

1

2

By

Stephen Haunts

Foreword by Daniel Jebaraj

3

Table of Contents

The Story behind the Succinctly Series of Books .. 6

About the Author ... 8

Introduction ... 9

What This Book Isn’t .. 9

Sample Code Projects ... 9

Chapter 1 Message Queuing Overview .. 10

Common Message Queuing Traits .. 10

Message Queuing Protocols .. 11

Chapter 2 RabbitMQ Overview ... 12

Chapter 3 AMQP Messaging Standard .. 14

Exchanges ... 15

Direct Exchange ... 16

Fanout Exchange ... 17

Topic Exchange ... 18

Headers Exchange .. 19

Queues... 19

Bindings ... 20

Consumers ... 20

Message Acknowledgements .. 20

Rejecting Messages... 21

Chapter 4 Installing and Configuring RabbitMQ ... 22

Basic Installation .. 22

Setting Up the Management Portal .. 24

Chapter 5 Overview of the Management Plug-in .. 27

4

Chapter 6 Administration via the Command Line .. 34

Chapter 7 Basic Queue and Message Example .. 39

Chapter 8 Working Examples ... 44

RabbitMQ Client Library ... 44

What is Contained in the Client Library? ... 44

Installing the .NET Client Library ... 46

Example Code Scenario .. 47

Common Code Throughout the Examples .. 47

Payment.cs .. 48

PurchaseOrder.cs .. 49

ObjectSerialize ... 49

Example 1: Basic Queue ... 52

Example 2: Worker Queue... 57

Example 3: Publisher and Subscriber .. 67

Example 4: Direct Routing ... 74

Example 5: Topic-based Publish and Subscribe ... 84

Example 6: Remote Procedure Call .. 96

Closing Notes .. 108

5

Copyright © 2015 by Syncfusion Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising

from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET ESSENTIALS are the

registered trademarks of Syncfusion, Inc.

Technical Reviewer: Peter Shaw

Copy Editor: Suzanne Kattau

Acquisitions Coordinator: Hillary Bowling, marketing coordinator, Syncfusion, Inc.

Proofreader: Darren West, content producer, Syncfusion, Inc.

I

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

6

The Story behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about every other
week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet, and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just like everyone else who has a job to do and
customers to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

S

7

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click” or “turn the
moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
http://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

8

About the Author

Stephen Haunts has been developing software and applications professionally since 1996 and
as a hobby since he was 10 years old. Stephen has worked across many different industries
including computer games, online banking, retail finance, and healthcare and pharmaceuticals.
Stephen started out programming in BASIC on machines such as the Dragon 32, Vic 20, and
the Amiga, and moved onto C and C++ on the IBM PC. Stephen has been developing software
in C# and the .NET framework since first being introduced to it in 2003.

As well as being an accomplished software developer, Stephen is also an experienced
development leader and has led, mentored, and coached teams to deliver many high-value,
high-impact solutions in finance and healthcare.

Outside of Stephen’s day job, he is also an experienced tech blogger who runs a popular blog
called Coding in the Trenches on his own website and he is also a training course author for the
online training company Pluralsight. Stephen also runs several open-source projects including
SafePad, Text Shredder, Block Encrpytor, and the post-deployment testing tool Smoke Tester.

Stephen is also an accomplished electronic musician and sound designer.

https://www.linkedin.com/in/stevehaunts
http://www.stephenhaunts.com/
http://www.pluralsight.com/search/?searchTerm=Stephen%20Haunts
http://safepad.codeplex.com/
http://textshredder.codeplex.com/
http://blockencrypter.codeplex.com/
http://smoketester.codeplex.com/

9

Introduction

Never before has the integration of systems in the enterprise been so important. It is common
that development teams need to integrate in-house development systems together with third-
party systems. The more systems that need to be integrated together, the more moving parts
you have, and the more potential for failure and instability to creep in. Choosing the right
integration platforms is important. We are spoiled with choices when it comes to both open-
source and commercial solutions.

In this book, we will look at a popular integration platform called RabbitMQ. RabbitMQ is a
powerful message broker and queuing system that allows you to integrate systems together so
that they are robust, reliable, and can scale with your business.

This book will take you from novice to expert in no time. We will cover how to install and set up
RabbitMQ, and how to configure it from the control panel to the command line. We will then do a
deep dive into the features of RabbitMQ and work through a number of practical code
examples.

We will focus on .NET and C# in this book but RabbitMQ is a cross-platform system with client
libraries for most popular development platforms. This makes RabbitMQ a compelling solution
for integrating systems developed in any number of languages and platforms.

What This Book Isn’t

This book is not an exhaustive reference manual for RabbitMQ. There are plenty of other books
out there that do this. This book’s aim is to get you up and running with a good level of
proficiency with RabbitMQ as quickly as possible. This will mostly be through a series of
workable examples focusing on real-world scenarios to which you can refer to as you integrate
RabbitMQ into your enterprise.

Sample Code Projects

This book uses a sample solution that contains each of the examples discussed in the second
half of this book. The examples were created in Visual Studio 2013 and built against RabbitMQ
3.4.4.

I recommend that you download this code and follow along with it while working through this
book.

Note: The sample code can be downloaded from
https://bitbucket.org/syncfusiontech/message-queuing-with-rabbitmq-
succinctly.

https://bitbucket.org/syncfusiontech/message-queuing-with-rabbitmq-succinctly
https://bitbucket.org/syncfusiontech/message-queuing-with-rabbitmq-succinctly

10

Chapter 1 Message Queuing Overview

Message queuing gives you a mechanism to allow an application to asynchronously send a
message to a receiver. This means that the sender and receiver do not need to interact with the
message at the same time. A message is sent to a queue where it is stored until the receiver
retrieves the message.

Message queues can be inter-process where the queue resides in memory on a single server or
for integrating systems across multiple servers. This can be done by using in-memory queues
but it is also common to use durable queues in which the messages are persisted to disk,
meaning that messages are not lost should any system or server go offline for any period of
time.

Figure 1 Message queue examples with single and multiple queues.

Message queuing systems come in many forms—both as commercial proprietry products and
as open-source products. An example of a commercial solution is IBM MQ. Examples of open-
source message queuing systems include RabbitMQ, JBoss Messaging , and Apache
ActiveMQ.

The open-source message queuing systems are free to download and use but it is also
common for companies to provide commercial support agreements (which you can pay for that
allow your organization to reach out for technical support should you run into any production
issues). RabbitMQ is no different in this respect and Pivotal Software, Inc., the company that
owns RabbitMQ, provides a purchasable support agreement. Having a support agreement is
normally a prerequisite for large organizations adopting an open-source platform.

Common Message Queuing Traits

A messaging broker is installed onto a server or a set of servers, and a series of name queues
and exchanges are defined where they are registered with the message broker. An application
can then send a message to the queue and any number of receiving systems can receive the
message and act on its contents.

http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/IBM_WebSphere_MQ
https://www.rabbitmq.com/access-control.html
http://jbossmessaging.jboss.org/
http://activemq.apache.org/
http://activemq.apache.org/
http://pivotal.io/

11

Queuing systems such as RabbitMQ will typically have the following features available to them:

 Durability: Messages can either be kept in memory or persisted to disk. If they are
persisted to disk, then the message will be preserved should the server containing the
queues crash. If this happens, once the server comes back up, the receiving
applications can pick up where they left off.

 Security: A message broker should be able to let you set up different security
permissions for different users. Some applications may have permission to write but not
read from the queue, or another application could just have permissions to read from the
queue.

 Time to Live: A message may have a time to live property set on it. This will mean a
message can be set to expire after a certain timespan.

 Filtering and Routing: A messaging system might have the ability to filter the
messages to decide to which queue a message should be delivered.

 Batching: Batching allows messages to be saved up and then delivered all at the same
time as part of a larger batch; this is typically used when a destination server is not
always online.

 Receipt Acknowledgement: A message publisher may require an acknowledgement
from the message broker that the message has been successfully delivered.

Message Queuing Protocols

Many commercial message queuing systems are based on proprietary protocols. These
protocols are kept closed so that the vendor can restrict what operating systems (OSes) and
development platforms can interact with the message broker. This closed nature means that, if
any customer of the messaging broker provider wanted it to work with another platform, they
might have to pay a high consultancy fee to get the support they need.

With the advent of open-source messaging systems, a number of open queuing protocol
standards have been developed. The two most predominant standards are:

1. Advanced Message Queuing Protocol (AMQP): This is a feature-rich message

queuing protocol and it is the protocol used by RabbitMQ.

2. Streaming Text-Oriented Messaging Protocol (STOMP): Stomp is a simple text-

based messaging protocol.

Later on in this book, we will look in more detail at the AMQP.

12

Chapter 2 RabbitMQ Overview

RabbitMQ is an open-source messaging system that allows you to integrate applications
together by using messages and queues. RabbitMQ implements the AMQP. The underlying
RabbitMQ server is written in the Erlang programming language which was originally designed
for the telecoms industry by Ericsson. Erlang supports distributed, fault-tolerant applications and
is, therefore, an ideal language to use to build a message queuing system.

Figure 2: RabbitMQ logo

While RabbitMQ is built with Erlang, it also supports many other development platforms via
client libraries. Because of Erlang’s heritage of working with telecoms networks, it is the ideal
platform for handling messages for enterprise applications.

The RabbitMQ server is a message broker that acts as the message coordinator for the
applications that you want to integrate together. This means that you can give your systems a
common platform for sending and receiving messages.

Rabbit MQ contains many features to make your systems integration as painless as possible.
These include:

 Reliability: With RabbitMQ being built on top of Erlang, the message broker is already
built on top of solid, high-performance, reliable, and durable foundations. Messages can
be persisted to disk to guard from lost messages in the event that a server is restarted,
and you can send message delivery acknowledgements to a sender so they can be sure
that the message has been received and stored.

 Routing: RabbitMQ works by passing your messages through exchanges before they
are stored in a queue. There are different exchange types which let you perform routing,
but you can also work with more complex routing scenarios by binding exchanges
together.

 Clustering and High Availability: To increase the reliability and availability of
RabbitMQ, you can cluster several servers together on a local network which forms a
single logical message broker. Queues can also be mirrored across multiple servers in a
cluster so that, in the advent of a server failure, you will not lose any messages.

 Management Web User Interface (UI): RabbitMQ comes with a browser-based UI that
lets you manage users and their permissions, exchanges, queues, and more. This tool is
an excellent window into your RabbitMQ servers.

http://www.erlang.org/
http://www.ericsson.com/

13

 Command-Line Interface: In addition to the Management UI, there is a command-line
tool called “rabbitmqctrl” and “rabbitmqadmin.” These command-line tools offer the
same level of administration as the web UI, with the added advantage that you can
incorporate RabbitMQ administration in scripts.

Note: Clustering is out of the scope of this book. More information on it can
be found on the RabbitMQ website.

A major benefit of using RabbitMQ is the fact that it is a cross-platform system. You can run
Erlang and the RabbitMQ server on various platforms including Windows Servers, Linux and
Unix systems such as (Debian/Ubuntu, Fedora, and Solaris), Mac OS X, and on various cloud
platforms such as Amazon EC2 and Microsoft Azure. Rabbit MQ also has client libraries that
support many different programming environments such as Microsoft .NET, Java, Erlang, Ruby,
Python, PHP, Perl, C/C++, Node.JS, Lisp, and more.

This cross-platform nature of RabbitMQ means you could have clients written in different
programming languages easily sending and receiving messages from a RabbitMQ server
hosted in any of the supported environments.

RabbitMQ is an open-source messaging solution but, as a company, you have the option of
taking out a paid support plan (which is a requirement for many large organizations).

RabbitMQ is built to the AMQP Version 0-9-1. AMQP is a networking protocol that enables client
applications to communicate with messaging middleware broker servers. In our case, the client
will be our .NET application and the server is the RabbitMQ server or cluster of servers. Let’s
take a closer look at the AMQP protocol.

https://www.rabbitmq.com/clustering.html

14

Chapter 3 AMQP Messaging Standard

RabbitMQ is built on top of the AMQP. This is a network protocol that enables client applications
to communicate with a compatible messaging system.

A message broker works by receiving messages from a client (publisher) and that broker routes
the message to a receiving application (consumer).

Figure 3: High-level overview of the AMQP

RabbitMQ currently supports version 0-9-1 of the AMQP protocol. With the AMQP protocol, a
message is published by an application to an exchange. You can think of the exchange as a
mailbox. The exchange then sends the message to a queue by using different rules called
bindings. This is all within the message broker.

The message broker will then deliver the message from the queue to a consumer (the
consumer pulls the message) that is subscribed to the queue. When a message is published to
a queue, a publisher can specify various different message attributes. Some of these attributes
will be used by the message broker but the rest is completely opaque to the broker and is only
used by any applications that receive the message.

Due to network unreliability, applications could fail to correctly process messages, therefore the
AMQP protocol has a mechanism for message acknowledgements. This means when a
message is delivered to a consuming application, the consumer notifies the broker (either
automatically or as soon as the application developer chooses to do so). When message
acknowledgements are used, the message broker will only remove the message from the queue
when it receives a notification for that message.

If you are using messages that are routed with a routingKey and the message cannot be routed
anywhere, it can either be returned to the sender, dropped or, if configured, can be placed into a
dead letter queue which is monitored. A publishing application will choose how to handle this
situation by publishing messages by using certain parameters.

15

Exchanges

Exchanges are AMQP entities where messages are sent to the message broker. Exchanges
take a message and then route it to one or more queues. The type of routing depends upon the
exchange type used and different exchange rules called bindings. RabbitMQ supports AMQP 0-
9-1 brokers which provides four exchange types. These are direct exchanges, fanout
exchanges, topic exchanges, and headers exchanges.

Each exchange is also declared with a number of different attributes. The most important
attributes to us are:

 Name: The name of the exchange.

 Durability: This flag determines whether or not messages sent to the exchange survive

a broker/server restart by persisting the messages to disk.

 Auto-delete: This flag determines if the exchange is deleted when all of the queues

have finished using it.

 Arguments: These are message broker-dependent.

AMQP message brokers contain a default exchange that is a direct exchange with no name
(i.e., empty string) that has been predeclared. It has one special property that makes it useful for
simple applications: every queue that is created is automatically bound to it with a routing key
which is the same as the queue name.

For example, when you declare a queue with the name of "payment-requests," the message
broker will bind it to the default exchange by using "payment-requests" as the routing key. In
other words, the default exchange makes it seem as if it is possible to directly deliver messages
to queues even though that is not technically what is happening.

16

Direct Exchange

A direct exchange delivers messages to queues that are based on a message routing key. A
direct exchange is ideal if you need to publish a message onto just one queue (like with a more
traditional MSMQ setup) but you can also route messages onto multiple queues as well.

Figure 4: AMQP direct exhange routing with a routing key

A direct exchange works as follows: a queue binds to the exchange with a routing key
(payment-message, for example). Then, when a new message with a routing key of payment-
message arrives at the direct exchange, the exchange routes the message to the queue if both
routing keys match.

Direct queues are commonly used to distribute messages between multiple worker processes in
a round robin manner. Later in the book, we'll develop a sample that does exactly this.

17

Fanout Exchange

A fanout exchange routes messages to all of the queues that are bound to it and the routing key
is ignored. If 10 queues are bound to a fanout exchange, when a new message is published to
that exchange, a copy of the message is delivered to all 10 queues. Fanout exchanges are ideal
for the broadcast routing of messages.

Figure 5: AMQP fanout exchange

This is in contrast to the direct exchange where the message is targeted to the relevant queue
by using the routing key. So, if you want to broadcast a message to all of the queue consumers,
the fanout exchange is what you want to use.

Some example uses of this might be:

 Sending online game scores to all players.

 Sending weather updates to all interested systems.

 Chat sessions between groups of people.

18

Topic Exchange

Topic exchanges route messages to one or many queues based upon matching between a
message routing key and the pattern that was used to bind a queue to an exchange. The topic
exchange type is often used to implement various publish/subscribe pattern variations. Topic
exchanges are commonly used for the multicast routing of messages to different queues.

Figure 6: Topic exchange

Topic exchanges have a broad set of use cases. Whenever a problem involves multiple
consumers/applications that selectively choose which type of messages they want to receive,
the use of topic exchanges should be considered.

A topic exchange works by using a wildcarded routing key. For example, in the context of a
company departmental hierarchy, if you send a message to “all.*.*”, the message will be sent to
all of the departments. If you sent a message to “all.payroll.*”, the message will only be sent to
consumers who are interested in the payroll department.

The topic exchange is powerful and can behave like other exchanges already discussed.

When a queue is bound with the "#" (hash) binding key, it will receive all of the messages
regardless of the routing key, in exactly the same manner as a fanout exchange.

When special characters "*" (star) and "#" (hash) aren't used in bindings, the topic exchange will
behave just like a regular direct exchange.

Some typical examples of this exchange might be:

 Sending messages to relevant departments in an organization.

 Stock prices for certain types of companies.

 Categorized news updates (e.g, business, technology, entertainment).

19

Headers Exchange

Figure 7: Headers exchange

The headers exchange is for routing on multiple attributes that are expressed in headers. This
means that the routing key is ignored for this type of exchange due to the fact that it can only
express one piece of information. You can assign multiple header values that pass into the
exchange and are routed to the queues.

In Figure 7, the first queue takes messages that are routed with the header values of ‘material =
wood’ and ‘type = cupboard.’ The second queue takes messages that are routed with ‘material
= metal’ and ‘type = filing cabinet.’

Header exchanges can be looked at as supercharged direct exchanges as they route based on
header values, and they can be used as direct exchanges where the routing key does not have
to be a string.

Queues

Queues in AMQP are similar to queues in any other messaging system. Messages are placed
onto a queue and they work on a first in, first out (FIFO) basis. Queues have the following
additional properties over exchanges:

 Name: The name of the queue.

 Durable: The queue and messages will survive a broker or server restart.

 Exclusive: The queue is used by only one connection and the queue will be deleted
when that collection closes.

 Auto Delete: The queue is deleted when the consumer or subscriber unsubscribes.

20

Before you can use a queue, it must be declared. If the queue doesn’t already exist, it will be
created. If the queue already exists, then redeclaring the queue will have no additional effect on
the queue that already exists.

Queue names can be picked by the application or they can be automatically named by the
broker that generates them. We will see examples of this later on in the book. Queue names
can be up to 255 characters in length. If you want the broker to pick the queue name for you,
then you don’t pass a name at the point where you declare the queue.

Queues can be made durable which means the queue is persisted to the disk. This only makes
the queue persistent and not the messages. Queue durability means the queue will be
redeclared once the broker is restarted. If you want the messages to be also persisted, then you
have to post persistent messages. This is useful if you need the messages to remain intact if the
broker or server is restarted. Making queues durable does come with additional overhead so
you need to decide if you need this enabling but, if your application can’t be in a position where
it can lose messages, then you need queue durability.

Bindings

When you want to define rules that specify how messages are routed from exchanges to
queues, you need to define bindings. Bindings may have an optional routing key attribute that is
used by some exchange types to route messages from the exchange to the queue. The
purpose of the routing key is to select certain messages published to an exchange to be routed
to the bound queue. This means that the routing key acts like a filter.

If an AMQP message cannot be routed to any queue because it does not have a valid binding
from the exchange to the queue, then it is either dropped or returned to the publisher depending
upon message attributes the publisher has set.

Consumers

Storing messages in queues is all well and good but you need applications on the other side of
the queues to consume those messages. Typically, applications will register as a consumer or
subscribe to a queue. You can have more than one application registered as a subscriber to the
queue, and this is a common usage scenario when you want to balance the load of applications
feeding from the queue in high-volume scenarios.

Message Acknowledgements

When a consuming application acts on a message from the queue, it is possible that a problem
could occur in that application which means that message is lost. Generally, when an
application acts on a message, that message is removed from the queue but you may not want
this to happen until you have successfully processed the message. The AMQP protocol gives
you a couple of ways of defining when a message is removed from the queue.

 The message is removed once the broker has sent the message to the application.

21

 The message is removed once the application has sent an acknowledgement
message back to the broker.

The first example uses an automatic acknowledgement from the application to remove the
message whereas the second example uses an explicit acknowledgement. With the explicit
acknowledgement, it is up to the application to decide when to remove the message from the
queue. This could be when you have just received the message or after you have processed it.

If the consuming application crashes before the acknowledgement has been sent, then the
message broker will try to redeliver the message to another consumer.

Rejecting Messages

When an application processes a message, that processing may or may not succeed. If the
processing fails for any reason (for example, there is a database time-out), then the consuming
application can reject the message. When this happens, the application can ask the broker to
discard the message or requeue it. If there is only one consumer application subscribed to a
queue, you need to make sure you do not create an infinite message delivery loop by rejecting
and requeuing a message from the same consumer over and over again.

This has been a whistle stop tour of the AMQP protocol but it has not been exhaustive. If you
wish to read up on the full specification, then you can do so on the AMQP Working Group
website.

http://www.amqp.org/specification/0-9-1/amqp-org-download

22

Chapter 4 Installing and Configuring
RabbitMQ

Basic Installation

Now that we have covered the basics of message queuing, RabbitMQ, and the AMQP model,
let’s get RabbitMQ installed and configured. When you set up RabbitMQ on a server, you need
to install two components. First, you need the Erlang run time and then RabbitMQ itself. First,
go to the RabbitMQ website to download it.

Once you are on this page, select “Install: Windows” from the grey panel to the right of the
screen:

Figure 8: Link to install the Windows version of RabbitMQ

From this page, click “Erlang Windows Binary File” as shown in the following screenshot. This
will take you to the Erlang website’s downloads page:

Figure 9: Elang run time download link

When you are on the Erlang website, pick the latest version of the run time that matches your
OS. If you are running a 64-bit OS, then pick the 64-bit version and vice versa with the 32-bit
version.

http://www.rabbitmq.com/download.html

23

Figure 10: Download the latest version of the Erlang run time

When the installer file has downloaded, start it running. With this installer, you can stick with
the defaults as they are all sensible defaults. Click through the menus so that all of the files
get installed:

Figure 11: Accept all of the defaults in the installer and let it run through

Once the Erlang run time has installed, go back to the RabbitMQ website and download the
latest copy of the RabbtMQ server. This installer is small so it will not take long to download:

Figure 12: Download the latest version of the Windows RabbitMQ server installation files

Once this is downloaded, run the installer. Again, as with the Erlang run time, you can stay with
the defaults. During the installation, a firewall popup menu may appear and may ask you to set
some firewall rules. If this happens, click “Allow Access”:

24

Figure 13: Use the installer defaults and allow access to the firewall if you get any pop-up menus

RabbitMQ installs with a usable default message broker environment but you can change and
customize the environment if you wish. This is beyond the scope of this book but further
instructions for doing so are on the RabbitMQ website.

Once RabbitMQ has installed, the RabbitMQ service will automatically start up. This means you
have a running message broker ready to go.

Setting Up the Management Portal

RabbitMQ comes with a web-based management portal. This portal serves as a place to
configure RabbitMQ and also as a useful dashboard to monitor what is happening with the
message broker. The management portal is not enabled by default; you need to do this
separately.

Open up a command prompt and navigate to: “C:\Program Files (x86)\RabbitMQ
Server\rabbitmq_server-3.4.4\sbin

From the command prompt, type:

 rabbitmq-plugins enable rabbitmq_management

This will configure the web management portal. You should see the following in your command
prompt once the portal is configured:

http://www.rabbitmq.com/configure.html#customise-windows-environment

25

Figure 14: RabbitMQ command prompt after the management plug-in has been set up

If you are following the examples in this book, then you should keep this command-line window
open as you will need to use it in the next chapter.

To go to the portal, use the following web address where “server-name” is substituted with the
name of the server containing the instance of RabbitMQ:

http://server-name:15672

If you are running this on your local machine, then the address will be http://localhost:15672.

Once you go to this address, you will see a RabbitMQ logon screen like in the following
screenshot:

Figure 15: RabbitMQ mangement portal logon screen

To log onto the management portal, the default credentials are:

http://server-name:15672/
http://localhost:15672/

26

Username: guest

Password: guest

Once you log on, you will see the following overview screen. This page gives you a dashboard
view of RabbitMQ running on that server where you can see how many message are flowing
through the system, the message throughput rates, and the numbers of exchanges, queues,
and consumers:

Figure 16: RabbitMQ overview dashboard

27

Chapter 5 Overview of the Management
Plug-in

The RabbitMQ management plug-in provides a browser-based UI to administer the message
broker as well as a HTTP-based API for the management and monitoring of your RabbitMQ
server.

The management plug-in features include:

 Declare, list, and delete exchanges, queues, bindings, users, virtual hosts, and
permissions.

 Monitor queue length, message rates (globally and per channel), and data rates per
connection, etc.

 Send and receive messages.

 Monitor Erlang processes, file descriptors, and memory use.

 Export/import object definitions to JSON.

 Force close connections, and purge queues.

The management portal is split into different screens that are selectable, with the menu bar at
the top of the screen. The first screen you will see is the overview page. This acts as a
dashboard view showing you how many messages are in the broker and the message
throughput rate.

Figure 17: RabbitMQ management portal overview screen

This screen is useful to have up on a large display so you can see at a glance how RabbitMQ is
performing. If, for example, any of your message consumer applications go down, you will start
to see a large buildup of undelivered messages which is a good indication that something has
gone wrong.

28

In Figure 17, you can see on the overview screen that one message was placed onto the queue
at 10:49.00. In the chart below, you can see the message rates; they are split into Published
messages, Delivered messages, Redelivered messagaes, Acknowledged messages, and
Delivered messagaes where no acknowledgement was required.

The next tab in the management portal is the connections page. When you have consumer
applications connecting to RabbitMQ to process messages, they will show up here as
connections. A connection represents a real Transmission Control Protocol (TCP) connection to
the message broker whereas a channel, which we will see in a moment, is virtual connection
inside the connection. This means you can use as many virtual connections (i.e., channels) as
you want inside your application without overloading the message broker with TCP connections:

Figure 18: RabbitMQ management portal connections page

The next screen in the management portal is a screen to view the active message broker
channels. Some applications need multiple connections to a RabbitMQ broker server. However,
it is undesirable to keep many TCP connections open at the same time because doing so
consumes system resources and makes it more difficult to configure firewalls. RabbitMQ
connections are multiplexed with channels that can be thought of as "lightweight connections
that share a single TCP connection.”

Figure 19: RabbitMQ management portal channel view

29

For applications that use multiple threads/processes for processing, it is common to open a new
channel per thread/process and not share channels between them.

Communication on a particular channel is completely separate from communication on another
channel; therefore, every RabbitMQ method also carries a channel number that clients use to
figure out which channel the method is for (and thus, which event handler needs to be invoked,
for example).

The next screen in the management portal is the exchanges view. This gives you a list of all of
the currently defined exchanges on the server, as well as the type of exchange and details such
as indicating whether or not they are durable:

Figure 20: RabbitMQ management portal exchanges view

Exchanges are AMQP entities where messages are sent in the message broker. Exchanges
take a message and then route it to one or more queues. The type of routing depends upon the
exchange type used and different exchange rules called bindings.

Each exchange is also declared with a number of different attributes. The most important
attributes to us are:

1. Name: The name of the exchange.
2. Durability: This flag determines whether or not messages sent to the exchange survive

a broker/server restart by persisting the messages to disk.
3. Auto-delete: This flag determines if the exchange is deleted when all of the queues

have finished using it.
4. Arguments: These are message broker-dependent.

The types of exchanges supported are Direct, Fanout, Topic, and Headers. These were
previously discussed in the chapter on the AMQP messaging standard.

30

If you click any of the exchanges in the list, you will be taken to a screen that shows more
information about that particular exchange. This includes information about the messaging rate
for the exchange and the binding information.

Figure 21: RabbitMQ messaging portal exchange view

In the preceding screenshot, you can see details of the bindings for this exchange. For the
exchange named “Topic_Exchange,” there are two queues that are bound to it. One of the
queues has a routing key of “payment.card” and the other queue has a routing key of
“payment.purchaseorder.” From this screen, you can manually bind other queues to the
exchange or unbind current queues.

The next screen in the management portal is the queues view. This screen lists all of the
queues that are defined on the server. From this screen, you can also add new queues. This
screen is useful as a dashboard to show you what is going on at the queue level. You can see
when queues are idle and the status of messages in the queue (such as whether or not they are
ready for consumption, and whether they have been acknowledged, etc.):

31

Figure 22: RabbitMQ management portal queues view

Just as with the exchanges screen, you can also click any individual queue to see that status of
that individual queue. This will give you a view similar to that seen in Figure 23 (in the following
screenshot) where you can look at the message rate and what exchanges that queue is bound
to:

Figure 23: RabbitMQ management portal queue view

The final view we will look at is the Admin view. This is where users and their permissions are
administered. By default, when RabbitMQ is installed, there is a guest user defined which we
used to log onto the management portal. It is not a good idea to carry on using this user. In fact,
by default, you can only access RabbitMQ via localhost with this user. It is advisable to delete
this user and set up additional users:

32

Figure 24: RabbitMQ management portal user administration

To create a new user, go to the “Add a user” section on the screen as shown in the preceding
screenshot, and add a new username and password. You can then set a series of comma-
separated lists of tags to apply to the user. The tags that are currently supported by the
management plug-in are:

• Management: User can access the management plug-in.

• Policymaker: User can access the management plug-in, and manage policies and

parameters for the vhosts to which they have access.

• Monitoring: User can access the management plug-in and see all of the

connections and channels as well as node-related information.

• Administrator: User can do everything monitoring can do, and also manage users,

vhosts, and permissions; close other users’ connections, and manane policies and

parameters for all vhosts.

You can set any tag here but the above four tags are just for convenience. Once a user has
been created, you have to then set permissions for that user. When a RabbitMQ client connects
to a RabbitMQ server, it specifies a virtual host within which it intends to operate. A first level of
access control is enforced at this point, with the server checking whether or not the user has
any permission to access the virtual hosts, and rejecting the connection attempt otherwise:

http://www.rabbitmq.com/management.html#permissions
http://www.rabbitmq.com/management.html#permissions

33

Figure 25: RabbitMQ management portal user permissions management

For the purposes of the examples in this book, we will be using the default virtual host. For more
information about virtual hosts and their permissions, you can read more on Access Control on
the RabbitMQ website.

https://www.rabbitmq.com/access-control.html

34

Chapter 6 Administration via the Command
Line

In addition to using the web-based management portal to administer RabbitMQ, you can also
use the command-line interface (rabbitmqctrl.bat). In this chapter, we will demonstrate some of
the basic features that you may need to most frequently use, but for a more exhaustive list of
commands, you can read the RabbitMQ manual page for the rabbitmqctrl.bat tool.

At a high level, rabbitmqctrl lets you manage the run state of the message broker, manage
your RabbitMQ clusters, administer users and permissions, and manage policies and list
exchanges, bindings, and queues.

Let’s work through a simple example of stopping and starting the RabbitMQ broker and
checking the broker status.

Open up a command prompt and navigate to “C:\Program Files (x86)\RabbitMQ
Server\rabbitmq_server-3.4.4\sbin

From the command prompt, type:

 Rabbitmqctl status

You will see the following output in the command-line window:

http://www.rabbitmq.com/man/rabbitmqctl.1.man.html

35

Figure 26: RabbitMQ status

To stop the RabbitMQ broker from running, you type the following into the command line:

 Rabbitmqctl stop

This will give you console output that looks as follows:

Figure 27: RabbitMQ stopped service

If you run the status command line again by typing the following, you will see that the RabbitMQ
service has stopped:

 Rabbitmqctl status

This will mean RabbitMQ will stop receiving and processing messages. If you have not set up
durable queues and messages, you will lose any messages already in the system:

36

Figure 28: The RabbitMQ service has been stopped

To restart the service, you can either go to the Windows services management window in
Microsoft Windows (as shown in the following screenshot) or you can use the rabbitmqctl
service command-line tool:

Figure 29: Start and stop the RabbitMQ services from the services window in Windows

To start the service from the command line, you need to type:

rabbitmq-service start

Note: Please note that the command to start the RabbitMQ Service is
different from the command to stop the service (rabbitmqctl).

This will restart the service as shown in the following screenshot:

37

Figure 30: The RabbitMQ service has been restarted

If you get a “permission denied” error, then you will need to make sure you open the command-
line window as an administrator. You can now query the status of the service again by using:

 Rabbitmqctl status

You will now see that the service is up and running again.

Figure 31: The RabbitMQ service is running again

38

This should have given you a flavor of administering RabbitMQ from the command line. For
more information on the commands available, you can read the manual pages for abbitmq-
service here and rabbitmqctl here.

http://www.rabbitmq.com/man/rabbitmq-service.man.html
http://www.rabbitmq.com/man/rabbitmqctl.1.man.html

39

Chapter 7 Basic Queue and Message
Example

Before we dive into some code and look at our samples, let’s work through a simple scenario in
which we create an exchange and a queue, and bind them together via the management portal.
We will then send a message to the exchange and pull it from the queue. It is a simple example
but it serves as a good introduction before we tackle some real-world scenarios.

First, go to the management portal and click the exchanges tab. Once you are on the
exchanges page, open “Add a new exchange” and fill it in as shown in the following screenshot.
You will then need to click “Add exchange” to add the exchange:

Figure 32: Create a new direct exchange

This will add a new “direct” exchange to the list of exchanges. Now, click the Queues tab at the
top of the page to go to the queue list. Open “Add a new queue” and fill it in as per the following
screenshot. Now, click the “Add queue” button:

Figure 33: Create a new test queue

You will see this TestQueue appear in the queues list. Now, click “TestQueue” in that list. This
will take you to the page for that specific queue. If you scroll down to the bindings section and
open it, you will see (as per the following screenshot) that this queue is not bound any
exchanges:

40

Figure 34: Binding a queue to an exchange

To bind the queue to our TestExchange, type the name of the exchange into the “From
exchange” text box and then hit “Bind.” We will not put in a routing key for this example. You will
now notice that this queue is bound to the TestExchange exchange:

Figure 35: The queue is now bound to the exchange

Now, go back to the exchanges tab in the management portal and scroll down to “Publish
message.” This is in a collapsible section so you may need to open it up. You should see the
publish message options as shown in Figure 36.

We are not using a routing key in this example so leave that blank. In the payload section, write
a message. In the screenshot, we are using our traditional Hello World sample:

41

Figure 36: Publishing a simple test message to the exchange

Now, go back to “Queues” and select our TestQueue. You will notice that the chart is showing
one queued message:

Figure 37: The queue shows that a message has been queued

Now, scroll down to the bottom of that screen and open “Get messages.”

Figure 38: Getting a message from the queue

42

If you click “Get Message(s),” you will now see how the message payload has now been
removed from the queue:

Figure 39: The message has been retrieved but then requeued

If you look at the message chart at the top of the page, you will see that there is still a message
in the queue. This is because, when we got the message, the “Requeue” parameter was set to
“Yes.” This means that, once we have extracted the message, it was replaced back on the
queue.

This time, set the “Requeue” parameter to “No” and get the message again. You will see the
same message come back but, if you scroll back to the queues messages chart at the top of the
screen, you will see that the message is gone and there are no messages left in the queue.

Figure 40: With requeuing turned off, the message disappears from the queue when it is retrieved

43

Although this is a simple example, you should now be at a point where you have a good
understanding of what RabbitMQ is about, how to install and configure it, and how the basic
process of setting up and binding exchanges and queues works. We are now ready to start
looking at some real code.

44

Chapter 8 Working Examples

Now that we have covered a lot of the introductory material for RabbitMQ, this part of the book
will look at developing software to interact with the message broker as both a producer and as a
consumer. First, we will take a look at the RabbitMQ client library. Then, we will introduce the
business scenario used for the sample applications. Before we start looking at the individual
examples, we will take a quick look at the common code shared between them. Then, we will
move onto the actual code examples themselves. These example will include:

 Basic queues

 Worker queues

 Publisher and subscribers

 Direct routing of queues

 Topic-based publisher and subscribers

 Remote procedure calls

RabbitMQ Client Library

To develop software against RabbitMQ, you will need to install the RabbitMQ client library for
.NET. Before we look at how to install the client library, let’s take a brief look at what it is. This
book will not serve as an in-depth guide to the whole client library API. You can read a more in-
depth document for the client library that explains the full library on the RabbitMQ website.

This section will serve as an introduction to the library and the examples in the rest of this book
will help you further cement your understanding.

What is Contained in the Client Library?

The RabbitMQ .NET client is an implementation of an AMQP client library for C# and other .NET
languages. The client library implements the AMQP specification 0-8 and 0-9. The API is closely
modeled on the AMQP protocol specification with little additional abstraction so, if you have a
good understanding of the AMQP protocol, then you will find the client library easy to follow.

The core API interfaces and classes are defined in the RabbitMQ.Client namespace. The main
API interfaces and classes are:

 IModel: This represents an AMQP data channel and provides most of the AMQP
operations.

 IConnection: This represents an AMQP connection.

 ConnectionFactory: This constructs IConnection instances.

Some other useful interfaces and classes include:

 ConnectionParamters: This configures a ConnectionFactory.

 QueueingBasicConsumer: This receives messages delivered from the server.

https://www.rabbitmq.com/clients.html

45

Connection to a Message Broker

You can use the following code to connect to a RabbitMQ broker:

The parameters to connect to the broker are:

 HostName: The RabbitMQ server host to which to connect.

 UserName: The username with which to connect. This example uses the default guest
account but, in reality, you should create your own account.

 Password: The password with which to connect. This example uses the default guest
account but, in reality, you should create your own account.

Once a connection has been made to RabbitMQ, you can then open a channel to RabbitMQ:

The channel can now be used to send and receive messages.

Exchanges and Queues

Client applications work with exchanges and queues. These are high-level constructs in AMQP.
Exchanges and queues must be declared before they can be used. Declaring either type of
object ensures the one of that name exists. If it doesn’t exist, it is created.

The following code snippet declares an exchange and a queue, then binds them together:

Once the exchange and queues are set up and bound together, you are free to start sending
and receiving messages. We will cover how to do this when we start with the first worked
example.

ConnectionFactory factory = new ConnectionFactory { HostName = "localhost", UserName
= "guest", Password = "guest" };

IConnection _connection = _factory.CreateConnection();

IModel _model = _connection.CreateModel();

channel.ExchangeDeclare(“MyExchange”, "direct");
channel.QueueDeclare(“MyQueue”);

channel.QueueBind(“MyQueue”, ExchangeName, "");

46

Installing the .NET Client Library

There are a few ways to get the client library set up in your application. The first way is to go to
the RabbtMQ client library downloads page and directly download the library. Once you have
downloaded the library, you can include a reference to “RabbitMQ.Client.dll” in your application
as shown in the following screenshot:

Figure 41: RabbitMQ.Client library reference

A better way would be to use the NuGet package manager to get the library. You can do this via
the NuGet packages dialog box or via the Package Manager Console. To do this via the UI,
open the Packages dialog box in Visual Studio from the Tools Menu -> NuGet Package
Manager -> Manage NuGet Packages for Solution. This will show a window as seen in Figure
42:

Figure 42: RabbitMQ package manager UI in Visual Studio

Select the nuget.org option in the “Online” tree to the left of the screen. Then, in the search box
on the top right-hand corner of the screen, type “rabbitMQ”. This will show the RabbitMQ.Client
library in the list of libraries in the middle column of the screen. Double-click this library to install
it into your project.

https://www.rabbitmq.com/dotnet.html

47

You can also install the client library by using the package manager console. To open this, go to
the Tools menu and select Tools -> NuGet Package Manager -> Package Manager Console.
When the console window appears, type:

This will install the client library into your project. You should see output similar to the following
screenshot:

Figure 43: Installing the RabbitMQ client library in the package manager console

You are now ready to start developing code against RabbitMQ.

Example Code Scenario

The code samples in the rest of this book all use a common theme of a payment provider. The
theme has been kept consistent to show how the different queuing scenarios relate to each
other. The samples are based around a system (e.g., the producer or publisher) making either a
card payment or raising a purchase order. These card payments or purchase orders will be
placed into a RabbitMQ queue setup for different scenarios.

Then there will be a consuming application or applications that will process these payments of
purchase orders. Payment processors are a common use case for message queuing systems
as the durable nature of the message queues means that you won’t lose payment messages. It
goes without saying that payment processors are not the only use case for message queues
and you may have very different requirements. But payment processing made a good example
for the purposes of this book.

Common Code Throughout the Examples

Each of the example projects in the rest of this book uses a common code project that contains
code shared between all of the examples. Before we dive into the example project, let’s take a
look at the shared code.

Install-Package RabbitMQ.Client

48

Note: I recommend that you get the sample code for this book to refer to.
The code can be downloaded from
https://bitbucket.org/syncfusiontech/message-queuing-with-rabbitmq-
succinctly.

Figure 44: Common code for the example project

Payment.cs

All of the example projects have the concept of placing card payments onto a queue. The
examples use the Payment.cs class:

using System;

namespace RabbitMQ.Examples
{
 [Serializable]
 public class Payment
 {
 public decimal AmountToPay;
 public string CardNumber;
 public string Name;
 }
}

https://bitbucket.org/syncfusiontech/message-queuing-with-rabbitmq-succinctly
https://bitbucket.org/syncfusiontech/message-queuing-with-rabbitmq-succinctly

49

The class is marked serializable as it will need to be serialized into a byte array before it is
placed onto a queue. The class contains three public properties. The first is AmountToPay
which is a decimal that represents a payment amount. The second property, CardNumber, is a
string that represents a debit/credit card number. For the examples in this book, it is just treated
as an arbitrary string. The final property, Name, is the name of the person making the payment.

PurchaseOrder.cs

Some of the example projects post different types of payments onto a queue. These are card
payments (as shown previously) and purchase orders. Again, this class is marked as
serializable as it will be turned into a byte array before posting onto the queue:

The first property is a decimal representing an AmountToPay. The second property,
PoNumber, represents a purchase order number. This is typically used when companies raise
purchase orders instead of paying with cards. A prearranged purchase order would be set up
with a vendor and the purchase order number would be logged along with the payment. The
difference between this and a card payment is that the money may not show up for a number of
months after the vendor has raised an invoice.

The third property is the CompanyName and this is the name of the company against which the
purchase order has been raised. The fourth and final property, PaymentDayTerms, is an
integer representing the number of days after an invoice is raised that the purchase order will be
paid. This may typically be 30, 45, or 75 days.

ObjectSerialize

The final class in the common code project is an object serializer. This static class exposes two
extension methods. One of the extension methods is on the Object base class to serialize that
object into a byte array. We do this with a binary formatter for the purposes of the examples in
this book. A binary formatter is a good serialization method to use if the systems you are
integrating with are also implemented in .NET. If you are integrating with a Java system, for
example, you may want to use an XmlFormatter but that is out the scope of this book. The key
principle here is, you need to turn an object into a byte array to place it onto a message queue.

using System;

namespace RabbitMQ.Examples
{
 [Serializable]
 public class PurchaseOrder
 {
 public decimal AmountToPay;
 public string PoNumber;
 public string CompanyName;
 public int PaymentDayTerms;
 }
}

50

The DeSerialize method is an extension method for a byte array which lets you turn a serialized
byte array back into its original form (i.e., a Payment message):

using System;
using System.IO;
using System.IO.Compression;
using System.Runtime.Serialization.Formatters.Binary;

namespace RabbitMQ.Examples
{
 public static class ObjectSerialize
 {
 public static byte[] Serialize(this Object obj)
 {
 if (obj == null)
 {
 return null;
 }

 using (var memoryStream = new MemoryStream())
 {
 var binaryFormatter = new BinaryFormatter();

 binaryFormatter.Serialize(memoryStream, obj);

 var compressed = Compress(memoryStream.ToArray());
 return compressed;
 }
 }

 public static Object DeSerialize(this byte[] arrBytes)
 {
 using (var memoryStream = new MemoryStream())
 {
 var binaryFormatter = new BinaryFormatter();
 var decompressed = Decompress(arrBytes);

 memoryStream.Write(decompressed, 0, decompressed.Length);
 memoryStream.Seek(0, SeekOrigin.Begin);

 return binaryFormatter.Deserialize(memoryStream);
 }
 }

 private static byte[] Compress(byte[] input)
 {
 byte[] compressesData;

 using (var outputStream = new MemoryStream())
 {
 using (var zip = new GZipStream(outputStream,
CompressionMode.Compress))
 {
 zip.Write(input, 0, input.Length);

51

The ObjectSerialize class also contains two private static methods that compress and
decompress the byte array by using the GZipStream class in .NET. This helps ensure the
serialized message is as small as it can be:

The preceding code example shows a payment message that has been constructed and is then
serialized into a byte array. The serialized byte array is then immediately deserialized back into
a payment message.

 }

 compressesData = outputStream.ToArray();
 }

 return compressesData;
 }

 private static byte[] Decompress(byte[] input)
 {
 byte[] decompressedData;

 using (var outputStream = new MemoryStream())
 {
 using (var inputStream = new MemoryStream(input))
 {
 using (var zip = new GZipStream(inputStream,
CompressionMode.Decompress))
 {
 zip.CopyTo(outputStream);
 }
 }

 decompressedData = outputStream.ToArray();
 }

 return decompressedData;
 }
 }
}

Payment payment1 = new Payment { AmountToPay = 25.0m, CardNumber = "1234123412341234"
};

byte [] serialized = payment1.Serialize();

Payment payment_deserialized = serialized.DeSerialize();

52

Example 1: Basic Queue

In this first example, we will show a basic queue scenario that is probably familiar to most
enterprise software developers—especially if you are familiar with the Microsoft MSMQ
platform. In this example, we will have one producer posting a payment message onto the
queue and one consumer reading that message from the queue. In this example, the producer
and consumer application are the same.

Figure 45: Basic queue example

In the Main method, we start off by creating 10 payment messages. Once they have been
created, the queue is created, the messages are sent to the queue, and then the messages are
read directly off the queue:

public static void Main()
{
 var payment1 = new Payment { AmountToPay = 25.0m, CardNumber = "1234123412341234"
};
 var payment2 = new Payment { AmountToPay = 5.0m, CardNumber = "1234123412341234"
};
 var payment3 = new Payment { AmountToPay = 2.0m, CardNumber = "1234123412341234"
};
 var payment4 = new Payment { AmountToPay = 17.0m, CardNumber = "1234123412341234"
};
 var payment5 = new Payment { AmountToPay = 300.0m, CardNumber =
"1234123412341234" };
 var payment6 = new Payment { AmountToPay = 350.0m, CardNumber =
"1234123412341234" };
 var payment7 = new Payment { AmountToPay = 295.0m, CardNumber =
"1234123412341234" };
 var payment8 = new Payment { AmountToPay = 5625.0m, CardNumber =
"1234123412341234" };
 var payment9 = new Payment { AmountToPay = 5.0m, CardNumber = "1234123412341234"
};
 var payment10 = new Payment { AmountToPay = 12.0m, CardNumber =
"1234123412341234" };

 CreateQueue();

53

You may have already noticed from the preceding diagram that the producer directly posts onto
the queue instead of to an exchange. You can post directly to a queue from the client API but,
under the covers, you are posting to a default exchange.

For example, when you declare a queue with the name of "StandardQueue_ExampleQueue,"
the RabbitMQ broker will bind it to the default exchange by using
"StandardQueue_ExampleQueue" as the routing key. Therefore, a message published to the
default exchange with the routing key "StandardQueue_ExampleQueue" will be routed to the
queue "StandardQueue_ExampleQueue." This means the default exchange makes it seem like
it is possible to deliver messages directly to queues even though that is not what is actually
happening behind the scenes.

Continuing on with this example, next we have the CreateQueue method. Notice that the queue
name is placed in a constant called QueueName:

 SendMessage(payment1);
 SendMessage(payment2);
 SendMessage(payment3);
 SendMessage(payment4);
 SendMessage(payment5);
 SendMessage(payment6);
 SendMessage(payment7);
 SendMessage(payment8);
 SendMessage(payment9);
 SendMessage(payment10);

 Recieve();

 Console.ReadLine();
}

private static ConnectionFactory _factory;
private static IConnection _connection;
private static IModel _model;

private const string QueueName = "StandardQueue_ExampleQueue";

private static void CreateQueue()
{
 _factory = new ConnectionFactory { HostName = "localhost", UserName = "guest",
Password = "guest"};
 _connection = _factory.CreateConnection();
 _model = _connection.CreateModel();
 _model.QueueDeclare(QueueName, true, false, false, null);
 _connection = _factory.CreateConnection();
}

54

The CreateQueue method is where we create a connection with the ConnectionFactory and
then create the model by using CreateModel. Once the model has been opened, the queue
called “StandardQueue_ExampleQueue” is declared by passing in the queue name. The
second “true” parameter tells the broker that we want the queue to be durable (i.e. the
messages to be persisted to disk).

Next, we have a static method called SendMessage to post a payment message to the queue:

Here we have a call to BasicPublish on the channel which is the “_model” global property in
our program. The first empty parameter is an exchange name but, because we are not defining
our own customer exchange, we leave it blank to use the default exchange. The next parameter
is the name of the queue we want to publish to; in this case it is
“StandardQueue_ExampleQueue.”

The next null parameter is for a set of Basic Parameters that can be passed into the queue like
correlationIDs, ReplyTo addresses, etc., but we don’t need them for this example. Then, finally,
we call Serialize on our payment message. This calls the extension method that we defined
earlier which converts our payment message instance into a compressed byte array:

private static void SendMessage(Payment message)
{
 _model.BasicPublish("", QueueName, null, message.Serialize());
 Console.WriteLine(" [x] Payment Message Sent : {0} : {1}", message.CardNumber,
message.AmountToPay);
}

public static void Recieve()
{
 var consumer = new QueueingBasicConsumer(_model);

 var msgCount = GetMessageCount(_model, QueueName);
 _model.BasicConsume(QueueName, true, consumer);

 var count = 0;

 while (count < msgCount)
 {
 var message = (Payment)consumer.Queue.Dequeue().Body.DeSerialize();

 Console.WriteLine("----- Received {0} : {1}", message.CardNumber,
message.AmountToPay);
 count++;
 }
}

private static uint GetMessageCount(IModel channel, string queueName)
{
 var results = channel.QueueDeclare(queueName, true, false, false, null);
 return results.MessageCount;

55

Next, we have a method to receive messages that have been posted onto the queue. First, a
QueueingBasicConsumer is created which takes an instance of the model as a parameter.
Then we get a count of the messages on the queue. To do this, you need to call QueueDeclare
again to redeclare the queue. From doing this, you will get a QueueDeclareOK object back. In
this object there will be a message count.

Note: Declaring a queue in RabbitMQ is an idempotent operation. This
means it will only be created if it doesn’t already exist. By redeclaring the
queue again, we get details returned about the queue that already exists. An
idempotent operation is one that has no additional effect if it is called more
than once with the same input parameters. In our example, if you call
QueueDeclare twice with the same queue name, you wouldn’t get two
queues created but, rather, just the one queue as the second call would have
no effect.

Next, a call is made to BasicConsume on the model. This method asks the server to start a
"consumer" which is a transient request for messages from a specific queue. Consumers last as
long as the channel on which they were declared or until the client cancels them.

Next, we iterate through the messages by calling Dequeue on the queue and then calling
DeSerialize on the results of the DeQueued message. This will give us back our original
queues payment message.

The following screenshot of this program running shows how the original 10 payment messages
were sent to the queue and then consumed straight away from the queue in the same order:

Figure 46: Messages played onto the queue and then directly received

}

56

That is our first example completed. Next, we will expand on this sample to create a worker
queue. Here is the complete code for this example if you didn’t type in any of the previous code:

using System;
using RabbitMQ.Client;

namespace RabbitMQ.Examples
{
 class Program
 {
 private static ConnectionFactory _factory;
 private static IConnection _connection;
 private static IModel _model;

 private const string QueueName = "StandardQueue_ExampleQueue";

 public static void Main()
 {
 var payment1 = new Payment { AmountToPay = 25.0m, CardNumber =
"1234123412341234" };
 var payment2 = new Payment { AmountToPay = 5.0m, CardNumber =
"1234123412341234" };
 var payment3 = new Payment { AmountToPay = 2.0m, CardNumber =
"1234123412341234" };
 var payment4 = new Payment { AmountToPay = 17.0m, CardNumber =
"1234123412341234" };
 var payment5 = new Payment { AmountToPay = 300.0m, CardNumber =
"1234123412341234" };
 var payment6 = new Payment { AmountToPay = 350.0m, CardNumber =
"1234123412341234" };
 var payment7 = new Payment { AmountToPay = 295.0m, CardNumber =
"1234123412341234" };
 var payment8 = new Payment { AmountToPay = 5625.0m, CardNumber =
"1234123412341234" };
 var payment9 = new Payment { AmountToPay = 5.0m, CardNumber =
"1234123412341234" };
 var payment10 = new Payment { AmountToPay = 12.0m, CardNumber =
"1234123412341234" };

 CreateQueue();

 SendMessage(payment1);
 SendMessage(payment2);
 SendMessage(payment3);
 SendMessage(payment4);
 SendMessage(payment5);
 SendMessage(payment6);
 SendMessage(payment7);
 SendMessage(payment8);
 SendMessage(payment9);
 SendMessage(payment10);

 Recieve();

 Console.ReadLine();

57

Example 2: Worker Queue

In this next example, we will build on the basic queue by introducing multiple consumers. This
creates what is called a worker queue in which the messages from the queue are shared
between two consumers. This is commonly used where you need to share the load between
consumers when processing a high volume of messages:

 }

 private static void CreateQueue()
 {
 _factory = new ConnectionFactory { HostName = "localhost", UserName =
"guest", Password = "guest"};
 _connection = _factory.CreateConnection();
 _model = _connection.CreateModel();
 _model.QueueDeclare(QueueName, true, false, false, null);

 }

 private static void SendMessage(Payment message)
 {
 _model.BasicPublish("", QueueName, null, message.Serialize());
 Console.WriteLine(" [x] Payment Message Sent : {0} : {1}",
message.CardNumber, message.AmountToPay);
 }

 public static void Recieve()
 {
 var consumer = new QueueingBasicConsumer(_model);

 var msgCount = GetMessageCount(_model, QueueName);
 _model.BasicConsume(QueueName, true, consumer);

 var count = 0;

 while (count < msgCount)
 {
 var message = (Payment)consumer.Queue.Dequeue().Body.DeSerialize();

 Console.WriteLine("----- Received {0} : {1}", message.CardNumber,
message.AmountToPay);
 count++;
 }
 }

 private static uint GetMessageCount(IModel channel, string queueName)
 {
 var results = channel.QueueDeclare(queueName, true, false, false, null);
 return results.MessageCount;
 }
 }
}

58

Figure 47: Worker queue example

As with the previous example, we start off in the Main method by create 10 payment messages:

static void Main()
{
 var payment1 = new Payment { AmountToPay = 25.0m, CardNumber = "1234123412341234"
};
 var payment2 = new Payment { AmountToPay = 5.0m, CardNumber = "1234123412341234"
};
 var payment3 = new Payment { AmountToPay = 2.0m, CardNumber = "1234123412341234"
};
 var payment4 = new Payment { AmountToPay = 17.0m, CardNumber = "1234123412341234"
};
 var payment5 = new Payment { AmountToPay = 300.0m, CardNumber =
"1234123412341234" };
 var payment6 = new Payment { AmountToPay = 350.0m, CardNumber =
"1234123412341234" };
 var payment7 = new Payment { AmountToPay = 295.0m, CardNumber =
"1234123412341234" };
 var payment8 = new Payment { AmountToPay = 5625.0m, CardNumber =
"1234123412341234" };
 var payment9 = new Payment { AmountToPay = 5.0m, CardNumber = "1234123412341234"
};
 var payment10 = new Payment { AmountToPay = 12.0m, CardNumber =
"1234123412341234" };

 CreateConnection();

 SendMessage(payment1);
 SendMessage(payment2);
 SendMessage(payment3);
 SendMessage(payment4);
 SendMessage(payment5);
 SendMessage(payment6);
 SendMessage(payment7);
 SendMessage(payment8);
 SendMessage(payment9);
 SendMessage(payment10);

59

Then, we create the connection RabbitMQ along with the mode and declare a queue called
“WorkerQueue_Queue.” As with the Basic Queue example, we are not directly creating an
exchange but the default exchange will be used with a routing key that equates to the queue
name “WorkerQueue_Queue.”

 Console.ReadLine();
}

60

This queue has also been set up as a durable queue, meaning that the messages will be stored
to the local disk on the RabbitMQ server. Once this has been done, the 10 payment messages
are sent to the queue by serializing the payment to a compressed byte array:

If you run the producer application first and not the consumer, and then go to the RabbitMQ
management portal and browse the “WorkerQueue_Queue,” you will see the 10 messages
waiting on the queue (as shown in the following screenshot):

private static ConnectionFactory _factory;
private static IConnection _connection;
private static IModel _model;

private const string QueueName = "WorkerQueue_Queue";

private static void CreateConnection()
{
 _factory = new ConnectionFactory { HostName = "localhost", UserName = "guest",
Password = "guest" };
 _connection = _factory.CreateConnection();
 _model = _connection.CreateModel();
 _model.QueueDeclare(QueueName, true, false, false, null);
}

private static void SendMessage(Payment message)
{
 _model.BasicPublish("", QueueName, null, message.Serialize());
 Console.WriteLine(" Payment Sent {0}, £{1}", message.CardNumber,
message.AmountToPay);
}

61

Figure 48: Messages are played onto the queue from the producer application

Now that the producer application is running, let’s take a look at the consumer. For this
example, we will have one consumer application but we will be able to run as many instances
as we want to share the load of the messages placed onto the queue. In the
WorkerQueue_Consumer project in this book’s sample code, you will see a method called from
Main called Receive. There is a few things going on here so let’s work down the method from
top to bottom.

public static void Receive()
{
 _factory = new ConnectionFactory { HostName = "localhost", UserName = "guest",
Password = "guest" };
 using (_connection = _factory.CreateConnection())
 {
 using (var channel = _connection.CreateModel())
 {
 channel.QueueDeclare(QueueName, true, false, false, null);
 channel.BasicQos(0, 1, false);

 var consumer = new QueueingBasicConsumer(channel);
 channel.BasicConsume(QueueName, false, consumer);

 while (true)
 {
 var ea = consumer.Queue.Dequeue();
 var message = (Payment)ea.Body.DeSerialize();
 channel.BasicAck(ea.DeliveryTag, false);

62

First of all, a new ConnectionFactory and connection is created to connect us to RabbitMQ.
Then, a channel is created by calling CreateModel. Next, the queue is redeclared. As we
discussed in the previous example, the call to QueueDeclare is idempotent which means that, if
you call QueueDeclare for a queue that already exists, then you will get the original queue’s
details returned instead of the queue actually being redeclared.

Next, we have a call to BasicQos. The second parameter, which is set to 1, is defining a
prefetch count. What this means is, RabbitMQ won’t dispatch a new message to a consumer
until that consumer has finished processing and acknowledging the message (we will look at
message acknowledgement in a moment). RabbitMQ will instead dispatch the message to the
next worker that is not busy:

This helps to prevent situations in which you might have one consumer that is constantly busy
and another that is lighter on work. By setting this prefetch count, you are ensuring a more
equal and fair dispatch of messages.

Next, the BasicQueueingConsumer is created and BasicConsume called for the queue
“WorkerQueue_Consumer.” The second parameter to BasicConsume is a Boolean which
represents whether or not we want to expect an acknowledgement message. In this example,
we want to send message acknowledgements so this parameter is set to false.

 Console.WriteLine("----- Payment Processed {0} : {1}",
message.CardNumber, message.AmountToPay);
 }
 }
 }
}

channel.BasicQos(0, 1, false);

var consumer = new QueueingBasicConsumer(channel);
channel.BasicConsume(QueueName, false, consumer);

while (true)
{
 var ea = consumer.Queue.Dequeue();
 var message = (Payment)ea.Body.DeSerialize();
 channel.BasicAck(ea.DeliveryTag, false);

 Console.WriteLine("----- Payment Processed {0} : {1}", message.CardNumber,
message.AmountToPay);
}

63

We then have a while loop that is started where the message is dequeued and deserialized
back into a payment message. Once we have the message and have acted upon it, we send a
delivery acknowledgement with the BasicAck call. This tells the message broker that we have
finished processing the message and are ready for the next message when it is ready.

To demonstrate this application, run two copies of the consumer application and then run the
producer application. The producer will show that 10 messages have been sent as in the
following screenshot:

Figure 49: Worker queue producer has put 10 payment messages onto the queue

You will then see the two consumer applications processing the messages as shown in the
following screenshot for one of the consumers:

64

Figure 50: Messages are distributed to the different consumer queues

As each consumer processes a message, the next message will not be received by that
consumer until it sends the delivery acknowledgement. You can easily demonstrate this by
commenting out the following line from the Receive method:

If you then re-run both of the consumers and then execute the producer application, the
consumers will only process one message each and not receive any more messages (as they
have not sent an acknowledgement back to the RabbitMQ server).

In the code following code, you will find the complete implementation for the producer
application:

channel.BasicAck(ea.DeliveryTag, false);

using System;
using RabbitMQ.Client;

namespace RabbitMQ.Examples
{
 public class Program
 {
 private static ConnectionFactory _factory;
 private static IConnection _connection;
 private static IModel _model;

 private const string QueueName = “WorkerQueue_Queue”;

 static void Main()

65

 {
 var payment1 = new Payment { AmountToPay = 25.0m, CardNumber =
“1234123412341234” };
 var payment2 = new Payment { AmountToPay = 5.0m, CardNumber =
“1234123412341234” };
 var payment3 = new Payment { AmountToPay = 2.0m, CardNumber =
“1234123412341234” };
 var payment4 = new Payment { AmountToPay = 17.0m, CardNumber =
“1234123412341234” };
 var payment5 = new Payment { AmountToPay = 300.0m, CardNumber =
“1234123412341234” };
 var payment6 = new Payment { AmountToPay = 350.0m, CardNumber =
“1234123412341234” };
 var payment7 = new Payment { AmountToPay = 295.0m, CardNumber =
“1234123412341234” };
 var payment8 = new Payment { AmountToPay = 5625.0m, CardNumber =
“1234123412341234” };
 var payment9 = new Payment { AmountToPay = 5.0m, CardNumber =
“1234123412341234” };
 var payment10 = new Payment { AmountToPay = 12.0m, CardNumber =
“1234123412341234” };

 CreateConnection();

 SendMessage(payment1);
 SendMessage(payment2);
 SendMessage(payment3);
 SendMessage(payment4);
 SendMessage(payment5);
 SendMessage(payment6);
 SendMessage(payment7);
 SendMessage(payment8);
 SendMessage(payment9);
 SendMessage(payment10);

 Console.ReadLine();
 }

 private static void CreateConnection()
 {
 _factory = new ConnectionFactory { HostName = “localhost”, UserName =
“guest”, Password = “guest” };
 _connection = _factory.CreateConnection();
 _model = _connection.CreateModel();
 _model.QueueDeclare(QueueName, true, false, false, null);
 }

 private static void SendMessage(Payment message)
 {
 _model.BasicPublish(“”, QueueName, null, message.Serialize());
 Console.WriteLine(“ Payment Sent {0}, £{1}”, message.CardNumber,
message.AmountToPay);
 }
 }
}

66

In the code below, you will find the complete code for the consumer application. Please note
that you need the RabbitMQ Client installed on any machine where the consumer and producer
applications are executed. This example also uses the shared code from the code solution
provided with this book:

using System;
using RabbitMQ.Client;

namespace RabbitMQ.Examples
{
 public class Program
 {
 private static ConnectionFactory _factory;
 private static IConnection _connection;
 private const string QueueName = "WorkerQueue_Queue";

 static void Main()
 {
 Receive();

 Console.ReadLine();
 }

 public static void Receive()
 {
 _factory = new ConnectionFactory { HostName = "localhost", UserName =
"guest", Password = "guest" };
 using (_connection = _factory.CreateConnection())
 {
 using (var channel = _connection.CreateModel())
 {
 channel.QueueDeclare(QueueName, true, false, false, null);
 channel.BasicQos(0, 1, false);

 var consumer = new QueueingBasicConsumer(channel);
 channel.BasicConsume(QueueName, false, consumer);

 while (true)
 {
 var ea = consumer.Queue.Dequeue();
 var message = (Payment)ea.Body.DeSerialize();
 channel.BasicAck(ea.DeliveryTag, false);

 Console.WriteLine("----- Payment Processed {0} : {1}",
message.CardNumber, message.AmountToPay);
 }
 }
 }
 }
 }
}

67

Example 3: Publisher and Subscriber

In this example, we are going to expand on the previous worker queue concept. This example is
called a publisher and subscriber. In the worker queue example, the consumers could share the
load of messages from the queue. This means that messages are distributed between multiple
consumers:

Figure 51: Publisher and subscriber example

With the publisher and subscriber example, the messages are sent from the exchange to all of
the consumers that are bound to the exchange. This means the messages are not picked up by
multiple consumers to distribute load but, instead, all consumers are interested in receiving the
messages.

Unlike the previous example, we are going to set up an explicit exchange. In the worker queue
example we directly defined a queue and this used a default direct exchange behind the
scenes. This time, we will set up an exchange and set its type to “fanout.” A fanout exchange
routes messages to all of the queues that are bound to it and the routing key is ignored. If 10
queues are bound to a fanout exchange, when a new message is published to that exchange, a
copy of the message is delivered to all 10 queues.

Let’s take a look at the code for the publisher application. First, as in the previous examples, we
will set up some payment messages:

static void Main()
{
 var payment1 = new Payment { AmountToPay = 25.0m, CardNumber = "1234123412341234"
};
 var payment2 = new Payment { AmountToPay = 5.0m, CardNumber = "1234123412341234"
};
 var payment3 = new Payment { AmountToPay = 2.0m, CardNumber = "1234123412341234"
};
 var payment4 = new Payment { AmountToPay = 17.0m, CardNumber = "1234123412341234"
};
 var payment5 = new Payment { AmountToPay = 300.0m, CardNumber =
"1234123412341234" };

68

When we create the connection, we instead declare an exchange instead of a queue. Notice
when the exchange is declared, we specify the “fanout” exchange type:

Once the connection and queue is declared, we then send the payment messages to the queue
in a similar fashion as before but, instead of providing a queue name in the second parameter
as the routing key, we instead provide the exchange name—which in this case is
“PublishSubscribe_Exchange.”

 var payment6 = new Payment { AmountToPay = 350.0m, CardNumber =
"1234123412341234" };
 var payment7 = new Payment { AmountToPay = 295.0m, CardNumber =
"1234123412341234" };
 var payment8 = new Payment { AmountToPay = 5625.0m, CardNumber =
"1234123412341234" };
 var payment9 = new Payment { AmountToPay = 5.0m, CardNumber = "1234123412341234"
};
 var payment10 = new Payment { AmountToPay = 12.0m, CardNumber =
"1234123412341234" };

 CreateConnection();

 SendMessage(payment1);
 SendMessage(payment2);
 SendMessage(payment3);
 SendMessage(payment4);
 SendMessage(payment5);
 SendMessage(payment6);
 SendMessage(payment7);
 SendMessage(payment8);
 SendMessage(payment9);
 SendMessage(payment10);
}

private static ConnectionFactory _factory;
private static IConnection _connection;
private static IModel _model;

private const string ExchangeName = "PublishSubscribe_Exchange";

private static void CreateConnection()
{
 _factory = new ConnectionFactory { HostName = "localhost", UserName = "guest",
Password = "guest" };
 _connection = _factory.CreateConnection();
 _model = _connection.CreateModel();
 _model.ExchangeDeclare(ExchangeName, "fanout");
}

private static void SendMessage(Payment message)

69

Now that the messages are in the queue, we can now look at the subscriber application that will
receive the messages. Remember, that in this example, if we have five subscribers all
connected to the exchange, each subscriber will receive all of the messages that are sent:

As with previous examples, we create a connection to RabbitMQ and then a channel. Next, we
need to set up the exchange and queues from which we want to read. This is done in the
following code:

{
 _model.BasicPublish(ExchangeName, "", null, message.Serialize());
 Console.WriteLine(" Payment Sent {0}, £{1}", message.CardNumber,
message.AmountToPay);
}

private static ConnectionFactory _factory;
private static IConnection _connection;
private static QueueingBasicConsumer _consumer;

private const string ExchangeName = "PublishSubscribe_Exchange";

static void Main()
{
 _factory = new ConnectionFactory { HostName = "localhost", UserName = "guest",
Password = "guest" };
 using (_connection = _factory.CreateConnection())
 {
 using (var channel = _connection.CreateModel())
 {
 var queueName = DeclareAndBindQueueToExchange(channel);
 channel.BasicConsume(queueName, true, _consumer);

 while (true)
 {
 var ea = _consumer.Queue.Dequeue();
 var message = (Payment)ea.Body.DeSerialize();

 Console.WriteLine("----- Payment Processed {0} : {1}",
message.CardNumber, message.AmountToPay);
 }
 }
 }
}

private static string DeclareAndBindQueueToExchange(IModel channel)
{
 channel.ExchangeDeclare(ExchangeName, "fanout");
 var queueName = channel.QueueDeclare().QueueName;
 channel.QueueBind(queueName, ExchangeName, "");
 _consumer = new QueueingBasicConsumer(channel);

70

First, we declare the exchange by name: “PublishSubscribe_Exchange.” Similar to the last
example, the ExchangeDeclare call is idempotent which means, that if you redeclare an
exchange that is already there, then the already-defined exchange will be used.

Next, there is a call to declare queue. This creates a queue that is specific to this subscriber.
Unlike in previous examples in which we have declared a queue by name, this time we use a
system-generated queue name. This will have a name that looks something like:

amq.gen-TsdoX9qziswm9QCbdkp9Zw

Once the queue has been declared, it is bound to the exchange and a
QueueingBasicConsumer is created. If we run five instances of the subscriber application,
load up the RabbitMQ management portal website, and browse to our exchange
“PublishSubscribe_Exchange,” you will see that there are five queues that are bound to the
exchange. You can see this in the following screenshot:

Figure 52: Subscriber queues are bound to the PublishSubscriber_Exchange

Now that the exchange and queues are declared and bound together, BasicConsume is called
on the channel. The queue name has to be provided here as we are using a specific queue for
this instance of the subscriber application. The second parameter is set to true. This indicates
that we will not be waiting for a message acknowledgement before receiving the next message.
We don’t need to in this case as our subscriber application is reading from its own queue so it
will take messages at a rate at which it can deal.

Now we are ready to pull the messages from the queue. This is done within the while loop in the
subscriber application as follows:

 return queueName;
}

71

As with the previous examples, this example dequeues the message and deserializes it so it
can be acted upon. To demonstrate this example working, open a couple of instances of the
subscriber application, then open an instance of the publisher application. You will see that the
publisher pushes 10 messages to the exchange, and each of the subscribers receives all of the
messages. This is demonstrated in the following screenshot:

Figure 53: One publisher and two subscribers

Here is the complete code for the publisher application:

while (true)
{
 var ea = _consumer.Queue.Dequeue();
 var message = (Payment)ea.Body.DeSerialize();

 Console.WriteLine("----- Payment Processed {0} : {1}", message.CardNumber,
message.AmountToPay);
}

using System;
using RabbitMQ.Client;

namespace RabbitMQ.Examples
{
 class Program
 {
 private static ConnectionFactory _factory;
 private static IConnection _connection;
 private static IModel _model;

 private const string ExchangeName = "PublishSubscribe_Exchange";

72

 static void Main()
 {
 var payment1 = new Payment { AmountToPay = 25.0m, CardNumber =
"1234123412341234" };
 var payment2 = new Payment { AmountToPay = 5.0m, CardNumber =
"1234123412341234" };
 var payment3 = new Payment { AmountToPay = 2.0m, CardNumber =
"1234123412341234" };
 var payment4 = new Payment { AmountToPay = 17.0m, CardNumber =
"1234123412341234" };
 var payment5 = new Payment { AmountToPay = 300.0m, CardNumber =
"1234123412341234" };
 var payment6 = new Payment { AmountToPay = 350.0m, CardNumber =
"1234123412341234" };
 var payment7 = new Payment { AmountToPay = 295.0m, CardNumber =
"1234123412341234" };
 var payment8 = new Payment { AmountToPay = 5625.0m, CardNumber =
"1234123412341234" };
 var payment9 = new Payment { AmountToPay = 5.0m, CardNumber =
"1234123412341234" };
 var payment10 = new Payment { AmountToPay = 12.0m, CardNumber =
"1234123412341234" };

 CreateConnection();

 SendMessage(payment1);
 SendMessage(payment2);
 SendMessage(payment3);
 SendMessage(payment4);
 SendMessage(payment5);
 SendMessage(payment6);
 SendMessage(payment7);
 SendMessage(payment8);
 SendMessage(payment9);
 SendMessage(payment10);
 }

 private static void CreateConnection()
 {
 _factory = new ConnectionFactory { HostName = "localhost", UserName =
"guest", Password = "guest" };
 _connection = _factory.CreateConnection();
 _model = _connection.CreateModel();
 _model.ExchangeDeclare(ExchangeName, "fanout");
 }

 private static void SendMessage(Payment message)
 {
 _model.BasicPublish(ExchangeName, "", null, message.Serialize());
 Console.WriteLine(" Payment Sent {0}, £{1}", message.CardNumber,
message.AmountToPay);
 }
 }

73

And here is the code for the subscriber application:

}

using System;
using RabbitMQ.Client;

namespace RabbitMQ.Examples
{
 class Program
 {
 private static ConnectionFactory _factory;
 private static IConnection _connection;
 private static QueueingBasicConsumer _consumer;

 private const string ExchangeName = "PublishSubscribe_Exchange";

 static void Main()
 {
 _factory = new ConnectionFactory { HostName = "localhost", UserName =
"guest", Password = "guest" };
 using (_connection = _factory.CreateConnection())
 {
 using (var channel = _connection.CreateModel())
 {
 var queueName = DeclareAndBindQueueToExchange(channel);
 channel.BasicConsume(queueName, true, _consumer);

 while (true)
 {
 var ea = _consumer.Queue.Dequeue();
 var message = (Payment)ea.Body.DeSerialize();

 Console.WriteLine("----- Payment Processed {0} : {1}",
message.CardNumber, message.AmountToPay);
 }
 }
 }
 }

 private static string DeclareAndBindQueueToExchange(IModel channel)
 {
 channel.ExchangeDeclare(ExchangeName, "fanout");
 var queueName = channel.QueueDeclare().QueueName;
 channel.QueueBind(queueName, ExchangeName, "");
 _consumer = new QueueingBasicConsumer(channel);
 return queueName;
 }
 }
}

74

Example 4: Direct Routing

In this next example, we are going to produce a system that looks similar to the publish and
subscribe demo we have just looked at. However, it is fundamentally different. As before, we will
have a series of consuming applications that will connect to a queue that is bound to an
exchange:

Figure 54. A Series of Consuming Applications

In the previous example, the exchange was set to use the “fanout” exchange type which meant
all of the messages were routed to each of the subscribers. This meant that, if you provided a
routing key when send a message to an exchange, that routing key would be ignored.

In this example, we will use a “direct” exchange type and the routing key will be used to direct
messages to a specific consumer. The producer application in this example will post two
different types of message. First is the CardPayment message with which we are already
familiar, and the second type of message is a PurchaseOrder. As these are posted to the
exchange, they will be sent with a specific routing key identifying what type of message they are
(i.e. CardPayment or PurchaseOrder).

The example has two different consumer applications. One is specifically looking out for
CardPayments and the other is only interested in PurchaseOrders. They pick up their messages
based on the routing key. Let’s take a look at the code. First, as before, we set up our different
payment messages. We have 10 card payments and 10 purchase orders:

static void Main()
{
 var payment1 = new Payment { AmountToPay = 25.0m, CardNumber = "1234123412341234"
};
 var payment2 = new Payment { AmountToPay = 5.0m, CardNumber = "1234123412341234"
};
 var payment3 = new Payment { AmountToPay = 2.0m, CardNumber = "1234123412341234"
};
 var payment4 = new Payment { AmountToPay = 17.0m, CardNumber = "1234123412341234"
};
 var payment5 = new Payment { AmountToPay = 300.0m, CardNumber =
"1234123412341234" };
 var payment6 = new Payment { AmountToPay = 350.0m, CardNumber =
"1234123412341234" };

75

 var payment7 = new Payment { AmountToPay = 295.0m, CardNumber =
"1234123412341234" };
 var payment8 = new Payment { AmountToPay = 5625.0m, CardNumber =
"1234123412341234" };
 var payment9 = new Payment { AmountToPay = 5.0m, CardNumber = "1234123412341234"
};
 var payment10 = new Payment { AmountToPay = 12.0m, CardNumber =
"1234123412341234" };

 var purchaseOrder1 = new PurchaseOrder{AmountToPay = 50.0m, CompanyName =
"Company A", PaymentDayTerms = 75, PoNumber = "123434A"};
 var purchaseOrder2 = new PurchaseOrder { AmountToPay = 150.0m, CompanyName =
"Company B", PaymentDayTerms = 75, PoNumber = "193434B" };
 var purchaseOrder3 = new PurchaseOrder { AmountToPay = 12.0m, CompanyName =
"Company C", PaymentDayTerms = 75, PoNumber = "196544A" };
 var purchaseOrder4 = new PurchaseOrder { AmountToPay = 2150.0m, CompanyName =
"Company D", PaymentDayTerms = 75, PoNumber = "234434H" };
 var purchaseOrder5 = new PurchaseOrder { AmountToPay = 2150.0m, CompanyName =
"Company E", PaymentDayTerms = 75, PoNumber = "876434W" };
 var purchaseOrder6 = new PurchaseOrder { AmountToPay = 7150.0m, CompanyName =
"Company F", PaymentDayTerms = 75, PoNumber = "1423474U" };
 var purchaseOrder7 = new PurchaseOrder { AmountToPay = 3150.0m, CompanyName =
"Company G", PaymentDayTerms = 75, PoNumber = "1932344O" };
 var purchaseOrder8 = new PurchaseOrder { AmountToPay = 3190.0m, CompanyName =
"Company H", PaymentDayTerms = 75, PoNumber = "1123457Q" };
 var purchaseOrder9 = new PurchaseOrder { AmountToPay = 50.0m, CompanyName =
"Company I", PaymentDayTerms = 75, PoNumber = "1595344R" };
 var purchaseOrder10 = new PurchaseOrder { AmountToPay = 2150.0m, CompanyName =
"Company J", PaymentDayTerms = 75, PoNumber = "656734L" };

 CreateConnection();

 SendPayment(payment1);
 SendPayment(payment2);
 SendPayment(payment3);
 SendPayment(payment4);
 SendPayment(payment5);
 SendPayment(payment6);
 SendPayment(payment7);
 SendPayment(payment8);
 SendPayment(payment9);
 SendPayment(payment10);

 SendPurchaseOrder(purchaseOrder1);
 SendPurchaseOrder(purchaseOrder2);
 SendPurchaseOrder(purchaseOrder3);
 SendPurchaseOrder(purchaseOrder4);
 SendPurchaseOrder(purchaseOrder5);
 SendPurchaseOrder(purchaseOrder6);
 SendPurchaseOrder(purchaseOrder7);
 SendPurchaseOrder(purchaseOrder8);
 SendPurchaseOrder(purchaseOrder9);
 SendPurchaseOrder(purchaseOrder10);
}

76

Next, we create the connection, channel, and then the exchange. This time, the exchange is
named “DirectRouting_Exchange” and the exchange type is set to “direct” instead of “fanout.”

Now that the connection, channel, and exchange are ready to go, we can send the card
payments and purchase orders to the exchange:

The SendPayment and SendPurchaseOrder methods are similar—except for the type of
object that is serialized to send to the queue, and the routing key that is specified to tell the
exchange to which consumer the message should be routed.

Now let’s take a look at one of the consumers. Both of the consumers are similar in how they
work. We will discuss the consumer for the card payment processor and highlight the
differences for the purchase order version.

private static void CreateConnection()
{
 _factory = new ConnectionFactory { HostName = "localhost", UserName = "guest",
Password = "guest" };
 _connection = _factory.CreateConnection();
 _model = _connection.CreateModel();
 _model.ExchangeDeclare(ExchangeName, "direct");
}

private static void SendPayment(Payment payment)
{
 SendMessage(payment.Serialize(), "CardPayment");
 Console.WriteLine(" Payment Sent {0}, £{1}", payment.CardNumber,
payment.AmountToPay);
}

private static void SendPurchaseOrder(PurchaseOrder purchaseOrder)
{
 SendMessage(purchaseOrder.Serialize(), "PurchaseOrder");
 Console.WriteLine(" Purchase Order Sent {0}, £{1}, {2}, {3}",
purchaseOrder.CompanyName, purchaseOrder.AmountToPay, purchaseOrder.PaymentDayTerms,
purchaseOrder.PoNumber);
}

private static void SendMessage(byte[] message, string routingKey)
{
 _model.BasicPublish(ExchangeName, routingKey, null, message);
}

static void Main()
{
 _factory = new ConnectionFactory { HostName = "localhost", UserName = "guest",
Password = "guest" };

77

As with the other examples, the code creates a connection and channel, and then redeclares
the exchange as a direct exchange. Next, a queue is created by using a RabbitMQ-generated
queue name. This queue is then bound to the exchange. The third parameter to the
QueueDeclare method is the routing key. For the first consumer, this is set to “CardPayment”
as it is just interested in the CardPayment messages.

For the second consumer, the queue is bound to the exchange by using the “PurchaseOrder”
routing key. Next, the QueueingBasicConsumer is created and BasicConsume is called to
start, reading from the queue. Again, for this example, we are not sending a message
acknowledgement so the second parameter to BasicConsume is set to true.

Then, we enter a while loop, and the message is dequeued and deserialized back into a
Payment object for the CardPayment consumer and a PurchaseOrder consumer.

Next, run both of the consumer applications on their own, and then go to the RabbitMQ
management portal and browse to the “DirectRouting_Exchange.” You will see that there are
two queues bound to the exchange. The first queue has a routing key of PurchaseOrder set
against it and the second queue has a routing key of CardPayment set. If you see this, you are
ready to post messages to the exchange.

 using (_connection = _factory.CreateConnection())
 {
 using (var channel = _connection.CreateModel())
 {
 channel.ExchangeDeclare(ExchangeName, "direct");
 var queueName = channel.QueueDeclare().QueueName;

 channel.QueueBind(queueName, ExchangeName, "CardPayment");

 var consumer = new QueueingBasicConsumer(channel);
 channel.BasicConsume(queueName, true, consumer);

 while (true)
 {
 var ea = consumer.Queue.Dequeue();
 var message = (Payment)ea.Body.DeSerialize();
 var routingKey = ea.RoutingKey;
 Console.WriteLine("--- Payment - Key <{0}> : {1} : {2}", routingKey,
message.CardNumber, message.AmountToPay);
 }
 }
 }
}

78

Figure 55: Direct routing queues bound to the exchange with different routing keys

Now, if you run the producer application, you will see that the 10 payments and 10 purchase
orders have been sent to the exchange as shown in the following screenshot:

Figure 56: Payments and purchase orders have been sent to the exchange and routed via a routing key

Then, in the first consumer application, you will see that all of the payment messages have been
routed to it as shown in the following screenshot:

79

Figure 57: The card payment consumer has only picked up the payment messages

Then, in the other consumer window, you will see all of the purchase order messages:

Figure 58: The purchase consumer has only picked up the purchase order messages

Here is the complete code for the publisher application:

using System;

80

using RabbitMQ.Client;

namespace RabbitMQ.Examples
{
 class Program
 {
 private static ConnectionFactory _factory;
 private static IConnection _connection;
 private static IModel _model;

 private const string ExchangeName = "DirectRouting_Exchange";

 static void Main()
 {
 var payment1 = new Payment { AmountToPay = 25.0m, CardNumber =
"1234123412341234" };
 var payment2 = new Payment { AmountToPay = 5.0m, CardNumber =
"1234123412341234" };
 var payment3 = new Payment { AmountToPay = 2.0m, CardNumber =
"1234123412341234" };
 var payment4 = new Payment { AmountToPay = 17.0m, CardNumber =
"1234123412341234" };
 var payment5 = new Payment { AmountToPay = 300.0m, CardNumber =
"1234123412341234" };
 var payment6 = new Payment { AmountToPay = 350.0m, CardNumber =
"1234123412341234" };
 var payment7 = new Payment { AmountToPay = 295.0m, CardNumber =
"1234123412341234" };
 var payment8 = new Payment { AmountToPay = 5625.0m, CardNumber =
"1234123412341234" };
 var payment9 = new Payment { AmountToPay = 5.0m, CardNumber =
"1234123412341234" };
 var payment10 = new Payment { AmountToPay = 12.0m, CardNumber =
"1234123412341234" };

 var purchaseOrder1 = new PurchaseOrder{AmountToPay = 50.0m, CompanyName =
"Company A", PaymentDayTerms = 75, PoNumber = "123434A"};
 var purchaseOrder2 = new PurchaseOrder { AmountToPay = 150.0m,
CompanyName = "Company B", PaymentDayTerms = 75, PoNumber = "193434B" };
 var purchaseOrder3 = new PurchaseOrder { AmountToPay = 12.0m, CompanyName
= "Company C", PaymentDayTerms = 75, PoNumber = "196544A" };
 var purchaseOrder4 = new PurchaseOrder { AmountToPay = 2150.0m,
CompanyName = "Company D", PaymentDayTerms = 75, PoNumber = "234434H" };
 var purchaseOrder5 = new PurchaseOrder { AmountToPay = 2150.0m,
CompanyName = "Company E", PaymentDayTerms = 75, PoNumber = "876434W" };
 var purchaseOrder6 = new PurchaseOrder { AmountToPay = 7150.0m,
CompanyName = "Company F", PaymentDayTerms = 75, PoNumber = "1423474U" };
 var purchaseOrder7 = new PurchaseOrder { AmountToPay = 3150.0m,
CompanyName = "Company G", PaymentDayTerms = 75, PoNumber = "1932344O" };
 var purchaseOrder8 = new PurchaseOrder { AmountToPay = 3190.0m,
CompanyName = "Company H", PaymentDayTerms = 75, PoNumber = "1123457Q" };
 var purchaseOrder9 = new PurchaseOrder { AmountToPay = 50.0m, CompanyName
= "Company I", PaymentDayTerms = 75, PoNumber = "1595344R" };
 var purchaseOrder10 = new PurchaseOrder { AmountToPay = 2150.0m,
CompanyName = "Company J", PaymentDayTerms = 75, PoNumber = "656734L" };

81

 CreateConnection();

 SendPayment(payment1);
 SendPayment(payment2);
 SendPayment(payment3);
 SendPayment(payment4);
 SendPayment(payment5);
 SendPayment(payment6);
 SendPayment(payment7);
 SendPayment(payment8);
 SendPayment(payment9);
 SendPayment(payment10);

 SendPurchaseOrder(purchaseOrder1);
 SendPurchaseOrder(purchaseOrder2);
 SendPurchaseOrder(purchaseOrder3);
 SendPurchaseOrder(purchaseOrder4);
 SendPurchaseOrder(purchaseOrder5);
 SendPurchaseOrder(purchaseOrder6);
 SendPurchaseOrder(purchaseOrder7);
 SendPurchaseOrder(purchaseOrder8);
 SendPurchaseOrder(purchaseOrder9);
 SendPurchaseOrder(purchaseOrder10);
 }

 private static void SendPayment(Payment payment)
 {
 SendMessage(payment.Serialize(), "CardPayment");
 Console.WriteLine(" Payment Sent {0}, £{1}", payment.CardNumber,
payment.AmountToPay);
 }

 private static void SendPurchaseOrder(PurchaseOrder purchaseOrder)
 {
 SendMessage(purchaseOrder.Serialize(), "PurchaseOrder");
 Console.WriteLine(" Purchase Order Sent {0}, £{1}, {2}, {3}",
purchaseOrder.CompanyName, purchaseOrder.AmountToPay, purchaseOrder.PaymentDayTerms,
purchaseOrder.PoNumber);
 }

 private static void CreateConnection()
 {
 _factory = new ConnectionFactory { HostName = "localhost", UserName =
"guest", Password = "guest" };
 _connection = _factory.CreateConnection();
 _model = _connection.CreateModel();
 _model.ExchangeDeclare(ExchangeName, "direct");
 }

 private static void SendMessage(byte[] message, string routingKey)
 {
 _model.BasicPublish(ExchangeName, routingKey, null, message);
 }
 }

82

Here is the complete code for the card payment consumer application:

}

using System;
using RabbitMQ.Client;

namespace RabbitMQ.Examples
{
 class Program
 {
 private static ConnectionFactory _factory;
 private static IConnection _connection;

 private const string ExchangeName = "DirectRouting_Exchange";

 static void Main()
 {
 _factory = new ConnectionFactory { HostName = "localhost", UserName =
"guest", Password = "guest" };
 using (_connection = _factory.CreateConnection())
 {
 using (var channel = _connection.CreateModel())
 {
 channel.ExchangeDeclare(ExchangeName, "direct");
 var queueName = channel.QueueDeclare().QueueName;

 channel.QueueBind(queueName, ExchangeName, "CardPayment");

 var consumer = new QueueingBasicConsumer(channel);
 channel.BasicConsume(queueName, true, consumer);

 while (true)
 {
 var ea = consumer.Queue.Dequeue();
 var message = (Payment)ea.Body.DeSerialize();
 var routingKey = ea.RoutingKey;
 Console.WriteLine("--- Payment - Key <{0}> : {1} : {2}",
routingKey, message.CardNumber, message.AmountToPay);
 }
 }
 }
 }
 }
}

83

Here is the complete code for the purchase order consumer application:

using System;
using RabbitMQ.Client;

namespace RabbitMQ.Examples
{
 class Program
 {
 private static ConnectionFactory _factory;
 private static IConnection _connection;

 private const string ExchangeName = "DirectRouting_Exchange";

 static void Main()
 {
 _factory = new ConnectionFactory { HostName = "localhost", UserName =
"guest", Password = "guest" };
 using (_connection = _factory.CreateConnection())
 {
 using (var channel = _connection.CreateModel())
 {
 channel.ExchangeDeclare(ExchangeName, "direct");
 var queueName = channel.QueueDeclare().QueueName;

 channel.QueueBind(queueName, ExchangeName, "PurchaseOrder");

 var consumer = new QueueingBasicConsumer(channel);
 channel.BasicConsume(queueName, true, consumer);

 while (true)
 {
 var ea = consumer.Queue.Dequeue();
 var message = (PurchaseOrder)ea.Body.DeSerialize();
 var routingKey = ea.RoutingKey;
 Console.WriteLine("-- Purchase Order - Key <{0}> : {1}, £{2},
{3}, {4}", routingKey, message.CompanyName, message.AmountToPay,
message.PaymentDayTerms, message.PoNumber);
 }
 }
 }
 }
 }
}

84

Example 5: Topic-based Publish and Subscribe

In the last example, we routed different types of messages to specific consumers through a
direct exchange by using the routing key. In this next example, we are going to do something
similar but we are going to use topics instead. When the exchange is defined, instead of setting
its type to “direct,” we will set the exchange type to “topic.”

Messages sent to a topic exchange can't have an arbitrary routing key as we saw earlier. The
routing key must be a list of words that are separated by dots. The words can be anything but
usually they specify some features connected to the message. In the context of our payment
processor scenario, we will have routing keys such as "payment.card" and
"payment.purchaseorder.” There can be as many words in the routing key as you like, up to the
limit of 255 bytes.

The logic behind the topic exchange is similar to a direct exchange as seen in the previous
example. A message sent with a particular routing key will be delivered to all of the queues that
are bound with a matching key. However, there are two important special cases for binding
keys:

 A ‘*’ (star) can substitute for exactly one word.

 A ‘#’ (hash) can substitute for zero or more words.

Look at the following diagram as an example:

Figure 59: Topic-based publisher and subscriber example

Consumer 1 and Consumer 2 both receive card and purchase order messages as seen in the
previous example; the difference here is that the routing key looks different. The real difference
is when we look at Consumer 3. This has a routing key of “payment.*”

This means that Consumer 3 is interested in any message that starts with “payment.” So, for
this example, we would expect both card payments and purchase orders to be picked up by this
consumer.

85

If we apply this to a real-world scenario, Consumers 1 and 2 may be actual services processing
payments whereas Consumer 3 could be a hook into an accounting system where someone is
interested in getting visibility of all of the payments (regardless of whether or not they are card
payments or purchase orders).

Let’s now take a look at the code for the publisher application:

static void Main()
{
 var payment1 = new Payment { AmountToPay = 25.0m, CardNumber =
"1234123412341234", Name = "Mr F Bloggs"};
 var payment2 = new Payment { AmountToPay = 5.0m, CardNumber = "1234123412341234",
Name = "Mr S Simpson" };
 var payment3 = new Payment { AmountToPay = 2.0m, CardNumber = "1234123412341234",
Name = "Mr G Washington" };
 var payment4 = new Payment { AmountToPay = 17.0m, CardNumber =
"1234123412341234", Name = "Mr B Gates" };
 var payment5 = new Payment { AmountToPay = 300.0m, CardNumber =
"1234123412341234", Name = "Mrs K Kardashian" };
 var payment6 = new Payment { AmountToPay = 350.0m, CardNumber =
"1234123412341234", Name = "Mrs M Whitehouse" };
 var payment7 = new Payment { AmountToPay = 295.0m, CardNumber =
"1234123412341234", Name = "Mrs E Windsor" };
 var payment8 = new Payment { AmountToPay = 5625.0m, CardNumber =
"1234123412341234", Name = "Mr B Obama" };
 var payment9 = new Payment { AmountToPay = 5.0m, CardNumber = "1234123412341234",
Name = "Mr S Haunts" };
 var payment10 = new Payment { AmountToPay = 12.0m, CardNumber =
"1234123412341234", Name = "Mr F Bloggs Jr" };

 var purchaseOrder1 = new PurchaseOrder { AmountToPay = 50.0m, CompanyName =
"Company A", PaymentDayTerms = 75, PoNumber = "123434A" };
 var purchaseOrder2 = new PurchaseOrder { AmountToPay = 150.0m, CompanyName =
"Company B", PaymentDayTerms = 75, PoNumber = "193434B" };
 var purchaseOrder3 = new PurchaseOrder { AmountToPay = 12.0m, CompanyName =
"Company C", PaymentDayTerms = 75, PoNumber = "196544A" };
 var purchaseOrder4 = new PurchaseOrder { AmountToPay = 2150.0m, CompanyName =
"Company D", PaymentDayTerms = 75, PoNumber = "234434H" };
 var purchaseOrder5 = new PurchaseOrder { AmountToPay = 2150.0m, CompanyName =
"Company E", PaymentDayTerms = 75, PoNumber = "876434W" };
 var purchaseOrder6 = new PurchaseOrder { AmountToPay = 7150.0m, CompanyName =
"Company F", PaymentDayTerms = 75, PoNumber = "1423474U" };
 var purchaseOrder7 = new PurchaseOrder { AmountToPay = 3150.0m, CompanyName =
"Company G", PaymentDayTerms = 75, PoNumber = "1932344O" };
 var purchaseOrder8 = new PurchaseOrder { AmountToPay = 3190.0m, CompanyName =
"Company H", PaymentDayTerms = 75, PoNumber = "1123457Q" };
 var purchaseOrder9 = new PurchaseOrder { AmountToPay = 50.0m, CompanyName =
"Company I", PaymentDayTerms = 75, PoNumber = "1595344R" };
 var purchaseOrder10 = new PurchaseOrder { AmountToPay = 2150.0m, CompanyName =
"Company J", PaymentDayTerms = 75, PoNumber = "656734L" };

 CreateConnection();

86

This is similar to the previous direct routing example. We set up 10 card payment messages
and then 10 purchase order messages. Next, we create the connection and channel, and define
an exchange called “Topic_Exchange”:

When the exchange is declared, the exchange type of “topic” is used. Next, there is the code to
send the payment and purchase order messages to the exchange. You will see in the following
example that a payment object is serialized and sent to the exchange with the “payment.card”
routing key. The purchase order object is serialized and sent with the “payment.purchaseorder”
routing key:

 SendPayment(payment1);
 SendPayment(payment2);
 SendPayment(payment3);
 SendPayment(payment4);
 SendPayment(payment5);
 SendPayment(payment6);
 SendPayment(payment7);
 SendPayment(payment8);
 SendPayment(payment9);
 SendPayment(payment10);

 SendPurchaseOrder(purchaseOrder1);
 SendPurchaseOrder(purchaseOrder2);
 SendPurchaseOrder(purchaseOrder3);
 SendPurchaseOrder(purchaseOrder4);
 SendPurchaseOrder(purchaseOrder5);
 SendPurchaseOrder(purchaseOrder6);
 SendPurchaseOrder(purchaseOrder7);
 SendPurchaseOrder(purchaseOrder8);
 SendPurchaseOrder(purchaseOrder9);
 SendPurchaseOrder(purchaseOrder10);
}

private static void CreateConnection()
{
 _factory = new ConnectionFactory { HostName = "localhost", UserName = "guest",
Password = "guest" };
 _connection = _factory.CreateConnection();
 _model = _connection.CreateModel();
 _model.ExchangeDeclare(ExchangeName, "topic");
}

private static void SendPayment(Payment payment)
{
 SendMessage(payment.Serialize(), "payment.card");
 Console.WriteLine(" Payment Sent {0}, £{1}", payment.CardNumber,
payment.AmountToPay);
}

87

For this example, there are three consumer applications: one that reads messages from the
“payment.card” queue, another that reads from “payment.purchaseorder,” and the third that
reads everything from ‘payment.*’ which includes card payments and purchase orders.

In the following explaination, we will treat the first two consumer applications as the same but
call out the changes between “payment.cards” and “payment.purchaseorder”:

private static void SendPurchaseOrder(PurchaseOrder purchaseOrder)
{
 SendMessage(purchaseOrder.Serialize(), "payment.purchaseorder");
 Console.WriteLine(" Purchase Order Sent {0}, £{1}, {2}, {3}",
purchaseOrder.CompanyName, purchaseOrder.AmountToPay, purchaseOrder.PaymentDayTerms,
purchaseOrder.PoNumber);
}

private static void SendMessage(byte[] message, string routingKey)
{
 _model.BasicPublish(ExchangeName, routingKey, null, message);
}

static void Main()
{
 _factory = new ConnectionFactory { HostName = "localhost", UserName = "guest",
Password = "guest" };
 using (_connection = _factory.CreateConnection())
 {
 using (var channel = _connection.CreateModel())
 {
 Console.WriteLine("Publisher listening for Topic <payment.card>");
 Console.WriteLine("--");
 Console.WriteLine();

 channel.ExchangeDeclare(ExchangeName, "topic");
 var queueName = channel.QueueDeclare().QueueName;

 channel.QueueBind(queueName, ExchangeName, "payment.card");

 var consumer = new QueueingBasicConsumer(channel);
 channel.BasicConsume(queueName, true, consumer);

 while (true)
 {
 var ea = consumer.Queue.Dequeue();
 var message = (Payment)ea.Body.DeSerialize();
 var routingKey = ea.RoutingKey;
 Console.WriteLine("--- Payment - Routing Key <{0}> : {1} : {2}",
routingKey, message.CardNumber, message.AmountToPay);
 }
 }
 }
}

88

The preceding code is for the first consumer application. As in previous examples, the
connection is made, the channel created, and the exchange “Topic_Exchange” (with a type of
“topic”) is redeclared. Then, a queue for this application is declared and bound to the exchange
with a routing key of “payment.card.”

This is what ensures that this consumer only listens to card payment messages from the
exchange. If you want to receive purchase order messages, you bind the queue to the
exchange with a routing key of “payment.purchaseorder.”

Once the queue is bound to the exchange, a QueuingBasicConsumer is created for the
channel and BasicConsume is called to start the read from the queue. Once this has
happened, the application goes into a while loop where the messages are dequeued and
deserialized. For the “payment.card” message, the message is deserialized to the Payment
object. For the purchase order messages, the message is deserialized to the PurchaseOrder
object type.

The third consumer is designed to read all of the payment messages regardless of whether they
are card payments or purchase orders. The first change is where we bind the consumer queue
to the exchange and specify a routing key of “payment.*”:

The second change is in the while loop when the messages are dequeued. Once the message
has been deserialized, a type check is performed to see if the message is a PurchaseOrder or
a Payment and if the relevant message is written to the console output:

channel.QueueBind(queueName, ExchangeName, "payment.*");

while (true)
{
 var ea = consumer.Queue.Dequeue();
 var reference = ea.Body.DeSerialize();

 var order = reference as PurchaseOrder;
 if (order != null)
 {
 Console.WriteLine("Purchase Order Received from company '{0}'",
order.CompanyName);
 }

 var payment = reference as Payment;
 if (payment != null)
 {
 Console.WriteLine("Card Payment Received from person '{0}'", payment.Name);
 }
}

89

If you run all three of the consumer applications and then log onto the RabbitMQ management
portal and browse to “Topic_Exchange,” you will see each of the queues bound to the
exchange. Each queue will have its appropriate routing key assigned to the queue as shown in
the following screenshot:

Figure 60: Topic exchange with three consumer queues bound to it

If you now run the producer application, you will see the 10 card payments and 10 purchase
orders sent to the exchange:

Figure 61: Topic example, consumer application after posting payments and purchase orders

Once these messages have been sent to the exchange, they will be routed to the relevant
queues based upon their routing key. In the following screenshot, the consumer application has
picked up the messages for card payments:

90

Figure 62: Topic example, consumer application receiving card payments

Then, in the following screenshot, we have the consumer application that receives all of the
purchase orders from the exchange:

Figure 63: Topic example, consumer application receiving purchase orders

Then, finally, in the following final screenshot, we have the consumer application that receives
the entire collection card payments and purchase orders:

91

Figure 64: Topic example, consumer application receiving both card payments and purchase orders

The following code is for the producer application that places messages onto the topic-based
exchange:

using RabbitMQ.Client;
using System;

namespace RabbitMQ.Examples
{
 class Program
 {
 private static ConnectionFactory _factory;
 private static IConnection _connection;
 private static IModel _model;

 private const string ExchangeName = "Topic_Exchange";

 static void Main()
 {
 var payment1 = new Payment { AmountToPay = 25.0m, CardNumber =
"1234123412341234", Name = "Mr F Bloggs"};
 var payment2 = new Payment { AmountToPay = 5.0m, CardNumber =
"1234123412341234", Name = "Mr S Simpson" };
 var payment3 = new Payment { AmountToPay = 2.0m, CardNumber =
"1234123412341234", Name = "Mr G Washington" };
 var payment4 = new Payment { AmountToPay = 17.0m, CardNumber =
"1234123412341234", Name = "Mr B Gates" };
 var payment5 = new Payment { AmountToPay = 300.0m, CardNumber =
"1234123412341234", Name = "Mrs K Kardashian" };
 var payment6 = new Payment { AmountToPay = 350.0m, CardNumber =

92

"1234123412341234", Name = "Mrs M Whitehouse" };
 var payment7 = new Payment { AmountToPay = 295.0m, CardNumber =
"1234123412341234", Name = "Mrs E Windsor" };
 var payment8 = new Payment { AmountToPay = 5625.0m, CardNumber =
"1234123412341234", Name = "Mr B Obama" };
 var payment9 = new Payment { AmountToPay = 5.0m, CardNumber =
"1234123412341234", Name = "Mr S Haunts" };
 var payment10 = new Payment { AmountToPay = 12.0m, CardNumber =
"1234123412341234", Name = "Mr F Bloggs Jr" };

 var purchaseOrder1 = new PurchaseOrder { AmountToPay = 50.0m, CompanyName
= "Company A", PaymentDayTerms = 75, PoNumber = "123434A" };
 var purchaseOrder2 = new PurchaseOrder { AmountToPay = 150.0m,
CompanyName = "Company B", PaymentDayTerms = 75, PoNumber = "193434B" };
 var purchaseOrder3 = new PurchaseOrder { AmountToPay = 12.0m, CompanyName
= "Company C", PaymentDayTerms = 75, PoNumber = "196544A" };
 var purchaseOrder4 = new PurchaseOrder { AmountToPay = 2150.0m,
CompanyName = "Company D", PaymentDayTerms = 75, PoNumber = "234434H" };
 var purchaseOrder5 = new PurchaseOrder { AmountToPay = 2150.0m,
CompanyName = "Company E", PaymentDayTerms = 75, PoNumber = "876434W" };
 var purchaseOrder6 = new PurchaseOrder { AmountToPay = 7150.0m,
CompanyName = "Company F", PaymentDayTerms = 75, PoNumber = "1423474U" };
 var purchaseOrder7 = new PurchaseOrder { AmountToPay = 3150.0m,
CompanyName = "Company G", PaymentDayTerms = 75, PoNumber = "1932344O" };
 var purchaseOrder8 = new PurchaseOrder { AmountToPay = 3190.0m,
CompanyName = "Company H", PaymentDayTerms = 75, PoNumber = "1123457Q" };
 var purchaseOrder9 = new PurchaseOrder { AmountToPay = 50.0m, CompanyName
= "Company I", PaymentDayTerms = 75, PoNumber = "1595344R" };
 var purchaseOrder10 = new PurchaseOrder { AmountToPay = 2150.0m,
CompanyName = "Company J", PaymentDayTerms = 75, PoNumber = "656734L" };

 CreateConnection();

 SendPayment(payment1);
 SendPayment(payment2);
 SendPayment(payment3);
 SendPayment(payment4);
 SendPayment(payment5);
 SendPayment(payment6);
 SendPayment(payment7);
 SendPayment(payment8);
 SendPayment(payment9);
 SendPayment(payment10);

 SendPurchaseOrder(purchaseOrder1);
 SendPurchaseOrder(purchaseOrder2);
 SendPurchaseOrder(purchaseOrder3);
 SendPurchaseOrder(purchaseOrder4);
 SendPurchaseOrder(purchaseOrder5);
 SendPurchaseOrder(purchaseOrder6);
 SendPurchaseOrder(purchaseOrder7);
 SendPurchaseOrder(purchaseOrder8);
 SendPurchaseOrder(purchaseOrder9);
 SendPurchaseOrder(purchaseOrder10);
 }

93

Next, we have the complete code for the consumer application that processes the
“payment.card” messages:

 private static void CreateConnection()
 {
 _factory = new ConnectionFactory { HostName = "localhost", UserName =
"guest", Password = "guest" };
 _connection = _factory.CreateConnection();
 _model = _connection.CreateModel();
 _model.ExchangeDeclare(ExchangeName, "topic");
 }

 private static void SendPayment(Payment payment)
 {
 SendMessage(payment.Serialize(), "payment.card");
 Console.WriteLine(" Payment Sent {0}, £{1}", payment.CardNumber,
payment.AmountToPay);
 }

 private static void SendPurchaseOrder(PurchaseOrder purchaseOrder)
 {
 SendMessage(purchaseOrder.Serialize(), "payment.purchaseorder");
 Console.WriteLine(" Purchase Order Sent {0}, £{1}, {2}, {3}",
purchaseOrder.CompanyName, purchaseOrder.AmountToPay, purchaseOrder.PaymentDayTerms,
purchaseOrder.PoNumber);
 }

 private static void SendMessage(byte[] message, string routingKey)
 {
 _model.BasicPublish(ExchangeName, routingKey, null, message);
 }
 }
}

using System;
using RabbitMQ.Client;

namespace RabbitMQ.Examples
{
 class Program
 {
 private static ConnectionFactory _factory;
 private static IConnection _connection;

 private const string ExchangeName = "Topic_Exchange";

 static void Main()
 {

94

Next, we have the complete code for the consumer application that processes the
“payment.purchaseorder” messages:

 _factory = new ConnectionFactory { HostName = "localhost", UserName =
"guest", Password = "guest" };
 using (_connection = _factory.CreateConnection())
 {
 using (var channel = _connection.CreateModel())
 {
 Console.WriteLine("Publisher listening for Topic
<payment.card>");
 Console.WriteLine("--
");
 Console.WriteLine();

 channel.ExchangeDeclare(ExchangeName, "topic");
 var queueName = channel.QueueDeclare().QueueName;

 channel.QueueBind(queueName, ExchangeName, "payment.card");

 var consumer = new QueueingBasicConsumer(channel);
 channel.BasicConsume(queueName, true, consumer);

 while (true)
 {
 var ea = consumer.Queue.Dequeue();
 var message = (Payment)ea.Body.DeSerialize();
 var routingKey = ea.RoutingKey;
 Console.WriteLine("--- Payment - Routing Key <{0}> : {1} :
{2}", routingKey, message.CardNumber, message.AmountToPay);
 }
 }
 }
 }
 }
}

using System;
using RabbitMQ.Client;

namespace RabbitMQ.Examples
{
 class Program
 {
 private static ConnectionFactory _factory;
 private static IConnection _connection;

 private const string ExchangeName = "Topic_Exchange";

95

Finally, we have the complete code for the consumer application that processes the “payment.*”
messages:

 static void Main()
 {
 _factory = new ConnectionFactory { HostName = "localhost", UserName =
"guest", Password = "guest" };
 using (_connection = _factory.CreateConnection())
 {
 using (var channel = _connection.CreateModel())
 {
 Console.WriteLine("Publisher listening for Topic
<payment.purchaseorder>");
 Console.WriteLine("--
-------");
 Console.WriteLine();

 channel.ExchangeDeclare(ExchangeName, "topic");
 var queueName = channel.QueueDeclare().QueueName;

 channel.QueueBind(queueName, ExchangeName,
"payment.purchaseorder");

 var consumer = new QueueingBasicConsumer(channel);
 channel.BasicConsume(queueName, true, consumer);

 while (true)
 {
 var ea = consumer.Queue.Dequeue();
 var message = (PurchaseOrder)ea.Body.DeSerialize();
 var routingKey = ea.RoutingKey;
 Console.WriteLine("-- Purchase Order - Routing Key <{0}> :
{1}, £{2}, {3}, {4}", routingKey, message.CompanyName, message.AmountToPay,
message.PaymentDayTerms, message.PoNumber);
 }
 }
 }
 }
 }
}

using System;
using RabbitMQ.Client;

namespace RabbitMQ.Examples
{
 class Program
 {
 private static ConnectionFactory _factory;

96

Example 6: Remote Procedure Call

 private static IConnection _connection;

 private const string ExchangeName = "Topic_Exchange";

 static void Main()
 {
 _factory = new ConnectionFactory { HostName = "localhost", UserName =
"guest", Password = "guest" };
 using (_connection = _factory.CreateConnection())
 {
 using (var channel = _connection.CreateModel())
 {
 Console.WriteLine("Publisher listening on all payment topics");
 Console.WriteLine("---");
 Console.WriteLine();

 channel.ExchangeDeclare(ExchangeName, "topic");
 var queueName = channel.QueueDeclare().QueueName;

 channel.QueueBind(queueName, ExchangeName, "payment.*");

 var consumer = new QueueingBasicConsumer(channel);
 channel.BasicConsume(queueName, true, consumer);

 while (true)
 {
 var ea = consumer.Queue.Dequeue();
 var reference = ea.Body.DeSerialize();

 var order = reference as PurchaseOrder;
 if (order != null)
 {
 Console.WriteLine("Purchase Order Recieved from company
'{0}'", order.CompanyName);
 }

 var payment = reference as Payment;
 if (payment != null)
 {
 Console.WriteLine("Card Payment Recieved from person
'{0}'", payment.Name);
 }
 }
 }
 }
 }
 }
}

97

In this final example, we are going to look at something a little different. So far, all of the
examples have focused on one-way operations in which a message is placed onto a queue by a
producer application and then, at some point in the future, consumers will take the message off
of the queue and process them.

In this example, we are going to introduce the concept of a remote procedure call with
RabbitMQ. This is where you post a message onto a queue, have a consumer act on the
message, and then a reply is posted back via a queue to the originating producer application.

This example is split into two projects: a client and a server. The client application posts
payment messages directly onto a queue. For each message that gets posted, the application
waits for a reply from a reply queue. This essentially makes this a synchronous process. A
message is posted, received by the server application where it is processed, and then a reply is
posted back on a reply queue which the client receives. Only when this has all happened does
the application post another message:

Figure 65: Remote procedure call example

When a message is posted to the server from the client, a CorrelationId is generated and
attached to the message properties. This same CorrelationId is put into the properties of the
reply message. This is useful as it allows you to easily tie together all of the replies with all of
the originating messages if you store them off for later retrieval.

This is illustrated in the preceding diagram. The client posts a message to the rpc_queue that
has a correlation id of 12345. This message is received by the server and a reply is sent back to
the client on the reply_queue with the same correlation id of 12345.

Let’s take a look at the code for the client which posts messages onto the queue. First of all,
there is code to set up the client connection and queues; we will look at this in a moment. The
client makes 10 calls to the MakePayment method with a new card payment:

static void Main()
{
 SetupClient();

98

The code to set up the code should look familiar: a connection is made with the
ConnectionFactory and then a channel is opened by calling CreateModel. Next, a queue is
declared. This queue is the reply queue used for processing replies from the server application.
Once this queue has been declared, a QueueingBasicConsumer is set up for the channel and
BasicConsume is called to start the processing of messages from the reply queue:

 MakePayment(new Payment { AmountToPay = 25.0m, CardNumber = "1234123412341234",
Name = "Mr F Bloggs"});
 MakePayment(new Payment { AmountToPay = 5.0m, CardNumber = "1234123412341234",
Name = "Mr D Wibble" });
 MakePayment(new Payment { AmountToPay = 225.0m, CardNumber = "1234123412341234",
Name = "Mr B Smith" });
 MakePayment(new Payment { AmountToPay = 255.0m, CardNumber = "1234123412341234",
Name = "Mr S Jones" });
 MakePayment(new Payment { AmountToPay = 255.0m, CardNumber = "1234123412341234",
Name = "Mr A Dibbles" });
 MakePayment(new Payment { AmountToPay = 125.0m, CardNumber = "1234123412341234",
Name = "Mr H Howser" });
 MakePayment(new Payment { AmountToPay = 27.0m, CardNumber = "1234123412341234",
Name = "Mr J Jupiter" });
 MakePayment(new Payment { AmountToPay = 925.0m, CardNumber = "1234123412341234",
Name = "Mr Z Zimzibar" });
 MakePayment(new Payment { AmountToPay = 325.0m, CardNumber = "1234123412341234",
Name = "Mr G Goggie" });
 MakePayment(new Payment { AmountToPay = 925.0m, CardNumber = "1234123412341234",
Name = "Mr U Bloggs" });
}

private static IConnection _connection;
private static IModel _channel;
private static string _replyQueueName;
private static QueueingBasicConsumer _consumer;

private static void SetupClient()
{
 var factory = new ConnectionFactory { HostName = "localhost", UserName = "guest",
Password = "guest" };
 _connection = factory.CreateConnection();
 _channel = _connection.CreateModel();
 _replyQueueName = _channel.QueueDeclare();
 _consumer = new QueueingBasicConsumer(_channel);
 _channel.BasicConsume(_replyQueueName, true, _consumer);
}

99

Now that the connection, channel, and reply queue has been set up, we are ready to start
posting our payment messages to the server and handle the replies. The first thing that will
happen is, a correlation id will be generated. This id can be any arbitrary string but it is
commonly a Globally Unique Identifier (GUID). Once a correlation id has been created, a
IBasicProperties instance is created with the CreateBasicProperties method. In this basic
properties object, the ReplyTo queue name is inserted along with the CorrelationId.

Next, the message is published to the queue with the BasicPublish method on the channel.
Here you specify the queue name, the properties (containing the reply queue name and the
correlation id), and the serialized message:

Once the message has been posted to the queue, the example code goes into a while loop as it
waits for a reply from the server. Waiting in an infinite while loop isn’t something that is
recommended for a real application, it is fine for this example. In the loop, a message is
dequeued from the reply queue. In this example, the reply message is a string representing a
payment card authorization number after a payment has been made. This string is converted
from a byte array back into a string and then displayed to the console window (along with the
correlation id so you can tie the authorization code back to the original payment request).

public static string MakePayment(Payment payment)
{
 var corrId = Guid.NewGuid().ToString();
 var props = _channel.CreateBasicProperties();
 props.ReplyTo = _replyQueueName;
 props.CorrelationId = corrId;

 _channel.BasicPublish("", "rpc_queue", props, payment.Serialize());

 while (true)
 {
 Console.WriteLine("--
");
 Console.WriteLine("Payment Made for Card : {0}, for £{1}",
payment.CardNumber, payment.AmountToPay);
 Console.WriteLine("Correlation ID = {0}", corrId);

 var ea = _consumer.Queue.Dequeue();
 if (ea.BasicProperties.CorrelationId != corrId) continue;

 var authCode = Encoding.UTF8.GetString(ea.Body);
 Console.WriteLine("Reply Auth Code : {0}", authCode);
 Console.WriteLine("--
");
 Console.WriteLine("");

 return authCode;
 }
}

100

That covers the code for the client application. Let’s now take a look at the server that receives
the original message and posts the reply. First of all, the connection is created to RabbitMQ and
then the server application goes into a loop where it calls a method to get messages from the
queue:

The connection is set up along with the channel as we have seen in all of the other examples.
We declare the rpc_queue to ensure that the queue is created. This is the queue on which the
messages from the client will be received.

Next, we have a call to BasicQos. The second parameter, which is set to 1, is defining a
prefetch count. What this means is, RabbitMQ won’t dispatch a new message to a consumer
until that consumer has finished processing the message and acknowledged its receipt:

Once the connection, channel, and queue have been declared, we start to consume from the
queue. The message is dequeued from the queue and the message properties are retrieved so
that the correlation id can be inserted into the properties of the reply message. This will ensure
that the reply can be matched up against the original request:

private static void Main()
{
 CreateConnection();

 Console.WriteLine("Awaiting Remote Procedure Call Requests");

 while (true)
 {
 GetMessageFromQueue();
 }
}

private static void CreateConnection()
{
 _factory = new ConnectionFactory { HostName = "localhost", UserName = "guest",
Password = "guest" };
 _connection = _factory.CreateConnection();
 _channel = _connection.CreateModel();
 _channel.QueueDeclare("rpc_queue", false, false, false, null);
 _channel.BasicQos(0, 1, false);
 _consumer = new QueueingBasicConsumer(_channel);
 _channel.BasicConsume("rpc_queue", false, _consumer);
 _rnd = new Random();
}

private static void GetMessageFromQueue()
{

101

Then, a call is made to MakePayment. In a real application, this would be where you make a
payment request with a payment provider but, in this case, we just generate a random number
(which serves as a payment authorization code) and output the payment to the console window.

Once this payment has happened, a message is posted to the reply queue with the message
properties containing the correlation id. After the message has been sent, the original message
is acknowledged so that the next message can be received:

 string response = null;
 var ea = _consumer.Queue.Dequeue();
 var props = ea.BasicProperties;
 var replyProps = _channel.CreateBasicProperties();
 replyProps.CorrelationId = props.CorrelationId;

 Console.WriteLine(“--“);

 try
 {
 response = MakePayment(ea);
 Console.WriteLine(“Correlation ID = {0}”, props.CorrelationId);
 }
 catch (Exception ex)
 {
 Console.WriteLine(“ ERROR : “ + ex.Message);
 response = “”;
 }
 finally
 {
 if (response != null)
 {
 var responseBytes = Encoding.UTF8.GetBytes(response);
 _channel.BasicPublish(“”, props.ReplyTo, replyProps, responseBytes);
 }
 _channel.BasicAck(ea.DeliveryTag, false);
 }

 Console.WriteLine(“--“);
 Console.WriteLine(“”);
}

private static string MakePayment(BasicDeliverEventArgs ea)
{
 var payment = (Payment) ea.Body.DeSerialize();
 var response = _rnd.Next(1000, 100000000).ToString(CultureInfo.InvariantCulture);
 Console.WriteLine(“Payment - {0} : £{1} : Auth Code <{2}> “, payment.CardNumber,
payment.AmountToPay, response);

 return response;
}

102

To demonstrate this working, run the server application. The application will sit there waiting for
requests from the client. Then, run the client application:

Figure 66: The remote procedure call example client application

You will see the message get sent from the client and then be received and processed by the
server. The next message won’t get sent until the first message has replied, making this a
synchronous operation.

103

Figure 67: The remote procedure call example server application

The code below shows the complete code for the remote procedure call client application:

using System;
using System.Text;
using RabbitMQ.Client;
using RabbitMQ.Examples;

namespace RabbitMQ.Examples
{
 class Program
 {
 private static IConnection _connection;
 private static IModel _channel;
 private static string _replyQueueName;
 private static QueueingBasicConsumer _consumer;

 static void Main()
 {
 SetupClient();

104

 MakePayment(new Payment { AmountToPay = 25.0m, CardNumber =
"1234123412341234", Name = "Mr F Bloggs"});
 MakePayment(new Payment { AmountToPay = 5.0m, CardNumber =
"1234123412341234", Name = "Mr D Wibble" });
 MakePayment(new Payment { AmountToPay = 225.0m, CardNumber =
"1234123412341234", Name = "Mr B Smith" });
 MakePayment(new Payment { AmountToPay = 255.0m, CardNumber =
"1234123412341234", Name = "Mr S Jones" });
 MakePayment(new Payment { AmountToPay = 255.0m, CardNumber =
"1234123412341234", Name = "Mr A Dibbles" });
 MakePayment(new Payment { AmountToPay = 125.0m, CardNumber =
"1234123412341234", Name = "Mr H Howser" });
 MakePayment(new Payment { AmountToPay = 27.0m, CardNumber =
"1234123412341234", Name = "Mr J Jupiter" });
 MakePayment(new Payment { AmountToPay = 925.0m, CardNumber =
"1234123412341234", Name = "Mr Z Zimzibar" });
 MakePayment(new Payment { AmountToPay = 325.0m, CardNumber =
"1234123412341234", Name = "Mr G Goggie" });
 MakePayment(new Payment { AmountToPay = 925.0m, CardNumber =
"1234123412341234", Name = "Mr U Bloggs" });
 }

 private static void SetupClient()
 {
 var factory = new ConnectionFactory { HostName = "localhost", UserName =
"guest", Password = "guest" };
 _connection = factory.CreateConnection();
 _channel = _connection.CreateModel();
 _replyQueueName = _channel.QueueDeclare();
 _consumer = new QueueingBasicConsumer(_channel);
 _channel.BasicConsume(_replyQueueName, true, _consumer);
 }

 public static string MakePayment(Payment payment)
 {
 var corrId = Guid.NewGuid().ToString();
 var props = _channel.CreateBasicProperties();
 props.ReplyTo = _replyQueueName;
 props.CorrelationId = corrId;

 _channel.BasicPublish("", "rpc_queue", props, payment.Serialize());

 while (true)
 {
 Console.WriteLine("--
--------");
 Console.WriteLine("Payment Made for Card : {0}, for £{1}",
payment.CardNumber, payment.AmountToPay);
 Console.WriteLine("Correlation ID = {0}", corrId);

 var ea = _consumer.Queue.Dequeue();
 if (ea.BasicProperties.CorrelationId != corrId) continue;

 var authCode = Encoding.UTF8.GetString(ea.Body);
 Console.WriteLine("Reply Auth Code : {0}", authCode);

105

The code below shows the complete code for the remote procedure call server application:

 Console.WriteLine("--
--------");
 Console.WriteLine("");

 return authCode;
 }
 }
 }
}

using System;
using System.Globalization;
using System.Text;
using RabbitMQ.Client;
using RabbitMQ.Client.Events;

namespace RabbitMQ.Examples
{
 class Program
 {
 private static ConnectionFactory _factory;
 private static IConnection _connection;
 private static IModel _channel;
 private static QueueingBasicConsumer _consumer;
 private static Random _rnd;

 private static void Main()
 {
 CreateConnection();

 Console.WriteLine("Awaiting Remote Procedure Call Requests");

 while (true)
 {
 GetMessageFromQueue();
 }
 }

 private static void GetMessageFromQueue()
 {
 string response = null;
 var ea = _consumer.Queue.Dequeue();
 var props = ea.BasicProperties;
 var replyProps = _channel.CreateBasicProperties();
 replyProps.CorrelationId = props.CorrelationId;

 Console.WriteLine("--

106

----");

 try
 {
 response = MakePayment(ea);
 Console.WriteLine("Correlation ID = {0}", props.CorrelationId);
 }
 catch (Exception ex)
 {
 Console.WriteLine(" ERROR : " + ex.Message);
 response = "";
 }
 finally
 {
 if (response != null)
 {
 var responseBytes = Encoding.UTF8.GetBytes(response);
 _channel.BasicPublish("", props.ReplyTo, replyProps,
responseBytes);
 }
 _channel.BasicAck(ea.DeliveryTag, false);
 }

 Console.WriteLine("--
----");
 Console.WriteLine("");
 }

 private static string MakePayment(BasicDeliverEventArgs ea)
 {
 var payment = (Payment) ea.Body.DeSerialize();
 var response = _rnd.Next(1000,
100000000).ToString(CultureInfo.InvariantCulture);
 Console.WriteLine("Payment - {0} : £{1} : Auth Code <{2}> ",
payment.CardNumber, payment.AmountToPay, response);

 return response;
 }

 private static void CreateConnection()
 {
 _factory = new ConnectionFactory { HostName = "localhost", UserName =
"guest", Password = "guest" };
 _connection = _factory.CreateConnection();
 _channel = _connection.CreateModel();
 _channel.QueueDeclare("rpc_queue", false, false, false, null);
 _channel.BasicQos(0, 1, false);
 _consumer = new QueueingBasicConsumer(_channel);
 _channel.BasicConsume("rpc_queue", false, _consumer);
 _rnd = new Random();
 }

 }
}

107

108

Closing Notes

Message queuing is an important architectural technique for creating scalable and decoupled
solutions. Your choice of message queuing middleware can be an essential decision that your
organization has to make. RabbitMQ is a reliable and performant message queuing platform
that can absolutely be the backbone of your enterprise’s messaging infrastructure.

The aim of this book was to get you quickly up and running with RabbitMQ so that you can start
to reap the benefits of this excellent messaging platform. This book has explained what
message queuing is, how it applies to RabbiMQ, how to set up and configure RabbitMQ, and
then this book has walked you through a series of examples that will cover the majority of your
message queuing needs.

	The Story behind the Succinctly Series of Books
	About the Author
	Introduction
	What This Book Isn’t
	Sample Code Projects

	Chapter 1 Message Queuing Overview
	Common Message Queuing Traits
	Message Queuing Protocols

	Chapter 2 RabbitMQ Overview
	Chapter 3 AMQP Messaging Standard
	Exchanges
	Direct Exchange
	Fanout Exchange
	Topic Exchange
	Headers Exchange

	Queues
	Bindings
	Consumers
	Message Acknowledgements
	Rejecting Messages

	Chapter 4 Installing and Configuring RabbitMQ
	Basic Installation
	Setting Up the Management Portal

	Chapter 5 Overview of the Management Plug-in
	Chapter 6 Administration via the Command Line
	Chapter 7 Basic Queue and Message Example
	Chapter 8 Working Examples
	RabbitMQ Client Library
	What is Contained in the Client Library?
	Connection to a Message Broker
	Exchanges and Queues

	Installing the .NET Client Library

	Example Code Scenario
	Common Code Throughout the Examples
	Payment.cs
	PurchaseOrder.cs
	ObjectSerialize

	Example 1: Basic Queue
	Example 2: Worker Queue
	Example 3: Publisher and Subscriber
	Example 4: Direct Routing
	Example 5: Topic-based Publish and Subscribe
	Example 6: Remote Procedure Call

	Closing Notes

