resources\TestManagement\vl.0\Transforms\1033\Tes
tSuite.xsl.

2. Modify the TestSuite.xsl filein the <installation path>\Application
Tier\Web
Services_tfs_resources\TestManagement\vl.0\Transforms\<locale>
\TestSuite.xsl folder.

3. Open the TestSuite.xsl file in Notepad and add the following lines of code to
include your company logo into the export template:

<div style="align:center;">

</div>

The results of the customization can be tested by generating an export through the Test
Hub.

[236]

Continuous Testing Chapter 5

Charting testing status on the dashboard in
team portal

The charting tools in team portal provide a great way to analyze and visualize test case
execution. The charts created through the charting tools can be pinned to custom
dashboards. Both charts and dashboards are fantastic information radiators to share the test
execution results with team members and stakeholders. In this recipe, we'll learn how to
pin the test execution results on a custom dashboard in a team portal.

Getting ready

Follow the steps in the Configuring dashboards in Team Project recipe in Chapter 1, Planning
and Tracking Work, to create a custom dashboard for testing.

How to do it...

1. Navigate to the Test Hub in the Parts Unlimited team project. The Test plan page
gives you a list of test suites and a list of test cases for the selected suite. The
Charts tab gives you a great way to visualize this information.

2. Click on the +icon and select New test result charts.

3. Select a bar chart and Group by as Outcome: this renders the test case outcome
in the bar chart. Click OK to save the chart.

4. Right-click the newly created chart and pin the chart to the testing dashboard:

Fabrikam Marketplace
Group b

Outcome - Failed
Values Passed

Cr - §

Count - Not run

ort Blocked

Value v Descending ~ }

0 2 4 6 8 10 12

[237]

Continuous Testing Chapter 5

5. Now click on the +icon and select New test case chart. Test case chart types
support trend charts; the supported trend period is from seven days to up to 12
months.

6. Select the stacked area chart type and choose to stack by State. This will allow
you to visualize the state of the test cases over time.

7. Click OK to save the chart. Right-click the chart and pin to the dashboard:

Stack by © B Design M Ready
(_State ')
50
Values @ o
Count ~ of Testcases 40
35
Range O 30
Last four weeks v 25
20
Sort © 15
10
Li]

How it works...

The charts are calculated using the Work Item data. When Work Items are updated, the
charts reflect the updates immediately. To learn more about the charting functionality in a
team web portal, refer to the walk-through here: http://bit.1y/1pGP8CU.

[238]

http://bit.ly/1PGP8CU
http://bit.ly/1PGP8CU
http://bit.ly/1PGP8CU
http://bit.ly/1PGP8CU
http://bit.ly/1PGP8CU
http://bit.ly/1PGP8CU
http://bit.ly/1PGP8CU
http://bit.ly/1PGP8CU
http://bit.ly/1PGP8CU

Continuous Deployments

Continuous Deployment is the practice of teams to continuously deploy tested and
working software to production. The release pipeline of Azure DevOps Server is just an
orchestrator of the activities you do on an environment to get your software deployed and
running. Another key technique of continuous deployments is the consistency of
deployment steps - meaning you follow the same deployment steps across all your
deployment environments. The advantage is repeatability, reliability - thus improving
your overall delivery so that you release software to production sooner and consistently.

In this chapter, we will see different ways to deploy various types of resources using
continuous deployment strategy. Not only will we see how to deploy applications, but will
also see how to provision infrastructure so that we eventually achieve repeatable and
reliable deployments of our software.

We will cover the following recipes:

¢ Deploying the database to Azure SQL using the release pipeline

¢ Consuming secrets from Azure Key Vault in your release pipeline
¢ Deploying the .NET Core web application to Azure App Service

¢ Deploying an Azure function to Azure

Publishing secrets to Azure Key Vault

Deploying a static website on Azure Storage

Deploying a VM to Azure DevTest Labs

Deploying the database to Azure SQL using
the release pipeline

Databases are an integral part of any application and should be part of your DevOps
process, which means integrating changes continuously using source control and delivering
every change to the environment.

Continuous Deployments Chapter 6

However, most organizations still have a legacy way of deploying databases. Developers
still have code stored procedures and commit to the source control, but when it comes to
the deployment, a detailed release notes document is prepared on how the database has to
be provisioned and handed over to the DBAs.

In this recipe, we will see how we can build a process to consistently develop and deploy
the database to Azure SQLDB.

Getting ready

For this recipe, I am using a sample database called AdventureWorks, published by
Microsoft. If you do not have this database already, Microsoft makes the backup file
available for download on GitHub here: http://bit.1ly/2GNpvsSo. Go ahead and download
the database as per your SQL Server version. Since I have SQL Server 2017 Express on my
machine, I downloaded the AdeventureWorks2017.bak file and then restored the
database from the backup. Microsoft has instructions on restoring the database, which is
documented here: http://bit.1ly/2GKK8hT. Once you restore you should see the database
in SQL Server Management Studio shown as follows:

= i@ WIN-Le4B3UTNMNANSCLEXPRESSOT (SOL Server 14.0.1000
= Databaszes
Systemn Databases
Database Snapshots
= .
Database Diagrams
= Tables
System Tables
FileTables
External Tables
Graph Tables
B dbo.AWBuildVersion
B dbo.Databaselog
B dbo.ErrorLog
BH HumanResources.Department
BH HumanResources.Employee
BH HumanResources.EmployeelepartmentHi
BH HumanResources.EmployeePayHistory
FR HumanResources.JobCandidate
FR HumanResources.Shift
R Person.Address
B Person.AddressType
BH Person.BusinessEntity

2 I = = = 2 = 2 2 2

[240]

http://bit.ly/2GNpvSo
http://bit.ly/2GNpvSo
http://bit.ly/2GNpvSo
http://bit.ly/2GNpvSo
http://bit.ly/2GNpvSo
http://bit.ly/2GNpvSo
http://bit.ly/2GNpvSo
http://bit.ly/2GNpvSo
http://bit.ly/2GNpvSo
http://bit.ly/2GKK8hT
http://bit.ly/2GKK8hT
http://bit.ly/2GKK8hT
http://bit.ly/2GKK8hT
http://bit.ly/2GKK8hT
http://bit.ly/2GKK8hT
http://bit.ly/2GKK8hT
http://bit.ly/2GKK8hT
http://bit.ly/2GKK8hT

Continuous Deployments Chapter 6

Creating a database project and importing the database

First, we need to ensure that we have SQL Server Data Tools (SSDT) installed with our
Visual Studio version. This tool is available during Visual Studio installation with the data
storage and processing workload. It is also available as a standalone installer for Visual
Studio:

Workloads Individual components Language packs Installation locations

and building Containers incluging... Installation details

HTML/JavaScript, and Containers including Dacker support creating resources.

» Visual Studio core editor

Nodejs developmer] » .NET desktop development
Build scalable ne ng Nodejs, an 3 ASPINET and web development
runtime. > Azure development

> Node.js development
> Visual Studio extension development

» .NET Core cross-platform development
w Data storage and processing

Azure Data Lake, or H;

‘| @ onnest, develop, an salutions with SQL Server, . Mé L

This development tool helps with database design, schema refactoring, and development of
database using Visual Studio. Developers can benefit from familiar Visual Studio tools for
database development with tools and assistance for code navigation, IntelliSense,
debugging, and a rich editor. More information about SSDT can be found in the Microsoft
documentation: http://bit.ly/2tr5Bon.

Create a new database project, import our existing AdventureWorks database, and commit
it to the repository (for more information on how to do this, refer to http://bit.1ly/
2tBialj):

Create a new project database X - Language ~ Platform = Project type ™

1 SQL Server Database Project /

Recent project templates
i A project for creating a SQL Server database.

Query Language Windows Web

Pj U-5QL Database Project

= A project for creating a U-SQL database deployment package

Not finding what you're logking for?
Install more tools and features

Next

[241]

http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tBia0j
http://bit.ly/2tBia0j
http://bit.ly/2tBia0j
http://bit.ly/2tBia0j
http://bit.ly/2tBia0j
http://bit.ly/2tBia0j
http://bit.ly/2tBia0j
http://bit.ly/2tBia0j

Continuous Deployments

Chapter 6

Since we are going to be deploying to Azure SQL Database, I have changed the Target
platform under Project Settings:

Project Settings

SQLCLR

SCLCLR Build
Build

SQLCMD Variables
Build Events
Debug

Reference Paths

Code Analysis

Configuration: [NfA Platform

AdventureWorks2017 Databese = > [

Target platform: /
Microsoft Azure SOL Database V12 v

Learn more about Azure 501 Database versions

Cutput types
Data-tier Application (dacpac file):

Properties...
[] Create script (.sql file)

General
Default schema:

|dbo

[] Include schema name in file name

Validate casing on identifiers

Database Settings...

[242]

Continuous Deployments Chapter 6

Right click on the project and then import the database. I have then committed the code
(project) in my repository, as shown in the following screenshot:

4 AdventureWorks v

§* master ~ AdventureWorks / Type to find a file or folder
€
© AdventureWorks Contents History -+ Mew ~ T Upload file(s)
~ AdventureWorks2017.Database M . s oh
Narme Last change
Database Trigoers —— - ‘
AdventureWorks2017.Database 17/02,/2019
dbo
arm-templates 23 hours ago
HumanResources
[.gitattributes 17/02/2019
Person
Brediisiian .gitignore 20/02/2019
Purchasing J AdventureWorks2017.sin 23 hours ago
Sales
Security
Storage

3 AdventureWorks2(17.Database.s...
[ExtendedProperties.sql
B FullTextindexes.sql
arm-templates
[0 .gitattributes

[.gitignore

& AdventureWorks2017.sln

Creating a build definition

Next, we will create a quick build pipeline and produce a dacpac package for this
database. A database package is a deployable package from your version-controlled
database project. You can read more about it at http://bit.1ly/2tr5Bon.

[243]

http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon

Continuous Deployments Chapter 6

We will add the new YAML-based pipeline, so add a new file named azure-
pipelines.yml in the repository and add the following content:

The YAML file used in this recipe is available in the Chapter directory
under RCP01-Database-CD folder

resources:
- repo: self
queue:

name: Default
demands:

- msbuild

- visualstudio

steps:

- task: VSBuild@l

displayName: 'Build solution AdventureWorks2017.sln'
inputs:

solution: AdventureWorks2017.sln

msbuildArgs: '/p:CmdLineInMemoryStorage=True'
platform: 'any cpu'

configuration: release

- task: CopyFiles@2
displayName: 'Copy Files to: $(Build.ArtifactStagingDirectory)'

inputs:
SourceFolder: 'S$(Agent.BuildDirectory)'
Contents: '***.dacpac'

TargetFolder: '$(Build.ArtifactStagingDirectory)'
flattenFolders: true

- task: PublishBuildArtifacts@l
displayName: 'Publish Artifact: databases'
inputs:

ArtifactName: databases

We have three simple tasks here under the steps element:

e We build AdeventureWorks2017.s1n, which produces the .dacpac file, which
is a packaged version of our database

¢ In the next task, we search for the . dacpac file in the build directory and copy
only that file into our artifact-staging directory

e Lastly, we publish it as an artifact

[244]

Continuous Deployments

Chapter 6

Next, go to the Builds hub under the Pipelines service and click New build pipeline:

Azure DevOps

(A

CookBook

B Overview i
B Bosrds oA
Repos

W Pipelines

gy Builds

=

Releases

% Library

[}
m
—
[
=
v
]

]
1]

CookBook

ction

2 Search all pipelines

= W F New v
B New build pipeline

Import a pipeline

Pipelines

On the next screen, select the correct repository and branch and click Continue:

J
B cookeook
B overview
B Boaras

o ripelines

Azure DevOps

Repos

Builds

sl
& Releases

M Library Select your repository

Tell ws where your sources are.
You can customize how to get these sources from the repository later.

T Task groups

1 Deployment groups

A Testplans
=

Artifacts

Select a source

\S

>

Azure Repos Git

®

TRVC

0

GitHub Enterprise

Team project

1 CookBook

Repasitory

@ AdventureWorks

Default branch for manual and scheduled builds

& master

Continue

©

External Git

[
—_—

Subversion

[245]

Continuous Deployments Chapter 6

On the next screen, select the YAML template and click Apply:

) Azure DevOps DefaultColle CookBook Pipelines Searc o =
CookBook
Select a template O Search
n B R Or start with an 53 Empty job
Board - -
% s Configuration as code
Repos YAML
L Apply

o ripelines

i ; Featured
Build
kDl Choose a template
& Releases od l NET Desktop
Choose a template that builds your kind of app. Build and test a
M Library Dom't worry if it's not an exact match: solutior

you can add and customize the tasks later. .
Android
T Task groups B

T Deployment groups

Dd ASP.INET
& TestPians J Build and test an ASPNET

You will be prompted to select the YAML file you committed earlier on the next screen.
Select the file and under the Triggers tab, enable Continuous Integration. Save & queue the
pipeline:

) Azure DevOps e el = b .
CookBook & & - > AdventureWorks.Cl.Yam|
ﬂ Ovenview YAML Variables Triggers History & Save & queue
E Boards Pipeline
T Mame =
== Getsources
o] Adventureworks AdventureWorks.Cl.Yaml
f Pipelines
4 Agentpool (D) | Pool information | Manage
l Builds
Default O
& Releases
YAMLfilepath * (@D
WY Library ") -
azure-pipelinesyml
T Task groups
" Deployment groups

[246]

Continuous Deployments Chapter 6

The build will run and produce the . dacpac file, which we will use as the artifact of this
build. Now, you have a full continuous integration pipeline so that every time there are any
commits in the database project, the build is triggered and the database project is compiled
to check your SQL scripts for errors and also verify the schema changes:

0 Azure DevOps DefaultCollection CookBook Pipelines Builds AdventureWorks.DB.Cl.Yam #20190. Search o

CookBook -))
Q ¢20190226‘17t'A_dded_f|Ie azurt.e-plp Artifacts explorer

ﬂ Overview anually run today at 16:48 by
Ei Logs Summary Tests | : databases
¥, Boards -
[AdventureWorks2017 Database.dacpac
Repos
Progression
q Pipelines

«7 Deployments
Builds

o]
Mo deployments were found for this b1 m
;@7 Releases

! Build artifacts published ~

0% Library 0

= Task groups i Eiatabeses

t Deployment groups

A Test Plans

o Build pipeline succeeded

How to do it...

Now that we have our build pipeline producing the required artifact, it is time for us to
start working on the deployment of this database in Azure. the time of writing, to deploy
our existing database, we need to ensure that we have SQL Server provisioned. We could
manually create the required SQL Server, but this means we have a manual activity during
deployment. The correct solution would be to automate the provisioning of SQL Server as
part of the pipeline. This means that even if the required resources are not present, our
pipeline will ensure the integrity of the system and create the missing resources (in this
case, SQL Server) and then deploy our database. We will be using Azure Resource
Manager (ARM) templates to provision SQL Server in Azure. In simple terms, Azure
Resource Manager templates can be used to consistently create/update resources in Azure.

[247]

Continuous Deployments Chapter 6

For more information on Azure Resource Manager, visit http://bit.ly/
2FiNtn2.

As part of the release pipeline, we would like to automate the following;:

e The creation of Azure SQL server, if it doesn't exist
¢ The deployment of the database using the dacpac we produced

Creating Azure Resource Manager (ARM) templates

Azure Resource manager templates are simple JSON files that can be used to deploy one or
many resources at once. A bare-minimum ARM template is made up of the following
structure:

{} mywebapp.azuredeploy.json ®

"$schema™: "h
"contentVer

We will create an ARM template to provision the SQL Server on Azure:

1. Using your favorite editor, create a file named sql.deploy. json

The ARM templates used here are available under RCP01-Database—
cD folder.

Let's quickly go through what we are doing in the sql.deploy.json ARM
template. First, in the parameters section, we declared a few parameters:

{

"$schema":
"https://schema.management .azure.com/schemas/2015-01-01/deploymentTempl
ate.json#",

"contentVersion": "1.0.0.0",

[248]

http://bit.ly/2FiNtn2
http://bit.ly/2FiNtn2
http://bit.ly/2FiNtn2
http://bit.ly/2FiNtn2
http://bit.ly/2FiNtn2
http://bit.ly/2FiNtn2
http://bit.ly/2FiNtn2
http://bit.ly/2FiNtn2

Continuous Deployments Chapter 6

"parameters": {

"environmentConfiguration": {
"type": "object"

by

"sglserverAdminLogin": {
"type": "string"

by

"sglServerAdminPassword": {
"type": "securestring"

}’
//rest of the ARM template is trimmed for the sake of brevity

The key parameters are sqlserverAdminLogin and the
sqlServerAdminPassword. In the full ARM template, we also have a few
generic parameters for environment-specific values, SKU, and the pricing tier.
The values for these parameters can be passed during the deployment using a
parameters JSON file.

Next, we use the variables section to declare a few variables. We use variables
specifically to concatenate the server name with any prefixes. In this case, we
would like to prefix sqlserver-dev in the DEV environment and sglserver-
test in the TEST environment, so that after variable processing our full SQL
Server name will be sqlserver-dev-1-<uniquestring>.

"variables": {

"sglServerName":
"[toLower (concat (parameters ('environmentConfiguration') .prefix.
sglServer, '-1','-',uniqueString(resourceGroup().id)))1",

"deployedAdventureWorksSglDbName" :
"[toLower (concat (parameters ('environmentConfiguration') .prefix.
sglDb, '-', 'AdventureWorks'))]"
b

The resources section defines SQL Server, which can be identified by the
Microsoft.Sqgl/servers type, and the Azure SQL database, which is a child
resource of the databases type.

"resources": [
{

"name": "[variables('sglServerName')]",
"type": "Microsoft.Sgl/servers",
"location": "[resourceGroup().location]",
"apiVersion": "2014-04-0l1-preview",
"dependsOn": [],
"properties": {

[249]

Continuous Deployments Chapter 6

"administratorLogin":
" [parameters ('sglserverAdminLogin')]",
"administratorLoginPassword":
" [parameters ('sglServerAdminPassword') "

}’
//rest of the ARM template is trimmed for the sake of

brevity
}
]

Lastly, the outputs section defines the output variables. The values for these
variables are automatically set by the Azure Resource Manager and are available
for us to consume soon after the deployment of the template. As you can see in
the ARM template, we output the fully-qualified domain name of the SQL server
(for example: databasename.database.windows.net), database name so that
our pipeline can connect to the provisioned SQL Server and deploy the database.
We will see how our pipeline makes use of these output variables soon.

"outputs": {

"sgl.sqglserver.qualified.name": {

"type": "string",

"value":
"[reference (variables ('sglServerName')) .fullyQualifiedDomainNam
el]"

}!

"sgl.sglserver.name": {

"type": "string",

"value": "[variables ('sglServerName')]"

}!

"sgl.adventureworks.sgldb.name": {

"type": "string",

"value": "[variables ('deployedAdventureWorksSqglDbName') "

}
}

The next step is to create a parameters files so that we can supply values during
deployment. You can also pass these parameters directly as arguments during
deployment, but keeping them in a file and committed into source control ensures
that we have a full audit history. Also, as you will see soon, it's easy to supply a
path for these parameter files in the Azure DevOps Server pipeline.

Parameter files also allow us to define environment specific values. For example,
assume we have a requirement to deploy this database package to environments
named DEYV first (with the requirement to suffix dev to our SQL Server), and then
to TEST (suffix test). Since the suffix is changing between environments, we will
be able to use two parameter files.

[250]

Continuous Deployments Chapter 6

2. Create a file named sql.deploy.param.dev. json and paste in the following
code. We will use this parameter file to deploy to the DEV stage:

{

"Sschema":
"https://schema.management.azure.com/schemas/2015-01-01/deploymentP
arameters.json#",

"contentVersion": "1.0.0.0",

"parameters": {

"environmentConfiguration": {
"value": {
"prefix": {
"sglDb": "sqgldb",
"sglServer": "sglserver—-dev"

}

3. Create a file named sql.deploy.param.test. json and paste in the following
code. We will use this to provision our TEST stage. As you can see, our prefix for
SQL Server is now sqglserver-test:

{

"$schema":
"https://schema.management.azure.com/schemas/2015-01-01/deploymentP
arameters.json#",

"contentVersion": "1.0.0.0",

"parameters": {

"environmentConfiguration": {
"value": {
"prefix": {
"sglDb": "sgldb",
"sglServer": "sglserver-test"

}

4. Notice the change in sqlServer property. It has suffix dev in dev specific
parameter file and test in test stage-specific parameter file. Commit the files into
source control. I committed these to my repository on GitHub.

[251]

Continuous Deployments Chapter 6

Creating the release pipeline

Now that we have the build pipeline ready and producing the database as an artifact, we
are ready to consume it and deploy it to the environment.

1. Head over to the Release hub and create a new release pipeline. We will add two
artifact sources to this pipeline. Add the artifact that was produced by our build
pipeline:

Add an artifact

Source type

S more artifact types ~

Project * 0
CookBook
Source (build pipeling) * (D

CookBook-Cl-YAML

Default version * (1)
Latest
Source alias™ (1)

diyamil

(1) The artifacts published by sach version will be available for deplayment in relsase
latest successful build of CookBook-Cl-YAML published the following artifacts: d

[252]

Continuous Deployments

Chapter 6

2. Add a second artifact, which will bring over our ARM templates from the
GitHub repository:

Add an artifact

Source type

Source (repository) *

Default branch =

master

Default version *

Shallow fetch depth

Source alias* (1)

github

onlyutkarsh-GitHub

L

-
(D
i

5 more artifact types

Service Manage [

onhyutkarsh/cookbook2019

E Checkout submodules
|: Checkaut files from LFS

o
Wl

Latest from the default branch

@

@

i ll -

+ Mew

[253]

Continuous Deployments Chapter 6

3. Click + Add under the stages section and add a new stage; name it DEV:

Pipeline Tasks Variables Retention Options History
Stage Al Delete Meve
Artifacts | -+ Add Stages | =+ Add DEV

A properties ~
Mame and cwners of the stage

y & Stage name

i £ DEv a 2

dyaml A | 1job, 3 tasks ; DEV

\—I Stage owner

e U, Shigehalli

github

4. Create two variables, which we will use to pass the SQL admin username and
password. Scope this variable to just the DEV stage so that we can use the
different password for higher stages (for example, TEST). We also mark the
variable password as secure (by clicking the lock icon) so that the password is
not visible in the logs or by anyone editing the pipeline at a later date:

Pipelime Tasks Variables Retention Options History

Fipeline variables

Variable groups

Cram
HopE

Vakse 5
sqladmin cookbook.admn Change variable type to plain text

] DEV

b

ned vanables =

)

5. Under the Pipelines tab, click on the 1 job... link and open the stage. We will
now add tasks in this stage to use the artifacts.

The first task we will add is the Azure Resource Group Deployment task and
configure it as follows. Notice (marked in red) that we are passing the sq1 admin
login and sglpassword parameter values for ARM templates from the variables

we just declared:

[254]

Continuous Deployments

Chapter 6

Pipeline Tasks Variables Retention

DEV

Agent job

E:'J create azure sql server and database

Opt

ons

Histary

Action
Create or update resource group
Resource group * @
cookbook
Location™ (D)

West Europe

Template ~
Template location *
Linked artifact

Template *

5(System.DefaultWorkingDirectory)/github/c
Template parameters (7)
S{System.DefaultWorkingDirectery)/githuby/ <

Override template parameters (1)

ontinuous-deployments/sgl.deploy.json

entinucus-deployments/sqldeploy.param.devjson

-sqlserverAdminlogin S(sqladmin) -sqiServerAdminPassword S(sqlpassword)

Deployment mode *

Incremental

This step will just provision SQL Server and an empty database.

This task uses a service connection to securely connect to Azure. If you
have not created a service connection before, please refer to the
documentation.

1. Service connections for builds and releases: http://bit.1ly/2vcUCQe
2. Granular deployment Privileges using Service Principals: http://bit.

ly/2vij0aze

6. Let's use an extension from the VS Marketplace (more on this in chapter 8, Azure
DevOps Extensions). This task is called ARM Outputs and it helps us create
dynamic Azure DevOps variables from the ARM template output. If you
remember, we have output variables defined in our ARM template to get SQL

Server and Database names.

[255]

http://bit.ly/2vcUCQe
http://bit.ly/2vcUCQe
http://bit.ly/2vcUCQe
http://bit.ly/2vcUCQe
http://bit.ly/2vcUCQe
http://bit.ly/2vcUCQe
http://bit.ly/2vcUCQe
http://bit.ly/2vcUCQe
http://bit.ly/2vcUCQe
http://bit.ly/2vj0aZe
http://bit.ly/2vj0aZe
http://bit.ly/2vj0aZe
http://bit.ly/2vj0aZe
http://bit.ly/2vj0aZe
http://bit.ly/2vj0aZe
http://bit.ly/2vj0aZe
http://bit.ly/2vj0aZe

Continuous Deployments Chapter 6

Once this task creates Azure DevOps pipeline variables, we will be able to use
them in the pipeline for any other task. Let's add the ARM Outputs task and
configure it as follows. Notice that we prefix our variables with

the arm.out. string, and so our pipeline variables will be created in the
following way: arm.out .sqgl.server.qualified.name:

Pipeline Tasks Variables Retention Options History
DEV R— -
Deployment process nIVl Lutputs (i)
Agentjcb a4 Version §% b
[-Er] create azure sql server and database Display name *

o - create variables for arm outputs
i] ;_re_aﬁtel_vanables for arm outputs ® i Azure Connection Type *

[ARM Outputs

Azure Resource Manager

-

AzureRM Subscription * (i | Manage =

Resource Group* (1)

cookbook

Prefic (i)

arm.out.

Outputs to process (i)

When last deployment is failed = @

Fail task

This task needs to be added just under the Azure Resource Group Deployment
task.

You can download and install the ARM Outputs extension from here:
http://bit.1ly/20BCTLh.

[256]

http://bit.ly/2OBCTLh
http://bit.ly/2OBCTLh
http://bit.ly/2OBCTLh
http://bit.ly/2OBCTLh
http://bit.ly/2OBCTLh
http://bit.ly/2OBCTLh
http://bit.ly/2OBCTLh
http://bit.ly/2OBCTLh
http://bit.ly/2OBCTLh

Continuous Deployments

Chapter 6

7. Let's publish the database package (dacpac) to our provisioned SQL Server and
Azure SQL Database. We will add the Azure SQL Database Deployment task
and configure it as follows. For the SQL Server and Database name fields, we are
passing the variables that were created by the ARM Outputs task:

Pipeline Tasks Variables Retention

DEV

Agent job

© create azure sql server and database

E] create variables for arm outputs
i ARM Outputs

ﬁ publish dacpac

Display name *
publish dacpac
Azure Service Connection Type
Azure Resource Manager
Azure Subseription™ (D | Manage 2

Utkarshinc

SQL DB Details ~

Azure SOL Server Name * 0]

w
${arm.out.sql.sglserver.qualified name) Variables created by

i ARM Outputs task
Database Name™ ()

Slarm.out.sgl.adventureworks.sgldb.name)

Server Admin Login * (0]

$(sgladmin)

| Pipeline variables
assword® (D)
Password ® defines by us

o e
S(sqlpassword)

Deployment Package ~
Action * ®

Publish

Path to the dacpac package
Type from the artifact source

SQL DACPAC File \J

DACPACFile™ (D)

S(System.DefaultWorkingDirectory)/dbyaml/databases/AdventureWorks2017.Database.dacpac

[257]

Continuous Deployments

Chapter 6

8. Save the pipeline and create a release. Your release pipeline will now create all

the required resources and deploy the . dacpac file:

"t ContosoDB-CD - Release-12 » DEV -
< Pipeline Tasks Variables Logs Tests 5 Deploy 7)) Refrash
P(?_E)!Fl}iment process Agent job

Pool: Default - Agent: al

publish dacpac - succeeded

o
]
@ create variables for arm outputs -
]
]

Finalize Job - succeeded

© fgentjob
T @ Initizlize job - succeeded
Download Artifacts + succeeded
create azure sql server and database - succesded
succeeded

<+ Download all

How it works...

In this recipe, we saw how easy it is to provision Azure resources (SQL Server and
database) and deploy them using Azure DevOps Server pipelines. We created a database
project using Visual Studio, which allows us to maintain our database (schema and scripts)
as code. We then created a build pipeline, which ensures that we are not introducing any
breaking changes by continuously building changes into our database code. Lastly, we
created the release pipeline and, using build artifacts and ARM templates, we provisioned

the necessary resources and deployed the database.

In the next recipe, we will extend this pipeline to deploy to a new stage, named TEST, and
see how we can make use of variable groups to consume secrets from Azure Key Vault.

[258]

Continuous Deployments Chapter 6

Consuming secrets from Azure Key Vault in
your release pipeline

This recipe is an extension of the previous recipe; if you haven't already read the previous
recipe, I recommend that you read it first.

In the previous recipe, we saw how to keep strings, such as passwords as pipeline variables
and how to mark them as secure variables so that they are not visible in the logs or to
anyone else editing the pipeline once saved. While it works really well, enterprises that are
deploying to the cloud would love to centrally manage and maintain these secrets in Azure
Key Vault.

You can read more about Azure Key Vaults here: http://bit.1ly/

Azure DevOps Server 2019 has native support for Azure Key Vault with variable groups.
With variable groups in Azure DevOps Server, we can bring secrets from Azure Key Vault.

Getting ready

As a first step, we will manually create an Azure key vault and store the SQL Admin
password as a single secret.

Creating a key vault in Azure

1. Go to portal.azure.comand then click on the Create a resource button. In the
next blade, search for Key vault and then click Create.

[259]

http://bit.ly/2OAslff
http://bit.ly/2OAslff
http://bit.ly/2OAslff
http://bit.ly/2OAslff
http://bit.ly/2OAslff
http://bit.ly/2OAslff
http://bit.ly/2OAslff
http://bit.ly/2OAslff
http://portal.azure.com

Continuous Deployments

Chapter 6

You will see Create key vault blade as in the following screenshot. Enter the
details, such as key vault name, location, and pricing tier, and then click Create:

@

Create a resource
Home
Dashboard

All services
FAVORITES
Subscriptions

All resources

Resource groups

. App Services

%> Function Apps

% SOL databases
&F Azure Cosmos DB
B virtual machines
4‘ Load balancers
= Storage accounts

Virtual networks

Home * MNew > KeyVault * Create key vault

All networks can access.

Create key vault O X
* Mame @
cookbook J|
* Subscription
S
* Resource Group
cookbaook ~
Create new
* Location
West Europe v
Pricing tier
. >
Standard
Access policies
o >
1 principal selected
tual Metwork Access
>

Automation options

[260]

Continuous Deployments Chapter 6

You will have a key vault created now.

2. Open the key vault, Click on + Generate/Import. Then provide a name for the
secret and then SQL password you would like to use as a value for the secret

Home » Resource groups * cookbock * cookbook - Secrets

y cookbook - Secrets

‘4

Key vault
4 .
Conrrh s f) < + Generate/Impaort C_J Refresh
o Search (Ctrl+
Overview MAME
| Activity lo
= yieg sqlpassword

aM Access control {(I1AM)
F Tags

&K Diagnose and solve problems

Settings
Keys

—
Lo Secreis

I have named the secret sqlpassword.

[261]

Continuous Deployments

Chapter 6

Creating a variable group and linking it to Azure Key

Vault

Variable groups are defined and managed from the Library tab under the Pipelines tab.
The advantage of a variable group is that you can make a set of variables available across

the pipeline:

(A

(5

$d D ED

-

@

(]
u

Azure DevOps

CookBook

Owerview

Boards

Repos

Pipelines

Builds

Releases

Library

Task groups

Deployment groups

Test Plans

Artifacts

Library

Variable groups

Secure files

(X)

Variable group

New variable group

Create groups of variables that you can share
across multiple pipelines.

=+ Variable group

Learn more about variable groups.C2

[262]

Continuous Deployments Chapter 6

1. Click on the + Variable group button; you will be presented with a screen asking
for more information:

CookBook 1 Library Linked to kv-cookbook*
) Variable group = Save O Security (2 Help
ﬂ Cverview
B eoards Properties
Repos Wariable group name
Linked to kv-cockbook
f Pipelines Description
&y Builds A variable group linked to cookbook key vault
ﬁ Releases
Allow access to all pipelines
Y Library 0 PIP
® Link secrets from an Azure key vault as variables ©
Task groups
"t" Deployment groups Variables
A Test Plans Name T Value

[263]

Continuous Deployments Chapter 6

2. Give a name to the variable group, enable the Link secrets from an Azure key
vault as variables flag option, and select the subscription and the key vault from
the dropdown:

m Allow access to all pipelines

. i e
Q Link secrets from an Azure key vault as variables ©

Azure subscription® | Manage 12

Utkarshlnc v @) = MNew

Key vault name* Manage 2
“
cookbook e O
0] Specified Azure service connection needs to have "Get, List" secret management permissions on the selected key vault. Set these

secret permissions in Azure portal or run the following commands in powershell window.

$ErrorActionPreference="Stop":Login-AzureRmAccount -Subscriptionld b406b053-ddd8-44ab-b4b0-
919194f46736;$spn=(Get-AzureRmADServicePrincipal -SPN 9361b1b8-c3af-49e2-9d57-

96a481a64dfb);$spnObjectid=$spn.ld;Set-AzureRmKeyVaultAccessPolicy -VaultName cookbook -Objectld
$spnObjectld -PermissionsToSecrets getlist;

Iy Copy script to clipboard

[264]

Continuous Deployments

Chapter 6

However, Azure DevOps will immediately give you an error. This is because the
service principal (SPN) we are using from Azure DevOps to connect to Azure
does not have permission to connect to the key vault. We will be able to solve this
error by adding our SPN to the key vault's access policies.

3. Open the key vault to add the SPN that is used by Azure DevOps and click OK:

Create a resource #® cookbook - Access policies

Home . «
Dashboard S

All services Overview

FAVORITES W Activitylog

il Access control (JAM)
L 4 Tags

K Diagnose and solve problems

f Subscriptions

=== All resources

%#/ Resource groups

& App services Settings

% Function Apps Keys

= sQL databases [3 secrets
& Azure Cosmos DB = Certificates

8 virtual machines Access policies g)

4 Load balancers & Firewalls and virtual networks
Properties

8 Locks

Bl Export template

Monitoring

Alerts

ilil_Metrics

Home > cookbook - Access policies > Add access policy

Q) Refresh

Click to show access policies * Select principa >

+Addnew @ J -

Key permissions

visualstudio.com-SPN

Utkarsh Shigihalli
USER (Directory ID: c6138fic-0c6t

0 selected

ermissions

2 selected

M| Selectall
Secret Management Operations
V| Get

| List

Set
Delete
Recover
Backup
Restore

Privileged Secret Operations

Purge

N ©

[265]

Continuous Deployments Chapter 6

4. Go back to Azure DevOps Server and refresh the key vault name field; an error
should appear. Click + Add and a pop-up dialog will open to show all the

available secrets. Select the secrets you would like to be available as part of the
variable group and click OK:

CookBaok Library > @ Linked to kv-cookbook

@ variable group J Security 7} Help
B overview

B soaas Properties
i
P Pipelines

Builds

Choose secrets

Choose secrets to be included in this variable group

inked to cookbook key y
Sel.. Secretname Content type Stat

Releases
sqlpassword

all pipelines

o5 Expiration date

Enabled MNever

Library

4 = ¥ F

om an Azure key vaul
Task groups

T Deployment groups

A Test Plans

F; Artifacts Key vault name Man
cookbook
Variables
Delete Secret nan

“ Concel

[266]

Continuous Deployments Chapter 6

5. Click Save on the library:

CookBook J Library

ﬂ Overview Variable groups ~ Secure files I Variable group O Security (2 Help
MName T Diate modified

a Boards
® Linked to kv-cookbook just now

Repos

q Pipelines

1 .

ks Builds

D@‘ Releases

[I% Library

Congratulations, you just created a variable group, which is now available to be consumed

in the pipeline! In the next section, we will see how we can use this variable group in the
release pipeline.

[267]

Continuous Deployments

Chapter 6

How to do it...

1. Go back to the release pipeline we created in the previous (Deploying the database
to Azure SQL using release pipeline) recipe and enter the edit mode. Then, click the
Variables tab. You might remember that we have a secret defined as a pipeline

variable:

Fipeline Tasks Variables Retention Options History

Owerview

Pipeline variables
Boards N

Variable groups

) MName Value
Mg Predefined variables =

sgladmin cookbook.admin
f Pipelines

sglpassword xRk
gy Builds
.;@ Releases

Add

0% Library

2. Because we will bring new value from the key vault via the variable group we
defined earlier, we need to remove the pipeline variable, sqlpassword. Once
done, click the Variable groups tab, then click the Link variable group button.
You will see a new overlay window:

[268]

Continuous Deployments

Chapter 6

Task groups

Deployment groups

* Contc

ipeline asks Variables

Pipsline variables

Variable groups

() Linked to kv-cookbook (1)

Variable group scope

Link variable group @

3. Select the variable group we defined and scope it to the DEV stage so that this
variable is only allowed in the DEV stage, and then click the Link button.

Scoping the variable group to a particular stage has an advantage in that it
allows us to use the secrets only for that particular stage. This allows us to
define multiple variable groups (internally associated with different key
vaults) and isolate the secrets to a particular stage. We can thus isolate
secrets for different stages, such as PROD and DEV. This means that you
will have granular control of your secrets — for example, you can allow
your developers to read/modify secrets from the key vault that's used for
the DEV stage, but limit access to the PROD key vault and the
management of its secrets.

[269]

Continuous Deployments Chapter 6

How it works...

Azure DevOps Server now intelligently brings in the latest values of the secret from the
Azure key vault during runtime and passes them to the referenced task over the HTTPS
channel. Each secret in the key vault is automatically created as a secret pipeline variable,
which you can reference in our pipeline tasks like any other pipeline variables using the
usual syntax (3VARIABLE_NAMES in a batch script, $env: VARIABLE_NAME in PowerShell, or

$VARIABLE_NAME in bash scripts):

Pipeline variables s Mame Value

Variable groups . Linked to kv-cookhook (1)
Predefined variables 12 A variable group linked to cookbook vault

R R

sqlpassword

There's more...

Here are a few key facts about the variable group:

e Any changes to the secret values are automatically available during the run of
the pipeline.

e Newly added secrets in the key vault are not automatically available in the
pipeline. We will need to add them to the variable group.

¢ Deleting a variable group or removing the key-vault-linked secret from the
variable will not remove the secret from the key vault.

¢ The variable group currently supports Azure key vault secrets only —
cryptographic keys or the certificates are not supported.

See also

All the assets (variable groups and secure files) defined in the Library tab share the same
security model. You can restrict who can create the variable group or the Library using
permissions - For more on this is visit http://bit.ly/2uPLWPp.

[270]

http://bit.ly/2uPLWPp
http://bit.ly/2uPLWPp
http://bit.ly/2uPLWPp
http://bit.ly/2uPLWPp
http://bit.ly/2uPLWPp
http://bit.ly/2uPLWPp
http://bit.ly/2uPLWPp
http://bit.ly/2uPLWPp
http://bit.ly/2uPLWPp

Continuous Deployments Chapter 6

Deploying the .NET Core web application to
the Azure App Service

More and more users are switching to the .NET core framework these days. ASP.NET Core
is a cross-platform framework for building modern applications. It offers many advantages
over the traditional ASP.NET with many out-of-the-box features, such as dependency
injection, which is suited for containers and those who want high performance.

0 For more on ASP.NET Core and its benefits, visit http://bit.1ly/2P0vMEn.

In this recipe, we will create a simple ASP.NET Core web app and deploy it into Azure App
Service.

Getting ready

Here, we will just use the dotnet command to create the basic ASP.NET core application
and commit it into the git repository. Then, we will create a new build pipeline to build the
application and produce the artifact.

Creating the ASP.NET Core application

1. Ensure that you have the latest NET Core SDK installed. If not, install the
recommended version from https://dotnet .microsoft.com/download/dotnet -

core.

You can see the installed SDKs on your machine by using the following

command.
c:\aspnetcore-demo>dotnet —--list-sdks
2.1.202 [C:\Program Files\dotnet\sdk]
2.1.505 [C:\Program Files\dotnet\sdk]
2.1.602 [C:\Program Files\dotnet\sdk]
2.2.105 [C:\Program Files\dotnet\sdk]

For this demo, I am using 2.2 .NET Core.

[271]

http://bit.ly/2P0vMfn
http://bit.ly/2P0vMfn
http://bit.ly/2P0vMfn
http://bit.ly/2P0vMfn
http://bit.ly/2P0vMfn
http://bit.ly/2P0vMfn
http://bit.ly/2P0vMfn
http://bit.ly/2P0vMfn
http://bit.ly/2P0vMfn
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core

Continuous Deployments Chapter 6

2. Open the Command Prompt and run the following command to create an
ASP.NET Core MVC application:

c:\aspnetcore-demo>dotnet new mvc ——-name MyWebsite —--auth None
—--no-https

The template "ASP.NET Core Web App (Model-View-Controller)" was
created successfully.

This template contains technologies from parties other than
Microsoft, see https://aka.ms/aspnetcore-template-3pn-210 for
details.

Processing post-creation actions...
Running 'dotnet restore' on MyWebsite\MyWebsite.csproj...
Restoring packages for c:\aspnetcore-
demo\MyWebsite\MyWebsite.csproj...
Generating MSBuild file c:\aspnetcore-—
demo\MyWebsite\obj\MyWebsite.csproj.nuget.g.props.
Generating MSBuild file c:\aspnetcore-—
demo\MyWebsite\obj\MyWebsite.csproj.nuget.g.targets.
Restore completed in 4.09 sec for c:\aspnetcore-
demo\MyWebsite\MyWebsite.csproj.

Restore succeeded.

We are supplying the name for our application as MyWebsite, using no
authentication with the -—auth None argument. For simplicity we will not host
this website on https, hence pass the -——no-https flag.

As you can see from the command output, the dotnet command creates an
ASP.NET Core MVC application and restores all the NuGet packages.

3. Run the website using the following command:

c:\aspnetcore-demo>dotnet run -p MyWebsite\MyWebsite.csproj
info:
Microsoft.AspNetCore.DataProtection.KeyManagement .XmlKeyManager

(0]

User profile is available. Using
'C:\Users\utkarsh\AppData\Local\ASP.NET\DataProtection-Keys' as
key repository and Windows DPAPI to encrypt keys at rest.
Hosting environment: Development
Content root path: c:\aspnetcore-demo\MyWebsite
Now listening on: http://localhost:5000
Application started. Press Ctrl+C to shut down.

[272]

Continuous Deployments Chapter 6

As you can see, our website is now running locally at http://localhost:5000:

| - Home Page - MyWebsite x =+ - o 2

q C 0O O locahost:5000 g A Q

ASPNETCoreDemo Home Privacy

Use this space to summarize your privacy and cookie use policy. Learn More. Accept

Welcome

Learn about building Web apps with ASP.NET Core.

© 2019 - ASPNETCoreDemo - Privacy

4. Creating the build pipeline and producing the artifact was covered in chapter 4,
Continuous Integration and Build Automation. If you have not checked it already,
read the Setting up a build pipeline for a .NET core application recipe.

The YAML file for the build is in the relevant chapter folder under RCP03-
ASPNETCore-CD directory. If you would like to know how to build using

YAML file refer recipe Deploying the database to Azure SQL using the release
pipeline in this chapter.

[273]

Continuous Deployments Chapter 6

How to do it...

As we did in our first recipe, Deploying the database to Azure SQL using the release pipeline, we
will also create the required infrastructure for our website using the release pipeline. To

host our website in Azure, we need two things:

e An app service plan: Within Azure, an application runs inside the app service

plan
e An app service: To host the website

e For more information on the app service plan, visit http://bit.
ly/2Pad9nwj

e For more information on Azure App Service, visit http://bit.
1ly/2PbfKzp

Creating ARM templates

Let's create an ARM template that will create an app service plan and an empty app service:

1. Create a resource, web.deploy . json, and paste in the following content:

All the ARM templates referenced here are available under RCP03-
ASPNETCore-CD folder

The important section is the resources array — you will see that in this ARM

template, we are creating our app service plan and app service. We are also
creating a slot named staging so that we can test our website before deploying it

to the production slot (which is the default).

{

"Sschema":
"https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.
json#",

"contentVersion": "1.0.0.0",

"parameters": {

//code is trimmed for the sake of brevity

I
"variables": {
"webAppServicePlanName":
"[concat (parameters ('environmentConfiguration') .prefix.appServiceWeb)]",

[274]

http://bit.ly/2Pa9nwj
http://bit.ly/2Pa9nwj
http://bit.ly/2Pa9nwj
http://bit.ly/2Pa9nwj
http://bit.ly/2Pa9nwj
http://bit.ly/2Pa9nwj
http://bit.ly/2Pa9nwj
http://bit.ly/2Pa9nwj
http://bit.ly/2PbfKzp
http://bit.ly/2PbfKzp
http://bit.ly/2PbfKzp
http://bit.ly/2PbfKzp
http://bit.ly/2PbfKzp
http://bit.ly/2PbfKzp
http://bit.ly/2PbfKzp
http://bit.ly/2PbfKzp

Continuous Deployments

Chapter 6

"deployedWebAppName" :
"[concat (parameters ('environmentConfiguration') .prefix.webApp, '
'mywebapp', '-',uniqueString (resourceGroup () .id)) 1",
"myWebAppResourceId": "[resourceId('Microsoft.Web/Sites',

variables ('deployedWebAppName'))"

}I

"resources": [
//code is trimmed for the sake of brevity

{

parameters ('

] 4

"name": "[variables ('deployedWebAppName')]",
"apiVersion": "2016-08-01",

"type": "Microsoft.Web/sites",

"location": "[resourceGroup().location]",
//code is trimmed for the sake of brevity

"apiVersion": "2016-08-01",
"type": "Microsoft.Web/sites/slots",

"name": "[concat (variables ('deployedWebAppName'), '/',

deploymentSlots') [copyIndex()])1",
llkind": llappll,
//code is trimmed for the sake of brevity

’

Finally, we are publishing the deployed web application name, and its URL as
an output variable as you can see in the outputs object.

"outputs": {

"my.webapp.name": {
"type": "string",
"value": "[variables ('deployedWebAppName')]"
}I
"my.webapp.uri": {
"type": "string",
"value":
"[concat ('https://', reference (variables ('myWebAppResourceId')) .hostnames[0]
)1
}

[275]

Continuous Deployments Chapter 6

For more on deployment slots in Azure App Service, visit http://bit.ly/
2v4zhs0.

We will also have a parameters file, which will allow us to override a few values,
such as the web app prefix and SKU.

2. Create a parameter file named web.deploy.parameters. json and paste in the
following content:

{

"Sschema":
"https://schema.management.azure.com/schemas/2015-01-01/deploym
entParameters. json#",

"contentVersion": "1.0.0.0",

"parameters": {

"environmentConfiguration": {
"value": {
"prefix": {
"appServiceWeb": "web-asp",
"webApp": "webapp"

b

"appServiceSkuName": {
"value": "S1"

b

"appServiceSkuCapacity": {
"value": 1

}
}

3. Commit the ARM templates and let's continue configuring the release pipeline.

[276]

http://bit.ly/2v4zhs0
http://bit.ly/2v4zhs0
http://bit.ly/2v4zhs0
http://bit.ly/2v4zhs0
http://bit.ly/2v4zhs0
http://bit.ly/2v4zhs0
http://bit.ly/2v4zhs0
http://bit.ly/2v4zhs0

Continuous Deployments Chapter 6

Creating the release pipeline
Let's start building the release pipeline to deploy the application:

1. The first step is to create a new release pipeline and add the build artifact. To do
that, Go to the release hub and create a New Release Pipeline and add the artifact.

) Mew release pipeline - Pipelines X+
4 o] 0 @ localhost tfs/DefaultC tion/CookBook/_re Definit U A R =
%
(E = New release pipeline Add an artifact
Source typ
L +
iy g) &
B Git
T Artifacts | Stages | S
roje 0]
b |
CookBook b
Add an artifact =ource (build pipeling) ® @
L cd-aspnetcore\CookBook-ASP.NET Core-C
Default version ®
Specify at the time of release creation o

As you can see from the preceding screenshot, we are linking the build pipeline,
which produces the deployable artifact for this release pipeline. Just for
demonstration purposes, we are also setting the default version as Specify at the
time of release creation, which means during the release creation, we will have to
select the version of the artifact to be deployed we want to use.

[277]

Continuous Deployments Chapter 6

2. Add both the web-deployable package and ARM templates as two artifacts to the

release:
All pipelines > ¥ deploy-aspnetcore #
Pipeline Tasks Variables Retention Options Histary
% Artifacts | + Add Stages | + Add
- deployahle web package
¥ -
i -
q ey #% | Stage1 a
artifact 2 | 1job, 3 tasks
(%]
&
#
[} 0
(-] arm
e ________
c codiia ARM templates
- 0) ma i

3. Click on the stage and add the following tasks:
e Azure resource group deployment task: To deploy the ARM
templates and create all the required Azure resources
e ARM outputs: To get the output variables from the previous task and
create the pipeline variables

[278]

Continuous Deployments Chapter 6

e Azure App Service Deploy: This task will help us copy the deployable
package to the app service we created in the first step:

Agent job

Azure App Service Deploy: S{arm.out.my.webapp.name)
@ Azure App Service Deploy

For the first task, we are providing a path to our ARM template and parameters

file:

All pipelines > ¥ deploy-aspnetcore - Release

Pipeline Tasks

Variables Retention Options History

Stage 1 Location * ®
[West Europe e C_)
job
e Template -~
Cgl Azure Deployment:Creat... @ i Template location *
FrE R mm e Linked artifact V
§r ARM Outputs
21 arw cutputs Template * o
Azure App Service Depl... 5(System.DefaultWorkingDirectory)/arm/continuous-deployments/rcp-deploy-
Azure App Service Depl. aspnetcore/arm/web.deploy.jsen

Template parameters (7)

$(System.DefaultWorkingDirectory)/arm/continuous-deployments/rcp-deploy-
aspnetcore/arm/web.deploy.parameters.json

[279]

Continuous Deployments Chapter 6

4. Use the ARM Outputs task by Kees Schollart (https://marketplace.
visualstudio.com/items?itemName=keesschollaart.arm-outputs) to create
pipeline variables for each output variable from the ARM template. I am just
prefixing our pipeline variables with the arm.out . string.

5. Add the Azure App Service Deployment task and configure it as follows:

Al pipelnes > deploy-aspnetcore b Release
Pipeline Tasks Variables Retention Options History
ﬂ ;tage ! App Service type * ®
Web App on Windows hdl
E Agent job
E Runon agent App Service name * (D)
] :
o Azure Deployment:Creat... S(arm.out.my.webapp.name) ~ 0O
[] Azure Resource Group Deployment
f Deploy to Slot or App Service Environment (i)
§ ARM Outputs
A [1 armoutputs Resource group * (O]
Azure App Service Depl... cookbook v O
FI Azure App Service Depl..
Slot * ®
staging ~ O
pu

\Z

Virtual application (i

Package or folder* (3}

5(System.DefaultWorkingDirectory)/artifact/drop/MyWebsite.zip

Notice that we are deploying it to the staging slot. This allows us to test our
deployment in a different slot than the default production slot.

6. Save the release definition and trigger the release.

[280]

https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs

Continuous Deployments Chapter 6

How it works...

Once you create the release, the deployment will start. The first step in the pipeline will first
create an App Service Plan and other resources (slots for example) specified in the ARM
template. The next step is to create the pipeline variables using the ARM Outputs task so
that we can access the app service name we created in the previous task. Finally, we are
using the Azure App Service Deployment task to deploy the application to the staging slot.
We can then browse to the staging slot to see our website up and running:

C A & webapp-mywebapp-eg2626g5qhffs-staging.azure.., O A

MyWebsite Home Privacy \\

Use this space to summarize your privacy and cookie use policy. Learn Mare.

Welcome

Learn about building

There's more...

In this recipe, we saw how we could deploy a web application from no infrastructure to a
fully-hosted website in Azure using Azure DevOps Server 2019. We also saw how
deployment slots allow us to isolate our deployments. We could extend this pipeline with
more stages, such as DEV, TEST, and PROD. We can then use slots to isolate and open the
new version of the website to only specific teams (say testing team) before swapping it with

the production slot.

[281]

Continuous Deployments Chapter 6

More information about deployment slots and management can be found at https://docs.

microsoft.com/en-us/azure/app-service/deploy-staging-slots.

See also

Check out the following resources:

¢ Considerations on using Deployment Slots in your DevOps pipeline: http://
bit.ly/2P95vM5

e App Service Plans: http://bit.1ly/2P905R1

Deploying an Azure Function to Azure

Azure Functions are a new way to run your logic on a serverless technology in the cloud.
Azure functions are hugely popular mainly because they can be cheaper compared to app
service - as you have an option to pay only for the time spent running your code.

e Azure Functions documentation: http://bit.ly/2Pb3675P

e Serverless in Azure: https://azure.microsoft.com/en-us/
solutions/serverless/

In this recipe, we will look at how to create an Azure Function in TypeScript and then we
will look at how to deploy a sample Azure Function to Azure.

Getting ready

To create the Azure Function, you will need the following tools installed on your machine.
Go ahead and install them all.

VSCode: nttps://code.visualstudio.com/
Azure Functions Extension for VS Code: http://bit.1ly/2Pd90Gk
Node]S 8.0 and above: https://nodejs.org/en/

PostMan: https://www.getpostman.com/

[282]

https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
http://bit.ly/2P95vM5
http://bit.ly/2P95vM5
http://bit.ly/2P95vM5
http://bit.ly/2P95vM5
http://bit.ly/2P95vM5
http://bit.ly/2P95vM5
http://bit.ly/2P95vM5
http://bit.ly/2P95vM5
http://bit.ly/2P905R1
http://bit.ly/2P905R1
http://bit.ly/2P905R1
http://bit.ly/2P905R1
http://bit.ly/2P905R1
http://bit.ly/2P905R1
http://bit.ly/2P905R1
http://bit.ly/2P905R1
http://bit.ly/2P905R1
http://bit.ly/2Pb36jP
http://bit.ly/2Pb36jP
http://bit.ly/2Pb36jP
http://bit.ly/2Pb36jP
http://bit.ly/2Pb36jP
http://bit.ly/2Pb36jP
http://bit.ly/2Pb36jP
http://bit.ly/2Pb36jP
http://bit.ly/2Pb36jP
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
http://bit.ly/2Pd9OGk
http://bit.ly/2Pd9OGk
http://bit.ly/2Pd9OGk
http://bit.ly/2Pd9OGk
http://bit.ly/2Pd9OGk
http://bit.ly/2Pd9OGk
http://bit.ly/2Pd9OGk
http://bit.ly/2Pd9OGk
http://bit.ly/2Pd9OGk
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/

Continuous Deployments Chapter 6

Creating a sample Azure Function

Once you install all the tools mentioned in the Getting ready section above,

1. Open Visual Studio Code, press F1, select Azure Functions: Create New Project,
and then select Browse and select a folder to create the required files using the
wizard:

>

Azure Functions: Create New Project...

Preferences: File lcon Theme

Preferences: Color Theme Ci + K Cd +
Show Sequence Di m Preview

Sync : Update / Upload Settings Shift + Alt +
Preferences: Configure User Snippets

File: Save without Formatting K Cirdl + Shit + S
Developer: Reload Window

Convert Selection il + Alt + C
Peacock: Reset Colors

Generate .grtignore File

Git: Add File to .gitignore

[283]

Continuous Deployments Chapter 6

2. You will be prompted to select the language for the function. For this demo, we
are going to select TypeScript:

4= Create new project

TypeScript (rec
JavaScrpt
C#

Python (Previe

Java

After that, you will be prompted to select the trigger for the Function. For more
information on Azure Function triggers, check out http://bit.1ly/2Pi0Yal.

3. For this demo, select HTTP trigger, which lets us invoke this function for an
HTTP request (GET or POST):

Create new project

HTTP trigger (re

(®© skip for now

Azure Blob Storage trigger
Azure Cosmos DB trigger

Azure Event Gnd trigger

Azure Queue Storage trigger
Azure Service Bus Queue tngger
Azure Service Bus Topic trigger

Timer trigger

L Change template filter Current: Verified

[284]

http://bit.ly/2Pi0Yal
http://bit.ly/2Pi0Yal
http://bit.ly/2Pi0Yal
http://bit.ly/2Pi0Yal
http://bit.ly/2Pi0Yal
http://bit.ly/2Pi0Yal
http://bit.ly/2Pi0Yal
http://bit.ly/2Pi0Yal
http://bit.ly/2Pi0Yal

Continuous Deployments Chapter 6

4. The wizard prompts us to give a name to the function. named it Helloworld:

- Create new HTTP trigger (4/5)

Helloworld

Provide a function name (Press "Enter’ to confirm or 'Escape’ to cancel)

5. The wizard prompts us for the Authorization type; for demonstration purposes,
we will select Anonymous:

Create new HTTP trigger (5/5)

Anonymous (recenthy v
Function

Admin

You should now have the following folder structure:

Helloworld

[285]

Continuous Deployments Chapter 6

6. Browse to this folder and run npm install. This will install all the required
packages. Then, run npm start to build the function and run the function
locally:

Hosting environment: Production

Content root path: C:_U b Hub\cookbook2@19\continuous-deployments\rcp-deploy-az-function
Now listening on: htip .0. P71

Application started. Press Ctrl+C to shut down.

Http Functions:

HellowWorld: [GET,P] http:

We can now open any REST client (I am using Postman) to check whether we get
the right response:

http:/flocalhost:7071/apifHelloworld?name=Utkarsh

GET d http://localhost:7071/apifHelloWorld?name=Utkarsh
Params @
KEY VALUE
name Utkarsh
Body -
Pretty Auto ¥ =

1 Hello Utkarsh|

As you can see, our function is running locally and we can make an HTTP request to get the
desired response. Let's commit it to the source control and produce the output as an
artifact.

[286]

Continuous Deployments Chapter 6

The source code for Azure Function is in the GitHub repository under
RCP04-AzureFunction-CD folder.

Creating the build pipeline

Creating the build pipeline is similar to what we did previously in Deploying the database to
Azure SQL using the release pipeline recipe. This is a typescript project, and we have a few
scripts in our scripts section in our package. json. The following is the YAML file for our
build pipeline. As you can see, this is just made up of three tasks:

e Install the dependencies
e Build the project
e Publish the artifacts

These 3 steps are under steps section in the below YAML content.

The YAML file is under relevant chapter folder under RCP04-
AzureFunctions-CD directory in the code bundle.

resources:
- repo: self
queue:

name: Default
demands: npm

trigger: none

steps:
- task: Npm@1
displayName: 'npm install'
inputs:
workingDir: '$(build.sourcesdirectory)/continuous—deployments/rcp—
deploy—az-function/Function'
verbose: false

- task: Npm@1
displayName: 'install func cli'

inputs:
command: custom
workingDir: '$(build.sourcesdirectory)/continuous—deployments/rcp—

[287]

Continuous Deployments Chapter 6

deploy—-az-function/Function'

verbose: false

customCommand: 'install —-g azure-functions-core-tools —--unsafe-perm
true'

- task: Npm@1
displayName: 'npm build:production'’

inputs:
command: custom
workingDir: '$(build.sourcesdirectory)/continuous—-deployments/rcp—

deploy—-az-function/Function'
verbose: false
customCommand: 'run build:production'

- task: CopyFiles@2
displayName: 'Copy Files to: $(Build.ArtifactStagingDirectory)'
inputs:
SourceFolder: '$(build.sourcesdirectory)/continuous—-deployments/rcp—
deploy—-az-function/Function'
Contents: |
dist/**
HelloWorld/**
node_modules/**
bin/**

TargetFolder: '$(Build.ArtifactStagingDirectory)'

— task: PublishBuildArtifacts@l
displayName: 'Publish Artifact: drop'

Once the project has been built, we should see our Azure Function as a deployable artifact:

>
Artifacts explorer

drop
bin
dist

Hellowerld

[288]

Continuous Deployments Chapter 6

How to do it...

Now that our artifacts are all exactly how we want them to be, we can start building the
release pipeline. Like we did in the previous recipes, we need to create the Azure Function
app using ARM template and then deploy our function code in to the created Azure
Function app. For this, we need to create an ARM template to provision the Azure Function
app. As we mentioned previously, the Azure Functions provide cost benefits (you pay only
for the time your code runs) over traditional websites, which require a full web server. For
this purpose, Azure Functions has two kinds of pricing plans (which you can learn more
about at https://docs.microsoft.com/en-us/azure/azure-functions/functions-

overview):

e Consumption plan: When your function runs, Azure provides all of the
necessary computational resources. You don't have to worry about resource
management, and you only pay for the time that your code runs.

e App Service plan: Run your functions just like your web apps. When you are
already using App Service for your other applications, you can run your
functions on the same plan at no additional cost.

For this example, we are going to use the Consumption plan to ensure that we pay only for
the time our function runs.

Creating the ARM template

1. Create a JSON file called function.deploy. json and copy the contents from
the ARM template provided in the code bundle.

The complete ARM template used in the recipe is available in the code
bundle under RCP04-AzureFunction-CD folder with file named
function.deploy.json

Notice the resources section. The first resource is the app service plan. We are
setting computeMode as Dynamic, this ensures we are using the consumption
plan. The second resource creates an Azure Function app resource.

"resources": [

{

"type": "Microsoft.Web/serverfarms",
"apiVersion": "2015-04-01",

"name": "[variables ('appAppServicePlanName')]",
"location": "[resourceGroup () .location]",

[289]

https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview

Continuous Deployments Chapter 6

"properties": {
"name": "[variables ('appAppServicePlanName')]",
"computeMode": "Dynamic",
"sku": "Dynamic"

"name": "[variables ('deployedFunctionAppName')]",
"type": "Microsoft.Web/sites",
"location": "[resourceGroup().location]",
"kind": "functionapp",
"apivVersion": "2016-08-01",
"identity": {
"type": "systemAssigned"
s
"dependsOn": [
"[resourceld('Microsoft.Web/serverfarms',
variables ('appAppServicePlanName'))]",
"[resourcelId('Microsoft.Storage/storageAccounts',
variables ('storageAccountName'))]"
1,

//code removed for the sake of brevity

As we create the resource, we are also setting a few necessary application settings.
The last resource in the resources section creates a storage account, which is
required for the function app.

Finally, we output the function app name after deployment is successful so that
we can deploy the function code into this application.

"outputs": {

"helloworld. fnc.name": {

"type": "string",

"value": "[variables ('deployedFunctionAppName')]"
}

}
2. Create the parameter file and save it as function.deploy.parameters. json

{

"Sschema":
"https://schema.management.azure.com/schemas/2015-01-01/deploym
entParameters. json#",

"contentVersion": "1.0.0.0",

"parameters": {

"environmentConfiguration": {
"value": {
"prefix": {

[290]

Continuous Deployments Chapter 6

"functionApp": "helloworld-fnc",
"appServiceApp": "helloworld-fnc-asp",
"storageAccount": "helloworld",

"storageAccountconnection": ""
b
"appTierSettings": {
"storageAccountTypeForFunctionApp":
"Standard_LRS"

}

}

3. Commit both of the files to the source control.

To create the release pipeline, we follow the same steps that are followed in the
previous recipes in this chapter. Go to the Release page and create a new release
pipeline. Add the arm template as an artifact. Add tasks to the pipeline to deploy
the ARM templates, as we did in previous Deploying .NET Core web

application recipe. These steps create the Azure Function application and then
output the function name.

Stage 1

Agent job

[-..] Azure Deplc_:}rment:Create Or Update Resource Group action on cook...

4 A Qutputs

[291]

Continuous Deployments

Chapter 6

4. Publish the function package to the created Azure Function application:

4 B &I

% E

a
ol

Stage 1

Agent job

g Azure Deployment:Create Or Updat...

ARM Outputs

(9

@ Azure App Service Deploy: ${arm.ou...

a

Azure subscription ® 0 Manage L
Ukarshinc

App type ™ o
Function App

App Service name * o

S{arm.out.helloworld.fnrcname)

D]

)

Virtual application

Package or folder ™ D)

S(5ystem.DefaultWorkingDirectory)/azure-function/drop

How it works...

In this recipe, we saw how to build a simple Azure Function and produce the artifacts in
the build pipeline. We then saw how to create the Azure Function application using ARM
templates. The release pipeline creates the required resources in Azure and then deploys
our function into the provisioned function app. If you go to the portal and browse the
resource group, you will see three resources created:

v = helloworld-fnc-asp

v helloworldeg26z6g5ghffs

v <7 helloworld-fnc-eg26z695qhffs

Storage account
App Service plan

App Service

[292]

Continuous Deployments Chapter 6

Open the function app and you should see our HelloWorld function:

helloworld-frnc-eg26z6g5qhffs - HelloWorld

£ "helloworld-frc-eg26z6gSghfls™ X

TOUT 3pQ IS CUrMentsy in nead only mooe Decautse You have Source Oonincd integration anaied,

All subscriptions

i
s— Function Apps

index. js P Run
- helloworld-frnc-eg2626g..

- EE Functions (Read Only)

w f Helloworld

% integrate . = - es result. 8 ---. Lve(re: 1t
£ Manage

Q. Monitor

Click on the Get function URL and you should be able to get the complete URL of the
function. Make the REST call to the function to verify that it works:

https://helloworld-fnc-eg26z6g5qhffs.azurewebsites.net/api/HelloWorld?name=Azure DevOps rocks!

GET - https:/fhelloworld-fnc-eg26z6g5ghffs.azurewebsites.net/api/HelloWorld?name=Azure DevOps rocks!
Params @
KEY VALUE
name Azure DevOps rocks!
Body (3)
Pretty Auto ¥ 5

1 Hello Azure DevOps rocks!

[293]

Continuous Deployments Chapter 6

See also

Here are some helpful links regarding what we covered in this recipe:

¢ Automating resource deployment for your function app in Azure
Functions: http://bit.1y/2v93DcU

e Durable functions: http://bit.ly/2vakool

e Provisioning a function app on a Consumption plan (ARM templates): http://
bit.ly/2v7£1pN

¢ Creating serverless applications: http://bit.ly/2v5wD5t

Publishing secrets to Azure Key Vault

Applications contain many secrets, such as connection strings, passwords, certificates, and
tokens, which, if leaked to unauthorized users, can lead to a severe security breach. This
can also result in serious damage to the reputation of the organization and can cause
compliance issues.

Azure Key Vault allows you to manage your organization's secrets and certificates in a
centralized repository. The secrets and keys are further protected by Hardware Security
Modules (HSMs). It also provides versioning of secrets, full traceability, and efficient
permission management with access policies.

For more information on Azure Key Vault, visit https://docs.

microsoft.com/en-us/azure/key-vault/key-vault-overview.

In this recipe, we will see how we can automatically publish secrets in our pipeline so that
secret management is automated.

Getting ready

For this recipe, we are assuming you already have a key vault in the Azure portal. If you
don't, please refer to the Creating a key vault in Azure section in the Consuming secrets from
Azure Key Vault in your release pipeline recipe.

[294]

http://bit.ly/2v93DcU
http://bit.ly/2v93DcU
http://bit.ly/2v93DcU
http://bit.ly/2v93DcU
http://bit.ly/2v93DcU
http://bit.ly/2v93DcU
http://bit.ly/2v93DcU
http://bit.ly/2v93DcU
http://bit.ly/2v93DcU
http://bit.ly/2vakoo1
http://bit.ly/2vakoo1
http://bit.ly/2vakoo1
http://bit.ly/2vakoo1
http://bit.ly/2vakoo1
http://bit.ly/2vakoo1
http://bit.ly/2vakoo1
http://bit.ly/2vakoo1
http://bit.ly/2vakoo1
http://bit.ly/2v7f1pN
http://bit.ly/2v7f1pN
http://bit.ly/2v7f1pN
http://bit.ly/2v7f1pN
http://bit.ly/2v7f1pN
http://bit.ly/2v7f1pN
http://bit.ly/2v7f1pN
http://bit.ly/2v7f1pN
http://bit.ly/2v5wD5t
http://bit.ly/2v5wD5t
http://bit.ly/2v5wD5t
http://bit.ly/2v5wD5t
http://bit.ly/2v5wD5t
http://bit.ly/2v5wD5t
http://bit.ly/2v5wD5t
http://bit.ly/2v5wD5t
http://bit.ly/2v5wD5t
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview

Continuous Deployments Chapter 6

Next, install a marketplace extension named Azure Utility Tasks (http://bit.ly/
2pipotJ). This extension provides a few utility tasks, and one of them publishes secrets to
Azure Key Vault. We will see how we can use this task shortly:

oq Visual Studio | Marketplace

Azure DevOps > Azure Pipelines > Azure Utility Tasks

Azure Utility Tasks
Utkarsh Shigihalli | 42installs | s dc 9 9% % (0) | Free

&

Utility tasks for Azure DevOps - Contains tasks to Manage tags, Lock/Unlock Azure resources,
Publishing secrets to Keyvault etc

Get it free

Clicking Get it free will redirect you to http://win-184b8utnna:8080 to acquire this extension.

How to do it...

1. Let's create the release pipeline, add a stage, and save it. This is similar to what
we have done in other recipes in this chapter. Assuming you have a stage with
no artifacts, your release pipeline will look as follows:

All pipelines > % publish-secrets-to-kv

Pipeline Tasks Variables Retention Options History
Artifacts | + Add Stages | + Add
Add an |
+ artifact = Stage 1 A
A | 1job, 0task

[295]

http://bit.ly/2PiPQtJ
http://bit.ly/2PiPQtJ
http://bit.ly/2PiPQtJ
http://bit.ly/2PiPQtJ
http://bit.ly/2PiPQtJ
http://bit.ly/2PiPQtJ
http://bit.ly/2PiPQtJ
http://bit.ly/2PiPQtJ
http://bit.ly/2PiPQtJ

Continuous Deployments

Chapter 6

Next, let's see how we can add secrets using PowerShell.

2. To add secrets using the Azure CLI, simply set the secret in the existing Azure
Key Vault task using the Azure CLI task as follows, with just one line. Notice that

we have added a secret variable named secretvalue:

Pipeline Tasks - Variables Retention Options History

Pipeline variables

Variable groups

Predefined vanables 12

Pipeline Tasks - Variables Retention Options History

snt process Azure CLI @

Stage 1

Version | 1.»

Agent job | 1.
ﬂ Azure CLI [Display name *

S - Azure CL

Azure subscription * (@

Utkarshinc
Script Location* (@D
Inline script

Inline script = (@D

az keyvault secret set --vault-name “cookbook” --name “ExamplePassword" --value "$(secretValue)”

oo

Remove

To use the Azure CLI task, your agent machine needs to have the Azure
CLI installed. Read more about it at http://bit.1ly/2Pjvoh4.

[296]

http://bit.ly/2Pjv9h4
http://bit.ly/2Pjv9h4
http://bit.ly/2Pjv9h4
http://bit.ly/2Pjv9h4
http://bit.ly/2Pjv9h4
http://bit.ly/2Pjv9h4
http://bit.ly/2Pjv9h4
http://bit.ly/2Pjv9h4
http://bit.ly/2Pjv9h4

Continuous Deployments

Chapter 6

3. In the Azure CLI task, you probably noticed that you had to write the Key Vault
name. If we have to publish/add multiple secrets to the key vault, we would have
to repeat this line multiple times for each secret. This is where custom tasks,
which are available in the Visual Studio Marketplace, help. The Publish secrets
to Azure Key vault task from Azue Utility Tasks extension allows you to publish

multiple secrets at once:

All pipelines > " publish-secrets-to-kv

Pipeline Tasks Variables Retention Options History

Stage 1

Agent job |

Publish secrets to Azure Key vault cook... (-]

|- Release ™

Publish Secr

Version 1= e

Display name *
Publish secrets to Azure Key vault cookbook
Azure subscription * (@ | Manage =2

Utkarshinc

Keyvault* (D
cookbook

P

List of secrets 0

minusername)
S(secretVialue)

sgladmin=
sglpassw

Build=%{Build.BuildMumber)

Content Type of the secrets (D

Added via extension task

[297]

Continuous Deployments Chapter 6

As you can see from the preceding screenshot, the task also allows you to select the Key
Vault from the dropdown, and each secret is separated by a new line. Run the release and
you will see all your secrets in the key vault being added:

L_' cookbook - Secrets

Search (Cirl+ « + Generate/Import O Refresh T Restore Backup
Overview NAME TYPE STATUS
| Activity |
B Actiity log ExamplePassword ~/ Enabled
ala Access control (IAM)
sqladmin Added via extension task + Enabled
L 4 Tags
sqlpassword Added via extension task + Enabled
X Diagnose and solve problems

Settings
Keys

% secrets

Certificates

How it works...

The automation of publishing secrets to the key vault greatly reduces your dependency on
manual scripts and also any errors in doing so. In this recipe, you saw how easy it was to
insert secrets into the azure key vault, which is a central repository to manage all your
secrets, keys, and certificates. The recipe showed you two ways that you can automate
inserting secrets into the key vault via the Azure DevOps Server release pipeline.

There's more...

We could extend this pipeline to provision the key vault itself. The steps would be similar
to what we have done in the previous recipes. A step to deploy the ARM template which
will use a Resource Group Deployment task to provision the key vault and a step to get the
provisioned key vault name as an output parameter and eventually using it to add secrets
to the provisioned key vault.

[298]

Continuous Deployments Chapter 6

[--] create keyvault

i."] get arm outputs for keyvault

{unpati} A LUTpUts

In doing so, we can extend this pipeline to automate end-to-end key-vault provisioning and
also inserting secrets after creation.

See also

Check out the following resources to learn more about what was covered in this recipe:

e Azure Key Vault ARM templates: https://docs.microsoft.com/en-gb/azure/
templates/microsoft.keyvault/allversions

e Azure Key Vault best practices: https://docs.microsoft.com/en—-gb/azure/
key-vault/key-vault-best-practices

Deploying a static website on Azure Storage

Static websites have become very popular in the last few years and are based on the
JAMstack (JavaScript, APIs, and Markup) architecture. The generated websites are super
lightweight, fast, and easier to develop. As of December 2018, you can host static websites
on Azure Storage accounts of the General Purpose v2 (GPv2) type.

In this recipe, we will see how we can configure a storage account to host a static website.
We will then deploy a simple static website to this storage account so that we can browse
our website.

¢ For more information on what JAMStack architecture - https:/
/jamstack.org/

e More information on Static website hosting on Azure
Storage: http://bit.ly/2P1Ytne

[299]

https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://jamstack.org/
https://jamstack.org/
https://jamstack.org/
https://jamstack.org/
https://jamstack.org/
https://jamstack.org/
https://jamstack.org/
http://bit.ly/2PlYtne
http://bit.ly/2PlYtne
http://bit.ly/2PlYtne
http://bit.ly/2PlYtne
http://bit.ly/2PlYtne
http://bit.ly/2PlYtne
http://bit.ly/2PlYtne
http://bit.ly/2PlYtne
http://bit.ly/2PlYtne

Continuous Deployments Chapter 6

Getting ready

To host the website, we will first need to have a static website. Creating a static website
using JAMStack architecure is outside the scope of this recipe, but you can check out this
post on how to build and automate publishing a Jekyll website: http://bit.ly/2P1RcDU.

I am assuming you already have a static website and published artifact, as follows:

JekyllBlog-Cl 0.0.4
Manual build - §* master - ¢ 65b3248 : initial
<2 Add tag 4
) Artifacts Explorer
Logs Timeline Code coverage* Tests & Edit pipelin
i site
Progression > ll about
-] assets
i Build process succeeded . ekl
0 emor{s) / 0 warning(s)
Oy 404html
3 site
O feedxml
index.html|
) @ Manually queued ey
g 3 Utkearsh Shigihall e:,‘ requested 7 minutes a [README.md
8 Associated changes
1 | 1 commit{s)
initial
Utkarsh Shigihalli (AV) authored § 65b3248 34 minutes 2

[300]

http://bit.ly/2PlRcDU
http://bit.ly/2PlRcDU
http://bit.ly/2PlRcDU
http://bit.ly/2PlRcDU
http://bit.ly/2PlRcDU
http://bit.ly/2PlRcDU
http://bit.ly/2PlRcDU
http://bit.ly/2PlRcDU
http://bit.ly/2PlRcDU
http://bit.ly/2PlRcDU

Continuous Deployments Chapter 6

Creating a storage account from the Azure portal

From the Azure portal, it is to create a storage account of the General Purpose v2 (GPv2)
type. You will see a Static website setting - Enable the setting and optionally set the index
document name and error document name. Once static website hosting is enabled, a
container named $web will be created, if it doesn't already exist. Any content copied to
the $web container will automatically be served on the primary endpoint:

Dashboard > storagesamples - Static website (preview)

Create a resource @& storagesamples - Static website b

Storage account

Home
«

) Search (Ctrl+/)
= Dashboard

Settings ~ Configuring the blob service for static website hosting enables you to host static content in your storage
All services account. Webpages may include static content and client-side scripts. Server-side scripting is not supported in
Azure Storage. Learn more
FAVORITES Access keys
8 Static website
CORS
Resource groups Disabled [MENIES]
_ = Configuration
Il resources An Azure Storage contalmer has been created to host your static website
i Sweb
° Recent a Encryption
& shared access signature Primary endpoint @

‘ App Services

https://storagesamples.z22.web.core.windows.net/ E

2
ai

= Firewalls and virtual networks
st SQL databases

Index document name @

ﬂ Virtual machines (classic) v Advanced Threat Protection ... index.htm! v
a ~n Static website
! i ezdiffes Error document path @
& Cloud services (classic) Properties 404.htm| v
n Locks

? Subscriptions

Files on the $web container are served through anonymous access requests and will only
have read permissions.

Creating an Azure Storage Account ARM templates

Automating the creation of the GPv2 storage account and enabling this setting will require
a bit more work. Let's start by creating an ARM template.

Create a JSON file named storageaccount.deploy.json and paste in the following
content:

The source code is available under Chapter folder inside RCP06-
StaticWebsite-CD directory.

"S$schema":
"http://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate. j

[301]

Continuous Deployments Chapter 6

son#",
"contentVersion": "1.0.0.0",
"parameters": {
//code is trimmed for the sake of brevity
}I
"variables": {

"storageAccountUniqueName" :
"[take (toLower (concat (parameters ('storageAccountName'),

uniqueString (resourceGroup () .id))),24)1"
b
"resources": [
{
"name": "[variables ('storageAccountUnigqueName')]",
"type": "Microsoft.Storage/storageAccounts",
"apiVersion": "2018-07-01",
"location": " [parameters('location')]",
"properties": {
"accessTier": "[parameters('accessTier')]l",

"supportsHttpsTrafficOnly":
"[parameters ('supportsHttpsTrafficOnly"') 1"
}I

"dependsOn": [],
"sku": {
"name": "[parameters ('accountType')]"
b
"kind": "[parameters ('kind')]"
}
1,
"outputs": {
"storageaccount.unique.name": {
"type": "string",
"value": "[variables ('storageAccountUniqueName')]"
b
"storageaccount.url": {
"type": "string",
"value":
"[reference (variables ('storageAccountUniqueName')) .primaryEndpoints.web]"
}

[302]

Continuous Deployments Chapter 6

This ARM template just has one resource, of

the Microsoft.Storage/storageAccounts type. The template accepts a couple of
parameters, such as accountType and storageAccountName. We will create a parameter
file named storageaccount.deploy.parameters. json and paste in the following
content. The parameter file provides default values for the ARM template:

{

"Sschema":
"https://schema.management.azure.com/schemas/2015-01-01/deploymentParameter
s.json#",

"contentVersion": "1.0.0.0",
"parameters": {
"location": {
"value": "westeurope"
}I
"storageAccountName": {
"value": "staticwebsitedemo"
}I
"accountType": {
"value": "Standard_LRS"
}I
"kind": {
"value": "StorageV2"

b
//code is trimmed for the sake of brevity

}

Notice that in the parameter file above, we provide a value as StorageVv2, for the
parameter kind which requests Azure Resource Manager to provision the Azure Storage
GPv2 storage account.

Commit the ARM template into the source control and optionally create the build pipeline
produce ARM templates as artifacts. You could include simple tests to test the ARM
templates as part of the build pipeline as well.

[303]

Continuous Deployments Chapter 6

How to do it...

1. Create a new release pipeline and add both the static website and ARM
templates as artifacts:

All pipelines > % static-website
Pipeline Tasks Variables Retention Options History
Artifacts | - Add Stages | + Add
&
2
LY £ | Stage 1 Q
arm 9 | 1job, 6 tasks
&
4
H
website

The first steps will just deploy our storage account ARM template. These steps are
similar to what we have done in other recipes. The first task deploys the ARM
template and the next task produces the pipeline variables for our ARM template
output variables. In our case, we will output the storage account name and the
storage account primary endpoint from our ARM template:

Agent job

[,.] Azur_e Deplc_nyment:Create Or Update Resource Group acti...

ST i

2. Run the release. We see that our storage account has been created, but that the
static website setting is still disabled:

[304]

Continuous Deployments Chapter 6

@ staticwebsitedemoeg26z6g - Static website
Storage account

«

- Configuring the blob service
¢ Shared access signature more

Static website

=10 Enabled

“@ Firewalls and virtual networks
¥ Advanced Threat Protection

Static website

At the time of writing, this Disbaled/Enabled Static website setting is not available
via the ARM template. Instead, we have to use the Azure CLI to enable this
setting.

3. We update the pipeline to install the storage-preview extension for Azure CLL
Add an Azure CLI task and execute the az extension add ——-name storage-
preview command to add the extension:

Pipeline Tasks - Variables Retention Options History

EE??e»J- process - Azure CLI @ X Remove
Agent Job Version 1% R
[qp] Azure Deplc_:yment:Crea... Display name *

add storage preview extension

s[] %RM QUEPUTS Azure subscription® () | Manage [
i i ~v| L MNew
g print variables Utkarshinc O -
Script Location * O]
+ Inline script ¥

Inline Script* (@

’7 az extension add --name storage-preview

[305]

Continuous Deployments

Chapter 6

4. Using the Azure CLI, enable the Static website feature for our storage account.
To do that, we execute the following command, again using Azure CLI task:

az storage blob service-properties update —--account—-name
<ACCOUNT_NAME> —--static-website —--404-document
<ERROR_DOCUMENT_NAME> --index—-document <INDEX_DOCUMENT_NAME>

Pipeline Tasks Variables Retention Options

Stage 1

Agent job

[4-] ,f_i\zur_e Deployment:Create...

ARM Outputs
[ARM Qutputs

print variables

add storage preview exte...

enable static website ®

History

Version 1% ~

Display name *

enable static website

Azure subscription * ® | Manage 12
Utkarshlnc ~
Script Location* (D

nline script
pu

nline Script* (i)

az storage blob service-properties update --account-name

X Remove

New

FARM_OUT_STORAGEACCOUNT_UNIQUE_MAMES --static-website --404-

document 404.html --index-document index.html

[306]

Continuous Deployments

Chapter 6

Notice that we are using our ARM template output
variable, storageaccount .unique.name, to pass the storage account name to this Azure
CLI command. Running our pipeline now, we can see that the storage account is created
and also that the static website feature is enabled. The only remaining step is to copy the
contents of our static website to the $web container:

Pipeling Tasks Variables Retention Options
Stage 1
Agent job

[o] Azur_e Deplc_nyment:

Create...

< ARM Outputs
[ARM Outputs

print variables

enable static website

A add storage preview exte...
a
a

copy contents

History

Version 1% s

Display name *
copy contents

—

Azure subscription * (D) | Manage 2

Utkarshinc hd
Script Location* (D)
nline script
nline Script* (D
az storage blob upload-batch -s
%SYSTEM_DEFAULTWORKINGDIRECTORY%\website\continuous-

deployments\rep-static-website\jekyll-website -d $"web’
%ARM_OUT_STORAGEACCOUNT_UNIQUE_NAMES

> Remoave

New

--accounti-name

The command we are using to copy the contents is as follows:

az storage blob upload-batch -s <SOURCE_PATH> -d \"S$web" --
account—-name <ACCOUNT_NAME>

We are using a variable to pass the source path for our website contents and

account name.

[307]

Continuous Deployments Chapter 6

5. Run the release pipeline. You should have your static website ready and
available on your primary endpoint:

A & staticwebsitedemoeg26z6g.26.web.core.windows.net/jekyll/update/2019/04/21/welcome-to-jekyll.html @ A

Your awesome title About

Welcome to Jekyll!

Apr 21, 2019

You'll find this post in your _posts directory. Go ahead and edit it and re-build the site to see your
changes. You can rebuild the site in many different ways, but the most common way is to run jekyll
serve , which launches a web server and auto-regenerates your site when a file is updated.

To add new posts, simply add a file in the _posts directory that follows the convention YYYY-MM-DD-
name-of-post.ext and includes the necessary front matter. Take a look at the source for this post to get
an idea about how it works.

Jekyll also offers powerful support for code snippets:

def print_hi(name)
puts "Hi, #{name}"

end

print_hi('Tom")

#-> prints 'Hi, Tom' to STDOUT.

Check out the Jekyll docs for more info on how to get the most out of Jekyll. File all bugs/feature
requests at Jekyll's GitHub repo. If you have questions, you can ask them on Jekyll Talk.

Your awesome title

Your awesome title (w] jekyll Write an awesome description for your new site
your-email@example.com ¥ jekylirb here. You can edit this line in _config.yml. It will

appear in your document head meta (for Google
search results) and in your feed.xml site
description.

[308]

Continuous Deployments Chapter 6

How it works...

The pipeline we created in this recipe shows how we can use ARM templates and Azure
CLI commands to easily automate the creation of required storage account to deploy a
static website. We saw how, even when the ARM template does not provide full
capabilities to automate the Static Website feature, the Azure DevOps server helps us to
integrate any tool available into the pipeline—in this case, we used the Azure CLI to enable

the static website feature and copy its contents.

There's more...

Hosting a static website on Azure Storage makes your site available on the primary
endpoint. However, in most scenarios, you would like to host your website on your custom
domain, such as https://www.myorganization.com/blog. You could do that using the
Azure Content Delivery Network (CDN). Azure CDN also allows you to use custom SSL
certificates, rewrite rules, and more.

For more on how to use Azure CDN and enabling custom domains for your static website,
visit http://bit.ly/2vgXvQ8.

See also

Check out these resources for more information:

e We used Jekyll to generate a static website, but it is just one of the many static
generators that's available. There is a full list of static site generators
here: https://www.staticgen.com/.

* You can configure a custom domain name for your Azure storage account
at http://bit.ly/2venQlb.

[309]

https://www.myorganization.com/blog
https://www.myorganization.com/blog
https://www.myorganization.com/blog
https://www.myorganization.com/blog
https://www.myorganization.com/blog
https://www.myorganization.com/blog
https://www.myorganization.com/blog
https://www.myorganization.com/blog
https://www.myorganization.com/blog
https://www.myorganization.com/blog
https://www.myorganization.com/blog
http://bit.ly/2vgXvQ8
http://bit.ly/2vgXvQ8
http://bit.ly/2vgXvQ8
http://bit.ly/2vgXvQ8
http://bit.ly/2vgXvQ8
http://bit.ly/2vgXvQ8
http://bit.ly/2vgXvQ8
http://bit.ly/2vgXvQ8
http://bit.ly/2vgXvQ8
https://www.staticgen.com/
https://www.staticgen.com/
https://www.staticgen.com/
https://www.staticgen.com/
https://www.staticgen.com/
https://www.staticgen.com/
https://www.staticgen.com/
https://www.staticgen.com/
https://www.staticgen.com/
https://www.staticgen.com/
http://bit.ly/2venQ1b
http://bit.ly/2venQ1b
http://bit.ly/2venQ1b
http://bit.ly/2venQ1b
http://bit.ly/2venQ1b
http://bit.ly/2venQ1b
http://bit.ly/2venQ1b
http://bit.ly/2venQ1b
http://bit.ly/2venQ1b

Continuous Deployments Chapter 6

Deploying an Azure Virtual Machine to Azure
Dev Test Lab (DTL)

Development teams are often limited by the infrastructure that is available to them to
deploy and test their changes. The cloud promises to address this by giving you an
infinite resource capacity that you can consume in a pay-as-you-go subscription model.
Enterprises making their first foray into the cloud are keen to test the waters by moving
development and test workloads to the cloud. However, the biggest apprehension when
moving to the cloud for Development and Testing teams is repeatability, security, and
governance. Microsoft understands the trend, so to help customers make the move, it has
introduced a new service called Azure Dev Test Lab.

Azure DTL is a service that helps development teams quickly create heterogeneous
environments in Azure while minimizing waste and controlling cost. The biggest unique
selling proposition for Azure DTL is the ability to lock down the lab by securing the
network to a private subnet, applying governance policies at the lab level, and giving the
development teams autonomy within the lab. The ability to create and repeat helps scale
the solutions and the integration with the existing toolchain helps reusability.

You can learn more about Azure DTL by watching this introductory
video: https://azure.microsoft.com/en-gb/resources/videos/index/?

services=devtest-1lab.

If you don't already have an Azure DTL in your Azure subscription, you
can create one by following this walkthrough: https://docs.microsoft.

com/en-gb/azure/lab-services/tutorial-create-custom-lab.

In this recipe, we'll learn how to securely connect our Azure DevOps server to an Azure
subscription. We will then use Azure DevOps Server to provision virtual machines using
an ARM template into the newly created Azure Dev Test Lab.

[310]

https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab

Continuous Deployments Chapter 6

Getting ready

The Azure Dev Test Labs team provides a free Visual Studio marketplace extension. This
free extension provided by Microsoft delivers multiple builds and release pipeline tasks
that allow you to create machines, delete machines, and create custom images from existing
machines in Azure DTL:

.ﬁ Azure DevTest Labs Delete Environment

Delete an Azure DevTest Labs Envirenment

ﬁ Azure DevTest Labs Delete VM

Delete the givel

.ﬁ Azure DevTest Labs Populate Environment.

ploy an Azure ARM template to an existing DevTest Lab environment

6 Azure DevTest Labs Create Environment

Create an Azure DevTest Labs Envircnment

.ﬁ ure DevTest Labs Create VM

an Azure DevTest Labs VIV

For simplicity, we also have an Azure DTL ready that was manually created using the
portal:

DevTest Labs « £ X @ cookbookdemodtl
Utkarsh Inc DevTest Lab
= add EE edit columns *** More Search (Ctrle/) « O refresh = Add @ Delete

Resource group (change) : cookbook

® Overview
Status : Ready

NAME Getting started)
Location : West Europe

3 Internal suppaort

Q cookbookdemodtl Subscription (change)

My Lab Subscription ID ;. " -

& My virtual machines
1Y Claimable virtual machines My virtual machines

44 All virtual machines NAME STATUS

= My data disks

[311]

Continuous Deployments Chapter 6

How to do it...

1. Create a release pipeline and add the Azure DevTest Labs create VM task. Select
the subscription and provide the ARM template:

& - > dtlprovision.agent) Discard ‘= Summary
(D Tasks Variables Triggers Options Retention History
Process . . ¢
Build proces Azure DevTest Labs Create VM @ @ Link settings X Remove
Version 2* L
== Get sources
€ MyWebApy aste
Display name *
off) Create Azure DevTest Labs VM
M D Some settings need attention Create Azure DevTest Labs VM
Azure RM Subscription * @ Manag
+ Add Task F |
Azure DTL v O New
Lab Name * @
azsu-dtl-build-grid-001 v
Template Name * @
(© This setting is required

For the template field, you could provide the ARM template for the custom VM
image according to your needs. You'll be delighted to know that it's possible to
generate an ARM template for provisioning right from within the Azure portal.

[312]

Continuous Deployments Chapter 6

2. In order to generate the ARM template for the VM, we would like to provision in
Azure DTL; head over to the DTL in Azure Portal and click through to create the
desired VM. You can choose from a range of preconfigured base images, but I
recommend opting for the latest Visual Studio Enterprise image:

Choose a base Virtual machine

ttings

)3 visual studio
* Virtual machine name

NAME PUBLISHER 0s TYPE TYPE | AZSU-D-DTL1-001 v |
Nl Visual Studio 2019 Community on Wi... Microsoft Windows Gallery image * User name
2¢) visual Studio 2019 Community on Wi... Microsoft Windows Gallery image | aneuser v |
2¢) visual studio 2019 Enterprise on Win... Microsoft Windows Gallery image ... Password
Use a saved secret ®
NI Visual Studio 2019 Enterprise on Win... Microsoft Windows Gallery image
* Type a value
G@ Visual Studio Community 2015 Updat... Microsoft Windows Gallery image R v
Q] Visual Studio Community 2015 Updat... Microsoft Windows Gallery image . .
Disk and size
*Sl] Visual Studio Community 2017 {latest... Microsoft Windows Gallery image ... Virtual machine disk type @
HDD ssD
’f.’] Visual Studio Community 2017 (latest... Microsoft Windows Gallery image ...
’.QJ Visual Studio Community 2017 on Wi... Microsoft Windows Gallery image ... Virtual machine size

Standard_D2s_v3

More options

Artifacts N
ﬁ 0 artifact(s) selected

[313]

Continuous Deployments

Chapter 6

3. Click the Automation options link to get the complete ARM template for the
VM:

cookbookdemodtl > Choose abase > Create lab resource

Gallery image
Gallery image
Gallery image
Gallery image
Gallery image
Gallery image
Gallery image
Gallery image
Gallery image
Gallery image
Gallery image
Gallery image
Gallery image
Gallery image

Gallery image

x

Create lab resource

Virtual machine

Basic Settings Advanced Settings

User Settings
* Virtual machine name
ushigihalli001

* User name

ushigihalli
Use a saved secret
* Password
Password

Save as default password
vl

More Options

* Virtual machine size
Standard_DS1
Standard_Ds1
Change Size

Home »> cookbookdemadtl > Choose abase > Create lab resource > View Azure

View Azure Resource Manager template

rtual machi

te

"$schema”: “"https://schema.management.azure.com/schemas/2

"contentVersion”: "1.8.8.8",
"parameters": {
"newvMName”: {
"type": "string”,
"defaultvalue”: "ushigihalliee1"
Ts
"labMame": {
"type": "string”,
"defaultvalue": "cookbookdemodtl™

}s
"size": {
"type": "string”,
"defaultvalue": "Standard DS1"
ts

"userlame”: {
"type": "string”,
"defaultvalue": "ushigihalli"

ta
"passuord”: {
"type": "securestring"
}
IS
"wariables": {
"labSubnetMame": "[concat(variables('labVirtualNetworkN
"labvirtualMetworkId": "[resourceld('Microsoft.DevTestL

"labvirtualMetworkiame": "[concat({ 'Dtl', parameters(’la

[314]

Continuous Deployments Chapter 6

Notice I have also set an expiration date for this VM in the Advanced
Settings so that the VM gets automatically deleted on the set date and
time.

Home * cookbookdemaodtl » Choose a base * Create lab resource

Create lab resource

Wirtual machine

Basic Settings Advanced Settings

Network options

* Virtual network
Dtlcookbookdemodtl
Change Vnet

* Subnet Selector

DtlcookbookdemodtiSubnet
Change Subnet

Configures the IP address for this virtual machine, Learn more

Shre

Automatic delete options
Expiration date @
2019-04-30 | | 12:00:00 AM

British Summer Time

Claim options

Make this machine claimable &

[315]

Continuous Deployments

Chapter 6

4. Copy the JSON contents in to file and commit it into source control. Create a
release pipeline, add the Azure DevTest Labs Create VM task, and provide the
required input, specifically the VM name, username, and password, for the VM.
We will also pass the expiration date for the VM so that the VM gets deleted

automatically:
Pipeline Tasks Variables Retention Options History
Stage 1
:e:?_. nent process Azure Create VM ® X Remove
J - %
Agent jOb Version 2, kv
o) Create Azure DevTest La... ® i Display name *
Ml Azure DevTest e WM =
Create Azure DevTest Labs VM
Azure RM Subscription * @ | Manage 12
Utkarshinc v O T~ New
Lab Name * @®
cookbookdemaodtl hd

Template Name* ()

5(System.DefaultWorkingDirectory)/arm/continuous-deployments/rcp-
dtl-vm/arm/dtlvm.deploy.json

emplate Parameters
Te late P

-newVMName ‘AZ5U-D-DTL1-002" -userName ‘ushigihalli’ -password
(ConvertTo-Secure5tring -5tring “$(vmPassword)' -AsPlainText -Force) -location
“westeurope” -size "Standard_D2s_v3" -expirationDate "2019-04-
29723:00:00.000Z"

[316]

Continuous Deployments Chapter 6

5. Run the release pipeline and you should soon see a new VM spun up based on
the ARM template and added to the DevTest labs:

Home *» cookbookdemaodt! - All virtual machines

@ cookbookdemodtl - All virtual machines

Levlest LaD

Ciri+/) @ C) Refresh + Add

B overview

NAME STATUS
Getting started
-D-DTL1- . :
@ Internal support wh AZSU-D-DTL1-001 @ Running
4l AZSU-D-DTL1-002 @ Running
My Lab

i2 My virtual machines
|i| Claimable virtual machines

All virtual machines

How it works...

Thanks to the power of Azure DevOps Server and ARM templates, we saw how we can
generate ARM templates for our custom DevTest Labs VM images. We then used the
generated ARM templates to spin new VMs in our Azure DevTest Labs lab.

[317]

Continuous Deployments

There's more...

We could extend this recipe, for example, to build an Azure DevOps Server build agent
grid. An automated process to add and remove build agents allows you to scale up and
scale down on demand. There will always be periods when the build infrastructure is in
high demand and periods when it's underutilized. By using virtual infrastructure to host
your agents, you could save significant money by decommissioning the agents when they
are not in use. This recipe showed you a quick way to spin the VMs on demand. We could
add artifacts that are available for DTL VMs (the Azure Pipelines Agent artifact, for
example) and generate an ARM template with it to automatically create a VM and add an

artifact:

Add

artifacts

W reedback

Applying artifacts on small sized (1 core) Windows VMs may take a longer time or

Azure Pipelines Agent...

Azure Pipelines Deplo...

Downloads latest Az...

Downloads the lates...

CASES
[2 bearch to fiter items..

NAME DESCRIPTION PUBLISHER

E, [Deprecated] Active D... This artifact is depre... Microsoft

0 [Deprecated] Fiddlerd This artifact is depre... Microsoft

bz 7-7ip Installs 7-Zip using t... Microsoft

; Add user to Administr... Adds the given Acti... Microsoft

’ Atom Installs Atom using ... Microsoft
AWS Command Line L.. Installs AWS Comm... Hosam Kamel
Azure Pipelines Agent Downloads and inst... Microsoft

Utkarsh Shigihalli

Microsoft

[318]

Continuous Deployments Chapter 6

See also

DevTestLabs Artifacts allow you to add the custom software/tools you need to your Azure
DTL VMs as you provide them. You are not limited to using just the available artifacts. You
could build your own custom artifacts, which is very easy to do. Check out these resources
for more information:

¢ Create custom artifacts for your DevTest Labs virtual machine: http://bit.1ly/
2vi2akG

o All of the Azure DTL artifacts are open source on GitHub, which you could use
as references: https://github.com/Azure/azure-devtestlab/tree/master/
Artifacts

[319]

http://bit.ly/2vi2akG
http://bit.ly/2vi2akG
http://bit.ly/2vi2akG
http://bit.ly/2vi2akG
http://bit.ly/2vi2akG
http://bit.ly/2vi2akG
http://bit.ly/2vi2akG
http://bit.ly/2vi2akG
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts

Azure Artifacts and
Dependency Management

In order to release software often and consistently, it is essential that software dependencies
are managed using a good package management solution. Managing dependencies, if not
thought through, can over a period of time become extremely difficult to maintain
especially due to managing versions, testing of the packages and nested dependencies.

Azure Artifacts is Microsoft's solution to package management. Originally available as a
separate extension on Visual Studio Marketplace, it is now pre-installed in Azure DevOps
Services and Azure DevOps Server 2019, TFS 2018, and 2017. In this chapter, we will
explore a few recipes on how to use Azure Artifacts to host your NuGet and npm packages.
We will also see how to deploy packages to Azure Artifacts using build and release
pipelines.

Azure Artifacts and Dependency Management Chapter 7

Later, we will see how we can incrementally make our packages available to consumers
using artifact views and finally we will utilize third-party extension to scan security
vulnerabilities in our application dependencies. Azure Artifacts is available as a separate
hub in Azure DevOps Server.

Azure DevOps

B o

CookBook

Overview

Boards

Repos

Pipelines

b4 D & B

Test Plans

Fl Artifacts

In this chapter, we will cover the following recipes:

Publishing a NuGet package to Artifacts

Consuming a NuGet package in Visual Studio from the Artifacts feed
Testing a NuGet package using Artifact views

Publishing an NPM package to Artifacts

¢ Consuming an NPM package from the Artifacts feed

Scanning for vulnerabilities in your package using WhiteSource

[321]

Azure Artifacts and Dependency Management Chapter 7

Publishing a NuGet package to Artifacts

NuGet packages are ZIP files containing the . nupkg extension, where the common code is
packaged and shared with others. In this recipe, we will explore how to create a sample
NuGet package and set up a build pipeline that will continuously deliver new versions of
the package.

en-us/nuget/what—-is—-nuget.

0 An introduction to NuGet can be found at https://docs.microsoft.com/

Azure Artifacts introduces the concept of feeds. A feed is a container for your package; you
can consume and publish packages to and from a feed. Azure Artifacts allows you to create
multiple feeds; however, planning the name and number of feeds for your collection
beforehand will help improve the management of permissions for your feeds and NuGet
packages.

Another key aspect of Azure Artifacts is known as upstream sources. Upstream sources
allow a single feed to store the packages you produce along with the packages that you
consume from the remote feed. Each dependent remote package will be cached and made
available through the Azure Artifacts feed. The benefit of this is that even when the remote
feed is down or the package on the remote feed is removed, you will still be able to
continue using the feed from the cached version, thus causing no disruption.

You can find out more information about upstream sources at http://
0 bit.ly/2vg8byj.

Getting ready

For this recipe, we will use a sample NuGet package. You can find the code for this sample
NuGet package in the source code bundle under Chapter07 folder.

[322]

https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
http://bit.ly/2vg8byj
http://bit.ly/2vg8byj
http://bit.ly/2vg8byj
http://bit.ly/2vg8byj
http://bit.ly/2vg8byj
http://bit.ly/2vg8byj
http://bit.ly/2vg8byj
http://bit.ly/2vg8byj

Azure Artifacts and Dependency Management Chapter 7

Creating an Artifact feed in Azure Artifacts

1. Let's create a feed for publishing our NuGet package. To do this, first, head to the
Artifacts hub and click on the + New Feed button:

f:J Azure DevOps

B cooksook
B overview
B coaras
Repos
W@ Ficcines
& Testplans
g Artifacts

DefaultCollection CookBook Artifacts Packages

Create a feed to host and share packages with your team

/ + New feed

[323]

Azure Artifacts and Dependency Management Chapter 7

2. Next, provide a name for the feed and select the visibility. Keep the default
settings as they are, so that our feed is visible to everyone in the collection:

Azure DevOps DefaultCollaction CookBook

CookBook T

Overview

Boards

Repos

Pipelines

Test Plans

Artifacts Create new feed

=4 PDEDRBCC

Feeds host and contral permissions for your packages.

Marme =

cookbook-internal-feed

Team project - (what's this?)

CookBook

Visibility - Who can use your feed

@ B People in DefaultCollection - Members of your organization can view the packages in
your feed

) Specific people - Only people you give access to will be able to view this feed

Packages from public sources (nuget.org, npmjs.com)
@ Use packages from public sources through this feed

Only use packages published to this feed

[324]

Azure Artifacts and Dependency Management

Chapter 7

3. Finally, allow the feed to cache the upstream (or remote) packages into this feed
so that any external dependent NuGet packages are cached and served from our
Artifacts feed. Once you click on Create, the feed will be created and made

visible, as shown in the following screenshot:

f:J Azure DevOps DefaultCollection CookBook Artifacts Fackages Search

c 1
B coorsook cookbook-internal-feed ~ |+ Newfeed 0 Connectto feed

ﬂ Overview

Our feed and drop down
% Boards to browse other feeds in
this collection

Fars

o ripelines
& Testrians
B Artifacts

B Connect to feed

Learn more about Azure Artifacts

Connect to the feed to get started

B Recycle Bin B3 v

Feed settings

Azure Artifacts settings

Additional setting
available from
Settings menu

You can also set additional settings for the feed, such as retention policies for the packages,
views, and other permissions, from the Settings menu - we are also covering this in the

How to do it section below.

More information on securing and sharing packages using feed

permissions can be found at http://bit.1ly/2Pt30Er.

How to do it...

Our sample NuGet package is a .NET Core 2 NuGet package. To start with we will set up
Continuous Integration (CI) so that we produce the NUPKG file every time the package is

built.

[325]

http://bit.ly/2Pt30Er
http://bit.ly/2Pt30Er
http://bit.ly/2Pt30Er
http://bit.ly/2Pt30Er
http://bit.ly/2Pt30Er
http://bit.ly/2Pt30Er
http://bit.ly/2Pt30Er
http://bit.ly/2Pt30Er
http://bit.ly/2Pt30Er

Azure Artifacts and Dependency Management Chapter 7

Creating a build definition to produce the NuGet
package

1. Create a new file called azure-pipelines.yml and paste in the following code:

The source code for NuGet package and YAML file for the build used in
this recipe is in this Chapter's code pack under RCP01-NuGet-Artifact

folder
resources:

- repo: self
queue:

name: Default

name: $(major).$ (minor) .$(rev:r)

variables:
major: 1
minor: O

buildconfiguration: release

steps:
- task: DotNetCorelInstaller@O
displayName: 'Use .NET Core sdk 2.2.104'
inputs:
version: 2.2.104

- task: DotNetCoreCLI@2
displayName: 'dotnet build'

inputs:
projects: '$(build.sourcesdirectory)/artifacts/dotnetcore-
nuget/MyClassLib/MyClassLib.csproj’
arguments: '—--configuration $(BuildConfiguration)

/p:Version=$ (build.buildnumber) '

- task: DotNetCoreCLIQ2
displayName: 'dotnet pack'

inputs:
command: pack
packagesToPack: 'artifacts/dotnetcore-

nuget/MyClassLib/MyClassLib.csproj’
nobuild: true
versioningScheme: byBuildNumber

- task: PublishBuildArtifacts@l
displayName: 'Publish Artifact: drop'

[326]

Azure Artifacts and Dependency Management Chapter 7

Notice that we set a build name that is in the format of

$ (major) .$ (minor) .$ (rev:r). We are creating variables major, minor and
patch in the variables section. We are using this build name to set the version for
our NuGet package so that it gets versioned as 1.0. 4. We are also building our
project using the dotnet build command, which is again using

the buildconfiguration variable. The value release for buildconfiguration
variable tells the dotnet command to optimize the code during compilation. We
have defined these variables in YAML file format, as well under the variables
section. Lastly, we are using dotnet pack command to package this library in to
a NuGet package.

More on dotnet commands - https://docs.microsoft .com/en-us/
dotnet/core/tools/dotnet?tabs=netcore2l

2. Run the build and you should see that our NuGet package is created and made
available as an artifact:

Logs Summary Tests

*
Progression Artifacts explorer
<9 Deployments drop
‘o
Mo deployments were found for this build. [y MyClassLib.1.0.6.nupkg

[Build artifacts published ~
E‘ drop

1 Build pipeline succeeded

[327]

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21

Azure Artifacts and Dependency Management

Chapter 7

Creating a release pipeline to publish a NuGet package

to the feed

Next, we will need to create a release pipeline in order to publish the artifact to the feed
that we previously created. Azure Artifacts has a concept called views, which are unique to
Azure Artifacts. You can refer to the Testing NuGet packages using Artifact views recipe in this

chapter for more details.

In this recipe, we will publish to the default @1ocal view using our release pipeline:

1. Create a new release pipeline and add a stage and link to the build pipeline that

we created earlier:

Pipeline Tasks Variables Retention Options History
Artifacts | + Add Stages | -+ Add
2 :
. |
ks £ Stage1 Q
nuget-ci-yaml 2 | 1job, 1task
| |

[328]

Azure Artifacts and Dependency Management

Chapter 7

2. Go to Tasks and add the .NET Core task.

3. Select the nuget push command, and then select our feed from the Target feed
drop-down menu:

Pipeline Tasks Variables Retention QOptions History

?tag“ — NET Core @

,ﬂg_ent JCEb Version 2 ~
;cmzt d?_trjet push (] Display name *

dotnet push

Command * ()
nuget push e
Path to NuGet package(s) to publish = O]
S(system.defaultworkingdirectory)/**/*.nupkg

Target feed location *

© This organization/co

i
i
=1
o
]
'
D
]

- organizations/collections)

[5
i
&

Target feed * (1)

C

cookbook-internal-feed N

Control Options

Qutput Variables

[329]

Azure Artifacts and Dependency Management Chapter 7

4. Create the release and you should see your NuGet package published to the feed:

CookBook

ﬂ

cookbook-internal-feed - + New feed

Owerview

& B

Boards
Package

'e MyClassLib

ﬂ

Repos

Pipelines

Test Plans

m > &

Artifacts

[330]

Azure Artifacts and Dependency Management Chapter 7

Granular feed permissions in feed settings

Packages are immutable, meaning that once you publish a particular version of the
package, you cannot publish the same version again. The version number is permanently
reserved. Additionally, Azure Artifacts shows deleted package versions by default:

1. You can change this setting in the Feed settings page. You can also enable
package badges to use them in to your markdown files, and also set the
maximum number of versions that you would like to keep in Retention policies:

Q

Owerview

Boards

Repos

Pipelines

Test Plans

4 D ED

Artifacts

CookBook

cookbook-internal-feed - Feed settings

Feed details Permissions Views Upstream sources li] Delete feed

Mame

cookbook-internal-feed

Description

Deleted packages

Because feeds are immutable, deleted package versions are shown by default as a reminder that the version number is taken
and can't be published again. You can hide these versions, but the version numbers will continue to be reserved. When
selected, deleted packages will be hidden from Administrators. Contributors and Readers never see deleted packages.

Hide deleted package versions
Package sharing

Package badges enable you to share the latest version of a package in this feed anywhere you can share an image, like the
project’s home page or README file.

Enable package badges
Retention policies
Delete old packages automatically by configuring retention policies. Packages promoted to a view will not be deletad.

Maximum number of versions per package

30

For better performance, it is recommended that you set the limit for the
maximum number of versions per package that you would like to retain.

[331]

Azure Artifacts and Dependency Management Chapter 7

How it works...

We created a simple NuGet package using .NET Core and set up the build pipeline for our
NuGet package. The build pipeline was then added as an artifact to our release pipeline,
which we published to the created feed. We then explored how the feed permissions can be
controlled using the feed settings. In the next recipe, we will look at how we can connect to
our feed and consume the NuGet package in Visual Studio.

There's more...

Azure Artifacts can also be used as a symbol server for your organization. Symbol servers
enable your developers to connect and debug the applications.

More information on how you can publish symbols for debugging
0 applications can be found at http://bit.ly/2PpxkQi.

See also

o Package versioning: http://bit.1ly/2v1iw07G
¢ Best practices for using Azure Artifacts: http://bit.ly/2vhGgp5

Consuming a NuGet package in Visual
Studio from the Artifacts feed

In the previous recipe, we learned how to create a NuGet package and publish it to
Artifacts in Azure DevOps Server. In this recipe, we will look at how we can consume the
NuGet package in Visual Studio.

[332]

http://bit.ly/2PpxkQi
http://bit.ly/2PpxkQi
http://bit.ly/2PpxkQi
http://bit.ly/2PpxkQi
http://bit.ly/2PpxkQi
http://bit.ly/2PpxkQi
http://bit.ly/2PpxkQi
http://bit.ly/2PpxkQi
http://bit.ly/2PpxkQi
http://bit.ly/2vlw07G
http://bit.ly/2vlw07G
http://bit.ly/2vlw07G
http://bit.ly/2vlw07G
http://bit.ly/2vlw07G
http://bit.ly/2vlw07G
http://bit.ly/2vlw07G
http://bit.ly/2vlw07G
http://bit.ly/2vlw07G
http://bit.ly/2vhGqp5
http://bit.ly/2vhGqp5
http://bit.ly/2vhGqp5
http://bit.ly/2vhGqp5
http://bit.ly/2vhGqp5
http://bit.ly/2vhGqp5
http://bit.ly/2vhGqp5
http://bit.ly/2vhGqp5
http://bit.ly/2vhGqp5

Azure Artifacts and Dependency Management Chapter 7

Getting ready

The recipe is a continuation of the previous Publishing a NuGet package to Artifacts recipe. If
you have not read it, then we recommend that you go through it before continuing.

How to do it...

Let's examine how we can consume the NuGet package in Visual Studio by performing the
following steps.

Connecting to the feed in Artifacts

1. Go to Artifacts and select the correct feed (if you have multiple feeds); then, copy
the package source URL, as follows:

C o
. CookBook cookbook-internal-feed -~ + New feed § Connecttofeed [Recycle Bin

©)

ﬂ Overview X
Connect to feed
ﬁ Boards
B NuGet
Repos O rpm
f Pipelines
A Test Plans

pe.cloudapp.azure.com/tfs/DefaultCollecti [y
1 findex.json

B A@Sa

t up this package source in Visual Studio?

Push packages using NuGet.exe

Get the tools

[333]

Azure Artifacts and Dependency Management Chapter 7

2. Open Visual Studio, go to the Tools menu, and then select Options:

NI File Edit View Project Build Debug

o-0 ‘ " Get Tools and Features...
Connect to Database...
Connect to Server...
SOL Server
Data Lake
______ Code Snippets Manager... Ctrl+K, Ctrl+B
Choose Toolbox ltemns...
MuGet Package Manager
Create GUID

External Tools...

Import and Export Settings..,

Customize...

Options...

[334]

Azure Artifacts and Dependency Management Chapter 7

3. In the Options window, go to Package Sources and click on the +icon in the top-
right corner to add a new package source. Provide a name for the source and
then paste in the copied URL from Step 1. Finally, click on Update and then click

on OK to close the dialog:
Options ? X
Search Options (Ctrl+E) AP Available package sources: @J + Xim W
I Performance Tools ~ & nuget.org
:
b Azure Data Lake https://api.nuget.org/v3/index. json
I» Azure Dev Spaces Tools - Cookbook Feed
. _— - ==
I Azure Service Authentication http://azdoserver.westeurope.cloudapp.azure.com/tfs/DefaultCollection/_pa...
I Container Tools
I Cross Platform
I Database Tools
- F#Tools
F Live ShE_"e _ Machine-wide package sources:
B :szhIErTeTtlng Microscft Visual Studie Offline Packages
I Nodeys Tools C\Program Files (x86)\Microscft SDKs\NuGetPackages\,
4 MNuGet Package Manager
General
Package Sources Q
I Service Fabric Tools MName: |Cookbook Feed | Q
I Snapshot Debugger . - - - -)
b SOL Server Tools y ‘ Source: |kag|ngfcnokboc-l-:—|nternaI—feed[nuget/v%fmdex.pnn| E Update ;
oK Cancel

If you have enabled upstream sources (such as NuGet or npm) for your
feed, then uncheck the https://www.nuget .org/ feed in the preceding
window, so that you only fetch feeds from our Artifacts feed and not from
public feeds such as https://www.npmjs.com/ Or https://www.nuget.
org/.

[335]

https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/

Azure Artifacts and Dependency Management Chapter 7

4. Open the solution that you would like to reference packages from this feed to,

right-click on Dependencies, and then select the Manage NuGet Packages...
option:

Any CPU - P UsEpress - & | - & LiveShare &7 m

Solution Explorer * [0

@E-lo-c a® | u- |-
Jo)

Search Solution Explorer (Ctrl+;)

fa] Solution 'ASPNETCoreDemo’ (1 project)
4 ASPNETCoreDemo
& Connected Services

[m-E_M =l

=MCies
Add Reference... =

Add Connected Service t
Manage MuGet Packages... 4
Scope to This

Mew Solution Explorer View pgs.json

B ©* Program.cs
P ©* Startup.cs

[336]

Azure Artifacts and Dependency Management Chapter 7

5. Next, you might be prompted to provide credentials in order to authenticate the
feed. Enter these as requested and then click on OK:

-0 |@-2 W - - Dbug - AnyCPU - b USEpress - & - L @ lveshare & [
MuGet: ASPNETCoreDemo + X Solution Explorer

[- T, - -— oo

Browse Installed Updates NuGet Package Manager: ASPNETCor... G & - =
Search Solution Explorer (Ctr 2 =
Search (Ctrl+L) P~ & [] Include prerelease Package source: | Cookbook Feed ~ |4 N B Solution 'ASPNETCoreDema’

Pl ASPNETCoreDemo
| Services

Connect to azdoserverwesteurope.clou.. ! -

Leading... ‘

Connecting to azdoserver.westeurope.doudapp.azure.com

ls.jsan
Username: | € utkarshincichris ~ | 3

Password: | sennenns| |

[remember my password

Conce

6. Now if you go to the Browse tab, you will see your published NuGet package:

i@-0 | @-2 W0 - -] Debug - AnycPU - pisBpres - G- | L & lveshoe & [
S NuGet: ASPNETCoreDemo & X
g P
a8 Browse nstalled Updates NuGet Package Manager: ASPNETCor... @a-lo-s
Search Solution Explorer (Ctt @ ~
Search (Ctrl+L) PG Include prerelease Package source: | Cookbook Feed -~ %l R3] Solution 'ASPNETCoreDemo’

4[] ASPNETCoreDemo
& Connected Services

£T appsettings.json
* Program.cs

- P & Dependencies
B MyClassLib v1.0.7 b Properties
A generic package with b & wwwroot
common utility functions [Controllers
3 Models
4 Views
I
P

[337]

Azure Artifacts and Dependency Management Chapter 7

7. Select the package and click on Install. Since our package internally depends on
Newtonsoft.json, Artifacts also downloads the dependent NuGet package from
our feed using the upstream sources:

Bl < i e -] - = Debug -~ AnyCPU - P lISEpress ~ & - | 5 _ & Live Share &7 m

MNuGet: ASPNETCoreDemo + Solution Explorer

me- o-5
Search Solution Explorer (Cti @ ~
(v} Include prerelease Package source: | Cookboo | o &1 Solution 'ASPNETCoreDemo’

4[] ASPNETCoreDemo
&3 Connected Services

Browse Installed Updates NuGet Package Manager: ASPNETCoreDemo

B MyClassLib

R P @ Dependencies
e MyClassLib v1.0.7 b S Properties
A generic package with common b6 wwwroot
utility functions Version: b Controllers
b Models
eview C e 3 Views
b LT appsettingsjson
Visual Studio is about te make changes to this solution. Click OK to proceed with the P c* Program.cs
changes listed below. b c* Startup.cs
ASPNETCoreDemo
Updates:

MNewtonsoft.Json.11.0.2 -> Newtonsoft.Json.12.0.2

|| Installing:
Each package is licensed to you by MyClassLib.1.0.7
not responsible for, nor does it gra
third-party packages.

Do not show this again

l:‘ Do not show this again OK Cancel

You have now referenced the NuGet package (along with its dependencies) from the
Artifacts feed directly.

How it works...

As you saw in this recipe, Azure DevOps Server Artifacts makes it very convenient for you
to consume the packages from your internal feeds. Once you add a feed source in Visual
Studio, developers will be able to refer to any package that is available in the feed.

[338]

Azure Artifacts and Dependency Management Chapter 7

There's more...

Adding the feed to Visual Studio with upstream sources enabled and all other external
sources disabled ensures that we only consume packages from our feed — without having to
worry if the external source is available or not. Azure Artifacts seamlessly caches the
dependent packages when the reference in your NuGet package and makes them available.

If any dependent package has not yet been saved in your feed, then they
will not be available through your feed.

See also

e Dependency management: http://bit.ly/2Prc0d5
o The benefits of upstream sources: http://bit.ly/2Prb4FO
¢ Best practices for feed owners: http://bit.ly/2PovcIs

Testing a NuGet package using Artifact
views

As mentioned in the previous recipe, packages are immutable. This means that package
versions are reserved as soon as you publish them to the feed. You cannot publish the same
version of the package again.

Semantic versioning ensures that versions correctly convey the change. The version
numbers are in Major.Minor.Patch format and, optionally, can contain additional labels
such as 1.0.0-alpha or 1.0.0-beta:

e The MAJOR version is used when you make incompatible API changes

e The MINOR version when you add functionality in a backward-compatible
manner

e The PATCH version is used when you make backward-compatible bug fixes

[339]

http://bit.ly/2Prc0d5
http://bit.ly/2Prc0d5
http://bit.ly/2Prc0d5
http://bit.ly/2Prc0d5
http://bit.ly/2Prc0d5
http://bit.ly/2Prc0d5
http://bit.ly/2Prc0d5
http://bit.ly/2Prc0d5
http://bit.ly/2Prc0d5
http://bit.ly/2Prb4FO
http://bit.ly/2Prb4FO
http://bit.ly/2Prb4FO
http://bit.ly/2Prb4FO
http://bit.ly/2Prb4FO
http://bit.ly/2Prb4FO
http://bit.ly/2Prb4FO
http://bit.ly/2Prb4FO
http://bit.ly/2Prb4FO
http://bit.ly/2PovcIs
http://bit.ly/2PovcIs
http://bit.ly/2PovcIs
http://bit.ly/2PovcIs
http://bit.ly/2PovcIs
http://bit.ly/2PovcIs
http://bit.ly/2PovcIs
http://bit.ly/2PovcIs
http://bit.ly/2PovcIs

Azure Artifacts and Dependency Management Chapter 7

Additional labels for prerelease and build metadata are available as extensions to the
MAJOR .MINOR.PATCH format.

However, with the NuGet package, proper testing can be done only after it has been
packaged and versioned.

In this recipe, we will see how we can use artifact views to consume prerelease packages
and eventually promote them after testing.

Getting ready

By default, come with three views. The @1ocal view is the default view when you create a
feed that contains all the packages published to the feed, and also all the packages from an
upstream source. The next two views are @prerelease and @release. The latter two
views can be renamed or deleted if required.

Go to Feed settings and verify that you see three views; then, ensure your default view is
setto @local:

CookBook cookbook-internal-feed - Feed settings
B Feed details Permissions Views Upstream sources | Add view
ﬂ Overview
View Permissions Default view
E Boards
Local (@ Feed users; People in my organization \/
%1 Repos
? Prerelease Feed users
f Pipelines Release Feed users
A Test Plans

Artifacts

»

[340]

Azure Artifacts and Dependency Management Chapter 7

How to do it...

Currently, we have v1.0.7 installed from the @1ocal view in our solution. The feed shows
that there is a new v1.0. 9 version that is available for us to test:

G- [- T - ~ | Debug ~ AnyCPU ~ P ISEpress - & - A & Live Share & m

NuGet: ASPNETCoreDemo + X

'
a
T '
S

Wa- ©-5
Search Solution Explorer (Cti P ~

Search (Ctrl+L) P -/ & [Include prerelease Package source: | Cookbook Feed ~ %] Solution 'ASPNETCoreDeme’
4] ASPNETCoreDemo
& Connected Services

Browse Installed Updates@ NuGet Package Manager: ASPNETCoreDemo

. .
. B MyClaSSLI b b =0 Dependencies
MyClassLib @ v1.07 B M Properties
A generic package with v1.0.9 Installed: | 1.0.7 Uninstall b & wwwroot
commen utility functions I Controllers
Version: | Latest stable 1.0.9 - Update 4 Models
|3 Views
b LT appsettingsjson
‘,—;\} Options P Program.cs
~ b €* Startup.cs
Description

A generic package with commaon utility functions

Version: 1.08

Author({s): Utkarsh Shigihalli

As the developers of this NuGet package, we will install the new 1.0.9 version and test that
it is working as expected. Once we are happy with the changes, we can make it available to
our testers:

1. Go to the feed and open the NuGet package; then, click on Promote:

CookBook 1 cookbook-internal-feed » '@ MyClassLib 1.0.9
. Overview Versions ﬁ Connect to feed \l/ Download — Unlist X Delete @ Follow
Overview
Boards

Get this package

Repos & Connect to feed then PM> Install-Package MyClassLib -version 1.8.¢ [
Pipelines

Description
Test Plans

A generic package with common utility functions

Artifacts

=4 DPDED

[341]

Azure Artifacts and Dependency Management

Chapter 7

2. In the dialog that appears, select @prerelease:

View

Promote this package

=

cookbook-internal-feed@Prerelease ~ ‘

This promotes the package to the @prerelease view. This package is now available to
anyone who has access to the @prerelease view. You can also control the permission for
each view; we have made the Gprerelease view available for members of our developers
and the architecture group:

(=

E CookBook

Artifacts

m

MName

I P.'erelsase|

Visibility

People in my organization

=)
(®) Specific people
Users/groups

User/Group Rale
[CookBookI\Architecture Feader
[CookBook]\Developers Reader

J Make this view the default view

Del...

[342]

Azure Artifacts and Dependency Management Chapter 7

Developers and members of the architecture group can connect to this view directly in the
same way that we can - select Connect to feed and select the correct view to get the correct
package source URL:

C .
. frmdmEe cookbook-internal-feed - + Newfeed ©§ Connecttofeed [Recyde Bin

ﬂ Overview x

Connect to feed

% Boards
® NuGet Get packages using Visual Studio =
b2 View (What's this?)
Repos @ npm a is
Maven @Prerelease
f Pipelines
& Gradle o -
A Test Plans :
http://azdo I
ection/_packagi
g Artifacts

How do | set up this package source in Visual Studio?

We covered connecting to the feed and consuming the feed in the previous Consuming
NuGet package in Visual Studio from Artifacts feed recipe:

i < S R - T - = | Debug ~ AnyCPU - P ISExpress ~ (5 ~ | 5 = =3

=

NoGes AspRETCoreoemo -+ IR

Browse Installed Updates il NuGet Package Manager: ASPNETCoreDemo

a
(=]
o
[=]
S

Search (Ctrl+L) P Include prerelease Package source: | Prerelease Packages ~ #&F

e MyClassLib

" MyClassLib O 107
A generic package with v1.09 Installed: | 1.0.7 Uninstall
common utility functions
Version: | Latest stable 1.0.9 - Update
.~ -
I‘Q Options

[343]

Azure Artifacts and Dependency Management Chapter 7

How it works...

In traditional NuGet package repositories (such as https://www.nuget .org/), after
publishing the NuGet package, it is made immediately available to all of your consumers.
The only way to fix this defect is to release a new version of the package.

However, with views, you are able to promote your releases slowly — one view at a time —
and so, control who has access to the package. Once the NuGet package is properly tested
by users of the @local and @prerelease views, you can make it available to all your

consumers from the @release view.

There's more...

Package versioning is a big problem to solve and there are various ways to tackle it.
However, there is no one-size-fits-all solution. After implementing the semantic versioning
for the packages, we recommend that you discuss with your team and finalize the solution
and workflow of how the packages will be moved. If you are using Git version control,
there are tools available, such as GitVersion (https://gitversion.readthedocs.io/en/
latest), which can help you to implement semantic versioning based on the Git commit
history, which might be useful in better conveying the changes.

See also

¢ Determine and communicate quality: http://bit.ly/2ProdyG
e The metadata cache: http://bit.ly/2PrRyZzH

Publishing NPM packages to Artifacts

npm is the package manager. The npm packages are cross-platform packages developed
using JavaScript. npmijs. com is the popular public registry hosting these node packages.

However, many organizations develop custom node modules or in-house UI frameworks,
which they prefer keeping on-premises rather than on public repository at https://www.

npmijs.com/.

[344]

https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://gitversion.readthedocs.io/en/latest
https://gitversion.readthedocs.io/en/latest
https://gitversion.readthedocs.io/en/latest
https://gitversion.readthedocs.io/en/latest
https://gitversion.readthedocs.io/en/latest
https://gitversion.readthedocs.io/en/latest
https://gitversion.readthedocs.io/en/latest
https://gitversion.readthedocs.io/en/latest
https://gitversion.readthedocs.io/en/latest
https://gitversion.readthedocs.io/en/latest
https://gitversion.readthedocs.io/en/latest
https://gitversion.readthedocs.io/en/latest
http://bit.ly/2ProdyG
http://bit.ly/2ProdyG
http://bit.ly/2ProdyG
http://bit.ly/2ProdyG
http://bit.ly/2ProdyG
http://bit.ly/2ProdyG
http://bit.ly/2ProdyG
http://bit.ly/2ProdyG
http://bit.ly/2ProdyG
http://bit.ly/2PrRyZH
http://bit.ly/2PrRyZH
http://bit.ly/2PrRyZH
http://bit.ly/2PrRyZH
http://bit.ly/2PrRyZH
http://bit.ly/2PrRyZH
http://bit.ly/2PrRyZH
http://bit.ly/2PrRyZH
http://bit.ly/2PrRyZH
http://www.npmjs.com
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/

Azure Artifacts and Dependency Management Chapter 7

In this recipe, we will create a sample npm module and set up a build pipeline so that its
version is updated with each build. We will then create a release pipeline to publish the
package to our Artifacts feed.

Getting ready

Our sample npm module allows any user to consume the module by using the require
statement. Calling the function will just print the demo statement to the console. For this
recipe, you need to have Node]JS installed in your machine. If you don't have it already,
download and install it from https://nodejs.org/en/download.

To check the version of the node on your machine, after installing node, run the following
command and it should print version of the node installed.

C:\Users\utkarsh>node -v
v10.15.3

Creating NPM package

1. Create a folder, then create a file named package. json using the npm init
command. For simplicity, the following code is the package. json file that I
have created after completing the npm init prompts. You can copy and paste if
you would like to use it as is:

{

"name": "print-azure-devops",
"version": "1.0.0",
"description": "A demo npm package which just prints Azure DevOps
Server 2019",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
}I
"keywords": [
"demo"
]I
"author": "Utkarsh Shigihalli (www.visualstudiogeeks.com)",
"license": "ISC"

}

2. Next, add a readme . md file and add content explaining the node module — this
appears on the package page.

[345]

https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download

Azure Artifacts and Dependency Management Chapter 7

3. Our package. json file states that the main executable for our module is
the index. js file. So, let's create that now; create a index. js file and paste in
the following code:

exports.printAzureDevOps = function () {
console.log ("Azure DevOps Server 2019")

}

As you can see, this npm package exposes a simple function named printAzureDevOps (),
which, when used, will just print Azure DevOps Server 2019 to the console.

Later on in this chapter, we will look at how to connect to this feed and consume it in a
client application.

How to do it...

As you saw previously, our npm package is a simple node module, which users can use to
print sample text. In this section, we will set up the CI so that we produce the new version
of our npm package for every build; then, we will publish it as a build artifact. We will then
consume this artifact in the release pipeline and publish the npm package to our feed.

Creating the build pipeline to update the package
version

1. Create the azure-pipelines.yml file and paste in the following code:

The sample node module and YAML file are in the code bundle
under RCP04-NPM-Artifact folder.

resources:
- repo: self
queue:

name: Default
demands: npm
name: 1.0.$(rev:r)

steps:

- task: Npm@1

displayName: 'npm version'
inputs:

[346]

Azure Artifacts and Dependency Management Chapter 7

command: custom

workingDir: 'artifacts/npm-print-azure-devops'
verbose: false

customCommand: 'version $ (build.buildnumber)'

- task: PublishBuildArtifacts@l

displayName: 'publish npm package as artifact'

inputs:

PathtoPublish: '$ (build.sourcesdirectory)/artifacts/npm-print-
azure-devops'

ArtifactName: 'npm-package'

As you can see, our build pipeline is made up of just two steps. The first step uses the npm
task to run the npm version command and supply the build number. So, the actual
command becomes npm version <new version>.This step updates the version of the
node module and sets it to build number. The last step just publishes the full contents of the
directory after the module version is updated.

Creating the release pipeline to publish the npm
package

1. Create a new release pipeline and add the build artifact of the build pipeline that
we created in the preceding Creating the build pipeline section:

All pipelines > % npm-publish
Pipeline Tasks Variables Retention Options History
Artifacts | -+ Add Stages | + Add
#

2

kil £ | Stage 1 Q

npm 9 | 1job, 1task

[
I

[347]

Azure Artifacts and Dependency Management Chapter 7

2. Next, add an npm task and select the publish command.

3. Select the correct working folder containing your package. json file and select
our Artifacts feed as the target feed:

All pipelines > ¥ npm-publish + Release ~
Pipeline Tasks Variables Retention Options History
Stage 1 i
Deployment process npm (i)
) Ts) =
Agent_job m Version | 1, o
m npm publish o i Display name *

npm publish
Command~® (i)
publish ~
F Y

Working folder with packagejson (i)

${System.DefaultWorkingDirectory)/npm/npm-package

Destination registry and authentication ~
Registry location (5)

External npm registry {including other accounts/collections

Target registry *)

cockbook-internal-feed v 0O

[348]

Azure Artifacts and Dependency Management Chapter 7

4. Save the release pipeline and create the release. The npm package should be
published to our Artifacts feed:

" CookBook .
. cookbook-internal-feed -~ + New feed

ﬂ Owvearview
E Boards

Repos

f Pipelines
rint-azure-devops
—n [q] DTS

A Test Plans -
F- Artifacts

i

Package

'B MyClassLib

How it works...

In this recipe, we learned how to create a sample npm package and a build pipeline. The
build pipeline works by simply updating the version for every build (npm recommends the
semantic versioning of packages). We then created a release pipeline and consumed our
build artifact, and then published the npm package to the Artifacts feed.

There's more...

Azure Artifacts fetches most of the metadata in the npm package from the package. json
file, and displays them on the package page under Artifacts. Keeping the metadata accurate
and clean ensures that the package can be easily discovered. From the following screenshot,
you can see where each piece of data is coming from. Keeping this information accurate
within your organization ensures that your packages convey useful information to
consumers and also helps them getting discovered easily:

[349]

Azure Artifacts and Dependency Management

Chapter 7

CookBook cookbook-internal-feed ~ [l print-azure-devops 1.0.2
. Overview Versions 0 Connect to feed L Download T Promote — Deprecate X Unpublish
ﬂ Overview
B soards _ Provenance
= Get this package
Connect Fublisher
Repos . P .
i P g o then npn dnstall print- o @ 2h ago (4] Auther information and
azure-devops(l.e.2 2 A
- wehsite from package.json
ipeli fil
q Pipelines People ile
description from
_— kage.json file Author I
Test Plans Description [
A P 9 Utkarsh Shigihalli & Website
F. Artifacts A demo npm package which just prints Azure DevOps Server
2013 Development
Source
R - & This feed
. ontents of readme.md file
Introduction Project -
This is a demo MPM package which just prints Azure DevOps LF1sc =
Server 2019 B indexjs Tags, license details
from package.json
Keywords e
"
demo

¢ Although in this recipe, we are updating the version number for each build, it is
not advised. The npm recommends semantic versioning for reliable packages.
This is explained in more detail at https://docs.npmjs.com/about-semantic—

versioning.

e The consumption of the npm package by the developer machine requires a few
additional steps. You can learn more about this at https://docs.microsoft.com/
en-us/azure/devops/artifacts/get-started-npm?view=azure-devopstabs=

windows#set-up—-authentication-on-your-development-machine.

Consuming NPM package from the Artifacts

feed

In the previous recipe, we published our sample npm package to Azure Artifacts. In this
recipe, we will explore how we can consume the artifact that we published and make use of
it. Since we have already enabled upstream sources for our repository, we can also fetch all

the dependent packages from our feed.

[350]

https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine

Azure Artifacts and Dependency Management Chapter 7

Getting ready

This recipe is a continuation of the previous Publishing NPM package to Artifacts recipe. I
recommend that you read it before continuing if you have not already done so.

To demonstrate the upstream npm package, I installed the colors package into our
original module using the npm install colors --save command. This created an
external dependency in our node module so the Artifacts would cache this external package
into our feed.

I also changed the code in our index. js file so that we can use the colors module and
print the console text in blue:

var colors = require("colors")
exports.printAzureDevOps = function () {
console.log ("Azure DevOps Server 2019".blue)

}
I have highlighted the changed text in bold.

Commit the changes and publish the package using the build and release pipelines, as
discussed in the previous recipe. You should be able to see the dependencies if you browse
the package in our feed:

[l print-azure-devops 1.0.3

4 Download T Promote — Deprecate
Provenance
Publisher
I (D Just now (4/2/2019 12:12:11 PM)
People

L Utkarsh Shigihalli

Development
Source

& This feed
Project
LT 1sC

[3 indexjs

Dependencies

colors ~1.3.3

[351]

Azure Artifacts and Dependency Management Chapter 7

How to do it...

Let's perform the following steps:

1. Go to Artifacts and click on Connect to feed; then, click on the npm link and
copy the text (as indicated by D in the following screenshot):

[« . o :
. CoolkBook cookbook-internal-feed -~ —+ New feed v Conn@:’t’ to feed B Recycle Bin
ﬂ Overview e
Connect to feed
B; Boards
D Nuset Install or restore packages using npm
Repos \ View [(What's this?)
0 npm @ ()
f el Maven All packages
& Gradle
A Test Plans
]
F Artifacts
|
)
Add e to yo T I
@, Generate npm credentials
How do | find my .npmrc files?
Close

2. Create a . npmrc file in your HOME directory (C:\Users\<username> \.npmrc
in Windows or shome/.npmrc in Linux or Mac systems) and paste in the
content. Since Artifacts requires authentication, you also want to click
on Generate npm credential and then add the contents to the npmrc file. This
generates a 90-day token.

If you have included the credentials, then it is not advised to commit the
file into the source control.

[352]

Azure Artifacts and Dependency Management Chapter 7

3. Create a simple client node application in a new folder and use the npm init
command. We then install our npm package using the npm install print-—
azure-devops --save-dev command. For simplicity, the following is my
package. json file. Notice that our npm module is referenced in
the devDependencies section:

The source code for this sample client application is included in the code
bundle under RCP04-NPM-Artifact folder.

"name": "temp",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
}I
"keywords": [],
"author": "",
"license": "ISC",
"devDependencies": {
"print-azure-devops": "~1.0.0"
}
}

4. Create a new file called print. js and paste in the following code:

var printaz = require ("print-azure-devops")
printaz.printAzureDevOps () ;

As you can see in the preceding block, we are referencing our npm package by using the
require statement and then making use of the function. To test the function, run the node
print.js command and you should see Azure DevOps Server 2019 printed to the
console:

kbook2019\artifacts\printTest>node print.js

[353]

Azure Artifacts and Dependency Management Chapter 7

How it works...

We connect to the Azure DevOps Server Artifacts feed using the . npmrc file, which
maintains the registry and authentication tokens. Once connected, we can use the usual
npm commands to get any npm packages. As with NuGet, Artifacts brings any dependent
npm packages (in our case, the colors package) and caches them in our feed. We then
consumed the npm package from the Artifacts feed in our demo application and explored
how to use it.

There's more...

Azure Artifact feeds require authentication. So, you will need to store the credentials in the
.npmrc file along with the registry URL. Microsoft recommends keeping two .npmrc files:
first, the . npmrc file at the root of the repository with just the registry URL, which you can
commit into the source control so that team members can share and connect to the same
feed; and second, the .npmrc file in your HOME directory, which includes the generated
credentials. This approach enables you to share the project's . npmrc file with the whole
team while keeping your credentials secure.

Generate npm credentials on the Connect to feed dialog generates a 90-day token, which
you can use in your . npmrc file. If you would like the token to be valid for longer than 90
days, then you will need to generate a personal access token (PAT) token with limited
scope packaging (read and write). You can find out more information about this at http://
bit.ly/2vkp5fm.

See also

e The npm config files: https://docs.npmjs.com/files/npmrc

Scanning for vulnerabilities in your package
using WhiteSource

Today, developers don't hesitate to use components that are available in public package
sources (such as npm or NuGet). With the aim of faster delivery and better productivity,
using open source software (OSS) components is encouraged across many organizations.
However, as the dependency on these third-party OSS components increases, the risk of
security vulnerabilities or hidden license requirements also increases compliance issues.

[354]

http://bit.ly/2vkp5fm
http://bit.ly/2vkp5fm
http://bit.ly/2vkp5fm
http://bit.ly/2vkp5fm
http://bit.ly/2vkp5fm
http://bit.ly/2vkp5fm
http://bit.ly/2vkp5fm
http://bit.ly/2vkp5fm
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc

Azure Artifacts and Dependency Management Chapter 7

For a business, this is critical, as issues related to compliance, liabilities, and customer
personally identifiable information (PII) can cause massive privacy and security concerns.
Identifying such issues early on in the release cycle gives you an advanced warning and
allows you enough time to fix the issues. There are many tools such as WhiteSource,
Veracode, and Checkmarx that are available, can scan for these vulnerabilities for us within
the build and release pipelines.

In this recipe, we will explore how we can make use of these tools to scan vulnerabilities in
our dependent NuGet packages. We will be using the free WhiteSource Bolt extension to
scan our dependencies during our CI build.

Getting ready

The first step is to install the WhiteSource Bolt extension from the Visual Studio
Marketplace:

1. Gotohttps://marketplace.visualstudio.com/items?itemName=whitesource.

ws-bolt and install the extension:

M Visual Studio | Marketplace #¥ azdoserverwesteurope cloudapp.azure.com / DefaultCollection Utkarsh Shigihalli

Azure DevOps > Azure Pipelines > WhiteSource Bolt

; WhiteSource Bolt

WhiteSource | 3.239installs | k& (12) | Free

Detect & fix security vulnerabilities, problematic open source licenses.

Clicking Get it free will redirect you to http://azdoserver.westeurope.cloudapp.azure.com to acquire this extension.

You can find out more information about how to install the extension at http://
bit.ly/2viImh3.

2. After you install the extension, you should see a new WhiteSource Bolt hub
under Pipelines. Click on it, and fill in your email address and name, and then
click on Save:

[355]

https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
http://bit.ly/2viImh3
http://bit.ly/2viImh3
http://bit.ly/2viImh3
http://bit.ly/2viImh3
http://bit.ly/2viImh3
http://bit.ly/2viImh3
http://bit.ly/2viImh3
http://bit.ly/2viImh3

Azure Artifacts and Dependency Management Chapter 7

Repos
f Pipelines

gy Builds
D@ Releases

% Library

i

Task groups

Deployment groups

B WhiteSource Bolt

How to do it...

We will use the existing build pipeline that we built in the first Publishing a NuGet package to
Artifacts recipe of this chapter:

1. Open the azure-pipelines.ynl file and add the following code under steps
after the dotnet build task:

- task: whitesource.ws-bolt.bolt.wss.WhiteSource Bolt@19
displayName: 'WhiteSource Bolt'
inputs:
cwd: '$(build.sourcesdirectory)'

2. Commit the changes and trigger the build. The WhiteSource Bolt task now
automatically scans all the dependencies and generates a report of vulnerabilities
and any other issues (such as outdated libraries, for example). The report is
available in the Whitesource Bolt hub under Pipelines.

[356]

Azure Artifacts and Dependency Management Chapter 7

3. Click on the hub and you will see a report as follows:

Security

Vulnerability Score Vulnerable Libraries Severity Distribution Aging Vulnerable Libraries

HighQ
SECURE
10 0 Low 0
No Known Vulnerable o n n
Vulnerabilities | (0 Outdated) 0 Vulnerable Libraries > 90 <90 <30
Days Days Days
& Mo security vulnerabilities found
License Risks and Compliance
&
License Distribution (2) License Risk Distribution
)
License Risk Level Qccurrences
= H MIT Low 8
" W Apache 2.0 Low 2
E

10 0 0 0
Llow Med High Unknown

B P

Qutdated Libraries (4) hide

How it works...

The WhiteSource Bolt free extension provides a pipeline task named WhiteSource Bolt. This
task can be used to build or release the pipeline, and it helps us to automatically scan for
any security vulnerabilities or compliance issues with dependencies and then generate a

report.

The free version only allows you to scan the project up to 5 times a day.
For enterprise level scenarios, you should consider the commercial
offering by WhiteSource.

[357]

Azure Artifacts and Dependency Management Chapter 7

There's more...

As conveyed in this section's introduction, scanning for security vulnerabilities ensures that
you can catch issues early on in the delivery lifecycle. This shift-left approach of ensuring
that the code is secure at all stages of the software development life cycle offers many
benefits. By having a repeatable, efficient early warning system for security vulnerabilities
in your pipeline, you can limit the number of unwanted vulnerabilities being introduced to
the system.

See also

. FOl‘tify extension: https://marketplace.visualstudio.com/items?itemName=
fortifyvsts.hpe-security-fortify-vsts

¢ Checkmarx extension: https://marketplace.visualstudio.com/items?
itemName=checkmarx.cxsast

e Veracode: https://marketplace.visualstudio.com/items?itemName=
Veracode.veracode-vsts-build-extension

e Secure DevOps Kit: https://marketplace.visualstudio.com/items?itemName=
azsdktm.AzSDK-task

[358]

https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task

Azure DevOps Extensions

Visual Studio Marketplace serves as a marketplace for Azure DevOps, Visual Studio,
Visual Studio Code extensions, as well as pay-for-usage extensions such as the Artifacts
extension, and Test Manager extension. It also sells subscriptions for Microsoft products
(HockeyApp, Xamarin University, and so on). According to Microsoft, at the time of
writing, VS Marketplace has more than 8,000 extensions and close to six thousand
publishers. What's more, 130,000+ users and developers have been visiting the marketplace
in search of extensions.

As you will see from a few of the following recipes, writing extensions is effortless. All you
need is a basic knowledge of web development using HTML, CSS, and JavaScript. If you
are interested in writing just build and release pipeline tasks, even knowledge of
PowerShell is enough. If you have a lot of your useful utility PowerShell scripts hidden in
your organization and want to make it useful for the rest of the world, now is the time to
expose them as extensions and join this million developer ecosystem.

In this chapter, we will go in depth into knowing more about extensions and also see a few
recipes that will show you how easy it is to develop and extend the Azure DevOps server.

Extensions and extensible points: So, what are extensions? Extensions are installable units
for Azure DevOps Server and add additional capabilities, for example:

e Build and release tools
e UI enhancements for BuildHub

Work item forms
Dashboard widgets

Custom utility tasks such as managing tags, publishing secrets to Azure Key
Vault, and so on

Azure DevOps Extensions

These additional integrations provide a simple and effective way to reach new users by
helping them get the most out of their DevOps environment. With extensions, you also
have an option to integrate external services with Azure DevOps Server. Most extensions
can be installed on both Azure DevOps Services (formally known as VSTS) and also on
Azure DevOps Server (TFS). At the time of writing, there are close to a thousand extensions
(paid and free included) on the market of different types.

Extensions are always installed at the collection level and can only be
installed by the collection administrator with edit collection level
information. The rest of the users can only request an extension to be

installed.

Extension structure: Azure DevOps extensions are made up of mainly three types. They are

as follows:

¢ Manifest.json file: A simple JSON file that contains the metadata (name, ID,
version, scopes, the category of the extension, and so on) for the extension. It is

useful for packaging into the VSIX file.

e Scripts: These files contain the logic of the extension and also any dependencies.
They are either PS1 or JS files.

e Assets: Any images, screenshots, or text files used to display information about

your extension in the marketplace:

4
i
b
-]

B

vscode

images

tasks

® _gitignore
R LICENSE

package-lock.json
package.json
README.md

s tsconfig.json

tslint.json

{} versionjson

{} vss-extension.json

Assets i

Scripts

Manifest

[360]

Azure DevOps Extensions Chapter 8

The extension can be of different types and can be categorized as follows:

e Pipeline (build/release) task extensions: These can be consumed in pipelines
(build and release) and are available as tasks for the Azure DevOps agent.
¢ Ul extensions: Ul extensions, as the name suggests, use different extension
points within Azure DevOps and enhance the usability of the Azure DevOps
Server. There can be many types of Ul extensions:
e Hub/hub groups
Add menus/toolbars

Extend work item form

Add new service connections to connect to other systems
Add new artifact types

Add custom release gates

Add dashboard widgets

Pipelines Add an artifact

Project Settings > Service connections

+ New senvice connection

Library

& Task groups

Deployment groups
XAML
Build Usage

GitHub Enterprise

§ Test Plan: Gitlab.

Jenki,

Custom Artefact Type Team configuration T

Hub Groups Context Menu

Service
Dashboard Widgets Connection

EH VSTSExtensions Team Ovefview £ # Edit) Refresh Acceptance Criteria

Exportimport

EDM ExportimportBuild . o
’ i Workitem Form Customization

Business

6832 | A 167 Discussion
b 04
2 0 download(s) today 0 dawnloadis) tod 2 0 download(s) today E po. @ i Personas affected
% 4.1/5 (27 ratings) b) 5.0/ (5 ratings) =
Exp B -
: } —
ExportimportBuild

[361]

Azure DevOps Extensions Chapter 8

The pipeline tasks can be written in either PowerShell or JavaScript. Ul
extensions, on the other hand, will need to be created in JavaScript only.
At the moment of writing this, tasks written in PowerShell can only be run
on Windows-based build agents. JavaScript-based extensions are cross-
platform and hence can be run on either Windows or Linux-based agents.
With PowerShell Core being generally available, this might change, but at
the moment, the choice of language (PowerShell or JavaScript) needs to be
decided based on the platform you would like to support.

In this chapter, we will cover the following recipes:

¢ Creating the VS Marketplace publisher

¢ Creating a simple task to clean folders

¢ Creating a Ul extension

¢ Creating a service connection extension to connect to GitLab

¢ Creating a pipeline task to consume a custom service connection

Publishing extensions to marketplace through CI/CD

Creating the VS Marketplace publisher

Every extension that needs to be published to the marketplace needs to be published from a
publisher. All extensions live under that publisher. Anyone can create the publisher by
going to VS Marketplace management portal.

In this recipe, we will see how we can create a VS Marketplace publisher. In the next recipe,
we will use this publisher while creating the task and also while publishing the task.

Getting ready

Creating the publisher is easy and to create one, you should have Microsoft account email
address (@outlook.com/@hotmail . com for example).

[362]

Azure DevOps Extensions Chapter 8

Let's start creating a publisher:

1. Navigate to the VS Marketplace management portal by going to this
URL: https://aka.ms/vsmarketplace-manage.

2. If you have not already signed in, you will get a prompt when using your
Microsoft account:

% Microsoft
Sign in

Email address, phone number or Skype

Mo account? Create one!

Can't access your account?

Mext

3. Sign in using your Microsoft account. If you do not have a Microsoft account
already, create one. You can also use your Azure Active Directory (AAD)-linked
corporate account if you would like to create the publisher using your corporate
account.

[363 1]

https://aka.ms/vsmarketplace-manage
https://aka.ms/vsmarketplace-manage
https://aka.ms/vsmarketplace-manage
https://aka.ms/vsmarketplace-manage
https://aka.ms/vsmarketplace-manage
https://aka.ms/vsmarketplace-manage
https://aka.ms/vsmarketplace-manage
https://aka.ms/vsmarketplace-manage
https://aka.ms/vsmarketplace-manage
https://aka.ms/vsmarketplace-manage
https://aka.ms/vsmarketplace-manage

Azure DevOps Extensions Chapter 8

How to do it...

1. Go to VS Marketplace management portal (https://marketplace.
visualstudio.com/manage). You might get presented with the following screen:

(] & marketplace.visualstudio.com/manage

g Visual Studio | Marketplace Utkarsh Shigihalli (essyesssm——) Sign out

i
I
T
w

Manage Publishers & Extensions

No publisher found

—+ Create publisher

It's lonely here!

Create publisher

[364]

https://marketplace.visualstudio.com/manage
https://marketplace.visualstudio.com/manage
https://marketplace.visualstudio.com/manage
https://marketplace.visualstudio.com/manage
https://marketplace.visualstudio.com/manage
https://marketplace.visualstudio.com/manage
https://marketplace.visualstudio.com/manage
https://marketplace.visualstudio.com/manage
https://marketplace.visualstudio.com/manage
https://marketplace.visualstudio.com/manage

Azure DevOps Extensions Chapter 8

2. Clicking Create publisher button, you will be presented with the form with all
the input fields to create the required publisher:

Sign up to publish & manage extensions in this Marketplace. By proceeding, you agree to the Visual Studio |
~, Login details
Logged in as u.shigihalli in the directory
Change
= Basic information
Name* (O
Name of the publisher
D* @
Unique publisher identifier

= About you ~

We will use this information to populate your publisher profile page

Description

Details of publisher

Logo @

128px X 128px

Drag and Drop file or
click to upload

[365]

Azure DevOps Extensions Chapter 8

3. Enter all the required information and click Create. Ensure you have checked
the Send publisher verification request in order to publish extensions publicly
for Azure DevOps Services option. Publisher verification will be conducted by
Microsoft and it is mandatory if you would like your extensions to be made
public:

J Required only if you intend to publish extensions for Azure DevOps ~

Send publisher verification reguest in order to publish extensions publicly for Azure DevOps Services

4. The publisher will be created and you will be ready to publish the extension.

If the publisher is unverified, you will be able to publish the extension as a
private extension only. The average time is two to three working days for
Microsoft to verify the publisher. Once the publisher is verified, you are
free to make your extension public, which will allow others to find and
install your extension.

You will be able to provide access to this publisher to additional users
within your organization. This allows organizations to enable multiple
users to author an extension under one publisher account.

Creating a simple task to clean folders

To get comfortable with creating extensions, in this recipe, we will create a simple pipeline
extension. This extension will contain a single task to take a minmatch search pattern
(https://aka.ms/minimatchexamples) and delete files and/or folders in a specified
directory. The task can be used in the build or release pipeline to clean build artifacts, and
eventually you will publish the cleaned directory.

[366]

https://aka.ms/minimatchexamples
https://aka.ms/minimatchexamples
https://aka.ms/minimatchexamples
https://aka.ms/minimatchexamples
https://aka.ms/minimatchexamples
https://aka.ms/minimatchexamples
https://aka.ms/minimatchexamples
https://aka.ms/minimatchexamples
https://aka.ms/minimatchexamples

Azure DevOps Extensions Chapter 8

Getting ready

We are going to develop this extension using TypeScript, which automatically gets
transpiled into JavaScript. Writing in JavaScript ensures that this extension is automatically
cross-platform and hence a task, or tasks, can run on Windows, Mac, or Linux-based
agents. Our development environment will be as follows:

¢ Editor - VSCode: Free developer-friendly editor. However, you are free to use
any editor with which you are comfortable.
¢ Language — Typescript: Provides type checking and other benefits (more info can
be found here: https://www.typescriptlang.org).Install it using the npm
install -g typescript command.
e NPM packages for the task:
¢ Azure Pipelines Task Lib: Contains utility functions and required
dependencies to be recognized by Azure Pipelines agents (https:/
/www.npmjs.com/package/azure—pipelines—task—lib)
¢ del package: A utility node package to delete the folders (https://
www.npmjs.com/package/del).
¢ Node CLI for Azure DevOps (tfx-cli package): Command-line utility to package
and publish the extensions for Azure DevOps (https://www.npmjs.com/
package/tfx-cli).

How to do it...

Let us first start by creating the manifest file.

Creating manifest

We will start by creating the manifest file, which contains the metadata about our
extension:

1. To do that, open Visual Studio and right-click and create a new file and name
it vss—extension. json.

2. Copy the complete code from the vss-extension. json file provided in the
code bundle and paste it in the file you have created in step 1:

{
"manifestVersion": 1,
"id": "cookbook-clean-folder",

[367]

https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli

Azure DevOps Extensions Chapter 8

"name": "Clean Folder",

"publisher": "onlyutkarsh",

"version": "0.0.6",

"public": false,

"description": "A simple utility extension to delete
files/folders based on glob pattern specified",

"categories": [

"Azure Pipelines",
"Azure Repos"

]l

//code is trimmed for brevity

For more information about each element of the manifest file, click
here: nttp://bit.1ly/2ROmvIA.

Key elements to note in the file are version, id, contributions, publisher, and files.
Here is an explanation of each:

e version: Version of the extension.

e id: The unique identifier for the extension.

e contributions: Various contributions this extension will contain. Our
extension is going to contain only a pipelines task, so the contribution will be
of ms.vss-distributed-task.task type.

® publisher: A unique publisher ID of the author of the extension. You need a
publisher to be created if the extension needs to be published to the marketplace.
We have already seen how we can create the publisher in the Creating the VS
Marketplace publisher recipe.

Installing dependencies

1. We will now need to initialize and install the NPM dependencies. To do that,
first we will need to initialize package. json.

2. In Visual Studio Code, click View | Terminal and type npm init -y.This will
create package . json with the basic elements already filled.

3. Next, let's install the required packages, in our case, those are the azure-
pipelines-task-1lib and del packages. So, in the terminal, execute the
following command:

npm install azure-pipelines—-task-1lib del —--save

[368]

http://bit.ly/2R0mvIA
http://bit.ly/2R0mvIA
http://bit.ly/2R0mvIA
http://bit.ly/2R0mvIA
http://bit.ly/2R0mvIA
http://bit.ly/2R0mvIA
http://bit.ly/2R0mvIA
http://bit.ly/2R0mvIA
http://bit.ly/2R0mvIA

Azure DevOps Extensions Chapter 8

4. Next, we will need to install a few dev dependencies. These dependencies
provide us type definitions and help TypeScript to perform type checking. Since
these are development-time dependencies only, we are going to use the ——save-
dev flag.

npm install Qtypes/del @types/node @types/q —--save-dev
So, our final package. json file looks as follows:

{

"name": "clean-folder",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
}I
"author": "",
"license": "ISC",
"dependencies": {
"azure-pipelines-task-1lib": "~2.7.7",
"del": "~3.0.0"
}I
"devDependencies": {
"Qtypes/del": "~3.0.1",
"@types/node": "~10.12.15",
"@types/q": "~1.5.1"

Creating the task.json file
Each task has to have the JSON file describing the inputs for the task:

1. Let's create a JSON file. Create a new file and save it as task. json. The complete
code can be found in the Chapter08 folder of the code bundle.

[369 1]

Azure DevOps Extensions Chapter 8

2. Notice the inputs element. We have two elements for two inputs we will
need—first, for the directory to clean and second, for the search pattern.

id and name are unique identifiers for the task and version and need to
be incremented every time we upload the task.

"id": "20a947£2-c251-42e8-8376-5d7c5c1£8e71",
"name": "cleanfolder",
"friendlyName": "Clean Folder",
"description": "Clean folder using the glob pattern",
"helpMarkDown": " [More
Information] (https://marketplace.visualstudio.com/items?itemNam
e=onlyutkarsh.utkarsh-utility-tasks) -
v#{GitVersion.MajorMinorPatch}#",
"category": "Utility",
"visibility": [
"Build",
"Release"

1,
//code is trimmed for the sake of brevity

Finally, notice the execution element of the task. json.

"execution": {
"Nodel0": {
"target": "index.js"
}I
"Node": {
"target": "index.js"

}

This is telling the pipeline agent that our execution handler is Node (for both Node v10 and
older Node versions) and that the agent should look for a file named index. js in the task
to start the execution. The agent passes the inputs filled by the user to index. js.

[370]

Azure DevOps Extensions Chapter 8

Creating the script (index.js) file

1. The next step is to create the script file that will have logic to clean the directory
given the path and the search pattern.

2. Right-click on the explorer and create a new file and name it index.ts, paste the
following code, and save it. When built, the file automatically gets transpiled into
an index. js file:

import * as tl from "azure-pipelines-task-1ib";
import * as del from "del";

async function main() {
try {
let sourceDir = tl.getInput ("rootDirectory", false) ||
tl.getVariable ("System.DefaultWorkingDirectory");
let globPattern = tl.getDelimitedInput ("globPattern",
"\n") ,.

console.info ('Deleting contents from 'S${sourceDir}'’);
console.info (" Glob pattern:’);
console.info (' ${globPattern.join("\n")});
let paths = del.sync(globPattern, {

cwd: sourceDir,

root: sourceDir

)i

console.info
console.info

(*Deleted content:’);

¢
console.info (" ${paths.join("\n")}");

¢

('

hhkkkkhkhkhkhkrhhkrhkrkhkxkx®),-

CODSOle.infO ********************\);

console.info ("All Done");

}

catch (error) {
console.error ("Error occurred", error);
tl.error (error);
tl.setResult (t1l.TaskResult.Failed, error);

main ()
.then(() => { })
.catch (reason => {
console.error (reason);

)i

[371]

Azure DevOps Extensions Chapter 8

How it works...

In the first two lines of the index. ts file we created in Creating the script file section above,
we are importing the modules we need so that we get the necessary functions to use in the
task. The task library import lets us read the inputs and also set the result to success or
failure. Next, we create a simple main () function that is automatically called when the task
is executed. Within the main method, we first read the inputs, specifically directory path,
and the search pattern. Note that we are letting users specify multiple glob patterns

separated by a new line that we read using
tl.getDelimitedInput ("globPattern”, "\n").The del package understands the

glob pattern by default, and hence we just need to set the directory passed as a working
directory and cleaning is automatically handled by the package.

See also

¢ Microsoft has open sourced most of the tasks on GitHub (https://github.com/
Microsoft/azure-pipelines-tasks); all the tasks are good candidates to
reference and learn writing tasks.

e Different extension points are maintained here: https://docs.microsoft.com/
en-us/azure/devops/extend/reference/targets/overview?view=vsts.

o The task. json schema is maintained on GitHub here: https://github.com/
Microsoft/azure-pipelines-task-1lib/blob/master/tasks.schema. json.

e Microsoft Contribution Guide Extension: https://marketplace.visualstudio.

com/items?itemName=ms-samples.samples—contributions—guide.

Creating a Ul extension

In the previous recipe, we saw how to create a build and release pipeline task to clean the
directory. Pipeline tasks help you to use them in your build and release pipeline and assist
you in automating the activities as per your task's logic.

In this topic, we will see how to create Ul extensions that integrate and extend the user
interface of the Azure DevOps Server. The Ul extensions internal structure is similar to
pipeline tasks—containing a manifest file, assets, and code files.

[372]

https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide

Azure DevOps Extensions

Chapter 8

Because Ul extensions integrate and run on the server (which is a web interface), you will
always use JavaScript to write your core logic. Some of the popular Ul extensions are as

follows:

o Azure Artifacts: https://marketplace.visualstudio.com/items?itemName=ms.

feed

e Delivery Plans: https://marketplace.visualstudio.com/items?itemName=ms.

vss—plans

° Tésthdanager:https://marketplace.visualstudio.com/items?itemName=ms.

vss—testmanager-web

In this recipe, we will build a Ul extension that will customize the work item form so that
we get a new context menu. The idea is to help testers so that they can automatically
generate test cases for well-written user acceptance criteria. The user will be able to click

our menu item and generate the manual test cases.

Getting ready

To show you the outcome of our working extension, please see the following screenshot:

Recently updated) Back to Work Items

B PRODUCT BACKLOG ITEM 124
o 124 User should be able to add two numbers in Calculator
@ unassigned ¥ 0 comments Add tag
= _
New VSTSExtensions
B New backlog item teration VSTSExtensions
* Description Details
as fre
a 2
H Acceptance Criteria
Given | have entered 50 into the calculator
And | have also entered 70 into the calculator
When | press add e ares
Then the result should be 120 on the screen Business

Discussion Personas affected

& O -

What persona

e

s affected by this

Developmen

+ Add link

Development hat

Create a new bra
Related Wor

+ Add link ~

There are na link

o

2of3 T L

Follow O
New linked work item

Change type..

Move to team project
Create copy of work item...
Email work item

Delete

Templates >

Start storybearding

Request feedback
New branch...
Customize

Keyboard shortcuts

4| Generate Tests

[373]

https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web

Azure DevOps Extensions Chapter 8

We will be adding a context menu named Generate Tests and clicking that the extension
will parse the acceptance criteria and do simple parsing of the acceptance criteria written in
Gherkin statements (https://docs.cucumber.io/gherkin/reference) and generate
manual test cases and assign it to the first available test plan.

We will again write this using TypeScript language. We will use the following:

¢ Editor - VSCode: Free developer-friendly editor. However, you are free to use
any editor you are comfortable with.

¢ Language - TypeScript: Provides type checking and other benefits (https://
www.typescriptlang.org). Install it using npm install -g typescript.

e NPM packages for the task:

e Microsoft VSS Web Extension SDK: An SDK to communicate
with Azure DevOps Ul (https://www.npmjs.com/package/vss—
web-extension-sdk).

e html-parse-stringify: A utility node package to parse the
acceptance criteria HTML (https://www.npmjs. com/package/del).

e sanitize-html: A utility node package to clean the HTML from
the acceptance criteria field (https://www.npmjs.com/package/
sanitize-html).

e Node CLI for Azure DevOps (tfx-cli package): Command-line
utility to package and publish the extensions for Azure DevOps
(https ://www.npmjs.com/package/t fx—cli).

How to do it...

As in the previous recipe, we will again start by creating a manifest file. We will then add
the script file (. js file) and a few assets to finally use it in the marketplace.

[374]

https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli

Azure DevOps Extensions Chapter 8

Creating manifest.json

As discussed in the introduction to this chapter, manifest (vss-extension. json) file
contains the metadata for the extension.

1. Create a new file in VS code and name it vss—extension. json. The complete
code can be found in the code bundle under RCP03-UIExtension-Extensions
folder. Paste the complete code in the vss-extension. json file:

{

"manifestVersion": 1,

"id": "acceptance-demo",

"version": "0.0.8",

"name": "Acceptance Criteria to Test Case",
"description": "Convert acceptance criteria written in

Gherkin to Test cases.",
"publisher": "onlyutkarsh",
"public": false,

"targets": [
{

"id": "Microsoft.VisualStudio.Services"

}

I
//code is trimmed for the sake of brevity

2. Now install the dependencies:
1. As in the pipeline extension, we need to initialize NPM and install all

the required node packages. As before, do that by running the npm -y
command.
2. Next, run following command to install the required dependencies:

npm install vss—-web-extension-sdk sanitize-html html-
parse-stringify

3. To provide the required types, add additional dev dependencies using
the following command:

npm install Q@types/jquery @types/node --save-dev

[375]

Azure DevOps Extensions Chapter 8

Your package. json should now look as follows:

{
"name": "demol",
"version": "1.0.0",
"description": "Utility extension",
"main": "index.js",
"author": "Utkarsh Shigihalli",
"license": "MIT",
"scripts": {},
"devDependencies": {
"@types/jquery": "~3.3.21",
"@types/node": "~10.12.9",
"typescript": "72.9.2"
}I
"dependencies": {
"html-parse-stringify": "~1.0.3",
"sanitize-html": "~1.19.1",
"vss-web-extension-sdk": "~5.141.0"
}
}

3. Finally, we need the VSs.SDK.min. js file from vss-web-extension-sdk to be
referenced in our files so that we can consume utility functions from it. Thus, we
need to copy this file from the <root folder>\node_modules\vss-web-
extension-sdk\1lib\ folder. I have copied this file into a separate directory
called 1ib as shown here:

vscode
B images
& lib

J5 VS5.5DK.minjs
®

scripts

SIc

I .gitignore

[376]

Azure DevOps Extensions Chapter 8

Creating the HTML page to host initialization code

Now we will start creating the HTML page we defined in the contribution section of our
manifest file. The HTML page acts as a host page for our JavaScript action handler and
initialization code. Azure DevOps Extension SDK loads this file dynamically when we click

on the menu item we defined in the manifest file:

1. Create a file named generateTestCase.html and paste the following code:

The file name is case sensitive and the name you declare in the vss-
extension. json manifest file should match the file you create here.

<!DOCTYPE html>
<html lang="en">
<head>

<script src="../1lib/VSS.SDK.min.js"></script>
<script>
VSS.init ({
explicitNotifyLoaded: true,
usePlatformScripts: true,
)i
VSS.ready (function () {
console.log("VSS Ready ");
VSS.require (["src/generateTestCase"], function (generate) {

console.log("Initialization complete...")

)i
b
</script>
</head>
<body style="overflow:auto;">

</body>
</html>

We are doing a couple of key things here in the head tags of this file:

1. First, we reference the vss.sDK.min. js file we copied in the previous step. This
file contained all the required modules for working with Azure DevOps
extensions. Specifically, VSS SDK ships its own version of the require module.

[377]

Azure DevOps Extensions Chapter 8

2. In the first part of the script section, we initiate the handshake with the host
window and specify that we will explicitly let Azure DevOps know when the
extension is loaded by setting explicitNotifyLoaded: true. We will also
notify from our script file when the loading is complete as you will see next. Now
we will specify that we require the platform scripts (controls, REST clients, and
so on) from the SDK, thus making Azure DevOps load any inbuilt scripts before
loading our extension.

3. In the next step, with VSs. ready (), we are registering a callback that gets called
once the initial handshake is completed with the host window. Within this
callback function, we load our generateTestCase module, which we are going
to write next.

For more information on the all available methods with the VSS SDK,
please visit http://bit.ly/2GZivVtp.

Creating the script file

At this point, we have created the vss—extension. json, initialized NPM and installed the
dependencies using package . json, and also created an HTML page to host the
initialization code for our extension.

In this step, we will write the code to read the acceptance criteria written in Gherkin format,
parse the text, and finally create the test cases:

1. Create a file name, generateTestCase.ts, and paste the following text.

/// <reference types="vss-web-extension-sdk" />

import { WorkItemFormService } from
"TFS/WorkItemTracking/Services";

import * as TestClient from "TFS/TestManagement/RestClient";
import * as WitClient from "TFS/WorkItemTracking/RestClient";
//code is trimmed for the sake of brevity

export class GenerateTestCase {
public async execute (actionContext) {

try {
let work = await WorkItemFormService.getService();
let availableFields = await work.getFields();
let values = await

work.getFieldValues (["System.Id",
"Microsoft.VSTS.Common.AcceptanceCriteria"]);

[378]

http://bit.ly/2GZiVtp
http://bit.ly/2GZiVtp
http://bit.ly/2GZiVtp
http://bit.ly/2GZiVtp
http://bit.ly/2GZiVtp
http://bit.ly/2GZiVtp
http://bit.ly/2GZiVtp
http://bit.ly/2GZiVtp
http://bit.ly/2GZiVtp

Azure DevOps Extensions Chapter 8

//some of the code is trimmed for the sake of brevity

let testClient = TestClient.getClient ();
let plans = await

testClient.getPlans (webContext.project.id);
console.log("plans", plans);

let selectedPlan = plans[0];

let suite = await
testClient.getTestSuitesForPlan (webContext.project.id,
selectedPlan.id);

console.log("suite", suite);

//some of the code is trimmed for the sake of
brevity
witDoc =
testBaseHelper.saveActions (witDoc) ;
let witClient = WitClient.getClient ();
let workitem = await
witClient.createWorkItem(witDoc, webContext.project.id, "Test
Case", false, false, true);
alert ("Workitem S${workitem.id} is
created’);
await
testClient.addTestCasesToSuite (webContext.project.id,
selectedPlan.id, suite[0].id, ~${workitem.id}");
console.log(workitem) ;
i
i
}
catch (err) {
alert (err);

}

let content = "";

function getAcceptanceCriteria(ast) {
//code is trimmed for the sake of brevity

}

VSS.register (VSS.getContribution () .1id, context => {
let action = new GenerateTestCase();
return action;

i

VSS.notifyLoadSucceeded() ;

[379]

Azure DevOps Extensions Chapter 8

Full source is available in the code bundle under RCP03-UIExtension—
Extensions folder.

2. Create another file named GherkinParser.ts and paste the code from
GherkinParser.ts file from the code bundle. This exposes a function to parse
the gherkin text and give a tree of scenarios and features:

export function parseGherkin (text: string) {
//code is trimmed for the sake of brevity
return features;

How it works...

Let's first decipher the generateTestCase.ts file. Notice at the bottom of the
generateTestCase. ts file we have the following:

VSS.register (VSS.getContribution() .id, context => {
let action = new GenerateTestCase();
return action;

)i
VSS.notifyLoadSucceeded() ;

The first thing we do here is to register an object that this extension exposes to the host
frame. We do that using the VSS.register () function. This takes two parameters:

e The first is the instanceId, which is the menu id we registered in the manifest.
This should be a fully qualified name in the <publisherid>.<menu-
id> format. We could hardcode the menu ID as onlyutkarsh.sample-work-
item-menu., but using VSS.getContribution () .id makes it simpler and
automatically gets the right ID.

¢ The second parameter is an object and we are passing a function that returns the
object instance. Within this function, we instantiate and return the object of our
class. The class should have a public function named execute. VSS SDK
automatically invokes this method to be called when our context menu is clicked.

Finally, remember how we specified explicitNotifyLoaded: true in the preceding
HTML file? The last line, VSS.notifyLoadSucceeded (), in generateTestCase.ts,
notifies that the extension has been loaded successfully.

[380]

Azure DevOps Extensions Chapter 8

Let's understand GenerateTestCase.ts. As you might have seen, the core logic of
parsing the acceptance criteria and generating a test case lies in our GenerateTestCase
class.

First, we have a couple of import statements. Most of them are from RestClient classes
from VSS SDK, which allow us to query WorkItem, TestPlans, and TestSuites. The rest
of the import statements provide utility methods (SanitizeHtml, html, and parser) to
clean the acceptance criteria text.

At the start of the try block, we first get the web context from the SDK, and this returns an
object containing collection and project information:

let webContext = VSS.getWebContext (); // contains collection, project and
user details.

To read the acceptance criteria from the work item form, we need to consume
WorkItemFormService from the VSS SDK. We do that using the following code:

// get acceptance criteria

let work = await WorkItemFormService.getService();
let values = await work.getFieldValues (["System.Id",
"Microsoft.VSTS.Common.AcceptanceCriteria”]);

let rawAcceptanceCriteria =
values["Microsoft.VSTS.Common.AcceptanceCriteria"];

The acceptance criteria returned by the preceding call is in the raw form including the
HTML tags. But we are interested only in the text form. So, we remove the HTML tags
using html-parse-stringify and the sanitize-html utility NPM packages. Note
that getAcceptanceCriteria is a utility function that recursively scans for elements
which has text tag with the help of html-parse-stringify

Finally, we are are using our parseAsGherkin () utility function from parser.ts to get
the list of features and scenarios and each line under scenario becomes a step:

// parse acceptance criteria to gherkin syntax tree

let ast = html.parse(rawAcceptanceCriteria);
getAcceptanceCriteria(ast);
let sanitizedAcceptanceCriteria = SanitizeHtml (content, {
allowedTags: [],
allowedAttributes: []

P i

let parsedResponse = parser.parseAsGherkin(sanitizedAcceptanceCriteria);

[381]

Azure DevOps Extensions Chapter 8

Now that we have the acceptance criteria in a usable format, we will get the TestPlan and
TestSuite so that we can create TestCase for each scenario and add TestStep to each
line of the scenario. To query Test objects, we will need to use TestClient. We do that as
follows:

let testClient = TestClient.getClient ();

let plans = await testClient.getPlans (webContext.project.id);

let selectedPlan = plans[0]; //for demo purpose we are selecting the first
available test plan

let suite = await testClient.getTestSuitesForPlan (webContext.project.id,
selectedPlan.id);

Next, we traverse through each scenario and for each line item, we create TestStep using
the following code. The following code is using the scenario title for the TestCase title.
Finally, once the test case is created, we add that to the first Test Suite in the selected
TestPlan:

//code is trimmed for the sake of brevity
let helper = new TestBaseHelper();
let testBaseHelper = helper.create();

parsedResponse. forEach (feature => {
feature.Scenarios.forEach (async scenario => {
let witDoc: JsonPatchDocument =

[

"op": "add",
"path": "/fields/System.Title",
"value": scenario.Text
}I
{
"op": "add",
"path": "/fields/System.Description",
"from": null,
"value": feature.Desire

1;

scenario.Steps.forEach(step => {
let testStep = testBaseHelper.createTestStep();
testStep.setTitle (step);
testBaseHelper.actions.push (testStep);

P

witDoc = testBaseHelper.saveActions (witDoc) ;

let witClient = WitClient.getClient ();

let workitem = await witClient.createWorkItem(witDoc,

webContext.project.id, "Test Case", false, false, true);
alert ("Workitem ${workitem.id} is created’);

[382]

Azure DevOps Extensions Chapter 8

await
testClient.addTestCasesToSuite (webContext.project.id, selectedPlan.id,
suite[0].1id, "${workitem.id}’);

console.log(workitem) ;

1)
1)

How it works...

Apart from id, version, and publisher, the important sections in the manifest file above
are as follows:

¢ Scopes: This element defines the authorization scopes required for this extension.
Because our extension needs to needs to create a test case, which is a work item
as well, our extension will request for vso.work_write and vso.test_write.
For a full list of scopes click here: http://bit.ly/2Rfhiwd.

¢ Demands: Demands let your extension declare capabilities that are necessary for
your extension to work. For example, if you would like this extension to be
dependent on another extension installed, say the Test Manager extension, we
could write a demand using extension/{id} syntax as
follows—where ms . vss-testmanager-web is the id of the extension from the
marketplace URL for the Test
hdanagerexienﬁonr—https://marketplace.visualstudio.com/items?itemName

=ms .vss—testmanager-web:

"demands": [
"extension/ms.vss-testmanager-web"

]l

For a full list of available demands, click here: http://bit.ly/2scMspr.

e Contributions: This section defines the contributions. Because we are extending
a work item form's context menu, we add a contribution of the ms.vss—
web.action type and target ms.vss-work-web.work-item-context-menu so
that when clicked on, the context menu action is triggered.

[383]

http://bit.ly/2RfhiwJ
http://bit.ly/2RfhiwJ
http://bit.ly/2RfhiwJ
http://bit.ly/2RfhiwJ
http://bit.ly/2RfhiwJ
http://bit.ly/2RfhiwJ
http://bit.ly/2RfhiwJ
http://bit.ly/2RfhiwJ
http://bit.ly/2RfhiwJ
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
http://bit.ly/2scMspr
http://bit.ly/2scMspr
http://bit.ly/2scMspr
http://bit.ly/2scMspr
http://bit.ly/2scMspr
http://bit.ly/2scMspr
http://bit.ly/2scMspr
http://bit.ly/2scMspr
http://bit.ly/2scMspr

Azure DevOps Extensions Chapter 8

The properties section under contribution defines additional menu item
properties; text defines the menu text, and the value for titleis
displayed as a tooltip when hovered over the menu item; toolbarText is
shown when the cursor is on the menu item; icon is for the menu item;
and finally uri is the URI of the HTML page, which has the action
handler for the registered menu item.

e Files: This element defines the assets and script that need to the part of the
extension. Please note, we are setting "addressable": true for all the assets
that need to be accessible via a URL by Azure DevOps. We also include
the src, 1ib, and images directories, as they contain our necessary files for the
marketplace.

e Public: This controls whether the extension is visible to everyone on the VS
marketplace. It is a good idea to keep this to false during development.

There's more...

¢ Although we used VSS Web Extension SDK in this recipe, Microsoft is
developing a react based SDK called Azure DevOps Web Extension SDK, which
will replace the VSS Web Extension SDK we used.

e For more information on Azure Dev Web Extension SDK - https://github.com/
Microsoft/azure-devops—extension-sdk

e Sample extension using Azure DevOps Web Extension SDK - https://github.
com/Microsoft/azure-devops—-extension-sample

Creating a service connection extension to
connect to GitLab

Service connections in Azure DevOps Server (and Services) lets you connect to external
services. Service connections once created can be used in your build or release pipelines.

[384]

https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample

Azure DevOps Extensions

Service connections are created at the project level. This means a service

connection created for one project is not available in another project.

GitLab, if you don't know already, is another cloud Git service provider. Azure DevOps
Server, by default, provides a service connection to connect to GitHub and lets you connect
to an external Git repository using an External Git connection. Unfortunately, the External
Git service connection lets you connect to one repository (or project if you are a GitLab

user):

Add an external Git repository connection

?| Allow al pipelines to use this ¢

If you need to connect to another repository, you need to create another service connection

with a different Git repository URL and save it as a different service connection.

We can solve this problem by creating a custom service connection that lets us connect to

GitLab. In this recipe, we will see how to create custom service connections.

[385]

Azure DevOps Extensions Chapter 8

We can then use this new service connection to connect to other GitLab repositories in our
pipeline. At the end of the recipe, a new service connection dialog will show a new custom
GitLab connection type:

Project Settings - Service connections
< Genera Service connections XAML build services
Overview 4+ Mew service connection ~
Services o
: GitHub
Teams
* GitHub Enterprise
Security Gitlab
Motifications Jenkins
service hooks Kubernetes
Dashboards npm
MNuGet
< I"."'"."I-:"-l\
Service Fabric
Project configuration
Snykio Auth Token
Team configuration -

[386 1]

Azure DevOps Extensions

Chapter 8

Selecting this service connection type will prompt users' GitLab credentials and save it so

that this connection can be used in the pipeline:

Add Gitlab service connection

GitlabAuth
https:/fgitlab.com
E onlyutkarsh

Learn more about Creating GitLab tokens and Service connections

Connection: & Verified

S

@

@

Verify connection

Close

To authenticate with GitLab, you have three options as follows. In this recipe, we will allow

users to authenticate with GitLab using personal access tokens:

e Oauth?2 tokens
e Personal access tokens
e Session cookies

More information about supported authentication types for GitLab can be

found here: http://bit.ly/2VKQiUr.

[387]

http://bit.ly/2VKQiUr
http://bit.ly/2VKQiUr
http://bit.ly/2VKQiUr
http://bit.ly/2VKQiUr
http://bit.ly/2VKQiUr
http://bit.ly/2VKQiUr
http://bit.ly/2VKQiUr
http://bit.ly/2VKQiUr
http://bit.ly/2VKQiUr

Azure DevOps Extensions Chapter 8

Getting ready

The first step is to create the manifest file (vss-extension. json) with our extension
metadata. As in other recipes, Azure DevOps exposes a service connection as a contribution
in the manifest, thus allowing us to add our custom service connection contribution.

The steps we will have to get this working are as follows:

1. Create a manifest file and define service connection contribution.

2. Define input fields for the contribution to accept Connection name, Server URL,
Username, and API Token.

3. Provide help links.

4. Provide a Verify connection link, as shown in the following screenshot:

>

Add GitLab service connection

al
- . —
Connection name GitlabAuth
Server URL https://gitlab.com @®
Username chlyutkarsh @®
AP Token R (i)
Learn more about Creating GitLab tokens and Service connections @,J
Connection: @ Verified @/J Merify connection

[388]

Azure DevOps Extensions Chapter 8

How to do it...

1.

{

Open Visual Studio Code, and create a new file and call it vss-

extension. json. Add the contribution of type ms.vss-endpoint.service-
endpoint-type. For rest of the content in the vss-extension. json, take a
look at the file in RCP04-GitLab-Extensions folder.

Please note we are extending the same extension in the next few recipes.
You might see more information in the source code. I am highlighting the
content relevant to this recipe below.

//some of the code is trimmed for the sake of brevity

{

"manifestVersion": 1,

"contributions": [
"id": "gitlab-downloadrepo-task",
"type": "ms.vss-distributed-task.task",
"targets": [

"ms.vss—distributed-task.tasks"

1y

"properties": {

by
"inputDescriptors": [

{

1y

"dataSources": [

] ’
"authenticationSchemes": [
{
"type": "ms.vss—endpoint.endpoint—-auth-scheme-token",
"inputDescriptors": [
{
"id": "apitoken",
"name": "API Token",
"description": "GitLab API Token",
"inputMode": "passwordbox",
"isConfidential": true,

[389]

Azure DevOps Extensions Chapter 8

"validation": {
"isRequired": true,
"dataType": "string"

s

"helpMarkDown": "<a

href=\"https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html\
" target=\"_blank\">Creating a personal access token"
t
1,

"headers": |

I

"helpMarkDown": "Learn more about <a
href=\"https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html\
" target=\"_blank\">Creating GitLab tokens and <a
href=\"https://docs.microsoft.com/en-us/vsts/pipelines/library/service-endp
oints?view=vsts\" target=\"_blank\">Service connections "

t
b

For defining a custom service connection, adding a contribution to a manifest file is enough.
We will see how it works in the next section.

How it works...

As we have seen in other recipes, a few of the fields such as name, id, publisher, and so
on, are critical for defining the extension. We have covered these in the previous recipes.
Let's dig deeper.

The key piece of information is in the contributions array. For defining a custom service
endpoint, we add a contribution of the ms.vss—-endpoint.service-endpoint-type
typethat&ugeﬁ;ms.vss—endpoint.endpoint—types.

Next, under the properties element, we have name, icon, and Display name fields that
uniquely identify this custom endpoint. These are used to select this service connection in
the pipeline task:

[390]

Azure DevOps Extensions Chapter 8

Download GitLab repository @ @ Link settings [f] View YAML X Remove

Version 1% s

Display name *
Download GitLab repository
GitLab Connection *) | Manage & ip—
‘ | V| C_) = New

MyGitLab

Repository * (D)
| v ©

(L) This setting is required.

Tasks using a custom service connection need to provide input for the
service connection they support. We will see how we can write a task to
make use of this service connection in our next recipe.

Next, our custom service connection has input fields to accept values from the user.
Specifically, for accepting the name for the service connection, API URI (this can be custom
URL for GitLab Enterprise edition) for authenticating with GitLab, username and finally
private access token. We did that by adding a properties section for our contribution.

So let's look into these, one by one:

e url: URL is a mandatory field that every custom service connection needs to
provide. In our case, we know that the default value will be https://gitlab.
com. S0, we define it as follows:

"url": {

"displayName": "Server URL",

"value": "https://gitlab.com",

"helpText": "Client service connection for GitLab. You
don't need to change this unless you are using self hosted
GitLab instance, in which case you may need to point to your
instance URL. ",

"isVisible": true
}I

[391]

https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com

Azure DevOps Extensions Chapter 8

e helpText: This provides tooltip information. If you want this field not to be
invisible (and not editable) for the user, use the isvisible property. For more
details, see http://bit.1ly/2RGtbew.

e inputDescriptors: Input fields are defined under inputDescriptors array
We create an input field for the username. Using the username, we will validate
the PAT token by making a REST call to an authenticated API:
https://<endpointurl>/api/v4/users?username=<username>. We define
the inputs as follows:

"id": "username",
"name": "Username",
"description": "Username you use to login to GitLab. This

is required only to validate your PAT token using 'Verify
connection' link below.",

"inputMode": "textbox",
"isConfidential": false,
"validation": {
"isRequired": true,
"dataType": "string"

}
}

As you can see in the preceding code snippet, we make it a text field using
isConfidential and make sure the user enters their string value here. We also
set inputMode as textbox, but text area and combo box are also supported.

Although GitLab only needs a personal access token for API calls, our
intention is to authenticate a PAT token using a Verify connection link
when a user is creating the service connection. We do that using the
dataSources field as you will see in a moment.

e dataSources: Service endpoints support querying data from external services
through REST APL. In our contribution, we are utilizing the well-known
TestConnection data source. Adding this to our contribution automatically
provides us with the Validate connection hyperlink. Clicking on that
automatically calls the REST URL defined for endpointUrl under
TestConnection. We validate the response using resultSelector, whichis a
jsonpath expression. In our case, we are just validating whether we received a
valid 200 HTTP response using jsonpath:$[*].

[392]

http://bit.ly/2RGtbew
http://bit.ly/2RGtbew
http://bit.ly/2RGtbew
http://bit.ly/2RGtbew
http://bit.ly/2RGtbew
http://bit.ly/2RGtbew
http://bit.ly/2RGtbew
http://bit.ly/2RGtbew
http://bit.ly/2RGtbew

Azure DevOps Extensions Chapter 8

For more information on data sources, please see http://bit.ly/2HgLpzk.

Another thing you might have noticed is that we did not define an input field for
a Personal Access Token (PAT). This is because Azure DevOps automatically
provides a mechanism to handle authentication schemes. You will see it as
follows.

® authenticationSchemes: This element defines how our custom service
connection handles the authentication. This is a critical field for any API
endpoints that need authentication, as successful authentication will enable
dropdowns in task inputs to populate the values:

Download GitLab repository @ @ Link settings [{j View YAML < Remove
Version 1= '
Display name *

Download GitLab repository
GitLab Connection® (1) | Manage &2

MyGitLab v) 4 New

Repository * 0]

vl O
anhyutkarsh/\VS0O5tatuslnspector .
onlyutkarsh/Visual5tudioStatusBarDemo
onhyutkarsh/ToolWindowDemo N

onhyutkarsh/OpenConfigurationManager

onlyutkarsh/MyDemoProject

[393]

http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk

Azure DevOps Extensions Chapter 8

The Azure DevOps support service connection contribution endpoint supports many
different types of authentication schemes. For more information, see http://bit.1ly/
2M3L3um.

In our custom service endpoint for GitLab, we are authenticating with PAT, so we

use ms.vss—endpoint.endpoint-auth-scheme-token. We then define an input to store
our PAT. Notice we make isConfidential: true and inputmode: passwordbox SO
that PAT is masked when entering. We have also made it mandatory by defining
isRequired: true.

Finally, we have also defined a headers array. This allows us to send any required
additional data to the REST API calls in the header. This is required because the GitLab API
expects us to send the PAT for each request in the header as Private-Token: <PAT>.

See also

Many of the inbuilt tasks in Azure DevOps that connect to external services such as
GitHub, Bitbucket, and Azure make use of data sources and authentication schemes.
Microsoft has published many of the extensions on GitHub at http://bit.1ly/2McbESV.

Creating a pipeline task to consume a
custom service connection

In the previous recipe, we created a custom service connection to connect to GitLab.
However, service connections on their own are not useful unless they are used to connect to
a third-party service in the pipeline task. In this recipe, we will create a custom pipeline
task to download the source code from GitLab using the custom service connection we
created in the preceding section. We will also extend the manifest file created and add a few
additional data sources so that they can be used in the task to show available repositories
(projects), branches, and so on:

[394]

http://bit.ly/2M3L3um
http://bit.ly/2M3L3um
http://bit.ly/2M3L3um
http://bit.ly/2M3L3um
http://bit.ly/2M3L3um
http://bit.ly/2M3L3um
http://bit.ly/2M3L3um
http://bit.ly/2M3L3um
http://bit.ly/2McbE8V
http://bit.ly/2McbE8V
http://bit.ly/2McbE8V
http://bit.ly/2McbE8V
http://bit.ly/2McbE8V
http://bit.ly/2McbE8V
http://bit.ly/2McbE8V
http://bit.ly/2McbE8V
http://bit.ly/2McbE8V

Azure DevOps Extensions

Chapter 8

Agent job 1

A 4

Download GitLab reposi...
(D) Some settings need attention

Display name *

Download GitLab repository

Gitlab Connection* (i)
MyGitLab

Repository * (1)
oootravellers/ooo.website

Default version * ®
Latest from specific branch

Branch* ()

Ney

vl ©
v

v| O

features/new-theme

gh-pages

master

Contraol Options

Qutput Variables ~

Getting ready

In this recipe, we will do the following:

SESUN S

Install dependencies
Add task.json
Use a custom service connection for GitLab as input

Write a script to download the source from GitLab
All the files used in this task are in the code bundle

Allow users to select a repository and branch using data sources and bindings

By the end of this recipe, the extension will allow us to connect to GitLab using the custom
service connection we built in the Creating a service connection to connect to GitLab recipe.

We'll also be able to download the source using the task we create in this recipe.

[395]

Azure DevOps Extensions Chapter 8

How to do it...

Let's look at the three tasks that we need to perform.

Installing dependencies

Because we will be writing this in TypeScript, we will use a few NPM packages that will
help us in making GitLab REST calls and also interact with the Azure Pipelines task library:

1. Create a package. json and paste the following text. Alternatively, you can run
npm init -y and then install all the packages one by one, as we did in the
previous recipes:

"name": "onlyutkarsh-gitlab-dev",
"version": "0.0.0",

"description": "download artifact task",
"main": "index.js",

"scripts":{},

"author": "Utkarsh",

"license": "ISC",

"dependencies": |

"axios": "~0.18.0",

"events": "~3.0.0",

"fs-extra": "~7.0.0",

"path": "~0.12.7",
"azure-pipelines-task-1ib": "*2.7.7"

}

Adding task.json

As you have seen in the previous recipes, we need to add the task. json for our Download
GitLab Repository task. As you might remember, task. json defines the structure of the
inputs for the pipeline task:

1. Create a task. json file in Visual Studio Code and paste text from the code
bundle from RCP04-GitLab-Extensions folder:

{
"id": "ca83284d-c3f5-46a5-bab52-dacd68eab747",

"name": "downloadgitlabrepositorycookbook",

[396]

Azure DevOps Extensions Chapter 8

"friendlyName": "Download GitLab repository",

"minimumAgentVersion": "2.115.0",
"instanceNameFormat": "Download GitLab repository",
"inputs": [
{
"name": "connection",
"type": "connectedService:GitLab",
"label": "GitLab Connection",
"defaultvValue": "",
"required": true,
"helpMarkDown": "GitLab service connection"
by
//code is trimmed for the sake of brevity
I
"dataSourceBindings": [
{
"target": "definition",
"endpointId": "$ (connection)",
"dataSourceName": "Repositories",
"parameters": {},
"resultTemplate": "{ \"Value\" : \"{{id}}\",
\"DisplayValue\" : \"{{{path_with_namespace}}}\" }"
}
//code is trimmed for the sake of brevity

]I

"execution": {

"Node": {
"target": "index.js",
"argumentFormat": ""

}

As you saw in Creating a simple task to clean folders recipe this task. json again has an
execution section with target file for execution which we will create next.

[397]

Azure DevOps Extensions Chapter 8

Creating a core script to download a source from
GitLab

1. Create a file called index.ts (remember a TypeScript file when built gets
transpiled into a JavaScript file with the same name as index. js) and paste as
per the index. ts file in this repository:

//some of the code is trimmed for the sake of brevity. refer
the code bundle.
import * as tl from "azure-pipelines-task-1ib";

import * as url from "url";
import * as path from "path";
import { GitWrapper, IGitExecOptions } from "./gitwrapper";
import * as fse from "fs-extra";
import { GitApi } from "./gitapi";
async function main () {
try A

let _this = this;

// get the task vars
let debugOutput = tl.getVariable ("system.debug");

debugOutput = debugOutput || "false";
let isDebugOutput: boolean = debugOutput.toLowerCase ()
=== "true";

tl.debug ("Finding repository url");

let gitApi = new GitApi();

let repoUrl = await gitApi.getRepoUrl (endpointUrl,
definition, token);

console.info("Repo Url: ${url.format (repoUrl)});

//code is trimmed for the sake of brevity

if (versionSelector === "latestDefaultBranch") {
tl.debug ("Finding commit for default branch");
commitId = await
gitApi.getLatestCommitIdFromBranch (endpointUrl, definition,

token) ;
3
else 1f (versionSelector ===
"latestSpecificBranch") {
tl.debug (' Finding commit for 'S${branch}'
branch’);
commitId = await
gitApi.getLatestCommitIdFromBranch (definition, token, branch);

[398]

Azure DevOps Extensions Chapter 8

}
console.info("Cloning repository...");
let gitWrapper = new GitWrapper();
gitWrapper.username = username;
gitWrapper.password = token;

// Git clone

awailt gitWrapper.clone (formattedRepoUrl, false,
downloadPath, options);

// Checkout branch

await gitWrapper.checkout (branch, options);

// Checkout commit

await gitWrapper.checkout (commitId, options);

console.info ("Done");
tl.setResult (tl.TaskResult.Succeeded, "");

}

catch (error) {
console.error ("Error occurred", error);
tl.error (error);
tl.setResult (tl.TaskResult.Failed, error);

main ()
.then(() => console.info("All Done!"))
.catch(reason => console.error (reason));

From the imports section of this file, you might have noticed that we are referencing two
utility files named gitapi.ts and gitwrapper.ts. Both files are available in the code
bundle.

How it works...

In the task. json file, we first set 1d, name, and friendly name, which uniquely identifies
this task name when installed. Next, under the inputs array, we start adding inputs. Let's
analyze them one by one.

The first input is a prompt for the GitLab service connection, which we have declared as
follows:

{

"name": "connection",
"type": "connectedService:GitLab",
"label": "GitLab Connection",

[399]

Azure DevOps Extensions Chapter 8

"defaultValue": "",
"required": true,
"helpMarkDown": "GitLab service connection"

}

Notice that the type of this input is connectedService:GitLab—connectionService
signals that this is a service connection type and GitLab is a service connection type. This
allows Azure DevOps to display only GitLab service connections in the dropdown. We also
mark it as mandatory.

Once the service connection is selected by the user, we then ask the user for the repository,
and we display a picklist with all the user repositories in the drop-down. To do that, we
add the input as a picklist:

{
"name": "definition",
"type": "pickList",
"label": "Repository",
"defaultvalue": "",
"required": true,
"properties": {
"EditableOptions": "True"

b
"helpMarkDown": "GitLab repository id"

}

We want this input to show a dropdown of repositories. To do that, we need to make a
REST API call to GitLab (https://gitlab.com/api/v4/projects?owned=true) to fetch the
repositories using the token provided in the service connection.

First, we define a dataSource under the dataSources section in the vss-
extension.json file:

"dataSources": [
{
"name": "Repositories",
"endpointUrl": "{{{endpoint.url}}tapi/v4/projects?owned=true",
"resultSelector": "jsonpath:$[*]"

}
]

The resultselector field allows you to filter the JSON response using a jsonpath
expression. In this case, we are selecting the full HTTP response using the expression
jsonpath:$[*].

[400]

https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true

Azure DevOps Extensions Chapter 8

The sample JSON response from the GitLab will be in this form:

{

"id":4,

"description":null,

"default_branch":"master",
"ssh_url_to_repo":"git@example.com:diaspora/diaspora-client.git",
"http_url_to_repo":"http://example.com/diaspora/diaspora-client.git",
"web_url":"http://example.com/diaspora/diaspora-client",

"readme_url":"http://example.com/diaspora/diaspora-client/blob/master/READM
E.md",

"tag_list":[],

"name" :"Diaspora Client",
"name_with_namespace":"Diaspora / Diaspora Client",
"path":"diaspora-client",
"path_with_namespace":"diaspora/diaspora-client",
"created_at":"2013-09-30T13:46:02Z",
"last_activity_at":"2013-09-30T13:46:022",
"forks_count":0,

"avatar_url":"http://example.com/uploads/project/avatar/4/uploads/avatar.pn

g",

"star_count":0

You can test your JSON path expression using this free online tool: http:/
/Jjsonpath.com/.

Next, in the task. json file, we define a dataSourceBinding under
dataSourceBindings as follows:

"dataSourceBindings": [

{
"target": "definition",
"endpointId": "$ (connection)",
"dataSourceName": "Repositories",
"parameters": {},
"resultTemplate": "{ \"Value\" : \"{{id}}\", \"DisplayValue\"

\"{{{path_with_namespace}}}\" }"

}

[401]

http://jsonpath.com/
http://jsonpath.com/
http://jsonpath.com/
http://jsonpath.com/
http://jsonpath.com/
http://jsonpath.com/
http://jsonpath.com/

Azure DevOps Extensions Chapter 8

This is to bind the dataSourceName named Repositories (defined in the preceding code
snippet) to our input named definition so that repositories can be shown for that input.
Notice the "dataSourceName": "Repositories" field; thisis how we bind the data
source to the input fields, in this case to an input field named definition using
"target": "definition". Another key aspectis the resultTemplate field.

This field defines a template of how data needs to be transformed to be displayed in the
input field named definition. The template is defined as a mustache template expression.

To find more information about the mustache template, read https://

mustache.github.io/.

We would like to display repositories in the format of <username>/<project name> (for
example: onlyutkarsh/bio). Hence, we use the mustache template as defined previously.
Notice we are setting Value as id from the JSON response from GitLab (to uniquely
identify the selected repository) and we use the path_with_namespace field from the
JSON response as DisplayValue.

We do a similar data source binding to our other input fields' branch and version, which is
visible when the user selects Latest from specific branch for the Default version
field.

In the manifest file of the extension, we define data sources to make REST calls to GitLab:

"dataSources": [
{
"name": "Branches",
"endpointUrl":
"{{{endpoint.url}}}tapi/vd/projects/{{{definition}}}/repository/branches",
"resultSelector": "Jjsonpath:$[*]"
}I
{
"name": "CommitsFromSelectedBranch",
"endpointUrl":

"{{{endpoint.url}}}tapi/vd/projects/{{{definition}}}/repository/commits{{#if
branch}}?ref_name={{{branch}}}",
"resultSelector": "Jjsonpath:$[*]"
Hy

[402]

https://mustache.github.io/
https://mustache.github.io/
https://mustache.github.io/
https://mustache.github.io/
https://mustache.github.io/
https://mustache.github.io/
https://mustache.github.io/
https://mustache.github.io/
https://mustache.github.io/

Azure DevOps Extensions Chapter 8

In task.json, we then define bind data sources to inputs:

"inputs": [

"name": "definition",
"type": "pickList",
"label": "Repository",
"defaultvalue": "",
"required": true,
"properties": {
"EditableOptions": "True"
}I
"helpMarkDown": "GitLab repository id"

"name": "versionSelector",

"type": "pickList",

"label": "Default version",

"required": true,

"helpMarkDown": "Version of artifact",

"defaultValue": "latestDefaultBranch",

"options": {
"latestDefaultBranch": "Latest from default branch",
"latestSpecificBranch": "Latest from specific branch",
"specificVersion": "Specific version"

1y

"dataSourceBindings": [

{
"target": "definition",
"endpointId": "$ (connection)",
"dataSourceName": "Repositories",
"parameters": {},
"resultTemplate": "{ \"Value\" : \"{{id}}\", \"DisplayValue\"
\"{{{path_with_namespace}}}\" }"
}I
{
"target": "branch",
"endpointId": "$ (connection)",
"dataSourceName": "Branches",
"parameters": {
"definition": "$(definition)"
}I
"resultTemplate": "{ \"Value\" : \"{{{name}}}\", \"DisplayValue\"

\"{{{name}}}\" }"

[403]

Azure DevOps Extensions Chapter 8

}l
]

Notice how dataSourceBindings array sets the target (which has the input field name
inputs[]) and uses data source (using dataSourceName property).

See also

¢ The extension is public https://marketplace.visualstudio.com/items?
itemName=onlyutkarsh.gitlab-integration

e For an up to date extension refer the
code https://github.com/onlyutkarsh/gitlab-integration.

¢ More information on data source and data binding can be found here: http://
bit.ly/2HgLpzk.

e More information on authentication schemes can be found here: nttp://bit.1y/
2D7mASa.

Publishing extensions to the marketplace

For extensions to be used in the Azure DevOps Server/Service, extensions need to be
published to the VS Marketplace. As highlighted at the beginning of this chapter, VS
Marketplace is the one-stop shop for extensions - tools that extend Azure DevOps.

In all the recipes we worked through in this chapter, we created various types of
extensions. However, one thing we have not done is to publish the extensions we created to
the marketplace.

Extensions can be published in either public or private visibility modes. Extension visibility
is controlled via a public flag in the manifest file. To make an extension usable and visible
to the public, you need to mark the extension as public by setting the flag in the manifest as
shown:

{
"public": true

}

[404]

https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://github.com/onlyutkarsh/gitlab-integration
https://github.com/onlyutkarsh/gitlab-integration
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2D7mASa
http://bit.ly/2D7mASa
http://bit.ly/2D7mASa
http://bit.ly/2D7mASa
http://bit.ly/2D7mASa
http://bit.ly/2D7mASa
http://bit.ly/2D7mASa
http://bit.ly/2D7mASa

Azure DevOps Extensions Chapter 8

The default visibility, if you do not specify in the manifest file, is private.
This means the published private extension is visible to the publisher and
the publisher of the collection has access too. Similarly, in Azure DevOps
Services, an extension with public: false is visible only to the
publisher and to other organizations that the user has given access to.

Microsoft provides a cross-platform tool named t fx-c1i that we can use to publish an
extension. More information on this is well documented at http://bit.1ly/2MrScoq.

However, in this recipe, we will see how we can publish an extension in a consistent
manner by using the Azure DevOps pipeline. We will gain some immediate benefits by
automating extension publication:

e By automating our deployment in the pipeline, we will have the ability to push
our changes quickly and with confidence.

e We will be able to test our Azure DevOps extension in our own private account
before releasing it to a wider audience.

¢ The marketplace requires us to update the extension version each time we
publish. Manually changing this is a hassle and we will be able to automate this
easily using the pipeline.

Getting ready

There are a few prerequisites for publishing extensions to the marketplace:

¢ A publisher account. We have seen how to do this in the Creating the VS
Marketplace publisher recipe of this chapter.

¢ A proper icon for your extension of at least 128 x 128 pixels in size.

¢ A good description of the extension in the overview.md or readme .md files that
appears on the extension page on the marketplace.

e Finally, to make your extension public, the publisher needs to be verified. If the
publisher is not verified, the extension can only be published as a private
extension.

[405]

http://bit.ly/2MrScoq
http://bit.ly/2MrScoq
http://bit.ly/2MrScoq
http://bit.ly/2MrScoq
http://bit.ly/2MrScoq
http://bit.ly/2MrScoq
http://bit.ly/2MrScoq
http://bit.ly/2MrScoq
http://bit.ly/2MrScoq

Azure DevOps Extensions Chapter 8

The following steps will help you to get started with this recipe:

1. Browse to Visual Studio Marketplace at https://marketplace.visualstudio.
com and install the Azure DevOps Extension Tasks extension. You will be
required to connect to Visual Studio Marketplace in the Azure DevOps Server
context.

To do that, from the header, click on the icon next to your profile link Browse
Marketplace:

@ @

Browse Marketplace

Manage extensions l

W

Visual Studio Marketplace will highlight Azure DevOps Server context by
showing the collection name.

2. Search for azure devops extension tasks and you will see the extension, as
shown in the following screenshot:

o

#F win-18abButnna / DefaultCollection

fic | Marketplace

Utkarsh Shigihalli Sign out

Visual Studio Visual Studio Code Subscriptions Build your own Publish extensions
'Iazure devops extension tasks”
1 Result Showing: All categories Hosted On: On Premises Price: Any ~ Sort By: Relevance

Azure DevOps Exten

% % ¥k

[406]

https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com

Azure DevOps Extensions Chapter 8

3. Click on the extension and then click the Get free button. Then click on the
Install button to install the extension on to your Azure DevOps Server
collection. Now if you go to Manage Extensions page, you should see the
extension installed.

That is all we need for now in order to work on this recipe.

How to do it...

To start, we will publish the Clean Folder task we created in the Creating a simple task to
clean folders recipe in this chapter. To follow true DevOps practice, we will build once and
deploy multiple times.

1. Create a build pipeline, which will transpile our code and publish it as an
artifact.

2. Create a release pipeline with two stages to deploy the VSIX file (a packaged
extension for Azure DevOps).

3. In the first stage, we will deploy it privately to our local Azure DevOps Server.
This will allow us to test our task on our local Azure DevOps Server.

4. The next stage is to publish the extension to Visual Studio Marketplace and make
it available to the general public.

Creating the build pipeline

Our build definition is comprised of the following steps:

e Install all the npm dependencies: Our dependencies are referenced in
package. json. Note that, we have two package. json files, one at
the vss-extension. json level and another one at the task level
under task folder. For simplicity, [have defined a couple of scripts
under the scripts section. The initdev runs npm install command
for the package. json file and installs all the dependencies.

e Compile and lint the scripts: Our script is written using TypeScript,
but we need to transpile them to . js using the t sc command. We also
lint using t s1int command. For this as well, we have written node
script compile under the scripts section.

[407]

Azure DevOps Extensions Chapter 8

e Update the version in task.json files: Update the version in the
task. json file. The version needs to be updated every time we would
like to release a new version of the task.

e Update the version in the vss-extension.json: This is the same, except
that you update the version in the manifest file. The extension
version needs to be incremented each time you would like to release a
new version.

e Copy to dist folder: Next, we copy all the files required for
the marketplace (icons, manifest file, js file, and node_modules
folder) to the dist folder.

¢ Publish artifact: Finally, we publis
2. hit as build pipeline artifact.
We are using YAML Build, so we have a file named azure-pipelines.yml with the

preceding build steps. The contents of the azure-pipelines.yml is as follows, and is also
present in the code bundle under RCP02-CleanFolder-Extensions folder:

resources:
- repo: self
queue:

name: Default
demands: npm

name: 1.0.S$(rev:r)

steps:
- task: Npm@1l
displayName: 'install all the dependencies'
inputs:
command: custom
workingDir: 'extensions/clean-folder'
verbose: false
customCommand: 'run initdev'

- task: PublishBuildArtifacts@l
displayName: 'publish contents of dist as artifact'
inputs:
PathtoPublish: '$(system.defaultworkingdirectory)/extensions/clean-
folder/dist'

[408]

Azure DevOps Extensions Chapter 8

Once we've created the build pipeline successfully, we should now have the artifacts
required to create an extension:

Artifacts explorer

drop
images

¥ logol28.png
Oy leges12.png
[screenshot.png
task

node_modules

[y iconpng

4 indexs

[packagejson
4 taskjson

[y readme.md

[vss-extensionjson

[409]

Azure DevOps Extensions Chapter 8

Creating the release pipeline

We now have a build pipeline that produces versioned artifacts for every build. This will
ensure we always publish a newer version, as Visual Studio Marketplace expects the
version number to be incremented every time we would like to publish the extension:

1. We go to the release hub and create a new release pipeline:

f:'l Azure DevOps
CookBook ! O Search all pipelines

Overview = + New ~

Mame N
A MNew release pIpE|InE®

> All pipelines T Import release pipeline

=
s
Repos b MNew folder

Pipelines

ksl Builds

ﬁ? Releases

[410]

Azure DevOps Extensions

Chapter 8

2. We will select the empty job template and rename the stage to 1ocal to depict

our on-premises Azure DevOps Server. Then we add the artifact by selecting the
build pipeline:

Add an artifact

Source type

B

4 more artifact types

Project *

CookBook

i
S

Source (build pipeling) *

CookBook-Cl-YAML

Default version * (1)

©

Latest
Source alias* (1)
| arti?a-:'.|

E The artifacts published by each version will be available for deployment in release pipelines. The
latest successful build of CookBook-CI-YAML published the following artifacts: drop.

[411]

Azure DevOps Extensions

3. Search for the Publish Extension task from the Azure DevOps Extension
Tasks and add it to the pipeline:

All pipelines » % clean-folder-vsix-cd
Pipeline (O Tasks Variables Retention Options History
loca
Agent job

7 Publish Extension ()
bdlﬁ (1) Some settings need attention

4. To use this task, we first need to create a service connection for our instance of
Azure DevOps Server extension gallery. Select Team Foundation Server and
click New, as shown in the following screenshot:

Publish Extension @ X Remove

Version | 1.* “

Display name *
Publish Extension

Connectto* (i)
O Visual Studio Marketplace @ Team Foundation Server

TFS Local Gallery connection * () | Manage =

v O T Mew

(L) This setting is required.

Chapter 8

[412]

Azure DevOps Extensions

Chapter 8

5. A new dialog will open; enter the local Azure DevOps Server URL and personal
access token. For more information on creating a personal access token, visit this

link: http://bit.1ly/2DZzgL6:

nection name local

Add TFS Extension Local Gallery service connection

Close

s

6. Click OK and select the service connection from the dropdown:

Publish Extension @

Version 1% ~

Display name *

Publish Extension

Connectta* (1)
Visual Studio Marketplace
TF5 Local Gallery connection *

local

Extension manifest A~

Input file type *

@ Extension manifest file

@ Team Foundation Server

(O | Manage =z

[413]

http://bit.ly/2DZzgL6
http://bit.ly/2DZzgL6
http://bit.ly/2DZzgL6
http://bit.ly/2DZzgL6
http://bit.ly/2DZzgL6
http://bit.ly/2DZzgL6
http://bit.ly/2DZzgL6
http://bit.ly/2DZzgL6
http://bit.ly/2DZzgL6

Azure DevOps Extensions

Chapter 8

7.

Finally, for the root manifest folder field, select the folder path where your vss-

extension.manfiest fileis:

Select a file or folder

4 Linked artifacts
4 _CookBook-Cl-YAML (Build)
= drop
b images
4 task
OO readme.md

[0 vss-extensionjson

The artifacts published by each version will be available for deployment in release pipelines. The
last successful version of _CookBook-Cl-YAML (Build) published the following artifacts: drop.

Location _CookBook-Cl-¥AML/drop

[414]

Azure DevOps Extensions

Chapter 8

After that, ensure that you set the extension visibility to Private. Notice in the
following screenshot that I am not overriding any of the fields in the manifest.
The task gets the details from the manifest if not specified:

lecal

Agent job ='E

7 Publish Extension
e - :

Root manifest felder (1)

SSystem_DefaultWorkingDirectorylartifact/drop

Localization Root folder (3)

Manifest file :T"

VES-@xlENSIon. jSon

Publisher ID

WS

Extensicn 1D

Extension Tag (1)

Extension name (D)

Ewtamalmm s =
EXTENIION vErson (i)

| Override task version (1)
| Owerride tasksd (2)

Extension visibility (7

|

Extension pricing (3)

Mot set

[415]

Azure DevOps Extensions Chapter 8

8. That's it; save the pipeline and create a new release. Once the deployment is
successful, you should have your extension published to the local Azure DevOps
Server gallery: http://<yourservername>/tfs/_gallery:

C (t @ localhost8080/tfs/ gallery &

Azure DevOps Server

Azure Boards

kw EBH B &

Analytics Work Item Search Delivery Plans Wiki Search

Azure Pipelines

2 M

Clean Folder Azure DevOps Exter

utkarsh Microgof Deviabs

Publishing the extension just makes the extension available for installation from the local
Azure DevOps Server gallery. You will need to click on the extension and install it.

This allows us to test our extension on our Azure DevOps Server before publishing to
Visual Studio Marketplace.

[416]

Azure DevOps Extensions

Chapter 8

Publishing to VS Marketplace

Assuming our extension works as expected in our Azure DevOps Server, we can now

publish the extension to the Visual Studio Marketplace to make it available to the general

public:
1. Let's add a new stage called marketplace by cloning our existing stage, which is
named local. Now our pipeline looks as follows:
Pipeline (D Tasks Variables Retention Options History
Artifacts | + Add Stages | - Add

& .
4
kel £ | local Q % marketplace a
artifact A | 1job, 1task L 1 @ 1job, 1task

L

o s

2. Click on the Publish Extension task in the marketplace stage, and modify the
task input fields so that we can publish our extension to the marketplace. The

first thing we change is the service connection.

[417]

Azure DevOps Extensions

Chapter 8

2. Select the Visual Studio Marketplace connection:

n'larkgt;::_lace p

Publish Extension ®

Agent job Version 1% R
%7 Publish Extension @ i Display name *
vd|@) some settings need sttention =

Publish Extension
Connectto* ()
© Visual Studio Marketplacs

Visual Studio Marketplace connection *

Team Foundation Server

(© This setting is required.

X Re

4. Click New and create a service connection using your personal access token:

T marketplace
farketplace URL hittps://marketplace.visualstudio.com

Required permissions:

Publish: All accessible organisations, Marketplace (Publish)
Share: All accessible organisations, Marketplace Publish
Install: All access

ssible organisations, Marketplace (read)
Is Valid Extension: All accessible organisations, Marketplace (read)

More information.

¥ Allow all pipelines to use this connection

Add Visual Studio Marketplace service connection

@

& organisations or a specific organisation, Extensions (read and manage),

[418]

Azure DevOps Extensions Chapter 8

5. Click OK. Ensure the service connection you selected is for the marketplace. As
in the previous stage, for the root manifest field, we will select our drop folder.
For this recipe, we will select the extension visibility field as Private Preview just
to ensure that this extension is not public. Once the publish is successful, our
extension will be available in the marketplace:

@ https://marketplace.visualstudio.com/items?itemMName=onlyutkarsh.cookbook-clean-folder
oq Visual Studio | Marketplace

Azure DevOps > Azure Pipelines > Clean Folder

CIean FOIder | B Reports | £ Manage
Utkarsh Shigihalli | % s % % % (0) | Preview

& *

A simple utility extension to delete files/folders based on glob pattern specified

Overview Q& A Rating & Review

Introduction

A simple demo task to clean the folder.

[419]

Azure DevOps Extensions Chapter 8

Our extension is private and you will be able to share it with any accounts or
view installed reports by going to the marketplace publisher page:

X B8 Manage Bxtensions | Visual Studi X

c B https://marketplace.visualstudic.com/mar

Utkarsh Shigihalli {u.s

Utkarsh Shigihalli Owne Utkarsh Shigihalli (onlyutkarsh
Utkarsh Shigihalli a Extensions Details Members = Mew extension
..... e ersia Update Availa
+ Create publisher
{‘; Clean Folder 0.0.7 4 minutes ... Private (not shared)
B Reports
+ View Extension
¢ Update
* Remove
Share/Unshare

How it works...

In this recipe, we saw how we set up a build and release pipeline for our Azure DevOps
extensions. First, we set the build pipeline to transpile our typescript into JavaScript files
and lint, and publish all the required files. In the pipeline, we incremented the build
number each time the build was triggered. This ensured that we were able to publish the
newer version to Visual Studio Marketplace. This is because Visual Studio Marketplace
accepts the version number of the extension to change each time we are publishing it.

[420]

Azure DevOps Extensions Chapter 8

Next, we set the release pipeline, which publishes the task to the Azure DevOps Server
gallery. Later, we added another stage to release the pipeline to publish to the marketplace.
The Azure DevOps extension tasks make it really easy to create a service connection and
publish your extension to the marketplace in faster release cycles.

We published our extension to the marketplace as a private extension. Any extension that
doesn't have visibility set to public will not be visible in the marketplace.

There's more...

Azure DevOps Extension Tasks has many tasks, from publishing extensions to

the marketplace to sharing extensions to other accounts. The extension is open source on
GitHub and also has a task to publish Visual Studio extensions. Check it out on

GitHub: nttp://bit.1ly/2GyFALo.

[421]

http://bit.ly/2GyFALo
http://bit.ly/2GyFALo
http://bit.ly/2GyFALo
http://bit.ly/2GyFALo
http://bit.ly/2GyFALo
http://bit.ly/2GyFALo
http://bit.ly/2GyFALo
http://bit.ly/2GyFALo
http://bit.ly/2GyFALo

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Azure for
Developers

Hands-On Azure for Developers
Kamil Mrzygtéd

ISBN: 978-1-78934-062-4

¢ Implement serverless components such as Azure functions and logic apps
e Integrate applications with available storages and containers

¢ Understand messaging components, including Azure Event Hubs and Azure
Queue Storage

¢ Gain an understanding of Application Insights and other proper monitoring
solutions

e Store your data with services such as Azure SQL and Azure Data Lake Storage
¢ Develop fast and scalable cloud applications

https://prod.packtpub.com/virtualization-and-cloud/hands-azure-developers

Other Books You May Enjoy

Microsoft
Azure

Learn Microsoft Azure
Mohamed Wali

ISBN: 978-1-78961-758-0

¢ Understand the cloud services offered by Azure

¢ Design storage and networks in Azure for your Azure VM

Work with web apps and Azure SQL databases

Build your identity management solutions on Azure using Azure AD

Monitor, protect, and automate your Azure services using Operation
Management Suite (OMS)

Implement OMS for Azure services

[423]

https://prod.packtpub.com/virtualization-and-cloud/learn-microsoft-azure

Other Books You May Enjoy

Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

[424]

.Net core application
build pipeline, setting up for 176, 178, 179, 180,
181
.NET Core web application
deploying, to Azure App Service 271

4

4dtecture 167

A

advanced search capabilities, Microsoft docs
reference 113
AdventureWorks database 240
agent capabilities
configuring 147, 148, 149
agent permissions
managing, role-based access used 149, 151,
152
agent pool 123
agent pool maintenance
automating 140, 141, 142
agent
configuring, for enterprise proxy usage 135, 136,
137
downloading, with GitHub release APl 127, 128,
129,130
Agile team
team project, creating for 11, 13, 14, 15
annual Agile survey report
reference 9
app service plan
reference 274
ARM Outputs 255
ARM templates
creating 274

Index

Artifact feed
creating, in Azure Artifacts 323, 324, 325
npm package, consuming from 350, 351, 352,
353, 354
NuGet package, consuming in Visual Studio 332
Artifact views
used, for testing NuGet package 339, 340, 341,
342, 343, 344
Artifacts
feeds, connecting in 333, 334, 335, 336, 337,
338
NPM packages, publishingto 345
NuGet package, publishing to 322
ASP.NET build pipeline
web deploy, used for creating package 163,
164,165,166
ASP.NET Core application
creating 271, 272
release pipeline, building 277, 278, 280
ASP.NET Core
reference 271
Assembly Info extension
reference 172
assembly version info
configuring, in build pipelines 171, 172, 173,
175
Azure Active Directory (AAD) 363
Azure App Service
.NET Core web application, deploying to 271
reference 274
Azure Artifacts
about 320
Artifact feed, creating in 5, 323, 324, 325
Azure Content Delivery Network (CDN) 309
Azure Dev Test Lab (DTL)
Azure Virtual Machine, deployingto 310
reference 310

Azure DevOps Extension Tasks 421
Azure DevOps Git repositories
accessing, SSH used 70, 71, 72, 73, 74, 75
Azure DevOps Open in Excel extension
reference 22
Azure DevOps Server (AzDos)
about 105
Git hooks, using with 95, 96, 97
Azure DevOps
extensible points 360
extensions 359
Azure Function triggers
reference 284
Azure Function, pricing plans
app service plan 289
consumption plan 289
reference 289
Azure Function
ARM template, creating 289, 291
build pipeline, creating 287
deploying, to Azure 282
Azure Key Vault
reference 259, 294
secrets, consuming from 259
secrets, publishing to 294, 295, 298
variable group, linking to 262, 264, 265, 266,
268,270
Azure Pipelines
used, for configuring parallel execution of tests
221,222,223,224
used, for running NUnit tests 202, 203, 205,
207,209, 210, 211, 212
used, for running SpecFlow tests 225, 226, 228
Azure portal
storage account, creating from 301
Azure Resource Manager (ARM) templates
creating 248, 249
Azure Resource Manager (ARM)
reference 247
Azure SQL
database, deploying to 239
Azure Storage Account ARM templates
creating 301, 303
Azure Storage
static website, deploying on 299, 300, 303, 304,

[426]

305,307,309
Azure Virtual Machine
deploying, to Azure Dev Test Lab (DTL) 310,
311,312,313, 316, 317
Azure
key vault, creating 259, 261

B

backlog boards
configuring 38, 39, 40, 41
customizing 38, 39, 40, 41
Behavior Driven Development (BDD) 225
branch policies
pull request for code review 86, 87, 88, 89, 90,
92, 93, 94
branch quality
reflecting, in build name 160, 161, 162, 163
branches, of Git repository
build definition, configuring for 154, 155, 1586,
157,158,159, 160
build definition
configuring, for branches of Git repository 154,
155,156,157, 158,159, 160
creating 243, 244, 246
creating, to produce NuGet package 4, 326, 327
build name
branch quality, reflectingin 160, 161, 162, 163
build output
organizing, into separate folders 167, 168, 169,
170
build pipelines
assembly version info, configuringin 171, 172,
173,175
creating, to update package version 346
setting up, for .Net core application 176, 178,
179,180,181
setting up, for database projects 189, 190, 191,
192
setting up, for Node.js application 181, 182,
184,186,188
build retention policies
configuring 144, 146
build system, Team Foundation Server (TFS) 122
Build Traffic Lights extension
reference 167

build usage data
analyzing 137,138,139

C

Centralized Version-control System (CVCS) 64
code history
used, for migrating from TFVC to Git 67, 68, 69,
70
code search
configuring, as search engine 113, 114, 115
Coded Ul testing 201
Coded Ul Tests (CUITs) 201
Commit Network extension
reference 79
Continuous Deployment 239
Continuous Integration 154

D

DACPAC 189
dashboards

work, planning 60, 61, 62

work, tracking 60, 61, 62
database project

build pipeline, setting up for 189, 190, 191, 192

creating 241, 242
database

deploying, to Azure SQL 239

importing 241, 243
Decompose work option 33, 35, 36
delivery plan extension

reference 56
delivery plan

about 55

multiple teams, tracking 56, 57, 58, 59
demands

building, for special builds 147, 148, 149
deployment groups

configuring 131, 132, 133, 134, 135
deployment slots

reference 282
Diagnostics Tasks

reference 181
Distributed Version Control System (DVCS) 65
dotnet commands

reference 327

[427]

E

Excel
requisites, importing from 17, 18, 20, 21
extension, publishing to marketplace
build pipeline, creating 407
release pipeline, creating 410, 412, 413, 414,
416
extensions
about 359
assets 360
manifest.json file 360
pipeline (build/release) task extensions 361
prerequisites, for publishing to marketplace 405
publishing, to marketplace 404, 407, 420
publishing, to VS Marketplace 417, 420
scripts 360
structure 360
Ul extensions 361

F

feature flags
reference 217
used, for testing in production 212, 213, 214,
215, 216
feature toggles types
reference 217
feed 322
Foundation Version Control (TFVC) 64

G

Gherkin 225
Git branching model
for continuous delivery 103, 104, 105, 106, 107,
108,109,110,111,112,113
Git forks
using, with upstream PR 117, 118, 120, 121
Git History
reference 81
Git hooks
using, with Azure DevOps Server 95, 96, 97
Git Lens
reference 81
Git LFS
using 99

Git operations
with Visual Studio Code 80, 81, 82, 83, 84
Git Pull Request Merge Conflict
reference 105
Git repository
importing from GitHub, into Azure DevOps
Server 76, 77,78, 79
Git Virtual File System (GVFS) 103
git-tf command-line tools
download link 68
git.push server-side event
reference 98
Git
large files, managing 98, 99, 100, 101, 102
large files, storing 98, 99, 100, 101, 102
GitHub release API
agents, downloading 127, 128, 129, 130
Granular feed permissions
in feed settings 331

H

Hardware Security Modules (HSMs) 294

import repository 67

J

JAMStack architecture
reference 299

K

key vault
creating, in Azure 260, 261

L

Large File System (LFS)
using 98
load testing 201

Microsoft Test Manager (MTM) 199
minmatch search pattern

reference 366
multi-configuration tests

[428]

distributing, against agents 217,218, 219, 220,
221

N

Node.js application
build pipeline, setting up for 181, 182, 183, 184,
186, 188
NodeJS
download link 345
npm 344
npm package
consuming, from Artifacts feed 350, 351, 352,
353, 354
creating 345
NPM packages
publishing, to Artifacts 344, 345
NuGet package
consuming, in Visual Studio 332
publishing, to Artifacts 322
testing, Artifact views used 339, 340, 341, 342,
343, 344
NuGet
reference 322
NUnit tests
running, Azure Pipelines used 202, 203, 205,
207,209, 210, 211, 212

(0

Open Source Software (OSS) 64

P

parallel execution of tests
configuring, Azure Pipelines used 221, 222,
223,224
parts unlimited GitHub repository
reference 76
Personal Access Token (PAT) 393
personally identifiable information (PIl) 355
pipeline task
core script, creating for downloading source from
GitLab 398
creating, for consuming custom service
connection 394, 396, 399, 402, 404
dependencies, installing 396
task.json, adding 396

Portfolio backlog 32, 34
PowerShell scripts, in Git hooks
reference 98
PowerShell
unattended configuration, of build agents 124,
125,126
Product Vision widget
reference 60
pull request, for code review
with branch policies 86, 87, 88, 89, 90, 92, 93,
94
Putty 75

Q

Query based boards extension
reference 42

R

release API, GitHub
reference 128
release pipeline
creating 252, 253, 254, 256, 257
creating, to publish npm package 347, 348, 349
creating, to publish NuGet package to feed 328,
329, 330
database, deploying to Azure SQL 239
secrets, consuming from Azure Key Vault 259
release retention policies
configuring 143, 146
Requirements Integrator
reference 23
role-based access
used, for managing agent permissions 149, 151,
152
Runs view
test execution results, analyzing from 229, 230,
231, 232

S

sample Azure Function
creating 283, 284, 285
Scaled Agile Framework (SAFe) 25
search engine
code search, configuringas 113, 114, 115
secrets

[429]

consuming, from Azure Key Vault 259
publishing, to Azure Key Vault 294, 295, 298
Selenium
reference 201
service connection extension
creating, for GitLab connection 384, 387, 388,
389
working 390, 394
simple pipeline extension
creating, for cleaning folders 366, 372
dependencies, installing 368
manifest, creating 367
script (index.js) file, creating 371
task.json file, creating 369
SonarQube
integrating in build pipelines, to manage technical
debt 193,194, 196, 198
reference 194
SpecFlow 225
SpecFlow tests
running, Azure Pipelines used 225, 226, 228,
229
SpecMap extension
reference 37
sprint countdown widget
reference 60
Sprint Goal extension
reference 50
sprint
planning 43, 44, 45, 46,47, 49, 50
preparing 43, 44, 45, 46,47, 49
progress, visualizing in 51, 52, 53, 54
SQL Server Data Tools (SSDT) 241
SSH
used, for accessing Azure DevOps Git
repositories 70, 71, 72, 73, 74, 75
static site generators
reference 309
static website hosting, Azure Storage
reference 299
static website
deploying, on Azure Storage 299, 300, 304,
305, 307, 309
storage account
creating, from Azure portal 301

story mapping 37
symbols, for debugging applications
reference 332
sync changes
using, with upstream PR 117,118, 119, 120

T

taskboard 17
Team Calendar extension

reference 55
Team Foundation Server (TFS)

build system 122
team portal

testing status, charting on dashboard 237, 238
team project

creating, for Agile team 11, 13, 14, 15
Test Driven Development (TDD) 204
test execution results

analyzing, from Runs view 229, 230, 231, 232
Test Hub

about 199

test artifacts, exporting from 232, 233, 234, 235,

236

test results, exporting from 232, 234, 235, 236

TypeScript 367

U

Ul extension
contributions 383
creating 372, 374
demands 383
file 384
HTML page, creating for hosting initialization
code 377
manifest.json, creating 375
public 384
scopes 383

script file, creating 378
working 380, 383
unattended configuration, of build agents
with PowerShell 124, 125, 126
upstream sources
reference 322

\"

variable group
creating 262, 263, 264
key facts 270
linking, to Azure Key vault 265, 266, 268, 270
Visual Studio (VS) Marketplace 359
Visual Studio Code
using, for basic Git operations 80, 81, 82, 83, 84
Visual Studio
NuGet package, consuming in 332
VS Marketplace publisher
creating 362, 364, 366
VSTS CLI
reference 105
VSTS Migration Toolkit
reference 17

W

web deploy
used, for creating package in ASP.NET build
pipeline 163, 164, 165, 166
WhiteSource Bolt extension
reference 355
WhiteSource
used, for scanning for vulnerabilities in package
354, 355, 356, 357
WinAppDriver
reference 201
work items
used, for getting social 24, 25, 26, 27, 28, 29,
30

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Planning and Tracking Work
	Creating a team project for an Agile team
	Getting ready
	How to do it...
	How it works...
	There's more...

	Importing requirements from Excel
	Getting ready
	How to do it...
	How it works...
	There's more...

	Getting social with work items
	Getting ready
	How to do it...
	How it works...
	There's more...

	Portfolio backlog hierarchies and decomposing work
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring and customizing backlog boards
	Getting ready
	How to do it...
	How it works...
	There's more...

	Preparing and planning a sprint
	Getting ready
	How to do it...
	How it works...
	There's more...

	Visualizing progress in a sprint
	Getting ready
	How to do it...
	How it works...
	There's more...

	Delivery plans to track multiple teams
	Getting ready
	How to do it...
	How it works...
	There's more...

	Dashboards for planning and tracking work
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 2: Source Control Management
	Migrating from TFVC to Git with code history
	Getting ready
	How to do it...
	How it works...
	There's more...

	Accessing Azure DevOps Git repositories using SSH
	Getting ready
	How to do it...
	How it works...
	There's more...

	Importing a Git repository from GitHub into Azure DevOps Server
	Getting ready
	How to do it...
	How it works...
	There's more...

	Basic Git operations using Visual Studio Code
	Getting ready
	How to do it...
	How it works...
	There's more...

	Pull request for code review using branch policies
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using Git hooks with Azure DevOps Server
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Managing and storing large files in git
	Getting ready
	How to do it...
	How it works...
	See also

	Git branching model for continuous delivery
	Getting ready
	How to do it...
	How it works...

	Configuring code search as a search engine
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using Git forks and sync changes with upstream PR
	Getting ready
	How to do it...
	How it works...

	Chapter 3: Build and Release Agents
	Unattended configuration of build agents using PowerShell
	Getting ready
	How to do it...
	How it works...

	Downloading agents using the GitHub release API
	Getting ready
	How to do it...
	How it works...

	Configuring deployment groups
	Getting ready
	How to do it...
	How it works...

	Configuring the agent to use a proxy
	Getting ready
	How to do it...
	How it works...

	Analyzing build usage data
	Getting ready
	How to do it...
	How it works...
	See also

	Automating agent pool maintenance
	Getting ready
	How to do it...
	How it works…
	There's more...

	Configuring build and release retention policies
	Getting ready
	How to do it...
	How it works...

	Agent capabilities and build demands for special builds
	Getting ready
	How to do it...
	How it works...

	Managing agent permissions using role-based access
	Getting ready
	How to do it...
	How it works...

	Chapter 4: Continuous Integration and Build Automation
	Configuring one build definition for all branches of a Git repository
	Getting ready
	How to do it...
	How it works...
	See also

	Reflecting the branch quality in the build name
	Getting ready
	How to do it...
	How it works...

	Using web deploy to create a package in an ASP.NET build pipeline
	Getting ready
	How to do it...
	How it works...
	There's more...

	Organizing build output into separate folders
	Getting ready
	How to do it...
	How it works...

	Configuring assembly version info in build pipelines
	Getting ready
	How to do it...
	How it works...

	Setting up a build pipeline for a .NET core application
	Getting ready
	How to do it...
	How it works...
	There's more...

	Setting up build pipeline for a Node.js application
	Getting ready
	How to do it...
	How it works...
	There's more...

	Setting up a build pipeline for your database projects
	Getting ready
	How to do it...
	How it works...

	Integrating SonarQube in build pipelines to manage technical debt
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 5: Continuous Testing
	Running NUnit tests using Azure Pipelines
	Getting ready
	How to do it...
	How it works...

	Using feature flags to test in production
	Getting ready
	How to do it...
	How it works...
	There's more...

	Distributing multi-configuration tests against agents
	How to do it...
	How it works...
	There's more...

	Configuring parallel execution of tests using Azure Pipelines
	Getting ready
	How to do it...
	How it works...
	There's more...

	Running SpecFlow tests using Azure Pipelines
	Getting ready
	How to do it...
	How it works...
	There's more...

	Analyzing test execution results from Runs view
	Getting ready
	How to do it...
	How it works...

	Exporting test artifacts and test results from Test Hub
	Getting ready
	How to do it...
	How it works...
	There's more...

	Charting testing status on the dashboard in team portal
	Getting ready
	How to do it...
	How it works...

	Chapter 6: Continuous Deployments
	Deploying the database to Azure SQL using the release pipeline
	Getting ready
	Creating a database project and importing the database
	Creating a build definition

	How to do it...
	Creating Azure Resource Manager (ARM) templates
	Creating the release pipeline

	How it works...

	Consuming secrets from Azure Key Vault in your release pipeline
	Getting ready
	Creating a key vault in Azure
	Creating a variable group and linking it to Azure Key Vault

	How to do it...
	How it works...
	There's more...
	See also

	Deploying the .NET Core web application to the Azure App Service
	Getting ready
	Creating the ASP.NET Core application

	How to do it...
	Creating ARM templates
	Creating the release pipeline

	How it works...
	There's more...
	See also

	Deploying an Azure Function to Azure
	Getting ready
	Creating a sample Azure Function
	Creating the build pipeline

	How to do it...
	Creating the ARM template

	How it works...
	See also

	Publishing secrets to Azure Key Vault
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Deploying a static website on Azure Storage
	Getting ready
	Creating a storage account from the Azure portal
	Creating an Azure Storage Account ARM templates

	How to do it...
	How it works...
	There's more...
	See also

	Deploying an Azure Virtual Machine to Azure Dev Test Lab (DTL)
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 7: Azure Artifacts and Dependency Management
	Publishing a NuGet package to Artifacts
	Getting ready
	Creating an Artifact feed in Azure Artifacts

	How to do it...
	Creating a build definition to produce the NuGet package
	Creating a release pipeline to publish a NuGet package to the feed
	Granular feed permissions in feed settings

	How it works...
	There's more...
	See also

	Consuming a NuGet package in Visual Studio from the Artifacts feed
	Getting ready
	How to do it...
	Connecting to the feed in Artifacts

	How it works...
	There's more...
	See also

	Testing a NuGet package using Artifact views
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Publishing NPM packages to Artifacts
	Getting ready
	Creating NPM package

	How to do it...
	Creating the build pipeline to update the package version
	Creating the release pipeline to publish the npm package

	How it works...
	There's more...
	See also

	Consuming NPM package from the Artifacts feed
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Scanning for vulnerabilities in your package using WhiteSource
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 8: Azure DevOps Extensions
	Creating the VS Marketplace publisher
	Getting ready
	How to do it...

	Creating a simple task to clean folders
	Getting ready
	How to do it...
	Creating manifest
	Installing dependencies
	Creating the task.json file
	Creating the script (index.js) file

	How it works...
	See also

	Creating a UI extension
	Getting ready
	How to do it...
	Creating manifest.json
	Creating the HTML page to host initialization code
	Creating the script file

	How it works...
	How it works...
	There's more...

	Creating a service connection extension to connect to GitLab
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a pipeline task to consume a custom service connection
	Getting ready
	How to do it...
	Installing dependencies
	Adding task.json
	Creating a core script to download a source from GitLab

	How it works...
	See also

	Publishing extensions to the marketplace
	Getting ready
	How to do it...
	Creating the build pipeline
	Creating the release pipeline
	Publishing to VS Marketplace

	How it works...
	There's more...

	Other Books You May Enjoy
	Index

