

Azure DevOps Server 2019
Cookbook
Second Edition

Proven recipes to accelerate your DevOps journey with Azure
DevOps Server 2019 (formerly TFS)

Tarun Arora
Utkarsh Shigihalli

BIRMINGHAM - MUMBAI

Azure DevOps Server 2019 Cookbook
Second Edition
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Meeta Rajani
Content Development Editor: Ronn Kurien
Technical Editor: Mohd Riyan Khan
Copy Editor: Safis Editing
Project Coordinator: Jagdish Prabhu
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Tom Scaria
Production Coordinator: Jyoti Chauhan

First published: January 2016
Second edition: May 2019

Production reference: 1020519

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78883-925-9

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Tarun Arora is obsessed with high-quality working software, continuous delivery, and
Agile practices. He has worked on various industry-leading programs for fortune 500
companies in the financial and energy sectors. For many years, Tarun has been a Microsoft
Most Valuable Professional in Visual Studio and Development Technologies. His core
strengths are designing application architecture for cloud scale and everything DevOps. He
was recognized as an MVP by Microsoft in 2014 for going over and above in supporting the
product teams and community with his contributions. Tarun is an active open source
community contributor, speaker, and Blogger. Follow Tarun on Twitter @arora_tarun for
the latest and greatest updates in DevOps.

To my 6-month-old son Ryan and my beautiful wife Annu. You both are the best part of
my life!

Utkarsh Shigihalli is passionate about technology and has a keen interest in developing
tools and extensions. Currently working for Avanade in the United Kingdom, he has
experience in the areas of Azure, DevOps, Agile, and Architecture. Over the years he has
worked for many top companies as an architect, independent consultant, and as a DevOps
coach in India, the United States, Netherlands, and United Kingdom.
He has been awarded as Microsoft Most Valuable Professional five times. He regularly
writes at Visual Studio Geeks and you can follow him on Twitter at @onlyutkarsh.

I would like to thank my father Dr. Balanna Shigihalli and my mother Mrs. Padmaja
Shigihalli for their love, care, and encouragement. I am extremely thankful to my wife
Rajeshwari for her patience and continuing support to complete this book. My lovely
daughter Kruti for her smiles and hugs. I also like to express my thanks to my sister
Kavya, brother-in-law Piyush for all their support and my niece Stuti and nephew Vismay
for their love.

About the reviewer
Michael Juřek, after working for Microsoft for many years, is now a freelance consultant
specializing in the software development life cycle and DevOps tools and principles. Other
areas of his professional interests include software architecture and PaaS technologies in
the cloud. In his free time, Michael has various hobbies, such as volleyball, skiing,
astronomy, and bee-keeping.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Planning and Tracking Work 8
Creating a team project for an Agile team 11

Getting ready 13
How to do it... 13
How it works... 15
There's more... 16

Importing requirements from Excel 17
Getting ready 17
How to do it... 18
How it works... 21
There's more... 22

Getting social with work items 24
Getting ready 25
How to do it... 25
How it works... 28
There's more... 31

Portfolio backlog hierarchies and decomposing work 32
Getting ready 33
How to do it... 34
How it works... 35
There's more... 37

Configuring and customizing backlog boards 38
Getting ready 38
How to do it... 39
How it works... 41
There's more... 42

Preparing and planning a sprint 43
Getting ready 43
How to do it... 45
How it works... 49
There's more... 50

Visualizing progress in a sprint 51
Getting ready 52
How to do it... 53
How it works... 54
There's more... 55

Delivery plans to track multiple teams 55
Getting ready 56

Table of Contents

[ii]

How to do it... 57
How it works... 59
There's more... 60

Dashboards for planning and tracking work 60
Getting ready 60
How to do it... 61
How it works... 62
There's more... 62

Chapter 2: Source Control Management 63
Migrating from TFVC to Git with code history 67

Getting ready 68
How to do it... 68
How it works... 70
There's more... 70

Accessing Azure DevOps Git repositories using SSH 70
Getting ready 72
How to do it... 72
How it works... 75
There's more... 75

Importing a Git repository from GitHub into Azure DevOps Server 76
Getting ready 76
How to do it... 77
How it works... 78
There's more... 79

Basic Git operations using Visual Studio Code 80
Getting ready 80
How to do it... 81
How it works... 84
There's more... 85

Pull request for code review using branch policies 86
Getting ready 86
How to do it... 87
How it works... 90
There's more... 95

Using Git hooks with Azure DevOps Server 95
Getting ready 96
How to do it... 97
How it works... 97
There's more... 98
See also 98

Managing and storing large files in git 98
Getting ready 99
How to do it... 100
How it works... 100

Table of Contents

[iii]

See also 103
Git branching model for continuous delivery 103

Getting ready 104
How to do it... 106
How it works... 113

Configuring code search as a search engine 113
Getting ready 113
How to do it... 114
How it works... 115
There's more... 116

Using Git forks and sync changes with upstream PR 117
Getting ready 118
How to do it... 118
How it works... 121

Chapter 3: Build and Release Agents 122
Unattended configuration of build agents using PowerShell 124

Getting ready 124
How to do it... 125
How it works... 126

Downloading agents using the GitHub release API 127
Getting ready 128
How to do it... 129
How it works... 130

Configuring deployment groups 131
Getting ready 132
How to do it... 133
How it works... 134

Configuring the agent to use a proxy 135
Getting ready 135
How to do it... 136
How it works... 137

Analyzing build usage data 137
Getting ready 137
How to do it... 138
How it works... 139
See also 140

Automating agent pool maintenance 140
Getting ready 141
How to do it... 141
How it works… 142
There's more... 143

Configuring build and release retention policies 143
Getting ready 144
How to do it... 144

Table of Contents

[iv]

How it works... 146
Agent capabilities and build demands for special builds 147

Getting ready 147
How to do it... 147
How it works... 149

Managing agent permissions using role-based access 149
Getting ready 150
How to do it... 150
How it works... 151

Chapter 4: Continuous Integration and Build Automation 153
Configuring one build definition for all branches of a Git repository 154

Getting ready 154
How to do it... 155
How it works... 158
See also 160

Reflecting the branch quality in the build name 160
Getting ready 160
How to do it... 160
How it works... 163

Using web deploy to create a package in an ASP.NET build pipeline 163
Getting ready 164
How to do it... 164
How it works... 166
There's more... 167

Organizing build output into separate folders 167
Getting ready 168
How to do it... 170
How it works... 170

Configuring assembly version info in build pipelines 171
Getting ready 172
How to do it... 172
How it works... 175

Setting up a build pipeline for a .NET core application 176
Getting ready 176
How to do it... 177
How it works... 179
There's more... 181

Setting up build pipeline for a Node.js application 181
Getting ready 182
How to do it... 182
How it works... 186
There's more... 188

Setting up a build pipeline for your database projects 189
Getting ready 189

Table of Contents

[v]

How to do it... 190
How it works... 192

Integrating SonarQube in build pipelines to manage technical debt 193
Getting ready 193
How to do it... 194
How it works... 196
There's more... 198

Chapter 5: Continuous Testing 199
Running NUnit tests using Azure Pipelines 202

Getting ready 202
How to do it... 205
How it works... 210

Using feature flags to test in production 212
Getting ready 213
How to do it... 214
How it works... 216
There's more... 217

Distributing multi-configuration tests against agents 217
How to do it... 218
How it works... 220
There's more... 221

Configuring parallel execution of tests using Azure Pipelines 221
Getting ready 221
How to do it... 222
How it works... 224
There's more... 225

Running SpecFlow tests using Azure Pipelines 225
Getting ready 225
How to do it... 225
How it works... 227
There's more... 228

Analyzing test execution results from Runs view 229
Getting ready 230
How to do it... 230
How it works... 232

Exporting test artifacts and test results from Test Hub 232
Getting ready 233
How to do it... 233
How it works... 234
There's more... 236

Charting testing status on the dashboard in team portal 237
Getting ready 237
How to do it... 237
How it works... 238

Table of Contents

[vi]

Chapter 6: Continuous Deployments 239
Deploying the database to Azure SQL using the release pipeline 239

Getting ready 240
Creating a database project and importing the database 241
Creating a build definition 243

How to do it... 247
Creating Azure Resource Manager (ARM) templates 248
Creating the release pipeline 252

How it works... 258
Consuming secrets from Azure Key Vault in your release pipeline 259

Getting ready 259
Creating a key vault in Azure 259
Creating a variable group and linking it to Azure Key Vault 262

How to do it... 268
How it works... 270
There's more... 270
See also 270

Deploying the .NET Core web application to the Azure App Service 271
Getting ready 271

Creating the ASP.NET Core application 271
How to do it... 274

Creating ARM templates 274
Creating the release pipeline 277

How it works... 281
There's more... 281
See also 282

Deploying an Azure Function to Azure 282
Getting ready 282

Creating a sample Azure Function 283
Creating the build pipeline 287

How to do it... 289
Creating the ARM template 289

How it works... 292
See also 294

Publishing secrets to Azure Key Vault 294
Getting ready 294
How to do it... 295
How it works... 298
There's more... 298
See also 299

Deploying a static website on Azure Storage 299
Getting ready 300

Creating a storage account from the Azure portal 301
Creating an Azure Storage Account ARM templates 301

How to do it... 304
How it works... 309

Table of Contents

[vii]

There's more... 309
See also 309

Deploying an Azure Virtual Machine to Azure Dev Test Lab (DTL) 310
Getting ready 311
How to do it... 312
How it works... 317
There's more... 318
See also 319

Chapter 7: Azure Artifacts and Dependency Management 320
Publishing a NuGet package to Artifacts 322

Getting ready 322
Creating an Artifact feed in Azure Artifacts 323

How to do it... 325
Creating a build definition to produce the NuGet package 326
Creating a release pipeline to publish a NuGet package to the feed 328
Granular feed permissions in feed settings 331

How it works... 332
There's more... 332
See also 332

Consuming a NuGet package in Visual Studio from the Artifacts
feed 332

Getting ready 333
How to do it... 333

Connecting to the feed in Artifacts 333
How it works... 338
There's more... 339
See also 339

Testing a NuGet package using Artifact views 339
Getting ready 340
How to do it... 341
How it works... 344
There's more... 344
See also 344

Publishing NPM packages to Artifacts 344
Getting ready 345

Creating NPM package 345
How to do it... 346

Creating the build pipeline to update the package version 346
Creating the release pipeline to publish the npm package 347

How it works... 349
There's more... 349
See also 350

Consuming NPM package from the Artifacts feed 350
Getting ready 351
How to do it... 352

Table of Contents

[viii]

How it works... 354
There's more... 354
See also 354

Scanning for vulnerabilities in your package using WhiteSource 354
Getting ready 355
How to do it... 356
How it works... 357
There's more... 358
See also 358

Chapter 8: Azure DevOps Extensions 359
Creating the VS Marketplace publisher 362

Getting ready 362
How to do it... 364

Creating a simple task to clean folders 366
Getting ready 367
How to do it... 367

Creating manifest 367
Installing dependencies 368
Creating the task.json file 369
Creating the script (index.js) file 371

How it works... 372
See also 372

Creating a UI extension 372
Getting ready 373
How to do it... 374

Creating manifest.json 375
Creating the HTML page to host initialization code 377
Creating the script file 378

How it works... 380
How it works... 383
There's more... 384

Creating a service connection extension to connect to GitLab 384
Getting ready 388
How to do it... 389
How it works... 390
See also 394

Creating a pipeline task to consume a custom service connection 394
Getting ready 395
How to do it... 396

Installing dependencies 396
Adding task.json 396
Creating a core script to download a source from GitLab 398

How it works... 399
See also 404

Publishing extensions to the marketplace 404

Table of Contents

[ix]

Getting ready 405
How to do it... 407

Creating the build pipeline 407
Creating the release pipeline 410
Publishing to VS Marketplace 417

How it works... 420
There's more... 421

Other Books You May Enjoy 422

Index 425

Preface
Development teams are judged by the speed at which they can convert an idea into
working software. Operations teams are judged on the uptime and stability of the
production environment. One wants to deploy changes all the time, the other doesn't want
any changes at all. These conflicting goals result in development teams and operation teams
working against each other. The introduction of Agile practices has demonstrated that
iterative feedback-driven development helps teams cope with changes in business and user
requirements. Agile practices help development teams accelerate the creation of ready-to-
ship software. Software that's ready to ship but hasn't shipped doesn't provide any value to
users.

DevOps has been an emerging trend in the software development world for the past few
years. While the term may be relatively new, it is really a convergence of a number of
practices that have been evolving for decades. DevOps is a revolutionary way to ship
working software quickly and efficiently while maintaining a high level of security.
DevOps advocates that everyone and everything that's needed to ship working software to
of end users needs to be part of the software development life cycle. Building software is an
iterative process; therefore, a high level of automation is needed to make the process of
developing, testing, releasing, and monitoring software easily repeatable. The emphasis is
on delivering value to end users by collaborating, automating, learning, and constantly
improving the software. Simply put, DevOps is the union of people, processes, and
products to enable the continuous delivery of value to end users.

While DevOps isn't just a tool you can buy and install, tooling is an integral part of
DevOps. Microsoft Azure DevOps Server 2019, formerly known as Team Foundation
Server, is a set of collaborative software development tools, hosted on-premises. Azure
DevOps Server integrates with your existing IDE or editor, enabling your cross-functional
team(s) to work effectively on projects of all sizes. Azure DevOps Server works for any
language, and on any platform. Azure DevOps Server has everything you need to turn an
idea into a working piece of software. You can plan your project with Agile tools, you can
manage your test plans, version your code using Git, and deploy your solution using an
incredible cross-platform CI-CD system, all while getting full traceability and visibility
across your development activities.

Preface

[2]

Starting your DevOps journey may seem overwhelming with a product that's so diverse
and an ecosystem that's so vibrant. With over 70 hands-on tooling recipes, you'll learn how
to accelerate your journey of DevOps by planning, coding, building, testing, and releasing
high-quality working software using effective automation techniques with Azure DevOps
Server 2019.

Who this book is for
This book is for all software professionals, including developers, operations, testers,
architects, managers, and configuration analysts, who are using or planning to use Azure
DevOps Server.

What this book covers
Chapter 1, Planning and Tracking Work, explains how to create and set up a scrum team
project, import requirements as work items from Excel, use work items for collaboration,
set up hierarchical backlogs, configure and customize kanban boards, prepare and plan a
sprint, use delivery plans to track multiple teams, and use dashboards for planning and
tracking work.

Chapter 2, Source Control Management, covers the differences between Git and TFVC, why
Git is more suited for greenfield projects with distributed teams working on small
codebases, how to migrate from TFVC to Git with history, how to access Azure DevOps Git
repositories using SSH, and how to import a Git repository from GitHub into Azure
DevOps Server. It also explains how to perform Git operations using the command line and
Visual Studio Code, how to configure branch policies and use pull requests to review code,
how to configure and use Git Hooks, how to manage and store large files in Git, how to use
Git branching strategies for CD, and how to search code in Azure DevOps using the code
search service.

Chapter 3, Build and Release Agents, explains how to set up build and release agents,
automate the setup of build and release agents using unattended installation with
PowerShell, download agents from GitHub using the GitHub release API, configure
deployment groups, run an Azure DevOps agent behind a corporate enterprise proxy,
analyze build usage data, automate agent pool maintenance, and configure retention
policies for builds and releases. In this chapter, you'll also learn how to use agent
capabilities and demands to map build definitions to specific agents in pools, and finally,
how to manage and permission agent usage using role-based access control.

Preface

[3]

Chapter 4, Continuous Integration and Build Automation, defines continuous integration. It
also explains how to configure one build pipeline to build all branches of a code repository,
how to reflect the branch quality in the build name by dynamically updating the build
name during pipeline execution, how to use web deploy to create a package in an ASP.NET
build pipeline, how to organize the output from a build into logical folders, how to use an
assembly version to stamp assemblies in a pipeline, how to set up a build pipeline for a
.NET Core application, how to set up a build pipeline for a Node.js application, and how to
set up a build pipeline for database projects. You'll also learn how to use SonarQube in a
build pipeline to manage technical debt.

Chapter 5, Continuous Testing, shows the direction Microsoft is taking with its testing tools,
along with the rationale behind discontinuing some of the testing tools. It also shows how
to run NUnit-based unit tests in a pipeline, how to use feature flags to test in production,
how to distribute multi-configuration tests on agent pools, how to configure parallel
execution of automated tests to speed up overall test execution, how to run functional
Specflow tests using Azure pipelines, how to analyze test execution results from the runs
view. You'll also learn how to export test artifacts and test results from Test Hub, and
finally, how to chart test results on dashboards in Azure DevOps Server team projects.

Chapter 6, Continuous Deployments, defines continuous deployment. It also explains how to
deploy the database to SQL Azure using Azure release pipelines, how to consume secrets in
Azure pipelines from the Azure Key Vault, how to deploy a .NET Core app into Azure App
Service, how to deploy an Azure Function using Azure Pipelines, and how to publish
secrets to Azure Key Vault. In this chapter, you'll also learn how to deploy a static website
on Azure Storage, and finally, deploy a VM to Azure DevTest Labs.

Chapter 7, Azure Artifacts and Dependency Management, explains how to leverage artifacts to
break down monolithic applications into microservices, how to publish a NuGet package to
artifacts, how to consume a NuGet package feed in Visual Studio, how to publish an NPM
package to an artifact feed in Azure DevOps Server, how to test NuGet packages using
artifact views, and how to secure your packages by scanning for known vulnerabilities in
your dependencies using WhiteSource.

Chapter 8, Azure DevOps Extensions, explains how to leverage the Azure DevOps Server
APIs to extend Azure DevOps Server, how to create a new publisher in Visual Studio
Marketplace, how to create a simple task to clean folder, how to create a UI extension, how
to create a service connection to connect to GitLab, how to create a pipeline task to consume
the custom service connection and download GitLab sources and finally how to publish
extensions to Visual Studio Marketplace using Azure Pipelines.

Preface

[4]

To get the most out of this book
The book assumes you have a working setup of Azure DevOps Server 2019, basic
knowledge of DevOps, and some familiarity with Azure DevOps Server. A free trial of the
Azure subscription may be needed to try out some of the recipes.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Azure- ​DevOps- ​Server- ​2019-​Cookbook- ​Second- ​Edition. In case there's
an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Create a new file called azure-pipelines.yml."

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/Azure-DevOps-Server-2019-Cookbook-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

A block of code is set as follows:

var printaz = require("print-azure-devops")
printaz.printAzureDevOps();

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

var colors = require("colors")
exports.printAzureDevOps = function () {
 console.log("Azure DevOps Server 2019".blue)
}

Any command-line input or output is written as follows:

C:\Users\utkarsh>node -v
v10.15.3

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"To do this, first, head to the Artifacts hub and click on the + New Feed button."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

Preface

[6]

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Preface

[7]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/

1
Planning and Tracking Work

The best software teams ship early and often. In order to successfully plan and track a
software project, it is important to understand the types of work involved in software
delivery. All work that's undertaken for software delivery can be categorized into one of
the following four categories:

Planning and Tracking Work Chapter 1

[9]

Technical debt is a metaphor for the eventual consequences of poor software or
infrastructure within your organization. It is considered debt because it is work that needs
to be done before a particular project can be considered complete. If you don't pay down
technical debt, then your unplanned work will continue to increase. Left unchecked,
technical debt will ensure that the only work that gets done is unplanned work.

Azure DevOps Server allows you to plan and track work using work items. Work items can
be used to classify work into different categories. Work items allow you to decompose
high-level ideas into smaller, workable units. These can then be prioritized, planned, and
scheduled into iterations. Every team has a unique process for shipping software.
Regardless of whether you follow Agile or Waterfall, Azure DevOps Server offers a range
of out-of-the-box process workflows, along with giving you the option to create your own
custom process workflows.

Over the last decade, agile software methodologies such as Scrum and Kanban have mostly
displaced traditional Waterfall-driven software delivery for complex systems with evolving
system requirements. Agile methodologies feature self-organizing teams that are
empowered to achieve specific business objectives. Agile methodologies focus on the rapid
and frequent delivery of partial solutions (also known as minimum viable products) that
can be evaluated and used to determine the next steps for the business. In this way,
solutions are built in an iterative and incremental manner. Agile methodologies have been
shown to deliver higher-quality products in less time, resulting in improved customer
satisfaction. The annual Agile survey report available here http:/ ​/​bit. ​ly/
agileReport (refer to page 8) shows why organizations are adopting Agile software
development over traditional methodologies.

While most organizations are very diligent when tracking planned work, unplanned work
doesn't always get tracked. Work is work – whether it's planned or unplanned, it needs to
be tracked. Hidden work robs you of focus. The primary goal of any DevOps setup within
an organization is to improve the delivery of value for customers and the business; things
that aren't tracked aren't measured. In the famous words of Peter Drucker, "you can't
manage what you can't measure."

http://bit.ly/agileReport
http://bit.ly/agileReport
http://bit.ly/agileReport
http://bit.ly/agileReport
http://bit.ly/agileReport
http://bit.ly/agileReport
http://bit.ly/agileReport
http://bit.ly/agileReport

Planning and Tracking Work Chapter 1

[10]

We've all been on a project where no data of any kind was tracked, and it was hard to tell
whether we were on track for release or getting more efficient as we went along. On the
other hand, many of us have had the misfortune of being on projects where stats were used
as a weapon, pitting one team against another to justify mandatory weekend work. So, it's
no surprise that most teams have a love/hate relationship with metrics. There are as many
ways to measure a project as there are to build it. If you only measure one key metric, it is
easy to get tunnel vision. Whether the teams are focusing on just making the metric better
(often through gaming the system) or management is using the measure to drive all
decisions, you can end up with a product or organization that looks good but is really
driving off a cliff. To foster a culture of continuous improvement, Agile teams tend to focus
on the following metrics:

Lead time
Cycle time
Cumulative flow
Velocity
Product burn-down and product burn-up

We'll cover some of these metrics and how they can be tracked using Azure DevOps in
detail later on in this chapter. Read on to learn how work items allow you to plan and track
work in your software projects.

In this chapter, we will cover the following recipes:

Creating a team project for an Agile team
Importing requirements from Excel
Getting social with work items
Portfolio backlog hierarchies and decomposing work
Configuring and customizing backlog boards
Preparing and planning a sprint
Visualizing progress in a sprint
Delivery plans to track multiple teams
Dashboards for planning and tracking work

Planning and Tracking Work Chapter 1

[11]

Creating a team project for an Agile team
Azure DevOps Server provides a set of integrated tools that allow teams to effectively
manage the life cycle of their software project. The team in Azure DevOps Server is
encapsulated within the container of a team project. A team project is a logical container
that's used to isolate all tools and artifacts associated with a software application in a single
namespace.

The conceptual boundary that was introduced through the team project eliminates the
problem of having access to unrelated artifacts such as code, work items, or release
information that isn't relevant to your application's development. Related team projects can
be grouped together into a team project collection. Team project collections can be used to
introduce a physical separation between a group of related team projects by hosting
them in separate databases.

An instance of Azure DevOps Server is capable of supporting multiple team project
collections, and each team project collection can internally host multiple team projects. A
team project can house multiple teams. As illustrated in the following diagram, the process
template is scoped at the team project level. Multiple team projects in a team project
collection can use different process templates; however, multiple teams within a single
team project will need to use the same process. Teams, however, have autonomy on the
level of the backlogs they choose and the workflows on the Kanban board. The delivery
framework of choice is applied through the Process Template, which, in turn, applies the
delivery framework-specific terminology, artifacts, and workflows to the team project and
all teams within the team project:

Planning and Tracking Work Chapter 1

[12]

The process template defines the set of work item types, queries, and reports that can
be used to plan and track the project. In this recipe, we'll learn how to create a
new Team Project using the Scrum template.

TFS 2018 and later versions no longer support native integration with
SharePoint products. If you're planning to upgrade to Azure DevOps
Server 2019, read About SharePoint integration (https:/ ​/​docs. ​microsoft.
com/​en- ​us/ ​azure/ ​devops/ ​report/ ​sharepoint- ​dashboards/ ​about-
sharepoint- ​integration? ​view= ​azure- ​devops) to learn about the options
available to you.

https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/sharepoint-dashboards/about-sharepoint-integration?view=azure-devops

Planning and Tracking Work Chapter 1

[13]

Getting ready
To create a team project, you need to be a member of the Project Collection Administrators
group. If you aren't already part of this group, gain membership by following the steps
provided here https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/ ​vsts/ ​security/ ​set- ​project-
collection-​level- ​permissions. ​ Alternatively, follow the steps provided at https:/ ​/
docs.​microsoft.​com/ ​en- ​us/ ​vsts/ ​security/ ​set- ​project- ​collection- ​level- ​permissions
to be added to one.

How to do it...
To create a new team project from the web, follow these steps:

Launch a browser and navigate to the Azure DevOps Server Portal.1.
From the top right side, click the +Create project button:2.

https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions
https://docs.microsoft.com/en-us/vsts/security/set-project-collection-level-permissions

Planning and Tracking Work Chapter 1

[14]

Provide a name for your new team project, select its initial source control type,3.
and select a process to create a team project. The work item process is a one time
choice and cannot be changed once set. See Choosing the right version control for
your project (https:/ ​/ ​docs. ​microsoft. ​com/ ​en- ​us/​azure/ ​devops/ ​repos/ ​tfvc/
comparison- ​git- ​tfvc? ​view= ​azure- ​devops) and Choose a process (https:/ ​/ ​docs.
microsoft. ​com/ ​en- ​us/ ​azure/ ​devops/ ​boards/ ​work- ​items/ ​guidance/ ​choose-
process? ​view= ​azure- ​devops) for guidance:

https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops

Planning and Tracking Work Chapter 1

[15]

The ability to work from both Git and TFVC repositories from the same
team project has been supported since TFS 2015 Update 1. See Git team
projects (https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/ ​azure/ ​devops/ ​repos/ ​git/
team- ​projects? ​view= ​azure- ​devops) or TFVC team projects (https:/ ​/
docs. ​microsoft. ​com/ ​en- ​us/​azure/ ​devops/ ​repos/ ​git/ ​team- ​projects?
view= ​azure- ​devops) for more information.

How it works...
The following items are created for you as part of the team project creation process:

Dashboards: A canvas to bring key information radiators to raise visibility
within and outside the team
Code: A code repository (Git/TFVC) based on your selection is provisioned
Work: All agile planning and tracking tools are nested under this hub.

Team: A default team with the same name as the team project is
provisioned.
Area Path: A default Area Path with the same name as the name of
the Team is provisioned. The teams' backlog is configured to show
work items assigned to this Area Path.
Iteration Path: The set of iterations is pre-created for the team.
Team Portal: The Team Portal allows the Team members to
connect to TFS to manage source code and work items, and build
and test efforts.

Build & Release: Automated pipelines to build and release your application
Test: Plan, track, and execute tests
Wiki: To share knowledge and documentation with the team

https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/team-projects?view=azure-devops

Planning and Tracking Work Chapter 1

[16]

These are shown in the following screenshot:

Azure DevOps server simplifies navigation across the portal, and for
those who prefer the keyboard to the mouse, there is a great support for
navigation through the keyboard in both global and local hubs. Hold Shift
+ ? in the portal to see the full list of supported keyboard shortcuts.

There's more...
Azure DevOps Server makes the process of setting up a new team project very
straightforward—so much so that you may be inclined to create a new team project for
every software project. I would generally not recommend this; with support for multiple
teams and backlog isolation at the team level, it is possible to have a logical separation,
along with the ability to share within a team project. In principle, you should consider a
team project for each product, and a team for each work stream. The only time you should
consider splitting a product team out into a separate team project is if it needs to follow a
unique process, since process templates are scoped at the team project rather than at the
team level.

Planning and Tracking Work Chapter 1

[17]

If you find yourself organically needing to grow out into a new team project to use a
different process template, you can consider leveraging the VSTS Migration Toolkit (https:/
/​nkdagility.​com/ ​vsts- ​sync- ​migration- ​tools/ ​) to carry out a full fidelity migration.

Importing requirements from Excel
In Scrum, the taskboard is a visual display of the progress of the Scrum team during a
sprint. It presents a snapshot of the current sprint backlog, allowing everyone to stay
synchronized and focused on the work to be done. Most of the time, smaller teams are
distributed across multiple locations, and in these situations, tracking work with a digital
tool helps distributed teams synchronize more effectively. Some of us are lucky enough to
land on green field projects, which gives us the opportunity to start tracking the
requirements of work items from inception. Other times, projects are planned in tools that
don't natively support integration with Azure DevOps Server. Luckily, most planning tools
allow you to extract the data to Excel. Azure DevOps Server natively supports importing
work items through Excel, but the challenge is mostly working out which fields in the
spreadsheet should map out to work items in Azure DevOps Server. In this recipe, we'll
learn how to import requirements from Excel into work items and refresh updates from
work items back into Excel.

Getting ready
If you don't have Office Excel, install it. For Azure DevOps Server 2019, you'll need Office
2013 or a later version. The Excel plugin for Azure DevOps Server is installed by installing
one of the latest editions of Visual Studio or the Azure DevOps Server Standalone Office
Integration installer. Azure DevOps Server Standalone Office Integration supports
connecting to Azure DevOps Server from Excel, Microsoft Project, and the PowerPoint-
based storyboard tool.

https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/
https://nkdagility.com/vsts-sync-migration-tools/

Planning and Tracking Work Chapter 1

[18]

If you don't intend to install Visual Studio but need Office integration, download and
install Azure DevOps Server Standalone Office Integration (free) from https:/ ​/ ​www.
visualstudio.​com/ ​downloads/ ​. Once the installation is complete, the Excel Plugin will
show up under the Team ribbon in Excel, as shown in the following screenshot:

If you don't see the Team ribbon, perform the following steps to enable it:

Click the File tab in Excel and choose Options.1.
 In the Categories pane, click Add-ins, and verify that Team Foundation Add-in2.
shows up in the Disabled Application Add-ins section.
In the manage box, select disabled items and click Go.3.
Select the Azure DevOps Server Add-in and click Enable. Finally, exit the dialog4.
by clicking Close.

If you are continuing to run into issues with Add-in not showing up in
Excel, you may be able to resolve the issue with the procedures provided
at the following link: https:/ ​/ ​docs. ​microsoft. ​com/​en- ​us/ ​vsts/ ​work/
backlogs/ ​office/ ​tfs- ​office- ​integration- ​issues.

How to do it...
Now that we have the Azure DevOps Sever excel plugin installed, in this section we'll learn
how to use it.

Start by performing the following steps:

Launch Excel and start with a blank sheet. Navigate to the Team ribbon. 1.
Click on New List to connect to your project in TFS. 2.

https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues
https://docs.microsoft.com/en-us/vsts/work/backlogs/office/tfs-office-integration-issues

Planning and Tracking Work Chapter 1

[19]

If you are connecting to Azure DevOps Server from Excel for the first time, you3.
will have to add your server details to the list of recognized servers. The steps for
this are shown in the following screenshot:

Select the PartsUnlimited team project and click Connect:4.

Planning and Tracking Work Chapter 1

[20]

When asked which type of work item list you want to create, choose Input list.5.
An Input list gives you a blank template that is linked to your team project:

Your worksheet will now be bound to your team project as a flat list. What this6.
means is that you can add work items to the team project from the worksheet or
add work items to the worksheet from the team project. Fill out the details of the
work items you want to add and their work item type. The Excel plugin defaults
the list type to flat, but you can change it to a tree list if you wish. A tree list
allows you to create and view hierarchically linked work items, like so:

Publish the changes by clicking the Publish button from the Team ribbon.7.

You can add more work item fields as columns to this template. Right-
click within the table mapped to Azure DevOps Server, and then from the
context menu, select Team | Choose columns.

Planning and Tracking Work Chapter 1

[21]

How it works...
To validate whether the changes have been synchronized to Azure DevOps Server, launch
the web portal in a browser, and navigate to the work hub in the PartsUnlimited team
project. The newly added work item should show up under the features backlog, as shown
in the following screenshot:

Follow these tips to keep your work in sync:

When you first open a saved worksheet, use the Refresh button in Excel on the
Team ribbon to download the latest data from the data store
Enter data for additional fields by adding columns to the worksheet using
the Choose Column icon in Excel on the Team ribbon
To avoid data conflicts, publish your additions and modifications often
To prevent loss of data before you publish or refresh, save your workbook
periodically

The Azure DevOps Server Excel plugin uses the Azure DevOps Server REST APIs, which
are wrapped into an SDK. This allows for safe and secure bulk editing of work items. The
plugin supports two-way updates, and changes that are made to work items in Azure
DevOps Server web portal can be refreshed back into Excel by clicking the Refresh button.
Refreshing the data does not overwrite any calculations or formatting that you may have
applied to the worksheet. If you spend a lot of time using Microsoft Project, you'll be
excited to know that the Azure DevOps Server plugin can also be used from Microsoft
Project.

Planning and Tracking Work Chapter 1

[22]

There's more...
The marketplace features the Azure DevOps Open in Excel extension (https:/ ​/
marketplace.​visualstudio. ​com/ ​items? ​itemName= ​blueprint. ​vsts- ​open- ​work- ​items- ​in-
excel). This is a free extension that was created by Microsoft DevLabs, and adds the option
of opening work items in Excel from various access points, such as work item queries,
backlogs, and selective work items:

https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel
https://marketplace.visualstudio.com/items?itemName=blueprint.vsts-open-work-items-in-excel

Planning and Tracking Work Chapter 1

[23]

Another noticeable extension in the marketplace is the Requirements Integrator (https:/ ​/
marketplace.​visualstudio. ​com/ ​items? ​itemName= ​jgarverick. ​RequirementsIntegrator).
This is an open source extension that was created by Microsoft MVP Josh Garverick, which
introduces the capability of mapping external requirements into Azure DevOps Server to
create a traceability matrix with work items. This extension introduces a new sub-tab called
Requirements in the work hub, which allows you to import external requirements into TFS
using a predefined Excel template:

The extension allows you to do the following:

Manage requirements to work item mapping
Display a sprint view that shows the requirements covered by a sprint
Display a traceability matrix, including gaps, for requirements that are imported
and mapped to WIs
Restrict import usage to non-CMMI process templates
Requirement visualization (visual traceability)
Export requirement information to Excel

I encourage you to look at the marketplace (https:/ ​/​marketplace. ​visualstudio. ​com/ ​) as
it has a range of extensions that enhance the experience of planning, tracking, and
managing work items. While this extension isn't necessarily a replacement for the Excel
add-in, you'll find that it enhances the work planning, tracking, and management
experience.

https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/items?itemName=jgarverick.RequirementsIntegrator
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/

Planning and Tracking Work Chapter 1

[24]

Getting social with work items
To provide a fresher, more modern experience in tracking work, the old and clunky work
item form has been given a makeover. Along with the noticeable responsive form layout,
the new form introduces a lot of new features. In this recipe, we'll see how to put the newly
added work item discussion control to work. The following screenshot shows the new
work item form:

It's fair to say that projects are tracked using work items, while discussions are tracked
using email. Often, decisions aren't reflected back into work items, which results in work
needing to be done later. The new work item form makes it really easy to stay on track by
letting you have conversations within a work item. The discussions control provides a rich
editor, giving you the ability to associate images, mention people, and link work items. The
power of work item search and the social features of alerts and notification follow work
items, and my work items make it really easy to stay involved and informed.

Planning and Tracking Work Chapter 1

[25]

Getting ready
Before we dig into work item discussions, let's see how easy it is to populate your team
project with sample data. The sample data widget, which can be found at https:/ ​/
marketplace.​visualstudio. ​com/ ​items? ​itemName= ​ms- ​devlabs. ​SampleDataWidget, is a free
extension that was developed by Microsoft DevLabs, and it makes it really easy to generate
demo work items in bulk. This extension also provides an option to generate and set up
work item data inline with the Scaled Agile Framework (SAFe), giving you a great jump-
start into implementing SAFe with TFS.

Once you've installed the extension, navigate to the dashboard in the PartsUnlimited
project web portal. Add the sample data widget to the dashboard, select Getting started in
the dropdown, and click Create. Once this awesome extension has completed its magic,
you'll see your team project become populated with new features, user stories, and active
iterations—all ready for you to start playing with everything they offer.

How to do it...
Let's perform the following steps:

Launch the PartsUnlimited web portal and select the Search work items control:1.

In the work item search box, type add. The keyword add is searched across all2.
work items in the team project. The search results are summarized in the left-
hand side panel. The search results are ordered by relevance, and can be
reordered using a different field:

https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.SampleDataWidget

Planning and Tracking Work Chapter 1

[26]

The work item search understands the work item schema, which allows it to3.
support complex work item search queries. For example, by changing the search
query to add and s:active and t:feature, we can filter the results down to
the work item type feature and set the work item status to Active:

Planning and Tracking Work Chapter 1

[27]

To search for work items that need review, change the search query to a new4.
tag: needs review. The new follow functionality allows you to subscribe to
work items and be notified when changes are made to them. Click on the Follow
button to follow one or more work items:

Double-click the first work item in the search result and navigate to the5.
Discussion section in the work item form. Here, you can add a comment, use #
to link a work item, or use @ to mention a person:

Planning and Tracking Work Chapter 1

[28]

Click Save to persist the changes. The linked work item is automatically linked to6.
the work item as a related work item. This mention triggers a notification
workflow, and an email is sent out to the mentioned individual, in addition to
others who are following this work item. You can click Maximize Discussion to
enter an expanded discussion view:

My favorite feature is being able to paste images into the work item form without7.
having to save them and attach them manually. In your discussions, you can use
rich formatting, links, images, and more:

How it works...
 It is super easy for you to access artifacts that are most important for you. The redesigned
account page has a personalized experience that shows the Projects, Favorites, Work, and
Pull Requests you care about. You can go to one place and quickly find everything you
need to do and care about.

Planning and Tracking Work Chapter 1

[29]

Start your day with the My work items page to be able to easily access all the work items
that have been assigned to you across all projects. It also lets you check and access the
status of all the work items that you are following, those you have been mentioned in, or
those that you have recently viewed:

Work item search allows you to search across all projects. You can scope the search and
drill down into an area path of choice. You can easily search across all work item fields,
including custom fields, which enables more natural searches. The snippet view indicates
where matches were found. Quick inline search filters let you refine work items in seconds.
The dropdown list of suggestions helps you complete your search faster. For example, a
search such as AssignedTo: Tarun WorkItemType: Bug State: Active finds all
active bugs assigned to a user named Tarun.

One of the design principles of the work item search team has been to keep the search
actionable. The work item search interface integrates with familiar controls in the Work
hub, giving you the ability to view, edit, comment, share, and much more, right from the
search results.

Notifications help you and your teams stay informed about activity in your team projects.
TFS 2018 introduced a new experience that makes it easier to manage what notifications
you and your teams receive. Users have their own account-level experience for managing
notification settings (available via the Profile menu).

This view lets you manage personal subscriptions and also view subscriptions that have
been created by team administrators for all the projects in your account:

Planning and Tracking Work Chapter 1

[30]

You can set up new notifications by clicking on the New subscription link. This new
notification experience gives you access to WIQL so that you can create filter criteria for
specific conditions. In addition to this, you can set up notifications to be delivered to other
email addresses and soap endpoints:

You, as an individual, also have the option of unsubscribing and opting out of a team or
OOB notification subscription. Whether you are an administrator or not, toggling a shared
team subscription from your notification settings only impacts you and not other team
members.

You must configure an SMTP sever in order for team members to see the
Notifications option from their account menu and to receive notifications.
This can be done by following the steps provided at https:/ ​/​docs.
microsoft. ​com/ ​en- ​gb/ ​vsts/​tfs- ​server/ ​admin/ ​setup- ​customize-
alerts.

https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts
https://docs.microsoft.com/en-gb/vsts/tfs-server/admin/setup-customize-alerts

Planning and Tracking Work Chapter 1

[31]

There's more...
The TFS marketplace features the Activity Feed extension, available at https:/ ​/
marketplace.​visualstudio. ​com/ ​items? ​itemName= ​davesmits. ​VSTSActivityFeed. This free
extension, created by Dave Smits, brings in the capability of viewing what's happening in
your team project at a glance in one place. The extension is available as a dashboard widget,
as well as a subpage in the work hub. Activity Feed gives a summary of all recent changes in
work items, commits, pull requests, and builds. It tells who changed a task, who logged a
bug, and who committed code. The extension supports configuration, so you can decide to
filter out what's not relevant or simply configure which backlogs the work updates should
be published from:

https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed
https://marketplace.visualstudio.com/items?itemName=davesmits.VSTSActivityFeed

Planning and Tracking Work Chapter 1

[32]

The team rooms functionality has been completely removed in TFS 2018 https:/ ​/ ​blogs.
msdn.​microsoft.​com/ ​devops/ ​2017/ ​01/ ​04/ ​deprecation- ​of- ​the-​team- ​rooms- ​in-​team-
services-​and-​tfs/ ​. However, the introduction of social experiences built around you,
including the search, follow, and comment features in work items and the activity feed
extension, provides a far more engaging solution.

Portfolio backlog hierarchies and
decomposing work
Requirements come in all shapes and sizes! While many teams can work with a flat list of
items, sometimes, it helps to group related items into a hierarchical structure. Perhaps you
would like to start with a big picture and break it down into smaller deliverables. Or,
perhaps you've got an existing backlog and now need to organize it. No matter your
starting point, TFS offers you hierarchical backlogs so that you can bring more order to
your backlog. Two backlog levels are enabled in each team project by default—in the Agile
process template, it's features and stories. An additional backlog level—Epic—can be
enabled optionally. The user story backlog level is used for sprint planning; the feature
backlog level and the epic backlog level, also known as the Portfolio backlog, can have
multiple uses. This is shown in the following diagram for ease of understanding:

Use your backlogs in conjunction with portfolio backlogs to plan your project and do the
following:

Manage a portfolio of features that are supported by different development and
management teams
Group items into a release train
Minimize size variability of your deliverables by breaking down a large feature
into smaller backlog items

https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/
https://blogs.msdn.microsoft.com/devops/2017/01/04/deprecation-of-the-team-rooms-in-team-services-and-tfs/

Planning and Tracking Work Chapter 1

[33]

With portfolio backlogs, you can quickly add and group items into a hierarchy, drill up or
down within the hierarchy, reorder and reparent items, and filter hierarchical views.

Getting ready
TFS 2018 allows you to add one-level child links to work items with ease. However, when
you are in a planning discussion, you sometimes want to rapidly create sub items at
different levels of work item hierarchies. The TFS marketplace features the decompose
extension (https:/ ​/​marketplace. ​visualstudio. ​com/​items? ​itemName= ​cschleiden.
decompose), a free extension that was created by Christopher Schleiden, which allows you to
quickly break down work items into sub-hierarchies. Appropriately named, this extension
makes decomposing work items into sub-items very easy, and very useful during team
discussion and planning sessions. Once you've installed this extension, you'll see the
Decompose work item option in the work item context menu and the backlog and boards
work item context menu:

https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose
https://marketplace.visualstudio.com/items?itemName=cschleiden.decompose

Planning and Tracking Work Chapter 1

[34]

How to do it...
Let's perform the following steps:

Launch the PartsUnlimited team portal and navigate to the work hub. 1.
To configure the team settings, click the gear icon under the velocity chart in the2.
backlog view. The team settings window has several options to configure and
style backlogs and boards, which we'll cover in later recipes:

In the Settings window, under the General section, click Backlogs. This presents3.
the backlog levels that are available to your team. This setting is configurable per
team. Adding or removing a backlog level will only affect the team for which it's
being done to, and not every team in a team project. To add the Epics backlog
level for the PartsUnlimited team, simply check the Epics backlog level and click
Save:

Planning and Tracking Work Chapter 1

[35]

Open an epic from the Epics backlog and choose Decompose from the context4.
menu. Hit Enter to add a feature and indent to create the user story; indent again
to create the task. Once you have decomposed the work item, click Create to save
your changes:

How it works...
The newly created work items are linked to each other. You can see this linking by
expanding the linked work items in the Epics backlog:

Planning and Tracking Work Chapter 1

[36]

With the growth in work item usage, there will be growth in the work item dependency
tree. I usually find a list of dependencies meaningful until the depth of 3, after which I hope
I could just visualize the dependency through a graph. Luckily, the TFS marketplace
features the Work Item Visualization extension (https:/ ​/ ​marketplace. ​visualstudio. ​com/
items?​itemName=​ms- ​devlabs. ​WorkItemVisualization), which is a free extension that was
developed by Microsoft DevLabs. It allows you to visualize work item dependencies from
within the work item form. The unique selling point of this extension is that it allows you to
see how work items relate to each other, as well as code, tests, test results, builds, and
external artifacts. You can even drill into your commits to explore the changeset details.
Among other things, the extension also allows you to annotate and export visualizations,
an example of which is provided by the following screenshot:

https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.WorkItemVisualization

Planning and Tracking Work Chapter 1

[37]

There's more...
Story mapping is a popular way of visualizing the product backlog with Agile teams. Story
mapping is a top-down approach of requirement gathering. Story mapping starts from an
overarching vision. A vision is achieved via goals. Goals are reached by completing
activities. To complete an activity, users needs to perform tasks. And these tasks can be
transformed into user stories for software development. Story maps are traditionally
created using sticky notes on walls or whiteboards, and have proven to be popular among
Agile development teams. However, these traditional storyboards are not without their
disadvantages: walls are not transportable and the physical nature of these maps means
they are only temporary.

The TFS marketplace features the SpecMap extension (https:/ ​/​marketplace.
visualstudio.​com/ ​items? ​itemName= ​techtalk. ​specmap), which was created by TechTalk
software, and gives you the ability to create digital storyboards. This extension allows you
to use existing work items in the system, which means that SpecMap goes further than just
depicting story maps: creating a story map in SpecMap helps you plan iterations in TFS and
structure your backlog items in the process. The following screenshot depicts a story map
of the PartsUnlimited iOS feature team, who are identifying the user journey for the new
iOS application that they are creating for both free and paid users:

https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap
https://marketplace.visualstudio.com/items?itemName=techtalk.specmap

Planning and Tracking Work Chapter 1

[38]

Configuring and customizing backlog
boards
Backlogs display work items as a list, while boards display them as cards. In TFS, each
backlog comes with its own board. The backlog board is also known as a Kanban board. To
maximize a team's ability to consistently deliver high-quality software, Kanban emphasizes
two main practices. The first, visualize the flow of work, requires that you map your team's
workflow stages and configure your Kanban board to reflect this. The second, constrain the
amount of work in progress, requires you to set work-in-progress (WIP) limits. You're then
ready to track progress on your Kanban board and monitor key metrics to reduce lead or
cycle time.

Your Kanban board turns your backlog into an interactive signboard, providing a visual
flow of work. As work progresses from idea to completion, you update the items on the
board. Each column represents a work stage, and each card represents a user story or a bug
at that stage of work. The Kanban board has come a long way from when it was first
introduced in TFS 2012. In TFS 2018, boards offer great flexibility to adapt to the processes,
workflows, and customizations that work best for you and your teams.

Getting ready
Kanban literally translates as signboard or billboard. Accordingly, your number-one task is
to visualize your team's workflow. You do this by identifying the types of work and
handoffs that occur regularly as your team moves items off the backlog and into a
shippable state. The main workflow stages performed by our PartsUnlimited team are
captured here as Analyze, Develop, Test, Deploy, and Feedback. Each column
corresponds to a work stage the team performs on each item before it can be considered
done:

Planning and Tracking Work Chapter 1

[39]

The work item does not have all of these states, but the beauty of the Kanban board is that it
allows you to map multiple workflow stages to a work item state. So, in our example, the
develop, test, and deploy stages can be mapped to the work item state active. This can be
done right from within the Configure team settings dialog in the board view, without
having to modify the process template. Columns allow you to visualize the workflow that's
used to deliver requirements to production. Swim lanes, on the other hand, help visualize
the different streams of work. Let's see how we can set up columns and swim lanes.

How to do it...
Let's perform the following steps:

Launch the PartsUnlimited team portal and navigate to the work hub. Open the1.
Stories board and click on the gear icon to configure the team settings.
The Columns section in the Settings dialogue allows you to configure board2.
columns. Rename the Active column to Analyze and update the Definition of
done section:

Planning and Tracking Work Chapter 1

[40]

Add a new column for Develop, Test, Deploy, and Feedback, and map this to3.
the work item state Active. The WIP limit should be set to limit overloading a
specific team will more work than they can deliver at one time, which would only end
up creating a bottleneck in your delivery workflow. You can also track bugs on
the board, since you have the option of mapping a different workflow for bugs:

Navigate to the Swimlanes section in the team settings dialogue. Add a new4.
swimlane and name it Emergency. While urgent issues will follow the same
workflow for delivery, the swimlane allows you to give them better visibility:

 Next up, use the fields section to add the fields you would like to see on the5.
cards in the Kanban board. A good idea might be to include the field for Value
Area. With this change, the cards on the backlog will display the value area the
work item delivery is contributing to.

Planning and Tracking Work Chapter 1

[41]

Use the styles and tag colors section to define styling rules using a combination6.
of fields and values. It might be a good idea to create a styling rule to show the
card background as red if there is a tag that's blocked, for example. This can be
done by using the following styling rule:

How it works...
Setting up a workflow using columns and streams of work with swim-lanes, in addition to
styling rules, makes visualizing requirements a lot easier. As you can see in the following
screenshot, the columns have an information icon, which reflects the Definition of done
setup through the team configuration dialog:

Planning and Tracking Work Chapter 1

[42]

I've briefly touched on WIP limits in the implementation steps. To optimize the flow of
value, you want to identify and eliminate bottlenecks. Bottlenecks indicate that waste exists
in the overall workflow process. By monitoring your Kanban board over time, you can
learn where bottlenecks occur. When several items sit in a column that hasn't worked for
several days, a bottleneck has occurred. Bottlenecks typically occur when WIP limits are too
high. On the other hand, no bottlenecks could indicate that WIP limits are too low. There is
no right answer to what the correct WIP limit is for a column; this is something that can be
discovered using empirical data by using the process and tools over time.

There's more...
The TFS marketplace features the free Query based boards extension (https:/ ​/ ​marketplace.
visualstudio.​com/ ​items? ​itemName= ​realdolmen. ​querybasedboards), which was created
by RealDolmen, and allows you to visualize the result of work item queries on a
board. After installing the extension, navigate to the Work hub and select Queries. When
opening a query, a new tab called Board will be available to visualize the results on a
board:

https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards
https://marketplace.visualstudio.com/items?itemName=realdolmen.querybasedboards

Planning and Tracking Work Chapter 1

[43]

The extension is available as a dashboard widget, as well as a subpage in the work hub. The
Activity Feed gives a summary of all the recent changes that have been made to work
items, commits, pull requests, and builds. It tells you who changed a task, who logged a
bug, and who committed code. The extension supports configuration, so you can decide to
filter out what's not relevant or simply configure which backlogs work updates should be
published from. Some people would agree that the more boards, the merrier!

Preparing and planning a sprint
The product backlog shows the list of work that has been planned by the team, and the
items at the top are usually more valuable. A product team constantly reviews the backlog
and pre-prioritizes the backlog based on user feedback and changing business priorities.
Agile planning tools in TFS support defining and managing work within sprints.

This process is started off by defining a time box, referred to as a sprint, that corresponds to
the cadence your team delivers. Many teams choose a two or three-week cadence.
However, you can specify a shorter or longer sprint cycle. TFS also allows you to wrap
multiple sprints into a release schedule. The sprint backlog represents a subset of the
backlog; the team builds the sprint backlog during the sprint planning meeting. Planning
meetings typically consist of two parts. In the first part, the team and product owner
identify the backlog items that the team feels it can commit to competing in the sprint.
These items get added to the sprint backlog. In the second part, your team determines how
it will develop and test each item. They then define and estimate the tasks that are required
to complete each item. Finally, your team commits to implementing some or all of the items
based on these estimates.

Getting ready
Let's start off by prioritizing the product backlog. To do this, navigate to the Backlog view
for the PartsUnlimited example team. Frequently reviewing and prioritizing your backlog
can help your team know what's most important to deliver next. Reorder your backlog by
simply dragging work items. Alternatively, if you prefer the keyboard route, hold the Alt
key and use the up and down arrows:

Planning and Tracking Work Chapter 1

[44]

A prioritized backlog without an estimate of how big the work is only half as good. It is
suggested that software development teams review and resize the backlog multiple times
in a sprint, as this keeps the backlog in a ready state for future sprint planning sessions.
While there are many sizing techniques, Fibonacci numbers are a good way to size the
work into logical buckets. Once the work items have an estimate, you can use the Forecast
tool to get an idea of how many items you can complete within a sprint. By plugging in
velocity, you can see which items are within scope for the set of sprints the team has
activated. Teams use the forecast tool to help their sprint planning efforts. By plugging in a
value for the team velocity, the Forecast tool will show which items in the backlog can be
completed within future sprints. Both tools are team-specific tools that rely on the team's
ability to estimate backlog items:

Planning and Tracking Work Chapter 1

[45]

With a sized and prioritized backlog in place, there is just one more thing left to do before
you start to plan the sprint. To quickly get started, you can use the default sprints, also
referred to as iterations, that were added when your team project was created. Note that
you must be a member of the Project Administrators group in order to add sprints and
schedule sprint dates. Choose Iteration under the Backlog tab and then click the dates to
edit them. With the dates configured, you are now ready for sprint planning:

How to do it...
Sprint planning is a real team effort and a great way to get everybody aligned. The
planning is kicked off by discussing the sprint goal. The Product Owner then shares the
vision of the sprint goal with the team. The appropriate PBIs (which should be on top of the
backlog by now) are selected to meet this sprint goal. Follow these steps to get started:

Begin your planning efforts by moving prioritized items from your backlog to1.
your current sprint, one item at a time.
Simply drag each item from the product backlog into the sprint, as shown in the2.
following screenshot:

Planning and Tracking Work Chapter 1

[46]

The Product Owner then starts reading the stories out and going through the acceptance
criteria. This is a great opportunity to briefly discuss and clarify any requirements or
acceptance criteria. Team velocity is a good measure of how many story points of backlog
items the team takes into the sprint. The TFS marketplace features the quick calc extension
(https:/​/​marketplace. ​visualstudio. ​com/ ​items? ​itemName= ​duffy. ​vsts- ​quick- ​calcs), a
free extension that was developed by Mike Duffy and allows you to quickly see total effort,
% complete, and other metrics for a selection of work items. This is especially useful during
a sprint planning meeting when you want quick answers on the total count of story points
for the selected work items. This extension is shown in the following screenshot:

Next, the team needs to know the total available capacity within the sprint. The availability
of each individual and their role can be tracked using the capacity tools in TFS. Whereas
velocity correlates your team estimate requirements, capacity correlates to actual task time.
Capacity takes into account variations in work hours of team members, as well as holidays,
vacation days, and non-working days. Most teams specify the capacity in terms of hours,
but you can also specify it in days if you so wish:

https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs
https://marketplace.visualstudio.com/items?itemName=duffy.vsts-quick-calcs

Planning and Tracking Work Chapter 1

[47]

Now, you have a clear view of how much work your team can commit to. In the next part
of the sprint planning meeting, the team creates a plan of work by breaking the
requirements into tasks and then estimating them. Tasks capture the plan of action and add
as many tasks as needed to capture the work required to complete each item. Tasks can
represent different work that needs to be done, such as design, code, test, content, and sign
off. TFS makes the process of adding tasks friction free, giving you the ability to access and
add task functionality from multiple entry points without any overhead. Tasks can be
added right from the sprint backlog, the sprint board, and the product backlog board:

Planning and Tracking Work Chapter 1

[48]

You can capture as much detail as you need in the task, including the effort estimate to
complete the work. The effort estimate is netted against the actual capacity to provide a
view of whether the work has been overscheduled:

Planning and Tracking Work Chapter 1

[49]

How it works...
With the team capacity set up, the product backlog decomposed, and the tasks estimated,
the sprint plan is ready. The team members can now allocate work to themselves by
dragging the tasks to their names:

After you've defined all the tasks for all the items, check whether your team is at or over
capacity. If your team is under capacity, you can consider adding more items to the sprint.
If your team is over capacity, you'll want to remove items out of the backlog. Next, check
whether any team member is under, at, or over capacity, or if someone hasn't even been
assigned any work. Use the capacity bars to determine this. Once you have done this, the
sprint backlog provides a view that should allow you to start delivering your sprint with
confidence:

Planning and Tracking Work Chapter 1

[50]

There's more...
The TFS marketplace features the Sprint Goal extension (https:/ ​/​marketplace.
visualstudio.​com/ ​items? ​itemName= ​keesschollaart. ​sprint- ​goal), a free extension that
was created by Kees Schollaart allows you to record the sprint goal in sprint planning tools.
Once you've installed the extension, you'll see a new tab called Sprint goal in the sprint
planning tools. This is a great way to make the sprint goal visible to the entire team.

https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal
https://marketplace.visualstudio.com/items?itemName=keesschollaart.sprint-goal

Planning and Tracking Work Chapter 1

[51]

Sometimes, people with unique skills are shared across multiple teams, which makes it
hard to track their available capacity. The TFS marketplace features the team capacity
management extension (https:/ ​/ ​marketplace. ​visualstudio. ​com/ ​items? ​itemName= ​tfc.
team-​capacity), which was created by TFS consulting and provides an overview of the
assigned capacity of individual team members across multiple teams within a team
project. This gives you a bird's-eye view of capacity across all the teams in the team project.
It provides a single pane of glass so that you can see where the team members are active and
how much of their time has been allocated:

Visualizing progress in a sprint
During a sprint, the team can use the taskboard and the sprint burndown chart to track
progress. The sprint burndown chart provides you with an at-a-glance visual so that you
can determine whether your team is on track to meet their sprint plan. Your taskboard
provides a visualization of the flow and status of each sprint task. With this, you can focus
on the status of backlog items, as well as work that has been assigned to each team member.
It also summaries the total amount of remaining work to complete for a task or within a
column. The taskboard supports pivoting the work by stories and people, and further
filtering on individuals. The taskboard supports customization of the cards, which helps
you surface more information during standup or generally out to stakeholders. The
taskboard can be customized using the team settings dialogue (which we looked at earlier
for backlog board customization). The field setting gives you the option to track bugs on the
taskboard, as shown in the following screenshot:

https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity
https://marketplace.visualstudio.com/items?itemName=tfc.team-capacity

Planning and Tracking Work Chapter 1

[52]

The Fields settings allow you to display more work item fields on the taskboard for
product backlog items, tasks, and bugs. For example, you may be interested in seeing the
priority of the bugs and which area of the application they belong to versus the board
column for the product backlog item. Additionally, you can create styling rules to configure
the style for the cards. For example, by rendering impeded work as red, you can base the
style on work items tagged as blocked:

When a lot of work is being done, it is sometimes hard to visualize the dependencies
between multiple tasks that could result in key deliverables being delayed. In this recipe,
you'll learn how you can organize tasks in a sprint on a calendar view and identify
dependencies between them.

Getting ready
The sprint burndown chart is a great indicator of whether the team will be able to complete
all remaining work within the sprint time box, and the taskboard helps you visualize the
remaining work on each task. The Sprint Drop Plan extension (https:/ ​/ ​marketplace.
visualstudio.​com/ ​items? ​itemName= ​yanivsegev. ​Drop- ​plan- ​extension), which was
created by Yaniv Segev, is an organizational tool that helps team members sync their tasks
by visualizing their work status and dependencies on a sprint-based calendar.

https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension
https://marketplace.visualstudio.com/items?itemName=yanivsegev.Drop-plan-extension

Planning and Tracking Work Chapter 1

[53]

Once you've installed the extension from the marketplace, you'll see a new tab called Drop
Plan in the sprint tools:

How to do it...
Once you're in the Drop Plan view, you'll notice that there is a swimlane pivoted1.
against a calendar view for each individual, and a lane for all unassigned work.
Tasks assigned to the individual show up in their respective lane on the sprint
end date:

Planning and Tracking Work Chapter 1

[54]

 Next, start to schedule the tasks by dragging them to the date you forecast they'll2.
be completed by:

How it works...
When you hover over a task of interest, the drop plan will render dependency links out to
tasks that are related to the task you have selected, in addition to the product backlog item
all the tasks are linked to. In this case, you now know that the product backlog item has
three key tasks in flight, one of which is only likely to complete on the last day of the sprint.
This gives you an opportunity to discuss the order in which the tasks are scheduled. For
example, in this case, if you think the task scheduled for the last day of the sprint has more
value, it should be brought forward in place of something else. In addition to this, the
extension allows you to visualize an individual's and team's days off, as well as blocked
tasks:

Planning and Tracking Work Chapter 1

[55]

There's more...
The team foundation marketplace features the Team Calendar extension (https:/ ​/
marketplace.​visualstudio. ​com/ ​items? ​itemName= ​ms- ​devlabs. ​team- ​calendar), which was
created by the Microsoft DevLabs team and helps busy teams stay on track and informed
about important deadlines, sprint schedules, and upcoming milestones. Team Calendar is
the one place where you can view and manage the dates that are important to your teams,
including sprint schedule, days off (for individuals or the team), and custom events:

Delivery plans to track multiple teams
There was a certain revolution a few years back that was instigated by one single team
project that was tracking and managing work for all teams and projects. This stemmed
from the lack of tooling to track and manage work across multiple teams and projects.
When you're planning and tracking work, it's often necessary to view work across teams
and projects. While there were natural benefits from this approach, it also cluttered a single
team project with code and artifacts from multiple unrelated initiatives. With TFS 2017,
Microsoft released the delivery plans extension to address this gap. With delivery plans in
the mix, I don't really advocate one large team project. Instead, you should have a team
project for every software product in your organization.

https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.team-calendar

Planning and Tracking Work Chapter 1

[56]

A delivery plan is a view of the work from multiple teams (and multiple projects) laid out
on a calendar with each team's iterations. Each row in the view represents the work from a
team's backlog, with each card corresponding to a work item – user story, feature, or
epic. As you horizontally scroll through the calendar, work in future (or past) iterations
comes into view. Like the Kanban board, a delivery plan is an interactive work board,
although one was designed for multiple teams. You can add teams from across all the
projects in your collection. If the plan needs updating, you can simply drag cards to update
the iteration path. Like the Kanban board, you can customize card fields so that you can see
relevant information for your work.

Getting ready
Install the delivery plans extension (https:/ ​/​marketplace. ​visualstudio. ​com/ ​items?
itemName=​ms.​vss- ​plans) from the marketplace. Developed and maintained by Microsoft,
this extension is free for all TFS users except stakeholders. With the extension installed,
you'll see the Plans page in the work hub:

To see all the features of the Plans extension, you need multiple teams and projects. Use the
sample data widget we discussed in the Getting social with work items recipe to create
multiple projects. Since delivery plans are based on creating a portfolio of work in flight, it
relies on a sprint's schedules for the teams.

https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans

Planning and Tracking Work Chapter 1

[57]

How to do it...
Let's perform the following steps:

Click on the New plan button to create a new plan. Call the plan1.
myDeliveryPlan:

Next, select the projects and teams you want to track in the plan, as well as the2.
backlog level. Optionally, specify filter criteria to filter out work items so that
they don't show up on the delivery plan. In this case, I've added a filter to ignore
bugs. Click Create to create the plan:

Planning and Tracking Work Chapter 1

[58]

The delivery plan brings the feature backlogs of the selected teams onto the3.
canvas. You'll notice in the following screenshot that the sprint cadence of the
PartsUnlimited team is different from the bike 360 and Fabrikam Fiber team, but
the delivery plan makes it possible to visualize their feature backlogs on a single
canvas:

Next, click the Configure plan settings gear icon on the top right-hand side of the4.
page to personalize the delivery plan. Add Markers * for key milestones, such as
bug bash, scrum of scrums, team review, and any other key dates:

Planning and Tracking Work Chapter 1

[59]

Last but not least, similar to other boards, the plans also support customizing cards. This
allows you to surface more information by including more fields in work item cards.

How it works...
With the configuration for the plan complete, the final result is a delivery board that rolls
up the work items from multiple teams and projects into a single view along with markers.
The board supports all drag and drop operations and makes it really easy to use this view
to take actions during planning and tracking sessions. As teams continue to become more
distributed and the size/scope of work continues to grow, delivery plans make it easy to
visualize your portfolio of teams and projects from across the organization:

Planning and Tracking Work Chapter 1

[60]

There's more...
The plans view allows you to create as many plans as you want, while the search
functionality makes it really easy to search for your plan. The Mark as favorite feature
allows you to get to your favorite plans quickly.

Dashboards for planning and tracking work
Dashboards in TFS provide a customizable canvas that allows your team to visualize and
monitor progress. Dashboards replace the previous Team Overview page, providing easy-
to-read, real-time information. At a glance, you can make informed decisions without
having to drill down into other parts of your team project. Visibility of work is a core
concept of Agile software development, and dashboards make it really easy to create an
information radiator for your team and stakeholders.

Getting ready
Every team project is created with a default dashboard. You can access the PartsUnlimited
dashboard by navigating to the dashboard hub. Anyone with access to the team project,
including stakeholders, can view dashboards. Dashboards use widgets to surface
information. There is no limit on how many dashboards you can create. Let's start off by
creating a new dashboard for sprint 1. At this point, don't add any widgets to the
dashboard. Click the Settings icon in the top right-hand corner of the page and select the
option to auto-refresh the sprint 1 dashboard. Auto-refresh keeps the dashboard up-to-date;
it's fantastic if you intend to project the dashboard view on a television screen.

The TFS marketplace features the Product Vision widget (https:/ ​/​marketplace.
visualstudio.​com/ ​items? ​itemName= ​agile- ​extensions. ​product- ​vision), a free extension
that was developed by Agile extensions and allow you to make product vision visible to the
whole team by surfacing it to a dashboard via a widget. The sprint countdown widget
(https:/​/​marketplace. ​visualstudio. ​com/ ​items? ​itemName= ​ms-​devlabs.
CountdownWidget) is also a free extension and was developed by the Microsoft DevLabs
team, and allows you to count down to a configurable moment in time, or down to the end
of the current sprint.

https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=agile-extensions.product-vision
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.CountdownWidget

Planning and Tracking Work Chapter 1

[61]

How to do it...
Let's perform the following steps:

Open the Sprint 1 dashboard and click the + icon from the lower right-hand side1.
of the page. This launches the Add widget pane.
Search and add the sprint countdown, product vision, markdown widget, sprint2.
capacity, charts widget, query results widget, sprint burn down, and the sprint
overview widget, as shown in the following screenshot:

With the relevant widgets on the board, click on individual widgets to start3.
configuring them. The Configure workflow on all the tasks option is very
intuitive, for example, the query tile allows you to configure a work item query
to it and specify a styling rule to change the color of the widget based on the
number of work items returned by the query. The chart for the work items query
allows you to render the results of the work item query as a chart of your choice,
with further customization options for colors. The query result returns the work
item list for the work item query that was configured by you, giving you the
option of which columns to return.

Planning and Tracking Work Chapter 1

[62]

How it works...
Widgets use the TFS REST API to retrieve information. The dashboard canvas allows you to
move widgets around and scale them to different sizes. Widgets support interactivity; for
example, clicking on the Query Tile would take you straight into the Work Item Query
window. Once the widgets on the dashboard have been configured, you'll see output
similar to the following:

There's more...
The TFS marketplace (https:/ ​/ ​marketplace. ​visualstudio. ​com/ ​search? ​term= ​widget
target=​VSTS​category= ​All%20categories ​hosting= ​onpremises ​sortBy= ​Relevance) features
a lot of useful widgets, with an evergrowing collection of widgets – some of which will be
of interest to you.

https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance
https://marketplace.visualstudio.com/search?term=widget&target=VSTS&category=All%20categories&hosting=onpremises&sortBy=Relevance

2
Source Control Management

Code repositories allow developers to write code confidently. More developers are using
source control than ever before. The most obvious benefits of the code repository can be
seen when multiple developers are collaborating on code. Many hands in the pot means
there's a greater need to manage and understand revisions. Code doesn't exist unless it's
committed into source control. Source control is the fundamental enabler of Continuous
Delivery. If you ever have to make an argument to support source control, ask the
following have you ever questions:

Made changes to the code, realized the mistake, and wanted to revert back?
Lost some code or had a backup that was too outdated?
Had to maintain version histories of a product?
Wanted to see the difference between two (or more) versions of your code?
Wanted to prove that a particular change broke or fixed a piece of code?
Wanted to review the version history of some code?
Wanted to deploy changes to someone else's code?
Wanted to share your code, or let other people access your code?
Wanted to see the progress on work being done, and where, when and by
whom?
Wanted to experiment with new features without tampering with working code?

Source Control Management Chapter 2

[64]

Managing code is an essential part of managing the application life cycle, which spans
indiscriminately across programming languages and frameworks. Source-control systems
can broadly be distinguished as centralized or distributed. We'll cover the differences
between the two, but before that, take a look at this trend chart for SVN versus Git, which
was created using Google search data. SVN is a centralized version control system. You'll
notice that SVN as a search keyword was very popular during the time of waterfall-based
project deliveries. It started losing its popularity to Git (a distributed version control
system) during early 2010 when Agile became mainstream. The popularity of Git grew
exponentially with the adoption of Open Source Software (OSS):

Let's look at both of the version-control systems to understand how they work.
A Centralized Version-Control System (CVCS) maintains a single central copy of your
source code on a server repository. When working with a CVCS, the developer downloads
the code from the server to a local workspace. Once changes to the code have been made
locally, they are pushed to the centralized copy. Since each of the files in the local
workspace is connected to the server, the server is aware that they are being modified,
which can be useful if you intend to block someone else from making the changes while
you are editing the files. Any functions against the repository (such as branching, merging,
and shelving) also take place on the server, and require a connection to the server.
Foundation Version Control (TFVC) is a centralized version-control system. When
working with TFVC using Visual Studio or Eclipse, the IDE is in frequent communication
with the server. Basic operations, such as getting the latest code or seeing the full list of
history changes, cannot be done without an active connection to the server.

Source Control Management Chapter 2

[65]

A Distributed Version Control System (DVCS) does not necessarily rely on a central
server to store all the versions of a project's files. Instead, every developer clones a copy of
a repository and has the full history of the project on their own hard drive. This copy
(clone) contains all of the data in the repository – all of the branches and all of the commit
history. Git is a distributed version control system. Most operations (except pushing and
pulling) can be performed without an active connection to the server.

Both centralized and distributed version control systems have their pros and cons.
Consider the strengths of the source control system to determine the viability of using it in
your project. CVCS is best suited for very large codebases, where you need granular access
control, and especially if you need to audit usage. Consider using CVCS on codebases that
are hard to merge:

DVCS, on the other hand, is suited for highly distributed teams working across platforms.
It provides portable history, and works best with greenfield codebases where the codebase
is structured in small modules:

Source Control Management Chapter 2

[66]

Every business is a technology business, and software is seen as the propeller for
innovation. Being able to innovate quickly and cheaply, testing ideas and products with the
consumers, refining them, and releasing them on a regular basis has become a competitive
advantage. Your speed to convert ideas into working products can sometimes be the
difference between success and failure in this very competitive marketplace. Development
teams are constantly under pressure to deliver better-quality software faster. The speed is
usually a byproduct of a good quality codebase, backed by unit tests. A good source control
system can significantly contribute to the quality of the software, but it requires much more
than just a good source-control system to drive quality. No code standards, a lack of unit
tests, too many tactical implementations, and not addressing underlying architecture issues
are major contributors to Technical Debt. Technical debt doesn't hit you overnight—it's a
slow and gradual process. Unlike financial debt, technical debt is very hard to recognize.
Technical debt slows your ability to deliver value.

In this chapter, we will cover the following recipes:

Migrating from TFVC to Git keeping with code history
Accessing Azure DevOps Server Git repositories using SSH
Importing a Git repository from GitHub into Azure DevOps Server
Basic Git operations using Visual Studio Code
Setting up Git branches for continuous delivery
Pull request for code review using branch policies
Using Git hooks with Azure DevOps Server
Managing and storing large files in Git
Git branching model for Continuous Delivery
Configuring code search as a search engine
Using Git forks and sync changes with upstream PR

Source Control Management Chapter 2

[67]

Migrating from TFVC to Git with code history
To make it easier for you to switch from TFVC to Git, Azure DevOps server now provides
an out-of-the-box migration workflow, called import repository. The import repository
option can be reached from the code hub. This allows you to migrate a TFVC repository
into Git with history. However, the tool only allows you to migrate up to 180 days' worth of
history from your TFVC repository. Not being able to migrate the entire history from the
TFVC repository may be a dealbreaker for some. The following image shows you how to
get to the import repository dialogue, the image also shows the migrate history options
available to you:

Source Control Management Chapter 2

[68]

The import repository also allows you to import a Git repository, which is
especially useful if you are looking to move your Git repositories from
GitHub or any other public or private hosting spaces into Azure DevOps
Server.

You may also come across use cases where you need to migrate from the TFVC repository
that is hosted in an Azure DevOps server that your new Azure DevOps server doesn't have
direct access to through the network. In this recipe, we'll learn how to use the open source
command line git-tf to migrate your TFVC projects with complete history into Git, and then
publish the local Git repository into a new Git repository in Azure DevOps Server.

Getting ready
In this section, we'll cover how to download and set up git-tf to prepare for the migration:

Download the git-tf command-line tools from the Microsoft Download Center1.
(http:/ ​/​download. ​microsoft. ​com/​download/ ​A/​E/ ​2/​AE23B059- ​5727- ​445B- ​91CC-
15B7A078A7F4/ ​git- ​tf- ​2. ​0. ​3. ​20131219. ​zip), and then extract the ZIP file into
the C:\git-tf folder
To access git-tf directly from the command line, add the C:\git-tf path to2.
your path environment variable
Create a folder, C:\migrated, to store the migrated repositories 3.

In this example, we'll assume that the host TFVC repository that needs to be migrated is
hosted on the http://myOldAzure DevOps ServerServer/Azure DevOps
Server/DefaultCollection Azure DevOps Server server in the
$/OldTeamProject/App2BeMigrated folder.

How to do it...
In this section we'll cover the steps for migrating the code from TFVC to git with history:

Launch the command line and run the following command; --deep is used to1.
extract the entire history from this repository. This operation may take longer to
complete, depending on the size and depth of history of the source repository:

git-tf clone --deep http://myOldAzure DevOps ServerServer/Azure
DevOps Server/DefaultCollection $/OldTeamProject/App2BeMigrated
C:\migrated\App2BeMigrated

http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip
http://download.microsoft.com/download/A/E/2/AE23B059-5727-445B-91CC-15B7A078A7F4/git-tf-2.0.3.20131219.zip

Source Control Management Chapter 2

[69]

In the command line, change the directory to C:\migrated\App2BeMigrated2.
and run the following command. This will clean the Git metadata from the
commit messages:

git filter-branch -f --msg-filter "sed 's/^git-Azure DevOps
Server-id:.*;C\([0-9]*\)$/Changeset:\1/g'" -- --all

Delete the .git/refs/original folder in C:\migrated\App2BeMigrated to3.
delete the old branches as they are not needed anymore. To publish the local
migrated Git repository in Azure DevOps Server, you'll need to create a new Git
repository in Azure DevOps Server. To do this, navigate to the PartsUnlimited
team project in the team portal and create a new Git code
repository, MyMigratedApp:

Run the following command to add the newly created Git repository as an origin4.
to the migrated Git repository:

git remote add origin http://Azure DevOps Server2018/Azure
DevOps
Server/DefaultCollection/PartsUnlimited/_git/MyMigratedApp

Run the following command to push the new Git repository to the remote origin:5.

git push -u origin –all

Source Control Management Chapter 2

[70]

How it works...
While most of the other commands are pretty self explanatory, the emphasis here is on
the --deep switch:

By including the --deep switch, the entire history of the TFVC repository is1.
consumed during the migration process. If this keyword is left out, only the most
recent changeset will be fetched, which you wouldn't want in the scenario of a
full export.

There's more...
Another situation you may keep running into is that the committer names are different on
Azure DevOps Server and Git. As a rule, Git recognizes committers by their designed
email address, while Azure DevOps Server ordinarily utilizes your Windows character.
Accordingly, a similar individual may be spoken to by two different committers on the Git
store. Use the Azure DevOps Server username for the import and the genuine Git client for
new submits that are made on the Git storehouse. Utilize the below command to remap the
names:

git filter-branch -f --commit-filter "
 if ["$GIT_COMMITTER_NAME" = "<old Azure DevOps Server
user>"];
 then GIT_COMMITTER_NAME="<new name>";
 GIT_AUTHOR_NAME="<new name>";
 GIT_COMMITTER_EMAIL="<new - email>";
 GIT_AUTHOR_EMAIL="<new - email>";
 git commit-tree "$@";
 else git commit-tree "$@";
 fi" HEAD

Accessing Azure DevOps Git repositories
using SSH
Azure DevOps Server supports three secure ways to connect to your Git repositories—the
first two work over HTTPS and the third option uses SSH:

Git Credential Manager
Personal Access Token
SSH Public Keys

Source Control Management Chapter 2

[71]

Git credential manager is the preferred option, since it lets you use the same credentials
that you use with Azure DevOps Server web portal and also supports multi-factor
authentication. In addition to supporting multi-factor authentication with Azure DevOps
Server, the credential managers also support two-factor authentication for GitHub
repositories. Once authenticated, the credential manager creates and caches a personal
access token for future connections to the repo. Git commands that connect to this account
won't prompt for user credentials until the token expires or is revoked through Azure
DevOps Server. If you are accessing your Azure DevOps Server Git repositories
through Team Explorer in Visual Studio, Visual Studio Code, IntelliJ and Android Studio
with the Azure DevOps Server Plugin for IntelliJ, and Eclipse (with the Team Explorer
Everywhere plugin), you'll be using the Git credentials manager under the hood.

You are probably wondering, "What's the use case for using PAT or SSH keys for
authentication?" If you are using an environment that doesn't have an integration plugin
available with Azure DevOps Server, configure your IDE to use a Personal Access Token or
SSH keys to connect to your repos in Azure DevOps Server. The Git credential manager
creates and caches a PAT after initial authentication, which is what it uses for future
connections to the repository. The difference here is that if you use PAT for authentication
from an environment that doesn't support Git credential manager, then you're responsible
for generating and managing the PAT yourself. PATs are a perfect fit when you're trying to
authenticate from command-line tools, tasks in build pipelines, or using REST
APIs. Personal access tokens are alternate passwords that you create in a secure way using
your normal authentication, and they support expiration dates and the scope of access. You
can put them into environment variables so that scripts do not hardcode passwords.

If you are coming from a non-Windows ecosystem, you are probably more used to using
SSH keys for authentication. SSH keys provide you with secure access to your Git
repositories hosted in Azure DevOps Server without having to enter a password. SSH keys
work across platforms: you can use one SSH key to connect to multiple systems, such as
Azure DevOps Server, Azure DevOps, GitHub, and any other systems that support SSH
access. This is especially useful for system administrators who need to access multiple
systems and would otherwise find entering passwords tedious. SSH public key
authentication works with a pair of generated encryption keys. The public key is shared
and used to encrypt messages. The private key is kept safe and secure on your system and
is used to read messages encrypted with the public key. As of Visual Studio 2017, Visual
Studio provides native support for SSH access to Git repositories.

Source Control Management Chapter 2

[72]

Now that we are clear on the different types of secure access supported by Azure DevOps
Server and when you should use which, let's see how to set up SSH public key access with
Azure DevOps Server.

Getting ready
Two important things to do in preparation for setting up SSH:

If you are using Windows, install Git for Windows. The Git for windows1.
installation (http:/ ​/ ​gitforwindows. ​org/ ​) adds a shortcut to Git Bash in the Start
menu.
When you generate SSH keys they are stored in a default folder in your machine,2.
In this recipe, we'll use Bash to generate the SSH keys. Alternatively, you can use
other shell environments to generate SSH keys as well. Be careful if you have any
existing SSH keys on your machine, generating SSH keys in the default folder
location will overwrite any existing SSH keys in that folder.

How to do it...
In this section we'll go through the commands for generating SSH keys:

The following commands will let you create new default SSH keys. Running this1.
command will overwrite any existing default keys. Launch bash and use the
ssh-keygen command as follows. This produces the two keys that are needed
for SSH authentication: your private key (id_rsa) and the public key
(id_rsa.pub):

ssh-keygen -C "tarun@contoso.com"

Generating public/private rsa key pair.
Enter file in which to save the key (/home/tarun/.ssh/id_rsa):
/home/tarun/.ssh/id_rsa
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/tarun/.ssh/id_rsa.
Your public key has been saved in /home/tarun/.ssh/id_rsa.pub.

It is important to never share the contents of your private key. If the
private key is compromised, attackers can use it to trick servers into
thinking the connection is coming from you.

http://gitforwindows.org/
http://gitforwindows.org/
http://gitforwindows.org/
http://gitforwindows.org/
http://gitforwindows.org/
http://gitforwindows.org/
http://gitforwindows.org/
http://gitforwindows.org/

Source Control Management Chapter 2

[73]

Add the public SSH key to the user ID in Azure DevOps Server. To do this,2.
navigate to Security first:

Select SSH public keys, click Add, copy the content of id_rsa.pub from the3.
.ssh folder, and save your changes:

Source Control Management Chapter 2

[74]

You are now ready to clone the Git repository using your all-new SSH4.
keys. Navigate to the code hub in the parts unlimited team project. You'll notice
that the clone dialogue has a clone URL for HTTP and SSH. Select SSH and copy
the URL:

Run git clone from the command line to clone the Git repository using SSH:5.

git clone ssh://azdo2019:22/Azure DevOps
Server/DefaultCollection/PartsUnlimited/_git/MyMigratedApp

Source Control Management Chapter 2

[75]

How it works...
Let's go through the steps to understand how this works:

The SSH key setup process prompts you to validate the fingerprint on the SSH1.
public key the first time you use it, this is for your own protection to avoid any
malicious use. When you run git clone to clone using the SSH URL of the Git
repository, you will be prompted to verify that the SSH fingerprint for the server
you are connecting to. This is done to protect you from the man-in-the-middle
attacks, you can learn more about this at this link
at https://technet.microsoft.com/en-us/library/cc959354.aspx. Once you
accept the host's fingerprint, SSH will not prompt you again unless the
fingerprint changes.
The ssh-keygen command creates a 2,048-bit RSA key for use with SSH. The 2.
command gives you an option to add a passphrase for your private key—this
provides another layer of security for your private key. If you specify a
passphrase, be sure to configure the SSH agent to cache your passphrase so that
you don't have to enter it every time you connect.
The ssh-keygen command in the preceding example has been run with the -3.
c switch. This allows you to add a comment field in the key file – for convenience
to the user to help identify the key. The comment can tell what the key is for, or
whatever is useful. The comment is initialized to user@host when the key is
created, but can be changed using the -c option.

There's more...
Putty is a very popular telnet client for windows, if instead of using ssh-keygen on bash,
you plan on using putty as your SSH client. You'll need to convert your keys into OpenSSH
format, this can be done using PuTTYgen. Simply load the private key into PuTTYgen, go
to the Conversions menu, and select Export OpenSSH key. Then, save the private key file
and perform the following steps to set up non-default keys with Azure DevOps server Git
repositories. These steps should also be followed if you generate ssh keys using ssh-
keygen, but don't save them to the default .ssh folder in your profile.

The most important step, which is what gets overlooked the most, is that the keys must be
in a folder that only you can read or edit. If the folder has wider permissions, SSH will not
use the keys. Since these keys have not been generated using the standard process or saved
in the default location, you'll need to make SSH aware of these keys. This can be done by
running the following command which is used to start the ssh agent.

https://technet.microsoft.com/en-us/library/cc959354.aspx
https://technet.microsoft.com/en-us/library/cc959354.aspx
https://technet.microsoft.com/en-us/library/cc959354.aspx

Source Control Management Chapter 2

[76]

Windows users need to run the start-ssh-agent.cmd command before
running the following command:
ssh-add /home/tarun/myBespokeFolder/.ssh/id_tarun.rsa

Now, your custom keys are ready to be used for connectivity with Git repositories in Azure
DevOps Server.

Importing a Git repository from GitHub into
Azure DevOps Server
If you already have a Git repository on GitHub that you want to port to Azure DevOps
Server, you'll be delighted to know that Azure DevOps Server natively supports importing
a Git repository with history from any Git-hosting platform, including GitHub. In this
recipe, you'll learn how to import the parts unlimited GitHub repository with its complete
history, including branches and tags, into Azure DevOps Server.

Getting ready
The PartsUnlimited GitHub repository (https:/ ​/​github. ​com/ ​Microsoft/ ​PartsUnlimited)
that we'll be porting across needs to be accessible from the environment you are accessing
in the Azure DevOps Server web portal. In the image below you can see the PartsUnlimited
GitHub repository hosted under the Microsoft organization.

https://github.com/Microsoft/PartsUnlimited
https://github.com/Microsoft/PartsUnlimited
https://github.com/Microsoft/PartsUnlimited
https://github.com/Microsoft/PartsUnlimited
https://github.com/Microsoft/PartsUnlimited
https://github.com/Microsoft/PartsUnlimited
https://github.com/Microsoft/PartsUnlimited
https://github.com/Microsoft/PartsUnlimited
https://github.com/Microsoft/PartsUnlimited
https://github.com/Microsoft/PartsUnlimited
https://github.com/Microsoft/PartsUnlimited

Source Control Management Chapter 2

[77]

The clone URL for this repository can be retrieved by clicking on the green Clone or
download button in GitHub.

How to do it...
Open the Azure DevOps Server parts unlimited team project in the web portal1.
and navigate to the code hub. From the parts unlimited Git repository list, choose
to import a repository. In the import window, enter the clone URL of the
PartsUnlimited GitHub project and specify a unique name for the target
repository to be created, MyPartsUnlimited. Click Import to start the import
workflow:

Source Control Management Chapter 2

[78]

The import process works asynchronously and sends you an email
notification once the import has successfully completed. The import
process is usually quick, but can take longer, depending on the size and
depth of the repository you are importing.

How it works...
Let's see how it works:

The Azure DevOps Server Activity log and Job monitoring page isn't featured in1.
the menu, so not many people are aware of it. Navigate to the Azure DevOps
Server activity and job monitor page by browsing to http://<YourAzure
DevOps ServerServer>/Azure DevOps Server/_oi/. The Azure
DevOps Activity log lists all recorded activities. The Job monitoring page shows
the execution processing and history of all jobs that have been submitted to
Azure DevOps Server:

From the Job History view, you'll see that the import Git repository is processed2.
as a job. Subsequent to that, other jobs are executed to send email notifications on
completion of the import process and the execution of code sense catchup jobs:

Source Control Management Chapter 2

[79]

The Git repository, with all its history branches and tags, is migrated across from3.
GitHub into a new Git repository in Azure DevOps Server:

There's more...
The Azure DevOps Server marketplace features the Commit Network extension (https:/ ​/
marketplace.​visualstudio. ​com/ ​items? ​itemName= ​swapme3. ​commitnetwork). This free
extension, created by Swapnil Athawale, brings in visualization capabilities to the branch
commits and the flow of code. Visualizations include the following:

Pie chart of code commits by members
Flow network of commits
Graphical representations of work by each member

https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork
https://marketplace.visualstudio.com/items?itemName=swapme3.commitnetwork

Source Control Management Chapter 2

[80]

Basic Git operations using Visual Studio
Code
Git and Continuous Delivery is one of those delicious chocolate & peanut
butter combinations we occasionally find in the software world: two great tastes that taste
great together! Continuous Delivery of software demands a significant level of automation.
It's hard to deliver continuously if you don't have a quality codebase. Git provides you with
the building blocks to really take charge of quality in your codebase; it gives you the ability
to automate most of the checks in your codebase even before committing the code into your
repository. To fully appreciate the effectiveness of Git, you must first understand how to
carry out basic operations on Git, such as clone, commit, push, and pull.

The natural question is, how do we get started with Git? One option is to go native with the
command line or look for a code editor that supports Git natively. Visual Studio Code is a
cross-platform open source code editor that provides a powerful developer tooling for
hundreds of languages. To work in the open source, you need to embrace open source
tools. In this recipe, we'll start off by setting up the development environment with Visual
Studio Code, create a new Git repository, commit code changes locally, and then push
changes to a remote repository on Azure DevOps Server.

Getting ready
In this recipe, we'll see how we can initialize a Git repository locally, and then we'll use the
ASP.NET Core MVC project template to create a new project and version it in the local Git
repository. We'll then use Visual Studio Code to interact with the Git repository to perform
basic operations of commit, pull, and push. You'll need to set up your working
environment with the following:

.NET Core 2.0 SDK or later: https:/ ​/​www. ​microsoft. ​com/ ​net/ ​download/ ​macos

Visual Studio Code: https:/ ​/ ​code. ​visualstudio. ​com/ ​download

C# Visual Studio Code extension: https:/ ​/​marketplace. ​visualstudio. ​com/
items?​itemName= ​ms- ​vscode. ​csharp

Git: https:/ ​/​git- ​scm. ​com/ ​downloads

Git for Windows (if you are using Windows): https:/ ​/​gitforwindows. ​org/ ​

https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://www.microsoft.com/net/download/macos
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://gitforwindows.org/
https://gitforwindows.org/
https://gitforwindows.org/
https://gitforwindows.org/
https://gitforwindows.org/
https://gitforwindows.org/
https://gitforwindows.org/
https://gitforwindows.org/

Source Control Management Chapter 2

[81]

The Visual Studio Marketplace features several extensions for Visual Studio Code that you
can install to enhance your experience of using Git:

Git Lens (https:/ ​/​marketplace. ​visualstudio. ​com/ ​items? ​itemName= ​eamodio.
gitlens): This extension brings visualization for code history by leveraging Git
blame annotations and code lens. The extension enables you to seamlessly
navigate and explore the history of a file or branch. In addition to that the
extension allows you to gain valuable insights via powerful comparison
commands, and so much more.
Git History (https:/ ​/​marketplace. ​visualstudio. ​com/ ​items? ​itemName=
donjayamanne. ​githistory): Brings visualization and interaction capabilities
to view the Git log, file history, and compare branches or commits.

How to do it...
Open the Command Prompt and create a new working folder:1.

mkdir myWebApp
cd myWebApp

In myWebApp, initialize a new Git repository:2.

init git

Configure global settings for the name and email address to be used when3.
committing in this Git repository:

git config --global user.name "Tarun Arora"
git config --global user.email "tarun.arora@contoso.com"

If you are working behind an enterprise proxy, you can make your Git
repository proxy-aware by adding the proxy details in the Git global
configuration file. There are different variations of this command that will
allow you to set up an HTTP/HTTPS proxy (with username/password)
and optionally bypass SSL verification. Run the below command to
configure a proxy in your global git config.

git config --global http.proxy
http://proxyUsername:proxyPassword@proxy.server.com:port

https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory
https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory

Source Control Management Chapter 2

[82]

Create a new ASP.NET core application. The new command offers a collection of4.
switches that can be used for language, authentication, and framework selection
(more details can be found on Microsoft docs: https:/ ​/​docs. ​microsoft. ​com/ ​en-
us/​dotnet/ ​core/ ​tools/ ​dotnet- ​new? ​tabs= ​netcore2x):

dotnet new mvc

Launch Visual Studio Code in the context of the current working folder:

code .

When the project opens up in Visual Studio Code, select Yes for the Required5.
assets to build and debug are missing from 'MvcMovie'. Add them? warning
message. Select Restore for the There are unresolved dependencies info
message. Hit F5 to debug the application. Then, myWebApp will load in the
browser, as shown in the following screenshot:

You'll notice that the .vscode folder has been added to your working folder. To
avoid committing this folder into your Git repository, you can include this in the
.gitignore file. With the .vscode folder selected, hit F1 to launch the
command window in Visual Studio Code, type gitIgnore, and accept the option
to include the selected folder in the .gitIgnore file:

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-new?tabs=netcore2x

Source Control Management Chapter 2

[83]

To stage and commit the newly created myWebApp project to your Git repository6.
from Visual Studio Code, navigate to the Git icon from the left panel. Add a
commit comment and commit the changes by clicking the checkmark icon. This
will stage and commit the changes in one operation:

Open Program.cs; you'll notice that Git lens decorates the classes and functions7.
with the commit history and also brings this information inline to every line of
code:

To share your Git repository with others, it needs to be published to a remote8.
repository. Create a new Git repository in the Azure DevOps
Server's partsunlimited team project and call it myWebApp. Don't initialize the
Git repository by adding a readme.md file.

Source Control Management Chapter 2

[84]

If you have a reinitialized repository on the server that you want to
associate with an unrelated local Git repository, you'll need to merge
unrelated histories – refer to the There's more section to learn how to do
this.

Add the newly created Git repository in the Azure DevOps Server as the remote9.
for the local Git repository:

git remote add origin http://Azure DevOps Server2018/Azure
DevOps Server/DefaultCollection/PartsUnlimited/_git/MyWebApp

In order to validate the URL of the remote git branch run the following10.
command:

git origin -v

Visual Studio Code detects that the local Git repository is associated with a remote Git
repository in Azure DevOps Server. It gives you the option to push the local changes to the
origin right from within the Visual Studio Code status bar:

How it works...
The easiest way to understand how the steps work is to check the history of the operation.
Let's have a look at how to do this...

Navigate to the myWebApp Git repository in Azure DevOps Server's partsunlimited web
portal, and then click on History to see the history of changes that have been pushed from
the local to the server:

Source Control Management Chapter 2

[85]

There's more...
If the Git repository was initialized at the time of creation by having a new README.md file
added to it, then the Git repository on the server and the local will have a history that is
unrelated:

In this situation, you'll have to explicitly link the local branch with the branch on the
remote. Associate the local branch with an upstream branch:

git branch --set-upstream-to=origin/master

Visual Studio Code detects that a remote has been added for this local Git repository and
that the local branch and the upstream branch are not in sync. Since the history in the
remote repository and the history in the local repository aren't related yet, use the --
allow-unrelated-histories switch to pull the changes from the remote repository into
the local repository:

git pull origin master --allow-unrelated-histories

Push the changes from your local repository into the remote by clicking on the push icon in
the Visual Studio Code status bar:

Source Control Management Chapter 2

[86]

Navigate to the myWebApp Git repository in Azure DevOps Server's partsunlimited web
portal, then click on History to see the history of changes. The graph of history reflects
that the code histories of the local repository and the remote were not related before being
pushed into the remote repository:

Pull request for code review using branch
policies
Code issues that are found sooner are both easier and cheaper to fix. Therefore,
development teams strive to push code quality checks as far left into the development
process as possible. As the name suggests, branch policies give you a set of out-of-the-box
policies that can be applied to the branches on the server. Any changes being pushed to the
server branches need to comply with these policies before the changes can be
accepted. Policies are a great way to enforce your team's code quality and change-
management standards. In this recipe, you'll learn how to configure branch policies on your
master branch.

Getting ready
The out-of-the-box branch policies include several policies, such as build validation and
enforcing a merge strategy. In this recipe, we'll only focus on the branch policies that are
needed to set up a code-review workflow.

Source Control Management Chapter 2

[87]

How to do it...
Open the branches view for the myWebApp Git repository in the parts unlimited1.
team portal. Select the master branch, and from the pull-down context menu,
choose Branch policies:

In the policies view, check the option to protect this branch:2.

Source Control Management Chapter 2

[88]

This presents the out-of-the-box policies. Check this option to select a minimum3.
number of reviewers. Set the minimum number of reviewers to 1 and check the
option to reset the code reviewer's votes when there are new changes:

The Allow users to approve their own changes option allows the
submitter to self-approve their changes. This is OK for mature teams,
where branch policies are used as a reminder for the checks that need to
be performed by the individual.

Use the review policy in conjunction with the comment resolution policy. This4.
allows you to enforce that the code review comments are resolved before the
changes are accepted. The requester can take the feedback from the comment and
create a new work item and resolve the changes. This at least guarantees that
code review comments aren't just lost with the acceptance of the code into the
master branch:

Source Control Management Chapter 2

[89]

A code change in the team project is instigated by a requirement. If the work item5.
that triggered the work isn't linked to the change, it becomes hard to understand
why the changes were made over time. This is especially useful when reviewing
the history of changes. Configure the Check for linked work items policy to
block changes that don't have a work item linked to them:

Select the option to automatically add code reviewers when a pull request is6.
raised. You can map which reviewers are added based on the area of the code
being changed:

Source Control Management Chapter 2

[90]

How it works...
With the branch policies in place, the master branch is now fully protected. The only way to
push changes to the master branch is by first making the changes in another branch and
then raising a pull request to trigger the change-acceptance workflow. From one of the
existing user stories in the work item hub, choose to create a new branch. By creating a new
branch from a work item, that work item automatically gets linked to the branch. You can
also include more than one work item with a branch as part of the create workflow:

Prefix / in the name when creating the branch to make a folder for the
branch to go in. In the preceding example, the branch will go in
the sprint1 folder. This is a great way to organize branches in busy
environments.

With the newly created branch selected in the web portal, edit the HomeController.cs
file to include the following code snippet and commit the changes to the branch. In the
image below you'll see that after editing the file, you can directly commit the changes by
clicking the commit button.

Source Control Management Chapter 2

[91]

The file path control in team portal supports search. Start typing Home in
the file path to see all the files in your Git repository under that directory
starting with these letters. They will show up in the file path search results
dropdown.

The code editor in web portal has several new features in Azure DevOps
Server 2018, such as support for bracket matching and toggle white space,
and so on. You can load the command palette by pressing F1. Among
many other new options, you can now toggle the file using a file mini-
map, collapse and expand, as well as other standard operations.

Source Control Management Chapter 2

[92]

To push these changes from the new branch into the master branch, create a pull request
from the pull request view. Select the new branch as the source and the master as the target
branch. The new pull request form supports markdown, so you can add the description
using the markdown syntax. The description window also supports @ mentions and # to
link work items:

Source Control Management Chapter 2

[93]

The pull request will be created; the overview page summarizes the changes and the status
of the policies. The Files tab shows you a list of changes, along with the difference between
the previous and the current versions. Any updates that are pushed to the code files will
show up in the updates tab, and a list of all the commits is shown under the Commits tab:

Source Control Management Chapter 2

[94]

Open the Files tab: this view supports code comments at the line level, file level, and
overall. The comments support both @ for mentions and # to link work items, and the text
supports markdown syntax:

The code comments are persisted in the pull request workflow; the code comments support
multiple iterations of reviews and work well with nested responses. The reviewer policy
allows for a code review workflow as part of the change acceptance. This is a great way for
the team to collaborate on any code changes being pushed into the master branch. When
the required number of reviewers approve the pull request, it can be completed. You can
also mark the pull request to auto-complete after your review. This auto-completes the pull
requests once all the policies have been successfully compiled to.

Source Control Management Chapter 2

[95]

There's more...
Have you ever been in a state where a branch has been accidentally deleted? It can be
difficult to figure out what happened. Azure DevOps Server now supports searching for
deleted branches. This helps you understand who deleted it and when, the interface also
allows you to recreate the branch it if you wish.

To cut out the noise from the search results, deleted branches are only shown if you search
for them by their exact name. To search for a deleted branch, enter the full branch name
into the branch search box. It will return any existing branches that match that text. You
will also see an option to search for an exact match in the list of deleted branches. If a match
is found, you will see who deleted it and when. You can also restore the branch. Restoring
the branch will recreate it at the commit to which is last pointed. However, it will not
restore policies and permissions.

Using Git hooks with Azure DevOps Server
Ryan Hellyer accidentally leaked his Amazon AWS access keys to GitHub and woke up to
a $6,000 bill the next morning. Wouldn't you just expect a source control as clever as Git to
stop you from making such a blunder? Well, in case you didn't know, you can put Git
Hooks to work to address not just this but many similar scenarios. In the spirit of pushing
quality left into the development process, you want to enable developers to identify and
catch code quality issues when they are developing the code locally in their repository,
even before raising the pull request to trigger the branch policies. Git hooks allow you to
run custom scripts whenever certain important events occur in the Git life cycle, such as
committing, merging, and pushing. Git ships with a number of sample hook scripts in the
repo\.git\hooks directory.

Since Git snares simply execute the contents on the particular occasion type they are
approached, you can do practically anything with Git snares. Here are a few instances of
where you can utilize snares to uphold arrangements, guarantee consistency, and control
your environment:

Enforcing preconditions for merging
Verifying work Item ID association in your commit message
Preventing you and your team from committing faulty code
Sending notifications to your team's chatroom (Teams, Slack, HipChat)

In this recipe, we'll look at using the pre-commit Git hook to scan the commit for keywords
from a predefined list to block the commit if it contains any of these keywords.

Source Control Management Chapter 2

[96]

Getting ready
Let's start by exploring client-side Git hooks. Navigate to
the repo\.git\hooks directory – you'll find that there a bunch of samples, but they are
disabled by default. For instance, if you open that folder, you'll find a file called pre-
commit.sample. To enable it, just rename it to pre-commit by removing
the .sample extension and make the script executable. When you attempt to commit
using git commit, the script is found and executed. If your pre-commit script exits with a
0 (zero), you commit successfully; otherwise, the commit fails:

If you are using Windows, simply renaming the file won't work. Git will fail to find the
shell in the designated path as specified in the script. The problem is lurking in the first line
of the script, that is, in the shebang declaration:

#!/bin/sh

On Unix-like OSes, the #! tells the program loader that this is a script to be interpreted,
and /bin/sh is the path to the interpreter you want to use, which is sh in this case.
Windows is definitely not a Unix-like OS. Git for Windows supports Bash commands and
shell scripts via Cygwin. By default, what does it find when it looks
for sh.exe at /bin/sh? Yup, nothing-nothing at all. Fix it by providing the path to
the sh executable on your system. I'm using the 64-bit version of Git for Windows, so my
shebang line looks like this:

#!C:/Program\ Files/Git/usr/bin/sh.exe

Source Control Management Chapter 2

[97]

How to do it...
Let's go back to the example we started with—how could have Git hooks stopped Ryan
Hellyer from accidentally leaking his Amazon AWS access keys to GitHub? You can invoke
a script at pre-commit using Git hooks to scan the increment of code being committed into
your local repository for specific keywords:

Replace the code in this pre-commit shell file with the following code:1.

#!C:/Program\ Files/Git/usr/bin/sh.exe
matches=$(git diff-index --patch HEAD | grep '^+' | grep -Pi
'password|keyword2|keyword3')
if [! -z "$matches"]
then
 cat <<\EOT
Error: Words from the blacklist were present in the diff:
EOT
 echo $matches
 exit 1
fi

You don't have to build the full keyword scan list in this script. Instead,
you can branch off to a different file by referring it here that you could
simply encrypt or scramble if you wanted to.

How it works...
In the script, Git diff-index is used to identify the code increment being committed. This
increment is then compared against the list of specified keywords. If any matches are
found, an error is raised to block the commit; the script returns an error message with the
list of matches. In this case, the pre-commit script doesn't return 0 (zero), which means the
commit fails.

Source Control Management Chapter 2

[98]

There's more...
The repo\.git\hooks folder is not committed into source control, so you may wonder
how you share the goodness of the automated scripts you create with the team. The good
news is that, from Git version 2.9, you now have the ability to map Git hooks to a folder
that can be committed into source control. You could do that by simply updating the global
settings configuration for your Git repository:

git config --global core.hooksPath '~/.githooks'

If you ever need to overwrite the Git hooks you have set up on the client side, you can do
so by using the no-verify switch:

git commit --no-verify

You can also use PowerShell scripts in your Git hooks – refer to the
walkthrough on how to implement it here: https:/ ​/​www.
visualstudiogeeks. ​com/ ​DevOps/
UsingPowerShellForGitHooksWithVstsGitOnWindows.

See also
So far, we have looked at the client-side Git hooks on Windows, Azure DevOps Server also
exposes server-side hooks. Azure DevOps Server uses the same mechanism to create pull
requests. You can read more about the git.push server-side event here: https:/ ​/​docs.
microsoft.​com/​en- ​us/ ​vsts/ ​service- ​hooks/ ​events#git. ​push.

Managing and storing large files in git
It is not uncommon for projects to have include high quality images and videos that are
large in size. If you have large files in your repository, such as images and videos, Git will
keep a full copy of the file in the repo every time you commit a change to the file. Git is
ultimately versioning the file, if many versions of these files exist in your repo, they will
dramatically increase the time to check out, branch, fetch, and clone the code.

Luckily git has solved this problem using Git Large File System (LFS). LFS is an extension
to Git; it replaces large files, such as audio samples, videos, datasets, and graphics, with text
pointers inside Git, while storing the file's contents on a remote server which commits data
that describes the large files in a commit to your repo, and stores the binary file contents
into separate remote storage.

https://www.visualstudiogeeks.com/DevOps/UsingPowerShellForGitHooksWithVstsGitOnWindows
https://www.visualstudiogeeks.com/DevOps/UsingPowerShellForGitHooksWithVstsGitOnWindows
https://www.visualstudiogeeks.com/DevOps/UsingPowerShellForGitHooksWithVstsGitOnWindows
https://www.visualstudiogeeks.com/DevOps/UsingPowerShellForGitHooksWithVstsGitOnWindows
https://www.visualstudiogeeks.com/DevOps/UsingPowerShellForGitHooksWithVstsGitOnWindows
https://www.visualstudiogeeks.com/DevOps/UsingPowerShellForGitHooksWithVstsGitOnWindows
https://www.visualstudiogeeks.com/DevOps/UsingPowerShellForGitHooksWithVstsGitOnWindows
https://www.visualstudiogeeks.com/DevOps/UsingPowerShellForGitHooksWithVstsGitOnWindows
https://www.visualstudiogeeks.com/DevOps/UsingPowerShellForGitHooksWithVstsGitOnWindows
https://www.visualstudiogeeks.com/DevOps/UsingPowerShellForGitHooksWithVstsGitOnWindows
https://www.visualstudiogeeks.com/DevOps/UsingPowerShellForGitHooksWithVstsGitOnWindows
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push
https://docs.microsoft.com/en-us/vsts/service-hooks/events#git.push

Source Control Management Chapter 2

[99]

When you clone and switch branches in your repo, Git LFS automatically downloads the
correct version from that remote storage. Your local development tools will transparently
work with the files as if they were committed directly to your repo.

Git LFS provides your teams with a seamless experience, as they can use the familiar end-
to-end Git workflow no matter whether they work on small or large files. LFS files can be as
big as you need them to be. As of version 2.0, Git LFS now also supports file-locking
(https:/​/​github.​com/ ​git- ​lfs/ ​git- ​lfs/ ​wiki/ ​File- ​Locking) to help your team work on
large, undefiable assets, such as videos, sounds, and game maps.

You should be aware of a few things before using Git LFS:

Every Git client used by your team must install the Git LFS client and understand
its tracking configuration (https:/ ​/ ​github. ​com/ ​github/ ​git- ​lfs/ ​tree/ ​master/
docs).
If the Git LFS client is not installed and configured correctly, you will not see the
binary files committed through Git LFS when you clone your repo. Git will
download the data that describes the large file (which is what Git LFS commits to
the repo) and not the actual binary file. Committing large binaries without the
Git LFS client installed will push the binary to your repo.
Git cannot merge the changes from two different versions of a binary file even if
both versions have a common parent. If two people are working on the same file
at the same time, they must work together to reconcile their changes to avoid
overwriting the other's work. Git LFS provides file-locking to help. Users must
still take care to always pull the latest copy of a binary asset before beginning
work.
Azure DevOps server currently does not support using SSH in repos with Git
LFS tracked files.

Getting ready
In order to use Git LFS (https:/ ​/​git- ​lfs. ​github. ​com/ ​), you need to download and install
it once:

git lfs install

https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/git-lfs/git-lfs/wiki/File-Locking
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://github.com/github/git-lfs/tree/master/docs
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/
https://git-lfs.github.com/

Source Control Management Chapter 2

[100]

How to do it...
For Git LFS to work, it needs to know what file types you want to be tracked using Git LFS.
Git LFS stores this setting in the .gitattributes file. This file is committed to the
repository; this way everyone on your team that uses Git will be using the same LFS
configuration. Let's get started:

Configure Git LFS to track all MP4 files:1.

git lfs track "*.mp4"

Track the changes in your .gitattribute file: 2.

git add .gitattributes

Commit and push the changes in your .gitattribute file to the remote3.
repository:

git commit -m "Track all mp4 files in git LFS"
git push origin master

How it works...
Validate the version of Git LFS in your environment:

> git lfs version
git-lfs/2.3.4 (GitHub; windows amd64; go 1.8.3; git d2f6752f)

Verify the changes in the .gitattribute file:

\MyWebApp> type .gitattributes
*.mp4 filter=lfs diff=lfs merge=lfs -text

Create a folder to store videos and store an MP4 video in this folder:

\MyWebApp> mkdir videos
\MyWebApp> cd videos
\MyWebApp> copy c:\tmp\HandsOnDemo-vLog.mp4 .\videos

Check the size of the video file (the video size is over 640 MB):

MyWebApp\videos> dir HandsOnDemo-vLog.mp4

02/07/2018 11:53 AM 6,472,920 HandsOnDemo-vLog.mp4
 1 File(s) 6,472,920 bytes

Source Control Management Chapter 2

[101]

Stage the changes and check the status:

MyWebApp> git add .

MyWebApp>git status
On branch master
Your branch is up-to-date with 'origin/master'.

Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: videos/HandsOnDemo-vLog.mp4

When committing changes, Git LFS may give you an error message. Your
username must be of the form DOMAIN\user. It is currently
tarun.arora@contoso.com. This happens because Git is using Kerberos
to authenticate and LFS does not support Kerberos, so you will get errors
that say Your user name must be of the form DOMAIN\user. To get out
of this state, you will need to remove the Kerberos credential and let Git
pick up a new NTLM credential instead. To do this, simply remove your
Git credentials from the Windows Credential Manager.

Source Control Management Chapter 2

[102]

Commit the video to your local repository:

MyWebApp> git commit -m "Vlab for hands on demo"
[master 47b4370] Vlab for hands on demo
 1 file changed, 3 insertions(+)
 create mode 100644 videos/HandsOnDemo-vLog.mp4

Push the changes to the remote repository. Git LFS will kick in as it detects configuration
settings for .mp4 type files:

MyWebApp> git push remote origin

Locking support detected on remote "origin". Consider enabling it with:
 $ git config lfs.http://Azure DevOps Server2018/Azure DevOps
Server/DefaultCollection/PartsUnlimited/_git/MyWebApp.git/info/lfs.locksver
ify true
Git LFS: (1 of 1 files) 6.17 MB / 6.17 MB
Counting objects: 4, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (4/4), 444 bytes | 444.00 KiB/s, done.
Total 4 (delta 1), reused 0 (delta 0)
remote: Analyzing objects... (4/4) (11 ms)
remote: Storing packfile... done (42 ms)
remote: Storing index... done (68 ms)
To http://azsu-p-Azure DevOps Server2018/Azure DevOps
Server/DefaultCollection/PartsUnlimited/_git/MyWebApp
 9304fa1..47b4370 master -> master

To investigate the contents of the commit history, use the -p switch with the Git log
command:

MyWebApp> git log -p

commit 47b4370d539f85eeb765b45a51021dbd51c33634 (HEAD -> master,
origin/master, origin/HEAD)
Author: tarun arora <tarun.arora@outlook.com>
Date: Wed Feb 7 12:12:50 2018 +0000

 Vlab for hands on demo

diff --git a/videos/HandsOnDemo-vLog.mp4 b/videos/HandsOnDemo-vLog.mp4
new file mode 100644
index 0000000..d67c622
--- /dev/null
+++ b/videos/HandsOnDemo-vLog.mp4
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1

Source Control Management Chapter 2

[103]

+oid
sha256:62388612f4e5f2abe80d50fa24a4160dd0de3dc20dee75762a7135549c164a6c
+size 6472920

The important part of the commit log details is the Git LFS URL for the HandsOnDemo-
vLog.mp4 file. The GitHub URL included for the version value only defines the LFS pointer
file type, and is not a link to your binary file. The URL tracks the version of Git LFS you're
using, followed by a unique identifier for the file (OID). It also stores the size of the final
file.

See also
We've been talking about storing large files in a Git repository. if you have a Git repository
that is too big due to the architecture of the product you will find that normal Git
operations, such as clone and commit, take too long. Microsoft has innovated the
virtualization of Git repositories to address an internal problem found in adopting Git for
the Windows product development team that has Git repositories which are over hundreds
of GB in size. Microsoft has contributed this innovation to the open source under the GVFS
project. Git Virtual File System (GVFS) is the open source system that enables Git to
operate at enterprise-scale. It makes using and managing massive Git repositories
possible. GVFS virtualizes the filesystem beneath your Git repository so that Git tools see
what appears to be a normal repository when, in fact, the files are not actually present on
disk. GVFS only downloads files as they are needed. GVFS also manages Git's internal state
so that it only considers the files you have accessed, instead of having to examine every file
in the repository. This ensures that operations, such as status and checkout, are as fast as
possible. Learn more about GVFS here: https:/ ​/​gvfs. ​io/ ​.

Git branching model for continuous
delivery
The purpose of writing code is to ship enhancements to your software. A branching model
that introduces too much process overhead does not help in increasing the speed with
which you can get changes out to customers. It is therefore important to come up with a
branching model that gives you enough padding to not ship poor-quality changes but at
the same time not introduce too many processes to slow you down. The internet is full of
branching strategies for Git; while there is no right or wrong, a perfect branching strategy is
one that works for your team! In this recipe, we'll learn how to use a combination of feature
branches and pull requests to always have a ready-to-ship master branch and how to sync
bug fixes fixed in fix of fail branches back into master to avoid regression.

https://gvfs.io/
https://gvfs.io/
https://gvfs.io/
https://gvfs.io/
https://gvfs.io/
https://gvfs.io/
https://gvfs.io/
https://gvfs.io/

Source Control Management Chapter 2

[104]

Getting ready
Let's cover the principles of what is being proposed:

The master branch:
The master branch is the only way to release anything to
production.
The master branch should always be in a ready-to-release state.
Protect the master branch with branch policies.
Any changes to the master branch flow through pull requests only.
Tag all releases in the master branch with Git tags.

The feature branch:
Use feature branches for all new features and bug fixes.
Use feature flags to manage long-running feature branches.
Changes from feature branches to the master only flow through
pull requests.
Name your feature to reflect their purpose, like so:

List of branches:

features/feature-area/feature-name
users/username/description
users/username/workitem
bugfix/description
features/feature-name
features/feature-area/feature-name
hotfix/description

Pull requests:
Review and merge code with pull requests.
Automate what you inspect and validate as part of pull requests.
Track pull request completion duration and set goals to reduce the
time it takes.

Source Control Management Chapter 2

[105]

In this recipe, we'll be using the myWebApp we created in the Pull Request for code review
using branch policies recipe. If you haven't already, follow that recipe to lock down the
master branch using branch policies. In this recipe, we'll also be using two very popular
extensions from the marketplace:

The VSTS CLI (https:/ ​/​marketplace. ​visualstudio. ​com/ ​items? ​itemName= ​ms-
vsts.​cli): This is a new command-line experience for Azure DevOps
(AzDo) and Azure DevOps Server (AzDos), and was designed to seamlessly
integrate with Git, CI pipelines, and Agile tools. With the VSTS CLI, you can
contribute to your projects without ever leaving the command line. VSTS CLI
runs on Windows, Linux, and Mac.
Git Pull Request Merge Conflict (https:/ ​/​marketplace. ​visualstudio. ​com/
items?​itemName= ​ms- ​devlabs. ​conflicts- ​tab): This open source extension that
was created by Microsoft DevLabs allows you to review and resolve pull request
merge conflicts on the web. Before a Git pull request can complete, any conflicts
with the target branch must be resolved. With this extension, you can resolve
these conflicts on the web, as part of the pull request merge, instead of
performing the merge and resolving conflicts in a local clone.

In order to use the VSTS-CLI, you'll need to log in with your PAT token. To make full use of
the VSTS CLI, you should check the All scopes option when generating the PAT. Since the
URL of the Azure DevOps Server instance needs to be used in most commands, it's best to
store it as a variable and reference it when required. You can get a list of all the Git
repositories in the parts unlimited team project:

$Azure DevOps Server = "https://Azure DevOps
Server2018.westeurope.cloudapp.azure.com/Azure DevOps Server"
vsts login --token xxxxxxx --instance $Azure DevOps Server
$prj = "PartsUnlimited"
vsts code repo list --instance $i --project $prj --output table

The VSTS CLI supports returning the results of the query in
JSON, JSONC, table, and TSV format. You can configure your preference
by using the VSTS configure command.

https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-vsts.cli
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.conflicts-tab

Source Control Management Chapter 2

[106]

How to do it...
After you've cloned the master branch into a local repository, create a new1.
feature branch, myFeature-1:

myWebApp> git checkout -b feature/myFeature-1
Switched to a new branch 'feature/myFeature-1'

Run the Git branch command to see all the branches. The branch showing up2.
with an asterisk is the currently-checked-out branch:

myWebApp> git branch
* feature/myFeature-1
 master

Make a change to the Program.cs file in the feature/myFeature-1 branch:3.

myWebApp> notepad Program.cs

Stage your changes and commit locally, then publish your branch to the remote4.
server:

myWebApp> git status

On branch feature/myFeature-1
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working
directory)
 modified: Program.cs

myWebApp> git add .

myWebApp> git commit -m "Feature 1 added to Program.cs"

[feature/myFeature-1 70f67b2] feature 1 added to program.cs
 1 file changed, 1 insertion(+)

myWebApp> git push -u origin feature/myFeature-1

Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 348 bytes | 348.00 KiB/s, done.
Total 3 (delta 2), reused 0 (delta 0)
remote: Analyzing objects... (3/3) (10 ms)
remote: Storing packfile... done (44 ms)
remote: Storing index... done (62 ms)

Source Control Management Chapter 2

[107]

To http://Azure DevOps Server2018/Azure DevOps
Server/DefaultCollection/PartsUnlimited/_git/MyWebApp
 * [new branch] feature/myFeature-1 -> feature/myFeature-1
Branch feature/myFeature-1 set up to track remote branch
feature/myFeature-1 from origin.

The remote shows the history of the changes:

Create a new pull request (using the VSTS CLI) to review the changes in5.
the feature-1 branch:

> vsts code pr create --title "Review Feature-1 before merging
to master" --work-items 38 39 `
 -d "#Merge feature-1 to master" `
 -s feature/myFeature-1 -t master -r myWebApp -p
$prj -i $i

Use the --open switch when raising the pull request to open the pull
request in a web browser after it has been created. The --delete-
source-branch switch can be used to delete the branch after the pull
request is complete. Also, consider using --auto-complete to complete
automatically when all policies have passed and the source branch can be
merged into the target branch.

Source Control Management Chapter 2

[108]

The team jointly reviews the code changes and approves the pull request:

The master is ready to release, team tags master branch with the release number:

Source Control Management Chapter 2

[109]

Start work on Feature 2. Create a branch on remote from the master branch and6.
do the checkout locally:

myWebApp> git push origin origin:refs/heads/feature/myFeature-2

Total 0 (delta 0), reused 0 (delta 0)
To http://azsu-p-Azure DevOps Server2018/Azure DevOps
Server/DefaultCollection/PartsUnlimited/_git/MyWebApp
 * [new branch] origin/HEAD -> refs/heads/feature/myFeature-2

myWebApp> git checkout feature/myFeature-2

Switched to a new branch 'feature/myFeature-2'
Branch feature/myFeature-2 set up to track remote branch
feature/myFeature-2 from origin.

Modify Program.cs by changing the same line of code that was changed in7.
feature-1:

Commit the changes locally, push them to the remote repository, and then raise a8.
pull request to merge the changes from feature/myFeature-2 to the master
branch:

> vsts code pr create --title "Review Feature-2 before merging
to master" --work-items 40 42 `
 -d "#Merge feature-2 to master" `
 -s feature/myFeature-2 -t master -r myWebApp -p
$prj -i $i

Source Control Management Chapter 2

[110]

With the pull request in flight, a critical bug is reported in production against the
feature-1 release. In order to investigate the issue, you need to debug against
the version of code that's currently being deployed in production. To investigate
this issue, create a new fof branch using the release_feature1 tag:

myWebApp> git checkout -b fof/bug-1 release_feature1

Switched to a new branch 'fof/bug-1'

Modify Program.cs by changing the same line of code that was changed in9.
the feature-1 release:

Stage and commit the changes locally, then push changes to the remote10.
repository:

myWebApp> git add .
myWebApp> git commit -m "Adding FOF changes"
myWebApp> git push -u origin fof/bug-1

To http://azsu-p-Azure DevOps Server2018/Azure DevOps
Server/DefaultCollection/PartsUnlimited/_git/MyWebApp
 * [new branch] fof/bug-1 -> fof/bug-1
Branch fof/bug-1 set up to track remote branch fof/bug-1 from
origin.

Immediately after the changes have been rolled out to production, tag the11.
fof\bug-1 branch with the release_bug-1 tag, then raise a pull request to
merge the changes from fof/bug-1 back into the master:

> vsts code pr create --title "Review Bug-1 before merging to
master" --work-items 100 `
 -d "#Merge Bug-1 to master" `
 -s fof/Bug-1 -t master -r myWebApp -p $prj -i $i

Source Control Management Chapter 2

[111]

As part of the pull request, the branch is deleted; however, you can still reference
the full history to that point using the tag:

With the critical bug fix out of the way, let's go back to the review of
the feature-2 pull request. The Branches page makes it clear that the
feature/myFeature-2 branch is one change ahead of the master and two
changes behind the master:

Source Control Management Chapter 2

[112]

If you tried to approve the pull request, you'll see an error message informing you
of a merge conflict:

The Git Pull Request Merge Conflict resolution extension makes it possible to12.
resolve merge conflicts right in the browser. Navigate to the Conflicts tab and
click on Program.cs to resolve the merge conflicts:

Source Control Management Chapter 2

[113]

The user interface gives you the option to take the source version, target version, or add
custom changes and review and submit the merge. With the changes merged, the pull
request is completed.

How it works...
In this recipe, we learned how the Git branching model gives you the flexibility to work on
features in parallel by creating a branch for each feature. The pull request workflow allows
you to review code changes using the branch policies. Git tags are a great way to record
milestones, such as the version of code that was released; tags give you a way to create
branches from tags. We were able to create a branch from a previous release tag to fix a
critical bug in production. The branches view in the web portal makes it easy to identify
branches that are ahead of the master, and forces a merge conflict if any ongoing pull
requests try to merge to the master without first resolving the merge conflicts. A lean
branching model such as this allows you to create short-lived branches and push quality
changes to production faster.

Configuring code search as a search engine
Search engines have become such an integral part of our life that we just expect to be able to
search for everything. Noticing this, Microsoft has delivered an intelligent, integrated
search experience that allows for semantic search across all your code repositories and
projects in the team project collection. Code search is pre-installed as an extension in the
Azure DevOps Server web portal. The search functionality is very intuitive; you can learn
more about the advanced search capabilities on Microsoft docs: https:/ ​/​docs. ​microsoft.
com/​en-​us/​vsts/​search/ ​code/ ​advanced- ​search. In this recipe, we'll learn how to
configure code search as a search engine in Google Chrome.

Getting ready
While code search works natively in the web portal on all browsers, across devices and
platforms, configuring code search as a search engine is only supported in Google Chrome.
This recipe requires that you have Google Chrome installed on the machine where you
intend to set up code search as the default search engine in the browser.

https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search
https://docs.microsoft.com/en-us/vsts/search/code/advanced-search

Source Control Management Chapter 2

[114]

How to do it...
Open Google Chrome, navigate to Settings, and then click on Manage search1.
engines:

Click on ADD to add a new search engine and set the name as Azure DevOps2.
Server Code Search, which is a keyword that will invoke the search engine
and the code-search URL. The %s in the URL is replaced with the search
keyword. The Azure DevOps Serverc keyword triggers this specific search
engine:

Source Control Management Chapter 2

[115]

http://<Azure DevOps Server>/Azure DevOps
Server/<collection>/_search?type=Code&lp=apps-account&text=%s&_a=contents

How it works...
Open Google Chrome and type Azure DevOps Server (follow this with a space) in the
search box to trigger the Azure DevOps Server Code Search engine. Follow this with the
keyword you intend to search across the code base and hit Enter:

Source Control Management Chapter 2

[116]

You'll see that the search keyword is replaced with the %s in the search engine URL we
configured earlier in this recipe:

There's more...
Search in Azure DevOps Server allows you to search code semantically; for example, you
can filter the search results to functions, classes, callers, and more. In addition, you can
right-click on the search result to find the references and caller, see the file history, and
compare it with previous versions:

Source Control Management Chapter 2

[117]

Using Git forks and sync changes with
upstream PR
People fork repositories when they want to change the code in a repository they don't have
write access to. Clearly, if you don't have write access, you really aren't part of the team
contributing to that repository, so why would you want to modify the code repository? In
our line of work, we tend to look for technical reasons to improve something.

Source Control Management Chapter 2

[118]

You may find a better way of implementing the solution or may simply want to enhance
the functionality by contributing to or improving an existing feature. Personally, I fork
repositories in the following situations:

I want to make a change.
I think the project is interesting and may want to use it in the future.
I want to use some or all of the code in that repository as a starting point for my
own project.

Software teams are encouraged to contribute to all projects internally, not just their own
software projects. Forks are a great way to foster a culture of inner open source. Forks are a
recent addition to the Azure DevOps Server-hosted Git repositories. In this recipe, we'll
learn how to fork an existing repository and contribute changes back upstream via a pull
request.

Getting ready
A fork starts with all the contents of its upstream (original) repository. When you create a
fork in the Azure DevOps Server, you can choose whether to include all branches or limit
them to only the default branch. A fork doesn't copy the permissions, policies, or build
definitions of the repository being forked. After a fork has been created, the newly created
files, folders, and branches are not shared between the repositories unless you start a pull
request. Pull requests are supported in either direction: from fork to upstream, or upstream
to fork. The most common direction for a pull request will be from fork to upstream.

How to do it...
Choose the Fork button (1), then choose the project where you want the fork to1.
be created (2). Give your fork a name and choose the Fork button (3):

Source Control Management Chapter 2

[119]

Once your fork is ready, clone it using the command line (https:/ ​/​docs.2.
microsoft. ​com/ ​en- ​us/ ​vsts/ ​git/ ​tutorial/ ​clone? ​tabs= ​command- ​line) or an
IDE, such as Visual Studio (https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​vsts/ ​git/
tutorial/ ​clone). The fork will be your origin remote. For convenience, you'll
want to add the upstream repository (where you forked from) as a remote
named upstream. On the command line, type the following:

git remote add upstream {upstream_url}

It's possible to work directly in the master – after all, this fork is your personal
copy of the repo. We recommend, you still work in a topic branch, though. This
allows you to maintain multiple independent workstreams simultaneously. Also,
it reduces confusion later when you want to sync changes into your fork.

https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone?tabs=command-line
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone
https://docs.microsoft.com/en-us/vsts/git/tutorial/clone

Source Control Management Chapter 2

[120]

Make and commit your changes as you normally would. When you're done with3.
the changes, push them to origin (your fork).
Open a pull request from your fork to the upstream repository. All the policies,4.
required reviewers, and builds will be applied in the upstream repo. Once all the
policies are satisfied, the PR can be completed and the changes become a
permanent part of the upstream repo:

Source Control Management Chapter 2

[121]

When your PR is accepted into upstream, you'll want to make sure your fork5.
reflects the latest state of the repo. We recommend rebasing on the upstream's
master branch (assuming that the master is the main development branch). On
the command line, run the following:

git fetch upstream master
git rebase upstream/master
git push origin

How it works...
The forking workflow lets you isolate changes from the main repository until you're ready
to integrate them. When you're ready, integrating code is as easy as completing a pull
request.

3
Build and Release Agents

The build system in Azure DevOps Server known as Azure Pipelines is an open source,
cross-platform, extensible, task-based execution system with a rich web interface that
allows us to author, queue, and monitor builds. The new JSON-based build system was
first introduced in TFS 2015, and it has since been rewritten for the .NET Core CLR as one
code base in C#. The modern platform continues to evolve through the open source
ecosystem, with new features and enhancements rolling out every other week. The build
system is set to evolve further with the new multi-phase builds and a build-definition-as-
code functionality that was introduced through YAML-based builds in Azure DevOps.
These features have been recently introduced into Azure DevOps Server with the update 1
of Azure DevOps server 2019. In the following screenshot you can see the evolution of the
build system over the last 10 years:

Build and Release Agents Chapter 3

[123]

The build system allows you to install multiple agents on a host. An agent can be registered
to an agent pool. An agent pool can be mapped out to a queue which can be scoped to a
project. The following diagram illustrates the architecture of the new build system:

Let's review the diagram:

Multiple agents can be configured on one machine
Agents from across different machines or multiple agents on the same machine
can be grouped into a pool. This allows you to host more than 1 instance of the
agent on a host, helping you maximize the utilization of a server.
Each pool can have only one queue, which is mapped to a project.

We'll cover some great features for configuring and automating the build system setup that
will help you scale your build system efficiently.

Build and Release Agents Chapter 3

[124]

In this chapter, we will cover the following recipes:

Unattended configuration of build agents using PowerShell
Downloading agents using the GitHub release API
Configuring deployment groups
Configuring the agent to use a proxy
Analyzing build usage data
Automating agent pool maintenance
Configuring build and release retention policies
Agent capabilities and build demands for special builds
Managing agent permissions using role-based access

Unattended configuration of build agents
using PowerShell
Azure DevOps Server Build and Release agents are the engines of your build system; the
size of the infrastructure translates to the speed at which you can run and scale the build
process. As you ramp up the use of the build system to automate Continuous Integration
pipelines, you are going to need more agents. An automated process to add and remove
build agents allows you to scale up and scale down the agents on demand. The build
system has native support for unattended installation. In this recipe, we'll learn how to
configure a build agent programmatically in an unattended mode using PowerShell.

Getting ready
To configure a build agent, you should be a member of the build administrators group and
an administrator on the target machine. If the target machine is Windows 10 or beyond
(x64), all the prerequisites will already be in place. If the target machine is Windows 7 to
Windows 8.1, or Windows Server 2008 R2 SP1 to Windows Server 2012 R2 (64-bit), you will
need to ensure that PowerShell version 3 or newer is available on the target system. Even
though not technically required by the agent, many build scenarios require that Visual
Studio be installed to get all the tools. It is recommended that you use Visual Studio 2015 or
later.

Build and Release Agents Chapter 3

[125]

Microsoft has open sourced its build system on GitHub under the Microsoft/azure-
pipelines-agent project name. You can download the latest version of the agent directly
from the GitHub repository (https:/ ​/ ​github. ​com/​Microsoft/ ​azure- ​pipelines- ​agent) or
from the Agent Pools page under the collection administration page in the team portal:

How to do it...
Launch PowerShell in elevated mode and execute the following command:1.

> mkdir tfs_a1 && cd tfs_a1

tfs_a1> Add-Type -AssemblyName System.IO.Compression.FileSystem
;
[System.IO.Compression.ZipFile]::ExtractToDirectory("$HOME\Down
loads\vsts-agent-win-x64-2.129.0.zip", "$PWD")

In the preceding command, replace the version of the agent (vsts-
agent-win-x64-2.129.0.zip) with the version you intend to
configure.

Configure the agent to run as a Windows service:2.

tfs_a1> .\config.cmd --unattended `
>> --url http://tfs2018.westeurope.cloudapp.azure.com/tfs `
>> --auth pat --token xxxxxxxx `
>> --pool default --agent tfs_a1 `
>> --runAsService --windowsLogonAccount contoso\zz_tfs-build --
windowsLogonPassword xxxxx

>> Connect:

https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent
https://github.com/Microsoft/azure-pipelines-agent

Build and Release Agents Chapter 3

[126]

Connecting to server ...

>> Register Agent:

Scanning for tool capabilities.
Connecting to the server.
Successfully added the agent
Testing agent connection.
2018-02-15 11:05:52Z: Settings Saved.

How it works...
In the preceding command, we are simply creating a new directory and then instructing the
ZIP file to be extracted in this new directory:

To configure the agent in unattended mode, all the configuration for the installation needs
to be specified through the command-line switches. In the --unattended command, we
are simply passing the details of the Azure DevOps server's URL, the type of authentication
to use, and the pool the agent needs to be configured into. When selecting the
authentication type as PAT, you'll need to pass the PAT account that will be used by the
agent to authenticate with TFS. In addition, you have the option of running the agent as a
Windows service under a Windows domain account, which is what we are passing through
in the --runAsService, --windowsLogonAccount, and --
windowsLogonPassword switches.

In order to use basic authentication while configuring the agent, you need
to have a secure connection (SSL) with the TFS server. If you don't have a
secure connection, the preceding command will fail with an error
message: Basic authentication requires a secure connection to the server.

Build and Release Agents Chapter 3

[127]

If you do not have SSL configured for your TFS server, you can configure the agent using
integrated authentication. Once the command has been successfully executed, you'll see the
agent show up in the Agent Pools page, as shown in the following screenshot:

tfs_a1> .\config.cmd --unattended `
>> --url http://tfs2018.westeurope.cloudapp.azure.com/tfs `
>> --auth integrated `
>> --pool default `
>> --agent tfs_a1

Downloading agents using the GitHub
release API
In a big move to embrace open source, Microsoft transitioned a lot of its key projects to
GitHub. By developing products in an open source and contributing back to the open
source communities, Microsoft is starting to change its negative public perception. This has
resulted in some very surprising partnerships and an overall growth story for Microsoft,
which is reflected in its stock price going up significantly over the last couple of years.

The azure-pipelines-agent and azure-pipelines-tasks projects are also hosted on
GitHub. How does this benefit you? You can see all of the product's code, see the quality and
architecture of the patterns used, have visibility of the product roadmap, contribute to the
product's development, and engage with the product team by raising feedback and issues
through GitHub. Both experimental and long-term supported versions of the agents are
released on GitHub. Based on the pace at which the product is evolving, it is likely that the
agent version you are running today will be superseded by a newer version tomorrow with
more desirable features. Luckily, the GitHub release API supports programmatic
invocation, so you never have to manually check for updates.

Build and Release Agents Chapter 3

[128]

In this recipe, we'll learn how to use PowerShell to query the GitHub release API for the
latest version of the agent. Upon finding a long-term supported version of the agent, how
to download the agent in a designated folder path. You can optionally extend this solution
to include the PowerShell script from the previous recipe to create an end-to-end
automated process for downloading, unpacking, and installing agents programmatically
using PowerShell scripting.

Getting ready
The release API for GitHub is well-documented at https:/ ​/​developer. ​github. ​com/ ​v3/
repos/​releases/​. The API supports various functions, including the ability to get all
releases for a repository, get a specific release, get a release by tag name, and most
importantly, to get the latest release. In this recipe, we'll be using the get latest release
functionality:

https://api.github.com/repos/Microsoft/azure-pipelines-agent/releases/lates
t

If you invoke this URL in a browser, you'll get a JSON response that includes most of the
properties we'll be leveraging in our PowerShell script. The body of the response also
includes the https://vstsagentpackage.azureedge.net/agent URL. A download
URL can be dynamically generated for the platform of your choice using the version of the
release derived using tag_name:

https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/
https://developer.github.com/v3/repos/releases/

Build and Release Agents Chapter 3

[129]

How to do it...
Launch PowerShell, and then use the Invoke-RestMethod cmdlet to call the 1.
GitHub release API to get the latest release of the agent:

Get the latest release of the agent from the GitHub API
$latestRelease = Invoke-RestMethod
 -Uri
"https://api.github.com/repos/Microsoft/azure-pipelines-agent/r
eleases/latest"
Value of "tag_name" : "v2.129.0"

The tag_name property shows the name of the tag. By simply removing the first2.
character, you'll get the version number of the agent:

$v = $latestRelease.name.Substring(1,
$latestRelease.tag_name.Length-1)
Value of $v : "2.129.0"

Dynamically construct the URL needed to download the agent. As you can see in3.
the command below the string is being concatenated to create the download URL
of the agent for the Windows platform:

$latestReleaseDownloadUrl =
"https://vstsagentpackage.azureedge.net/agent/" `
+ $v + "/vsts-agent-win-x64-" + $v + ".zip"

Value of $latestReleaseDownloadUrl =
https://vstsagentpackage.azureedge.net/agent/2.129.0/vsts-agent
-win-x64-2.129.0.zip

Create a new temporary folder; if it doesn't exist, force the creation of the4.
temporary directory:

$agentTempFolderName = Join-Path
$env:temp([System.IO.Path]::GetRandomFileName())

If(!(test-path $agentTempFolderName))
{
 New-Item -ItemType Directory -Force -Path
$agentTempFolderName
}

Build and Release Agents Chapter 3

[130]

Call the Invoke-WebRequest cmdlet with the agent-download URL to5.
download the agent into the newly created temporary directory:

Download the agent to the temp directory
Invoke-WebRequest -Uri $latestReleaseDownloadUrl -Method Get `
-OutFile "$agentTempFolderName\agent.zip"

The agent will be downloaded into the newly created temporary folder:6.

How it works...
Bringing it all together, in this section we'll look at the complete script and how it works.
The script is wrapped up in a try catch block for error handling, and a retry procedure has
been added for resilience. In the following script, the Invoke-RestMethod cmdlet is used
to get the latest version of the agent from GitHub. The result is then consumed to generate a
download installer for the Windows-based agent. The agent is downloaded to a temporary
folder and the script checks whether the temporary folder is already in place; if not, it
creates the temporary folder before using the Invoke-WebRequest cmdlet to download
the agent to the temporary folder:

$retryCount = 3
$retries = 1
$agentTempFolderName = Join-Path
$env:temp([System.IO.Path]::GetRandomFileName())
Write-Verbose "Downloading Agent install files" -verbose
do
{
 try
 {
 Write-Verbose "Trying to get download URL for latest agent
release..."
 # Get the latest release of the agent from the GitHub API
 $latestRelease = Invoke-RestMethod -Uri `
"https://api.github.com/repos/Microsoft/vsts-agent/releases/latest"
 # Format the name to create a download URL for windows
 $v = $latestRelease.name.Substring(1, $latestRelease.name.Length-1)
 $latestReleaseDownloadUrl =

Build and Release Agents Chapter 3

[131]

"https://vstsagentpackage.azureedge.net/agent/" `
 + $v + "/vsts-agent-win-x64-" + $v
+ ".zip"

 # Validate that the temp directory exists or create it
 If(!(test-path $agentTempFolderName)){
 New-Item -ItemType Directory -Force -Path
$agentTempFolderName
 }
 # Download the agent to the temp directory
 Invoke-WebRequest -Uri $latestReleaseDownloadUrl `
 -Method Get -OutFile
"$agentTempFolderName\agent.zip"
 Write-Verbose "Download agent successfully on attempt $retries" -
Verbose
 break
 }
 catch
 {
 $exceptionText = ($_ | Out-String).Trim()
 Write-Verbose "Exception occurred downloading agent: `
 $exceptionText in try number $retried" -
Verbose
 $retries++
 Start-Sleep -Seconds 30
 }
}
while ($retries -le $retryCount)

In case there is an exception, the exception is caught and there is logic to retry the
download. A total of 3 retries are attempted at an interval of 30 seconds before exiting the
script.

Configuring deployment groups
An application environment is composed of multiple servers in different roles, such as web,
application, and database. Scaled out versions of these environments could have multiple
servers front-ended by load balancers and availability groups. While agents in agent pools
give you a way to deploy your application, you are responsible for bringing together the
agents in the agent pool to deploy to your environment.

Build and Release Agents Chapter 3

[132]

In this model, you are responsible for managing the complexity of how the deployment
impacts the environment, such as orchestrating the rotation of the web servers as they are
being upgraded. In this model, it's hard to answer simple questions such as the version of
the release deployed on a machine. Microsoft has significantly enhanced the machine
groups feature that it first introduced in TFS 2015 and rebranded as deployment groups.

Simply put, deployment groups are a collection of agents collectively representing an
application environment, such as Dev, UAT, Pre-Prod, or Production. Each machine in the
deployment group has an agent; metadata can be associated with the agent by adding tags.
The deployment group can then be queried for this tag to return a list of agents that match
the tags. This makes deploying to a multi-server web tier very easy. As the framework is
aware of all the agents with the WebServer tag, you can specify a deployment rule to roll
out the deployment on a small subset of web servers and stop in case of any failures. All the
native agent capabilities are still available to you – for example, you can view live logs for
each server as a deployment takes place, and download logs for all servers to track your
deployments to individual machines. The deployment group records the version of the
release that was deployed in an environment and on the individual servers in the
deployment group as well. Deployment groups also provide a security context, so you can
add users and give them appropriate permissions to administer, manage, view, and use the
group.

The host machine can have one or more agents deployed on it, and each
agent can be associated with a different deployment group. This gives you
the ability to use shared environments exclusively through their own
deployment groups.

Deployment groups are not visible to build pipelines; they are only meant to be used in
release pipelines. While we'll be covering how to use deployment groups in Chapter 7,
Azure Artifacts and Dependency Management, we'll learn how to configure the Azure DevOps
agent into a deployment group.

Getting ready
To create a deployment group, you need to be a member of the build administrator and
release administrator group; membership to the project-collection administrator group also
gives you permission to perform this action across multiple team projects in a collection.

Build and Release Agents Chapter 3

[133]

How to do it...
In this section we'll cover the steps to setup an agent into a deployment group:

Navigate to the build and release hub in the PartsUnlimited team project portal.1.
Click on Deployment Groups and add a new deployment group, ps-test-01:

Copy the PowerShell script, then navigate to the target machine you intend to2.
add to this deployment group. Run PowerShell in elevated mode and execute the
script. The script downloads the agent and configures the agent as a deployment
group. Run this script on other machines you intend to join this deployment
group:

Build and Release Agents Chapter 3

[134]

Flip over to the Targets tab for the ps-test-01 deployment group in the3.
PartsUnlimited team portal. This will show you the list of all the target machines
joined into this deployment group:

How it works...
Let's look at the deployment-group-registration script in more detail. The error preference
for this script is set to stop, implying the script will stop execution on the first failure:

$ErrorActionPreference="Stop";

Validate that the user executing the script is part of the administrator role on the host
machine:

If(-NOT
([Security.Principal.WindowsPrincipal][Security.Principal.WindowsIdentity]:
:GetCurrent()).IsInRole([Security.Principal.WindowsBuiltInRole]
“Administrator”))
{ throw "Run command in Administrator PowerShell Prompt"};

Validate that the vstsagent folder exists in the System directory on the host machine. If
not, create a new directory for vstsagent and navigate to that directory. If an agent
already exists in the directory, create a new agent folder with a different name:

If(-NOT (Test-Path $env:SystemDrive\'vstsagent'))
{mkdir $env:SystemDrive\'vstsagent'};
cd $env:SystemDrive\'vstsagent';

Build and Release Agents Chapter 3

[135]

for($i=1; $i -lt 100; $i++){$destFolder="A"+$i.ToString();
if(-NOT (Test-Path ($destFolder))){mkdir $destFolder;cd
$destFolder;break;}};

Download agent.zip and unzip it into the newly created agent folder:

$agentZip="$PWD\agent.zip";
(New-Object Net.WebClient).DownloadFile(
'https://go.microsoft.com/fwlink/?linkid=858950', $agentZip);
Add-Type -AssemblyName
System.IO.Compression.FileSystem;[System.IO.Compression.ZipFile]::ExtractTo
Directory($agentZip, "$PWD");

Configure the agent as a deployment group, use the host machine name to name the agent,
and configure the agent to run as a Windows service. Join the agent in the ps-
test-01 deployment group in the PartsUnlimited team project:

.\config.cmd --deploymentgroup --agent $env:COMPUTERNAME --runasservice --
work '_work' --url 'http://tfs2018.westeurope.cloudapp.azure.com/tfs/' --
collectionname 'DefaultCollection' --projectname 'PartsUnlimited' --
deploymentgroupname "ps-test-01" --auth Integrated;
Remove-Item $agentZip;

Remove the agent installer file from the agent directory:

Remove-Item $agentZip;

You can use the --unattended switch we saw in the Unattended
configuration of build agents using PowerShell recipe to configure the
deployment group in unattended mode. This is useful if you want to push
the configuration of deployment groups remotely on target machines.

Configuring the agent to use a proxy
Enterprises that host their infrastructure on-premise or in a hybrid cloud setup tend to use
a multi-level security approach. This usually involves one or more firewalls that protect the
infrastructure from external traffic, and a web proxy to control the intranet and internet
traffic. In such a scaled setup, traffic generated from the agent may be blocked from
connecting to the Azure DevOps server if it is not routed through the proxy. Luckily, the
Azure DevOps agent infrastructure supports proxy configuration natively. In this recipe,
we'll learn how to configure a web proxy during agent configuration.

Build and Release Agents Chapter 3

[136]

Getting ready
Ensure you've downloaded the latest version of the agent locally on the target machine
where you intend to install and configure the agent. You'll need to be part of the build
administrators group in Azure DevOps Server to be able to connect the agent as well as an
administrator on the target machine to be able to install the agent. The TFS agent is
programmed to pick up the proxy settings configured in the .proxy file in the agent
folder. Therefore, for the agent to pick up the proxy settings, you will need to create a
.proxy file in the agent install folder ahead of configuring the agent.

How to do it...
Navigate to the location where the agent has been downloaded and unzipped:1.

> cd c:\tfs_a1
tfs_a1>

Create a .proxy file with the proxy URL:2.

echo http://theProxyServer:443 > .proxy

The preceding configuration is sufficient if the proxy doesn't require
authentication. This is usually the case if you are using a Windows
domain account to run the agent. However, if you are running the agent
under the default network credential or the user running the agent is
required to authenticate with a proxy, you'll need to perform the
following additional steps.

Provide the proxy credentials to TFS using environment variables. TFS treats3.
these credentials as secrets and then masks the values before passing them into
the job output:

set VSTS_HTTP_PROXY_USERNAME=myProxyUser
set VSTS_HTTP_PROXY_PASSWORD=myProxyPassword

Build and Release Agents Chapter 3

[137]

How it works...
With the proxy configured in the root folder of the build agent, you can use config.cmd,
as demonstrated in the recipe Unattended configuration of build agents using PowerShell,
to configure the agent. The agent automatically picks up the proxy configuration; if the
proxy configuration requires authentication, the agent uses the
VSTS_HTTP_PROXY_USERNAME and VSTS_HTTP_PROXY_PASSWORD environment variables
to authenticate with the proxy. Any build jobs that you run thereafter will print the proxy
URL being used by the agent in the build output.

Analyzing build usage data
Wouldn't it be great if you could get insights into how the build system is being used? For
example, which projects are using builds more than others, which definitions are
consuming most build time, and top build users. After all, data is the new currency, and
you should feel empowered to make empirical data-driven decisions. This is especially
useful if you plan to evolve the build pools and queues with empirical usage data trends. In
this recipe, we'll learn how to get insights into the usage of the build system using an open
source extension available in the marketplace.

Getting ready
The marketplace features the Build Usage extension (https:/ ​/ ​marketplace.
visualstudio.​com/ ​items? ​itemName= ​ms- ​devlabs. ​BuildandTestUsage). This open source
extension, released by the Microsoft DevLabs team, provides insights into the build
infrastructure usage at different granularities. Install this extension in the project collection
you plan to analyze the data for.

https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.BuildandTestUsage

Build and Release Agents Chapter 3

[138]

How to do it...
Navigate to the collection administration page and open the Build Usage1.
page. All Team Projects gives you a headline of the total build usage across the
collection. You can drill into the specific team projects to see the build usage by
users, definitions, and agent pools. The data can be filtered to this month, last
month, the last six months, or a custom period:

Click the Export button to export the results into a CSV file, which you can then2.
use for further analysis offline. In addition, the extension also includes a
dashboard widget.

Build and Release Agents Chapter 3

[139]

How it works...
The extension is open source; you can take a look at the extension's code implementation on
GitHub at: https:/ ​/​github. ​com/ ​ALM- ​Rangers/ ​build- ​usage- ​widget- ​extension/ ​blob/
master/​vsts-​buildusage/ ​src/ ​build. ​ts. The extension uses the build REST API to get a
list of all the build definitions across the collection and then all builds recorded against
those definitions. It then processes this data by aggregating the properties to show a view
of usage by projects, definition, user, and agent pool:

https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts
https://github.com/ALM-Rangers/build-usage-widget-extension/blob/master/vsts-buildusage/src/build.ts

Build and Release Agents Chapter 3

[140]

See also
The Azure DevOps marketplace also features the Export as PDF extension (https:/ ​/
marketplace.​visualstudio. ​com/ ​items? ​itemName= ​onlyutkarsh. ​ExportAsPDF). This free
extension, created by Utkarsh Shigihalli, allows you to export the build definition steps,
triggers, history, and so on in a neat report so that you can print or share it with colleagues.
The extension is especially useful if you intend to document the build setup for training or
knowledge-transfer purposes:

Automating agent pool maintenance
Each build and release pipeline creates a directory under the agent working directory to
store the source code, artifacts, and test results. Some builds consume more space than
others; as projects evolve, some builds are used more than others. As you may have
guessed, this results in agent maintenance activity to clear out the agent work
directory. While you wouldn't want to remove everything from the directory, you would
certainly be looking to remove some of the less-used build folders. Luckily, the agent comes
with out-of-the-box support for pool maintenance. In this recipe, we'll learn how to
configure the agent-pool maintenance schedule to automatically free up storage from the
agent work directory by removing unused build folders.

https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.ExportAsPDF

Build and Release Agents Chapter 3

[141]

Getting ready
To configure the agent pool maintenance, you need to be part of the build collection
administrator group or in the administrator role for the specific agent pool.

How to do it...
In this section we'll look at the steps needed to configure the automated maintenance of the
agent pool:

Navigate to the collection administration page and open the agent pools page.1.
Select the default agent pool or any other agent pool and click settings to2.
configure the maintenance schedule. Set the schedule to run every day and
remove all build and release agent directories that haven't been used in the last 5
days:

Build and Release Agents Chapter 3

[142]

How it works…
To trigger the maintenance schedule in an ad hoc manner, right click the agent pool, from
the context menu select queue agent maintenance. When you trigger agent pool
maintenance, this queues a new build job, the results of which are published in the build
Maintenance history. As per the settings configured, the job only takes the specified
percentage of agents out for maintenance, so the pool can still be used for builds and
releases:

Since azure-pipeline-agent is open source on GitHub, you can see the code of the
product. The RunMaintenanceOperation function in the BuildDirectoryManager class
(https:/​/​github.​com/ ​Microsoft/ ​azure- ​pipeline- ​agent/ ​blob/
f9e5bb7337fb51ace995cafeeaa8665cad638a84/ ​src/ ​Agent. ​Worker/ ​Build/
BuildDirectoryManager. ​cs) goes through each of the build and release directories under
the agent work directory to identify when it was last used. If it meets the criteria, it's
marked for garbage collection. All folders marked for garbage collection are deleted, and
the overall storage space is reported at the end of the job's execution. If you download the
agent maintenance logs, you will see this reflected in the maintenance log:

https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs
https://github.com/Microsoft/vsts-agent/blob/f9e5bb7337fb51ace995cafeeaa8665cad638a84/src/Agent.Worker/Build/BuildDirectoryManager.cs

Build and Release Agents Chapter 3

[143]

There's more...
To help you keep the agents updated with the latest product version, Azure DevOps Server
offers you the ability to upgrade within the Agent Pools page directly, without having to
go through the process of removing and reconfiguring agents. To do this, you need to be
part of the collection build administrator group or in the administrator role for the agent
pool you intend to perform this operation on. From the pool context menu, simply select
Update All Agents. This will temporarily take the agents in the pool out, download the
latest version of the agent, and upgrade in-situ:

Configuring build and release retention
policies
In the Automating agent pool maintenance recipe, we learned how to configure maintenance
schedules on the agent machines. While that helps free up space on the agent machine,
there is maintenance activity required on the Azure DevOps Server to free up space by
removing unwanted builds and releases. An average build artifact, test results, and
associated metadata is in the range of 50 MB.

Build and Release Agents Chapter 3

[144]

If the build is run 20 times a day for 30 days, this will generate about 29 GB worth of assets!
While Azure DevOps Server does a great job in compressing and storing this data in blob
storage, it is best to offload what you don't need. In this recipe, we'll learn how to configure
a retention policy for both builds and releases at the collection level to automatically
remove builds and releases that match this criteria. We'll also learn how to overwrite the
default retention policy for a specific build or release definition.

Getting ready
To administer build resources for the collection, you need to be a member of the
Project Collection Build Administrators group.

How to do it...
Navigate to the collection administration page and open the Build and Release1.
page
Keep the Minimum Retention Policy as is, and change the default configuration2.
for the maximum retention to 15 days and the minimum to keep to 5
Change the days to keep the build record after deletion to 103.

Build and Release Agents Chapter 3

[145]

The retention policy applies to all builds in a Team Project Collection.
There may, however, be a few builds that you would like to retain longer
than the maximum retention enforced by the global policy. This can be
achieved by marking a build or release for indefinite retention. Browse to
the specific build that you would like to exclude from the retention policy,
right-click the build, and set the retain indefinitely flag on the build. In
the image below you can see the editable settings to configure the
retention period.

Build and Release Agents Chapter 3

[146]

How it works...
TFS has a set of background jobs that are scheduled to run to manage various operations
within TFS. You can access the TFS job monitoring page by browsing to
_oi/jobmonitoring page http://<tfsInstance>/tfs/_oi/_jobmonitoring. The
build and retention policy is also orchestrated as a job. Builds and releases that match these
criteria, with the exception of those marked for indefinite retention, will be removed.

It is also possible to overwrite the global build and release policy at a build and release
level, which can be done from the retention tab in a build or release definition. With the
ability to apply branch filters, you can specify different retention schedules for different
types of branches. For example, the topic branch builds can be removed more frequently
compared to the master branch. You may want to remove the source label for topic
branches, but not necessarily for the master branch:

Build and Release Agents Chapter 3

[147]

Agent capabilities and build demands for
special builds
The build and test execution of an application depends on the specific version of the
framework. For example, an application may have a component that depends on
DotNetCore 1.0 and another component may depend on DotNetCore 2.0. The build system
gives you the ability to define demands in a build definition and specify capabilities in the
agent queues. This creates a build that you can route to an agent queue by simply mapping
the demand to the capabilities. The framework leverages this capability internally; during
the agent setup, the agent collects a list of software and frameworks installed on the host
machine. These can be seen in the agent queue or Agent pools page under the Capabilities
tab. In this recipe, we'll learn how to add custom capabilities in the agent queues and
demand that in-build definitions target specific agent queues.

Getting ready
To configure the agent capabilities, you need to be part of the build administrator group or
in the administrator role for the specific agent queue.

How to do it...
Navigate to the admin portal for the PartsUnlimited team project, select the1.
Agent queues page, and click on the Capabilities tab. The page displays a list of
system capabilities, which shows you a list of all the software and frameworks
set up on the host machine. In USER CAPABILITIES, click to add a custom
capability. This gives you a key-pair; specify the dotnetcore name in the key
and the number 1 in the value, and then save the changes:

Build and Release Agents Chapter 3

[148]

Navigate to the build hub in the PartsUnlimited team portal. Add a new build2.
definition and choose an empty build template. In the Options tab, under the
Demands section, add two demands: one that checks for the dotnetcore key
and another that checks for the version:

Build and Release Agents Chapter 3

[149]

How it works...
When you queue a new build, the build pipeline queries the system capabilities of the
queue and determines whether there is an available agent in the queue that meets the build
demands. If no agent is found, you will be notified via a warning message. If you queue the
build regardless, it will fail at the configured timeout interval if no agent is found that
meets the demands in the build definition. At build-queue-time, you have an option to add,
remove, or overwrite the build demands:

Managing agent permissions using role-
based access
The build system provides role-based access control instead of exposing the underlying
permissions directly. In this recipe, we'll learn how to permission build resources
at the pool and the queue level.

Build and Release Agents Chapter 3

[150]

Getting ready
To manage the all pools membership, you need to be a member of the Team Foundation
Administrators Group. Membership to the Team Project Collection Administrator Group is
required to manage the permissions for individual pools. In order to manage the
permissions for the queues, you need to be a member of the Project Collection Build
Administrators Group. Build Definition Administration requires membership to the Build
Administrators Group.

How to do it...
Launch the collection administrator page and navigate to the Agent pools page.1.
Click on all pools, then add the service account(s) that you intend to use in the
agent pool Service Account role:

Build and Release Agents Chapter 3

[151]

To add a user as a reader to a specific pool, click on the specific pool and add the2.
user account or group to that specific pool:

How it works...
As illustrated in the following diagram, the new build system contains a hierarchical role-
based access-control model:

Build and Release Agents Chapter 3

[152]

Let's look at each of the roles and the accesses they offer:

All queues:
Agent Queue Administrators: Users in this role have the ability to
manage all queues within the project collection.
Agent Queue Creators: Users in this role have the ability to create
new queues. If there is no pool with the same name as the queue,
one will be provisioned at queue-creation-time and the caller will
be added as an administrator of both the queue and the
corresponding pool. If a pool with the same name already exists,
the caller must have the Manage permission (must be a pool
administrator) on the pool to create a new queue that uses the
pool.
Agent Queue Users: Users in this role have the ability to use all
queues for the entire collection. This means that they can assign the
queues to be used by definitions in the Build space.

Individual queues:
Agent Queue Administrators: Same as the preceding role, but the
permissions are restricted to the specific queue
Agent Queue Users: Same as the preceding role, but the
permissions are restricted to the specific queue

All pools:
Agent Pool Administrators: Users in this role have the ability to
manage all pools within the entire account
Agent Pool Service Accounts: Users in this role have the ability to
connect to the pool and receive messages regarding Build jobs,
including control messages such as update yourself and cancel this
job.

Individual pools:
Agent Pool Administrators: Same as the preceding role, but the
permissions are restricted to the specific pool
Agent Pool Service Accounts: Same as the preceding role, but the
permissions are restricted to the specific pool

4
Continuous Integration and

Build Automation
As a developer compiling code and running unit tests gives you assurance that your code
changes haven’t had an impact on the existing codebase. Integrating your code changes into
the source control repository enables other to validate their changes with yours. As a best
practice teams integrate into the shared repository several times a day to reduce the risk of
introducing breaking changes or worst overwriting each other’s.

Continuous Integration (CI) is a development practice that requires
developers to integrate code into a shared repository several times a day.
Each check-in is verified by an automated build, allowing teams to detect
problems early.

The Automated build running as part of the CI process is often referred to as the CI build.
While there isn't a clear definition of what the CI build should do, at the very minimum it is
expected to compile code and run unit tests. Running the CI build on a non-developer
isolated workspace helps identify dependencies that may otherwise go unnoticed late into
the release process. We can talk endlessly about the benefits of CI; the key here is that it
enables you to have potentially deployable software at all times.

Deployable software is the most tangible asset to customers.

Continuous Integration and Build Automation Chapter 4

[154]

Moving from concept to application, in this chapter we’ll learn how to leverage the build
tooling in Azure DevOps Server to set up a quality focused Continuous Integration
process.

In this chapter, we will cover the following recipes:

Configuring one build definition for all branches of a Git repository
Reflecting the branch quality in the build name
Using web deploy to create a package in an ASP.NET build pipeline
Organizing build output into separate folders
Configuring assembly version info in build pipelines
Setting up a build pipeline for a .NET core application
Setting up a build pipeline for Node.js application
Setting up a build pipeline for your database projects
Integrating SonarQube in build pipelines to manage technical debt

Configuring one build definition for all
branches of a Git repository
The Git branching model and pull request workflow makes it so easy to manage the flow of
code that you will get accustomed to creating a topic branch for each new item of work.
Continuous Integration is table stakes for any organization looking to move into a DevOps
way of working. Associating a Continuous Integration flow with every new Git topic
branch you create can be cumbersome, as you'll need to create a new build definition for
each Git branch.

This becomes an operational nightmare if the topic branches are short-lived. In this recipe,
we'll learn how to use one build definition to build all your Git branches in a team project.

Getting ready
You need to be a member of the build administrator group in the team project. The build
administrator group gives you permissions to administer build resources. Members can
manage test environments, create test runs, and manage builds.

Continuous Integration and Build Automation Chapter 4

[155]

Create the following Git branches in your team project:

master: Mainline for production
develop: Integration for all features
feature/myFeature-1: Feature development branch

How to do it...
Navigate to the Builds and Releases hub in the parts unlimited team portal.1.
From the Builds page, click New to create a new build definition.
Select the empty process to start with an empty build definition.2.
Name the build definition partsunlimited.web, choose the Default agent3.
queue, and save the build definition, as shown in the following screenshot:

Continuous Integration and Build Automation Chapter 4

[156]

In the Get sources step, you'll see that the build is configured to use the
MyWebApp Git repository and the master branch, which signifies that this build
definition is linked to the master branch of the MyWebApp Git repository only.
However, it is a little-known secret that this setting can be overridden.

Navigate to the Triggers tab in the build definition and enable the Continuous4.
Integration trigger for this build definition, as shown in the following screenshot:

After enabling the Continuous Integration trigger, you can now see you have the
option to configure the branches this Continuous Integration trigger is
configured against.

Continuous Integration and Build Automation Chapter 4

[157]

In the branch specification, type * and hit Enter. Save the build definition:5.

The branch specification drop-down menu does not have an option to
select all; you'll need to type * in the branch selector search box and hit
the Enter key immediately. If this does not work, disable and re-enable the
Continuous Integration trigger, select the branch selector drop-down,
type *, and press Enter. This will enforce this build to be configured for a
Continuous Integration trigger for all Git branches of the Git repository.

While the build definition is defaulted to the master branch in the Get sources
step, it will get the source from the branch the Continuous Integration is
triggered from.

By changing the Continuous Integration filter to *, this build definition is now6.
configured to work with all branches of the Git repository:

Continuous Integration and Build Automation Chapter 4

[158]

You can optionally add multiple branches using the + Add link if you only
intend to configure a build definition for multiple Git branches and not all
of them.

How it works...
To better understand how this works, in this section we'll test the configuration and go
through its implementation. Let's start by testing that the build definition is correctly
configured to work against all branches in the MyWebApp Git repository. Navigate to the
code hub, open the MyWebApp Git repository, and select the feature/myFeature-1
branch. Edit the Program.cs file by adding a comment. Commit the changes to trigger the
CI build for this branch:

Continuous Integration and Build Automation Chapter 4

[159]

Navigate to the build hub and open the partsunlimited.web build definition. You'll
notice that the CI build execution was triggered from the last commit for
the feature/myFeature-1 branch:

Repeat these steps for the develop and master branch now. You'll notice that the same build
definition gets triggered and gets the sources from the correct branch by simply using the
Continuous Integration trigger:

Continuous Integration and Build Automation Chapter 4

[160]

See also
This approach can be extended to link one build definition to a release definition to release
multiple branches into an environment. By using release artifact filters, you can lock down
the topic branches to dev test environments only.

Reflecting the branch quality in the build
name
Most software changes evolve from an alpha release quality to a beta release quality before
they are ready to be shipped. This is often reflected in how the code moves between Git
branches. Builds coming out of a topic branch where the change is still being matured are
mostly alpha quality, while a first cut of the develop branch (as the changes are being
integrated) where you are still soliciting feedback may be classed as beta quality before it's
moved up to master, from where you tend to do production quality releases. In this recipe,
we'll learn how to use the name of the branch to flag the quality of the build by appending
it to the build name.

Getting ready
This is an extension to the Configuring one build definition for all branches of a git
repository recipe. If you haven't already, configure a build definition to trigger all branches
for the MyWebApp Git repository.

How to do it...
Navigate to the build view in the parts unlimited team portal and edit1.
the partsunlimited.web build definition.In the Options tab, change the Build
number format to 0.1.$(DayOfYear)$(Rev:.r), as shown in the following
screenshot:

Continuous Integration and Build Automation Chapter 4

[161]

The build number provides various macros out of the box. More details on
the predefined variables that can be used to construct the build number
can be found here: https:/ ​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​vsts/ ​build-
release/ ​concepts/ ​definitions/ ​build/ ​options? ​view= ​vsts#build-
number- ​format.

Click + Add Task to add a new task to the build task list. Search for the2.
PowerShell task and add it to the build pipeline, as shown in the following
screenshot:

https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/options?view=vsts#build-number-format

Continuous Integration and Build Automation Chapter 4

[162]

Click on the PowerShell task to configure it. Change the display name to Add3.
branch quality to build name. Change the type of script to inline script
and add the following code snippet into the task as inline script. Click Save to
save the updates to the build definition:

write-host $env:BUILD_SOURCEBRANCHNAME
if ($env:BUILD_SOURCEBRANCHNAME -eq "Develop"){
 Write-Output ("##vso[build.updatebuildnumber]" +
$env:BUILD_BUILDNUMBER+"-beta")
 Write-host "setting version as -beta"
}
else{
 if($env:BUILD_SOURCEBRANCHNAME -ne "master"){
 Write-Output ("##vso[build.updatebuildnumber]" +
$env:BUILD_BUILDNUMBER+"-alpha")
 Write-Output "setting version as -alpha"
 }
}

To test the script, make changes to the feature/myFeature-1, develop, and4.
master branches. This will trigger the build definition as it's associated with the
CI build for all of these branches. In the following screenshot, you can see that
the branch quality flag has been appended to the build number:

Continuous Integration and Build Automation Chapter 4

[163]

How it works...
Let's look at what the script is doing. The build exposes a number of predefined variables.
This includes a combination of system variables used internally by the build system itself
and helper variables that can be used to manage the build workflow. A list of all the pre-
defined variables can be found here: https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​vsts/ ​build-
release/​concepts/ ​definitions/ ​build/ ​variables? ​view= ​vsts ​tabs= ​batch.

The value of the BUILD_SOURCEBRANCHNAME build variable is read to identify if the source
branch that triggered the build definition is develop. If so, the BUILD_BUILDNUMBER build
variable is postfixed with -beta. For all other source branches (except master), the build
number is updated as -alpha. However, in order to update the build variable, the build
system uses the following format:

Write-Output "##vso[task.setvariable
variable=build.variablename;issecret=bool]new value"

The statement is a simplified implementation of this format to update the build variable
that's used for the build number:

Write-Output ("##vso[build.updatebuildnumber]" + $env:BUILD_BUILDNUMBER+"-
alpha")

Using web deploy to create a package in an
ASP.NET build pipeline
The build system in Azure DevOps Server ships a set of pre-canned build templates with
all the necessary build tasks and configuration to help you get off the ground without
having to learn how the build system works. If you are creating an application that uses the
web project type in Visual Studio, then you'll be delighted to know that there is a build
template you can apply to set up a build pipeline for your web application. In this recipe,
we'll use the ASP.NET build template to create a build pipeline. In addition to building and
testing the web app, this pipeline also creates a web deploy package that can be used to
deploy to any web server, including Azure hosted app services.

https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch

Continuous Integration and Build Automation Chapter 4

[164]

Getting ready
Create a new Git repository—MyModernWebApp—in the parts unlimited team project.
Create a new ASP.NET MVC project using Visual Studio and commit the changes to the
master branch in the newly created Git repository.

How to do it...
Navigate to the build view in the PartsUnlimited team portal. Create a new1.
build definition by clicking the + New button. This will show you a list of all the
pre-canned build templates.
From the featured section, apply the ASP.NET build template, as shown in the2.
following screenshot:

Name the build modern.webapp, select the default agent queue, and save the3.
build definition. As you look around in the build definition, you'll see that the
pre-canned pipeline has all the necessary tasks to restore the NuGet packages, as
well as build, test, and publish a build artifact. The NuGet restore build task is
configured to execute all .sln files from the source. The test step, on the other
hand, is configured to operate on all DLL files that can be found in the bin folder
using the *test*.dll convention and the publish artifact step publishes the bin
folder of all projects associated to the solution. The build solution step also has a
set of MSBuild arguments. It is these MSBuild arguments that trigger the
generation of the Web Deploy package.

Continuous Integration and Build Automation Chapter 4

[165]

Queue a new build for this build definition without making any changes to the4.
pre-canned build template:

/p:DeployOnBuild=true /p:WebPublishMethod=Package
/p:PackageAsSingleFile=true /p:SkipInvalidConfigurations=true
/p:PackageLocation="$(build.artifactstagingdirectory)\\"

You'll be able to see live updates of the build execution from the build console.
The logs are still available after the build execution and are especially useful
when troubleshooting build failures. Once the build execution completes, you'll
see the following view:

Navigate into the build summary view by clicking the build number in the build5.
crumb. This view gives you the gist of the associated changes, test results,
timeline of build execution (details of time spent on each step), and the artifacts
section.

Continuous Integration and Build Automation Chapter 4

[166]

Click on the Artifacts section to see the web deploy package generated by this6.
build execution:

How it works...
MSBuild ships with a set of command-line switches: /p: simply means property of
MSBuild. The following MSBuild properties are used in the build step of the pipeline to
create the web deploy package, these are explained in the section below:

/p:DeployOnBuild=true /p:WebPublishMethod=Package
/p:PackageAsSingleFile=true /p:SkipInvalidConfigurations=true
/p:PackageLocation="$(build.artifactstagingdirectory)\\"

DeployOnBuild: This property is used to signal that the web project needs to be
packaged in this build.
WebPublishMethod: This property ensures that the output of the publish
method is a package. This property supports other publish methods such as
publishing to the filesystem or elsewhere using MSDeploy.
PackageAsSingleFile: This property is used to signal that the package be
zipped up into a single output file.
SkipInvalidConfigurations: This tells the build engine to generate one or
more warning if the build encounters an invalid configuration.
PackageLocation: This takes the path where the package needs to be
generated. We're using the default build variable to signal that the package
should be copied into the build artifact staging directory, so that the next step in
the build pipeline can pick the package from this location and publish the build
artifact and attach it to the build.

Continuous Integration and Build Automation Chapter 4

[167]

There's more...
The Azure DevOps Server marketplace features the Build Traffic Lights extension: https:/
/​marketplace.​visualstudio. ​com/ ​items? ​itemName= ​4tecture. ​BuildTrafficLights. This
free extension, developed by 4tecture, allows you to add build traffic lights to your
dashboard to visualize the state of a specific build definition and its builds. Continuous
Integration is the foundation to Continuous Delivery, and showing the visibility of the CI
pipeline on the team dashboard is a good way to encourage people to maintain a healthy CI
pipeline:

Organizing build output into separate
folders
In the DevOps way of working, teams are encouraged to adopt the right tools and practices
earlier in the development lifecycle to minimize waste later. While the pre-canned build
templates make it really easy to get started with build pipelines, the generic configuration
bloats the build artifact and adds folders that you don't necessarily care about. The ones
that you do care about are folded into multiple hierarchies. While it isn't necessarily a
problem immediately, when you start to consume the build output in release pipelines,
much of the release pipeline effort is spent in organizing the build output correctly. In the
spirit of pushing more software development activities left into the lifecycle and
minimizing waste, let's see how easy it is to organize the build output into relevant folders
from the outset.

https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights
https://marketplace.visualstudio.com/items?itemName=4tecture.BuildTrafficLights

Continuous Integration and Build Automation Chapter 4

[168]

Getting ready
In this section we'll go through the pre-requisites for this recipe:

Extend the MyModernWebApp solution by adding two new projects of type (.NET1.
Standard) console application and calling the first one
ExecutionEngine.Service and the other one MessagingEngine.Service.
Commit the changes and sync them up to the origin/master in2.
the MyModernWebApp Git repository:

In the build view, click the + New button to create a new build pipeline using the3.
.NET Desktop pre-canned template.
Choose the default agent queue, name the build definition4.
modern.app.framework, and queue a new build using this definition.

When the build completes, look at the build artifact: you'll see that the build output has
uploaded the test project as an artifact. The build output of ExecutionEngine.Service
and MessagingEngine.Service is tucked into bin/release folders.

Continuous Integration and Build Automation Chapter 4

[169]

This only gets messier as you associate more projects to the solution:

Review the modern.app.framework build definition. You'll notice that the build pipeline
only has one copy step and one publish step. As you can see, it is configured to copy
everything from the source folder that matches the express
\bin\$(BuildConfiguration) in the artifact staging directory:

Continuous Integration and Build Automation Chapter 4

[170]

Now that you have a sense of the problem, let's see how easy it is to take back control of the
build output.

How to do it...
Navigate to and edit the modern.app.framework build definition.1.
Instead of overloading just one copy step to copy everything, we'll use multiple2.
copy steps. The source folder location needs to be fully qualified to the exact
location path from where the binaries need to be copied:

How it works...
Queue a build for the modern.app.framework definition; you'll now notice that the build
output is a lot more organized. This has been done by removing the generic copy step and
replacing it with two purposeful copy steps that fully qualify the source folder location and
the target folder location. As a result, the test project DLL files haven't been uploaded as a
build artifact.

Continuous Integration and Build Automation Chapter 4

[171]

The two service projects are nicely organized under the services project without being
cryptically folded under the bin/release configuration:

Configuring assembly version info in build
pipelines
Azure DevOps Server provides a high level of traceability that makes it really easy to track
builds generated from a build definition through to pull request, to code changes, and
finally, back to work items. This traceability is, however, lost at the point when the binaries
are generated through the build. Wouldn't it be great if you could look at the binaries
deployed in an environment and identify the build they originated from? This could prove
to be really useful when testing for regression issues. You can also take it a step further and
display the binary version in the application, so when users log issues against your
application they can also report the version of the application they are seeing the issues in.
In this recipe, we'll learn how to configure the build number in the assemblies generated
through a build pipeline.

Continuous Integration and Build Automation Chapter 4

[172]

Getting ready
The marketplace features the Assembly Info extension. This open source task, created by
Bleddyn Richards, allows you to set assembly information such as version, copyright,
trademark, and so on, right from within the build pipeline. Install the assembly info
extension in your team project collection: https:/ ​/​marketplace. ​visualstudio. ​com/ ​items?
itemName=​bleddynrichards. ​Assembly- ​Info- ​Task.

How to do it...
Navigate to the build view in the parts unlimited team portal and edit the1.
previously created modern.webapp build definition.
Click + Add to add the newly installed Assembly Info task into the2.
modern.webapp build pipeline:

https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task
https://marketplace.visualstudio.com/items?itemName=bleddynrichards.Assembly-Info-Task

Continuous Integration and Build Automation Chapter 4

[173]

In the Options tab, it is recommended that you configure the build number to3.
a digit.digit.digit.digit assembly number format. However, if you have
a different naming convention for the build number, then you can still version
the binaries by using a semantic assembly version that you can control directly in
the build pipeline:

Leave the default configuration for the source files to AssembyInfo.cs and
AssembyInfo.vb.

Update the Manifest Attributes and the Informational Attributes in the task to4.
what you want to reflect in the generated assemblies:

Continuous Integration and Build Automation Chapter 4

[174]

Also, update the information attribute section of the Assembly Info task:

And, finally, update the Identity Attributes:

You can use the pre-defined build variables to add more contextual
information in the Assembly Info injected in the assemblies generated
through the build pipeline. Information on the pre-defined build variables
can be found in the Microsoft docs at https:/ ​/​docs. ​microsoft. ​com/ ​en-
us/​vsts/ ​build- ​release/ ​concepts/ ​definitions/ ​build/ ​variables? ​view=
vsts​tabs= ​batch.

https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch
https://docs.microsoft.com/en-us/vsts/build-release/concepts/definitions/build/variables?view=vsts&tabs=batch

Continuous Integration and Build Automation Chapter 4

[175]

How it works...
Trigger a new build and wait for it to complete execution.1.
Download the build artifact and see the assembly property. This should correctly2.
reflect the configuration specified by you in the Assembly Info task:

The Assembly Info task exposes the following fields via the build task. The3.
following table shows you how these map back to the attributes in the
AssemblyInfo file:

Field Attribute Function
Title AssemblyTitle Provides a friendly name for the assembly

Product AssemblyProduct Provides the product information for the
assembly

Description AssemblyDescription Provides a short description that summarizes the
nature and purpose of the assembly

Company AssemblyCompany Provides the company name for the assembly

Copyright AssemblyCopyright Provides the assembly or product copyright
information

Trademark AssemblyTrademark Provides the assembly or product trademark
information

Culture AssemblyCulture Provides information on what culture the
assembly supports

Continuous Integration and Build Automation Chapter 4

[176]

Field Attribute Function

Configuration AssemblyConfiguration Provides the build configuration for the assembly,
such as debug or release

Version number AssemblyVersion Provides an assembly version for the application
File version number AssemblyFileVersion Provides a file version for the application
Informational version AssemblyInformationalVersion Provides a text version for the application

Setting up a build pipeline for a .NET core
application
Microsoft introduced .Net Core back in 2016. It has evolved from a framework in preview
to a framework that is running business-critical workloads in production. .Net core is an
open source, cross-platform, high-performing framework for modern, cloud-based,
internet-connected applications. While one had to handcraft build tasks for .Net core
applications in its early days, the tooling has now caught up with the pace of change in .Net
core. Azure DevOps Server fully supports .Net core and allows you to go from zero to
DevOps in a few clicks. In this recipe, we'll learn how to set up a build pipeline for a .NET
Core application that can build, unit test, and package the output as an artifact.

Getting ready
In this recipe, we'll be using a simple .Net core application that comprises a few unit tests.
To get started, simply import the .Net core sample GitHub repository https:/ ​/​github.
com/​MicrosoftDocs/ ​pipelines- ​dotnet- ​core into the parts unlimited team project.

https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core
https://github.com/MicrosoftDocs/pipelines-dotnet-core

Continuous Integration and Build Automation Chapter 4

[177]

How to do it...
Navigate to the build view in the parts unlimited team project. Click + New to1.
create a new build definition and apply the ASP.NET Core template:

Configure the agent queue to use the default queue and the Get sources step to2.
the code repository you've imported the .Net core sample repository into.

Continuous Integration and Build Automation Chapter 4

[178]

Name the definition myweb.core and save the build definition. The template is3.
pre-canned with all the relevant configuration to build and unit test a .Net core
application. Queue a new build to see the build definition in action:

Continuous Integration and Build Automation Chapter 4

[179]

How it works...
Let's double-click the build process to understand the inner workings of the pipeline better.
Start with the restore step. This simply restores all the package dependencies specified in
the csproj file:

You can also restore package references from NuGet. Use an
accompanying NuGet.config file in your repository to manage the
references to internal or public NuGet feed. More information on how to
set this up can be found on Microsoft docs: https:/ ​/​docs. ​microsoft.
com/​en- ​us/ ​dotnet/ ​core/ ​tools/ ​dotnet- ​restore? ​tabs= ​netcore2x.
Version 2 of the VSTS .Net core restore task supports specifying the
NuGet feed configuration in the task directly.

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-restore?tabs=netcore2x

Continuous Integration and Build Automation Chapter 4

[180]

The build and test task simply uses the .Net core build engine to build all csproj files in
the repository. The test task uses a wildcard search to look for all csproj files that include
the name *test*. The build and test task allows you to specify additional arguments, for
example, the configuration to build in. The publish task finally creates a package that you
can optionally ZIP and include the project name in:

Working through the earlier steps, you'll notice that the .Net core tooling is wrapped up
into one single VSTS build task that allows you to simply select the command you intend to
perform. The task supports the following commands:

Continuous Integration and Build Automation Chapter 4

[181]

There's more...
The Azure DevOps Server marketplace features the Diagnostics Tasks, which can be found
here: https:/​/​marketplace. ​visualstudio. ​com/ ​items? ​itemName= ​andremarques023.
DiagnosticTasks. This free extension, developed by André Marques de Araújo, provides
you with a set of useful tasks for both build and release pipelines. The log variables task is
extremely useful, especially when you are working through debugging build issues. Team
build brings a number of predefined variables that can be used in build (and release)
definitions and scripts. Variables are generated by the agent in the scope of a particular job
(prior to it starting) or generated on the server side and sent to the agent as part of the job.
This task logs these variables to the console:

Setting up build pipeline for a Node.js
application
Node.js is a cross-platform, open source platform built on Chrome's JavaScript runtime for
fast and scalable server-side and networking applications. It is very popular for both
frontend as well as server-side programming. In this recipe, you'll learn how to set up a CI
pipeline for a Node.js application using gulp.

https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks
https://marketplace.visualstudio.com/items?itemName=andremarques023.DiagnosticTasks

Continuous Integration and Build Automation Chapter 4

[182]

Getting ready
The focus of the recipe is to help you understand the construction of a CI pipeline for a
Node.js application. To abstract the complexity of the node application out of the recipe,
we'll be using a demo code repository from GitHub. To get started, simply import the
following code base from https:/ ​/​github. ​com/ ​nilaydshah/ ​MochaTypescriptTest- ​101/ ​
into your team foundation server. You can also create a new Node.js code repository in
Visual Studio code using the instructions in this blog post: https:/ ​/​blogs. ​msdn.
microsoft.​com/​nilayshah/ ​2018/ ​01/ ​07/ ​unit- ​testing- ​node- ​application- ​with-
typescript-​in-​vs- ​code- ​%E2%80%8A- ​%E2%80%8A- ​using- ​mocha- ​chai- ​mochawesome- ​gulp-
travis/​:

How to do it...
Navigate to the build view in the parts unlimited team project. Click + New to1.
create a new build definition and apply the Node.js With gulp template:

https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://github.com/nilaydshah/MochaTypescriptTest-101/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/
https://blogs.msdn.microsoft.com/nilayshah/2018/01/07/unit-testing-node-application-with-typescript-in-vs-code-%E2%80%8A-%E2%80%8A-using-mocha-chai-mochawesome-gulp-travis/

Continuous Integration and Build Automation Chapter 4

[183]

Configure the agent queue to use the default queue and change the default2.
archive type to ZIP. This pre-canned template includes a task to run gulpfile in
the repository.
Name the definition myNodeJs.demo and save the build definition. The3.
configuration in place is sufficient to build and package a Node.js application
and queue a new build to see the build definition in action:

Continuous Integration and Build Automation Chapter 4

[184]

While the build is successful, the pipeline isn't executing the test in the4.
repository. To configure the test execution, update package.json, append the
below code snippet.

Include the mocha-junit-reporter dependency in package.json:

"mocha-junit-reporter": "^1.17.0"

Add a test script block to execute mocha tests with mocha-junit-reporter:

"scripts": {
 "test": "mocha lib/test/**/*.js --reporter mocha-junit-
reporter --reporter-options mochaFile=./TestResults/TEST-
RESULT.xml"
 }

Edit the myNodeJs.demo pipeline and add a NPM task after the gulp task,5.
configure it to run the custom task type, and set the Command and arguments
to test.
Uncheck test execution in the run gulp task, as the newly added NPM custom6.
task will be doing this for us:

Continuous Integration and Build Automation Chapter 4

[185]

To publish the test results into the build output, add the publish test7.
results task after the NPM test task.
Configure the test results filename to **\TEST-RESULT.xml:8.

Continuous Integration and Build Automation Chapter 4

[186]

Queue a new build to see your Node.js continuous integration pipeline in action.9.
The pipeline will build, run tests, publish test results, and package the output
into a ZIP file that will be attached as an artifact with the build:

How it works...
The package.json file is the glue in the Node.js build pipeline. Let's double-click in the
build pipeline to understand how this is working under the hood. The first task in the npm
install pipeline reads package.json to identify the application dependencies and
restores the packages into the build environment. In the package management chapter,
we'll also learn how to plug in a private NPM feed to the build pipeline to restore the
package dependencies:

Continuous Integration and Build Automation Chapter 4

[187]

The run gulp task executes the gulpfile.js file. Gulp is a JavaScript task runner that lets
you automate tasks such as bundling and minifying libraries and stylesheets. In this case,
gulp creates a TypeScript project using the configuration settings in tsconfig.json. Most
of this is the standard configuration that you can use across multiple node projects:

Continuous Integration and Build Automation Chapter 4

[188]

The package.json file also includes the custom script to test the application. This calls the
mocha test framework and specifies the test output format as TEST-RESULT.xml. The
output file generated here is compatible with the open test result syntax supported by the
build system:

This allows the build systems to consume the TEST-RESULT.xml file through the publish
test result task and process it to render the test results visually as part of the build output.
Finally, the archive task takes the output processed through the gulp task executor and
packages it up into a ZIP file, which is then published as an artifact into the build.

There's more...
You can optionally use the Node Tool Installer task to configure the version of Node used
by your build pipeline. This task allows you to specify the configuration of the node version
to be used in the build pipeline; it accepts the less than, equal to, and greater than
expressions. The task finds or downloads and caches the specified version of Node.js and
adds it to the path on the build agent host machine:

Continuous Integration and Build Automation Chapter 4

[189]

Setting up a build pipeline for your database
projects
A continuous integration pipeline ensures code and related resources are integrated
regularly and tested by an automated build system. CI is becoming a standard in modern
software development. While teams are quick to set up a CI pipeline for their application,
the database usually gets sidelined in this equation. The benefits of CI can be applied to
brownfield as well as greenfield databases. In this recipe, we'll learn how to set up a
pipeline for a database project that generates a dacpac file as a build artifact.

A DAC is a self-contained unit of SQL Server database deployment that
enables data-tier developers and database administrators to package SQL
Server objects into a portable artifact called a DAC package, also known as
a DACPAC.

Getting ready
The focus of the recipe is to help you understand the construction of a pipeline for a
database project. If you don't have a database project for your database already, you can
generate a database project from an existing database using the steps listed here: https:/ ​/
msdn.​microsoft.​com/ ​en- ​us/ ​library/ ​hh864423(v= ​vs. ​103). ​aspx. In this recipe, we'll be
using a simple demo database project from GitHub: https:/ ​/​github. ​com/​Microsoft/ ​sql-
server-​samples.​git. To get started, simply import the GitHub repository into the parts
unlimited team project:

https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://msdn.microsoft.com/en-us/library/hh864423(v=vs.103).aspx
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git
https://github.com/Microsoft/sql-server-samples.git

Continuous Integration and Build Automation Chapter 4

[190]

We'll be using the wwi-ssdt solution, which already includes
the WideWorldImporters.sqlproj database project sample:

How to do it...
Navigate to the build view in the parts unlimited team project. Click + New to1.
create a new build definition and apply the .NET Desktop build template:

Configure the agent queue to use the default queue and, in the process, update2.
the path of the solution file to samples/databases/wide-world-
importers/wwi-dw-ssdt/WideWorldImportersDW.sln.

Continuous Integration and Build Automation Chapter 4

[191]

Name the definition myDb.demo and save the build definition:3.

The configuration in place is sufficient to build and package an SQL database project; queue
a new build to see the build definition in action. The build successfully generates a dacpac
file and attaches it as an artifact:

Continuous Integration and Build Automation Chapter 4

[192]

How it works...
Open the samples/databases/wide-world-importers/wwi-dw-
ssdt/WideWorldImportersDW.sln solution in visual studio, right-click on
the WideWorldImporters.dbproj file, and view properties. In the Build tab you'll see
that the project is configured to generate an output (dacpac) in the bin\Release or
bin\Debug folder:

The build pipeline uses the same setting to generate the dacpac file. Download the dacpac
file generated in the build artifact and rename its extension from .dacpac to .zip. You'll
notice that it simply contains the database model wrapped up into an XML file and the
post-deployment scripts in a postdeployment.sql file:

Continuous Integration and Build Automation Chapter 4

[193]

The dacpac file can be used at deploy time to compare the database against the current
state of the schema to generate the incremental delta script for deployment. Refer
to Deploying the database to Azure SQL using the release pipeline recipe in Chapter 6,
Continuous Deployments, to learn how to deploy dacpac to a sql azure database using Azure
Pipelines.

Integrating SonarQube in build pipelines to
manage technical debt
Technical debt can be classified as the measure between the codebase's current state and an
optimal state. Technical debt saps productivity by making code hard to understand, easy to
break, and difficult to validate, in turn creating unplanned work, ultimately
blocking progress. Technical debt is inevitable! It starts small and grows over time through
rushed changes, lack of context, and lack of discipline. Organizations often find that more
than 50% of their capacity is sapped by technical debt. The hardest part of fixing technical
debt is knowing where to start. SonarQube is an open source platform that is the de facto
solution for understanding and managing technical debt. In this recipe, we'll learn how to
leverage SonarQube in a build pipeline to identify technical debt.

Getting ready
SonarQube is an open platform to manage code quality. As such, it covers the seven axes of
code quality as illustrated in the following diagram. Originally famous in the Java
community, SonarQube now supports over 20 programming languages. The joint
investments made by Microsoft and SonarSource make SonarQube easier to integrate
with TFBuild and better at analyzing .NET-based applications. You can read more about
the capabilities offered by SonarQube here: http://www.sonarqube.org/resources/

In this recipe, we'll be analyzing the technical debt in one of the .Net core sample
repositories in the partsunlimited team project. If you don't already have an instance
of SonarQube, then set one up by following the instructions here: https:/ ​/ ​github. ​com/
SonarSource/​sonar- ​.​net- ​documentation/ ​blob/ ​master/ ​doc/ ​installation- ​and-
configuration.​md.

http://www.sonarqube.org/resources/
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md
https://github.com/SonarSource/sonar-.net-documentation/blob/master/doc/installation-and-configuration.md

Continuous Integration and Build Automation Chapter 4

[194]

To get started with SonarQube, you'll also need to install the SonarQube build tasks to your
Azure DevOps Server Team Project collection from the marketplace: https:/ ​/
marketplace.​visualstudio. ​com/ ​items? ​itemName= ​SonarSource. ​sonarqube:

How to do it...
Navigate to the build view in the parts unlimited team project.1.
Choose to edit the modern.webapp build definition, click +, and add the2.
following tasks: Prepare analysis on SonarQube and Run Code Analysis.
Click on the Prepare analysis on SonarQube task and click + New to configure3.
the SonarQube service endpoint to be used:

https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarqube

Continuous Integration and Build Automation Chapter 4

[195]

The Run Code Analysis task needs to be placed after the build solution
and test assemblies task for it to include the build and test binaries (test
results and code coverage) in the analysis.

The prepare analysis task further needs three configurations, namely the project4.
key, project name, and project version. Fill these out as highlighted in the
following screenshot:

The project version is configured to use the pre-
configured $(Build.BuildNumber) variable, which will give you
traceability between the builds in the team foundation server and the
analysis reports in SonarQube.

Continuous Integration and Build Automation Chapter 4

[196]

Queue a new build and wait for the build execution to complete: 5.

The build has successfully run, completed the SonarQube analysis, and pushed the results
into your SonarQube instance.

How it works...
The build tasks provided by SonarQube provide the underlying plumbing to leverage the
correct analyzers, generate the analysis report, and publish it to the SonarQube instance
specified in the build pipeline. The service endpoint created for SonarQube keeps track of
all the requests that make use of this service endpoint:

Continuous Integration and Build Automation Chapter 4

[197]

To lock down access to service endpoints, you can add users in user and
administrator roles. Only members of the service endpoint have
permissions to consume the service endpoint.

As the analysis is complete, navigate to SonarQube; you'll see a new project has been
created using the details from the prepare analysis task:

The analysis includes the version number, which maps back to the build number the
analysis was kicked off from:

Continuous Integration and Build Automation Chapter 4

[198]

The analysis shows that there are three major issues; click on the issues to see more details
about them. This view gives you the option to slice and dice the issues by various
categories. It's possible to click on the issue and see the offending line of code with details
of how this can be fixed:

The measures in SonarQube give you the ability to get a better all-around view of the
quality of your application. For example, in the duplication measure it is demonstrated that
the application is plagued by 17% of code that can be refactored to more shared functions,
as in its current state it's simply duplicated:

There's more...
You can optionally edit the pipeline to include the Publish Quality Gate Results task in the
pipeline. This task publishes a summary of the SonarQube code analysis results into the
build summary view.

5
Continuous Testing

Software teams are constantly under pressure to deliver more, faster. End users expect
software to simply work. Low-quality software just isn't acceptable. But you may ask
what the right level of quality is. Quality is a very subjective term; it is, therefore,
important for teams to agree on a definition of quality for their software. Teams that are
unable to define quality usually end up testing for coverage.

Microsoft has made some bold bets with Azure DevOps Server 2019. Rather than continue
to invest in features that have a very high cost of ownership and low usability footprint,
Microsoft has instead decided to deprecate those features and instead focus the energy
elsewhere. Let's see what's changing:

Microsoft Test Manager (MTM): The toolkit in Azure DevOps Server
provides tooling for both manual and automated testing. A key part of that
tooling used to be MTM. MTM was first introduced with TFS 2010. It enabled
testers to plan, track, and run manual tests, exploratory tests, and automated
tests. While MTM fully integrated with TFS, it did not offer integration with
other testing platforms, nor did it offer APIs for extensibility. Microsoft's
ambition over the last few years has been to support every developer, every app,
and every platform; that isn't possible with tooling that can't be run on non-
Windows platforms. As a result, over the years, test tooling has gradually moved
out of MTM onto the web, which is now called Test Hub. As it stands, Test Hub
is a fully-featured test management solution spanning all stages of the testing life
cycle. It works on all platforms (such as Linux, macOS, and Windows) and all
browsers (such as Edge, Chrome, and Firefox). You can easily get started using
manual testing features right from your Kanban board and use it for more
advanced manual testing capabilities.

Continuous Testing Chapter 5

[200]

The following screenshot shows a feature-level comparison between web-based test
features and the client-based MTM. With feature parity between Test Hub and MTM, no
new versions of MTM will be released. Microsoft Test Manager 2017 (which shipped with
Microsoft Visual Studio 2017) is the last version and will be supported up to January 1,
2020:

Continuous Testing Chapter 5

[201]

Load testing: Load testing helps you ensure that your apps can scale and do not
go down when peak traffic hits. Although Microsoft has been shipping load-
testing tools and their cloud-based load-testing service for many years, the
adoption has not been growing. Some of the factors contributing to this are as
follows: load testing is typically initiated for seasonal events; load testing is more
meaningful for products operating at scale; and application complexity can
sometimes make it difficult to adopt an off-the-shelf service without a high level
of customization. With a high level of investment required to maintain the load
testing functionality and a very low adoption rate, Microsoft has announced the
deprecation of load testing in its product. Visual Studio 2019 will be the last
version of Visual Studio with web performance and load test features, and
the corresponding Azure DevOps cloud-based load testing service will shut
down on March 31, 2020. You can read more about the announcement and the
specifics of the deprecation timeline here: https:/ ​/ ​devblogs. ​microsoft. ​com/
devops/​cloud- ​based- ​load- ​testing- ​service- ​eol/ ​.
Coded UI testing: Automated tests that drive your application through its UI are
known as Coded UI Tests (CUITs) in Visual Studio. These tests include
functional testing of the UI controls. They let you verify that the whole
application, including its user interface, is functioning correctly. Coded UI Tests
are particularly useful where there is validation or other logic in the user
interface, for example, in a web page. They are also frequently used to automate
an existing manual test. In addition to supporting record and playback for web
applications, Coded UI only supported Windows-based desktop
applications. Coded UI tests worked particularly well for greenfield applications
with native controls. The success rate on automation dropped with third-party
controls and legacy implementations. With a greater push for cross-platform
support, Microsoft has acknowledged that open source frameworks such as
Selenium and Appium are the better answer here. Microsoft has therefore
announced that Coded UI tooling for automated UI-driven functional testing is
being deprecated. Visual Studio 2019 is the last version where the Coded UI Test
will be available. Microsoft recommends using Selenium (https:/ ​/​docs.
seleniumhq. ​org/ ​) for testing web apps and Appium with WinAppDriver
(https:/ ​/ ​github. ​com/ ​Microsoft/ ​WinAppDriver) for testing desktop and UWP
apps.

https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://devblogs.microsoft.com/devops/cloud-based-load-testing-service-eol/
https://docs.seleniumhq.org/
https://docs.seleniumhq.org/
https://docs.seleniumhq.org/
https://docs.seleniumhq.org/
https://docs.seleniumhq.org/
https://docs.seleniumhq.org/
https://docs.seleniumhq.org/
https://docs.seleniumhq.org/
https://docs.seleniumhq.org/
https://github.com/Microsoft/WinAppDriver
https://github.com/Microsoft/WinAppDriver
https://github.com/Microsoft/WinAppDriver
https://github.com/Microsoft/WinAppDriver
https://github.com/Microsoft/WinAppDriver
https://github.com/Microsoft/WinAppDriver
https://github.com/Microsoft/WinAppDriver
https://github.com/Microsoft/WinAppDriver
https://github.com/Microsoft/WinAppDriver
https://github.com/Microsoft/WinAppDriver
https://github.com/Microsoft/WinAppDriver

Continuous Testing Chapter 5

[202]

With the deprecation of MTM, load testing, and Coded UI Testing, you are probably
thinking: where is Microsoft investing in testing? I'll answer that question, but let's first
look at this interesting shift. To speed up the software delivery loop, software testing needs
to be incorporated into the continuous integration pipeline. In order to do this,
software testing needs to shift left in the development processes. Test-driven development
enables developers to write code that's maintainable, flexible, and easily extensible. Code
backed by unit tests helps identify change impact and empowers developers to make
changes confidently. In addition to this, functional testing needs to be automated. This
enables software testers to focus on high-value exploratory testing rather than just coverage
of the test matrix. The DevOps movement at large supports bringing testing into the
continuous integration pipeline. As a result, the next wave of investment is going into
improving the testing story within pipelines, specifically around unit testing: more support
for testing frameworks and enriching the analytics from test execution.

Through the recipes in this chapter, we'll learn how to leverage pipelines to execute tests
and perform distributed test execution.

In this chapter, we will cover the following recipes:

Running NUnit tests using Azure Pipelines
Using feature flags to test in production
Distributing multi-configuration tests against agents
Configuring parallel execution of tests using Azure Pipelines
Running SpecFlow tests using Azure Pipelines
Analyzing test execution results from Runs view
Exporting test artifacts and test results from Test Hub
Charting testing status on dashboards in the team portal

Running NUnit tests using Azure Pipelines
NUnit is one of the many open source testing frameworks popular with cross-platform
developers. In this recipe, we'll learn how easy it is to create a pipeline for NUnit-based
tests and publish the test execution results in Azure DevOps Server.

Getting ready
In this section, we'll use the .NET CLI to create a new solution and a new class library
project, and install the NUnit test template.

Continuous Testing Chapter 5

[203]

These are the prerequisites:

.NET Core 2.1 SDK or later versions
A text editor or code editor of your choice

Follow these steps:

Launch Command Prompt and create a new folder called ContinuousTesting:1.

mkdir ContinuousTesting
cd ContinuousTesting

Create a new solution:2.

dotnet new sln -n prime

Create a new PrimeService directory:3.

mkdir PrimeService

Set PrimeService as the current directory and create a new project:4.

dotnet new classlib

Rename Class1.cs to PrimeService.cs. Start by copying this failing5.
implementation of the PrimeService class:

using System;
namespace Prime.Services
{
 public class PrimeService
 {
 public bool IsPrime(int candidate)
 {
 throw new NotImplementedException("Please create a test
first");
 }
 }
}

Change the directory back to the ContinuousTesting directory. Run the6.
following command to add a reference of the class library project to the solution:

dotnet sln add PrimeService/PrimeService.csproj

Continuous Testing Chapter 5

[204]

Before you can use NUnit from the dotnet CLI, you'll need to install NUnit. This7.
can easily be done by running the following command:

dotnet new -i NUnit.DotNetNew.Template

Next, create a directory for Test under the ContinuousTesting directory, and8.
call it PrimeService.Tests:

mkdir PrimeService.Tests

Create a new nunit test project and add a reference for this test project into9.
solution. The test project will also need a reference to the class library:

dotnet new nunit
dotnet sln add ./PrimeService.Tests/PrimeService.Tests.csproj
dotnet add reference ../PrimeService/PrimeService.csproj

Let's follow the Test-Driven Development (TDD) approach. Start off by writing one failing
test and then make it pass by writing the implementation for it. In the
PrimeService.Tests directory, rename the UnitTest1.cs file to
PrimeService_IsPrimeShould.cs and replace its entire contents with the following
code:

using NUnit.Framework;
using Prime.Services;
namespace Prime.UnitTests.Services
{
 [TestFixture]
 public class PrimeService_IsPrimeShould
 {
 private readonly PrimeService _primeService;
public PrimeService_IsPrimeShould()
 {
 _primeService = new PrimeService();
 }
[Test]
 public void ReturnFalseGivenValueOf1()
 {
 var result = _primeService.IsPrime(1);
Assert.IsFalse(result, "1 should not be prime");
 }
 }
}

Continuous Testing Chapter 5

[205]

The [TestFixture] attribute denotes a class that contains unit tests. The [Test] attribute
indicates that a method is a test method. Save this file. From the command line, execute
dotnet test; this builds the tests and the class library and then executes the tests. The
NUnit test runner contains the program entry point to run your tests. dotnet test starts
the test runner using the unit test project you've created.

Your test fails. You haven't created the implementation yet. Make this test pass by writing
the simplest code in the PrimeService class that works:

public bool IsPrime(int candidate)
{
 if (candidate == 1)
 {
 return false;
 }
 throw new NotImplementedException("Please create a test first");
}

In the ContinuousTesting directory, run dotnet test again. The dotnet test
command runs a build for the PrimeService project and then for the
PrimeService.Tests project. After building both projects, it runs this single test. It
passes.

Now that we have a working .Net core service and NUnit-based unit test, commit the code
into a Git repository (be sure to use a gitignore file to avoid staging files you don't need).
Create a remote continuoustesting.demo repository in the Parts Unlimited team
project. Push the code into the master branch on the remote.

How to do it...
Navigate to the Build view in the Parts Unlimited team project.1.
Click +New to create a new pipeline and apply the dotnetcore template. Name2.
the pipeline nunit.demo.

Continuous Testing Chapter 5

[206]

Select the repository as continuoustesting.repo and the branch as master:3.

Continuous Testing Chapter 5

[207]

Click on the Test step in the pipeline and ensure that the Path to project(s) field4.
uses the wildcard **/*[Tt]ests/*.csproj search value and the Publish test
results and code coverage option is checked:

Continuous Testing Chapter 5

[208]

Click on the Publish task and uncheck Publish Web Projects, as the sample5.
solution is a class library and not a web project:

Continuous Testing Chapter 5

[209]

Save and queue the build to run and wait for the pipeline to complete execution:6.

Click on the Tests tab to see the test execution results:7.

Continuous Testing Chapter 5

[210]

How it works...
This was simple! You didn't have to add any reference to the NUnit test runner in the
pipeline or worry about parsing the NUnit test results back into a format that is understood
by the pipeline. The Azure DevOps service does a lot of work behind the scenes to make it
seamless. To understand how it works, let's start by zooming into the Restore step in the
pipeline. The pipeline reads the csproj reference to the NUnit test adapter:

As a result, the test runner is downloaded:

Continuous Testing Chapter 5

[211]

Then it is installed through the Restore step in the pipeline:

Next, let's look at how the test results from the test execution were parsed into the test run
results:

Continuous Testing Chapter 5

[212]

Azure Pipelines are highly extensible and provide a wide range of extensibility points. The
test task out-of-the-box supports the following test result formats: CTest, JUnit, NUnit 2,
NUnit 3, Visual Studio Test (TRX), and xUnit 2. The test task is executed through the
pipeline supports parsing the test results from any test execution framework as long as the
test framework can publish the test results in any of these supported formats. All the
advanced concepts of searching test results using wildcard search as well as merging test
results are handled by the pipeline itself.

Using feature flags to test in production
We are in an era of continuous delivery, where we are expected to quickly deliver software
that is stable and performant. We see development teams embracing a suite of continuous
integration/delivery tools to automate their testing and QA, all while deploying at an
accelerated cadence. No matter how hard we try to mitigate the risk of software delivery,
almost all end-user software releases are strictly coupled with some form of code
deployment. This means that companies must rely on testing and QA to identify all issues
before a release hits production. There are two key challenges when testing features in test
environments:

Testing in test environments can be challenging if your test scenarios depend on
production-quality data. It can take a lot of effort to create this kind of data in test
environments and it's likely you'll still miss out on key test scenarios, since in
some cases the effort involved in creating this data outweighs the benefits.
The other most common scenario is doing user testing, inspecting, and adapting
the functionality of your product based on usage data. End users may be
invested in the success of your product, but it can get increasingly difficult to get
constant feedback on every functionality in a test environment.

Once a release is in production, it is basically out in the wild. Without proper controls,
rolling back to previous versions becomes a code deployment exercise, requiring
engineering expertise and increasing the potential for downtime. One way to mitigate risk
in feature releases is to introduce feature flags (feature toggles) into the continuous delivery
process. These flags allow features (or any code segment) to be turned on or off for
particular users. Feature flags are a powerful technique, allowing teams to modify system
behavior without changing code. Innovation is the key to success, and success depends on
hypothesis testing through experimentation. By adopting a culture of continuous
experimentation, features can be tested by creating an instrumented minimal viable
product rapidly and released to a subset of customers in production for testing; this enables
the team to make fact-based decisions and quickly evolve toward an optimal solution.

Continuous Testing Chapter 5

[213]

In this recipe, we'll learn how to get into a true continuous testing culture by leveraging
feature flags.

Getting ready
Create a new web application using the ASP.NET Web Application template in1.
Visual Studio, name it MyWebApp, and save it in a new folder called
featuretoggle.demo:

Continuous Testing Chapter 5

[214]

Simply build and run the website, then navigate to the Contact form:2.

In the next section, we'll see how to use feature flags to deploy changes to the Contact form
without releasing the changes to everyone.

How to do it...
In the MyWebApp project, add a reference to the FeatureToggle package:1.

Continuous Testing Chapter 5

[215]

Next, create a folder called Toggle and add a class called NewContactForm.cs.2.
Copy the following code into this class file:

using FeatureToggle;
namespace MyWebApp.Toggle
{
 public class NewContactForm : SimpleFeatureToggle
 {
 }
}

Add a new app key in the web.config file; set the key name to3.
FeatureToggle.NewContactForm and the value to false. This key will be
used to control the feature flag:

Next, modify the Contact.cshtml page under Views\Home to include the4.
following code:

@{
var toggle = new MyWebApp.Toggle.NewContactForm();
 if (toggle.FeatureEnabled)
 {
 <img
src="https://www.incimages.com/uploaded_files/image/970x450/get
ty_459885938_144096.jpg" />
 }
}

Build and run the project. Navigate to the Contact form page and you'll see that5.
it's unchanged. Update the value of the FeatureToggle.NewContactForm key
in the web.config file from false to true.

Continuous Testing Chapter 5

[216]

Now refresh the Contact form. You'll see the updated page with the image:6.

How it works...
The feature toggle package includes a series of providers that can be used to control the
value of an object that can, in turn, be used to decide whether the feature is accessible. You
may ask why we use feature toggle. Well, it is easy to construct a simple if....else
condition using a config key to control when the page gets shown. While magic strings can
be used, toggles should be real things (objects), not just a loosely typed string. This helps
effectively manage the feature flags over time. When using real toggles, you can do the
following:

Find uses of the Toggle class to see where it's used
Delete the Toggle class and see where a build fails

Continuous Testing Chapter 5

[217]

Feature flags allow you to decouple code deployments from feature releases. This simplifies
testing code changes in production without impacting end users. By using feature flags, it's
possible to control who can see a feature; it's also possible to phase in traffic to a new
feature rather than opening up all users at once. You can read more about feature flags and
their benefits here: https:/ ​/ ​martinfowler. ​com/ ​articles/ ​feature- ​toggles. ​html.

There's more...
The feature toggle package also provides the following feature toggle types:

AlwaysOffFeatureToggle

AlwaysOnFeatureToggle

EnabledOnOrAfterDateFeatureToggle

EnabledOnOrBeforeDateFeatureToggle

EnabledBetweenDatesFeatureToggle

SimpleFeatureToggle

RandomFeatureToggle

EnabledOnDaysOfWeekFeatureToggle

SqlFeatureToggle

EnabledOnOrAfterAssemblyVersionWhereToggleIsDefinedToggle

More details on these feature toggle types and their usage can be found at: http:/ ​/​jason-
roberts.​github.​io/ ​FeatureToggle. ​Docs/ ​pages/ ​usage. ​html.

Distributing multi-configuration tests
against agents
Pipelines are a great way of running tests. The pipeline can be used to run unit tests,
functional tests, and integration tests. If you have a large number of tests in your
application, the verification process can slow down significantly. It can get even slower if
you have a large matrix of configurations to run the tests against. For example, if you have
a collection of selenium tests that perform UI-level verification, you may need to run these
tests against Internet Explorer, Chrome, and Firefox and run the tests on Windows, macOS,
and flavors of Linux.

https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html
http://jason-roberts.github.io/FeatureToggle.Docs/pages/usage.html

Continuous Testing Chapter 5

[218]

In this recipe, we'll learn how easy it is to use a combination of a multi-configuration
execution plan along with a pool of test agents to distribute the test execution.

How to do it...
In the Variables section in a build pipeline, define one or more variables that'll be used to
describe the test matrix:

In our example, we need to test against multiple browsers on multiple platforms.1.
So, I've created two variables, one for browsers and the other for platforms:

Next, create an agent pool with multiple agents. For the purposes of this recipe,2.
I've created a build pool buildgrid-01 with two agents:

Continuous Testing Chapter 5

[219]

In the Agents phase in the pipeline, change the Execution plan to Multi-3.
configuration and set the Multipliers to the variables.
Set the Maximum number of agents to 2. The maximum agent count lets you4.
specify the number of agents from your pool the job can distribute the tests on:

To pass the configuration value to your test, simply use the $(browser) and5.
$(platform) variables in the test configuration:

Save the changes and trigger the build. The build will distribute the matrix of6.
execution across the pool of agents.

Continuous Testing Chapter 5

[220]

How it works...
The comma-separated values in the platform and browser variables are used to create the
test matrix:

Browser Internet Explorer Chrome Edge Firefox
Platform Windows Windows Windows Windows
Platform Mac Mac Mac Mac
Platform Linux Linux Linux Linux

The multi-configuration test execution plan simply iterates through the comma-separated
values one at a time and passes them to the $platform and $browser variables, which are
then passed in to the test configuration. As you can see in the following screenshot, the test
configuration is distributed across the two agents available in the pool:

Continuous Testing Chapter 5

[221]

There's more...
With multi-configuration you can run multiple jobs, each with a different value for one or
more variables (multipliers). If you want to run the same job on multiple agents, then you
can use the multi-agent option of parallelism. The preceding test slicing example can be
accomplished through the multi-agent option.

Configuring parallel execution of tests using
Azure Pipelines
Running tests to validate changes to the code is key to maintaining quality. For continuous
integration practice to be successful, it is essential you have a good test suite that is run
with every build. However, as the code base grows, the regression test suite tends to grow
as well, and running a full regression test can take a long time. Sometimes, tests themselves
may be long-running – this is typically the case if you write end-to-end tests. This reduces
the speed with which customer value can be delivered, as pipelines cannot process builds
quickly enough.

Being able to divide the test execution on multiple cores across a pool of agents can
significantly reduce the time it takes to complete the test execution. While most build
servers are multi-core, the agent orchestrating the pipelines doesn't always provide an easy
way to distribute the test execution on multiple cores. In this recipe, we'll see how easy it is
to enable parallel execution of tests using Azure Pipelines.

Getting ready
Create a new pipeline using the ASP.NET Core template. This will add the Visual Studio
Test task to the pipeline.

Continuous Testing Chapter 5

[222]

Save the pipeline as paralleltesting.demo:

How to do it...
In the Execution section of the Visual Studio Test task, check the option to Run1.
tests in parallel on multi-core machines:

Continuous Testing Chapter 5

[223]

In the Advanced execution options section, check the option to Automatically2.
determine the batch size and set the batch size to be applied Based on number
of tests and agents:

Save and trigger the build to execute the tests as per the settings in the Visual3.
Studio Test task.

Continuous Testing Chapter 5

[224]

How it works...
The Visual Studio Test task (version 2) is designed to work seamlessly with parallel job
settings. When a pipeline job that contains the Visual Studio Test task is configured to run
on multiple agents in parallel, it automatically detects that multiple agents are involved and
creates test slices that can be run in parallel across these agents. Furthermore, the task can
be configured to create test slices to suit different requirements such as batching based on
the number of tests and agents, the previous test running times, or the location of tests in
assemblies:

When the run parallel checkbox is checked, behind the scenes the maxcpucount value is set
to 0, which internally configures the Visual Studio Test task to enforce that the test
execution process isn't allocated affinity to just one CPU processor:

Continuous Testing Chapter 5

[225]

There's more...
The parallelism of test execution is offered by most test frameworks. All modern test
frameworks, such as MSTest v2, NUnit, xUnit, and others, provide the ability to run tests in
parallel. Typically, tests in an assembly are run in parallel. The Visual Studio test task
already supports the previously listed testing frameworks, therefore the options of parallel
execution and slicing based on the number of agents/tests and test assemblies is available to
all supported testing frameworks.

Running SpecFlow tests using Azure
Pipelines
SpecFlow is a testing framework that lets you define application behavior in plain,
meaningful English text using a simple grammar defined by a language called Gherkin.
SpecFlow is a very popular open source framework for Behavior-Driven Development
(BDD). SpecFlow democratizes testing to non-technical users by giving them a way of
defining tests using the business domain and functional language, which can then be
fleshed out as a functional test. In this recipe, we'll learn how SpecFlow tests can be
integrated to run in Azure Pipelines.

Getting ready
Create a new pipeline using the ASP.NET Core template. In this recipe, we'll be mostly
focusing on the Test task in this pipeline.

How to do it...
SpecFlow tests don't necessarily need the SpecRunner for execution: they can be run using
MSTestv2 or any other compatible framework. However, using SpecRunner provides great
benefits: for example, you can get some very useful analysis out of the tests that wouldn't
necessarily be available if you used other test execution frameworks. Luckily, using
SpecRunner for test execution doesn't require any installation on the agent!

Continuous Testing Chapter 5

[226]

The Visual Studio Test task supports triggering a test adapter as long as it can find the path
to the custom test adapter:

To allow the test task to find the custom test adapter, it's best to include the test1.
adapter as a NuGet package reference:

Since the custom test adapter is added as a NuGet package, it doesn't need to be2.
called out as a specific path reference in the test task in the Azure Pipeline:

Continuous Testing Chapter 5

[227]

If the packages are added correctly, in the Build summary for this step you'll be3.
able to see that the tests are executed using the SpecFlow+ Runner test adapter:

How it works...
When SpecFlow tests are executed in Visual Studio, an analysis report is generated by
SpecFlow:

Continuous Testing Chapter 5

[228]

If the Upload Attachment option is checked in the test task, the SpecFlow test execution
and analysis logs get attached to the test run results:

There's more...
By using the SpecFlow plus extension, available in the Azure DevOps Server marketplace
you can easily publish your spec tests as living documentation within Azure DevOps
Server. This can be achieved by using the SpecFlow+LivingDoc documentation (https:/ ​/
marketplace.​visualstudio. ​com/ ​items? ​itemName= ​techtalk. ​techtalk- ​specflow- ​plus)
extension in your Azure Pipeline:

https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus

Continuous Testing Chapter 5

[229]

Personally, I think the SpecFlow+LivingDoc is pretty rough and needs some more work,
but nonetheless, it provides great value even in its current state:

Analyzing test execution results from Runs
view
In Azure DevOps Server 19, test execution results of both manual and automated testing
are surfaced in the Runs page. The Runs page offers a unified experience for analyzing the
results of tests executed using any framework. In this recipe, we'll learn how to analyze and
action the test execution results in the Runs view in Team Web Portal.

Continuous Testing Chapter 5

[230]

Getting ready
Launch the Parts Unlimited team project, navigate to the Test Hub, and click on Runs to
load the Runs page.

How to do it...
The Runs page displays the recent test runs. At first glance, you can see the test execution
status, test configuration, build number, number of failed tests, and pass rate:

Navigate to the filters view by clicking the Filters tab. The query is defaulted to1.
display the test runs from the last seven days.
Amend and add new clauses to show only the automated test runs for today:2.

The query narrows down the test execution results to just one run:

Continuous Testing Chapter 5

[231]

Double-click on test run ID to open the test run for analysis. This view shows the3.
run summary along with charts to visualize the test results by properties, traits,
configuration, failures type, and resolution. Any attachments associated to the
test run are also available in this view:

Navigate to the Test results tab to see the list of all tests executed as part of this4.
test run. Prior to TFS 2015, you had to download the trx file and open it in
Visual Studio to get to this information. This view provides the next level of
detail; among other things, you can see the test execution duration and failure
error messages:

Select multiple tests and click on create a bug to create a bug type work item.5.

Continuous Testing Chapter 5

[232]

Click on Update analysis to add comments to the test results. You can also6.
double-click a test to go to the next level of detail on its test execution:

How it works...
This functionality gives you a unified test analysis experience irrespective of the framework
on which you choose to execute your tests. In summary, you can query all test runs
available in your Team Project, drill down into a specific test run to get a summary view of
that run, visualize test runs using charts, query/filter the test results within a run, drill
down to a specific test result, download attachments, and, last but not least, analyze test
failures and file bugs.

Exporting test artifacts and test results from
Test Hub
In Azure DevOps Server, test artifacts comprise test plans, test suites, test cases, and test
results. It is common to have to export the test artifacts for the purposes of sharing and
reporting. Back in the days of TFS 2013, Test Scribe delivered as a Visual Studio Extension
was the only way to export these artifacts. Test Hub now boasts the email or print test
artifacts functionality, which allows you to easily share test artifacts with stakeholders. The
feature is simple to use and can be triggered from several places within the Test Hub.

Continuous Testing Chapter 5

[233]

Getting ready
Launch the Parts Unlimited team project and navigate to the Test Hub.

How to do it...
Select the Test Plans and click on Email or print the test artifacts from the1.
toolbar:

You can export the artifacts from the root by selecting the top-level test
suite.

Whether you chose to export from test plan or test suite in both the cases,
you will get a new form to select 'what' and 'how', the 'what' in this case
being the artifacts, and the how being email or print. A few items are worth
highlighting in the following screenshot. The Latest test outcome option has
been added in Update 1; selecting this option also exports the test results.

Continuous Testing Chapter 5

[234]

Choosing Selected suite + children recursively exports all children of the 2.
selected suite:

How it works...
Clicking on print or email starts the process of generating the extract. This may take up to a
few seconds to complete, depending on the quantity and size of the artifacts being
exported. Once the export has been completed, a form will pop up to show you the preview
of the export. You can also edit and format the values from the preview form.

Continuous Testing Chapter 5

[235]

Since we had chosen the email option, the form has a field that allows us to choose the
email address of the person we would like the export to be sent out to:

As illustrated in the following screenshot, the export also includes the test steps:

Continuous Testing Chapter 5

[236]

There's more...
It is possible to customize the format of the export by modifying the underlying template
used by Azure DevOps Server during the export/print process. There are a few points to
keep in mind before customizing the template.

You should create a backup of the original template; for example, copy it and rename it
as TestSuite-Original.xsl. If not, when you upgrade Azure DevOps Server, the
changes you made in the TestSuite.xsl file may get overwritten. The export does not
support customization per project and the style changes will affect all projects in your
Azure DevOps Server instance.

Follow the steps listed here to add your company logo to the export:

Log on to the Team Foundation Server application tier and navigate to the1.
following path and add your company logo (companylogo.png) in this folder
path: C:\Program Files\Microsoft Team Foundation Server
14.0\Application Tier\Web
Services_tfs_resources\TestManagement\v1.0\Transforms\1033\Tes

tSuite.xsl.
Modify the TestSuite.xsl file in the <installation path>\Application2.
Tier\Web
Services_tfs_resources\TestManagement\v1.0\Transforms\<locale>

\TestSuite.xsl folder.
Open the TestSuite.xsl file in Notepad and add the following lines of code to3.
include your company logo into the export template:

<div style="align:center;">

</div>

The results of the customization can be tested by generating an export through the Test
Hub.

Continuous Testing Chapter 5

[237]

Charting testing status on the dashboard in
team portal
The charting tools in team portal provide a great way to analyze and visualize test case
execution. The charts created through the charting tools can be pinned to custom
dashboards. Both charts and dashboards are fantastic information radiators to share the test
execution results with team members and stakeholders. In this recipe, we'll learn how to
pin the test execution results on a custom dashboard in a team portal.

Getting ready
Follow the steps in the Configuring dashboards in Team Project recipe in Chapter 1, Planning
and Tracking Work, to create a custom dashboard for testing.

How to do it...
Navigate to the Test Hub in the Parts Unlimited team project. The Test plan page1.
gives you a list of test suites and a list of test cases for the selected suite. The
Charts tab gives you a great way to visualize this information.
Click on the + icon and select New test result charts.2.
Select a bar chart and Group by as Outcome: this renders the test case outcome3.
in the bar chart. Click OK to save the chart.
Right-click the newly created chart and pin the chart to the testing dashboard:4.

Continuous Testing Chapter 5

[238]

Now click on the + icon and select New test case chart. Test case chart types5.
support trend charts; the supported trend period is from seven days to up to 12
months.
Select the stacked area chart type and choose to stack by State. This will allow6.
you to visualize the state of the test cases over time.
Click OK to save the chart. Right-click the chart and pin to the dashboard:7.

How it works...
The charts are calculated using the Work Item data. When Work Items are updated, the
charts reflect the updates immediately. To learn more about the charting functionality in a
team web portal, refer to the walk-through here: http:/ ​/ ​bit.​ly/ ​1PGP8CU.

http://bit.ly/1PGP8CU
http://bit.ly/1PGP8CU
http://bit.ly/1PGP8CU
http://bit.ly/1PGP8CU
http://bit.ly/1PGP8CU
http://bit.ly/1PGP8CU
http://bit.ly/1PGP8CU
http://bit.ly/1PGP8CU
http://bit.ly/1PGP8CU

6
Continuous Deployments

Continuous Deployment is the practice of teams to continuously deploy tested and
working software to production. The release pipeline of Azure DevOps Server is just an
orchestrator of the activities you do on an environment to get your software deployed and
running. Another key technique of continuous deployments is the consistency of
deployment steps - meaning you follow the same deployment steps across all your
deployment environments. The advantage is repeatability, reliability - thus improving
your overall delivery so that you release software to production sooner and consistently.

In this chapter, we will see different ways to deploy various types of resources using
continuous deployment strategy. Not only will we see how to deploy applications, but will
also see how to provision infrastructure so that we eventually achieve repeatable and
reliable deployments of our software.

We will cover the following recipes:

Deploying the database to Azure SQL using the release pipeline
Consuming secrets from Azure Key Vault in your release pipeline
Deploying the .NET Core web application to Azure App Service
Deploying an Azure function to Azure
Publishing secrets to Azure Key Vault
Deploying a static website on Azure Storage
Deploying a VM to Azure DevTest Labs

Deploying the database to Azure SQL using
the release pipeline
Databases are an integral part of any application and should be part of your DevOps
process, which means integrating changes continuously using source control and delivering
every change to the environment.

Continuous Deployments Chapter 6

[240]

However, most organizations still have a legacy way of deploying databases. Developers
still have code stored procedures and commit to the source control, but when it comes to
the deployment, a detailed release notes document is prepared on how the database has to
be provisioned and handed over to the DBAs.

In this recipe, we will see how we can build a process to consistently develop and deploy
the database to Azure SQLDB.

Getting ready
For this recipe, I am using a sample database called AdventureWorks, published by
Microsoft. If you do not have this database already, Microsoft makes the backup file
available for download on GitHub here: http:/ ​/​bit. ​ly/ ​2GNpvSo. Go ahead and download
the database as per your SQL Server version. Since I have SQL Server 2017 Express on my
machine, I downloaded the AdeventureWorks2017.bak file and then restored the
database from the backup. Microsoft has instructions on restoring the database, which is
documented here: http:/ ​/​bit. ​ly/ ​2GKK8hT. Once you restore you should see the database
in SQL Server Management Studio shown as follows:

http://bit.ly/2GNpvSo
http://bit.ly/2GNpvSo
http://bit.ly/2GNpvSo
http://bit.ly/2GNpvSo
http://bit.ly/2GNpvSo
http://bit.ly/2GNpvSo
http://bit.ly/2GNpvSo
http://bit.ly/2GNpvSo
http://bit.ly/2GNpvSo
http://bit.ly/2GKK8hT
http://bit.ly/2GKK8hT
http://bit.ly/2GKK8hT
http://bit.ly/2GKK8hT
http://bit.ly/2GKK8hT
http://bit.ly/2GKK8hT
http://bit.ly/2GKK8hT
http://bit.ly/2GKK8hT
http://bit.ly/2GKK8hT

Continuous Deployments Chapter 6

[241]

Creating a database project and importing the database
First, we need to ensure that we have SQL Server Data Tools (SSDT) installed with our
Visual Studio version. This tool is available during Visual Studio installation with the data
storage and processing workload. It is also available as a standalone installer for Visual
Studio:

This development tool helps with database design, schema refactoring, and development of
database using Visual Studio. Developers can benefit from familiar Visual Studio tools for
database development with tools and assistance for code navigation, IntelliSense,
debugging, and a rich editor. More information about SSDT can be found in the Microsoft
documentation: http:/ ​/ ​bit. ​ly/ ​2tr5Bon.

Create a new database project, import our existing AdventureWorks database, and commit
it to the repository (for more information on how to do this, refer to http:/ ​/​bit. ​ly/
2tBia0j):

http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tBia0j
http://bit.ly/2tBia0j
http://bit.ly/2tBia0j
http://bit.ly/2tBia0j
http://bit.ly/2tBia0j
http://bit.ly/2tBia0j
http://bit.ly/2tBia0j
http://bit.ly/2tBia0j

Continuous Deployments Chapter 6

[242]

Since we are going to be deploying to Azure SQL Database, I have changed the Target
platform under Project Settings:

Continuous Deployments Chapter 6

[243]

Right click on the project and then import the database. I have then committed the code
(project) in my repository, as shown in the following screenshot:

Creating a build definition
Next, we will create a quick build pipeline and produce a dacpac package for this
database. A database package is a deployable package from your version-controlled
database project. You can read more about it at http:/ ​/​bit. ​ly/ ​2tr5Bon.

http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon
http://bit.ly/2tr5Bon

Continuous Deployments Chapter 6

[244]

We will add the new YAML-based pipeline, so add a new file named azure-
pipelines.yml in the repository and add the following content:

The YAML file used in this recipe is available in the Chapter directory
under RCP01-Database-CD folder

resources:
- repo: self
queue:
name: Default
demands:
- msbuild
- visualstudio

steps:
- task: VSBuild@1
displayName: 'Build solution AdventureWorks2017.sln'
inputs:
solution: AdventureWorks2017.sln
msbuildArgs: '/p:CmdLineInMemoryStorage=True'
platform: 'any cpu'
configuration: release

- task: CopyFiles@2
displayName: 'Copy Files to: $(Build.ArtifactStagingDirectory)'
inputs:
SourceFolder: '$(Agent.BuildDirectory)'
Contents: '***.dacpac'
TargetFolder: '$(Build.ArtifactStagingDirectory)'
flattenFolders: true

- task: PublishBuildArtifacts@1
displayName: 'Publish Artifact: databases'
inputs:
ArtifactName: databases

We have three simple tasks here under the steps element:

We build AdeventureWorks2017.sln, which produces the .dacpac file, which
is a packaged version of our database
In the next task, we search for the .dacpac file in the build directory and copy
only that file into our artifact-staging directory
Lastly, we publish it as an artifact

Continuous Deployments Chapter 6

[245]

Next, go to the Builds hub under the Pipelines service and click New build pipeline:

On the next screen, select the correct repository and branch and click Continue:

Continuous Deployments Chapter 6

[246]

On the next screen, select the YAML template and click Apply:

You will be prompted to select the YAML file you committed earlier on the next screen.
Select the file and under the Triggers tab, enable Continuous Integration. Save & queue the
pipeline:

Continuous Deployments Chapter 6

[247]

The build will run and produce the .dacpac file, which we will use as the artifact of this
build. Now, you have a full continuous integration pipeline so that every time there are any
commits in the database project, the build is triggered and the database project is compiled
to check your SQL scripts for errors and also verify the schema changes:

How to do it...
Now that we have our build pipeline producing the required artifact, it is time for us to
start working on the deployment of this database in Azure. the time of writing, to deploy
our existing database, we need to ensure that we have SQL Server provisioned. We could
manually create the required SQL Server, but this means we have a manual activity during
deployment. The correct solution would be to automate the provisioning of SQL Server as
part of the pipeline. This means that even if the required resources are not present, our
pipeline will ensure the integrity of the system and create the missing resources (in this
case, SQL Server) and then deploy our database. We will be using Azure Resource
Manager (ARM) templates to provision SQL Server in Azure. In simple terms, Azure
Resource Manager templates can be used to consistently create/update resources in Azure.

Continuous Deployments Chapter 6

[248]

For more information on Azure Resource Manager, visit http:/ ​/​bit. ​ly/
2FiNtn2.

As part of the release pipeline, we would like to automate the following:

The creation of Azure SQL server, if it doesn't exist
The deployment of the database using the dacpac we produced

Creating Azure Resource Manager (ARM) templates
Azure Resource manager templates are simple JSON files that can be used to deploy one or
many resources at once. A bare-minimum ARM template is made up of the following
structure:

We will create an ARM template to provision the SQL Server on Azure:

Using your favorite editor, create a file named sql.deploy.json 1.

The ARM templates used here are available under RCP01-Database-
CD folder.

Let's quickly go through what we are doing in the sql.deploy.json ARM
template. First, in the parameters section, we declared a few parameters:

{
 "$schema":
"https://schema.management.azure.com/schemas/2015-01-01/deploymentTempl
ate.json#",
 "contentVersion": "1.0.0.0",

http://bit.ly/2FiNtn2
http://bit.ly/2FiNtn2
http://bit.ly/2FiNtn2
http://bit.ly/2FiNtn2
http://bit.ly/2FiNtn2
http://bit.ly/2FiNtn2
http://bit.ly/2FiNtn2
http://bit.ly/2FiNtn2

Continuous Deployments Chapter 6

[249]

 "parameters": {
 "environmentConfiguration": {
 "type": "object"
 },
 "sqlserverAdminLogin": {
 "type": "string"
 },
 "sqlServerAdminPassword": {
 "type": "securestring"
 },
 //rest of the ARM template is trimmed for the sake of brevity
}

The key parameters are sqlserverAdminLogin and the
sqlServerAdminPassword. In the full ARM template, we also have a few
generic parameters for environment-specific values, SKU, and the pricing tier.
The values for these parameters can be passed during the deployment using a
parameters JSON file.

Next, we use the variables section to declare a few variables. We use variables
specifically to concatenate the server name with any prefixes. In this case, we
would like to prefix sqlserver-dev in the DEV environment and sqlserver-
test in the TEST environment, so that after variable processing our full SQL
Server name will be sqlserver-dev-1-<uniquestring>.

"variables": {
 "sqlServerName":
"[toLower(concat(parameters('environmentConfiguration').prefix.
sqlServer, '-1','-',uniqueString(resourceGroup().id)))]",
 "deployedAdventureWorksSqlDbName":
"[toLower(concat(parameters('environmentConfiguration').prefix.
sqlDb,'-', 'AdventureWorks'))]"
 },

The resources section defines SQL Server, which can be identified by the
Microsoft.Sql/servers type, and the Azure SQL database, which is a child
resource of the databases type.

 "resources": [
 {
 "name": "[variables('sqlServerName')]",
 "type": "Microsoft.Sql/servers",
 "location": "[resourceGroup().location]",
 "apiVersion": "2014-04-01-preview",
 "dependsOn": [],
 "properties": {

Continuous Deployments Chapter 6

[250]

 "administratorLogin":
"[parameters('sqlserverAdminLogin')]",
 "administratorLoginPassword":
"[parameters('sqlServerAdminPassword')]"
 },
 //rest of the ARM template is trimmed for the sake of
brevity
 }
]

Lastly, the outputs section defines the output variables. The values for these
variables are automatically set by the Azure Resource Manager and are available
for us to consume soon after the deployment of the template. As you can see in
the ARM template, we output the fully-qualified domain name of the SQL server
(for example: databasename.database.windows.net), database name so that
our pipeline can connect to the provisioned SQL Server and deploy the database.
We will see how our pipeline makes use of these output variables soon.

"outputs": {
 "sql.sqlserver.qualified.name": {
 "type": "string",
 "value":
"[reference(variables('sqlServerName')).fullyQualifiedDomainNam
e]"
 },
 "sql.sqlserver.name": {
 "type": "string",
 "value": "[variables('sqlServerName')]"
 },
 "sql.adventureworks.sqldb.name": {
 "type": "string",
 "value": "[variables('deployedAdventureWorksSqlDbName')]"
 }
 }

The next step is to create a parameters files so that we can supply values during
deployment. You can also pass these parameters directly as arguments during
deployment, but keeping them in a file and committed into source control ensures
that we have a full audit history. Also, as you will see soon, it's easy to supply a
path for these parameter files in the Azure DevOps Server pipeline.

Parameter files also allow us to define environment specific values. For example,
assume we have a requirement to deploy this database package to environments
named DEV first (with the requirement to suffix dev to our SQL Server), and then
to TEST (suffix test). Since the suffix is changing between environments, we will
be able to use two parameter files.

Continuous Deployments Chapter 6

[251]

Create a file named sql.deploy.param.dev.json and paste in the following2.
code. We will use this parameter file to deploy to the DEV stage:

{
 "$schema":
"https://schema.management.azure.com/schemas/2015-01-01/deploymentP
arameters.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "environmentConfiguration": {
 "value": {
 "prefix": {
 "sqlDb": "sqldb",
 "sqlServer": "sqlserver-dev"
 }
 }
 }
 }
}

Create a file named sql.deploy.param.test.json and paste in the following3.
code. We will use this to provision our TEST stage. As you can see, our prefix for
SQL Server is now sqlserver-test:

{
 "$schema":
"https://schema.management.azure.com/schemas/2015-01-01/deploymentP
arameters.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "environmentConfiguration": {
 "value": {
 "prefix": {
 "sqlDb": "sqldb",
 "sqlServer": "sqlserver-test"
 }
 }
 }
 }
}

Notice the change in sqlServer property. It has suffix dev in dev specific4.
parameter file and test in test stage-specific parameter file. Commit the files into
source control. I committed these to my repository on GitHub.

Continuous Deployments Chapter 6

[252]

Creating the release pipeline
Now that we have the build pipeline ready and producing the database as an artifact, we
are ready to consume it and deploy it to the environment.

Head over to the Release hub and create a new release pipeline. We will add two1.
artifact sources to this pipeline. Add the artifact that was produced by our build
pipeline:

Continuous Deployments Chapter 6

[253]

Add a second artifact, which will bring over our ARM templates from the2.
GitHub repository:

Continuous Deployments Chapter 6

[254]

Click + Add under the stages section and add a new stage; name it DEV:3.

Create two variables, which we will use to pass the SQL admin username and4.
password. Scope this variable to just the DEV stage so that we can use the
different password for higher stages (for example, TEST). We also mark the
variable password as secure (by clicking the lock icon) so that the password is
not visible in the logs or by anyone editing the pipeline at a later date:

Under the Pipelines tab, click on the 1 job... link and open the stage. We will5.
now add tasks in this stage to use the artifacts.

The first task we will add is the Azure Resource Group Deployment task and
configure it as follows. Notice (marked in red) that we are passing the sql admin
login and sqlpassword parameter values for ARM templates from the variables
we just declared:

Continuous Deployments Chapter 6

[255]

This step will just provision SQL Server and an empty database.

This task uses a service connection to securely connect to Azure. If you
have not created a service connection before, please refer to the
documentation.

1. Service connections for builds and releases: http:/ ​/​bit. ​ly/​2vcUCQe
2. Granular deployment Privileges using Service Principals: http:/ ​/ ​bit.
ly/​2vj0aZe

Let's use an extension from the VS Marketplace (more on this in Chapter 8, Azure6.
DevOps Extensions). This task is called ARM Outputs and it helps us create
dynamic Azure DevOps variables from the ARM template output. If you
remember, we have output variables defined in our ARM template to get SQL
Server and Database names.

http://bit.ly/2vcUCQe
http://bit.ly/2vcUCQe
http://bit.ly/2vcUCQe
http://bit.ly/2vcUCQe
http://bit.ly/2vcUCQe
http://bit.ly/2vcUCQe
http://bit.ly/2vcUCQe
http://bit.ly/2vcUCQe
http://bit.ly/2vcUCQe
http://bit.ly/2vj0aZe
http://bit.ly/2vj0aZe
http://bit.ly/2vj0aZe
http://bit.ly/2vj0aZe
http://bit.ly/2vj0aZe
http://bit.ly/2vj0aZe
http://bit.ly/2vj0aZe
http://bit.ly/2vj0aZe

Continuous Deployments Chapter 6

[256]

Once this task creates Azure DevOps pipeline variables, we will be able to use
them in the pipeline for any other task. Let's add the ARM Outputs task and
configure it as follows. Notice that we prefix our variables with
the arm.out. string, and so our pipeline variables will be created in the
following way: arm.out.sql.server.qualified.name:

This task needs to be added just under the Azure Resource Group Deployment
task.

You can download and install the ARM Outputs extension from here:
http:/ ​/ ​bit. ​ly/ ​2OBCTLh.

http://bit.ly/2OBCTLh
http://bit.ly/2OBCTLh
http://bit.ly/2OBCTLh
http://bit.ly/2OBCTLh
http://bit.ly/2OBCTLh
http://bit.ly/2OBCTLh
http://bit.ly/2OBCTLh
http://bit.ly/2OBCTLh
http://bit.ly/2OBCTLh

Continuous Deployments Chapter 6

[257]

Let's publish the database package (dacpac) to our provisioned SQL Server and7.
Azure SQL Database. We will add the Azure SQL Database Deployment task
and configure it as follows. For the SQL Server and Database name fields, we are
passing the variables that were created by the ARM Outputs task:

Continuous Deployments Chapter 6

[258]

Save the pipeline and create a release. Your release pipeline will now create all8.
the required resources and deploy the .dacpac file:

How it works...
In this recipe, we saw how easy it is to provision Azure resources (SQL Server and
database) and deploy them using Azure DevOps Server pipelines. We created a database
project using Visual Studio, which allows us to maintain our database (schema and scripts)
as code. We then created a build pipeline, which ensures that we are not introducing any
breaking changes by continuously building changes into our database code. Lastly, we
created the release pipeline and, using build artifacts and ARM templates, we provisioned
the necessary resources and deployed the database.

In the next recipe, we will extend this pipeline to deploy to a new stage, named TEST, and
see how we can make use of variable groups to consume secrets from Azure Key Vault.

Continuous Deployments Chapter 6

[259]

Consuming secrets from Azure Key Vault in
your release pipeline
This recipe is an extension of the previous recipe; if you haven't already read the previous
recipe, I recommend that you read it first.

In the previous recipe, we saw how to keep strings, such as passwords as pipeline variables
and how to mark them as secure variables so that they are not visible in the logs or to
anyone else editing the pipeline once saved. While it works really well, enterprises that are
deploying to the cloud would love to centrally manage and maintain these secrets in Azure
Key Vault.

You can read more about Azure Key Vaults here: http:/ ​/​bit. ​ly/
2OAslff.

Azure DevOps Server 2019 has native support for Azure Key Vault with variable groups.
With variable groups in Azure DevOps Server, we can bring secrets from Azure Key Vault.

Getting ready
As a first step, we will manually create an Azure key vault and store the SQL Admin
password as a single secret.

Creating a key vault in Azure
Go to portal.azure.com and then click on the Create a resource button. In the1.
next blade, search for Key Vault and then click Create.

http://bit.ly/2OAslff
http://bit.ly/2OAslff
http://bit.ly/2OAslff
http://bit.ly/2OAslff
http://bit.ly/2OAslff
http://bit.ly/2OAslff
http://bit.ly/2OAslff
http://bit.ly/2OAslff
http://portal.azure.com

Continuous Deployments Chapter 6

[260]

You will see Create key vault blade as in the following screenshot. Enter the
details, such as key vault name, location, and pricing tier, and then click Create:

Continuous Deployments Chapter 6

[261]

You will have a key vault created now.

Open the key vault, Click on + Generate/Import. Then provide a name for the 2.
secret and then SQL password you would like to use as a value for the secret

I have named the secret sqlpassword.

Continuous Deployments Chapter 6

[262]

Creating a variable group and linking it to Azure Key
Vault
Variable groups are defined and managed from the Library tab under the Pipelines tab.
The advantage of a variable group is that you can make a set of variables available across
the pipeline:

Continuous Deployments Chapter 6

[263]

Click on the + Variable group button; you will be presented with a screen asking1.
for more information:

Continuous Deployments Chapter 6

[264]

Give a name to the variable group, enable the Link secrets from an Azure key2.
vault as variables flag option, and select the subscription and the key vault from
the dropdown:

Continuous Deployments Chapter 6

[265]

However, Azure DevOps will immediately give you an error. This is because the
service principal (SPN) we are using from Azure DevOps to connect to Azure
does not have permission to connect to the key vault. We will be able to solve this
error by adding our SPN to the key vault's access policies.

Open the key vault to add the SPN that is used by Azure DevOps and click OK:3.

Continuous Deployments Chapter 6

[266]

Go back to Azure DevOps Server and refresh the key vault name field; an error4.
should appear. Click + Add and a pop-up dialog will open to show all the
available secrets. Select the secrets you would like to be available as part of the
variable group and click OK:

Continuous Deployments Chapter 6

[267]

Click Save on the library:5.

Congratulations, you just created a variable group, which is now available to be consumed
in the pipeline! In the next section, we will see how we can use this variable group in the
release pipeline.

Continuous Deployments Chapter 6

[268]

How to do it...
Go back to the release pipeline we created in the previous (Deploying the database1.
to Azure SQL using release pipeline) recipe and enter the edit mode. Then, click the
Variables tab. You might remember that we have a secret defined as a pipeline
variable:

Because we will bring new value from the key vault via the variable group we2.
defined earlier, we need to remove the pipeline variable, sqlpassword. Once
done, click the Variable groups tab, then click the Link variable group button.
You will see a new overlay window:

Continuous Deployments Chapter 6

[269]

Select the variable group we defined and scope it to the DEV stage so that this3.
variable is only allowed in the DEV stage, and then click the Link button.

Scoping the variable group to a particular stage has an advantage in that it
allows us to use the secrets only for that particular stage. This allows us to
define multiple variable groups (internally associated with different key
vaults) and isolate the secrets to a particular stage. We can thus isolate
secrets for different stages, such as PROD and DEV. This means that you
will have granular control of your secrets – for example, you can allow
your developers to read/modify secrets from the key vault that's used for
the DEV stage, but limit access to the PROD key vault and the
management of its secrets.

Continuous Deployments Chapter 6

[270]

How it works...
Azure DevOps Server now intelligently brings in the latest values of the secret from the
Azure key vault during runtime and passes them to the referenced task over the HTTPS
channel. Each secret in the key vault is automatically created as a secret pipeline variable,
which you can reference in our pipeline tasks like any other pipeline variables using the
usual syntax (%VARIABLE_NAME% in a batch script, $env:VARIABLE_NAME in PowerShell, or
$VARIABLE_NAME in bash scripts):

There's more...
Here are a few key facts about the variable group:

Any changes to the secret values are automatically available during the run of
the pipeline.
Newly added secrets in the key vault are not automatically available in the
pipeline. We will need to add them to the variable group.
Deleting a variable group or removing the key-vault-linked secret from the
variable will not remove the secret from the key vault.
The variable group currently supports Azure key vault secrets only –
cryptographic keys or the certificates are not supported.

See also
All the assets (variable groups and secure files) defined in the Library tab share the same
security model. You can restrict who can create the variable group or the Library using
permissions - For more on this is visit http:/ ​/​bit. ​ly/ ​2uPLWPp.

http://bit.ly/2uPLWPp
http://bit.ly/2uPLWPp
http://bit.ly/2uPLWPp
http://bit.ly/2uPLWPp
http://bit.ly/2uPLWPp
http://bit.ly/2uPLWPp
http://bit.ly/2uPLWPp
http://bit.ly/2uPLWPp
http://bit.ly/2uPLWPp

Continuous Deployments Chapter 6

[271]

Deploying the .NET Core web application to
the Azure App Service
More and more users are switching to the .NET core framework these days. ASP.NET Core
is a cross-platform framework for building modern applications. It offers many advantages
over the traditional ASP.NET with many out-of-the-box features, such as dependency
injection, which is suited for containers and those who want high performance.

For more on ASP.NET Core and its benefits, visit http:/ ​/​bit. ​ly/​2P0vMfn.

In this recipe, we will create a simple ASP.NET Core web app and deploy it into Azure App
Service.

Getting ready
Here, we will just use the dotnet command to create the basic ASP.NET core application
and commit it into the git repository. Then, we will create a new build pipeline to build the
application and produce the artifact.

Creating the ASP.NET Core application
Ensure that you have the latest .NET Core SDK installed. If not, install the 1.
recommended version from https:/ ​/ ​dotnet. ​microsoft. ​com/ ​download/ ​dotnet-
core.

You can see the installed SDKs on your machine by using the following
command.

c:\aspnetcore-demo>dotnet --list-sdks
2.1.202 [C:\Program Files\dotnet\sdk]
2.1.505 [C:\Program Files\dotnet\sdk]
2.1.602 [C:\Program Files\dotnet\sdk]
2.2.105 [C:\Program Files\dotnet\sdk]

For this demo, I am using 2.2 .NET Core.

http://bit.ly/2P0vMfn
http://bit.ly/2P0vMfn
http://bit.ly/2P0vMfn
http://bit.ly/2P0vMfn
http://bit.ly/2P0vMfn
http://bit.ly/2P0vMfn
http://bit.ly/2P0vMfn
http://bit.ly/2P0vMfn
http://bit.ly/2P0vMfn
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core

Continuous Deployments Chapter 6

[272]

Open the Command Prompt and run the following command to create an2.
ASP.NET Core MVC application:

c:\aspnetcore-demo>dotnet new mvc --name MyWebsite --auth None
--no-https
The template "ASP.NET Core Web App (Model-View-Controller)" was
created successfully.
This template contains technologies from parties other than
Microsoft, see https://aka.ms/aspnetcore-template-3pn-210 for
details.

Processing post-creation actions...
Running 'dotnet restore' on MyWebsite\MyWebsite.csproj...
 Restoring packages for c:\aspnetcore-
demo\MyWebsite\MyWebsite.csproj...
 Generating MSBuild file c:\aspnetcore-
demo\MyWebsite\obj\MyWebsite.csproj.nuget.g.props.
 Generating MSBuild file c:\aspnetcore-
demo\MyWebsite\obj\MyWebsite.csproj.nuget.g.targets.
 Restore completed in 4.09 sec for c:\aspnetcore-
demo\MyWebsite\MyWebsite.csproj.

Restore succeeded.

We are supplying the name for our application as MyWebsite, using no
authentication with the --auth None argument. For simplicity we will not host
this website on https, hence pass the --no-https flag.

As you can see from the command output, the dotnet command creates an
ASP.NET Core MVC application and restores all the NuGet packages.

Run the website using the following command:3.

c:\aspnetcore-demo>dotnet run -p MyWebsite\MyWebsite.csproj
info:
Microsoft.AspNetCore.DataProtection.KeyManagement.XmlKeyManager
[0]
 User profile is available. Using
'C:\Users\utkarsh\AppData\Local\ASP.NET\DataProtection-Keys' as
key repository and Windows DPAPI to encrypt keys at rest.
Hosting environment: Development
Content root path: c:\aspnetcore-demo\MyWebsite
Now listening on: http://localhost:5000
Application started. Press Ctrl+C to shut down.

Continuous Deployments Chapter 6

[273]

As you can see, our website is now running locally at http://localhost:5000:

Creating the build pipeline and producing the artifact was covered in Chapter 4,4.
Continuous Integration and Build Automation. If you have not checked it already,
read the Setting up a build pipeline for a .NET core application recipe.

The YAML file for the build is in the relevant chapter folder under RCP03-
ASPNETCore-CD directory. If you would like to know how to build using
YAML file refer recipe Deploying the database to Azure SQL using the release
pipeline in this chapter.

Continuous Deployments Chapter 6

[274]

How to do it...
As we did in our first recipe, Deploying the database to Azure SQL using the release pipeline, we
will also create the required infrastructure for our website using the release pipeline. To
host our website in Azure, we need two things:

An app service plan: Within Azure, an application runs inside the app service
plan
An app service: To host the website

For more information on the app service plan, visit http:/ ​/​bit.
ly/ ​2Pa9nwj

For more information on Azure App Service, visit http:/ ​/​bit.
ly/ ​2PbfKzp

Creating ARM templates
Let's create an ARM template that will create an app service plan and an empty app service:

Create a resource, web.deploy.json, and paste in the following content:1.

All the ARM templates referenced here are available under RCP03-
ASPNETCore-CD folder

 The important section is the resources array – you will see that in this ARM
template, we are creating our app service plan and app service. We are also
creating a slot named staging so that we can test our website before deploying it
to the production slot (which is the default).

{
 "$schema":
"https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.
json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 //code is trimmed for the sake of brevity
 },
 "variables": {
 "webAppServicePlanName":
"[concat(parameters('environmentConfiguration').prefix.appServiceWeb)]",

http://bit.ly/2Pa9nwj
http://bit.ly/2Pa9nwj
http://bit.ly/2Pa9nwj
http://bit.ly/2Pa9nwj
http://bit.ly/2Pa9nwj
http://bit.ly/2Pa9nwj
http://bit.ly/2Pa9nwj
http://bit.ly/2Pa9nwj
http://bit.ly/2PbfKzp
http://bit.ly/2PbfKzp
http://bit.ly/2PbfKzp
http://bit.ly/2PbfKzp
http://bit.ly/2PbfKzp
http://bit.ly/2PbfKzp
http://bit.ly/2PbfKzp
http://bit.ly/2PbfKzp

Continuous Deployments Chapter 6

[275]

 "deployedWebAppName":
"[concat(parameters('environmentConfiguration').prefix.webApp, '-',
'mywebapp','-',uniqueString(resourceGroup().id))]",
 "myWebAppResourceId": "[resourceId('Microsoft.Web/Sites',
variables('deployedWebAppName'))]"
 },
 "resources": [
 //code is trimmed for the sake of brevity
 {
 "name": "[variables('deployedWebAppName')]",
 "apiVersion": "2016-08-01",
 "type": "Microsoft.Web/sites",
 "location": "[resourceGroup().location]",
 //code is trimmed for the sake of brevity
 },
 {
 "apiVersion": "2016-08-01",
 "type": "Microsoft.Web/sites/slots",
 "name": "[concat(variables('deployedWebAppName'), '/',
parameters('deploymentSlots')[copyIndex()])]",
 "kind": "app",
 //code is trimmed for the sake of brevity
 }
],

Finally, we are publishing the deployed web application name, and its URL as
an output variable as you can see in the outputs object.

"outputs": {
 "my.webapp.name": {
 "type": "string",
 "value": "[variables('deployedWebAppName')]"
 },
 "my.webapp.uri": {
 "type": "string",
 "value":
"[concat('https://',reference(variables('myWebAppResourceId')).hostnames[0]
)]"
 }
 }

Continuous Deployments Chapter 6

[276]

For more on deployment slots in Azure App Service, visit http:/ ​/​bit. ​ly/
2v4zhs0.

We will also have a parameters file, which will allow us to override a few values,
such as the web app prefix and SKU.

Create a parameter file named web.deploy.parameters.json and paste in the2.
following content:

{
 "$schema":
"https://schema.management.azure.com/schemas/2015-01-01/deploym
entParameters.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "environmentConfiguration": {
 "value": {
 "prefix": {
 "appServiceWeb": "web-asp",
 "webApp": "webapp"
 }
 }
 },
 "appServiceSkuName": {
 "value": "S1"
 },
 "appServiceSkuCapacity": {
 "value": 1
 }
 }
}

Commit the ARM templates and let's continue configuring the release pipeline.3.

http://bit.ly/2v4zhs0
http://bit.ly/2v4zhs0
http://bit.ly/2v4zhs0
http://bit.ly/2v4zhs0
http://bit.ly/2v4zhs0
http://bit.ly/2v4zhs0
http://bit.ly/2v4zhs0
http://bit.ly/2v4zhs0

Continuous Deployments Chapter 6

[277]

Creating the release pipeline
Let's start building the release pipeline to deploy the application:

The first step is to create a new release pipeline and add the build artifact. To do1.
that, Go to the release hub and create a New Release Pipeline and add the artifact.

As you can see from the preceding screenshot, we are linking the build pipeline,
which produces the deployable artifact for this release pipeline. Just for
demonstration purposes, we are also setting the default version as Specify at the
time of release creation, which means during the release creation, we will have to
select the version of the artifact to be deployed we want to use.

Continuous Deployments Chapter 6

[278]

Add both the web-deployable package and ARM templates as two artifacts to the2.
release:

Click on the stage and add the following tasks:3.
Azure resource group deployment task: To deploy the ARM
templates and create all the required Azure resources
ARM outputs: To get the output variables from the previous task and
create the pipeline variables

Continuous Deployments Chapter 6

[279]

Azure App Service Deploy: This task will help us copy the deployable
package to the app service we created in the first step:

For the first task, we are providing a path to our ARM template and parameters
file:

Continuous Deployments Chapter 6

[280]

Use the ARM Outputs task by Kees Schollart (https:/ ​/​marketplace.4.
visualstudio. ​com/ ​items? ​itemName= ​keesschollaart. ​arm-​outputs) to create
pipeline variables for each output variable from the ARM template. I am just
prefixing our pipeline variables with the arm.out. string.
Add the Azure App Service Deployment task and configure it as follows:5.

Notice that we are deploying it to the staging slot. This allows us to test our
deployment in a different slot than the default production slot.

Save the release definition and trigger the release.6.

https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs

Continuous Deployments Chapter 6

[281]

How it works...
Once you create the release, the deployment will start. The first step in the pipeline will first
create an App Service Plan and other resources (slots for example) specified in the ARM
template. The next step is to create the pipeline variables using the ARM Outputs task so
that we can access the app service name we created in the previous task. Finally, we are
using the Azure App Service Deployment task to deploy the application to the staging slot.
We can then browse to the staging slot to see our website up and running:

There's more...
In this recipe, we saw how we could deploy a web application from no infrastructure to a
fully-hosted website in Azure using Azure DevOps Server 2019. We also saw how
deployment slots allow us to isolate our deployments. We could extend this pipeline with
more stages, such as DEV, TEST, and PROD. We can then use slots to isolate and open the
new version of the website to only specific teams (say testing team) before swapping it with
the production slot.

Continuous Deployments Chapter 6

[282]

More information about deployment slots and management can be found at https:/ ​/​docs.
microsoft.​com/​en- ​us/ ​azure/ ​app- ​service/ ​deploy- ​staging- ​slots.

See also
Check out the following resources:

Considerations on using Deployment Slots in your DevOps pipeline: http:/ ​/
bit.​ly/ ​2P95vM5

App Service Plans: http:/ ​/​bit. ​ly/​2P905R1

Deploying an Azure Function to Azure
Azure Functions are a new way to run your logic on a serverless technology in the cloud.
Azure functions are hugely popular mainly because they can be cheaper compared to app
service - as you have an option to pay only for the time spent running your code.

Azure Functions documentation: http:/ ​/​bit. ​ly/​2Pb36jP

Serverless in Azure: https:/ ​/​azure. ​microsoft. ​com/​en- ​us/
solutions/ ​serverless/ ​

In this recipe, we will look at how to create an Azure Function in TypeScript and then we
will look at how to deploy a sample Azure Function to Azure.

Getting ready
To create the Azure Function, you will need the following tools installed on your machine.
Go ahead and install them all.

VSCode: https:/ ​/​code. ​visualstudio. ​com/ ​

Azure Functions Extension for VS Code: http:/ ​/​bit. ​ly/​2Pd9OGk

NodeJS 8.0 and above: https:/ ​/​nodejs. ​org/ ​en/ ​

PostMan: https:/ ​/​www. ​getpostman. ​com/ ​

https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
http://bit.ly/2P95vM5
http://bit.ly/2P95vM5
http://bit.ly/2P95vM5
http://bit.ly/2P95vM5
http://bit.ly/2P95vM5
http://bit.ly/2P95vM5
http://bit.ly/2P95vM5
http://bit.ly/2P95vM5
http://bit.ly/2P905R1
http://bit.ly/2P905R1
http://bit.ly/2P905R1
http://bit.ly/2P905R1
http://bit.ly/2P905R1
http://bit.ly/2P905R1
http://bit.ly/2P905R1
http://bit.ly/2P905R1
http://bit.ly/2P905R1
http://bit.ly/2Pb36jP
http://bit.ly/2Pb36jP
http://bit.ly/2Pb36jP
http://bit.ly/2Pb36jP
http://bit.ly/2Pb36jP
http://bit.ly/2Pb36jP
http://bit.ly/2Pb36jP
http://bit.ly/2Pb36jP
http://bit.ly/2Pb36jP
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
http://bit.ly/2Pd9OGk
http://bit.ly/2Pd9OGk
http://bit.ly/2Pd9OGk
http://bit.ly/2Pd9OGk
http://bit.ly/2Pd9OGk
http://bit.ly/2Pd9OGk
http://bit.ly/2Pd9OGk
http://bit.ly/2Pd9OGk
http://bit.ly/2Pd9OGk
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/

Continuous Deployments Chapter 6

[283]

Creating a sample Azure Function
Once you install all the tools mentioned in the Getting ready section above,

Open Visual Studio Code, press F1, select Azure Functions: Create New Project,1.
and then select Browse and select a folder to create the required files using the
wizard:

Continuous Deployments Chapter 6

[284]

You will be prompted to select the language for the function. For this demo, we2.
are going to select TypeScript:

After that, you will be prompted to select the trigger for the Function. For more
information on Azure Function triggers, check out http:/ ​/​bit. ​ly/​2Pi0Yal.

For this demo, select HTTP trigger, which lets us invoke this function for an3.
HTTP request (GET or POST):

http://bit.ly/2Pi0Yal
http://bit.ly/2Pi0Yal
http://bit.ly/2Pi0Yal
http://bit.ly/2Pi0Yal
http://bit.ly/2Pi0Yal
http://bit.ly/2Pi0Yal
http://bit.ly/2Pi0Yal
http://bit.ly/2Pi0Yal
http://bit.ly/2Pi0Yal

Continuous Deployments Chapter 6

[285]

The wizard prompts us to give a name to the function. I named it HelloWorld:4.

The wizard prompts us for the Authorization type; for demonstration purposes,5.
we will select Anonymous:

You should now have the following folder structure:

Continuous Deployments Chapter 6

[286]

Browse to this folder and run npm install. This will install all the required6.
packages. Then, run npm start to build the function and run the function
locally:

We can now open any REST client (I am using Postman) to check whether we get
the right response:

As you can see, our function is running locally and we can make an HTTP request to get the
desired response. Let's commit it to the source control and produce the output as an
artifact.

Continuous Deployments Chapter 6

[287]

The source code for Azure Function is in the GitHub repository under
RCP04-AzureFunction-CD folder.

Creating the build pipeline
Creating the build pipeline is similar to what we did previously in Deploying the database to
Azure SQL using the release pipeline recipe. This is a typescript project, and we have a few
scripts in our scripts section in our package.json. The following is the YAML file for our
build pipeline. As you can see, this is just made up of three tasks:

Install the dependencies
Build the project
Publish the artifacts

These 3 steps are under steps section in the below YAML content.

The YAML file is under relevant chapter folder under RCP04-
AzureFunctions-CD directory in the code bundle.

resources:
- repo: self
queue:
 name: Default
 demands: npm

trigger: none

steps:
- task: Npm@1
 displayName: 'npm install'
 inputs:
 workingDir: '$(build.sourcesdirectory)/continuous-deployments/rcp-
deploy-az-function/Function'
 verbose: false

- task: Npm@1
 displayName: 'install func cli'
 inputs:
 command: custom
 workingDir: '$(build.sourcesdirectory)/continuous-deployments/rcp-

Continuous Deployments Chapter 6

[288]

deploy-az-function/Function'
 verbose: false
 customCommand: 'install -g azure-functions-core-tools --unsafe-perm
true'

- task: Npm@1
 displayName: 'npm build:production'
 inputs:
 command: custom
 workingDir: '$(build.sourcesdirectory)/continuous-deployments/rcp-
deploy-az-function/Function'
 verbose: false
 customCommand: 'run build:production'

- task: CopyFiles@2
 displayName: 'Copy Files to: $(Build.ArtifactStagingDirectory)'
 inputs:
 SourceFolder: '$(build.sourcesdirectory)/continuous-deployments/rcp-
deploy-az-function/Function'
 Contents: |
 dist/**
 HelloWorld/**
 node_modules/**
 bin/**
 TargetFolder: '$(Build.ArtifactStagingDirectory)'

- task: PublishBuildArtifacts@1
 displayName: 'Publish Artifact: drop'

Once the project has been built, we should see our Azure Function as a deployable artifact:

Continuous Deployments Chapter 6

[289]

How to do it...
Now that our artifacts are all exactly how we want them to be, we can start building the
release pipeline. Like we did in the previous recipes, we need to create the Azure Function
app using ARM template and then deploy our function code in to the created Azure
Function app. For this, we need to create an ARM template to provision the Azure Function
app. As we mentioned previously, the Azure Functions provide cost benefits (you pay only
for the time your code runs) over traditional websites, which require a full web server. For
this purpose, Azure Functions has two kinds of pricing plans (which you can learn more
about at https:/​/​docs. ​microsoft. ​com/ ​en-​us/​azure/ ​azure- ​functions/ ​functions-
overview):

Consumption plan: When your function runs, Azure provides all of the
necessary computational resources. You don't have to worry about resource
management, and you only pay for the time that your code runs.
App Service plan: Run your functions just like your web apps. When you are
already using App Service for your other applications, you can run your
functions on the same plan at no additional cost.

 For this example, we are going to use the Consumption plan to ensure that we pay only for
the time our function runs.

Creating the ARM template
Create a JSON file called function.deploy.json and copy the contents from1.
the ARM template provided in the code bundle.

The complete ARM template used in the recipe is available in the code
bundle under RCP04-AzureFunction-CD folder with file named
function.deploy.json

Notice the resources section. The first resource is the app service plan. We are
setting computeMode as Dynamic, this ensures we are using the consumption
plan. The second resource creates an Azure Function app resource.

 "resources": [
 {
 "type": "Microsoft.Web/serverfarms",
 "apiVersion": "2015-04-01",
 "name": "[variables('appAppServicePlanName')]",
 "location": "[resourceGroup().location]",

https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview

Continuous Deployments Chapter 6

[290]

 "properties": {
 "name": "[variables('appAppServicePlanName')]",
 "computeMode": "Dynamic",
 "sku": "Dynamic"
 }
 },
 {
 "name": "[variables('deployedFunctionAppName')]",
 "type": "Microsoft.Web/sites",
 "location": "[resourceGroup().location]",
 "kind": "functionapp",
 "apiVersion": "2016-08-01",
 "identity": {
 "type": "systemAssigned"
 },
 "dependsOn": [
 "[resourceId('Microsoft.Web/serverfarms',
variables('appAppServicePlanName'))]",
 "[resourceId('Microsoft.Storage/storageAccounts',
variables('storageAccountName'))]"
],
//code removed for the sake of brevity

As we create the resource, we are also setting a few necessary application settings.
The last resource in the resources section creates a storage account, which is
required for the function app.

Finally, we output the function app name after deployment is successful so that
we can deploy the function code into this application.

"outputs": {
 "helloworld.fnc.name": {
 "type": "string",
 "value": "[variables('deployedFunctionAppName')]"
 }
 }

Create the parameter file and save it as function.deploy.parameters.json:2.

{
 "$schema":
"https://schema.management.azure.com/schemas/2015-01-01/deploym
entParameters.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "environmentConfiguration": {
 "value": {
 "prefix": {

Continuous Deployments Chapter 6

[291]

 "functionApp": "helloworld-fnc",
 "appServiceApp": "helloworld-fnc-asp",
 "storageAccount": "helloworld",
 "storageAccountconnection": ""
 },
 "appTierSettings": {
 "storageAccountTypeForFunctionApp":
"Standard_LRS"
 }
 }
 }
 }
}

Commit both of the files to the source control.3.

To create the release pipeline, we follow the same steps that are followed in the
previous recipes in this chapter. Go to the Release page and create a new release
pipeline. Add the arm template as an artifact. Add tasks to the pipeline to deploy
the ARM templates, as we did in previous Deploying .NET Core web
application recipe. These steps create the Azure Function application and then
output the function name.

Continuous Deployments Chapter 6

[292]

Publish the function package to the created Azure Function application:4.

How it works...
In this recipe, we saw how to build a simple Azure Function and produce the artifacts in
the build pipeline. We then saw how to create the Azure Function application using ARM
templates. The release pipeline creates the required resources in Azure and then deploys
our function into the provisioned function app. If you go to the portal and browse the
resource group, you will see three resources created:

Continuous Deployments Chapter 6

[293]

Open the function app and you should see our HelloWorld function:

Click on the Get function URL and you should be able to get the complete URL of the
function. Make the REST call to the function to verify that it works:

Continuous Deployments Chapter 6

[294]

See also
Here are some helpful links regarding what we covered in this recipe:

Automating resource deployment for your function app in Azure
Functions: http:/ ​/ ​bit. ​ly/ ​2v93DcU

Durable functions: http:/ ​/​bit. ​ly/​2vakoo1

Provisioning a function app on a Consumption plan (ARM templates): http:/ ​/
bit.​ly/ ​2v7f1pN

Creating serverless applications: http:/ ​/​bit. ​ly/ ​2v5wD5t

Publishing secrets to Azure Key Vault
Applications contain many secrets, such as connection strings, passwords, certificates, and
tokens, which, if leaked to unauthorized users, can lead to a severe security breach. This
can also result in serious damage to the reputation of the organization and can cause
compliance issues.

Azure Key Vault allows you to manage your organization's secrets and certificates in a
centralized repository. The secrets and keys are further protected by Hardware Security
Modules (HSMs). It also provides versioning of secrets, full traceability, and efficient
permission management with access policies.

For more information on Azure Key Vault, visit https:/ ​/​docs.
microsoft. ​com/ ​en- ​us/ ​azure/ ​key-​vault/ ​key-​vault- ​overview.

In this recipe, we will see how we can automatically publish secrets in our pipeline so that
secret management is automated.

Getting ready
For this recipe, we are assuming you already have a key vault in the Azure portal. If you
don't, please refer to the Creating a key vault in Azure section in the Consuming secrets from
Azure Key Vault in your release pipeline recipe.

http://bit.ly/2v93DcU
http://bit.ly/2v93DcU
http://bit.ly/2v93DcU
http://bit.ly/2v93DcU
http://bit.ly/2v93DcU
http://bit.ly/2v93DcU
http://bit.ly/2v93DcU
http://bit.ly/2v93DcU
http://bit.ly/2v93DcU
http://bit.ly/2vakoo1
http://bit.ly/2vakoo1
http://bit.ly/2vakoo1
http://bit.ly/2vakoo1
http://bit.ly/2vakoo1
http://bit.ly/2vakoo1
http://bit.ly/2vakoo1
http://bit.ly/2vakoo1
http://bit.ly/2vakoo1
http://bit.ly/2v7f1pN
http://bit.ly/2v7f1pN
http://bit.ly/2v7f1pN
http://bit.ly/2v7f1pN
http://bit.ly/2v7f1pN
http://bit.ly/2v7f1pN
http://bit.ly/2v7f1pN
http://bit.ly/2v7f1pN
http://bit.ly/2v5wD5t
http://bit.ly/2v5wD5t
http://bit.ly/2v5wD5t
http://bit.ly/2v5wD5t
http://bit.ly/2v5wD5t
http://bit.ly/2v5wD5t
http://bit.ly/2v5wD5t
http://bit.ly/2v5wD5t
http://bit.ly/2v5wD5t
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview

Continuous Deployments Chapter 6

[295]

Next, install a marketplace extension named Azure Utility Tasks (http:/ ​/​bit. ​ly/
2PiPQtJ). This extension provides a few utility tasks, and one of them publishes secrets to
Azure Key Vault. We will see how we can use this task shortly:

How to do it...
Let's create the release pipeline, add a stage, and save it. This is similar to what1.
we have done in other recipes in this chapter. Assuming you have a stage with
no artifacts, your release pipeline will look as follows:

http://bit.ly/2PiPQtJ
http://bit.ly/2PiPQtJ
http://bit.ly/2PiPQtJ
http://bit.ly/2PiPQtJ
http://bit.ly/2PiPQtJ
http://bit.ly/2PiPQtJ
http://bit.ly/2PiPQtJ
http://bit.ly/2PiPQtJ
http://bit.ly/2PiPQtJ

Continuous Deployments Chapter 6

[296]

Next, let's see how we can add secrets using PowerShell.

To add secrets using the Azure CLI, simply set the secret in the existing Azure2.
Key Vault task using the Azure CLI task as follows, with just one line. Notice that
we have added a secret variable named secretValue:

To use the Azure CLI task, your agent machine needs to have the Azure
CLI installed. Read more about it at http:/ ​/​bit. ​ly/​2Pjv9h4.

http://bit.ly/2Pjv9h4
http://bit.ly/2Pjv9h4
http://bit.ly/2Pjv9h4
http://bit.ly/2Pjv9h4
http://bit.ly/2Pjv9h4
http://bit.ly/2Pjv9h4
http://bit.ly/2Pjv9h4
http://bit.ly/2Pjv9h4
http://bit.ly/2Pjv9h4

Continuous Deployments Chapter 6

[297]

In the Azure CLI task, you probably noticed that you had to write the Key Vault3.
name. If we have to publish/add multiple secrets to the key vault, we would have
to repeat this line multiple times for each secret. This is where custom tasks,
which are available in the Visual Studio Marketplace, help. The Publish secrets
to Azure Key vault task from Azue Utility Tasks extension allows you to publish
multiple secrets at once:

Continuous Deployments Chapter 6

[298]

As you can see from the preceding screenshot, the task also allows you to select the Key
Vault from the dropdown, and each secret is separated by a new line. Run the release and
you will see all your secrets in the key vault being added:

How it works...
The automation of publishing secrets to the key vault greatly reduces your dependency on
manual scripts and also any errors in doing so. In this recipe, you saw how easy it was to
insert secrets into the azure key vault, which is a central repository to manage all your
secrets, keys, and certificates. The recipe showed you two ways that you can automate
inserting secrets into the key vault via the Azure DevOps Server release pipeline.

There's more...
We could extend this pipeline to provision the key vault itself. The steps would be similar
to what we have done in the previous recipes. A step to deploy the ARM template which
will use a Resource Group Deployment task to provision the key vault and a step to get the
provisioned key vault name as an output parameter and eventually using it to add secrets
to the provisioned key vault.

Continuous Deployments Chapter 6

[299]

In doing so, we can extend this pipeline to automate end-to-end key-vault provisioning and
also inserting secrets after creation.

See also
Check out the following resources to learn more about what was covered in this recipe:

Azure Key Vault ARM templates: https:/ ​/ ​docs. ​microsoft. ​com/​en- ​gb/ ​azure/
templates/ ​microsoft. ​keyvault/ ​allversions

Azure Key Vault best practices: https:/ ​/​docs. ​microsoft. ​com/ ​en-​gb/ ​azure/
key-​vault/ ​key- ​vault- ​best- ​practices

Deploying a static website on Azure Storage
Static websites have become very popular in the last few years and are based on the
JAMstack (JavaScript, APIs, and Markup) architecture. The generated websites are super
lightweight, fast, and easier to develop. As of December 2018, you can host static websites
on Azure Storage accounts of the General Purpose v2 (GPv2) type.

In this recipe, we will see how we can configure a storage account to host a static website.
We will then deploy a simple static website to this storage account so that we can browse
our website.

For more information on what JAMStack architecture - https:/
/​jamstack. ​org/ ​

More information on Static website hosting on Azure
Storage: http:/ ​/ ​bit.​ly/ ​2PlYtne

https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/templates/microsoft.keyvault/allversions
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://docs.microsoft.com/en-gb/azure/key-vault/key-vault-best-practices
https://jamstack.org/
https://jamstack.org/
https://jamstack.org/
https://jamstack.org/
https://jamstack.org/
https://jamstack.org/
https://jamstack.org/
http://bit.ly/2PlYtne
http://bit.ly/2PlYtne
http://bit.ly/2PlYtne
http://bit.ly/2PlYtne
http://bit.ly/2PlYtne
http://bit.ly/2PlYtne
http://bit.ly/2PlYtne
http://bit.ly/2PlYtne
http://bit.ly/2PlYtne

Continuous Deployments Chapter 6

[300]

Getting ready
To host the website, we will first need to have a static website. Creating a static website
using JAMStack architecure is outside the scope of this recipe, but you can check out this
post on how to build and automate publishing a Jekyll website: http:/ ​/​bit. ​ly/ ​2PlRcDU. ​

I am assuming you already have a static website and published artifact, as follows:

http://bit.ly/2PlRcDU
http://bit.ly/2PlRcDU
http://bit.ly/2PlRcDU
http://bit.ly/2PlRcDU
http://bit.ly/2PlRcDU
http://bit.ly/2PlRcDU
http://bit.ly/2PlRcDU
http://bit.ly/2PlRcDU
http://bit.ly/2PlRcDU
http://bit.ly/2PlRcDU

Continuous Deployments Chapter 6

[301]

Creating a storage account from the Azure portal
From the Azure portal, it is to create a storage account of the General Purpose v2 (GPv2)
type. You will see a Static website setting - Enable the setting and optionally set the index
document name and error document name. Once static website hosting is enabled, a
container named $web will be created, if it doesn't already exist. Any content copied to
the $web container will automatically be served on the primary endpoint:

Files on the $web container are served through anonymous access requests and will only
have read permissions.

Creating an Azure Storage Account ARM templates
Automating the creation of the GPv2 storage account and enabling this setting will require
a bit more work. Let's start by creating an ARM template.

Create a JSON file named storageaccount.deploy.json and paste in the following
content:

The source code is available under Chapter folder inside RCP06-
StaticWebsite-CD directory.

{
 "$schema":
"http://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.j

Continuous Deployments Chapter 6

[302]

son#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 //code is trimmed for the sake of brevity
 },
 "variables": {
 "storageAccountUniqueName":
"[take(toLower(concat(parameters('storageAccountName'),
uniqueString(resourceGroup().id))),24)]"
 },
 "resources": [
 {
 "name": "[variables('storageAccountUniqueName')]",
 "type": "Microsoft.Storage/storageAccounts",
 "apiVersion": "2018-07-01",
 "location": "[parameters('location')]",
 "properties": {
 "accessTier": "[parameters('accessTier')]",
 "supportsHttpsTrafficOnly":
"[parameters('supportsHttpsTrafficOnly')]"
 },
 "dependsOn": [],
 "sku": {
 "name": "[parameters('accountType')]"
 },
 "kind": "[parameters('kind')]"
 }
],
 "outputs": {
 "storageaccount.unique.name": {
 "type": "string",
 "value": "[variables('storageAccountUniqueName')]"
 },
 "storageaccount.url": {
 "type": "string",
 "value":
"[reference(variables('storageAccountUniqueName')).primaryEndpoints.web]"
 }
 }
}

Continuous Deployments Chapter 6

[303]

This ARM template just has one resource, of
the Microsoft.Storage/storageAccounts type. The template accepts a couple of
parameters, such as accountType and storageAccountName. We will create a parameter
file named storageaccount.deploy.parameters.json and paste in the following
content. The parameter file provides default values for the ARM template:

{
 "$schema":
"https://schema.management.azure.com/schemas/2015-01-01/deploymentParameter
s.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "location": {
 "value": "westeurope"
 },
 "storageAccountName": {
 "value": "staticwebsitedemo"
 },
 "accountType": {
 "value": "Standard_LRS"
 },
 "kind": {
 "value": "StorageV2"
 },
 //code is trimmed for the sake of brevity
 }
}

Notice that in the parameter file above, we provide a value as StorageV2, for the
parameter kind which requests Azure Resource Manager to provision the Azure Storage
GPv2 storage account.

Commit the ARM template into the source control and optionally create the build pipeline
produce ARM templates as artifacts. You could include simple tests to test the ARM
templates as part of the build pipeline as well.

Continuous Deployments Chapter 6

[304]

How to do it...
Create a new release pipeline and add both the static website and ARM 1.
templates as artifacts:

The first steps will just deploy our storage account ARM template. These steps are
similar to what we have done in other recipes. The first task deploys the ARM
template and the next task produces the pipeline variables for our ARM template
output variables. In our case, we will output the storage account name and the
storage account primary endpoint from our ARM template:

Run the release. We see that our storage account has been created, but that the2.
static website setting is still disabled:

Continuous Deployments Chapter 6

[305]

At the time of writing, this Disbaled/Enabled Static website setting is not available
via the ARM template. Instead, we have to use the Azure CLI to enable this
setting.

We update the pipeline to install the storage-preview extension for Azure CLI.3.
Add an Azure CLI task and execute the az extension add --name storage-
preview command to add the extension:

Continuous Deployments Chapter 6

[306]

Using the Azure CLI, enable the Static website feature for our storage account.4.
To do that, we execute the following command, again using Azure CLI task:

az storage blob service-properties update --account-name
<ACCOUNT_NAME> --static-website --404-document
<ERROR_DOCUMENT_NAME> --index-document <INDEX_DOCUMENT_NAME>

Continuous Deployments Chapter 6

[307]

Notice that we are using our ARM template output
variable, storageaccount.unique.name, to pass the storage account name to this Azure
CLI command. Running our pipeline now, we can see that the storage account is created
and also that the static website feature is enabled. The only remaining step is to copy the
contents of our static website to the $web container:

The command we are using to copy the contents is as follows:

az storage blob upload-batch -s <SOURCE_PATH> -d \"$web" --
account-name <ACCOUNT_NAME>

We are using a variable to pass the source path for our website contents and
account name.

Continuous Deployments Chapter 6

[308]

Run the release pipeline. You should have your static website ready and5.
available on your primary endpoint:

Continuous Deployments Chapter 6

[309]

How it works...
The pipeline we created in this recipe shows how we can use ARM templates and Azure
CLI commands to easily automate the creation of required storage account to deploy a
static website. We saw how, even when the ARM template does not provide full
capabilities to automate the Static Website feature, the Azure DevOps server helps us to
integrate any tool available into the pipeline—in this case, we used the Azure CLI to enable
the static website feature and copy its contents.

There's more...
Hosting a static website on Azure Storage makes your site available on the primary
endpoint. However, in most scenarios, you would like to host your website on your custom
domain, such as https:/ ​/ ​www. ​myorganization. ​com/​blog. You could do that using the
Azure Content Delivery Network (CDN). Azure CDN also allows you to use custom SSL
certificates, rewrite rules, and more.

For more on how to use Azure CDN and enabling custom domains for your static website,
visit http:/​/​bit.​ly/ ​2vgXvQ8.

See also
Check out these resources for more information:

We used Jekyll to generate a static website, but it is just one of the many static
generators that's available. There is a full list of static site generators
here: https:/ ​/ ​www. ​staticgen. ​com/ ​.
You can configure a custom domain name for your Azure storage account
at http:/ ​/​bit. ​ly/ ​2venQ1b.

https://www.myorganization.com/blog
https://www.myorganization.com/blog
https://www.myorganization.com/blog
https://www.myorganization.com/blog
https://www.myorganization.com/blog
https://www.myorganization.com/blog
https://www.myorganization.com/blog
https://www.myorganization.com/blog
https://www.myorganization.com/blog
https://www.myorganization.com/blog
https://www.myorganization.com/blog
http://bit.ly/2vgXvQ8
http://bit.ly/2vgXvQ8
http://bit.ly/2vgXvQ8
http://bit.ly/2vgXvQ8
http://bit.ly/2vgXvQ8
http://bit.ly/2vgXvQ8
http://bit.ly/2vgXvQ8
http://bit.ly/2vgXvQ8
http://bit.ly/2vgXvQ8
https://www.staticgen.com/
https://www.staticgen.com/
https://www.staticgen.com/
https://www.staticgen.com/
https://www.staticgen.com/
https://www.staticgen.com/
https://www.staticgen.com/
https://www.staticgen.com/
https://www.staticgen.com/
https://www.staticgen.com/
http://bit.ly/2venQ1b
http://bit.ly/2venQ1b
http://bit.ly/2venQ1b
http://bit.ly/2venQ1b
http://bit.ly/2venQ1b
http://bit.ly/2venQ1b
http://bit.ly/2venQ1b
http://bit.ly/2venQ1b
http://bit.ly/2venQ1b

Continuous Deployments Chapter 6

[310]

Deploying an Azure Virtual Machine to Azure
Dev Test Lab (DTL)
Development teams are often limited by the infrastructure that is available to them to
deploy and test their changes. The cloud promises to address this by giving you an
infinite resource capacity that you can consume in a pay-as-you-go subscription model.
Enterprises making their first foray into the cloud are keen to test the waters by moving
development and test workloads to the cloud. However, the biggest apprehension when
moving to the cloud for Development and Testing teams is repeatability, security, and
governance. Microsoft understands the trend, so to help customers make the move, it has
introduced a new service called Azure Dev Test Lab.

Azure DTL is a service that helps development teams quickly create heterogeneous
environments in Azure while minimizing waste and controlling cost. The biggest unique
selling proposition for Azure DTL is the ability to lock down the lab by securing the
network to a private subnet, applying governance policies at the lab level, and giving the
development teams autonomy within the lab. The ability to create and repeat helps scale
the solutions and the integration with the existing toolchain helps reusability.

You can learn more about Azure DTL by watching this introductory
video: https:/ ​/​azure. ​microsoft. ​com/ ​en-​gb/ ​resources/ ​videos/ ​index/ ​?
services= ​devtest- ​lab.

If you don't already have an Azure DTL in your Azure subscription, you
can create one by following this walkthrough: https:/ ​/​docs. ​microsoft.
com/​en- ​gb/ ​azure/ ​lab- ​services/ ​tutorial- ​create- ​custom- ​lab.

In this recipe, we'll learn how to securely connect our Azure DevOps server to an Azure
subscription. We will then use Azure DevOps Server to provision virtual machines using
an ARM template into the newly created Azure Dev Test Lab.

https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://azure.microsoft.com/en-gb/resources/videos/index/?services=devtest-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab
https://docs.microsoft.com/en-gb/azure/lab-services/tutorial-create-custom-lab

Continuous Deployments Chapter 6

[311]

Getting ready
The Azure Dev Test Labs team provides a free Visual Studio marketplace extension. This
free extension provided by Microsoft delivers multiple builds and release pipeline tasks
that allow you to create machines, delete machines, and create custom images from existing
machines in Azure DTL:

For simplicity, we also have an Azure DTL ready that was manually created using the
portal:

Continuous Deployments Chapter 6

[312]

How to do it...
Create a release pipeline and add the Azure DevTest Labs create VM task. Select1.
the subscription and provide the ARM template:

For the template field, you could provide the ARM template for the custom VM
image according to your needs. You'll be delighted to know that it's possible to
generate an ARM template for provisioning right from within the Azure portal.

Continuous Deployments Chapter 6

[313]

In order to generate the ARM template for the VM, we would like to provision in 2.
Azure DTL; head over to the DTL in Azure Portal and click through to create the
desired VM. You can choose from a range of preconfigured base images, but I
recommend opting for the latest Visual Studio Enterprise image:

Continuous Deployments Chapter 6

[314]

Click the Automation options link to get the complete ARM template for the3.
VM:

Continuous Deployments Chapter 6

[315]

Notice I have also set an expiration date for this VM in the Advanced
Settings so that the VM gets automatically deleted on the set date and
time.

Continuous Deployments Chapter 6

[316]

Copy the JSON contents in to file and commit it into source control. Create a4.
release pipeline, add the Azure DevTest Labs Create VM task, and provide the
required input, specifically the VM name, username, and password, for the VM.
We will also pass the expiration date for the VM so that the VM gets deleted
automatically:

Continuous Deployments Chapter 6

[317]

Run the release pipeline and you should soon see a new VM spun up based on5.
the ARM template and added to the DevTest labs:

How it works...
Thanks to the power of Azure DevOps Server and ARM templates, we saw how we can
generate ARM templates for our custom DevTest Labs VM images. We then used the
generated ARM templates to spin new VMs in our Azure DevTest Labs lab.

Continuous Deployments Chapter 6

[318]

There's more...
We could extend this recipe, for example, to build an Azure DevOps Server build agent
grid. An automated process to add and remove build agents allows you to scale up and
scale down on demand. There will always be periods when the build infrastructure is in
high demand and periods when it's underutilized. By using virtual infrastructure to host
your agents, you could save significant money by decommissioning the agents when they
are not in use. This recipe showed you a quick way to spin the VMs on demand. We could
add artifacts that are available for DTL VMs (the Azure Pipelines Agent artifact, for
example) and generate an ARM template with it to automatically create a VM and add an
artifact:

Continuous Deployments Chapter 6

[319]

See also
DevTestLabs Artifacts allow you to add the custom software/tools you need to your Azure
DTL VMs as you provide them. You are not limited to using just the available artifacts. You
could build your own custom artifacts, which is very easy to do. Check out these resources
for more information:

Create custom artifacts for your DevTest Labs virtual machine: http:/ ​/ ​bit.​ly/
2vi2akG

All of the Azure DTL artifacts are open source on GitHub, which you could use
as references: https:/ ​/ ​github. ​com/​Azure/ ​azure- ​devtestlab/ ​tree/ ​master/
Artifacts

http://bit.ly/2vi2akG
http://bit.ly/2vi2akG
http://bit.ly/2vi2akG
http://bit.ly/2vi2akG
http://bit.ly/2vi2akG
http://bit.ly/2vi2akG
http://bit.ly/2vi2akG
http://bit.ly/2vi2akG
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts
https://github.com/Azure/azure-devtestlab/tree/master/Artifacts

7
Azure Artifacts and

Dependency Management
In order to release software often and consistently, it is essential that software dependencies
are managed using a good package management solution. Managing dependencies, if not
thought through, can over a period of time become extremely difficult to maintain
especially due to managing versions, testing of the packages and nested dependencies.

Azure Artifacts is Microsoft's solution to package management. Originally available as a
separate extension on Visual Studio Marketplace, it is now pre-installed in Azure DevOps
Services and Azure DevOps Server 2019, TFS 2018, and 2017. In this chapter, we will
explore a few recipes on how to use Azure Artifacts to host your NuGet and npm packages.
We will also see how to deploy packages to Azure Artifacts using build and release
pipelines.

Azure Artifacts and Dependency Management Chapter 7

[321]

Later, we will see how we can incrementally make our packages available to consumers
using artifact views and finally we will utilize third-party extension to scan security
vulnerabilities in our application dependencies. Azure Artifacts is available as a separate
hub in Azure DevOps Server.

In this chapter, we will cover the following recipes:

Publishing a NuGet package to Artifacts
Consuming a NuGet package in Visual Studio from the Artifacts feed
Testing a NuGet package using Artifact views
Publishing an NPM package to Artifacts
Consuming an NPM package from the Artifacts feed
Scanning for vulnerabilities in your package using WhiteSource

Azure Artifacts and Dependency Management Chapter 7

[322]

Publishing a NuGet package to Artifacts
NuGet packages are ZIP files containing the .nupkg extension, where the common code is
packaged and shared with others. In this recipe, we will explore how to create a sample
NuGet package and set up a build pipeline that will continuously deliver new versions of
the package.

An introduction to NuGet can be found at https:/ ​/ ​docs. ​microsoft. ​com/
en-​us/ ​nuget/ ​what- ​is- ​nuget. ​

Azure Artifacts introduces the concept of feeds. A feed is a container for your package; you
can consume and publish packages to and from a feed. Azure Artifacts allows you to create
multiple feeds; however, planning the name and number of feeds for your collection
beforehand will help improve the management of permissions for your feeds and NuGet
packages.

Another key aspect of Azure Artifacts is known as upstream sources. Upstream sources
allow a single feed to store the packages you produce along with the packages that you
consume from the remote feed. Each dependent remote package will be cached and made
available through the Azure Artifacts feed. The benefit of this is that even when the remote
feed is down or the package on the remote feed is removed, you will still be able to
continue using the feed from the cached version, thus causing no disruption.

You can find out more information about upstream sources at http:/ ​/
bit.​ly/ ​2vg8byj.

Getting ready
For this recipe, we will use a sample NuGet package. You can find the code for this sample
NuGet package in the source code bundle under Chapter07 folder.

https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
http://bit.ly/2vg8byj
http://bit.ly/2vg8byj
http://bit.ly/2vg8byj
http://bit.ly/2vg8byj
http://bit.ly/2vg8byj
http://bit.ly/2vg8byj
http://bit.ly/2vg8byj
http://bit.ly/2vg8byj

Azure Artifacts and Dependency Management Chapter 7

[323]

Creating an Artifact feed in Azure Artifacts
Let's create a feed for publishing our NuGet package. To do this, first, head to the1.
Artifacts hub and click on the + New Feed button:

Azure Artifacts and Dependency Management Chapter 7

[324]

Next, provide a name for the feed and select the visibility. Keep the default2.
settings as they are, so that our feed is visible to everyone in the collection:

Azure Artifacts and Dependency Management Chapter 7

[325]

Finally, allow the feed to cache the upstream (or remote) packages into this feed3.
so that any external dependent NuGet packages are cached and served from our
Artifacts feed. Once you click on Create, the feed will be created and made
visible, as shown in the following screenshot:

You can also set additional settings for the feed, such as retention policies for the packages,
views, and other permissions, from the Settings menu - we are also covering this in the
How to do it section below.

More information on securing and sharing packages using feed
permissions can be found at http:/ ​/​bit. ​ly/​2Pt30Er.

How to do it...
Our sample NuGet package is a .NET Core 2 NuGet package. To start with we will set up
Continuous Integration (CI) so that we produce the NUPKG file every time the package is
built.

http://bit.ly/2Pt30Er
http://bit.ly/2Pt30Er
http://bit.ly/2Pt30Er
http://bit.ly/2Pt30Er
http://bit.ly/2Pt30Er
http://bit.ly/2Pt30Er
http://bit.ly/2Pt30Er
http://bit.ly/2Pt30Er
http://bit.ly/2Pt30Er

Azure Artifacts and Dependency Management Chapter 7

[326]

Creating a build definition to produce the NuGet
package

Create a new file called azure-pipelines.yml and paste in the following code:1.

The source code for NuGet package and YAML file for the build used in
this recipe is in this Chapter's code pack under RCP01-NuGet-Artifact
folder

resources:
- repo: self
queue:
 name: Default

name: $(major).$(minor).$(rev:r)
variables:
 major: 1
 minor: 0
 buildconfiguration: release

steps:
- task: DotNetCoreInstaller@0
 displayName: 'Use .NET Core sdk 2.2.104'
 inputs:
 version: 2.2.104

- task: DotNetCoreCLI@2
 displayName: 'dotnet build'
 inputs:
 projects: '$(build.sourcesdirectory)/artifacts/dotnetcore-
nuget/MyClassLib/MyClassLib.csproj'
 arguments: '--configuration $(BuildConfiguration)
/p:Version=$(build.buildnumber)'

- task: DotNetCoreCLI@2
 displayName: 'dotnet pack'
 inputs:
 command: pack
 packagesToPack: 'artifacts/dotnetcore-
nuget/MyClassLib/MyClassLib.csproj'
 nobuild: true
 versioningScheme: byBuildNumber

- task: PublishBuildArtifacts@1
 displayName: 'Publish Artifact: drop'

Azure Artifacts and Dependency Management Chapter 7

[327]

Notice that we set a build name that is in the format of
$(major).$(minor).$(rev:r). We are creating variables major, minor and
patch in the variables section. We are using this build name to set the version for
our NuGet package so that it gets versioned as 1.0.4. We are also building our
project using the dotnet build command, which is again using
the buildconfiguration variable. The value release for buildconfiguration
variable tells the dotnet command to optimize the code during compilation. We
have defined these variables in YAML file format, as well under the variables
section. Lastly, we are using dotnet pack command to package this library in to
a NuGet package.

More on dotnet commands - https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/
dotnet/ ​core/ ​tools/ ​dotnet? ​tabs= ​netcore21

Run the build and you should see that our NuGet package is created and made2.
available as an artifact:

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet?tabs=netcore21

Azure Artifacts and Dependency Management Chapter 7

[328]

Creating a release pipeline to publish a NuGet package
to the feed
Next, we will need to create a release pipeline in order to publish the artifact to the feed
that we previously created. Azure Artifacts has a concept called views, which are unique to
Azure Artifacts. You can refer to the Testing NuGet packages using Artifact views recipe in this
chapter for more details.

In this recipe, we will publish to the default @local view using our release pipeline:

Create a new release pipeline and add a stage and link to the build pipeline that1.
we created earlier:

Azure Artifacts and Dependency Management Chapter 7

[329]

Go to Tasks and add the .NET Core task.2.
Select the nuget push command, and then select our feed from the Target feed3.
drop-down menu:

Azure Artifacts and Dependency Management Chapter 7

[330]

Create the release and you should see your NuGet package published to the feed:4.

Azure Artifacts and Dependency Management Chapter 7

[331]

Granular feed permissions in feed settings
Packages are immutable, meaning that once you publish a particular version of the
package, you cannot publish the same version again. The version number is permanently
reserved. Additionally, Azure Artifacts shows deleted package versions by default:

You can change this setting in the Feed settings page. You can also enable1.
package badges to use them in to your markdown files, and also set the
maximum number of versions that you would like to keep in Retention policies:

For better performance, it is recommended that you set the limit for the
maximum number of versions per package that you would like to retain.

Azure Artifacts and Dependency Management Chapter 7

[332]

How it works...
We created a simple NuGet package using .NET Core and set up the build pipeline for our
NuGet package. The build pipeline was then added as an artifact to our release pipeline,
which we published to the created feed. We then explored how the feed permissions can be
controlled using the feed settings. In the next recipe, we will look at how we can connect to
our feed and consume the NuGet package in Visual Studio.

There's more...
Azure Artifacts can also be used as a symbol server for your organization. Symbol servers
enable your developers to connect and debug the applications.

More information on how you can publish symbols for debugging
applications can be found at http:/ ​/​bit. ​ly/​2PpxkQi.

See also
Package versioning: http:/ ​/​bit.​ly/ ​2vlw07G

Best practices for using Azure Artifacts: http:/ ​/ ​bit.​ly/ ​2vhGqp5

Consuming a NuGet package in Visual
Studio from the Artifacts feed
In the previous recipe, we learned how to create a NuGet package and publish it to
Artifacts in Azure DevOps Server. In this recipe, we will look at how we can consume the
NuGet package in Visual Studio.

http://bit.ly/2PpxkQi
http://bit.ly/2PpxkQi
http://bit.ly/2PpxkQi
http://bit.ly/2PpxkQi
http://bit.ly/2PpxkQi
http://bit.ly/2PpxkQi
http://bit.ly/2PpxkQi
http://bit.ly/2PpxkQi
http://bit.ly/2PpxkQi
http://bit.ly/2vlw07G
http://bit.ly/2vlw07G
http://bit.ly/2vlw07G
http://bit.ly/2vlw07G
http://bit.ly/2vlw07G
http://bit.ly/2vlw07G
http://bit.ly/2vlw07G
http://bit.ly/2vlw07G
http://bit.ly/2vlw07G
http://bit.ly/2vhGqp5
http://bit.ly/2vhGqp5
http://bit.ly/2vhGqp5
http://bit.ly/2vhGqp5
http://bit.ly/2vhGqp5
http://bit.ly/2vhGqp5
http://bit.ly/2vhGqp5
http://bit.ly/2vhGqp5
http://bit.ly/2vhGqp5

Azure Artifacts and Dependency Management Chapter 7

[333]

Getting ready
The recipe is a continuation of the previous Publishing a NuGet package to Artifacts recipe. If
you have not read it, then we recommend that you go through it before continuing.

How to do it...
Let's examine how we can consume the NuGet package in Visual Studio by performing the
following steps.

Connecting to the feed in Artifacts
Go to Artifacts and select the correct feed (if you have multiple feeds); then, copy1.
the package source URL, as follows:

Azure Artifacts and Dependency Management Chapter 7

[334]

Open Visual Studio, go to the Tools menu, and then select Options:2.

Azure Artifacts and Dependency Management Chapter 7

[335]

In the Options window, go to Package Sources and click on the + icon in the top-3.
right corner to add a new package source. Provide a name for the source and
then paste in the copied URL from Step 1. Finally, click on Update and then click
on OK to close the dialog:

If you have enabled upstream sources (such as NuGet or npm) for your
feed, then uncheck the https:/ ​/ ​www.​nuget. ​org/​ feed in the preceding
window, so that you only fetch feeds from our Artifacts feed and not from
public feeds such as https:/ ​/​www.​npmjs. ​com/​ or https:/ ​/​www. ​nuget.
org/​.

https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/

Azure Artifacts and Dependency Management Chapter 7

[336]

Open the solution that you would like to reference packages from this feed to,4.
right-click on Dependencies, and then select the Manage NuGet Packages...
option:

Azure Artifacts and Dependency Management Chapter 7

[337]

Next, you might be prompted to provide credentials in order to authenticate the5.
feed. Enter these as requested and then click on OK:

Now if you go to the Browse tab, you will see your published NuGet package:6.

Azure Artifacts and Dependency Management Chapter 7

[338]

Select the package and click on Install. Since our package internally depends on7.
Newtonsoft.json, Artifacts also downloads the dependent NuGet package from
our feed using the upstream sources:

You have now referenced the NuGet package (along with its dependencies) from the
Artifacts feed directly.

How it works...
As you saw in this recipe, Azure DevOps Server Artifacts makes it very convenient for you
to consume the packages from your internal feeds. Once you add a feed source in Visual
Studio, developers will be able to refer to any package that is available in the feed.

Azure Artifacts and Dependency Management Chapter 7

[339]

There's more...
Adding the feed to Visual Studio with upstream sources enabled and all other external
sources disabled ensures that we only consume packages from our feed – without having to
worry if the external source is available or not. Azure Artifacts seamlessly caches the
dependent packages when the reference in your NuGet package and makes them available.

If any dependent package has not yet been saved in your feed, then they
will not be available through your feed.

See also
Dependency management: http:/ ​/​bit. ​ly/ ​2Prc0d5

The benefits of upstream sources: http:/ ​/​bit. ​ly/ ​2Prb4FO

Best practices for feed owners: http:/ ​/​bit. ​ly/​2PovcIs

Testing a NuGet package using Artifact
views
As mentioned in the previous recipe, packages are immutable. This means that package
versions are reserved as soon as you publish them to the feed. You cannot publish the same
version of the package again.

Semantic versioning ensures that versions correctly convey the change. The version
numbers are in Major.Minor.Patch format and, optionally, can contain additional labels
such as 1.0.0-alpha or 1.0.0-beta:

The MAJOR version is used when you make incompatible API changes
The MINOR version when you add functionality in a backward-compatible
manner
The PATCH version is used when you make backward-compatible bug fixes

http://bit.ly/2Prc0d5
http://bit.ly/2Prc0d5
http://bit.ly/2Prc0d5
http://bit.ly/2Prc0d5
http://bit.ly/2Prc0d5
http://bit.ly/2Prc0d5
http://bit.ly/2Prc0d5
http://bit.ly/2Prc0d5
http://bit.ly/2Prc0d5
http://bit.ly/2Prb4FO
http://bit.ly/2Prb4FO
http://bit.ly/2Prb4FO
http://bit.ly/2Prb4FO
http://bit.ly/2Prb4FO
http://bit.ly/2Prb4FO
http://bit.ly/2Prb4FO
http://bit.ly/2Prb4FO
http://bit.ly/2Prb4FO
http://bit.ly/2PovcIs
http://bit.ly/2PovcIs
http://bit.ly/2PovcIs
http://bit.ly/2PovcIs
http://bit.ly/2PovcIs
http://bit.ly/2PovcIs
http://bit.ly/2PovcIs
http://bit.ly/2PovcIs
http://bit.ly/2PovcIs

Azure Artifacts and Dependency Management Chapter 7

[340]

Additional labels for prerelease and build metadata are available as extensions to the
MAJOR.MINOR.PATCH format.

However, with the NuGet package, proper testing can be done only after it has been
packaged and versioned.

In this recipe, we will see how we can use artifact views to consume prerelease packages
and eventually promote them after testing.

Getting ready
By default, come with three views. The @local view is the default view when you create a
feed that contains all the packages published to the feed, and also all the packages from an
upstream source. The next two views are @prerelease and @release. The latter two
views can be renamed or deleted if required.

Go to Feed settings and verify that you see three views; then, ensure your default view is
set to @local:

Azure Artifacts and Dependency Management Chapter 7

[341]

How to do it...
Currently, we have v1.0.7 installed from the @local view in our solution. The feed shows
that there is a new v1.0.9 version that is available for us to test:

As the developers of this NuGet package, we will install the new 1.0.9 version and test that
it is working as expected. Once we are happy with the changes, we can make it available to
our testers:

Go to the feed and open the NuGet package; then, click on Promote: 1.

Azure Artifacts and Dependency Management Chapter 7

[342]

In the dialog that appears, select @prerelease: 2.

This promotes the package to the @prerelease view. This package is now available to
anyone who has access to the @prerelease view. You can also control the permission for
each view; we have made the @prerelease view available for members of our developers
and the architecture group:

Azure Artifacts and Dependency Management Chapter 7

[343]

Developers and members of the architecture group can connect to this view directly in the
same way that we can - select Connect to feed and select the correct view to get the correct
package source URL:

We covered connecting to the feed and consuming the feed in the previous Consuming
NuGet package in Visual Studio from Artifacts feed recipe:

Azure Artifacts and Dependency Management Chapter 7

[344]

How it works...
In traditional NuGet package repositories (such as https:/ ​/​www. ​nuget. ​org/ ​), after
publishing the NuGet package, it is made immediately available to all of your consumers.
The only way to fix this defect is to release a new version of the package.

However, with views, you are able to promote your releases slowly – one view at a time –
and so, control who has access to the package. Once the NuGet package is properly tested
by users of the @local and @prerelease views, you can make it available to all your
consumers from the @release view.

There's more...
Package versioning is a big problem to solve and there are various ways to tackle it.
However, there is no one-size-fits-all solution. After implementing the semantic versioning
for the packages, we recommend that you discuss with your team and finalize the solution
and workflow of how the packages will be moved. If you are using Git version control,
there are tools available, such as GitVersion (https:/ ​/​gitversion. ​readthedocs. ​io/​en/
latest), which can help you to implement semantic versioning based on the Git commit
history, which might be useful in better conveying the changes.

See also
Determine and communicate quality: http:/ ​/​bit. ​ly/​2ProdyG

The metadata cache: http:/ ​/​bit.​ly/ ​2PrRyZH

Publishing NPM packages to Artifacts
npm is the package manager. The npm packages are cross-platform packages developed
using JavaScript. npmjs.com is the popular public registry hosting these node packages.

However, many organizations develop custom node modules or in-house UI frameworks,
which they prefer keeping on-premises rather than on public repository at https:/ ​/​www.
npmjs.​com/​.

https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://gitversion.readthedocs.io/en/latest
https://gitversion.readthedocs.io/en/latest
https://gitversion.readthedocs.io/en/latest
https://gitversion.readthedocs.io/en/latest
https://gitversion.readthedocs.io/en/latest
https://gitversion.readthedocs.io/en/latest
https://gitversion.readthedocs.io/en/latest
https://gitversion.readthedocs.io/en/latest
https://gitversion.readthedocs.io/en/latest
https://gitversion.readthedocs.io/en/latest
https://gitversion.readthedocs.io/en/latest
https://gitversion.readthedocs.io/en/latest
http://bit.ly/2ProdyG
http://bit.ly/2ProdyG
http://bit.ly/2ProdyG
http://bit.ly/2ProdyG
http://bit.ly/2ProdyG
http://bit.ly/2ProdyG
http://bit.ly/2ProdyG
http://bit.ly/2ProdyG
http://bit.ly/2ProdyG
http://bit.ly/2PrRyZH
http://bit.ly/2PrRyZH
http://bit.ly/2PrRyZH
http://bit.ly/2PrRyZH
http://bit.ly/2PrRyZH
http://bit.ly/2PrRyZH
http://bit.ly/2PrRyZH
http://bit.ly/2PrRyZH
http://bit.ly/2PrRyZH
http://www.npmjs.com
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/

Azure Artifacts and Dependency Management Chapter 7

[345]

In this recipe, we will create a sample npm module and set up a build pipeline so that its
version is updated with each build. We will then create a release pipeline to publish the
package to our Artifacts feed.

Getting ready
Our sample npm module allows any user to consume the module by using the require
statement. Calling the function will just print the demo statement to the console. For this
recipe, you need to have NodeJS installed in your machine. If you don't have it already,
download and install it from https:/ ​/ ​nodejs. ​org/ ​en/ ​download.

To check the version of the node on your machine, after installing node, run the following
command and it should print version of the node installed.

C:\Users\utkarsh>node -v
v10.15.3

Creating NPM package
Create a folder, then create a file named package.json using the npm init1.
command. For simplicity, the following code is the package.json file that I
have created after completing the npm init prompts. You can copy and paste if
you would like to use it as is:

{
 "name": "print-azure-devops",
 "version": "1.0.0",
 "description": "A demo npm package which just prints Azure DevOps
Server 2019",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [
 "demo"
],
 "author": "Utkarsh Shigihalli (www.visualstudiogeeks.com)",
 "license": "ISC"
}

Next, add a readme.md file and add content explaining the node module – this2.
appears on the package page.

https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download
https://nodejs.org/en/download

Azure Artifacts and Dependency Management Chapter 7

[346]

Our package.json file states that the main executable for our module is3.
the index.js file. So, let's create that now; create a index.js file and paste in
the following code:

exports.printAzureDevOps = function () {
 console.log("Azure DevOps Server 2019")
}

As you can see, this npm package exposes a simple function named printAzureDevOps(),
which, when used, will just print Azure DevOps Server 2019 to the console.

Later on in this chapter, we will look at how to connect to this feed and consume it in a
client application.

How to do it...
As you saw previously, our npm package is a simple node module, which users can use to
print sample text. In this section, we will set up the CI so that we produce the new version
of our npm package for every build; then, we will publish it as a build artifact. We will then
consume this artifact in the release pipeline and publish the npm package to our feed.

Creating the build pipeline to update the package
version

Create the azure-pipelines.yml file and paste in the following code:1.

The sample node module and YAML file are in the code bundle
under RCP04-NPM-Artifact folder.

resources:
- repo: self
queue:
 name: Default
 demands: npm
name: 1.0.$(rev:r)

steps:
- task: Npm@1
 displayName: 'npm version'
 inputs:

Azure Artifacts and Dependency Management Chapter 7

[347]

 command: custom
 workingDir: 'artifacts/npm-print-azure-devops'
 verbose: false
 customCommand: 'version $(build.buildnumber)'

- task: PublishBuildArtifacts@1
 displayName: 'publish npm package as artifact'
 inputs:
 PathtoPublish: '$(build.sourcesdirectory)/artifacts/npm-print-
azure-devops'
 ArtifactName: 'npm-package'

As you can see, our build pipeline is made up of just two steps. The first step uses the npm
task to run the npm version command and supply the build number. So, the actual
command becomes npm version <new version>. This step updates the version of the
node module and sets it to build number. The last step just publishes the full contents of the
directory after the module version is updated.

Creating the release pipeline to publish the npm
package

Create a new release pipeline and add the build artifact of the build pipeline that1.
we created in the preceding Creating the build pipeline section:

Azure Artifacts and Dependency Management Chapter 7

[348]

Next, add an npm task and select the publish command.2.
Select the correct working folder containing your package.json file and select3.
our Artifacts feed as the target feed:

Azure Artifacts and Dependency Management Chapter 7

[349]

Save the release pipeline and create the release. The npm package should be4.
published to our Artifacts feed:

How it works...
In this recipe, we learned how to create a sample npm package and a build pipeline. The
build pipeline works by simply updating the version for every build (npm recommends the
semantic versioning of packages). We then created a release pipeline and consumed our
build artifact, and then published the npm package to the Artifacts feed.

There's more...
Azure Artifacts fetches most of the metadata in the npm package from the package.json
file, and displays them on the package page under Artifacts. Keeping the metadata accurate
and clean ensures that the package can be easily discovered. From the following screenshot,
you can see where each piece of data is coming from. Keeping this information accurate
within your organization ensures that your packages convey useful information to
consumers and also helps them getting discovered easily:

Azure Artifacts and Dependency Management Chapter 7

[350]

See also
Although in this recipe, we are updating the version number for each build, it is
not advised. The npm recommends semantic versioning for reliable packages.
This is explained in more detail at https:/ ​/​docs. ​npmjs. ​com/ ​about- ​semantic-
versioning.
The consumption of the npm package by the developer machine requires a few
additional steps. You can learn more about this at https:/ ​/​docs. ​microsoft. ​com/
en-​us/ ​azure/ ​devops/ ​artifacts/ ​get- ​started- ​npm? ​view= ​azure- ​devops ​tabs=
windows#set- ​up- ​authentication- ​on- ​your- ​development- ​machine.

Consuming NPM package from the Artifacts
feed
In the previous recipe, we published our sample npm package to Azure Artifacts. In this
recipe, we will explore how we can consume the artifact that we published and make use of
it. Since we have already enabled upstream sources for our repository, we can also fetch all
the dependent packages from our feed.

https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.npmjs.com/about-semantic-versioning
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-npm?view=azure-devops&tabs=windows#set-up-authentication-on-your-development-machine

Azure Artifacts and Dependency Management Chapter 7

[351]

Getting ready
This recipe is a continuation of the previous Publishing NPM package to Artifacts recipe. I
recommend that you read it before continuing if you have not already done so.

To demonstrate the upstream npm package, I installed the colors package into our
original module using the npm install colors --save command. This created an
external dependency in our node module so the Artifacts would cache this external package
into our feed.

I also changed the code in our index.js file so that we can use the colors module and
print the console text in blue:

var colors = require("colors")
exports.printAzureDevOps = function () {
 console.log("Azure DevOps Server 2019".blue)
}

I have highlighted the changed text in bold.

Commit the changes and publish the package using the build and release pipelines, as
discussed in the previous recipe. You should be able to see the dependencies if you browse
the package in our feed:

Azure Artifacts and Dependency Management Chapter 7

[352]

How to do it...
Let's perform the following steps:

Go to Artifacts and click on Connect to feed; then, click on the npm link and1.
copy the text (as indicated by D in the following screenshot):

Create a .npmrc file in your HOME directory (C:\Users\<username> \.npmrc2.
in Windows or $home/.npmrc in Linux or Mac systems) and paste in the
content. Since Artifacts requires authentication, you also want to click
on Generate npm credential and then add the contents to the npmrc file. This
generates a 90-day token.

If you have included the credentials, then it is not advised to commit the
file into the source control.

Azure Artifacts and Dependency Management Chapter 7

[353]

Create a simple client node application in a new folder and use the npm init3.
command. We then install our npm package using the npm install print-
azure-devops --save-dev command. For simplicity, the following is my
package.json file. Notice that our npm module is referenced in
the devDependencies section:

The source code for this sample client application is included in the code
bundle under RCP04-NPM-Artifact folder.

{
 "name": "temp",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC",
 "devDependencies": {
 "print-azure-devops": "~1.0.0"
 }
}

Create a new file called print.js and paste in the following code:4.

var printaz = require("print-azure-devops")
printaz.printAzureDevOps();

As you can see in the preceding block, we are referencing our npm package by using the
require statement and then making use of the function. To test the function, run the node
print.js command and you should see Azure DevOps Server 2019 printed to the
console:

Azure Artifacts and Dependency Management Chapter 7

[354]

How it works...
We connect to the Azure DevOps Server Artifacts feed using the .npmrc file, which
maintains the registry and authentication tokens. Once connected, we can use the usual
npm commands to get any npm packages. As with NuGet, Artifacts brings any dependent
npm packages (in our case, the colors package) and caches them in our feed. We then
consumed the npm package from the Artifacts feed in our demo application and explored
how to use it.

There's more...
Azure Artifact feeds require authentication. So, you will need to store the credentials in the
.npmrc file along with the registry URL. Microsoft recommends keeping two .npmrc files:
first, the .npmrc file at the root of the repository with just the registry URL, which you can
commit into the source control so that team members can share and connect to the same
feed; and second, the .npmrc file in your HOME directory, which includes the generated
credentials. This approach enables you to share the project's .npmrc file with the whole
team while keeping your credentials secure.

Generate npm credentials on the Connect to feed dialog generates a 90-day token, which
you can use in your .npmrc file. If you would like the token to be valid for longer than 90
days, then you will need to generate a personal access token (PAT) token with limited
scope packaging (read and write). You can find out more information about this at http:/ ​/
bit.​ly/​2vkp5fm.

See also
The npm config files: https:/ ​/​docs. ​npmjs. ​com/ ​files/ ​npmrc

Scanning for vulnerabilities in your package
using WhiteSource
Today, developers don't hesitate to use components that are available in public package
sources (such as npm or NuGet). With the aim of faster delivery and better productivity,
using open source software (OSS) components is encouraged across many organizations.
However, as the dependency on these third-party OSS components increases, the risk of
security vulnerabilities or hidden license requirements also increases compliance issues.

http://bit.ly/2vkp5fm
http://bit.ly/2vkp5fm
http://bit.ly/2vkp5fm
http://bit.ly/2vkp5fm
http://bit.ly/2vkp5fm
http://bit.ly/2vkp5fm
http://bit.ly/2vkp5fm
http://bit.ly/2vkp5fm
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc
https://docs.npmjs.com/files/npmrc

Azure Artifacts and Dependency Management Chapter 7

[355]

For a business, this is critical, as issues related to compliance, liabilities, and customer
personally identifiable information (PII) can cause massive privacy and security concerns.
Identifying such issues early on in the release cycle gives you an advanced warning and
allows you enough time to fix the issues. There are many tools such as WhiteSource,
Veracode, and Checkmarx that are available, can scan for these vulnerabilities for us within
the build and release pipelines.

In this recipe, we will explore how we can make use of these tools to scan vulnerabilities in
our dependent NuGet packages. We will be using the free WhiteSource Bolt extension to
scan our dependencies during our CI build.

Getting ready
The first step is to install the WhiteSource Bolt extension from the Visual Studio
Marketplace:

Go to https:/ ​/​marketplace. ​visualstudio. ​com/ ​items? ​itemName= ​whitesource.1.
ws-​bolt and install the extension:

You can find out more information about how to install the extension at http:/ ​/
bit.​ly/ ​2viImh3.

After you install the extension, you should see a new WhiteSource Bolt hub2.
under Pipelines. Click on it, and fill in your email address and name, and then
click on Save:

https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
https://marketplace.visualstudio.com/items?itemName=whitesource.ws-bolt
http://bit.ly/2viImh3
http://bit.ly/2viImh3
http://bit.ly/2viImh3
http://bit.ly/2viImh3
http://bit.ly/2viImh3
http://bit.ly/2viImh3
http://bit.ly/2viImh3
http://bit.ly/2viImh3

Azure Artifacts and Dependency Management Chapter 7

[356]

How to do it...
We will use the existing build pipeline that we built in the first Publishing a NuGet package to
Artifacts recipe of this chapter:

Open the azure-pipelines.yml file and add the following code under steps1.
after the dotnet build task:

- task: whitesource.ws-bolt.bolt.wss.WhiteSource Bolt@19
 displayName: 'WhiteSource Bolt'
 inputs:
 cwd: '$(build.sourcesdirectory)'

Commit the changes and trigger the build. The WhiteSource Bolt task now2.
automatically scans all the dependencies and generates a report of vulnerabilities
and any other issues (such as outdated libraries, for example). The report is
available in the Whitesource Bolt hub under Pipelines.

Azure Artifacts and Dependency Management Chapter 7

[357]

Click on the hub and you will see a report as follows:3.

How it works...
The WhiteSource Bolt free extension provides a pipeline task named WhiteSource Bolt. This
task can be used to build or release the pipeline, and it helps us to automatically scan for
any security vulnerabilities or compliance issues with dependencies and then generate a
report.

The free version only allows you to scan the project up to 5 times a day.
For enterprise level scenarios, you should consider the commercial
offering by WhiteSource.

Azure Artifacts and Dependency Management Chapter 7

[358]

There's more...
As conveyed in this section's introduction, scanning for security vulnerabilities ensures that
you can catch issues early on in the delivery lifecycle. This shift-left approach of ensuring
that the code is secure at all stages of the software development life cycle offers many
benefits. By having a repeatable, efficient early warning system for security vulnerabilities
in your pipeline, you can limit the number of unwanted vulnerabilities being introduced to
the system.

See also
Fortify extension: https:/ ​/​marketplace. ​visualstudio. ​com/ ​items? ​itemName=
fortifyvsts. ​hpe- ​security- ​fortify- ​vsts

Checkmarx extension: https:/ ​/​marketplace. ​visualstudio. ​com/ ​items?
itemName= ​checkmarx. ​cxsast

Veracode: https:/ ​/​marketplace. ​visualstudio. ​com/​items? ​itemName=
Veracode. ​veracode- ​vsts- ​build- ​extension

Secure DevOps Kit: https:/ ​/ ​marketplace. ​visualstudio. ​com/ ​items? ​itemName=
azsdktm. ​AzSDK- ​task

https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=fortifyvsts.hpe-security-fortify-vsts
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=checkmarx.cxsast
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=Veracode.veracode-vsts-build-extension
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task
https://marketplace.visualstudio.com/items?itemName=azsdktm.AzSDK-task

8
Azure DevOps Extensions

Visual Studio Marketplace serves as a marketplace for Azure DevOps, Visual Studio,
Visual Studio Code extensions, as well as pay-for-usage extensions such as the Artifacts
extension, and Test Manager extension. It also sells subscriptions for Microsoft products
(HockeyApp, Xamarin University, and so on). According to Microsoft, at the time of
writing, VS Marketplace has more than 8,000 extensions and close to six thousand
publishers. What's more, 130,ooo+ users and developers have been visiting the marketplace
in search of extensions.

As you will see from a few of the following recipes, writing extensions is effortless. All you
need is a basic knowledge of web development using HTML, CSS, and JavaScript. If you
are interested in writing just build and release pipeline tasks, even knowledge of
PowerShell is enough. If you have a lot of your useful utility PowerShell scripts hidden in
your organization and want to make it useful for the rest of the world, now is the time to
expose them as extensions and join this million developer ecosystem.

In this chapter, we will go in depth into knowing more about extensions and also see a few
recipes that will show you how easy it is to develop and extend the Azure DevOps server.

Extensions and extensible points: So, what are extensions? Extensions are installable units
for Azure DevOps Server and add additional capabilities, for example:

Build and release tools
UI enhancements for BuildHub
Work item forms
Dashboard widgets
Custom utility tasks such as managing tags, publishing secrets to Azure Key
Vault, and so on

Azure DevOps Extensions Chapter 8

[360]

These additional integrations provide a simple and effective way to reach new users by
helping them get the most out of their DevOps environment. With extensions, you also
have an option to integrate external services with Azure DevOps Server. Most extensions
can be installed on both Azure DevOps Services (formally known as VSTS) and also on
Azure DevOps Server (TFS). At the time of writing, there are close to a thousand extensions
(paid and free included) on the market of different types.

Extensions are always installed at the collection level and can only be
installed by the collection administrator with edit collection level
information. The rest of the users can only request an extension to be
installed.

Extension structure: Azure DevOps extensions are made up of mainly three types. They are
as follows:

Manifest.json file: A simple JSON file that contains the metadata (name, ID,
version, scopes, the category of the extension, and so on) for the extension. It is
useful for packaging into the VSIX file.
Scripts: These files contain the logic of the extension and also any dependencies.
They are either PS1 or JS files.
Assets: Any images, screenshots, or text files used to display information about
your extension in the marketplace:

Azure DevOps Extensions Chapter 8

[361]

The extension can be of different types and can be categorized as follows:

Pipeline (build/release) task extensions: These can be consumed in pipelines
(build and release) and are available as tasks for the Azure DevOps agent.
UI extensions: UI extensions, as the name suggests, use different extension
points within Azure DevOps and enhance the usability of the Azure DevOps
Server. There can be many types of UI extensions:

Hub/hub groups
Add menus/toolbars
Extend work item form
Add new service connections to connect to other systems
Add new artifact types
Add custom release gates
Add dashboard widgets

Azure DevOps Extensions Chapter 8

[362]

The pipeline tasks can be written in either PowerShell or JavaScript. UI
extensions, on the other hand, will need to be created in JavaScript only.
At the moment of writing this, tasks written in PowerShell can only be run
on Windows-based build agents. JavaScript-based extensions are cross-
platform and hence can be run on either Windows or Linux-based agents.
With PowerShell Core being generally available, this might change, but at
the moment, the choice of language (PowerShell or JavaScript) needs to be
decided based on the platform you would like to support.

In this chapter, we will cover the following recipes:

Creating the VS Marketplace publisher
Creating a simple task to clean folders
Creating a UI extension
Creating a service connection extension to connect to GitLab
Creating a pipeline task to consume a custom service connection
Publishing extensions to marketplace through CI/CD

Creating the VS Marketplace publisher
Every extension that needs to be published to the marketplace needs to be published from a
publisher. All extensions live under that publisher. Anyone can create the publisher by
going to VS Marketplace management portal.

In this recipe, we will see how we can create a VS Marketplace publisher. In the next recipe,
we will use this publisher while creating the task and also while publishing the task.

Getting ready
Creating the publisher is easy and to create one, you should have Microsoft account email
address (@outlook.com/@hotmail.com for example).

Azure DevOps Extensions Chapter 8

[363]

Let's start creating a publisher:

Navigate to the VS Marketplace management portal by going to this1.
URL: https:/ ​/​aka. ​ms/ ​vsmarketplace- ​manage.
If you have not already signed in, you will get a prompt when using your2.
Microsoft account:

Sign in using your Microsoft account. If you do not have a Microsoft account3.
already, create one. You can also use your Azure Active Directory (AAD)-linked
corporate account if you would like to create the publisher using your corporate
account.

https://aka.ms/vsmarketplace-manage
https://aka.ms/vsmarketplace-manage
https://aka.ms/vsmarketplace-manage
https://aka.ms/vsmarketplace-manage
https://aka.ms/vsmarketplace-manage
https://aka.ms/vsmarketplace-manage
https://aka.ms/vsmarketplace-manage
https://aka.ms/vsmarketplace-manage
https://aka.ms/vsmarketplace-manage
https://aka.ms/vsmarketplace-manage
https://aka.ms/vsmarketplace-manage

Azure DevOps Extensions Chapter 8

[364]

How to do it...
Go to VS Marketplace management portal (https:/ ​/ ​marketplace.1.
visualstudio. ​com/ ​manage). You might get presented with the following screen:

https://marketplace.visualstudio.com/manage
https://marketplace.visualstudio.com/manage
https://marketplace.visualstudio.com/manage
https://marketplace.visualstudio.com/manage
https://marketplace.visualstudio.com/manage
https://marketplace.visualstudio.com/manage
https://marketplace.visualstudio.com/manage
https://marketplace.visualstudio.com/manage
https://marketplace.visualstudio.com/manage
https://marketplace.visualstudio.com/manage

Azure DevOps Extensions Chapter 8

[365]

Clicking Create publisher button, you will be presented with the form with all2.
the input fields to create the required publisher:

Azure DevOps Extensions Chapter 8

[366]

Enter all the required information and click Create. Ensure you have checked3.
the Send publisher verification request in order to publish extensions publicly
for Azure DevOps Services option. Publisher verification will be conducted by
Microsoft and it is mandatory if you would like your extensions to be made
public:

The publisher will be created and you will be ready to publish the extension.4.

If the publisher is unverified, you will be able to publish the extension as a
private extension only. The average time is two to three working days for
Microsoft to verify the publisher. Once the publisher is verified, you are
free to make your extension public, which will allow others to find and
install your extension.
You will be able to provide access to this publisher to additional users
within your organization. This allows organizations to enable multiple
users to author an extension under one publisher account.

Creating a simple task to clean folders
To get comfortable with creating extensions, in this recipe, we will create a simple pipeline
extension. This extension will contain a single task to take a minmatch search pattern
(https:/​/​aka.​ms/ ​minimatchexamples) and delete files and/or folders in a specified
directory. The task can be used in the build or release pipeline to clean build artifacts, and
eventually you will publish the cleaned directory.

https://aka.ms/minimatchexamples
https://aka.ms/minimatchexamples
https://aka.ms/minimatchexamples
https://aka.ms/minimatchexamples
https://aka.ms/minimatchexamples
https://aka.ms/minimatchexamples
https://aka.ms/minimatchexamples
https://aka.ms/minimatchexamples
https://aka.ms/minimatchexamples

Azure DevOps Extensions Chapter 8

[367]

Getting ready
We are going to develop this extension using TypeScript, which automatically gets
transpiled into JavaScript. Writing in JavaScript ensures that this extension is automatically
cross-platform and hence a task, or tasks, can run on Windows, Mac, or Linux-based
agents. Our development environment will be as follows:

Editor – VSCode: Free developer-friendly editor. However, you are free to use
any editor with which you are comfortable.
Language – Typescript: Provides type checking and other benefits (more info can
be found here: https:/ ​/ ​www. ​typescriptlang. ​org).Install it using the npm
install -g typescript command.
NPM packages for the task:

Azure Pipelines Task Lib: Contains utility functions and required
dependencies to be recognized by Azure Pipelines agents (https:/
/ ​www. ​npmjs. ​com/ ​package/ ​azure- ​pipelines- ​task- ​lib).
del package: A utility node package to delete the folders (https:/ ​/
www. ​npmjs. ​com/ ​package/ ​del).

Node CLI for Azure DevOps (tfx-cli package): Command-line utility to package
and publish the extensions for Azure DevOps (https:/ ​/ ​www.​npmjs. ​com/
package/ ​tfx- ​cli).

How to do it...
Let us first start by creating the manifest file.

Creating manifest
We will start by creating the manifest file, which contains the metadata about our
extension:

To do that, open Visual Studio and right-click and create a new file and name1.
it vss-extension.json.
Copy the complete code from the vss-extension.json file provided in the2.
code bundle and paste it in the file you have created in step 1:

{
 "manifestVersion": 1,
 "id": "cookbook-clean-folder",

https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/azure-pipelines-task-lib
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli

Azure DevOps Extensions Chapter 8

[368]

 "name": "Clean Folder",
 "publisher": "onlyutkarsh",
 "version": "0.0.6",
 "public": false,
 "description": "A simple utility extension to delete
files/folders based on glob pattern specified",
 "categories": [
 "Azure Pipelines",
 "Azure Repos"
],
//code is trimmed for brevity

For more information about each element of the manifest file, click
here: http:/ ​/ ​bit. ​ly/ ​2R0mvIA.

Key elements to note in the file are version, id, contributions, publisher, and files.
Here is an explanation of each:

version: Version of the extension.
id: The unique identifier for the extension.
contributions: Various contributions this extension will contain. Our
extension is going to contain only a pipelines task, so the contribution will be
of ms.vss-distributed-task.task type.
publisher: A unique publisher ID of the author of the extension. You need a
publisher to be created if the extension needs to be published to the marketplace.
We have already seen how we can create the publisher in the Creating the VS
Marketplace publisher recipe.

Installing dependencies
We will now need to initialize and install the NPM dependencies. To do that,1.
first we will need to initialize package.json.
In Visual Studio Code, click View | Terminal and type npm init -y. This will2.
create package.json with the basic elements already filled.
Next, let's install the required packages, in our case, those are the azure-3.
pipelines-task-lib and del packages. So, in the terminal, execute the
following command:

npm install azure-pipelines-task-lib del --save

http://bit.ly/2R0mvIA
http://bit.ly/2R0mvIA
http://bit.ly/2R0mvIA
http://bit.ly/2R0mvIA
http://bit.ly/2R0mvIA
http://bit.ly/2R0mvIA
http://bit.ly/2R0mvIA
http://bit.ly/2R0mvIA
http://bit.ly/2R0mvIA

Azure DevOps Extensions Chapter 8

[369]

Next, we will need to install a few dev dependencies. These dependencies4.
provide us type definitions and help TypeScript to perform type checking. Since
these are development-time dependencies only, we are going to use the --save-
dev flag.

npm install @types/del @types/node @types/q --save-dev

So, our final package.json file looks as follows:

{
 "name": "clean-folder",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC",
 "dependencies": {
 "azure-pipelines-task-lib": "~2.7.7",
 "del": "~3.0.0"
 },
 "devDependencies": {
 "@types/del": "~3.0.1",
 "@types/node": "~10.12.15",
 "@types/q": "~1.5.1"
 }
}

Creating the task.json file
Each task has to have the JSON file describing the inputs for the task:

Let's create a JSON file. Create a new file and save it as task.json. The complete1.
code can be found in the Chapter08 folder of the code bundle.

Azure DevOps Extensions Chapter 8

[370]

Notice the inputs element. We have two elements for two inputs we will2.
need—first, for the directory to clean and second, for the search pattern.

id and name are unique identifiers for the task and version and need to
be incremented every time we upload the task.

{
 "id": "20a947f2-c251-42e8-8376-5d7c5c1f8e71",
 "name": "cleanfolder",
 "friendlyName": "Clean Folder",
 "description": "Clean folder using the glob pattern",
 "helpMarkDown": "[More
Information](https://marketplace.visualstudio.com/items?itemNam
e=onlyutkarsh.utkarsh-utility-tasks) -
v#{GitVersion.MajorMinorPatch}#",
 "category": "Utility",
 "visibility": [
 "Build",
 "Release"
],
 //code is trimmed for the sake of brevity

Finally, notice the execution element of the task.json.

"execution": {
 "Node10": {
 "target": "index.js"
 },
 "Node": {
 "target": "index.js"
 }
 }

This is telling the pipeline agent that our execution handler is Node (for both Node v10 and
older Node versions) and that the agent should look for a file named index.js in the task
to start the execution. The agent passes the inputs filled by the user to index.js.

Azure DevOps Extensions Chapter 8

[371]

Creating the script (index.js) file
The next step is to create the script file that will have logic to clean the directory1.
given the path and the search pattern.
Right-click on the explorer and create a new file and name it index.ts, paste the2.
following code, and save it. When built, the file automatically gets transpiled into
an index.js file:

import * as tl from "azure-pipelines-task-lib";
import * as del from "del";

async function main() {
 try {
 let sourceDir = tl.getInput("rootDirectory", false) ||
 tl.getVariable("System.DefaultWorkingDirectory");
 let globPattern = tl.getDelimitedInput("globPattern",
"\n");

 console.info(`Deleting contents from '${sourceDir}'`);
 console.info(`Glob pattern:`);
 console.info(`${globPattern.join("\n")}`);
 let paths = del.sync(globPattern, {
 cwd: sourceDir,
 root: sourceDir
 });

 console.info(`Deleted content:`);
 console.info(`********************`);
 console.info(`${paths.join("\n")}`);
 console.info(`********************`);
 console.info("All Done");
 }
 catch (error) {
 console.error("Error occurred", error);
 tl.error(error);
 tl.setResult(tl.TaskResult.Failed, error);
 }
}

main()
 .then(() => { })
 .catch(reason => {
 console.error(reason);
});

Azure DevOps Extensions Chapter 8

[372]

How it works...
In the first two lines of the index.ts file we created in Creating the script file section above ,
we are importing the modules we need so that we get the necessary functions to use in the
task. The task library import lets us read the inputs and also set the result to success or
failure. Next, we create a simple main() function that is automatically called when the task
is executed. Within the main method, we first read the inputs, specifically directory path,
and the search pattern. Note that we are letting users specify multiple glob patterns
separated by a new line that we read using
tl.getDelimitedInput("globPattern", "\n"). The del package understands the
glob pattern by default, and hence we just need to set the directory passed as a working
directory and cleaning is automatically handled by the package.

See also
Microsoft has open sourced most of the tasks on GitHub (https:/ ​/ ​github. ​com/
Microsoft/ ​azure- ​pipelines- ​tasks); all the tasks are good candidates to
reference and learn writing tasks.
Different extension points are maintained here: https:/ ​/​docs. ​microsoft. ​com/
en-​us/ ​azure/ ​devops/ ​extend/ ​reference/ ​targets/ ​overview? ​view= ​vsts.
The task.json schema is maintained on GitHub here: https:/ ​/​github. ​com/
Microsoft/ ​azure- ​pipelines- ​task-​lib/ ​blob/ ​master/ ​tasks. ​schema. ​json.
Microsoft Contribution Guide Extension: https:/ ​/​marketplace. ​visualstudio.
com/​items? ​itemName= ​ms- ​samples. ​samples- ​contributions- ​guide.

Creating a UI extension
In the previous recipe, we saw how to create a build and release pipeline task to clean the
directory. Pipeline tasks help you to use them in your build and release pipeline and assist
you in automating the activities as per your task's logic.

In this topic, we will see how to create UI extensions that integrate and extend the user
interface of the Azure DevOps Server. The UI extensions internal structure is similar to
pipeline tasks—containing a manifest file, assets, and code files.

https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://github.com/Microsoft/azure-pipelines-tasks
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://docs.microsoft.com/en-us/azure/devops/extend/reference/targets/overview?view=vsts
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://github.com/Microsoft/azure-pipelines-task-lib/blob/master/tasks.schema.json
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide
https://marketplace.visualstudio.com/items?itemName=ms-samples.samples-contributions-guide

Azure DevOps Extensions Chapter 8

[373]

Because UI extensions integrate and run on the server (which is a web interface), you will
always use JavaScript to write your core logic. Some of the popular UI extensions are as
follows:

Azure Artifacts: https:/ ​/ ​marketplace. ​visualstudio. ​com/ ​items? ​itemName= ​ms.
feed

Delivery Plans: https:/ ​/​marketplace. ​visualstudio. ​com/ ​items? ​itemName= ​ms.
vss-​plans

Test Manager: https:/ ​/​marketplace. ​visualstudio. ​com/ ​items? ​itemName= ​ms.
vss-​testmanager- ​web

In this recipe, we will build a UI extension that will customize the work item form so that
we get a new context menu. The idea is to help testers so that they can automatically
generate test cases for well-written user acceptance criteria. The user will be able to click
our menu item and generate the manual test cases.

Getting ready
To show you the outcome of our working extension, please see the following screenshot:

https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-plans
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web

Azure DevOps Extensions Chapter 8

[374]

We will be adding a context menu named Generate Tests and clicking that the extension
will parse the acceptance criteria and do simple parsing of the acceptance criteria written in
Gherkin statements (https:/ ​/​docs. ​cucumber. ​io/ ​gherkin/ ​reference) and generate
manual test cases and assign it to the first available test plan.

We will again write this using TypeScript language. We will use the following:

Editor – VSCode: Free developer-friendly editor. However, you are free to use
any editor you are comfortable with.
Language – TypeScript: Provides type checking and other benefits (https:/ ​/
www.​typescriptlang. ​org). Install it using npm install -g typescript.
NPM packages for the task:

Microsoft VSS Web Extension SDK: An SDK to communicate
with Azure DevOps UI (https:/ ​/​www. ​npmjs. ​com/ ​package/ ​vss-
web- ​extension- ​sdk).
html-parse-stringify: A utility node package to parse the
acceptance criteria HTML (https:/ ​/​www. ​npmjs. ​com/ ​package/ ​del).
sanitize-html: A utility node package to clean the HTML from
the acceptance criteria field (https:/ ​/​www. ​npmjs. ​com/ ​package/
sanitize- ​html).
Node CLI for Azure DevOps (tfx-cli package): Command-line
utility to package and publish the extensions for Azure DevOps
(https:/ ​/ ​www. ​npmjs. ​com/ ​package/ ​tfx- ​cli).

How to do it...
As in the previous recipe, we will again start by creating a manifest file. We will then add
the script file (.js file) and a few assets to finally use it in the marketplace.

https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://docs.cucumber.io/gherkin/reference
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/vss-web-extension-sdk
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/del
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli
https://www.npmjs.com/package/tfx-cli

Azure DevOps Extensions Chapter 8

[375]

Creating manifest.json
As discussed in the introduction to this chapter, manifest (vss-extension.json) file
contains the metadata for the extension.

Create a new file in VS code and name it vss-extension.json. The complete1.
code can be found in the code bundle under RCP03-UIExtension-Extensions
folder. Paste the complete code in the vss-extension.json file:

{
 "manifestVersion": 1,
 "id": "acceptance-demo",
 "version": "0.0.8",
 "name": "Acceptance Criteria to Test Case",
 "description": "Convert acceptance criteria written in
Gherkin to Test cases.",
 "publisher": "onlyutkarsh",
 "public": false,
 "targets": [
 {
 "id": "Microsoft.VisualStudio.Services"
 }
],
//code is trimmed for the sake of brevity

Now install the dependencies:2.
As in the pipeline extension, we need to initialize NPM and install all1.
the required node packages. As before, do that by running the npm -y
command.
Next, run following command to install the required dependencies:2.

npm install vss-web-extension-sdk sanitize-html html-
parse-stringify

To provide the required types, add additional dev dependencies using3.
the following command:

npm install @types/jquery @types/node --save-dev

Azure DevOps Extensions Chapter 8

[376]

Your package.json should now look as follows:

{
 "name": "demo1",
 "version": "1.0.0",
 "description": "Utility extension",
 "main": "index.js",
 "author": "Utkarsh Shigihalli",
 "license": "MIT",
 "scripts": {},
 "devDependencies": {
 "@types/jquery": "^3.3.21",
 "@types/node": "^10.12.9",
 "typescript": "^2.9.2"
 },
 "dependencies": {
 "html-parse-stringify": "^1.0.3",
 "sanitize-html": "^1.19.1",
 "vss-web-extension-sdk": "^5.141.0"
 }
}

Finally, we need the VSS.SDK.min.js file from vss-web-extension-sdk to be3.
referenced in our files so that we can consume utility functions from it. Thus, we
need to copy this file from the <root folder>\node_modules\vss-web-
extension-sdk\lib\ folder. I have copied this file into a separate directory
called lib as shown here:

Azure DevOps Extensions Chapter 8

[377]

Creating the HTML page to host initialization code
Now we will start creating the HTML page we defined in the contribution section of our
manifest file. The HTML page acts as a host page for our JavaScript action handler and
initialization code. Azure DevOps Extension SDK loads this file dynamically when we click
on the menu item we defined in the manifest file:

Create a file named generateTestCase.html and paste the following code:1.

The file name is case sensitive and the name you declare in the vss-
extension.json manifest file should match the file you create here.

<!DOCTYPE html>
<html lang="en">
 <head>
 <script src="../lib/VSS.SDK.min.js"></script>
 <script>
 VSS.init({
 explicitNotifyLoaded: true,
 usePlatformScripts: true,
 });
 VSS.ready(function () {
 console.log("VSS Ready ");
 VSS.require(["src/generateTestCase"], function (generate) {
 console.log("Initialization complete...")
 });
 });
 </script>
 </head>
 <body style="overflow:auto;">
 </body>
</html>

We are doing a couple of key things here in the head tags of this file:

First, we reference the VSS.SDK.min.js file we copied in the previous step. This1.
file contained all the required modules for working with Azure DevOps
extensions. Specifically, VSS SDK ships its own version of the require module.

Azure DevOps Extensions Chapter 8

[378]

In the first part of the script section, we initiate the handshake with the host2.
window and specify that we will explicitly let Azure DevOps know when the
extension is loaded by setting explicitNotifyLoaded: true. We will also
notify from our script file when the loading is complete as you will see next. Now
we will specify that we require the platform scripts (controls, REST clients, and
so on) from the SDK, thus making Azure DevOps load any inbuilt scripts before
loading our extension.
In the next step, with VSS.ready(), we are registering a callback that gets called3.
once the initial handshake is completed with the host window. Within this
callback function, we load our generateTestCase module, which we are going
to write next.

For more information on the all available methods with the VSS SDK,
please visit http:/ ​/ ​bit. ​ly/ ​2GZiVtp.

Creating the script file
At this point, we have created the vss-extension.json, initialized NPM and installed the
dependencies using package.json, and also created an HTML page to host the
initialization code for our extension.

In this step, we will write the code to read the acceptance criteria written in Gherkin format,
parse the text, and finally create the test cases:

Create a file name, generateTestCase.ts, and paste the following text. 1.

/// <reference types="vss-web-extension-sdk" />
import { WorkItemFormService } from
"TFS/WorkItemTracking/Services";
import * as TestClient from "TFS/TestManagement/RestClient";
import * as WitClient from "TFS/WorkItemTracking/RestClient";
//code is trimmed for the sake of brevity

export class GenerateTestCase {
 public async execute(actionContext) {
 try {
 let work = await WorkItemFormService.getService();
 let availableFields = await work.getFields();
 let values = await
work.getFieldValues(["System.Id",
"Microsoft.VSTS.Common.AcceptanceCriteria"]);

http://bit.ly/2GZiVtp
http://bit.ly/2GZiVtp
http://bit.ly/2GZiVtp
http://bit.ly/2GZiVtp
http://bit.ly/2GZiVtp
http://bit.ly/2GZiVtp
http://bit.ly/2GZiVtp
http://bit.ly/2GZiVtp
http://bit.ly/2GZiVtp

Azure DevOps Extensions Chapter 8

[379]

//some of the code is trimmed for the sake of brevity

 let testClient = TestClient.getClient();
 let plans = await
testClient.getPlans(webContext.project.id);
 console.log("plans", plans);

 let selectedPlan = plans[0];
 let suite = await
testClient.getTestSuitesForPlan(webContext.project.id,
selectedPlan.id);
 console.log("suite", suite);

 //some of the code is trimmed for the sake of
brevity
 witDoc =
testBaseHelper.saveActions(witDoc);
 let witClient = WitClient.getClient();
 let workitem = await
witClient.createWorkItem(witDoc, webContext.project.id, "Test
Case", false, false, true);
 alert(`Workitem ${workitem.id} is
created`);
 await
testClient.addTestCasesToSuite(webContext.project.id,
selectedPlan.id, suite[0].id, `${workitem.id}`);
 console.log(workitem);
 });
 });
 }
 catch (err) {
 alert(err);
 }
 }
}
let content = "";
function getAcceptanceCriteria(ast) {
 //code is trimmed for the sake of brevity
}
VSS.register(VSS.getContribution().id, context => {
 let action = new GenerateTestCase();
 return action;
});
VSS.notifyLoadSucceeded();

Azure DevOps Extensions Chapter 8

[380]

Full source is available in the code bundle under RCP03-UIExtension-
Extensions folder.

Create another file named GherkinParser.ts and paste the code from2.
GherkinParser.ts file from the code bundle. This exposes a function to parse
the gherkin text and give a tree of scenarios and features:

export function parseGherkin(text: string) {
 //code is trimmed for the sake of brevity
 return features;
}

How it works...
Let's first decipher the generateTestCase.ts file. Notice at the bottom of the
generateTestCase.ts file we have the following:

VSS.register(VSS.getContribution().id, context => {
 let action = new GenerateTestCase();
 return action;
});
VSS.notifyLoadSucceeded();

The first thing we do here is to register an object that this extension exposes to the host
frame. We do that using the VSS.register() function. This takes two parameters:

The first is the instanceId, which is the menu id we registered in the manifest.
This should be a fully qualified name in the <publisherid>.<menu-
id> format. We could hardcode the menu ID as onlyutkarsh.sample-work-
item-menu., but using VSS.getContribution().id makes it simpler and
automatically gets the right ID.
The second parameter is an object and we are passing a function that returns the
object instance. Within this function, we instantiate and return the object of our
class. The class should have a public function named execute. VSS SDK
automatically invokes this method to be called when our context menu is clicked.

Finally, remember how we specified explicitNotifyLoaded: true in the preceding
HTML file? The last line, VSS.notifyLoadSucceeded(), in generateTestCase.ts,
notifies that the extension has been loaded successfully.

Azure DevOps Extensions Chapter 8

[381]

Let's understand GenerateTestCase.ts. As you might have seen, the core logic of
parsing the acceptance criteria and generating a test case lies in our GenerateTestCase
class.

First, we have a couple of import statements. Most of them are from RestClient classes
from VSS SDK, which allow us to query WorkItem, TestPlans, and TestSuites. The rest
of the import statements provide utility methods (SanitizeHtml, html, and parser) to
clean the acceptance criteria text.

At the start of the try block, we first get the web context from the SDK, and this returns an
object containing collection and project information:

let webContext = VSS.getWebContext(); // contains collection, project and
user details.

To read the acceptance criteria from the work item form, we need to consume
WorkItemFormService from the VSS SDK. We do that using the following code:

// get acceptance criteria
let work = await WorkItemFormService.getService();
let values = await work.getFieldValues(["System.Id",
"Microsoft.VSTS.Common.AcceptanceCriteria"]);
let rawAcceptanceCriteria =
values["Microsoft.VSTS.Common.AcceptanceCriteria"];

The acceptance criteria returned by the preceding call is in the raw form including the
HTML tags. But we are interested only in the text form. So, we remove the HTML tags
using html-parse-stringify and the sanitize-html utility NPM packages. Note
that getAcceptanceCriteria is a utility function that recursively scans for elements
which has text tag with the help of html-parse-stringify

Finally, we are are using our parseAsGherkin() utility function from parser.ts to get
the list of features and scenarios and each line under scenario becomes a step:

// parse acceptance criteria to gherkin syntax tree
let ast = html.parse(rawAcceptanceCriteria);
getAcceptanceCriteria(ast);
let sanitizedAcceptanceCriteria = SanitizeHtml(content, {
 allowedTags: [],
 allowedAttributes: []
});
let parsedResponse = parser.parseAsGherkin(sanitizedAcceptanceCriteria);

Azure DevOps Extensions Chapter 8

[382]

Now that we have the acceptance criteria in a usable format, we will get the TestPlan and
TestSuite so that we can create TestCase for each scenario and add TestStep to each
line of the scenario. To query Test objects, we will need to use TestClient. We do that as
follows:

let testClient = TestClient.getClient();
let plans = await testClient.getPlans(webContext.project.id);
let selectedPlan = plans[0]; //for demo purpose we are selecting the first
available test plan
let suite = await testClient.getTestSuitesForPlan(webContext.project.id,
selectedPlan.id);

Next, we traverse through each scenario and for each line item, we create TestStep using
the following code. The following code is using the scenario title for the TestCase title.
Finally, once the test case is created, we add that to the first TestSuite in the selected
TestPlan:

//code is trimmed for the sake of brevity
let helper = new TestBaseHelper();
let testBaseHelper = helper.create();

 parsedResponse.forEach(feature => {
 feature.Scenarios.forEach(async scenario => {
 let witDoc: JsonPatchDocument =
 [
 {
 "op": "add",
 "path": "/fields/System.Title",
 "value": scenario.Text
 },
 {
 "op": "add",
 "path": "/fields/System.Description",
 "from": null,
 "value": feature.Desire
 }
];
 scenario.Steps.forEach(step => {
 let testStep = testBaseHelper.createTestStep();
 testStep.setTitle(step);
 testBaseHelper.actions.push(testStep);
 });
 witDoc = testBaseHelper.saveActions(witDoc);
 let witClient = WitClient.getClient();
 let workitem = await witClient.createWorkItem(witDoc,
webContext.project.id, "Test Case", false, false, true);
 alert(`Workitem ${workitem.id} is created`);

Azure DevOps Extensions Chapter 8

[383]

 await
testClient.addTestCasesToSuite(webContext.project.id, selectedPlan.id,
suite[0].id, `${workitem.id}`);
 console.log(workitem);

 });
 });

How it works...
Apart from id, version, and publisher, the important sections in the manifest file above
are as follows:

Scopes: This element defines the authorization scopes required for this extension.
Because our extension needs to needs to create a test case, which is a work item
as well, our extension will request for vso.work_write and vso.test_write.
For a full list of scopes click here: http:/ ​/​bit. ​ly/​2RfhiwJ.
Demands: Demands let your extension declare capabilities that are necessary for
your extension to work. For example, if you would like this extension to be
dependent on another extension installed, say the Test Manager extension, we
could write a demand using extension/{id} syntax as
follows—where ms.vss-testmanager-web is the id of the extension from the
marketplace URL for the Test
Manager extension—https://marketplace.visualstudio.com/items?itemName

=ms.vss-testmanager-web:

"demands": [
 "extension/ms.vss-testmanager-web"
],

For a full list of available demands, click here: http:/ ​/​bit. ​ly/​2scMspr.

Contributions: This section defines the contributions. Because we are extending
a work item form's context menu, we add a contribution of the ms.vss-
web.action type and target ms.vss-work-web.work-item-context-menu so
that when clicked on, the context menu action is triggered.

http://bit.ly/2RfhiwJ
http://bit.ly/2RfhiwJ
http://bit.ly/2RfhiwJ
http://bit.ly/2RfhiwJ
http://bit.ly/2RfhiwJ
http://bit.ly/2RfhiwJ
http://bit.ly/2RfhiwJ
http://bit.ly/2RfhiwJ
http://bit.ly/2RfhiwJ
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-testmanager-web
http://bit.ly/2scMspr
http://bit.ly/2scMspr
http://bit.ly/2scMspr
http://bit.ly/2scMspr
http://bit.ly/2scMspr
http://bit.ly/2scMspr
http://bit.ly/2scMspr
http://bit.ly/2scMspr
http://bit.ly/2scMspr

Azure DevOps Extensions Chapter 8

[384]

The properties section under contribution defines additional menu item
properties; text defines the menu text, and the value for title is
displayed as a tooltip when hovered over the menu item; toolbarText is
shown when the cursor is on the menu item; icon is for the menu item;
and finally uri is the URI of the HTML page, which has the action
handler for the registered menu item.

Files: This element defines the assets and script that need to the part of the
extension. Please note, we are setting "addressable": true for all the assets
that need to be accessible via a URL by Azure DevOps. We also include
the src, lib, and images directories, as they contain our necessary files for the
marketplace.
Public: This controls whether the extension is visible to everyone on the VS
marketplace. It is a good idea to keep this to false during development.

There's more...
Although we used VSS Web Extension SDK in this recipe, Microsoft is
developing a react based SDK called Azure DevOps Web Extension SDK, which
will replace the VSS Web Extension SDK we used.
For more information on Azure Dev Web Extension SDK - https:/ ​/​github. ​com/
Microsoft/ ​azure- ​devops- ​extension- ​sdk

Sample extension using Azure DevOps Web Extension SDK - https:/ ​/​github.
com/​Microsoft/ ​azure- ​devops- ​extension- ​sample

Creating a service connection extension to
connect to GitLab
Service connections in Azure DevOps Server (and Services) lets you connect to external
services. Service connections once created can be used in your build or release pipelines.

https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sdk
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample
https://github.com/Microsoft/azure-devops-extension-sample

Azure DevOps Extensions Chapter 8

[385]

Service connections are created at the project level. This means a service
connection created for one project is not available in another project.

GitLab, if you don't know already, is another cloud Git service provider. Azure DevOps
Server, by default, provides a service connection to connect to GitHub and lets you connect
to an external Git repository using an External Git connection. Unfortunately, the External
Git service connection lets you connect to one repository (or project if you are a GitLab
user):

If you need to connect to another repository, you need to create another service connection
with a different Git repository URL and save it as a different service connection.

We can solve this problem by creating a custom service connection that lets us connect to
GitLab. In this recipe, we will see how to create custom service connections.

Azure DevOps Extensions Chapter 8

[386]

We can then use this new service connection to connect to other GitLab repositories in our
pipeline. At the end of the recipe, a new service connection dialog will show a new custom
GitLab connection type:

Azure DevOps Extensions Chapter 8

[387]

Selecting this service connection type will prompt users' GitLab credentials and save it so
that this connection can be used in the pipeline:

To authenticate with GitLab, you have three options as follows. In this recipe, we will allow
users to authenticate with GitLab using personal access tokens:

Oauth2 tokens
Personal access tokens
Session cookies

More information about supported authentication types for GitLab can be
found here: http:/ ​/ ​bit. ​ly/ ​2VKQiUr.

http://bit.ly/2VKQiUr
http://bit.ly/2VKQiUr
http://bit.ly/2VKQiUr
http://bit.ly/2VKQiUr
http://bit.ly/2VKQiUr
http://bit.ly/2VKQiUr
http://bit.ly/2VKQiUr
http://bit.ly/2VKQiUr
http://bit.ly/2VKQiUr

Azure DevOps Extensions Chapter 8

[388]

Getting ready
The first step is to create the manifest file (vss-extension.json) with our extension
metadata. As in other recipes, Azure DevOps exposes a service connection as a contribution
in the manifest, thus allowing us to add our custom service connection contribution.

The steps we will have to get this working are as follows:

Create a manifest file and define service connection contribution.1.
Define input fields for the contribution to accept Connection name, Server URL,2.
Username, and API Token.
Provide help links.3.
Provide a Verify connection link, as shown in the following screenshot:4.

Azure DevOps Extensions Chapter 8

[389]

How to do it...
Open Visual Studio Code, and create a new file and call it vss-1.
extension.json. Add the contribution of type ms.vss-endpoint.service-
endpoint-type. For rest of the content in the vss-extension.json, take a
look at the file in RCP04-GitLab-Extensions folder.

Please note we are extending the same extension in the next few recipes.
You might see more information in the source code. I am highlighting the
content relevant to this recipe below.

{
//some of the code is trimmed for the sake of brevity
 "manifestVersion": 1,
 "contributions": [
 {
 "id": "gitlab-downloadrepo-task",
 "type": "ms.vss-distributed-task.task",
 "targets": [
 "ms.vss-distributed-task.tasks"
],
 "properties": {

 },
 "inputDescriptors": [
 {

],
 "dataSources": [

],
 "authenticationSchemes": [
 {
 "type": "ms.vss-endpoint.endpoint-auth-scheme-token",
 "inputDescriptors": [
 {
 "id": "apitoken",
 "name": "API Token",
 "description": "GitLab API Token",
 "inputMode": "passwordbox",
 "isConfidential": true,

Azure DevOps Extensions Chapter 8

[390]

 "validation": {
 "isRequired": true,
 "dataType": "string"
 },
 "helpMarkDown": "<a
href=\"https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html\
" target=\"_blank\">Creating a personal access token"
 }
],
 "headers": [

],
 "helpMarkDown": "Learn more about <a
href=\"https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html\
" target=\"_blank\">Creating GitLab tokens and <a
href=\"https://docs.microsoft.com/en-us/vsts/pipelines/library/service-endp
oints?view=vsts\" target=\"_blank\">Service connections "
 }
 },
....

For defining a custom service connection, adding a contribution to a manifest file is enough.
We will see how it works in the next section.

How it works...
As we have seen in other recipes, a few of the fields such as name, id, publisher, and so
on, are critical for defining the extension. We have covered these in the previous recipes.
Let's dig deeper.

The key piece of information is in the contributions array. For defining a custom service
endpoint, we add a contribution of the ms.vss-endpoint.service-endpoint-type
type that targets ms.vss-endpoint.endpoint-types.

Next, under the properties element, we have name, icon, and Display name fields that
uniquely identify this custom endpoint. These are used to select this service connection in
the pipeline task:

Azure DevOps Extensions Chapter 8

[391]

Tasks using a custom service connection need to provide input for the
service connection they support. We will see how we can write a task to
make use of this service connection in our next recipe.

Next, our custom service connection has input fields to accept values from the user.
Specifically, for accepting the name for the service connection, API URI (this can be custom
URL for GitLab Enterprise edition) for authenticating with GitLab, username and finally
private access token. We did that by adding a properties section for our contribution.

So let's look into these, one by one:

url: URL is a mandatory field that every custom service connection needs to
provide. In our case, we know that the default value will be https:/ ​/​gitlab.
com. So, we define it as follows:

"url": {
 "displayName": "Server URL",
 "value": "https://gitlab.com",
 "helpText": "Client service connection for GitLab. You
don't need to change this unless you are using self hosted
GitLab instance, in which case you may need to point to your
instance URL. ",
 "isVisible": true
},

https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com
https://gitlab.com

Azure DevOps Extensions Chapter 8

[392]

helpText: This provides tooltip information. If you want this field not to be
invisible (and not editable) for the user, use the isVisible property. For more
details, see http:/ ​/​bit. ​ly/ ​2RGtbew.
inputDescriptors: Input fields are defined under inputDescriptors array.
We create an input field for the username. Using the username, we will validate
the PAT token by making a REST call to an authenticated API:
https://<endpointurl>/api/v4/users?username=<username>. We define
the inputs as follows:

{
 "id": "username",
 "name": "Username",
 "description": "Username you use to login to GitLab. This
is required only to validate your PAT token using 'Verify
connection' link below.",
 "inputMode": "textbox",
 "isConfidential": false,
 "validation": {
 "isRequired": true,
 "dataType": "string"
 }
}

As you can see in the preceding code snippet, we make it a text field using
isConfidential and make sure the user enters their string value here. We also
set inputMode as textbox, but text area and combo box are also supported.

Although GitLab only needs a personal access token for API calls, our
intention is to authenticate a PAT token using a Verify connection link
when a user is creating the service connection. We do that using the
dataSources field as you will see in a moment.

dataSources: Service endpoints support querying data from external services
through REST API. In our contribution, we are utilizing the well-known
TestConnection data source. Adding this to our contribution automatically
provides us with the Validate connection hyperlink. Clicking on that
automatically calls the REST URL defined for endpointUrl under
TestConnection. We validate the response using resultSelector, which is a
jsonpath expression. In our case, we are just validating whether we received a
valid 200 HTTP response using jsonpath:$[*].

http://bit.ly/2RGtbew
http://bit.ly/2RGtbew
http://bit.ly/2RGtbew
http://bit.ly/2RGtbew
http://bit.ly/2RGtbew
http://bit.ly/2RGtbew
http://bit.ly/2RGtbew
http://bit.ly/2RGtbew
http://bit.ly/2RGtbew

Azure DevOps Extensions Chapter 8

[393]

For more information on data sources, please see http:/ ​/​bit. ​ly/ ​2HgLpzk.

Another thing you might have noticed is that we did not define an input field for
a Personal Access Token (PAT). This is because Azure DevOps automatically
provides a mechanism to handle authentication schemes. You will see it as
follows.

authenticationSchemes: This element defines how our custom service
connection handles the authentication. This is a critical field for any API
endpoints that need authentication, as successful authentication will enable
dropdowns in task inputs to populate the values:

http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk

Azure DevOps Extensions Chapter 8

[394]

The Azure DevOps support service connection contribution endpoint supports many
different types of authentication schemes. For more information, see http:/ ​/​bit. ​ly/
2M3L3um.

In our custom service endpoint for GitLab, we are authenticating with PAT, so we
use ms.vss-endpoint.endpoint-auth-scheme-token. We then define an input to store
our PAT. Notice we make isConfidential: true and inputmode: passwordbox so
that PAT is masked when entering. We have also made it mandatory by defining
isRequired: true.

Finally, we have also defined a headers array. This allows us to send any required
additional data to the REST API calls in the header. This is required because the GitLab API
expects us to send the PAT for each request in the header as Private-Token: <PAT>.

See also
Many of the inbuilt tasks in Azure DevOps that connect to external services such as
GitHub, Bitbucket, and Azure make use of data sources and authentication schemes.
Microsoft has published many of the extensions on GitHub at http:/ ​/​bit. ​ly/ ​2McbE8V.

Creating a pipeline task to consume a
custom service connection
In the previous recipe, we created a custom service connection to connect to GitLab.
However, service connections on their own are not useful unless they are used to connect to
a third-party service in the pipeline task. In this recipe, we will create a custom pipeline
task to download the source code from GitLab using the custom service connection we
created in the preceding section. We will also extend the manifest file created and add a few
additional data sources so that they can be used in the task to show available repositories
(projects), branches, and so on:

http://bit.ly/2M3L3um
http://bit.ly/2M3L3um
http://bit.ly/2M3L3um
http://bit.ly/2M3L3um
http://bit.ly/2M3L3um
http://bit.ly/2M3L3um
http://bit.ly/2M3L3um
http://bit.ly/2M3L3um
http://bit.ly/2McbE8V
http://bit.ly/2McbE8V
http://bit.ly/2McbE8V
http://bit.ly/2McbE8V
http://bit.ly/2McbE8V
http://bit.ly/2McbE8V
http://bit.ly/2McbE8V
http://bit.ly/2McbE8V
http://bit.ly/2McbE8V

Azure DevOps Extensions Chapter 8

[395]

Getting ready
In this recipe, we will do the following:

Install dependencies1.
Add task.json2.
Use a custom service connection for GitLab as input3.
Allow users to select a repository and branch using data sources and bindings4.
Write a script to download the source from GitLab5.
All the files used in this task are in the code bundle6.

By the end of this recipe, the extension will allow us to connect to GitLab using the custom
service connection we built in the Creating a service connection to connect to GitLab recipe.
We'll also be able to download the source using the task we create in this recipe.

Azure DevOps Extensions Chapter 8

[396]

How to do it...
Let's look at the three tasks that we need to perform.

Installing dependencies
Because we will be writing this in TypeScript, we will use a few NPM packages that will
help us in making GitLab REST calls and also interact with the Azure Pipelines task library:

Create a package.json and paste the following text. Alternatively, you can run1.
npm init -y and then install all the packages one by one, as we did in the
previous recipes:

{
 "name": "onlyutkarsh-gitlab-dev",
 "version": "0.0.0",
 "description": "download artifact task",
 "main": "index.js",
 "scripts":{},
 "author": "Utkarsh",
 "license": "ISC",
 "dependencies": {
 "axios": "^0.18.0",
 "events": "^3.0.0",
 "fs-extra": "^7.0.0",
 "path": "^0.12.7",
 "azure-pipelines-task-lib": "^2.7.7"
 }
}

Adding task.json
As you have seen in the previous recipes, we need to add the task.json for our Download
GitLab Repository task. As you might remember, task.json defines the structure of the
inputs for the pipeline task:

Create a task.json file in Visual Studio Code and paste text from the code1.
bundle from RCP04-GitLab-Extensions folder:

{
 "id": "ca83284d-c3f5-46a5-ba52-dacd68ea6747",
 "name": "downloadgitlabrepositorycookbook",

Azure DevOps Extensions Chapter 8

[397]

 "friendlyName": "Download GitLab repository",

 "minimumAgentVersion": "2.115.0",
 "instanceNameFormat": "Download GitLab repository",
 "inputs": [
 {
 "name": "connection",
 "type": "connectedService:GitLab",
 "label": "GitLab Connection",
 "defaultValue": "",
 "required": true,
 "helpMarkDown": "GitLab service connection"
 },
 //code is trimmed for the sake of brevity
],
 "dataSourceBindings": [
 {
 "target": "definition",
 "endpointId": "$(connection)",
 "dataSourceName": "Repositories",
 "parameters": {},
 "resultTemplate": "{ \"Value\" : \"{{id}}\",
\"DisplayValue\" : \"{{{path_with_namespace}}}\" }"
 }
//code is trimmed for the sake of brevity
],
 "execution": {
 "Node": {
 "target": "index.js",
 "argumentFormat": ""
 }
 }
}

As you saw in Creating a simple task to clean folders recipe this task.json again has an
execution section with target file for execution which we will create next.

Azure DevOps Extensions Chapter 8

[398]

Creating a core script to download a source from
GitLab

Create a file called index.ts (remember a TypeScript file when built gets1.
transpiled into a JavaScript file with the same name as index.js) and paste as
per the index.ts file in this repository:

//some of the code is trimmed for the sake of brevity. refer
the code bundle.
import * as tl from "azure-pipelines-task-lib";
import * as url from "url";
import * as path from "path";
import { GitWrapper, IGitExecOptions } from "./gitwrapper";
import * as fse from "fs-extra";
import { GitApi } from "./gitapi";

async function main() {
 try {
 let _this = this;

 // get the task vars
 let debugOutput = tl.getVariable("system.debug");
 debugOutput = debugOutput || "false";
 let isDebugOutput: boolean = debugOutput.toLowerCase()
=== "true";

 tl.debug("Finding repository url");
 let gitApi = new GitApi();
 let repoUrl = await gitApi.getRepoUrl(endpointUrl,
definition, token);
 console.info(`Repo Url: ${url.format(repoUrl)}`);

 //code is trimmed for the sake of brevity
 if (versionSelector === "latestDefaultBranch") {
 tl.debug("Finding commit for default branch");
 commitId = await
gitApi.getLatestCommitIdFromBranch(endpointUrl, definition,
token);
 }
 else if (versionSelector ===
"latestSpecificBranch") {
 tl.debug(`Finding commit for '${branch}'
branch`);
 commitId = await
gitApi.getLatestCommitIdFromBranch(definition, token, branch);

Azure DevOps Extensions Chapter 8

[399]

 }
 console.info("Cloning repository...");
 let gitWrapper = new GitWrapper();
 gitWrapper.username = username;
 gitWrapper.password = token;

 // Git clone
 await gitWrapper.clone(formattedRepoUrl, false,
downloadPath, options);
 // Checkout branch
 await gitWrapper.checkout(branch, options);
 // Checkout commit
 await gitWrapper.checkout(commitId, options);

 console.info("Done");
 tl.setResult(tl.TaskResult.Succeeded, "");
 }
 catch (error) {
 console.error("Error occurred", error);
 tl.error(error);
 tl.setResult(tl.TaskResult.Failed, error);
 }
}

main()
 .then(() => console.info("All Done!"))
 .catch(reason => console.error(reason));

From the imports section of this file, you might have noticed that we are referencing two
utility files named gitapi.ts and gitwrapper.ts. Both files are available in the code
bundle.

How it works...
In the task.json file, we first set id, name, and friendly name, which uniquely identifies
this task name when installed. Next, under the inputs array, we start adding inputs. Let's
analyze them one by one.

The first input is a prompt for the GitLab service connection, which we have declared as
follows:

{
 "name": "connection",
 "type": "connectedService:GitLab",
 "label": "GitLab Connection",

Azure DevOps Extensions Chapter 8

[400]

 "defaultValue": "",
 "required": true,
 "helpMarkDown": "GitLab service connection"
}

Notice that the type of this input is connectedService:GitLab—connectionService

signals that this is a service connection type and GitLab is a service connection type. This
allows Azure DevOps to display only GitLab service connections in the dropdown. We also
mark it as mandatory.

Once the service connection is selected by the user, we then ask the user for the repository,
and we display a picklist with all the user repositories in the drop-down. To do that, we
add the input as a picklist:

{
 "name": "definition",
 "type": "pickList",
 "label": "Repository",
 "defaultValue": "",
 "required": true,
 "properties": {
 "EditableOptions": "True"
 },
 "helpMarkDown": "GitLab repository id"
}

We want this input to show a dropdown of repositories. To do that, we need to make a
REST API call to GitLab (https:/ ​/​gitlab. ​com/ ​api/ ​v4/​projects? ​owned= ​true) to fetch the
repositories using the token provided in the service connection.

First, we define a dataSource under the dataSources section in the vss-
extension.json file:

"dataSources": [
 {
 "name": "Repositories",
 "endpointUrl": "{{{endpoint.url}}}api/v4/projects?owned=true",
 "resultSelector": "jsonpath:$[*]"
 }
 ...
]

The resultSelector field allows you to filter the JSON response using a jsonpath
expression. In this case, we are selecting the full HTTP response using the expression
jsonpath:$[*].

https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true
https://gitlab.com/api/v4/projects?owned=true

Azure DevOps Extensions Chapter 8

[401]

The sample JSON response from the GitLab will be in this form:

{
 "id":4,
 "description":null,
 "default_branch":"master",
 "ssh_url_to_repo":"git@example.com:diaspora/diaspora-client.git",
 "http_url_to_repo":"http://example.com/diaspora/diaspora-client.git",
 "web_url":"http://example.com/diaspora/diaspora-client",
"readme_url":"http://example.com/diaspora/diaspora-client/blob/master/READM
E.md",
 "tag_list":[],
 "name":"Diaspora Client",
 "name_with_namespace":"Diaspora / Diaspora Client",
 "path":"diaspora-client",
 "path_with_namespace":"diaspora/diaspora-client",
 "created_at":"2013-09-30T13:46:02Z",
 "last_activity_at":"2013-09-30T13:46:02Z",
 "forks_count":0,
"avatar_url":"http://example.com/uploads/project/avatar/4/uploads/avatar.pn
g",
 "star_count":0
 }

You can test your JSON path expression using this free online tool: http:/
/​jsonpath. ​com/ ​.

Next, in the task.json file, we define a dataSourceBinding under
dataSourceBindings as follows:

"dataSourceBindings": [
 {
 "target": "definition",
 "endpointId": "$(connection)",
 "dataSourceName": "Repositories",
 "parameters": {},
 "resultTemplate": "{ \"Value\" : \"{{id}}\", \"DisplayValue\" :
\"{{{path_with_namespace}}}\" }"
 }
 ...
]

http://jsonpath.com/
http://jsonpath.com/
http://jsonpath.com/
http://jsonpath.com/
http://jsonpath.com/
http://jsonpath.com/
http://jsonpath.com/

Azure DevOps Extensions Chapter 8

[402]

This is to bind the dataSourceName named Repositories (defined in the preceding code
snippet) to our input named definition so that repositories can be shown for that input.
Notice the "dataSourceName": "Repositories" field; this is how we bind the data
source to the input fields, in this case to an input field named definition using
"target": "definition". Another key aspect is the resultTemplate field.

This field defines a template of how data needs to be transformed to be displayed in the
input field named definition. The template is defined as a mustache template expression.

To find more information about the mustache template, read https:/ ​/
mustache. ​github. ​io/ ​.

We would like to display repositories in the format of <username>/<project name> (for
example: onlyutkarsh/bio). Hence, we use the mustache template as defined previously.
Notice we are setting Value as id from the JSON response from GitLab (to uniquely
identify the selected repository) and we use the path_with_namespace field from the
JSON response as DisplayValue.

We do a similar data source binding to our other input fields' branch and version, which is
visible when the user selects Latest from specific branch for the Default version
field.

In the manifest file of the extension, we define data sources to make REST calls to GitLab:
"dataSources": [
 ...
 {
 "name": "Branches",
 "endpointUrl":
"{{{endpoint.url}}}api/v4/projects/{{{definition}}}/repository/branches",
 "resultSelector": "jsonpath:$[*]"
 },
 {
 "name": "CommitsFromSelectedBranch",
 "endpointUrl":
"{{{endpoint.url}}}api/v4/projects/{{{definition}}}/repository/commits{{#if
branch}}?ref_name={{{branch}}}",
 "resultSelector": "jsonpath:$[*]"
 },
 ...
]

https://mustache.github.io/
https://mustache.github.io/
https://mustache.github.io/
https://mustache.github.io/
https://mustache.github.io/
https://mustache.github.io/
https://mustache.github.io/
https://mustache.github.io/
https://mustache.github.io/

Azure DevOps Extensions Chapter 8

[403]

In task.json, we then define bind data sources to inputs:

"inputs": [
 ...
 {
 "name": "definition",
 "type": "pickList",
 "label": "Repository",
 "defaultValue": "",
 "required": true,
 "properties": {
 "EditableOptions": "True"
 },
 "helpMarkDown": "GitLab repository id"
 },
 {
 "name": "versionSelector",
 "type": "pickList",
 "label": "Default version",
 "required": true,
 "helpMarkDown": "Version of artifact",
 "defaultValue": "latestDefaultBranch",
 "options": {
 "latestDefaultBranch": "Latest from default branch",
 "latestSpecificBranch": "Latest from specific branch",
 "specificVersion": "Specific version"
 }
 }
 ...
],
"dataSourceBindings": [
 {
 "target": "definition",
 "endpointId": "$(connection)",
 "dataSourceName": "Repositories",
 "parameters": {},
 "resultTemplate": "{ \"Value\" : \"{{id}}\", \"DisplayValue\" :
\"{{{path_with_namespace}}}\" }"
 },
 {
 "target": "branch",
 "endpointId": "$(connection)",
 "dataSourceName": "Branches",
 "parameters": {
 "definition": "$(definition)"
 },
 "resultTemplate": "{ \"Value\" : \"{{{name}}}\", \"DisplayValue\" :
\"{{{name}}}\" }"

Azure DevOps Extensions Chapter 8

[404]

 },
 ...
]

Notice how dataSourceBindings array sets the target (which has the input field name
inputs[]) and uses data source (using dataSourceName property).

See also
The extension is public https:/ ​/​marketplace. ​visualstudio. ​com/ ​items?
itemName= ​onlyutkarsh. ​gitlab- ​integration

For an up to date extension refer the
code https://github.com/onlyutkarsh/gitlab-integration.
More information on data source and data binding can be found here: http:/ ​/
bit.​ly/ ​2HgLpzk.
More information on authentication schemes can be found here: http:/ ​/ ​bit.​ly/
2D7mASa.

Publishing extensions to the marketplace
For extensions to be used in the Azure DevOps Server/Service, extensions need to be
published to the VS Marketplace. As highlighted at the beginning of this chapter, VS
Marketplace is the one-stop shop for extensions - tools that extend Azure DevOps.

In all the recipes we worked through in this chapter, we created various types of
extensions. However, one thing we have not done is to publish the extensions we created to
the marketplace.

Extensions can be published in either public or private visibility modes. Extension visibility
is controlled via a public flag in the manifest file. To make an extension usable and visible
to the public, you need to mark the extension as public by setting the flag in the manifest as
shown:

{
 "public": true
 }

https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://marketplace.visualstudio.com/items?itemName=onlyutkarsh.gitlab-integration
https://github.com/onlyutkarsh/gitlab-integration
https://github.com/onlyutkarsh/gitlab-integration
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2HgLpzk
http://bit.ly/2D7mASa
http://bit.ly/2D7mASa
http://bit.ly/2D7mASa
http://bit.ly/2D7mASa
http://bit.ly/2D7mASa
http://bit.ly/2D7mASa
http://bit.ly/2D7mASa
http://bit.ly/2D7mASa

Azure DevOps Extensions Chapter 8

[405]

The default visibility, if you do not specify in the manifest file, is private.
This means the published private extension is visible to the publisher and
the publisher of the collection has access too. Similarly, in Azure DevOps
Services, an extension with public: false is visible only to the
publisher and to other organizations that the user has given access to.

Microsoft provides a cross-platform tool named tfx-cli that we can use to publish an
extension. More information on this is well documented at http:/ ​/​bit. ​ly/​2MrScoq.

However, in this recipe, we will see how we can publish an extension in a consistent
manner by using the Azure DevOps pipeline. We will gain some immediate benefits by
automating extension publication:

By automating our deployment in the pipeline, we will have the ability to push
our changes quickly and with confidence.
We will be able to test our Azure DevOps extension in our own private account
before releasing it to a wider audience.
The marketplace requires us to update the extension version each time we
publish. Manually changing this is a hassle and we will be able to automate this
easily using the pipeline.

Getting ready
There are a few prerequisites for publishing extensions to the marketplace:

A publisher account. We have seen how to do this in the Creating the VS
Marketplace publisher recipe of this chapter.
A proper icon for your extension of at least 128 x 128 pixels in size.
A good description of the extension in the overview.md or readme.md files that
appears on the extension page on the marketplace.
Finally, to make your extension public, the publisher needs to be verified. If the
publisher is not verified, the extension can only be published as a private
extension.

http://bit.ly/2MrScoq
http://bit.ly/2MrScoq
http://bit.ly/2MrScoq
http://bit.ly/2MrScoq
http://bit.ly/2MrScoq
http://bit.ly/2MrScoq
http://bit.ly/2MrScoq
http://bit.ly/2MrScoq
http://bit.ly/2MrScoq

Azure DevOps Extensions Chapter 8

[406]

The following steps will help you to get started with this recipe:

Browse to Visual Studio Marketplace at https:/ ​/ ​marketplace. ​visualstudio.1.
com and install the Azure DevOps Extension Tasks extension. You will be
required to connect to Visual Studio Marketplace in the Azure DevOps Server
context.

To do that, from the header, click on the icon next to your profile link Browse
Marketplace:

Visual Studio Marketplace will highlight Azure DevOps Server context by
showing the collection name.

Search for azure devops extension tasks and you will see the extension, as2.
shown in the following screenshot:

https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com

Azure DevOps Extensions Chapter 8

[407]

Click on the extension and then click the Get free button. Then click on the3.
Install button to install the extension on to your Azure DevOps Server
collection. Now if you go to Manage Extensions page, you should see the
extension installed.

That is all we need for now in order to work on this recipe.

How to do it...
To start, we will publish the Clean Folder task we created in the Creating a simple task to
clean folders recipe in this chapter. To follow true DevOps practice, we will build once and
deploy multiple times.

Create a build pipeline, which will transpile our code and publish it as an1.
artifact.
Create a release pipeline with two stages to deploy the VSIX file (a packaged2.
extension for Azure DevOps).
In the first stage, we will deploy it privately to our local Azure DevOps Server.3.
This will allow us to test our task on our local Azure DevOps Server.
The next stage is to publish the extension to Visual Studio Marketplace and make4.
it available to the general public.

Creating the build pipeline
Our build definition is comprised of the following steps:

Install all the npm dependencies: Our dependencies are referenced in
package.json. Note that, we have two package.json files, one at
the vss-extension.json level and another one at the task level
under task folder. For simplicity, I have defined a couple of scripts
under the scripts section. The initdev runs npm install command
for the package.json file and installs all the dependencies.
Compile and lint the scripts: Our script is written using TypeScript,
but we need to transpile them to .js using the tsc command. We also
lint using tslint command. For this as well, we have written node
script compile under the scripts section.

Azure DevOps Extensions Chapter 8

[408]

Update the version in task.json files: Update the version in the
task.json file. The version needs to be updated every time we would
like to release a new version of the task.
Update the version in the vss-extension.json: This is the same, except
that you update the version in the manifest file. The extension
version needs to be incremented each time you would like to release a
new version.
Copy to dist folder: Next, we copy all the files required for
the marketplace (icons, manifest file, js file, and node_modules
folder) to the dist folder.
Publish artifact: Finally, we publis

h it as build pipeline artifact.2.

We are using YAML Build, so we have a file named azure-pipelines.yml with the
preceding build steps. The contents of the azure-pipelines.yml is as follows, and is also
present in the code bundle under RCP02-CleanFolder-Extensions folder:

resources:
- repo: self
queue:
 name: Default
 demands: npm

name: 1.0.$(rev:r)

steps:
- task: Npm@1
 displayName: 'install all the dependencies'
 inputs:
 command: custom
 workingDir: 'extensions/clean-folder'
 verbose: false
 customCommand: 'run initdev'

.....

.....

- task: PublishBuildArtifacts@1
 displayName: 'publish contents of dist as artifact'
 inputs:
 PathtoPublish: '$(system.defaultworkingdirectory)/extensions/clean-
folder/dist'

Azure DevOps Extensions Chapter 8

[409]

Once we've created the build pipeline successfully, we should now have the artifacts
required to create an extension:

Azure DevOps Extensions Chapter 8

[410]

Creating the release pipeline
We now have a build pipeline that produces versioned artifacts for every build. This will
ensure we always publish a newer version, as Visual Studio Marketplace expects the
version number to be incremented every time we would like to publish the extension:

We go to the release hub and create a new release pipeline:1.

Azure DevOps Extensions Chapter 8

[411]

We will select the empty job template and rename the stage to local to depict2.
our on-premises Azure DevOps Server. Then we add the artifact by selecting the
build pipeline:

Azure DevOps Extensions Chapter 8

[412]

Search for the Publish Extension task from the Azure DevOps Extension3.
Tasks and add it to the pipeline:

To use this task, we first need to create a service connection for our instance of4.
Azure DevOps Server extension gallery. Select Team Foundation Server and
click New, as shown in the following screenshot:

Azure DevOps Extensions Chapter 8

[413]

A new dialog will open; enter the local Azure DevOps Server URL and personal5.
access token. For more information on creating a personal access token, visit this
link: http:/ ​/​bit. ​ly/ ​2DZzgL6:

Click OK and select the service connection from the dropdown:6.

http://bit.ly/2DZzgL6
http://bit.ly/2DZzgL6
http://bit.ly/2DZzgL6
http://bit.ly/2DZzgL6
http://bit.ly/2DZzgL6
http://bit.ly/2DZzgL6
http://bit.ly/2DZzgL6
http://bit.ly/2DZzgL6
http://bit.ly/2DZzgL6

Azure DevOps Extensions Chapter 8

[414]

Finally, for the root manifest folder field, select the folder path where your vss-7.
extension.manfiest file is:

Azure DevOps Extensions Chapter 8

[415]

After that, ensure that you set the extension visibility to Private. Notice in the
following screenshot that I am not overriding any of the fields in the manifest.
The task gets the details from the manifest if not specified:

Azure DevOps Extensions Chapter 8

[416]

That's it; save the pipeline and create a new release. Once the deployment is8.
successful, you should have your extension published to the local Azure DevOps
Server gallery: http://<yourservername>/tfs/_gallery:

Publishing the extension just makes the extension available for installation from the local
Azure DevOps Server gallery. You will need to click on the extension and install it.

This allows us to test our extension on our Azure DevOps Server before publishing to
Visual Studio Marketplace.

Azure DevOps Extensions Chapter 8

[417]

Publishing to VS Marketplace
Assuming our extension works as expected in our Azure DevOps Server, we can now
publish the extension to the Visual Studio Marketplace to make it available to the general
public:

Let's add a new stage called marketplace by cloning our existing stage, which is1.
named local. Now our pipeline looks as follows:

Click on the Publish Extension task in the marketplace stage, and modify the2.
task input fields so that we can publish our extension to the marketplace. The
first thing we change is the service connection.

Azure DevOps Extensions Chapter 8

[418]

Select the Visual Studio Marketplace connection:2.

Click New and create a service connection using your personal access token:4.

Azure DevOps Extensions Chapter 8

[419]

Click OK. Ensure the service connection you selected is for the marketplace. As5.
in the previous stage, for the root manifest field, we will select our drop folder.
For this recipe, we will select the extension visibility field as Private Preview just
to ensure that this extension is not public. Once the publish is successful, our
extension will be available in the marketplace:

Azure DevOps Extensions Chapter 8

[420]

Our extension is private and you will be able to share it with any accounts or
view installed reports by going to the marketplace publisher page:

How it works...
In this recipe, we saw how we set up a build and release pipeline for our Azure DevOps
extensions. First, we set the build pipeline to transpile our typescript into JavaScript files
and lint, and publish all the required files. In the pipeline, we incremented the build
number each time the build was triggered. This ensured that we were able to publish the
newer version to Visual Studio Marketplace. This is because Visual Studio Marketplace
accepts the version number of the extension to change each time we are publishing it.

Azure DevOps Extensions Chapter 8

[421]

Next, we set the release pipeline, which publishes the task to the Azure DevOps Server
gallery. Later, we added another stage to release the pipeline to publish to the marketplace.
The Azure DevOps extension tasks make it really easy to create a service connection and
publish your extension to the marketplace in faster release cycles.

We published our extension to the marketplace as a private extension. Any extension that
doesn't have visibility set to public will not be visible in the marketplace.

There's more...
Azure DevOps Extension Tasks has many tasks, from publishing extensions to
the marketplace to sharing extensions to other accounts. The extension is open source on
GitHub and also has a task to publish Visual Studio extensions. Check it out on
GitHub: http:/​/​bit. ​ly/ ​2GyFALo.

http://bit.ly/2GyFALo
http://bit.ly/2GyFALo
http://bit.ly/2GyFALo
http://bit.ly/2GyFALo
http://bit.ly/2GyFALo
http://bit.ly/2GyFALo
http://bit.ly/2GyFALo
http://bit.ly/2GyFALo
http://bit.ly/2GyFALo

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Azure for Developers
Kamil Mrzygłód

ISBN: 978-1-78934-062-4

Implement serverless components such as Azure functions and logic apps
Integrate applications with available storages and containers
Understand messaging components, including Azure Event Hubs and Azure
Queue Storage
Gain an understanding of Application Insights and other proper monitoring
solutions
Store your data with services such as Azure SQL and Azure Data Lake Storage
Develop fast and scalable cloud applications

https://prod.packtpub.com/virtualization-and-cloud/hands-azure-developers

Other Books You May Enjoy

[423]

Learn Microsoft Azure
Mohamed Wali

ISBN: 978-1-78961-758-0

Understand the cloud services offered by Azure
Design storage and networks in Azure for your Azure VM
Work with web apps and Azure SQL databases
Build your identity management solutions on Azure using Azure AD
Monitor, protect, and automate your Azure services using Operation
Management Suite (OMS)
Implement OMS for Azure services

https://prod.packtpub.com/virtualization-and-cloud/learn-microsoft-azure

Other Books You May Enjoy

[424]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

.

.Net core application
 build pipeline, setting up for 176, 178, 179, 180,

181

.NET Core web application
 deploying, to Azure App Service 271

4
4tecture 167

A
advanced search capabilities, Microsoft docs
 reference 113
AdventureWorks database 240
agent capabilities
 configuring 147, 148, 149
agent permissions
 managing, role-based access used 149, 151,

152

agent pool 123
agent pool maintenance
 automating 140, 141, 142
agent
 configuring, for enterprise proxy usage 135, 136,

137

 downloading, with GitHub release API 127, 128,
129, 130

Agile team
 team project, creating for 11, 13, 14, 15
annual Agile survey report
 reference 9
app service plan
 reference 274
ARM Outputs 255
ARM templates
 creating 274

Artifact feed
 creating, in Azure Artifacts 323, 324, 325
 npm package, consuming from 350, 351, 352,

353, 354
 NuGet package, consuming in Visual Studio 332
Artifact views
 used, for testing NuGet package 339, 340, 341,

342, 343, 344
Artifacts
 feeds, connecting in 333, 334, 335, 336, 337,

338

 NPM packages, publishing to 345
 NuGet package, publishing to 322
ASP.NET build pipeline
 web deploy, used for creating package 163,

164, 165, 166
ASP.NET Core application
 creating 271, 272
 release pipeline, building 277, 278, 280
ASP.NET Core
 reference 271
Assembly Info extension
 reference 172
assembly version info
 configuring, in build pipelines 171, 172, 173,

175

Azure Active Directory (AAD) 363
Azure App Service
 .NET Core web application, deploying to 271
 reference 274
Azure Artifacts
 about 320
 Artifact feed, creating in 5, 323, 324, 325
Azure Content Delivery Network (CDN) 309
Azure Dev Test Lab (DTL)
 Azure Virtual Machine, deploying to 310
 reference 310

[426]

Azure DevOps Extension Tasks 421
Azure DevOps Git repositories
 accessing, SSH used 70, 71, 72, 73, 74, 75
Azure DevOps Open in Excel extension
 reference 22
Azure DevOps Server (AzDos)
 about 105
 Git hooks, using with 95, 96, 97
Azure DevOps
 extensible points 360
 extensions 359
Azure Function triggers
 reference 284
Azure Function, pricing plans
 app service plan 289
 consumption plan 289
 reference 289
Azure Function
 ARM template, creating 289, 291
 build pipeline, creating 287
 deploying, to Azure 282
Azure Key Vault
 reference 259, 294
 secrets, consuming from 259
 secrets, publishing to 294, 295, 298
 variable group, linking to 262, 264, 265, 266,

268, 270
Azure Pipelines
 used, for configuring parallel execution of tests

221, 222, 223, 224
 used, for running NUnit tests 202, 203, 205,

207, 209, 210, 211, 212
 used, for running SpecFlow tests 225, 226, 228
Azure portal
 storage account, creating from 301
Azure Resource Manager (ARM) templates
 creating 248, 249
Azure Resource Manager (ARM)
 reference 247
Azure SQL
 database, deploying to 239
Azure Storage Account ARM templates
 creating 301, 303
Azure Storage
 static website, deploying on 299, 300, 303, 304,

305, 307, 309
Azure Virtual Machine
 deploying, to Azure Dev Test Lab (DTL) 310,

311, 312, 313, 316, 317
Azure
 key vault, creating 259, 261

B
backlog boards
 configuring 38, 39, 40, 41
 customizing 38, 39, 40, 41
Behavior Driven Development (BDD) 225
branch policies
 pull request for code review 86, 87, 88, 89, 90,

92, 93, 94
branch quality
 reflecting, in build name 160, 161, 162, 163
branches, of Git repository
 build definition, configuring for 154, 155, 156,

157, 158, 159, 160
build definition
 configuring, for branches of Git repository 154,

155, 156, 157, 158, 159, 160
 creating 243, 244, 246
 creating, to produce NuGet package 4, 326, 327
build name
 branch quality, reflecting in 160, 161, 162, 163
build output
 organizing, into separate folders 167, 168, 169,

170

build pipelines
 assembly version info, configuring in 171, 172,

173, 175
 creating, to update package version 346
 setting up, for .Net core application 176, 178,

179, 180, 181
 setting up, for database projects 189, 190, 191,

192

 setting up, for Node.js application 181, 182,
184, 186, 188

build retention policies
 configuring 144, 146
build system, Team Foundation Server (TFS) 122
Build Traffic Lights extension
 reference 167

[427]

build usage data
 analyzing 137, 138, 139

C
Centralized Version-control System (CVCS) 64
code history
 used, for migrating from TFVC to Git 67, 68, 69,

70

code search
 configuring, as search engine 113, 114, 115
Coded UI testing 201
Coded UI Tests (CUITs) 201
Commit Network extension
 reference 79
Continuous Deployment 239
Continuous Integration 154

D
DACPAC 189
dashboards
 work, planning 60, 61, 62
 work, tracking 60, 61, 62
database project
 build pipeline, setting up for 189, 190, 191, 192
 creating 241, 242
database
 deploying, to Azure SQL 239
 importing 241, 243
Decompose work option 33, 35, 36
delivery plan extension
 reference 56
delivery plan
 about 55
 multiple teams, tracking 56, 57, 58, 59
demands
 building, for special builds 147, 148, 149
deployment groups
 configuring 131, 132, 133, 134, 135
deployment slots
 reference 282
Diagnostics Tasks
 reference 181
Distributed Version Control System (DVCS) 65
dotnet commands
 reference 327

E
Excel
 requisites, importing from 17, 18, 20, 21
extension, publishing to marketplace
 build pipeline, creating 407
 release pipeline, creating 410, 412, 413, 414,

416

extensions
 about 359
 assets 360
 manifest.json file 360
 pipeline (build/release) task extensions 361
 prerequisites, for publishing to marketplace 405
 publishing, to marketplace 404, 407, 420
 publishing, to VS Marketplace 417, 420
 scripts 360
 structure 360
 UI extensions 361

F
feature flags
 reference 217
 used, for testing in production 212, 213, 214,

215, 216
feature toggles types
 reference 217
feed 322
Foundation Version Control (TFVC) 64

G
Gherkin 225
Git branching model
 for continuous delivery 103, 104, 105, 106, 107,

108, 109, 110, 111, 112, 113
Git forks
 using, with upstream PR 117, 118, 120, 121
Git History
 reference 81
Git hooks
 using, with Azure DevOps Server 95, 96, 97
Git Lens
 reference 81
Git LFS
 using 99

[428]

Git operations
 with Visual Studio Code 80, 81, 82, 83, 84
Git Pull Request Merge Conflict
 reference 105
Git repository
 importing from GitHub, into Azure DevOps

Server 76, 77, 78, 79
Git Virtual File System (GVFS) 103
git-tf command-line tools
 download link 68
git.push server-side event
 reference 98
Git
 large files, managing 98, 99, 100, 101, 102
 large files, storing 98, 99, 100, 101, 102
GitHub release API
 agents, downloading 127, 128, 129, 130
Granular feed permissions
 in feed settings 331

H
Hardware Security Modules (HSMs) 294

I
import repository 67

J
JAMStack architecture
 reference 299

K
key vault
 creating, in Azure 260, 261

L
Large File System (LFS)
 using 98
load testing 201

M
Microsoft Test Manager (MTM) 199
minmatch search pattern
 reference 366
multi-configuration tests

 distributing, against agents 217, 218, 219, 220,
221

N
Node.js application
 build pipeline, setting up for 181, 182, 183, 184,

186, 188
NodeJS
 download link 345
npm 344
npm package
 consuming, from Artifacts feed 350, 351, 352,

353, 354
 creating 345
NPM packages
 publishing, to Artifacts 344, 345
NuGet package
 consuming, in Visual Studio 332
 publishing, to Artifacts 322
 testing, Artifact views used 339, 340, 341, 342,

343, 344
NuGet
 reference 322
NUnit tests
 running, Azure Pipelines used 202, 203, 205,

207, 209, 210, 211, 212

O
Open Source Software (OSS) 64

P
parallel execution of tests
 configuring, Azure Pipelines used 221, 222,

223, 224
parts unlimited GitHub repository
 reference 76
Personal Access Token (PAT) 393
personally identifiable information (PII) 355
pipeline task
 core script, creating for downloading source from

GitLab 398
 creating, for consuming custom service

connection 394, 396, 399, 402, 404
 dependencies, installing 396
 task.json, adding 396

[429]

Portfolio backlog 32, 34
PowerShell scripts, in Git hooks
 reference 98
PowerShell
 unattended configuration, of build agents 124,

125, 126
Product Vision widget
 reference 60
pull request, for code review
 with branch policies 86, 87, 88, 89, 90, 92, 93,

94

Putty 75

Q
Query based boards extension
 reference 42

R
release API, GitHub
 reference 128
release pipeline
 creating 252, 253, 254, 256, 257
 creating, to publish npm package 347, 348, 349
 creating, to publish NuGet package to feed 328,

329, 330
 database, deploying to Azure SQL 239
 secrets, consuming from Azure Key Vault 259
release retention policies
 configuring 143, 146
Requirements Integrator
 reference 23
role-based access
 used, for managing agent permissions 149, 151,

152

Runs view
 test execution results, analyzing from 229, 230,

231, 232

S
sample Azure Function
 creating 283, 284, 285
Scaled Agile Framework (SAFe) 25
search engine
 code search, configuring as 113, 114, 115
secrets

 consuming, from Azure Key Vault 259
 publishing, to Azure Key Vault 294, 295, 298
Selenium
 reference 201
service connection extension
 creating, for GitLab connection 384, 387, 388,

389

 working 390, 394
simple pipeline extension
 creating, for cleaning folders 366, 372
 dependencies, installing 368
 manifest, creating 367
 script (index.js) file, creating 371
 task.json file, creating 369
SonarQube
 integrating in build pipelines, to manage technical

debt 193, 194, 196, 198
 reference 194
SpecFlow 225
SpecFlow tests
 running, Azure Pipelines used 225, 226, 228,

229

SpecMap extension
 reference 37
sprint countdown widget
 reference 60
Sprint Goal extension
 reference 50
sprint
 planning 43, 44, 45, 46, 47, 49, 50
 preparing 43, 44, 45, 46, 47, 49
 progress, visualizing in 51, 52, 53, 54
SQL Server Data Tools (SSDT) 241
SSH
 used, for accessing Azure DevOps Git

repositories 70, 71, 72, 73, 74, 75
static site generators
 reference 309
static website hosting, Azure Storage
 reference 299
static website
 deploying, on Azure Storage 299, 300, 304,

305, 307, 309
storage account
 creating, from Azure portal 301

story mapping 37
symbols, for debugging applications
 reference 332
sync changes
 using, with upstream PR 117, 118, 119, 120

T
taskboard 17
Team Calendar extension
 reference 55
Team Foundation Server (TFS)
 build system 122
team portal
 testing status, charting on dashboard 237, 238
team project
 creating, for Agile team 11, 13, 14, 15
Test Driven Development (TDD) 204
test execution results
 analyzing, from Runs view 229, 230, 231, 232
Test Hub
 about 199
 test artifacts, exporting from 232, 233, 234, 235,

236

 test results, exporting from 232, 234, 235, 236
TypeScript 367

U
UI extension
 contributions 383
 creating 372, 374
 demands 383
 file 384
 HTML page, creating for hosting initialization

code 377
 manifest.json, creating 375
 public 384
 scopes 383

 script file, creating 378
 working 380, 383
unattended configuration, of build agents
 with PowerShell 124, 125, 126
upstream sources
 reference 322

V
variable group
 creating 262, 263, 264
 key facts 270
 linking, to Azure Key vault 265, 266, 268, 270
Visual Studio (VS) Marketplace 359
Visual Studio Code
 using, for basic Git operations 80, 81, 82, 83, 84
Visual Studio
 NuGet package, consuming in 332
VS Marketplace publisher
 creating 362, 364, 366
VSTS CLI
 reference 105
VSTS Migration Toolkit
 reference 17

W
web deploy
 used, for creating package in ASP.NET build

pipeline 163, 164, 165, 166
WhiteSource Bolt extension
 reference 355
WhiteSource
 used, for scanning for vulnerabilities in package

354, 355, 356, 357
WinAppDriver
 reference 201
work items
 used, for getting social 24, 25, 26, 27, 28, 29,

30

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Planning and Tracking Work
	Creating a team project for an Agile team
	Getting ready
	How to do it...
	How it works...
	There's more...

	Importing requirements from Excel
	Getting ready
	How to do it...
	How it works...
	There's more...

	Getting social with work items
	Getting ready
	How to do it...
	How it works...
	There's more...

	Portfolio backlog hierarchies and decomposing work
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring and customizing backlog boards
	Getting ready
	How to do it...
	How it works...
	There's more...

	Preparing and planning a sprint
	Getting ready
	How to do it...
	How it works...
	There's more...

	Visualizing progress in a sprint
	Getting ready
	How to do it...
	How it works...
	There's more...

	Delivery plans to track multiple teams
	Getting ready
	How to do it...
	How it works...
	There's more...

	Dashboards for planning and tracking work
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 2: Source Control Management
	Migrating from TFVC to Git with code history
	Getting ready
	How to do it...
	How it works...
	There's more...

	Accessing Azure DevOps Git repositories using SSH
	Getting ready
	How to do it...
	How it works...
	There's more...

	Importing a Git repository from GitHub into Azure DevOps Server
	Getting ready
	How to do it...
	How it works...
	There's more...

	Basic Git operations using Visual Studio Code
	Getting ready
	How to do it...
	How it works...
	There's more...

	Pull request for code review using branch policies
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using Git hooks with Azure DevOps Server
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Managing and storing large files in git
	Getting ready
	How to do it...
	How it works...
	See also

	Git branching model for continuous delivery
	Getting ready
	How to do it...
	How it works...

	Configuring code search as a search engine
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using Git forks and sync changes with upstream PR
	Getting ready
	How to do it...
	How it works...

	Chapter 3: Build and Release Agents
	Unattended configuration of build agents using PowerShell
	Getting ready
	How to do it...
	How it works...

	Downloading agents using the GitHub release API
	Getting ready
	How to do it...
	How it works...

	Configuring deployment groups
	Getting ready
	How to do it...
	How it works...

	Configuring the agent to use a proxy
	Getting ready
	How to do it...
	How it works...

	Analyzing build usage data
	Getting ready
	How to do it...
	How it works...
	See also

	Automating agent pool maintenance
	Getting ready
	How to do it...
	How it works…
	There's more...

	Configuring build and release retention policies
	Getting ready
	How to do it...
	How it works...

	Agent capabilities and build demands for special builds
	Getting ready
	How to do it...
	How it works...

	Managing agent permissions using role-based access
	Getting ready
	How to do it...
	How it works...

	Chapter 4: Continuous Integration and Build Automation
	Configuring one build definition for all branches of a Git repository
	Getting ready
	How to do it...
	How it works...
	See also

	Reflecting the branch quality in the build name
	Getting ready
	How to do it...
	How it works...

	Using web deploy to create a package in an ASP.NET build pipeline
	Getting ready
	How to do it...
	How it works...
	There's more...

	Organizing build output into separate folders
	Getting ready
	How to do it...
	How it works...

	Configuring assembly version info in build pipelines
	Getting ready
	How to do it...
	How it works...

	Setting up a build pipeline for a .NET core application
	Getting ready
	How to do it...
	How it works...
	There's more...

	Setting up build pipeline for a Node.js application
	Getting ready
	How to do it...
	How it works...
	There's more...

	Setting up a build pipeline for your database projects
	Getting ready
	How to do it...
	How it works...

	Integrating SonarQube in build pipelines to manage technical debt
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 5: Continuous Testing
	Running NUnit tests using Azure Pipelines
	Getting ready
	How to do it...
	How it works...

	Using feature flags to test in production
	Getting ready
	How to do it...
	How it works...
	There's more...

	Distributing multi-configuration tests against agents
	How to do it...
	How it works...
	There's more...

	Configuring parallel execution of tests using Azure Pipelines
	Getting ready
	How to do it...
	How it works...
	There's more...

	Running SpecFlow tests using Azure Pipelines
	Getting ready
	How to do it...
	How it works...
	There's more...

	Analyzing test execution results from Runs view
	Getting ready
	How to do it...
	How it works...

	Exporting test artifacts and test results from Test Hub
	Getting ready
	How to do it...
	How it works...
	There's more...

	Charting testing status on the dashboard in team portal
	Getting ready
	How to do it...
	How it works...

	Chapter 6: Continuous Deployments
	Deploying the database to Azure SQL using the release pipeline
	Getting ready
	Creating a database project and importing the database
	Creating a build definition

	How to do it...
	Creating Azure Resource Manager (ARM) templates
	Creating the release pipeline

	How it works...

	Consuming secrets from Azure Key Vault in your release pipeline
	Getting ready
	Creating a key vault in Azure
	Creating a variable group and linking it to Azure Key Vault

	How to do it...
	How it works...
	There's more...
	See also

	Deploying the .NET Core web application to the Azure App Service
	Getting ready
	Creating the ASP.NET Core application

	How to do it...
	Creating ARM templates
	Creating the release pipeline

	How it works...
	There's more...
	See also

	Deploying an Azure Function to Azure
	Getting ready
	Creating a sample Azure Function
	Creating the build pipeline

	How to do it...
	Creating the ARM template

	How it works...
	See also

	Publishing secrets to Azure Key Vault
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Deploying a static website on Azure Storage
	Getting ready
	Creating a storage account from the Azure portal
	Creating an Azure Storage Account ARM templates

	How to do it...
	How it works...
	There's more...
	See also

	Deploying an Azure Virtual Machine to Azure Dev Test Lab (DTL)
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 7: Azure Artifacts and Dependency Management
	Publishing a NuGet package to Artifacts
	Getting ready
	Creating an Artifact feed in Azure Artifacts

	How to do it...
	Creating a build definition to produce the NuGet package
	Creating a release pipeline to publish a NuGet package to the feed
	Granular feed permissions in feed settings

	How it works...
	There's more...
	See also

	Consuming a NuGet package in Visual Studio from the Artifacts feed
	Getting ready
	How to do it...
	Connecting to the feed in Artifacts

	How it works...
	There's more...
	See also

	Testing a NuGet package using Artifact views
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Publishing NPM packages to Artifacts
	Getting ready
	Creating NPM package

	How to do it...
	Creating the build pipeline to update the package version
	Creating the release pipeline to publish the npm package

	How it works...
	There's more...
	See also

	Consuming NPM package from the Artifacts feed
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Scanning for vulnerabilities in your package using WhiteSource
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 8: Azure DevOps Extensions
	Creating the VS Marketplace publisher
	Getting ready
	How to do it...

	Creating a simple task to clean folders
	Getting ready
	How to do it...
	Creating manifest
	Installing dependencies
	Creating the task.json file
	Creating the script (index.js) file

	How it works...
	See also

	Creating a UI extension
	Getting ready
	How to do it...
	Creating manifest.json
	Creating the HTML page to host initialization code
	Creating the script file

	How it works...
	How it works...
	There's more...

	Creating a service connection extension to connect to GitLab
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a pipeline task to consume a custom service connection
	Getting ready
	How to do it...
	Installing dependencies
	Adding task.json
	Creating a core script to download a source from GitLab

	How it works...
	See also

	Publishing extensions to the marketplace
	Getting ready
	How to do it...
	Creating the build pipeline
	Creating the release pipeline
	Publishing to VS Marketplace

	How it works...
	There's more...

	Other Books You May Enjoy
	Index

