

Mobile DevOps

Deliver continuous integration and deployment within your
mobile applications

Rohin Tak
Jhalak Modi

BIRMINGHAM - MUMBAI

Mobile DevOps
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Content Development Editor: Abhishek Jadhav
Technical Editor: Aditya Khadye
Copy Editor: Safis Editing
Project Coordinator: Judie Jose
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Tom Scaria
Production Coordinator: Nilesh Mohite

First published: March 2018

Production reference: 1280318

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78829-624-3

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the authors
Rohin Tak is a mobile and web development enthusiast with expertise in and several years
of experience of .NET technologies.

Professionally, Rohin has worked for IBM and OnMobile Global as a .NET developer and
Xamarin developer respectively. Rohin is now working as a senior software engineer at
LeadSquared, one of the fastest growing sales and marketing automation solutions in India.

In his spare time, Rohin is mostly found trekking in the Himalayas and exploring new
places around the globe.

I would like to dedicate this book to my parents and my sister, Mrs. Urvashi Tak, for being
the constant guiding force in my personal and professional life.

Special thanks to my co-author Jhalak Modi for her consistent support for the book with her
DevOps expertise and to Packt's Abhishek Jadhav, Prateek Bharadwaj, Aditya Khadye, and
team for their continuous support and assiduous reviewing efforts.

Jhalak Modi is a DevOps engineer with a deep interest and expertise in implementing
large-scale cloud, big data, CI/CD, and automation solutions on a variety of
public/private/hybrid clouds, as well as on-premises. She is an AWS Certified Solutions
Architect and DevOps professional with more than 10 certifications in trending
technologies.

She is also a public speaker at AWS events, universities, meet-ups, and corporate trainings.
Currently, working with KOGENTiX, Singapore, she has previously worked with Wipro
Technologies and Electromech Corporation.

I would dedicate this book to my parents and my husband for always believing in me and
loving me unconditionally. Many thanks to Karishma, Hardik, my in-laws, my friend and
coauthor Rohin Tak, and all the mentors—Dr. Lugar, Jai Malhotra, and Garry Steedman.
I'm thankful to everyone who has contributed to my IT career. Thanks to Packt for making
this book happen.

About the reviewer
Daniel Oh is a DevOps evangelist at Red Hat and specializes in evangelism of
Microservices, Containers, Agile, DevOps, and cloud-native based multiple open source
projects. He's presented lots of technical seminars and hands-on workshops in his specialty
areas for developers, IT Ops, InfoSec, and C-Suites at global events such as ApacheCon, Red
Hat Summit, Mucon, and Open Source Summit, as a trusted adviser of their own digital
transformation journey.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introduction 8
Introduction to DevOps 8

Cultural aspects of DevOps 10
Before DevOps 11
After DevOps 11

Introduction to mobile DevOps 12
Continuous feedback and continuous development 13
Importance of backlog in mobile DevOps 14

DevOps versus mobile DevOps 14
Development 15
Testing 15
Deployment 16
Monitoring 16
Continuous delivery 16

Challenges of applying DevOps to mobiles 16
Rapid technology adaptation 17
Multi-platform support 17
Keeping up with mobile development 17
Releases 17
Backward compatibility 18
Application stores 18
Feedback mechanism 18

Summary 19

Chapter 2: Working with Code Repository Systems 20
Source code management 21

Need for source code management 21
Common terms used in source code management and versioning 22
Variety of source code management 23

Centralized version control 24
Distributed version control 24

Creating an account with GitHub and using Git to create a repository 24
Managing organization users and teams 29

Creating an organization and inviting users to join 29
Creating a team and adding members to the team 34

Installing Git on different servers 36
Installing Git on Windows 37
Installing Git on CentOS/RHEL servers 44

Table of Contents

[ii]

Installing Git on Ubuntu/Debian systems 45
Configuring SSH keys 46
Summary 50

Chapter 3: Cross-Platform Mobile App Development with Xamarin 51
History of Xamarin 51
Why you should learn Xamarin 51

Benefits of cross-platform development using Xamarin 55
Introduction to mobile app development 55

Process involved in mobile app development 56
Platforms supported by Xamarin 57
Xamarin on Visual Studio 57

Extensions and add-ons 58
Installing Visual Studio and Xamarin on Windows 58
Setting up our Android Virtual Device for development 66
Summary 76

Chapter 4: Writing Your First Android Application with Xamarin 77
Create your first Android project 78
Xamarin solution structure 80
Creating the UI for the application 81
Handling user interactions 86
Adding permissions to Android Manifest 98
Adding an icon for the Android app 101
Testing user interaction 107
Application fundamentals 109
Android APIs 110
Resources 114
Understanding Activities 116
Activity class 116

Methods in the Activity class 118
Activity life cycle 122

Deploying an application on a mobile device 123
Enable debugging on the device 124
Install USB drivers 129
Connect the device to a computer 129
Pushing code to a Git repository 130
Summary 135

Chapter 5: Implementing Automatic Testing Using Xamarin 136
Understanding the importance of automation testing in the DevOps
cycle 136
Testing a mobile application 137

Challenges in testing a mobile application 137

Table of Contents

[iii]

Testing against a real environment 137
Deploy and test frequently 138
Continuous feedback 139

Writing tests with Xamarin.UITest 139
Xamarin.UITest 140
Fundamentals of UITest 140
Understanding the AAA pattern 140
Adding a UITest project to Solution 141
Tests.cs 150

Recall the application code 151
Elements in the PhoneCallApp 151
User interactions in the PhoneCallApp 151

Steps to include in the test 152
Writing your first UITest 153
Running your test on your local machine 156

Using Xamarin Test Cloud to test on multiple devices 160
Challenges in mobile app testing 160

Different mobile OS versions 160
Devices with different screen sizes 160

Introduction to Xamarin Test Cloud 161
Xamarin.UITest 161
Test Cloud 162
Xamarin Test Recorder 162

Using Xamarin Test Cloud as part of continuous integration 162
Creating users and organizations on Test Cloud 163

Users and organizations 165
Test Cloud hierarchy 166
Creating a team 167

Creating a test run for your application 171
Summary 178

Chapter 6: Configuring TeamCity for CI/CD with Xamarin 179
Introduction to continuous integration 179

CI/CD for a web application 180
CI/CD for a mobile application 181
Choosing tools for continuous integration 182
Various tools for continuous integration 182

TeamCity 183
Jenkins 183
Visual Studio Team Services 184
Bamboo 184

Using TeamCity with Xamarin for CI/CD 184
Requirements for using TeamCity 185
Steps involved in TeamCity setup 185

Preparing the build server 186
Firewall configuration 186

Table of Contents

[iv]

Installing Visual Studio with Xamarin 186
Android Keystore 186

Creating your own Keystore 187
Creating a build script 187

Compiling the application 188
Installing and configuring TeamCity 190

Creating a TeamCity project 200
Summary 211

Chapter 7: CI/CD for Android with Visual Studio Team Services 212
Creating an account in Visual Studio 212
Getting the code from GitHub 216
Creating the build definition 218
Configuring the build definition 223
Queue build 229
Triggers - build with every commit 231
Summary 234

Chapter 8: Deploying Applications on AWS 235
Creation of an instance 236

Lightsail 236
Terraform 242

Installation 243
Configuration files 243

Creating instances 243
Modifying instances 246
Terminating instances 247
Example of instance creation using Terraform 247

EC2 CLI 249
Creating an Elastic Load Balancer, launch configuration, and Auto
Scaling Groups 253

Elastic Load Balancer 253
Auto Scaling Groups 253

IAM roles 254
Summary 255

Chapter 9: Monitoring and Optimizing Application 257
API level monitoring 257

Why API monitoring is critical 258
Important factors in API monitoring 258
Developer's role in handling API unavailability 259

Various tools for API monitoring 259
Using Test Cloud for monitoring 259

Benefits of monitoring with Test Cloud 260
PhoneCallApp 261
Xamarin Store app 271

Table of Contents

[v]

Using Android monitoring tools 276
Summary 284

Chapter 10: Debugging the Application 285
Terminology 286
Debugging with Xamarin on Visual Studio 286

Using the output window 287
Using the Console class to show useful output 288
Using breakpoints 291

Setting a conditional breakpoint 294
Stepping through the code 296

Using a watch 298
QuickWatch 298
Adding a watch 299

Debugging Mono class libraries 302
Android debug log 303

Accessing logcat from the command line 306
Writing to the debug log 307

Debugging Git connections 310
Summary 312

Chapter 11: Case Studies 313
Case study 1 - Hello World GUI 313

Prerequisites 313
Case study 2 - ButtonWidget 332
Summary 347

Other Books You May Enjoy 348

Index 351

Preface
Mobile DevOps is the future of continuous integration and continuous delivery for mobile
application development, and is a very important requirement of today's fast-paced
development culture. While DevOps has been implemented and adopted by most fast-
growing development teams today, mobile DevOps is yet to be used by the majority of the
mobile development world. It is something that can improve integration and delivery, as
well as provide a greater feedback mechanism and early defect capturing tools.

Mobile DevOps comes with its own implementation challenges, and with various mobile
platforms out there on millions of devices and with different aspect ratios, it is only
becoming more important to use tools that streamline testing on physical devices and
delivery to customers while providing a quick feedback mechanism to developers.

In this book, we'll be using Xamarin to explore mobile application development
fundamentals and tools. Xamarin is a cross-platform mobile application development
framework from Microsoft that can be used to create iOS, Android, and Windows apps
using a shareable code base and design. Apart from Xamarin, we'll be using other tools
from Microsoft's tool belt, such as Xamarin Test Cloud and Visual Studios Team Services, to
dive deep into the different phases of mobile DevOps.

The main motivation to use Xamarin is its ability to develop cross-platform applications
and applications with great integration with Microsoft's other widely used tools for
different phases of the application development cycle.

By the end of this book, you should not only be accustomed with mobile DevOps and
mobile application development, but you should also be able to implement, configure, and
troubleshoot each and every step involved in the mobile DevOps life cycle in your new
and/or existing mobile application projects using the popular tools that are available.

Preface

[2]

Who this book is for
This book is mainly intended for mobile application developers, DevOps engineers, and
small teams willing to apply DevOps to their mobile application development life cycle.
Developers already using Visual Studio and/or C# as a programming language are
encouraged to use this book to start cross-platform mobile application development and
understand the workings of continuous delivery and continuous integration.
If you are already a Xamarin developer, then this book will help you streamline fast-paced
development, continuous testing, and the frequent delivery management process by
implementing mobile DevOps in your project.

What this book covers
Chapter 1, Introduction, introduces you to the world of DevOps and mobile DevOps while
explaining the differences between them. The chapter will also describe the various
challenges you may encounter while applying DevOps to your mobile development.

Chapter 2, Working with Code Repository Systems, explores code repository systems and
discusses various versioning tools. The chapter focuses mainly on Git to dive deep into
source versioning.

Chapter 3, Cross-Platform Mobile App Development with Xamarin, introduces Xamarin and
cross-platform mobile application development. The chapter also explains the steps
involved in setting up Xamarin and Visual Studio on a Windows machine.

Chapter 4, Writing Your First Android Application with Xamarin, explains the fundamentals
of an Android application. It also describes the steps involved in creating an Android
application project using Xamarin and building UI for the application while discussing how
to deploy the application on a mobile device.

Chapter 5, Implementing Automatic Testing Using Xamarin, discusses the importance of
automation testing in the DevOps cycle and dives deep into writing automation test cases
for a Xamarin.Android application project. In addition, you'll also learn how to set up
Xamarin Test Cloud and run automation tests for your Android application on it.

Chapter 6, Configuring TeamCity For CI/CD with Xamarin, introduces you to continuous
integration while discussing various tools available for continuous integration. The chapter
let's you dive deep into continuous integration using TeamCity and explains various
configuration and other setup steps involved in using TeamCity as a CI tool.

Preface

[3]

Chapter 7, CI/CD for Android with Visual Studio Team Services, deals with continuous
integration and continuous delivery using Visual Studio Team Service. It explains the steps
involved from creating an account in Visual Studio to configuring and queuing the build for
a continuous build process.

Chapter 8, Deploying Applications on AWS, describes deploying and migrating
your applications to cloud. It explains various steps involved in cloud deployment from
creation of instance to creating ELB and configuring end nodes using tools such as
Terraform, AWS CLI, and LightSail.

Chapter 9, Monitoring and Optimizing Application, takes you through different levels of
monitoring, starting from the API level monitoring and moving on to using the Android
monitoring tool. It also includes monitoring steps for Test Cloud.

Chapter 10, Debugging the Application, explains that troubleshooting is a common issue in
Xamarin, and covers various deployment life cycles. It includes debugging the Xamarin
code, troubleshooting the Android Emulator, debugging Mono's class libraries, and finally,
debugging Git connections.

Chapter 11, Case Studies, goes through the entire process of mobile DevOps, from mobile
application development and integration to continuous testing and deployment using two
case studies.

To get the most out of this book
This book assumes a medium-level knowledge of the Windows operating system and basic
knowledge of cloud computing and the application development life cycle, and also
beginner-level knowledge of object-oriented programming languages such as Java or C#.
The book will go through various phases of the mobile DevOps life cycle, which requires a
basic understanding of application development fundamentals and application delivery. If
you have experience with Visual Studio and with programming with C#, this is a big plus.

The minimum requirements to install Visual Studio and Xamarin are as follows:

Windows requirements: Windows 7
Android 6.0/API level 23

Preface

[4]

The following are the hardware requirements for Android Emulator:

Hyper-V support
4 GB or more RAM
64-bit version of Windows OS

Note that since the Android SDK Emulator is prohibitively slow without hardware
acceleration, Intel's Hardware Accelerated Execution Manager (HAXM) is the
recommended way to drastically improve the performance of the Android Emulator.

Internet connectivity is required to install the necessary Visual Studio and
Xamarin.Android packages and Git, and to connect with Xamarin Test Cloud.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Mobile- ​DevOps. In case there's an update to the code, it will be updated
on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mobile-DevOps
https://github.com/PacktPublishing/Mobile-DevOps
https://github.com/PacktPublishing/Mobile-DevOps
https://github.com/PacktPublishing/Mobile-DevOps
https://github.com/PacktPublishing/Mobile-DevOps
https://github.com/PacktPublishing/Mobile-DevOps
https://github.com/PacktPublishing/Mobile-DevOps
https://github.com/PacktPublishing/Mobile-DevOps
https://github.com/PacktPublishing/Mobile-DevOps
https://github.com/PacktPublishing/Mobile-DevOps
https://github.com/PacktPublishing/Mobile-DevOps
https://github.com/PacktPublishing/Mobile-DevOps
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​MobileDevOps_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The MainActivity.cs file has our C# code for handling events and other things
in our main screen."

A block of code is set as follows:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "ec2:*",
 "Effect": "Allow",
 "Resource": "*"
 },

Any command-line input or output is written as follows:

$ mkdir terraform
$ cd terraform
$ terraform workspace new MyTestMachine

https://www.packtpub.com/sites/default/files/downloads/MobileDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MobileDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MobileDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MobileDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MobileDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MobileDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MobileDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MobileDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MobileDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MobileDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MobileDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MobileDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MobileDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MobileDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MobileDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MobileDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MobileDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MobileDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MobileDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MobileDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MobileDevOps_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MobileDevOps_ColorImages.pdf

Preface

[6]

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Click on Free download provided under Visual Studio Community 2017. "

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Preface

[7]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

1
Introduction

DevOps, as a term, has a wide verity of meanings and consists of different stages in the
software development life cycle. In this chapter, we'll be discussing what DevOps is and
what it means in a software development process, and later in maintaining that software.
We'll cover various details about DevOps and mobile DevOps in this chapter through the
following topics:

Introduction to DevOps
Introduction to mobile DevOps
DevOps versus mobile DevOps
Challenges of applying DevOps to mobiles

Introduction to DevOps
DevOps is derived from two different words: development and operations. So as the word
suggests, it describes a set of practices in a process while developing software and
managing operations tasks.

DevOps as a term was first coined in 2008 by Andrew Shafer and Patrick Debois, who
became two of its chief proponents, and since 2009 the term has been widely used and
promoted with the goal of unifying the process of software development and operations.

DevOps is not just a set of practices, but also a way of working in the software development
industry; it's a cultural change in the way development and operations work together.

Introduction Chapter 1

[9]

Delivering technology to your customers at speed, and aligned to their needs, is key to
future growth; this is a practice and can be achieved using DevOps. Adopting DevOps can
create a continuous delivery ecosystem that improves the quality and velocity of delivery
with all the attendant benefits.

In the traditional method, developers write the code as per the requirements, in any local
environment. Once the application is ready, the QA team test the application in an
environment that is similar to their production environment.

Once testing is successful and the requirements have been met, the product is released to
the operations team for deployment. As both teams are working independently, there is a
high chance that the deployment of a version of an application may take a long time and
may not work as expected.

However, in DevOps, the process is quite different. Here, developers, QA, and operations
collaborate and use various tools for continuous development, integration, delivery, and
monitoring, which helps fill a big gap and expedite the process.

In a way, each and every tool works independently but tightly integrated with each other. A
faster and automatic release to operations enables stakeholders to quickly respond to
changes and meet requirements.

Introduction Chapter 1

[10]

In the past, software development used to be a totally separate process from operations.
Releases used to be loosely integrated with the actual development process, thus sometimes
creating differences in the way the development environment and the release or production
environment worked.

Developers used to finish their development independently from operations, and then
operations used to take care of the release and post-release tasks for the project.

This way of working used to work great when the waterfall-style software development
model was popular, when every step was sequential, and releases used to be a long process.

In today's world, where agile is the new and popular software development method, more
frequent releases are the delivery goals, and only an integrated environment gives that
flexibility with the required stability and service quality.

Cultural aspects of DevOps
The biggest cultural difference DevOps brings is pulling together different roles/people into
a specific team with the same delivery goal.

People get to do what they are good at and get instant feedback. DevOps enables quick
solutions in the case of a technical glitch and contributes to team health, individual
satisfaction, and time efficiency and management.

For example, a process that used to take months is now executed in minutes. It turns
environment provisioning from a new problem into a delight, at the press of a button.

DevOps has given us the facility and flexibility to invent and focus on actual business
needs, instead of managing hours and weeks and months of operational tasks.

Sites such as Amazon, Facebook, LinkedIn, and Twitter are known to do deployments
many times a day (sometimes every minute). To deploy that often, they can't break what is
already running; they have to complement what is already there.

DevOps helps you to focus on industry logic and what is actually required, instead of
maintaining, scaling, clusters, deployment, and much more.

DevOps, in a way, represents and promotes a change in IT culture, focusing on fast and
frequent delivery by adopting agile development, simplifying practices in the context of the
software development life cycle, including both development and operations.

Introduction Chapter 1

[11]

DevOps focuses on people and culture, and seeks to improve collaboration and integration
between development and operations teams. DevOps implementations utilize technologies
that ensure integration and quick feedback, and thus ensure quality, particularly by using
software process automation tools that can leverage an increasingly programmable and
highly dynamic infrastructure from a development and operations life cycle point of view.

Before DevOps
To really understand the benefits and differences of using DevOps, we must have an idea of
how things used to work before DevOps. As shown here, operations used to not be
integrated with the rest of the development cycle:

After DevOps
In the DevOps way of working, operations are involved in the development process from
the initial stages. They have a better understanding of issues that might arise later and can
work in the beginning to avoid them during the production stage. Developers get quick
feedback and can act on the issues suggested by operations, and vice versa.

Introduction Chapter 1

[12]

Introduction to mobile DevOps
Mobile DevOps is quite similar to DevOps, but only applied to mobile. With that said, it
brings new challenges that come with mobile application deployment and maintenance.
When talking about mobile application development, there are a lot of new things to
consider about deployment and feedback.

A web application just needs to be tested and quality-checked on a limited set of browsers,
but for mobile applications the range is huge and not limited to a set of mobile devices or
operating system versions. A large number of operating system versions available in the
market need to be tested and tracked once the application goes live in production.

The main difference between DevOps and mobile DevOps is the tooling required to achieve
the process. In mobile DevOps, the SDKs have to be built into the application code to track
bug reports and crash reports when in production.

Feedback mechanisms become even more important because mobile apps have a more
personal feel to them, and users gives very important feedback that can be then worked
upon and applied to application improvements.

Introduction Chapter 1

[13]

Continuous feedback and continuous
development
Continuous feedback and continuous development have become the most important things
in mobile application development. Developers have to continuously act on the feedback
given by customers and there must be tools used to ensure that the right customer feedback
is received on time and acted upon. Channels have to be monitored and monitoring tools
have to be kept in place at every stage of development and production release, to ensure
users' views are understood and taken care of. Developers have to know what scenarios
might be making the users' app crash on their phone, such as which screen users spend the
most time on, and what activities users don't perform in the application. All this feedback is
important in mobile application development; to be able to get this feedback, tools should
be in place, tools that enable continuous feedback and allow developers to have a better
view of users' experiences.

Introduction Chapter 1

[14]

Importance of backlog in mobile DevOps
When it comes to mobile applications, app crashes are not the only available feedback
mechanism. Users can submit feedback directly from the mobile app to the developers.
Some tools also provide user metrics and custom events, letting developers understand
how the app is being adopted and used. All this information should be utilized to improve
your backlog, and developers should always feel confident about investing in the right area,
based on the data.

DevOps versus mobile DevOps
DevOps and mobile DevOps are similar, yet different in the sets of tools they use to achieve
the same goal. To better understand the difference between DevOps and mobile DevOps,
let's go through each step in the application development and operation life cycle, and
discuss the differences in approaches.

Introduction Chapter 1

[15]

Development
The development phase is almost the same for web and mobile application development,
but at the same time, in mobile application development developers need to include SDKs
and tools that will later help them track app crashes and user feedback, and better monitor
users' activities. Mobile application developers can build a feedback mechanism into their
application, with which they can ask users to submit feedback and even bug reports, which
are often provided by the mobile operating system. There are even some SDKs mobile app
developers can embed into their code to help feedback tracking and better end user
interaction.

Tools such as HockeyApp provide this integration of user interaction and feedback directly
to developers.

Testing
When it comes to testing, there is a big difference between the tools used for web
application testing and mobile application testing. In web applications, the resources
required to test the application are limited to a set of browsers and a limited number of
operating system versions.

Manual testing is sometimes enough to ensure great quality products. But when it comes to
mobile application testing, there are hundreds of different hardware-dependent
combinations of devices that need to be tested to ensure your app will work fine when it
goes live. After the rise of Android, there are so many different devices with a variety of
hardware configurations and different operating systems. To ensure a wide user base,
developers need to make sure their app is compatible with all the different versions and
lower-end devices.

To quality-check such things, just testing on emulators is not enough for high-quality
applications; they need to be tested on real-world devices, which is sometimes difficult and
off-budget for many organizations. This is where cloud test environments such as Xamarin
Test Cloud comes into the picture, to automate the process and test on real devices at low
cost.

Introduction Chapter 1

[16]

Deployment
In a web application deployment, the environment can be controlled and customized to our
needs, but in mobile application deployment, the application needs to be published through
some sort of operating system application store, which then verifies and publishes the
application to be used by users on their devices.

Monitoring
To monitor a web application, developers use logs, some tools at the server side, and others
on the client side to help them identify issues that might arise because of network or code
quality. But in mobile applications, the area is quite wide because of the issues that can
occur. Various hardware dependencies, device permissions, and other factors can crop up
that are difficult to monitor without proper tools involved, and that's where mobile DevOps
differs from DevOps.

Continuous delivery
Continuous delivery sounds very simple and it sure is that way if done properly. In
DevOps, getting feedback and then working on it, fixing bugs, and then redeploying them
is much simpler and less time-consuming than in mobile applications. Getting crash reports
from users, then finding out the issue, and then going through the testing phase again can
be very time-consuming if not automated.

Automating the process of development, testing on real-world devices, then signing apps
and publishing them to the store, and again tracking users' feedback—this entire process
becomes very complicated if the right tools are not used.

Challenges of applying DevOps to mobiles
Because of the fast and continuous delivery mindset, DevOps comes with many challenges,
especially when applying DevOps to the mobile application development life cycle.

The following are some of the challenges that arise while applying DevOps to mobile.

Introduction Chapter 1

[17]

Rapid technology adaptation
Mobile technologies are rapidly evolving and improving every day, and with mobile
devices getting released with new features and hardware support every day, it's difficult for
DevOps tools to keep pace with them.

Multi-platform support
Most mobile applications have multiple platform targets; the operating systems have
different versions and applications need to support most of them to ensure a large user
base. With Android, for example, many devices have old versions installed and do not get
updated to later versions because of hardware limitations, and because manufacturers don't
update their devices. At the same time, having different devices means customizing
Android to suit personal taste and changing the user interface, and thus applications have
to be compatible with all the different form factors and UI changes.

Keeping up with mobile development
Mobile applications are now an integral part of many organizations' frontends, and clearly
drive changes to backend development as well. Organizations use service layers and data
layers to do backend operations, but due to integration with mobile development, they
need to better adapt to, and collaborate with, mobile and web development.

Releases
Because how releases and updates are consumed over mobile platforms is totally different
from the web, it becomes more difficult to ensure updates are made and care about old
versions. On mobile, users have to download the update; the application doesn't get
updated automatically, as it does on the web whenever users access the URL. Most of the
time, users choose not to download the update, and sometimes they have storage
restrictions. So, application developers have to consistently make sure everything works on
old and new versions.

Introduction Chapter 1

[18]

Backward compatibility
As described earlier, mobile applications need to be working on new and old versions of
operating systems. Just because you've developed new versions does not mean people on
older versions are not your responsibility anymore. As it turns out, the majority of people
who use older versions of operating systems don't download the latest updates. App
developers have to use the latest features in new versions of the OS and at the same time
they should make sure apps run perfectly fine on older versions as well.

Application stores
This is a new method of app distribution, mostly found in the mobile app industry. In web
apps, you just have your application deployed on your web server and a URL where
interested people can access your application.

Fixing issues and deploying patches becomes so easy, since you just have to deploy it on
your servers and people accessing your web application will receive it immediately.

In mobile applications, apps must go through app stores in all different operating systems.

They must be verified before they can be published, and even updates and small patches
need to go through the same route, so fixes are not available to end users immediately. This
creates an extra step in the complexity of applying DevOps to mobile.

Feedback mechanism
In the web and other platforms, since the application is not going to the user through an
application store, the feedback is personal to the application team. User feedback is not
visible to other users, and they get to judge and use it as they see fit.

In mobile devices, users can give feedback on the application store and if the application
does not live up to the expectations of users, it gets bad ratings that hurt the application in a
big way. This sort of quick and visible feedback can help an application take off, or see it fail
miserably if users don't like it. Acting on such feedback becomes very important in mobile
DevOps.

Introduction Chapter 1

[19]

Summary
In this chapter, we discussed DevOps and mobile DevOps, what it means to implement
DevOps, and how it changes the way different teams work together. We also described the
key difference between DevOps and mobile DevOps in various stages of development and
operations. In the next chapter, you'll be learning about one of the most important aspects
of DevOps, which is source code management.

2
Working with Code Repository

Systems
In the last chapter, we learned what DevOps means for the application development life
cycle, and the key differences between DevOps and mobile DevOps, while also exploring
the challenges faced in applying DevOps to the mobile app development cycle.

In this chapter, we will be exploring code repository systems, as the title of the chapter
suggests. We will discuss various versioning tools available and focus mainly on Git to get
into detailed steps for source versioning and we'll be using that as our code repository in
examples throughout the book.

Some of the topics covered in this chapter are as follows:

Varieties of version control
Source code management
Using Git to create a repository for your project
Creating an account with GitHub
Managing users and groups
Configuring SSH keys

Working with Code Repository Systems Chapter 2

[21]

Source code management
In the mobile DevOps life cycle, one of the first phases is application development. Coding
is one of the most important parts of the development life cycle, and managing that code is
even more important in the long term.

When developers are continuously coding an application, managing that code becomes
troublesome if not done properly. As the development progresses, code merges are more
frequent and, with time, the development team grows quickly and more people need to
integrate code with other developers.

Source code management becomes tricky and a very important part to focus on in order to
ensure seamless development and code integration.

Need for source code management
Let's take a real-world example of application development in a small company. The team is
of two people initially. The team starts coding the application and keeps their code in their
local machines.

At the end of the day, both the developers share their changes and integrate their code.

Everything goes fine at this point, because it is easy for two developers to check the files,
merge their code, and copy files. After some time, two more people join the development
team and now they need to manage and merge their code and make changes every day.

These are the challenges the team now face:

Code merge issues: Whenever new developers make changes in the code files,
they'll have to share their files with five different developers. This could create a
lot of unmanaged code changes that are not properly synced. In this manual
process of code merging, it is possible that some changes might be missed.
Time wasted in manual checks: There is a lot of time wasted in the manual
process of checking the code changes and making sure all the changes are
merged, manual copy-pasting, and again verifying that everything is properly
integrated, making sure no changes are missed, and then building again
manually to ensure the changes do not fail the build.

Working with Code Repository Systems Chapter 2

[22]

No record of code changes: In the manual process of code merging, there is no
record of the changes made by developers. There is a very high chance that a
code change might break some functionality and it will not be discovered until
late in the development process. There is no track of who made which change in
the code, and this makes troubleshooting much more time-consuming and
difficult.
No one place for the latest code: Because code is not regularly checked in to any
central repository, it creates dependency over developers and makes it difficult to
transfer codebases to new systems and teams.
Distributed development: When the team expands and becomes a distributed
team working from different locations, which is quite normal in today's world,
code merging and change tracking become a big challenge if you don't have a
source code management solution. Developers make code changes from different
places and need to merge them; this gets challenging since now they need to
merge the code every day with all team members and it cannot be done by simple
file sharing systems. A lot of tracking and merging is required in such a process.
Source versioning: Source versioning is another issue when talking about source
code management. Without a SCM tool, developers would have to manually
maintain folders of different versions of code and make sure everybody uses the
same structure, and the integrations must be done in the same way. SCM tools
solve this problem by providing options to make branches and tags for different
releases and features, thus making the source versioning process simple, easy to
follow, and seamless.

There are many such issues that require a code repository system to ensure code quality,
track changes, seamlessly merge code, and integrate development between developers. This
is where source code management and code repository systems come into play.

Common terms used in source code management
and versioning
These are some common terms used in source code management and version control
systems. They are usually widespread and standard terms used by most control systems:

Branch: It is a revision of the main code where developers can make a change and
then can merge it with the main code later. Branches can be used to maintain
different features and to keep different releases and versions. Tags also come in
the same category and have a similar use.

Working with Code Repository Systems Chapter 2

[23]

Change: Change represents a modification in the source code files and is tracked
by the source version control system.
Checkout: Checking out source code means to make a local copy of the
repository code on your machine. It can also mean to get the latest code.
Clone: Cloning is similar to checking out, except it is mostly used when you are
cloning the remote repository into an empty local repository.
Commit: Commit is the same as in other systems; it is basically pushing your
local copy or working copy changes to the remote repository.
Conflict: Conflict occurs when different developers make changes to the same
source file and mostly at the same place in the file. Some difference checking
tools, such as KDiff, can be used to compare documents and make sure conflicts
are not overridden.
Merge: Merging is typically done when a developer makes changes to a file that
has been changed by other developers as well, and then he has to check his code
into the repository. In these kinds of scenario, SCM tools usually give warnings
that the code file has some changes by other developers and your changes will be
merged into theirs. Other times, a similar situation can be resolved by merging
changes manually to avoid conflicts, or taking the latest changes from the
repository and then merging locally before checking in the code.

Variety of source code management
Since there are different requirements for different projects, and whether your project is
centralized or distributed, different types of source code management might be required for
different teams and organizations. Some organizations might require it to be in one place,
while others want their code base to be distributed and not maintained in a single place.

Keeping all those scenarios in mind, there are two types of source code management tools:

Centralized version control
Distributed version control

Working with Code Repository Systems Chapter 2

[24]

Centralized version control
As the name suggests, centralized version control means there is a single central copy of our
project code on the server and developers commit their changes to this central repository. In
this kind of version control system, developers can check out their required source code
files, but never have an entire local copy. One of the most common and well-known
examples of this is SVN.

Distributed version control
Distributed version control is the opposite of centralized version control systems. In
distributed version control systems, developers don't depend upon a central repository
server to store all the version-related information and project files. They clone the
repository onto their local machine, which contains all the versioning and branching
information for the project source code. One of the most commonly used distributed
systems is Git, and we'll be going deep into using Git as a source versioning tool in this
chapter.

Creating an account with GitHub and using
Git to create a repository
As we described earlier, repositories are a place to manage and share your project code. Git
allows you to create public or private repositories. Public repositories are open for
everybody, but you can include a license file that explains how you want the project to be
shared with others.

Working with Code Repository Systems Chapter 2

[25]

Follow these steps to create a repository on GitHub:

Open a web browser, go to https://github.com/, and sign up for a new account1.
by providing a username for your account and your email and password. You
can skip this step if you already have an account on GitHub:

https://github.com/

Working with Code Repository Systems Chapter 2

[26]

Once the signup is done, go to https://github.com/login and sign in to your2.
newly created account on GitHub:

https://github.com/login

Working with Code Repository Systems Chapter 2

[27]

Once signed in, in the upper-right corner of the page, click + and then click New3.
repository, as shown in the following screenshot:

On the next screen, give a name for your repository and optionally add a4.
description. Also, check Initialize this repository with a README and then click
on the Create repository button:

Working with Code Repository Systems Chapter 2

[28]

It was that simple to create a new repository for your project, where you can now push your
code and manage and share it with other people in the team.

Working with Code Repository Systems Chapter 2

[29]

Managing organization users and teams
Organizations are a combination of multiple shared accounts and private repositories.
Owners or administrators can manage access to the organization's data and projects.

Creating an organization and inviting users to
join
Follow these steps to create your organization account on GitHub and invite users to join
your organization on GitHub:

Log in to your GitHub account by going to https://github.com/login.1.
Once logged in, click on your profile photo, then click Your profile as shown in2.
the following screenshot:

On the next screen, click on the Edit profile button:3.

https://github.com/login

Working with Code Repository Systems Chapter 2

[30]

From the left side of your page, under Personal settings, click on Organizations.4.
Then, click on the New organization button to add a new organization:

Working with Code Repository Systems Chapter 2

[31]

On the next page, provide the name and email for the organization, and select a5.
plan to create the organization account:

Working with Code Repository Systems Chapter 2

[32]

Click on the Create organization button:6.

Working with Code Repository Systems Chapter 2

[33]

Once the organization is created, you can now invite GitHub users to join your7.
organization by searching for their username, full name, or email. You can also
choose to invite them later. Click Finish to complete the organization creation
process:

The invited person will receive an email to their registered email address inviting8.
them to the organization. They will need to accept the invitation to become a
member of the organization.

By following the preceding steps, you should be able to create an organization account on
GitHub and invite members to the organization. Furthermore, you can create a repository
for the organization in the same way you did for the personal account.

Working with Code Repository Systems Chapter 2

[34]

Creating a team and adding members to the team
Follow these steps to create a team and add members to the team on GitHub:

Go to the organization page, then go to the Teams tab, and click on the New team1.
button:

Working with Code Repository Systems Chapter 2

[35]

Provide the details of the team to be created and click on the Create team button:2.

Working with Code Repository Systems Chapter 2

[36]

Once the team is created, go to the Members tab to add members to the team:3.

Click on the Add a member button to add a new member to the team:4.

By following the preceding steps, you will be able to create a new team on GitHub and add
members to it.

Installing Git on different servers
In this topic, we'll be discussing how to install Git on different operating systems including
Windows, Linux, and Ubuntu.

Working with Code Repository Systems Chapter 2

[37]

Installing Git on Windows
Installing Git on Windows is as simple as installing any GUI-based application. Follow the
steps to install Git on Windows:

To download the latest Git for Windows installer, go to1.
https://git-scm.com/downloads. Select Windows and the download will start:

Once downloaded, start the installer file.2.
The next screen will ask you to accept the license. Click Next.3.
Provide the path for the Git installation; you can leave the default path as-is if4.
you like and click Next.

https://git-scm.com/downloads

Working with Code Repository Systems Chapter 2

[38]

The next screen is where you select how you would like to use Git on your5.
system. There are multiple options provided. The first option lets you use Git
from Git Bash, which is a command line for Git. The second option lets you user
Git commands from both Git Bash and the Windows Command Prompt, which is
great and adds flexibility to your use of Git. It is best to select the second option
and click Next:

Working with Code Repository Systems Chapter 2

[39]

Next, we'll be choosing the OpenSSH client for remote connection, which is the6.
default for Git:

Working with Code Repository Systems Chapter 2

[40]

Select the SSL library to be used for HTTPS connections. You can leave the7.
default as-is, or change it according to your needs; click Next:

Working with Code Repository Systems Chapter 2

[41]

Select line ending styles to be used by Git while checking out your code and8.
committing. You have to make a choice, because developers could be using
different systems, such as Windows and Linux, for development purposes and
line ending styles vary in different systems. So, keeping the same line ending
style for commits is always recommended:

Working with Code Repository Systems Chapter 2

[42]

Select the terminal emulator to be used for Git Bash to run commands; MinTTY is9.
more flexible and is the default option:

Working with Code Repository Systems Chapter 2

[43]

In the final step, select all the features you would like to enable and click Install:10.

Once the files are extracted into the path folder and installation is complete, click11.
Finish:
Now, open a command prompt or Git Bash and run the following commands to12.
set your username and email to be configured:

Git installation is now completed, and the user's identity is configured to be used for
commits.

Working with Code Repository Systems Chapter 2

[44]

Installing Git on CentOS/RHEL servers
To install Git on a CentOS or RHEL server, follow these steps:

From your shell, install Git using yum (or dnf on older versions of Fedora):1.

$ sudo yum install git

Or:

$ sudo dnf install git

Verify the installation was successful by typing the following command:2.

$ git --version

Configure the username and email address for all repositories:3.

$ git config --global user.name "firstname lastname"
$ git config --global user.email "email@gmail.com"

Install the necessary build dependencies using dnf (or yum on older versions of4.
Fedora):

$ sudo dnf install curl-devel expat-devel gettext-devel openssl-
devel perl-devel zlib-devel asciidoc xmlto docbook2X

Or using the yum-Epel repo:

$ sudo yum install epel-release
$ sudo yum install curl-devel expat-devel gettext-devel openssl-
devel perl-devel zlib-devel asciidoc xmlto docbook2X

Symlink docbook2x to the filename that the Git build expects:5.

$ sudo ln -s /usr/bin/db2x_docbook2texi /usr/bin/docbook2x-texi

Clone the Git source (or if you don't yet have a version of Git installed, download6.
and extract it):

$ git clone https://github.com/git/git

To build the Git source and install it under /usr, run make:7.

$ make all doc prefix=/usr
$ sudo make install install-doc install-html install-man
prefix=/usr

Working with Code Repository Systems Chapter 2

[45]

Following the preceding steps will install and configure Git on a CentOS/RHEL server.

Installing Git on Ubuntu/Debian systems
To install Git on Ubuntu systems, follow these steps:

From your shell, install Git using the apt-get command:1.

$ sudo apt-get update
$ sudo apt-get install git

Verify the installation was successful by typing git --version:2.

$ git --version
git version 2.9.2

Configure your Git username and email for a single repository:3.

$ git config --global user.name "firstname lastname"
$ git config --global user.email "email@gmail.com"

Install the necessary dependencies using the apt-get command:4.

$ apt-get install libcurl4-gnutls-dev libexpat1-dev gettext libz-
dev libssl-dev asciidoc xmlto docbook2x

Clone the Git source (or if you don't yet have a version of Git installed, download5.
and extract it):

$ git clone https://git.kernel.org/pub/scm/git/git.git

To build the Git source and install it under /usr, run make:6.

$ make all doc info prefix=/usr
$ sudo make install install-doc install-html install-info install-
man prefix=/usr

With this, we have discussed installing and configuring Git on different platforms,
including Windows, CentOS, and Linux systems.

Working with Code Repository Systems Chapter 2

[46]

Configuring SSH keys
To configure and set up SSH keys for your GitHub account, follow these steps:

Check whether you already have an ssh key pair.1.
Open Git Bash and enter ls -al ~/.ssh to see whether existing SSH keys are2.
present:

$ ls -al ~/.ssh

The public key consists of the .pub extension. Create a new key pair (skip this3.
step if you already have a key pair).
Open Git Bash and paste in the following text, substituting your GitHub email4.
address for the one shown:

$ ssh-keygen -t rsa -b 4096 -C your_email@example.com

When you're prompted to Enter a file in which to save the key, press5.
the Enter button to accept the default file location mentioned:

Working with Code Repository Systems Chapter 2

[47]

When prompted, type a secure passphrase (recommended), or press Enter to6.
continue without a passphrase:

The entire setup will look as shown in the following screenshot:7.

Add the newly created SSH keys into ssh-agent; for that, ensure ssh-agent is8.
running:

$ eval $(ssh-agent -s)

Working with Code Repository Systems Chapter 2

[48]

Add the newly created private key to ssh-agent.9.
If you created your key with a different name, or if you are adding an existing10.
key that has a different name, replace id_rsa in the command with the name of
your private key file:

To add SSH keys to your GitHub account, download/copy the public key from11.
~/.ssh/id_rsa.pub.

You can also copy the public key manually, or you can use the following
tools:
Windows:
$ clip < ~/.ssh/id_rsa.pub

Linux:
$ sudo apt-get install xclip
$ xclip -sel clip < ~/.ssh/id_rsa.pub

Mac:
$ pbcopy < ~/.ssh/id_rsa.pub

In the upper-right corner of the GitHub page, click your profile photo, and then12.
click Settings:

Working with Code Repository Systems Chapter 2

[49]

In the Personal settings sidebar, click on SSH and GPG keys, and then select13.
New SSH key:

Give a meaningful name to your key in the Title field and paste your key into the14.
Key field. Click on Add SSH key:

Working with Code Repository Systems Chapter 2

[50]

When prompted, type your GitHub password.15.
The newly added SSH keys will look like this:16.

Great, so now you have successfully added SSH keys to your GitHub account!

Summary
In this chapter, we learned about different version control systems and source code
management in detail. We also delved into using Git to create a repository and manage
teams and organizations. In the next chapter, you'll be introduced to cross-platform
application development using Xamarin and using Visual Studio for development.

3
Cross-Platform Mobile App
Development with Xamarin

Xamarin is a platform that enables developers to create cross-platform applications on
Android, iOS, Window, and other platforms, by using the same source code and the same
integrated development environment (IDE).

History of Xamarin
Xamarin was started as an experiment to try and develop a version of .NET for Linux in
early 2000, and was first known as an open source project called Mono.

Later, the same project was developed and supported by a new company called Xamarin,
which was created by the very first developers of Mono, and was also known as
MonoTouch and Mono for Android.

Development of Mono continued and it was later renamed Xamarin, which supported
Android and iOS app development.

Xamarin has now been acquired by Microsoft and is developed and supported as one of the
products offered by Microsoft with great integration with the existing IDE, Visual Studio,
and it even has its own IDE, called Xamarin Studio, which is available for both Mac and
Windows.

Why you should learn Xamarin
Well, there are many scenarios where Xamarin can save the day, and in some cases literally
months.

Cross-Platform Mobile App Development with Xamarin Chapter 3

[52]

Let's say you have an idea for a mobile application that you want to develop. Of course, you
want it to be developed soon and get it to market. But there are some small challenges and
decisions that you should overcome or decide on before you dive into your development
process.

Let's have a look at those challenges:

Choose mobile platforms to target: This is a very important part in the planning
phase of our application. The mobile platform market is divided into major
players, such as Android, iOS, and Windows. To get the most out of our
application, we will want it to be accessible and available to the majority of users
out there.
Learn a platform-specific coding language or have platform-specific developers
in your team: Now, let's assume you have chosen to target all three of the major
mobile platforms. We have a clear idea that we need to develop our application
for three mobile platforms. Here, if you are developing it alone, then you need to
learn all three different platform-specific languages. Android has its own official
IDE, similarly Apple has its own IDE and coding language to build iOS
applications, and Windows has its own as well.
Spend time and resources in development for each platform: Three different
platforms, three different languages, and three different IDEs. That is going to be
very time-consuming and the learning curve is going to be a major issue. Or, you
have three different developer teams for each platform; then, you will be
spending a lot more resources on your development.
Try and maintain a consistent behavior in all your applications for each
platform: Now, let's assume you have decided to have multiple resources for the
development of the application. Now, all different mobile platforms have a
variety of different methods for user interaction, and different ways of designing
user interfaces. Developing different platform applications with separate teams
can sometimes make the user experience of the same application drastically
different on these platforms.
Maintain all the platform-specific codebase for your same application:
Development challenges never end once initial development of the application is
done. Whenever you add new features to your application, you will now have to
apply the same changes and features to all three platform-specific codebases,
repeat the same business logic, and develop the same feature in different ways on
different IDEs.

Cross-Platform Mobile App Development with Xamarin Chapter 3

[53]

From the preceding scenarios, you can see that developing a mobile application is not that
simple and straightforward nowadays, if we have to go through different coding languages
and IDEs to do so.

It increases our time to deliver by a huge amount and is very expensive in terms of time,
resources, and of course money.

In order to solve all the challenges, Xamarin comes to our rescue. Xamarin saves the
developer from the need to learn different programming languages and different IDEs.

Not only that, we also get the benefit of writing our application code just once and building
to different mobile platforms. And if you are a C# developer on the .NET framework using
Visual Studio already, then you just hit the jackpot. Because guess what, that's all you need
to start development using Xamarin as far as language and IDE goes.

Development cycle without Xamarin

Cross-Platform Mobile App Development with Xamarin Chapter 3

[54]

Development cycle with Xamarin

Cross-Platform Mobile App Development with Xamarin Chapter 3

[55]

Benefits of cross-platform development using
Xamarin
With Xamarin, a developer's life gets much easier in many aspects of mobile application
development:

Language: The most time-consuming process is learning new languages every
now and then; Xamarin frees developers from this issue. The only language you
need to have experience in is C# to develop for Android, iOS, and Windows all at
once—phew!
IDE: With learning new languages comes another overhead: getting used to a
new IDE every time. As soon as we get a new IDE for a different platform, our
old shortcuts stop working. Files are not in the same place. Debugging is totally
different. All these issues increase the development time. With Xamarin, you just
have to use a single IDE that we already love, Visual Studio.
Consistent UI design: Often, we wish our app looked the same on all mobile
devices. We don't want users to buy a new phone and find a totally new app with
different user interactions for the same purpose. In order to do this, Xamarin
comes with Xamarin.Forms to develop consistent UI elements across all mobile
platforms, giving our users a seamless experience.
Code reusability: Xamarin allows us to share our business logic code across all
platforms. For any business logic code, we have to write it only once.

Introduction to mobile app development
Mobile application development is a crucial part of any product development in today's
market. Native mobile applications take user interaction with an application to a different
level:

Always one touch away: Native mobile applications, unlike web and desktop
applications, are always on the user's mobile phone. Users can always opt not to
visit a web application, and this brings the possibility of less interaction, but
mobile applications are installed by users on their phones and whenever a user
interacts with their phone, developers can take advantage of the user's activity
and improve the interaction in many ways. The possibilities are unlimited.

Cross-Platform Mobile App Development with Xamarin Chapter 3

[56]

Knowing the user's behavior: Mobile applications can take advantage of the
user's behavior on their phone. We can monitor a user's activities, such as
walking, running, sleeping, and so on, to get personal user analytics and
feedback.
Always connected: Mobile data allows users to be connected to the internet on
the go, and that increases the number of times users interact with the app. Mobile
data provides a greater level of connectivity between the user and internet-
connected apps.
Taking advantage of cutting edge hardware sensors: Mobile apps have the
ability to take advantage of sensors available to users on their mobile device, such
as GPS, fingerprinting, gyroscope, and much more.
Personal interaction: Mobile devices are very personal to individual users, unlike
desktop and laptop devices. Nowadays, the world of personal assistants and
speech synthesis technologies is making user interaction more personal and
human, such as with voice inputs and actions.

Process involved in mobile app development
Like any other platform, mobile app development includes several key steps in the process
of making a complete and stable mobile applications that users can use and love:

Ideation: Every application starts with a small idea or a problem to solve. A
powerful and impactful idea that can solve the user's problem results in a
successful application. It is easier to think of a great idea now, more than ever
before. We use our mobile devices and face many problems in day-to-day use, or
sometimes wish for an app to be there. That, right there, is the genesis of an idea
for a great application.
Planning: Planning is a very important part of the process. An idea is only good
if the execution of it is well planned:

How much time to market should it take?
Should the app be premium or free?
What mobile platform should we target?
What technologies and tools should be used?

Answers to all these questions must be known in the planning phase.

Cross-Platform Mobile App Development with Xamarin Chapter 3

[57]

Designing: This is the part of application development when the idea begins to
take shape and we can see how it might look once finished. Before starting
coding, designing application wireframes and layouts is very important.
Coding: By the time we reach the coding phase, we have a good idea about
where want to go and what we want to see in our application. So, that enables the
coding phase to focus only on the actual code development.
Testing: Testing the application on various mobile devices is very important to
the stability of application.
Deployment and continuous feedback: After submitting the app to a store, it is
very important to continuously monitor user feedback and reports, and act upon
them.

Platforms supported by Xamarin
As mentioned earlier in the chapter, Xamarin allows developers to create applications for
multiple mobile operating systems by sharing the same code. The following are the
platforms Xamarin supports:

Xamarin.Android: Xamarin.Android allows us to build native Android apps
using C#. It uses a just-in-time (JIT) compiler to optimize your app's
performance. And it includes all the Android APIs that can be used in your
Xamarin C# code. It goes from Android phones to tablets to even wearables.
Xamarin.iOS: Similar to Xamarin.Android, Xamarin.iOS features all the existing
APIs in, you guessed it, Apple's iOS SDK in C#. Also, Xamarin.iOS uses an
ahead-of-time (AOT) compiler to compile your C# code to native ARM assembly
code.
Xamarin.Mac: Xamarin doesn't just stop at mobile platforms; you can also
develop Mac applications using the same code base.
Xamarin for Windows: Since C# is the default language to code for Windows
phones and Windows desktop applications, you can even share the code between
your mobile apps and Universal Windows Platform (UWP) apps.

Xamarin on Visual Studio
Visual Studio is the default IDE for writing C# code, although it's not the only option when
it comes to writing apps with Xamarin.

Cross-Platform Mobile App Development with Xamarin Chapter 3

[58]

There are other options, such as Xamarin Studio for Windows and Xamarin Studio for Mac
if you have a Mac. Xamarin Studio for Windows, though, is no longer supported by
Microsoft and they encourage developers to use Visual Studio instead. For developing on
the Mac, you can use Xamarin Studio for Mac.

In this book, we'll be covering Xamarin development using Visual Studio on Windows,
since it is the best IDE available for code development using C# and provides great
IntelliSense support.

Extensions and add-ons
Visual Studio supports third-party libraries and native libraries using the NuGet package
manager. It provides the functionality to add new add-ons and plugins from within Visual
Studio.

Xamarin comes as an extension to Visual Studio. You can install Xamarin components while
installing Visual Studio, as shown in the following topic.

Installing Visual Studio and Xamarin on
Windows
To install Visual Studio and Xamarin on a Windows machine, follow these steps:

Go to https://www.visualstudio.com/downloads/.1.
When you open the preceding URL in a browser, you'll get a screen like this:2.

https://www.visualstudio.com/downloads/

Cross-Platform Mobile App Development with Xamarin Chapter 3

[59]

You can see there are several editions of Visual Studio available for developers.3.
You can choose the version best suited to your requirements. If you just want to4.
learn Xamarin using Visual Studio, or if you are an individual developer looking
for a free version, then Visual Studio Community Edition is best suited for you.
Click on Free download provided under Visual Studio Community 2017.5.
You should get a Visual Studio installer file downloaded on your computer.6.
Open the installer file and you should see a screen like this:7.

Click on the Continue button to begin the installation process.8.
It can take some time to load the installers available, and you might see the9.
following screen:

Cross-Platform Mobile App Development with Xamarin Chapter 3

[60]

The next screen let you to select Workloads:10.

Now, if you are new to Visual Studio 2017, you might find the installation process
different from previous versions. Workloads are new in 2017 and they represent
different packages used for different development purposes. For example, if you
are planning to code only for .NET desktop applications, then you can choose
only that workload and skip other workloads.

This change in the Visual Studio 2017 installer is a great way to avoid the
installation of components that we might not use in our development, and to just
choose the required workload to install essential components only. This saves us a
lot of time and space on our laptop.

In our development for Xamarin, we will require a workload that installs the 11.
Xamarin tools and languages required for mobile development. If you scroll a bit
further down in this menu, you'll find a section called Mobile & Gaming:

Cross-Platform Mobile App Development with Xamarin Chapter 3

[61]

Under Mobile & Gaming, the very first option, and for our tutorial the only12.
option required, will be Xamarin-Mobile development with .NET.
Select this first option, and on the right-hand side panel you'll see all the13.
packages included in this workload. The Visual Studio installer will also show
you the size of the workload in the bottom-right corner. Once selected, click on
the Install button to begin the installation process.
This will start downloading all the listed packages and then installing them on14.
your computer. The Xamarin package is more than 30 GB and it can take some
time to download and install the packages, depending on your internet speed.

Cross-Platform Mobile App Development with Xamarin Chapter 3

[62]

Once the installer is done downloading and installing all the packages required,15.
you'll see a screen like this:

That's it. Congratulations on your successful installation of Visual Studio and16.
Xamarin. Now, select Visual C# in the Development Settings and your favorite
color theme for Visual Studio IDE, and hit the Start Visual Studio button.

Cross-Platform Mobile App Development with Xamarin Chapter 3

[63]

Once the installation is done, let's verify that Xamarin is installed with Visual17.
Studio.
Click on the Tools menu and select Extensions and Updates.18.
Under the Installed section, scroll down to find Xamarin for Visual Studio,19.
Xamarin.Andoid SDK, and Xamarin.Apple SDK installed:

Now that we have verified the installation, we have some final steps before we20.
start coding. We are going to focus on the Android application development
process in this book to give you a better idea of how Xamarin works.
Let's update all the Android packages with the help of Android SDK Manager,21.
which is already installed with Xamarin.

Cross-Platform Mobile App Development with Xamarin Chapter 3

[64]

Open Tools | Android | Android SDK Manager:22.

This will open a new window for Android SDK Manager:23.

Cross-Platform Mobile App Development with Xamarin Chapter 3

[65]

Here, we can see the updates available for the basic packages installed.

Let's click on Install 11 packages.24.
This will give you a new window where you will have to accept the licenses for25.
the packages to be downloaded. Some of the licenses might need to be selected
individually, depending on the package. Once you see all green ticks on the
packages, click Install. It will take some time to update all the packages available,
depending on your internet speed:

Cross-Platform Mobile App Development with Xamarin Chapter 3

[66]

Once everything is updated, let's move on to setting up our Android Virtual Device (AVD)
to test our application in a development environment.

Setting up our Android Virtual Device for
development
Android Emulator will enable us to test our Android application on a computer and we will
not require an actual device to test.

Let's click on Tools | Android | Android Emulator Manager:1.

To make this process easier and simpler, we'll start with the existing mobile2.
templates available for Android Emulator.
Go to the Device Definitions tab shown in the following screen. Once you reach3.
the Device Definitions screen, scroll down until you see Nexus devices in the
list:

Cross-Platform Mobile App Development with Xamarin Chapter 3

[67]

Select the Nexus device of your choice and click on the Create AVD button on the4.
right-hand side.

Cross-Platform Mobile App Development with Xamarin Chapter 3

[68]

Next, you should get a window such as the following, where you can customize5.
your Android Emulator to your requirements:

Cross-Platform Mobile App Development with Xamarin Chapter 3

[69]

Fill in all the required details. You can refer to the preceding screenshot for help.6.
Once you click OK, AVD Manager will create a new Android Emulator for you.
To verify that our emulator is created, let's go back to the Android Virtual7.
Devices tab in the Android Virtual Device (AVD) Manager and we can find the
newly created AVD in the list:

You must be eager to start this AVD and see how it looks and behaves. So, let's8.
not wait anymore; select the AVD and hit the Start button.

Cross-Platform Mobile App Development with Xamarin Chapter 3

[70]

Before AVD Manager starts the AVD, it will give us some launch options similar9.
to the ones shown in the following screenshot:

Here, you can scale the display size to the actual phone size we selected as a10.
template earlier (Nexus 6 in this case); once done, click Launch. The emulator
might not launch. It is important to see this error to understand the requirement
for AVD to be run in an x86 environment.

Now, there are some prerequisites for launching Android Emulator in an x86
environment; one main one is that it requires Virtualization Technology (Intel VT-
x) to be enabled.

Cross-Platform Mobile App Development with Xamarin Chapter 3

[71]

We need to check VT-x is enabled in the BIOS for our machine before running the11.
emulator. Our machine must have Intel VT-x enabled, and if we have Hyper-V
installed on the machine, that needs to be uninstalled as well.
Otherwise, you will see a screen like this stating the issue while starting the12.
emulator:

In the preceding screenshot, we can see VT feature disabled in BIOS/UEFI.

To enable VT/VT-x, go to the BIOS and there you should see an option to enable13.
Virtualization Technology (VT-x). We won't be getting into the process of how to
do this, since it differs from machine to machine.

Cross-Platform Mobile App Development with Xamarin Chapter 3

[72]

Apart from enabling VT, we also need to check whether Hyper-V is installed on14.
our machine. To do so, follow these steps:

Open Control Panel.1.
Click on Programs:2.

Click on Turn Windows Features on or off:3.

Cross-Platform Mobile App Development with Xamarin Chapter 3

[73]

Scroll down to check whether you find Hyper-V in the list of4.
programs:

Cross-Platform Mobile App Development with Xamarin Chapter 3

[74]

Unselect Hyper-V if it is currently selected. Click OK.5.
This might restart your system.6.

This should remove Hyper-V, and finally we are good to go.7.

Cross-Platform Mobile App Development with Xamarin Chapter 3

[75]

Let's come back to Visual Studio to start our AVD. This time, the emulator starts15.
successfully and looks like this:

If your AVD doesn't look like the preceding screenshot, please go back and edit16.
the AVD to change the skin to No skin.

Awesome! Now we have our running Android Virtual Device we can begin coding our new
Android application with Xamarin.

Cross-Platform Mobile App Development with Xamarin Chapter 3

[76]

Summary
In this chapter, we learned about the brief history of Xamarin and why it's a great tool for
developers looking for cross-platform mobile app development.

We also learned how to install Visual Studio and Xamarin on a Windows machine, along
with how to create an AVD for testing our app.

In the next chapter, we will learn about basic application fundamentals and create our first
Android application using Xamarin.

4
Writing Your First Android
Application with Xamarin

Now that Visual Studio is installed on your Windows machine to start development, and
the Android Virtual Device (AVD) is ready, we can get started with our first Android
application.

In this chapter, we are going to build our first Android application using Xamarin in Visual
Studio, while learning some fundamentals of Android application development.

Writing Your First Android Application with Xamarin Chapter 4

[78]

Create your first Android project
To create a new Android project in Visual Studio, follow these steps:

Click on File | New | Project:1.

From the left pane, click on Android and then select Blank App (Android):2.

Writing Your First Android Application with Xamarin Chapter 4

[79]

In the Name section, give a name to the project, select a preferred location for3.
your project, and click on the OK button. You'll get the screen shown in the
following screenshot:

Congratulations, you've created your first Android project in Visual Studio.

Writing Your First Android Application with Xamarin Chapter 4

[80]

Xamarin solution structure
Once the project is created, you'll see the solution structure shown in the following
screenshot:

The main parts of the solution that we need to understand for now are as follows:

References: This section lists all the required libraries for the project. As we can
see in the preceding screenshot, it references Mono.Android, which is the library
for Xamarin.Android.

Writing Your First Android Application with Xamarin Chapter 4

[81]

Resources: It contains all the resources, for example, images, layouts, and much
more.
The MainActivity.cs file has our C# code for handling events and other things
in our main screen.

Creating the UI for the application
Let's expand the Resources folder we saw in the previous screenshot, and then1.
the layout folder in Solution Explorer. Double-click on Main.axml to open it.
This is the layout file for the app's screen. By default, it gets opened in Android
Designer; you can also click on the Source tab at the bottom to see the XML code
for it. This layout file is the main UI file that we'll add our UI controls to, and
what we'll see when we run our app once it is finished:

Writing Your First Android Application with Xamarin Chapter 4

[82]

Let's add an input field to enter a phone number. Drag the Phone field from the
Toolbox (left pane) into the Designer view of the Main.axml file:

Having the phone text field gives us the advantage of restricting the user to
entering a phone number. Also, when the user taps on the input box, they'll only
get a number pad instead of a full text keyboard.

Now we have added an input for the user to add a phone number in order to
make a call.

Writing Your First Android Application with Xamarin Chapter 4

[83]

In order to recognize this field from the C# code and get a value inserted, we need
to give it a unique ID.

With the phone text field selected on the design surface, use the Properties pane2.
on the right side to change the id property of the Phone input field to
@+id/PhoneNumber, as shown in the following screenshot:

Now that we have added the input field so the user can enter their phone number,
we need a button to take the action to make a call.

Writing Your First Android Application with Xamarin Chapter 4

[84]

Drag a Button from Form Widgets in the left pane of the Toolbox to the3.
Designer view of Main.axml:

Similar to the input field, we need to give a unique ID to the button so that our C#
code can recognize when the button is clicked and we can take the appropriate
action; that is, make a call to the number inserted by the user.

Also, the text on the button should say Do you want to call, right? So, let's
make that change as well in the next step.

Select Button in the Designer, go to the Properties window on the right, scroll4.
down, and change the ID to @+id/CallButton and the text to CALL, as shown in
the following screenshot:

Writing Your First Android Application with Xamarin Chapter 4

[85]

Now, a basic UI is ready for our app with a proper ID assigned to the respective
fields and button.

It is now time to move to our C# code and connect our UI with some backend
code to perform some actions.

Writing Your First Android Application with Xamarin Chapter 4

[86]

When a user opens the application, MainActivity is opened and the Main.axml file is
associated with it.

We will learn more about Activities later; for now, let's write code to handle interactions in
MainActivity.

Handling user interactions
User interaction is the most important aspect of developing a mobile application. A mobile
app should be interactive and easy to use.

In this basic application, we will be writing our user interaction code in C# and it will be
part of the MainActivity.cs file:

Let's click on the MainActivity.cs file from the Solution Explorer on the left1.
and open it:

Writing Your First Android Application with Xamarin Chapter 4

[87]

It has some autogenerated code that we are going to modify in order to make our
application work.

We need to write our code inside the OnCreate() method of the2.
MainActivity.cs file:

Writing Your First Android Application with Xamarin Chapter 4

[88]

Before we start writing user interaction code, let's understand the autogenerated
code first:

base.OnCreate(savedInstanceState);

This piece of code calls the OnCreate() method of the parent/base class of
MainActivity.cs, which is Activity.cs.

SetContentView(Resource.Layout.Main);

As the comments already say, it sets the view from our layout resource file,
Main.axml.

We need to write our SetContentView(Resource.Layout.Mai) code.

First, get a reference to the controls that were created in the layout file via3.
Android Designer, that is, the input box for the phone number and the button to
make a call.

Add the following code inside the OnCreate() method:

EditText phoneNumberInput =
FindViewById<EditText>(Resource.Id.PhoneNumber); Button
callButton = FindViewById<Button>(Resource.Id.CallButton);

Now that we have a reference to the controls, we can write events to perform an4.
action on the CALL button click. Let's write an event for the CALL button click:

Type callButton.Click += (IntelliSense will give you a suggestion1.
to hit Tab).
Hit the Tab key to autocomplete.2.
This will create a method named CallButton_Click.3.
We'll be using this newly created method to write our code for the4.
button click as follows:

Writing Your First Android Application with Xamarin Chapter 4

[89]

Because we are writing our Click event in a separate method, let's declare the5.
button and input the field variables that we used earlier in a global scope, where
all the methods of the class can have access to their reference. Declare the
following variables on the class level:

EditText phoneNumberInput;

Button callButton;

Writing Your First Android Application with Xamarin Chapter 4

[90]

The OnCreate() method should now look as shown in following screenshot:6.

In the CallButton_Click, we get the value inserted in the input field1.
by the user:

var phoneNumber = phoneNumberInput.Text;

Next, we create an alert dialog box to ask for the user's confirmation2.
before making the actual call. To make that dialog box, write the
following code:

var callDialog = new AlertDialog.Builder(this);

We need to set two things in this dialog box:3.
Message to show the user:1.

callDialog.SetMessage("Do you want to call " +
phoneNumber + "?");

Writing Your First Android Application with Xamarin Chapter 4

[91]

Events for the OK and Cancel buttons of the dialog box:2.

callDialog.SetMessage("Do you want to call " +
phoneNumber + "?");
callDialog.SetNeutralButton("Call", delegate {
var callIntent = new
Intent(Intent.ActionCall);
callIntent.SetData(Android.Net.Uri.Parse("tel:
" + phoneNumber));
StartActivity(callIntent);
});
callDialog.SetNegativeButton("Cancel",
delegate { });

Make some more changes to make the code look like the following4.
screenshot:

Writing Your First Android Application with Xamarin Chapter 4

[92]

The code to handle user interaction is now complete; let's select the emulator7.
from the top and run the application:

Running the project and deploying it on the emulator for the first time might take
some time; be patient and let it complete the deployment.

Writing Your First Android Application with Xamarin Chapter 4

[93]

Once the application is deployed, you should be able to see the application8.
running on the emulator:

As we can see in the preceding screenshot, the UI is what we created in the
Main.axml layout file.

Let's test the code we wrote to handle user interactions.

Writing Your First Android Application with Xamarin Chapter 4

[94]

Click on the CALL button without giving any number as input:9.

We'll get a toast, as shown in the preceding screenshot, because we wrote a
condition to check for empty or whitespace input in the input number field.

And for no input is provided, we wrote the following code to show a toast:

var toast = Toast.MakeText(this, "Please provide number", new
ToastLength());
toast.Show();

Writing Your First Android Application with Xamarin Chapter 4

[95]

Let's enter a phone number in the text input field and then press CALL:10.

As per our code, we should get a dialog box with a message saying Do you want
to call 9980020860?.

Writing Your First Android Application with Xamarin Chapter 4

[96]

Clicking on Cancel should just close the dialog box. Let's click on CALL:11.

If everything goes fine, a call should be made to the preceding number. But that's
not what'll happen once we click on the CALL button.

Writing Your First Android Application with Xamarin Chapter 4

[97]

A java.Lang.SecurityException will be thrown:12.

The reason why we got this exception is that the Android application requires permissions
to do certain operations and tasks.

These permissions should be listed in the Android application code so that the system
knows all the permissions the application requires before installing it.

These permissions are listed for the user while installing; if the user allows such
permissions for the application, then only the app can perform these operations. So, the next
thing we need to do is add permissions to our Android application.

Writing Your First Android Application with Xamarin Chapter 4

[98]

Adding permissions to Android Manifest
Our application needs only one permission as of now, and that is to place a call. To modify
or add permissions for the application, we need to edit Android Manifest.

To edit Android Manifest and give the permission, follow these steps:1.
Open Solution Explorer.1.
Double-click on Properties under the project.2.
This should open a UI to edit project properties.3.
Now, from the left-hand menu, click on Android Manifest to open it:4.

Writing Your First Android Application with Xamarin Chapter 4

[99]

In the Required permissions section, scroll down, find the CALL_PHONE2.
permissions, and select this option:

Press Ctrl + Shift + S to save all the changes to the project.1.
Close the Properties window.2.
We are done adding permissions to the application.3.
We need to build the solution now, so the resulting installation file has4.
all the changes we made.

Writing Your First Android Application with Xamarin Chapter 4

[100]

Rebuild the project; right-click on Solution | Rebuild Solution:3.

Writing Your First Android Application with Xamarin Chapter 4

[101]

If everything is fine, we should be able to see in the output window that the4.
rebuild succeeded; if you get errors, go back to the previous steps, compare the
code, and rebuild:

Adding an icon for the Android app
App permissions are set and it's ready to run, so let's add an icon for our app:

Download an icon file that you like and that best suits your phone call app.1.
Go to Solution Explorer and add the downloaded file to the drawable folder2.
under Resources.

Writing Your First Android Application with Xamarin Chapter 4

[102]

Right-click on drawable | Add | Existing Item, as shown in the following3.
screenshot:

Writing Your First Android Application with Xamarin Chapter 4

[103]

A File Explorer window will open. Navigate to the icon file location, select the4.
icon file, and click Add:

Writing Your First Android Application with Xamarin Chapter 4

[104]

The icon should now be added to the drawable folder of the project:5.

Rename the icon file to icon.png by right-clicking on the file and then clicking6.
Rename:

Writing Your First Android Application with Xamarin Chapter 4

[105]

After renaming the file, rebuild the project like we did in the previous steps.7.
Once the rebuild is done successfully, let's add the icon to the application's8.
Manifest file.
Double-click on Properties from Solution Explorer and open Android Manifest.9.
Choose @drawable/icon from the Application Icon drop-down menu:10.

Writing Your First Android Application with Xamarin Chapter 4

[106]

Do Ctrl + Shift + S to save all and rebuild the solution to make sure everything11.
works fine.
Now, let's run the application in the emulator.12.
If we go to the app drawer and scroll down to the app name, we can see the app 13.
icon we just added now showing there:

Writing Your First Android Application with Xamarin Chapter 4

[107]

Congratulations, you've successfully added an icon for the new Android14.
application.
Now that we have added the permissions and icon to the Manifest, it is time to15.
test the main functionality of our app, making a call.

Testing user interaction
Click on the app on Android Emulator and run it. Repeat the previous steps of testing the
application and at the end press the CALL button to make a call:

Writing Your First Android Application with Xamarin Chapter 4

[108]

This time, the application has the required permission, we have written the code to handle
CALL button interaction, and we are creating a callIntent in MainActivity.cs to make
a call.

So, the call should be placed by clicking the CALL button, and we should get a screen as
shown in the following screenshot:

Writing Your First Android Application with Xamarin Chapter 4

[109]

Awesome! You just created your first working Android application using Xamarin and C#
in Visual Studio.

Now that we have done the difficult part, let's understand some fundamentals of the
Android application we just developed and see how it all comes together.

Application fundamentals
There are many topics that can be covered while explaining Android application
fundamentals. But for the scope of this book we'll try to understand the most important
ones that we used in the development of our PhoneCallApp:

Android APIs: Android has different API levels for different versions of
Android. These API levels basically state which version of Android libraries our
code uses and which versions of the Android OS our app is compatible with.

There are different configurations to be specified while developing an Android
application. These configurations include:

Target framework
Minimum Android version
Target Android version

You'll read about these configurations in more detail.

Resources: Resources encapsulate many features used in Android to make a better Android
application. An Android application uses many resources, such as:

The icon we used
The layout file that makes the UI for the user
String files to store strings for application localization/internationalization, and
much more

Activities: Activities are the main building block of applications in Android. Every UI element
and its interactions are connected to an activity. Whenever we click on a button and open a
new page, a new activity is called and control gets transferred.

An activity in Android can have different states, based on the current operation
being performed. We'll learn more about Activities in detail in future topics.

Writing Your First Android Application with Xamarin Chapter 4

[110]

Android APIs
Android APIs are known by an API level, for example, API level 23.

An API level represents a specific Android release. If you open Android SDK Manager in
Visual Studio, you will see the following screen:

Writing Your First Android Application with Xamarin Chapter 4

[111]

Each API level is specific to an Android release. An Android release is known by multiple
names:

The API level, such as API level 23
The Android version, such as Android 6.0
A code name, such as Marshmallow

So, we can say that APIs have an integer value, a number to identify the release, because
with each release this API level changes, and users upgrade their Android versions as they
get released.

An Android app should be able to run on different APIs and should be compatible with
previous versions of releases, so that old devices can run applications as well, and when a
user updates their OS version to a new one, existing apps don't break on their phones.

To support multiple API levels, the Android project property has configurations to define:

Target Framework: This setting can be found in the Application menu inside
Properties. This tells Xamarin.Android to compile the project using specific
API-level libraries. While compiling/building the application, Xamarin.Android
uses the API level specified in this setting to load the libraries and build the
application:

Writing Your First Android Application with Xamarin Chapter 4

[112]

Minimum Android version/API level: This is the minimum Android version
that the application can run on; this tells the Android system if the app is
supported on the specific OS version. Specifying a lower minimum version
means your application can be installed on all the versions between the minimum
and target specified. But be careful, because even if the application compiles and
gets installed on a lower version of Android, it does not necessarily mean it will
run successfully as well.

There might be some higher-level APIs that your application is using which
cannot be run on an older version. This setting can be found under Android
Manifest inside Properties:

Writing Your First Android Application with Xamarin Chapter 4

[113]

Target Android version/API level: This is the OS version the app is developed to
run on. Android uses this configuration to check whether it needs to enable any
compatibility behaviors while running the application. This configuration can
also be found in Android Manifest inside the project's properties:

Writing Your First Android Application with Xamarin Chapter 4

[114]

Resources
When we created a new Xamarin.Android application project, a folder named Resources
was created in Solution Explorer:

Let's analyze the structure of our Resources folder in detail.

For an Android application structure, almost everything other than the actual code is a
resource.

Writing Your First Android Application with Xamarin Chapter 4

[115]

A resource can be any of the following, but are not limited to the following:

Images
Any image or icon used in the application
They go in the drawable folder

Application View
View files for the application, that is, the Main.axml file that we
created
Goes in the layout folder

Strings
These are text strings that are used across the application
For instance, the CALL text on the text button
It helps keep consistency throughout the application
Goes in the values folder

Resources we used in the application

The main files that we used in our application in the Resources folder are as follows:

Icon.png: The icon for the application we downloaded and added.
Main.axml: The default user interface layout file for our application. We only
edited this file in the Designer, but you can also go ahead and open the file in
XML view and try to understand the XML tags used for UI elements.
Resource.designer.cs: This file is automatically generated and maintained by
Xamarin.Android and holds the unique IDs assigned to each resource. It is
automatically created by Xamarin.Android tools and will be regenerated from
time to time.

This is why, to access certain resources in our C# code, we used the following
code:

phoneNumberInput = FindViewById<EditText>(Resource.Id.PhoneNumber);

Notice Resource.Id.PhoneNumber; this information is basically stored
in the Resource.designer.cs file, and all unique IDs assigned to
resources are stored here.

Writing Your First Android Application with Xamarin Chapter 4

[116]

Understanding Activities
Activities are something very specific to Android application development. Usually, in
other applications, we have an entry point or a main method as an entry point to start the
application.

But in Android, the same purpose is fulfilled by Activities. Android applications can be
started from any activity that is specified as a starting activity for the application using
MainLauncher:

Activity class
The Activity class contains the code that controls the user interface. The Activity class is
basically responsible for creating the UI and handling user interactions such as button clicks
or touches.

Writing Your First Android Application with Xamarin Chapter 4

[117]

Now, let's take an example of our PhoneCallApp application. We have only one Activity
in our project, and that is the MainActivity.cs class. It is the main entry point for the OS
into this application, since we have set it as MainLauncher:

If we look closely, the MainActivity class inherits the Activity class, that is, it is a child
of the Activity class. That means now MainActivity is also an Activity.

Also, it is important to note that we have an Activity attribute defined above the
MainActivity class, which specifies the Label and the MainLaucher property as well.
This attribute tells Android that the MainActivity class is part of the application and is
managed by its Manifest.

By inheriting the Activity class, MainActivity gets access to the methods of
the Activity class that provide developers with the ability to perform certain actions on
different states of MainActivity, such as:

When an activity is created
When an activity is paused
When an activity is resumed

When developing an application and writing code for an Activity as discussed earlier,
some methods are provided by the Activity class and we can use these to perform
operations based on the different states of an Activity.

Writing Your First Android Application with Xamarin Chapter 4

[118]

Methods in the Activity class
OnCreate(): When a user clicks on the app icon to start the application, this
method is called. This method is used to perform some initial setup that might be
required for the activity, for example, creating views, initializing variables, and
much more:

Writing Your First Android Application with Xamarin Chapter 4

[119]

Let's have a look at our application code where we used the OnCreate() method
to do some initialization and setup:

The things we are doing in our OnCreate() method are:

Setting up a layout for the view
Initializing variables to get references to TextInput and
CallButton

Binding the Click event to CallButton
OnStart(): This method is always called by the system right after the
OnCreate() method.
OnResume(): This method is called by the system when the application is up
again and ready to interact with the user. OnResume() is important because any
operation that is done in OnPause() should be undone in OnResume(), since it's
the only life cycle method that is guaranteed to execute after OnPause() when
bringing the activity back.

Writing Your First Android Application with Xamarin Chapter 4

[120]

OnPause(): This method is called when the system is about to put the activity
into the background. It is also an important method, because an activity should
perform certain tasks, such as:

Saving unsaved changes
Freeing up resources, such as the camera or other resources

Writing Your First Android Application with Xamarin Chapter 4

[121]

OnStop(): This method is called when the activity is no longer visible to the user.
This happens when one of the following happens:

The Back button is pressed
An existing activity is being opened and brought to the foreground
A new activity is being started and covers up the current activity

Writing Your First Android Application with Xamarin Chapter 4

[122]

OnRestart(): If an activity was stopped and then it is started again, this method
gets called.
OnDestroy(): This is the final method that is called on an Activity before it's
destroyed and completely removed from memory. It is used to clean up resources
that might cause memory misuse.

To understand more about the different Activity states, let's delve into the Activity life
cycle.

Activity life cycle
The Activity life cycle is usually defined by a list of methods inside the Activity class that
provide us with ways to control the state of an activity. This allows developers to handle
activities within an Android application.

Let's have a look at the different states of an Activity:

Writing Your First Android Application with Xamarin Chapter 4

[123]

These states can be broken into four main groups as follows:

Running: Activities are called active or running if they are in the foreground, also
known as the top of the activity stack. This is known to be the highest priority
activity in Android and will only be killed by the OS in extreme situations, such
as if the activity tries to use more memory than is available on the device, since
this could cause the application UI to become unresponsive.
Paused: When a partial activity is called on top of a currently running activity, it
is considered paused. Paused activities are still alive, that is, they maintain all
state and member information, and remain in the activity stack. This is
considered to be the second highest priority activity in Android and will only be
killed by the OS if killing this activity will satisfy the resource requirements
needed to keep the active/running activity stable and responsive.
Stopped/backgrounded: If an activity is completely stopped or taken over by
another activity, then it is considered as stopped or in the background. Stopped
activities still try to retain their state and member information for as long as
possible, but stopped activities have the lowest priority of the three states.
Restarted/Resumed: If the user navigates back to the activity from another
activity, or by tapping the App Switcher icon, it must be resumed if paused or
restarted, or restored to its previously saved state, if stopped, and then displayed
to the user.

These categories are basic explanations of the different states of an activity in the activity
life cycle.

Deploying an application on a mobile device
So far, we have tested our application on Android Virtual Device (Android Emulator). But
it's always a good practice to test the application on a physical device. So, let's learn how to
set up an actual Android device for testing an application.

Screenshots shown in this topic were taken using an Android device running Lollipop; your
device settings may differ depending on your device version.

Here are the steps to set up a device for debugging:

Enable debugging on the device: We will need to enable debugging on the
device. By default, it will not be possible to debug applications on an Android
device.

Writing Your First Android Application with Xamarin Chapter 4

[124]

Install USB drivers: On our Windows computers, we will need to install USB
drivers for our device.
Connect the device to the computer: The final step involves connecting the
device to the computer with a USB cable.

Enable debugging on the device
To enable debugging on the device, we need to perform the following steps:

Click on the Settings icon from the notification bar:1.

Writing Your First Android Application with Xamarin Chapter 4

[125]

Open Settings.2.
Scroll down to the end and click on About phone:3.

Writing Your First Android Application with Xamarin Chapter 4

[126]

Scroll down to Build number.4.
Tap on Build number seven times until it says You are now a developer!:5.

Writing Your First Android Application with Xamarin Chapter 4

[127]

Go back to the Settings menu and scroll down till the end:6.
You should be able to see a new menu entry now for Developer options just7.
before About phone:
Click on Developer options:8.

Writing Your First Android Application with Xamarin Chapter 4

[128]

Find the option to enable USB debugging and enable it:9.

Writing Your First Android Application with Xamarin Chapter 4

[129]

Install USB drivers
For different devices, different drivers might need to be installed for the computer to
recognize the device. Please make sure all the device drivers are properly installed and the
computer can recognize your device properly.

If you are downloading the device driver and want to install it manually on the computer,
perform the following steps for Windows 7:

Connect your device to the computer with a USB cable.1.
Right-click on the Computer from your desktop or Windows Explorer and select2.
Manage.
Select Devices in the left pane.3.
Locate and expand other devices in the right pane.4.
Right-click the device name and select Update Driver Software.5.
This will launch the Hardware Update Wizard.6.
Select Browse my computer for driver software and click Next.7.
Click Browse and locate the USB driver folder.8.
Click Next to install the driver.9.

Connect the device to a computer
If you connect the device with a USB cable to a computer, android debug bridge (adb)
should be able to communicate with the device and you should see a notification on the
device saying USB debugging connected, as shown in the following screenshot:

Writing Your First Android Application with Xamarin Chapter 4

[130]

Now, you can go to Visual Studio, select your device listed in the running device list, and
run the application. This will install the application on your device and run it.

Pushing code to a Git repository
The application development is done. Let's save our code to our Git repository so we can
access the code from anywhere:

In Visual Studio, in the bottom-right corner, click on Add to Source Control and1.
then select Git:

Writing Your First Android Application with Xamarin Chapter 4

[131]

Click on Connect | Settings:2.

Click on Global Settings:3.

Writing Your First Android Application with Xamarin Chapter 4

[132]

Enter your GitHub account username and email and click Update:4.
Click on the up arrow icon (push icon) at the bottom of the Team Explorer.5.
Then, click on Publish Git Repo under Push to Remote Repository.6.
Notice that it says there is no remote repository configured for this local7.
repository. That is because we haven't connected our remote GitHub repository
to our local project:

Writing Your First Android Application with Xamarin Chapter 4

[133]

Log in to your GitHub account and create an empty Git repository for your
project, as we learned in Chapter 2, Working with Code Repository Systems, and
copy that URL to the textbox shown in the following screenshot:

Writing Your First Android Application with Xamarin Chapter 4

[134]

After clicking on Publish, a new window will open asking for your GitHub8.
credentials:

Enter your GitHub credentials to authenticate and click Login:9.
After successfully logging in, the code will be pushed to the remote Git repository10.
and you should see a success message as follows:

Writing Your First Android Application with Xamarin Chapter 4

[135]

Congratulations, the code has now been pushed to the remote repository, and can be
checked by logging in to GitHub and going to the repository URL.

Summary
In this chapter, we learned to develop an Android application using Xamarin and Visual
Studio. We also learned some detailed fundamentals of an Android application, Activities,
and their life cycle. We ran the application on Emulator as well as set up an actual physical
device to run the application; finally we pushed our code to a Git repository.

In the next chapter, we'll learn about implementing continuous testing using Xamarin Test
Cloud.

5
Implementing Automatic

Testing Using Xamarin
In today's world of fast-paced development and frequent distribution, an application needs
to be delivered as fast as possible and the development lifecycle must be reduced to meet
this goal of fast delivery. Testing is one of the most important aspects of software
development.

In the case of mobile applications, they need to be tested on all possible supported devices
to make sure they deliver smoothly on all targeted devices.

Let's have a look at the topics we'll be learning in this chapter:

Importance of automation testing in the DevOps cycle
Writing automatic UI tests with Xamarin.UITest
Using Xamarin Test Cloud to test an application on multiple physical devices

Understanding the importance of automation
testing in the DevOps cycle
Testing is one of the most important factors when it comes to application development.
Developers do their best to develop a sophisticated application that runs smoothly. But
there are always scenarios that developers cannot think of, just because they can only be
tested when the application is used with the mindset of an end user.

While developers are working hard to develop the application, it is crucial for the
application to be tested with the user in mind, and to test things a developer wouldn't think
of.

Implementing Automatic Testing Using Xamarin Chapter 5

[137]

Testers are there to make sure that the application performs as intended, and that one
feature does not affect the other features in an application.

While it is great to have manual testers testing the application, and it does make sure that
the application is tested and used as an end user would actually use it in the real world, it is
not always the best choice to only have manual testers test the application.

Testing a mobile application
With a web application or a desktop application, the number of platform versions and
devices to test with is very low.

It is always simpler to have manual testers test the application, find out the shortcomings
and defects in an application, and notify the developers.

But when it comes to mobile applications, the story completely changes.

If we only talk about an Android application, for example, let's have a look at the number of
challenges in testing.

Challenges in testing a mobile application
There are many challenges when it comes to testing a mobile app:

Testing against a real environment
Deploying and testing frequently
Continuous feedback

Testing against a real environment
The most important thing for mobile developers is that the final app works across all target
devices. Using emulators or simulators is fine in the earliest phase of development, but
when the app becomes more sophisticated and is about to get released to the market, the
only acceptable way is to test mobile apps on real devices:

Implementing Automatic Testing Using Xamarin Chapter 5

[138]

Deploy and test frequently
Mobile applications are updated almost every week, or at least twice a month. So, they need
to be tested even more frequently.

Mobile applications should be tested with every nightly build, so defects can be recognized
earlier and fixed sooner. Testing the same feature again and again efficiently and frequently
might not be the best solution, and can slow down the process of delivery. If we have
automation in place for repeated tasks, that can save a lot of time to market. Continuous
development and testing enables companies to deliver to market.

Implementing Automatic Testing Using Xamarin Chapter 5

[139]

Continuous feedback
Continuous feedback goes along with frequently deploying and testing the application. As
we have learned, the manual process of completing repetitive tasks takes up a lot of our
time that can and should be saved in order to deliver to market faster. In the same way,
getting continuous feedback from testing and production is very important to the quality of
the application:

To overcome all these challenges in mobile application testing, we need to adopt a DevOps
mindset, make testing an automated and integrated part of our development cycle, and
have it happen on each build automatically (and give feedback to developers so they can
take action in the early stages of development).

Writing tests with Xamarin.UITest
Before we start writing UI tests with Xamarin.UITest, it is good to have a brief look at what
unit testing is and how Xamarin.UITest is going to help us achieve our goal of automated
testing for our mobile application.

Implementing Automatic Testing Using Xamarin Chapter 5

[140]

Xamarin.UITest
Xamarin.UITest is a testing framework based on a popular test library in C#, NUnit. If you
have used NUnit in your C# projects previously for unit testing, it will be really helpful to
understand Xamarin.UITest faster. But if you don't have prior experience in NUnit, it's
absolutely fine.

It is basically a set of libraries for C# (similar to JUnit for Java) to help write unit tests.

And by using UITest, we will be writing UI tests for our mobile application.

Fundamentals of UITest
UITest, or in general any NUnit-based test, has a defined structure to follow:

Test fixture: Test fixture is a class containing tests, and it also does the initial
setup for any test to be executed or any task that needs to be done after the test
has finished executing
Test: UITest is written as a method inside the test fixture class

Understanding the AAA pattern
The Arrange-Act-Assert (AAA) pattern should be followed when writing a UITest, to
achieve the best results and fast feedback from the test. As the name suggests, it consists of
three steps:

Arrange: Eponymously, this step contains all the actions that help arrange the
test, for example, initialization of things required later while running the test,
setting up the environment, and much more.
Act: This is when the test performs the desired interaction with the application,
such as entering text, pushing a button, and so on.
Assert: Assert is when our UITest asserts whether the interaction gave us the
desired outcome or not, such as verifying that an error message was displayed.

Implementing Automatic Testing Using Xamarin Chapter 5

[141]

Adding a UITest project to Solution
Let's get back to Visual Studio and set up a new test project to write Xamarin.UITest:

Right-click on Solution | Add | New Project:1.

Implementing Automatic Testing Using Xamarin Chapter 5

[142]

In the Add New Project window, click on Test from the left section and then2.
select UI Test App (Xamarin.UITest | Android), because we are going to write a
test for our Android application. Give this project a name in the Name section
and click OK:

Implementing Automatic Testing Using Xamarin Chapter 5

[143]

Visual Studio will create a new test project now. Once it is done, you should be3.
able to see a new project created under Solution:

This new test project that we created through the Android Test Project template4.
should also include the necessary Nuget packages required to run
Xamarin.UITest. Those packages are:

NUnit
NUnit Test Adapter, to run UITests locally
Xamarin.UITest, the framework we'll use to write tests

These are available in the form of Nuget packages, but usually come with the
template we used to create the UITest project.

Implementing Automatic Testing Using Xamarin Chapter 5

[144]

To make sure these required packages are available and installed, right-click on5.
the UITest project and click on Manage Nuget Packages:

Implementing Automatic Testing Using Xamarin Chapter 5

[145]

On the next screen, you should be able to see the packages listed:6.

Implementing Automatic Testing Using Xamarin Chapter 5

[146]

Visual Studio suggests an update for the NUnit package to 3.X.X, but don't7.
update NUnit because Xamarin.UITest does not work with NUnit 3.x. At the time
of writing, it is compatible with 2.6.x. Also, because a version of Test Adapter is
specific to a version of NUnit framework, it's better not to update Test Adapter
either.
Next, we need to add a reference to the application project, so the UITest project8.
can build and run the application.
Right-click on References under the UITest project and click on Add Reference:9.

Implementing Automatic Testing Using Xamarin Chapter 5

[147]

On the next screen, select Projects from the left section, then select10.
PhoneCallApp (the application project we want to test), and click OK:

Implementing Automatic Testing Using Xamarin Chapter 5

[148]

Once you have added the application project, you should be able to see the11.
reference added in Solution Explorer:

As the application project and the UITest project are under the same solution, it12.
is enough to add a reference to the application project, as shown in the previous
step. But if you want to have both projects in different solutions, or if you want to
test the application on Android 6.0, then Visual Studio requires you to supply the
path to the APK in your system.
To give this path, open the Tests.cs file under the UITest project:13.

Implementing Automatic Testing Using Xamarin Chapter 5

[149]

In Tests.cs, uncomment the .ApkFile() code, as shown in the following14.
screenshot:

Change the path to the .apk file path, which can be found inside the bin folder15.
of your application project. If you are not able to see the file there, try deploying
the application once and then it should be created in bin | debug or bin |
release, depending on your build configuration.

Implementing Automatic Testing Using Xamarin Chapter 5

[150]

Tests.cs
This file is the default file that gets created when we add the UITest project in the solution
through the Xamarin.UI Android Test Project template, and we will be writing our UI tests
in this file. There are certain things to note in this file:

[TextFixture]: This is an annotation added to the Tests class that tells the
UITest framework that this class contains tests to be run.
[Setup]: Each class containing tests needs to set up an initial configuration, as
with the APK file path in the previous section. This is added to the
BeforeEachTest() method and tells the framework to run this method and
perform the initial setup before running the test.
[Test]: This annotation identifies the method that contains the test.

Implementing Automatic Testing Using Xamarin Chapter 5

[151]

Recall the application code
Let's rewind to some of the things we wrote during application development.

Elements in the PhoneCallApp
Textbox to enter phone number
CALL button to call
A text that gets displayed if the user taps on the CALL button without entering a
number
A confirmation dialog box that appears when user taps on the CALL button after
entering a number

User interactions in the PhoneCallApp
Enter a number in the text box1.
Tap the CALL button2.
Tap on OK or Cancel in the confirmation dialog box3.

Open the MainActivity.cs file from the PhoneCallApp project and you'll notice that we
are showing a toast if the entered number string is empty:

Implementing Automatic Testing Using Xamarin Chapter 5

[152]

Steps to include in the test
To write an efficient test, certain steps should be followed, based on the AAA pattern
discussed earlier:

Implementing Automatic Testing Using Xamarin Chapter 5

[153]

Configure and start the application (Arrange): We need not write this step
because that part is already taken care of in the BeforeEachTest() method:

Perform an interaction with some element on the screen (Act): We'll have to
write code to enter text or tap on the CALL button
Verify the desired output (Assert): We need code to verify the interaction gives
us the desired output

As we can see, the first step of the test is already done, and now we need to write the next
steps, which include performing interaction with the CALL button and then verifying the
desired output.

Writing your first UITest
It's time to finally write our new UITest, inside Tests.cs under the UITest project, to test
the test case described earlier:

Write a new method under the Tests.cs class with an annotation [Test], as1.
described earlier:

Implementing Automatic Testing Using Xamarin Chapter 5

[154]

Write code to take a screenshot of the application once it loads:2.

Then, as mentioned in step 2, perform an interaction, that is, write code to tap the3.
CALL button:

In the preceding code, we are using the AndroidApp.Tap() method to perform
the tap and the AppQuery.Id() method to identify the CALL button, then
passing that app query inside the Tap button so that it knows where to tap.

Again, let's take a screenshot of the button being pressed:4.

Implementing Automatic Testing Using Xamarin Chapter 5

[155]

The next step is to verify the behavior is as desired. In PhoneCallApp, verify that5.
the toast saying Please provide number appears:

In the preceding code, we have used the AndroidApp.Query() method to query
the UI screen for an element, and we have passed the AppQuery.Marked()
method with the content of our toast to be identified.

The Marked() method is similar to the Id() method but it searches for an
element with a given string as either its ID or its content, and in our case it is the
content of the toast.

Now, we need to verify that the toast with the provided string Please provide6.
number has been found; the Assert.IsTrue() method will verify the element
has been found by checking for the result array:

Implementing Automatic Testing Using Xamarin Chapter 5

[156]

Running your test on your local machine
Now that we have completed writing the UITest inside the Tests.cs class file, it's time to
run the test on your local machine:

Rebuild your solution with the build configurations of your device or emulator:1.

Implementing Automatic Testing Using Xamarin Chapter 5

[157]

Before we run test, let's deploy the solution to generate the .apk file:2.

Once the deploy is successful, click on Test | Windows | Test Explorer, as shown3.
in the following screenshot:

Implementing Automatic Testing Using Xamarin Chapter 5

[158]

In Test Explorer, NUnit should identify the test we have written in the Tests.cs4.
file because of the [Test] fixture:

Implementing Automatic Testing Using Xamarin Chapter 5

[159]

As shown in the previous screenshot, in Test Explorer click on the Run All5.
button to run all the tests. If everything goes fine, you should see the Passed
Tests message in Test Explorer:

Awesome, you have successfully written and run the test on your local machine.6.
Next, we'll learn about Xamarin Test Cloud and how to use it to run our UI tests
on multiple physical devices.

Implementing Automatic Testing Using Xamarin Chapter 5

[160]

Using Xamarin Test Cloud to test on multiple
devices
Mobile application users are very demanding in terms of the quality and performance of an
application. Platforms such as app stores, where users can promptly give feedback as they
wish, make it even more important to take mobile application quality seriously:

Question: How can we test a mobile application effectively?
Answer: By running the application on a real device and using it like a user
would do

Challenges in mobile app testing
Mobile application testing involves many challenges that web applications don't have.

Different mobile OS versions
Let's take Android, for example. Since Android started, it has grown at a very fast rate, with
a new major release every year. That makes around 15 major versions out there in the
market, out of which at least 6 versions are widely used in different parts of the world,
depending on the region and smartphone availability.

These are only the major versions we are talking about; the minor versions are way too
many to count.

Considering this situation, it is almost impossible for a quality assurance team to test the
application and guarantee it will work on all the targeted devices out there.

Devices with different screen sizes
We are all aware that the number of devices is increasing every day but older devices still
continued to be used, with different screen sizes from 4.0 inches to 6.5 inches (some are
even bigger).

Implementing Automatic Testing Using Xamarin Chapter 5

[161]

Mobile applications can behave differently on different screen sizes and resolutions. If not
developed properly, this can drastically change the look of an app from a device used for
development to the device a real user is using.

So, testing on multiple devices with various screen sizes becomes a very important aspect of
mobile app testing. To an extent, this can be done by getting all possible device sizes and
testing the application on them, but in turn this can increase the cost to a very high level
and can be very time-consuming.

Solving challenges like these in a cost- and quality-effective way is only possible by using
cloud test platforms that enable us to run tests on multiple devices simultaneously. All the
devices on these cloud platforms are physical devices, not emulators, and they also provide
instant feedback and support multiple testing frameworks, including NUnit.

Introduction to Xamarin Test Cloud
Xamarin Test Cloud is a cloud-based platform that provides tools to support the automated
testing of mobile applications across various different devices, also known as UI
Acceptance Testing. This enables us to ensure that the application performs correctly and
efficiently across multiple devices with minimal effort.

It also helps shift the testers' focus from repeating the same tests on multiple devices, and
helps them focus on verifying that the app works as expected on the test cloud.

The Xamarin Test Cloud family consists of the following parts:

Xamarin.UITest
It is a testing framework based on the very popular NUnit test libraries. If you have used
NUnit in your C# projects before for unit testing, it will be really helpful to understand
Xamarin.UITest faster. But if you don't have prior experience in NUnit, it's absolutely fine.

Xamarin.UITest is basically a set of libraries for C# (similar to JUnit for Java) to help write
unit tests.

Xamarin also supports the Calabash framework for writing tests, if you want to write them
in Ruby and Cucumber.

We'll be focusing on Xamarin.UITest to write tests in C# for continuous testing.

Implementing Automatic Testing Using Xamarin Chapter 5

[162]

Test Cloud
This is a cloud-based platform consisting of thousands of physical devices. Users can
upload apps and tests written in Xamarin.UITest to Test Cloud; it will then install the apps
on the available or chosen devices and run the given tests on them. Once tests are complete,
results are then available to users to analyze and verify the behavior of the application.

Xamarin Test Recorder
This is another application in the Test Cloud ecosystem and helps write Xamarin.UITest.

It basically allows you to plug the device in, run the test manually on the device, and then it
writes all the test code for you by recording your actions on the application.

We will not be covering Test Recorder, but rather will learn how to write UI tests with
Xamarin.

Using Xamarin Test Cloud as part of continuous
integration
Xamarin Test Cloud helps us achieve continuous integration with automated test
executions on every build, on a build server such as TeamCity, and, after executing the
tests, gives feedback directly to developers:

Implementing Automatic Testing Using Xamarin Chapter 5

[163]

Creating users and organizations on Test
Cloud
Let's start by creating an account on Xamarin Test Cloud:

Go to https://testcloud.xamarin.com/register to register a new account:1.

https://testcloud.xamarin.com/register

Implementing Automatic Testing Using Xamarin Chapter 5

[164]

Enter your details and click the Continue button to start the process. The process
requires you to register with a company email; a Gmail or Yahoo email will not
work.

On the next screen, enter your organization's details and click on Get started:2.

Implementing Automatic Testing Using Xamarin Chapter 5

[165]

In the next step, accept the terms and conditions to complete registration:3.

After completing registration, make sure you verify your email address before4.
beginning testing.

Users and organizations
Xamarin Test Cloud, being a continuous testing cloud platform, supports an organization
structure to give access, make APIs, and run tests through the use of access keys.

It makes it much easier to separate team-based applications in an organization.

Implementing Automatic Testing Using Xamarin Chapter 5

[166]

Test Cloud hierarchy
The Test Cloud hierarchy structure is quite simple and easy to follow:

Organization: An organization is basically the top level at which the subscription
is managed for Test Cloud, and it is created when a person from an organization
first creates an account on Xamarin Test Cloud.
Administrators: Each organization will have at least one administrator, who
creates teams and can manage users.
Team: A team usually has at least one application and some users working on
that application. Each team gets their own API keys to access and run tests on the
application:

Implementing Automatic Testing Using Xamarin Chapter 5

[167]

Creating a team
To create a team in Xamarin Test Cloud, follow these steps:

Click on your profile and then click on Account settings:1.

Implementing Automatic Testing Using Xamarin Chapter 5

[168]

Click on Teams & Apps:2.

Then, click on the New team button to add a new team:3.

Implementing Automatic Testing Using Xamarin Chapter 5

[169]

To edit team details, such as the team name, and add new members, click on the4.
settings (gear) icon as shown in the following screenshot:

After adding new members to the team, you can manage permissions for users:5.

Implementing Automatic Testing Using Xamarin Chapter 5

[170]

Once the team details, members, and their permissions are all set up, click on6.
Done.

Implementing Automatic Testing Using Xamarin Chapter 5

[171]

Creating a test run for your application
Now that we have added a team and members to it, it's time to add our application test run
to it as well. To create a test run for PhoneCallApp, follow these steps:

In Xamarin Test Cloud, click on New Test Run:1.

This will open a self-guiding dialog box, where we can select the platform and2.
choose devices.

Implementing Automatic Testing Using Xamarin Chapter 5

[172]

In the first step in the dialog box, select I'm testing an Android app and click3.
Next:

Implementing Automatic Testing Using Xamarin Chapter 5

[173]

Select appropriate devices to run your application on and go to the next step:4.

Implementing Automatic Testing Using Xamarin Chapter 5

[174]

Select an appropriate Test series, or you can create a new one, select the5.
language, and click Next:

Implementing Automatic Testing Using Xamarin Chapter 5

[175]

Select UITest on the next screen and click on Running on Windows:6.

Implementing Automatic Testing Using Xamarin Chapter 5

[176]

This page gives us a command with a device ID according the devices we7.
selected in previous steps. As it says, please update the directory path to the .apk
test assembly bin folder, and then run the command in the root folder of the
application.
Before you upload your application to Xamarin Test Cloud, it is important to8.
build your application in the Release build configuration.
Once you have built the project with Release, you are ready to upload your9.
application to Xamarin and run the UI tests there. Use the command and modify
the Xamarin.UITest.xxx version and then the APK file name, with the full path to
the apk and the relative path to the UITest folder, as shown in the following
screenshot. Then run it from the root directory of your project:

Congratulations, you have uploaded your first application to Xamarin Test Cloud10.
with a test! After uploading the application, Xamarin Test Cloud should run the
tests provided.

Implementing Automatic Testing Using Xamarin Chapter 5

[177]

Go to the Xamarin test cloud web interface and notice that the application is now11.
visible in the dashboard:

Implementing Automatic Testing Using Xamarin Chapter 5

[178]

Click on the application to see the tests running on the devices we selected in step12.
4:

You can further click on the test link and see more details about the tests and their
statuses.

This completes running your first test run on Xamarin Test Cloud, where you can13.
test your application on multiple physical devices available in the cloud.

Summary
In this chapter, we learned the importance of continuous testing in the application
development cycle. We also learned about Xamarin.UITest and how to write automated UI
tests for acceptance-testing our application, and we got familiar with Xamarin Test Cloud,
which is useful for continuous testing on multiple physical devices.

In the coming chapters, you'll learn more about continuous integration and continuous
delivery using various tools.

6
Configuring TeamCity for CI/CD

with Xamarin
In the old days, application development used to happen in separate, not-so-integrated
teams. Developers were not used to merging their work with other developers' code for
quite a long time, and that used to create merge issues. Things that were working on the
developer's local copy used to stop working when merged with others' code. This kind of
not-so-integrated development environment increased the development time and delayed the
discovery of issues. One solution for this is to have continuous integration built into the
development cycle, where developers merge their code multiple times a day and get issues
fixed at earlier stages.

In this chapter, we will learn more about continuous integration, continuous delivery, and
the different tools that we can use for a better development integration and delivery
process.

In this chapter, we'll be covering the following topics:

Introduction to continuous integration
Various tools for continuous integration
Using TeamCity with Xamarin
Preparing a build server for TeamCity and installing TeamCity
Creating a build script
Creating a TeamCity project

Introduction to continuous integration
Continuous Integration (CI) is a development and integration practice in which developers
check code into a shared repository frequently, preferably several times a day. Each code
merge can then be verified by an automated build and automated tests if applicable.

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[180]

There are many benefits to following continuous integration; one of the advantages is that it
helps detect defects quickly and at an early stage. The check-ins are usually very small and
contain small developments, thus helping to identify the exact issues quickly.

Continuous Delivery (CD), on the other hand, is a process performed after integration, and
as the name suggests, it makes sure that the code base checked in is deployable at any point
of time. Each environment from test to production can, and mostly does, have different
configurations. Continuous delivery makes sure that all configurations are always ready for
deployment to any environment, and that the code passes all the tests necessary for release.

In short, continuous integration improves the development and testing experience with
frequent code merges, helps quickly identify bugs, and involves running automated tests if
included in the process. Continuous delivery makes sure the codebase is in a ready state for
the code to be deployed in any environment.

CI/CD for a web application

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[181]

For a web application, once the build is ready from the CI server, it is not a big task to test
the application on different browsers since there are only a limited number of them. But in a
mobile application, there is one more step involved to improve the experience, since there
are thousands of devices with different versions of operating systems available.

CI/CD for a mobile application

As shown in the preceding diagram, mobile applications need to be tested on hundreds of
devices with different operating systems, and purchasing all these mobile devices, which
keep on coming out on a regular basis, can be very expensive. To make sure the quality of
the application stays high, including Test Cloud-based solutions becomes an integral part of
the process.

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[182]

Choosing tools for continuous integration
There are many CI tools available on the market to implement continuous integration, just
like there are many languages available on the market with which to develop applications,
but choosing the right CI tool is very important for ensuring long-term benefits.

Choosing a CI tool for your project can depend on many variables:

Programming language support: This is one of the most important factors while
choosing a CI tool. Some CI tools have better support for certain language-
specific builds and packages, while others might not provide language-specific
packaging options.
Operating system: Operating system support is important, as some teams might
find an open source operating system such as Linux to be a better choice for all
their servers, including the CI server, and it might be more comfortable for them
to configure a familiar operating system, while other teams working on .NET
applications might find Windows to be more comfortable and feature-rich for
their configurations. It all boils down to the preference different teams have and
the kind of application they are working on.
Integration with a code repository: Different teams prefer different code
repositories for various reasons. Some might find Git to be more feature-rich and
supported on various IDEs with plugins, while others who are more familiar
with Microsoft environments find Team Services to be easier to use and better
integrated. Different CI tools have different levels of support for these
repositories.
Support for application platform deployment: Some CI servers are better suited
for web application deployment, while others provide more features and better
support for mobile application deployment to app stores. Depending on your
type of application, the choice can vary.
Cost: Cost is always an important factor while choosing any type of tool. Medium
to big companies can afford to have expensive, feature-rich CI tools, while
smaller companies and teams might want to stick to low-budget and sometimes
open source and freely available CI tools, and customize them according to their
needs.

Various tools for continuous integration
Let's have a look at some of the widely used CI tools available in the market.

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[183]

TeamCity
TeamCity is a well-known CI server, built by JetBrains. JetBrains is quite well known for
developing various tools for different phases in the software development life cycle, such as
WebStorm and ReSharper. TeamCity has both a licensed version and a free version with a
limited number of configurations and build agents. The free version is suitable for small
teams that plan to grow over time.

Despite being a Java-based solution, TeamCity offers the best .NET support among the tools
on this list. There are also different enterprise packages that scale by the number of agents
needed.

You will be learning more about TeamCity later in this chapter.

Its key features are as follows:

Extensive support for .NET-based applications and Visual Studio
Remote run, which can be used to test changes for failures without doing an
actual commit
Supports both automated and manual types of build trigger, and you can
configure automated build triggers for every commit

Jenkins
Jenkins is one of the most popular open source projects for continuous integration. With
thousands of plugins to choose from, Jenkins can help teams automate tasks that would
otherwise put a time-consuming strain on your software team. Common uses include
building projects, running tests, bug detection, code analysis, and project deployment.

Its key features are as follows:

Jenkins has an easy installation process by just running a command, java -jar
jenkins.war, and deploying - nothing else
Jenkins comes with a user-friendly web interface and you can configure Jenkins
entirely from that
Jenkins has a huge plugin library and integrates with most build tools
Customizing Jenkins to your project's needs is very straightforward by creating
plugins and extending its capabilities
Distributed builds are supported by Jenkins over different servers, and even with
different operating systems

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[184]

Visual Studio Team Services
Visual Studio Team Services, provided by Microsoft, helps teams plan better, code together,
and ship faster. You can code in any IDE or language, for any target platform. Various tools
and plugins can be downloaded to customize it to your project requirements.

The key features are as follows:

Supports a wide variety of tools including Visual Studio, Eclipse, or any other
tool available
Comes with unlimited free, private repos (including Git repos)
Planning boards and tools are available for Agile and even Kanban projects
Automatically compiles and tests apps in the Cloud to avoid build failures

Bamboo
Bamboo is a CI server used by software teams worldwide to automate the process of release
management for applications and general software. It allows teams to establish a
streamlined pipeline for build delivery. Mobile developers can deploy their apps back to the
Apple store or Google Play automatically. Being an Atlassian tool, it has native support for
Jira and BitBucket, and you can even import your Jenkins configurations into Bamboo
easily.

Its key features are as follows:

Unlike Jenkins, Bamboo has built-in Git branching workflows
Because it is built by Atlassian, it has built-in integration for Jira and BitBucket
Bamboo also supports automated merging to avoid conflicts and differences
between the working branch and master branch
Test automation in Bamboo produces a continuous flow from build, to test, even
to releasing the application to the customer when ready
Built-in support for Jira makes bug tracking in a specific release, and even builds,
automated and easily trackable

Using TeamCity with Xamarin for CI/CD
As mentioned in the previous section, TeamCity provides great support for .NET-based
applications.

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[185]

While it can automatically detect build steps from configuration files and project files, it can
also detect automatic build triggers from GitHub.

Requirements for using TeamCity
To use TeamCity, knowledge about, and the access to, some hardware and technologies are
required to make the setup process smoother:

A dedicated build server for TeamCity installation and setup: Ideally the build
server should be a standalone server and should not be responsible for other
responsibilities such as being a DB server or hosting server.
Knowledge of MSBuild: Having knowledge of MSBuild can make this setup
much better and helps in resolving any compilation-related issues if required.
Knowledge of Xamarin Test Cloud for continuous testing: Xamarin Test Cloud
will be used in this chapter for continuous testing after a build and application
package is ready. You will be familiar with this because it has been described in
detail in the last chapter.

Steps involved in TeamCity setup
The following steps are involved in setting up TeamCity:

Preparing the build server: In order to build our mobile app on the build server,
there is some software that needs to be installed on the build server, which will
be used while building the application
Creating the build script: A build script is basically a script containing a set of
commands to perform various actions in the build process, such as compiling the
application, building the APK, and then submitting it to the cloud for testing, as
well as much more
Installing TeamCity: Once we have the required tools installed on the CI server,
TeamCity needs to be installed and configured for the project and its users to run
build scripts
Creating a TeamCity project: Once we have all the software required to build
our project and the script to perform the building, a TeamCity project should be
created

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[186]

Preparing the build server
In order to compile and build a mobile app on the server, some software need to be
installed as it is required for the build process. For an Android application to be built on the
build server, it is important to have tools such as the Visual Studio SDK and Visual Studio
build tools installed on the server. Also, acquiring Android Keystore is required to sign the
application package to be released later. To avoid any configuration issues, it is
recommended to install this software under the same user account as TeamCity.

Firewall configuration
For continuous testing, we are using Xamarin Test Cloud, which was described in the
previous chapter in detail. For tests to be submitted to Xamarin Test Cloud automatically as
part of CI, the CI server must be configured to allow network traffic to and from
testcloud.xamarin.com on ports 80 and 443.

Once these configurations are done and the firewall is configured to allow communication
between the server and Xamarin Test Cloud, we will be able to use command-line tools in
the build steps to submit our UITests to Xamarin Test Cloud.

Installing Visual Studio with Xamarin
To install Visual Studio with Xamarin, you can follow the same steps described in Chapter
3, Cross-Platform Mobile App Development with Xamarin.

Following the steps should install both Visual Studio and Xamarin with the required tools
and SDKs.

Android Keystore
Android Keystore is used for signing the application while distributing it. This is required
before packaging the application, so that our final package is signed with it.

http://testcloud.xamarin.com

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[187]

Creating your own Keystore
The first step is to create your own personal Keystore that will contain the information used
to digitally sign your Android package files. You can do this with the following command:

"C:Program Files (x86)Javajre1.8.0_45binkeytool.exe" -genkey -v -keystore
youFileName.keystore" -alias your_alias_for_keystore -keyalg RSA -keysize
2048 -validity 30000

The 30000 at the end of the command denotes the length of validity of certificates; Google
requires this to be higher than 2033.

Before you run this command, make note of a few parameters first. When you run the
command, it will ask you to enter the following parameters. These parameters will be used
again later in the project file:

Password - <yourpassword>
Name - <yourname>
OU - <organisationunit> eg: JamSoft
Orgname - <organisationame>
Local - <locality>
State - <state>
Country - <2lettercountrycode>

Running the command should generate a .keystore file with the filename provided in the
command. Now that our build server is ready, let's prepare the build script that we'll be
using in the build process.

Creating a build script
The build script should contain the following steps:

Compile the application: Configuring the application project file to use the
proper Keystore and compiling the application using Visual Studio SDK tools
Submit the application to Xamarin Test Cloud: Once the server's firewall is
configured to allow communication with Test Cloud servers, as mentioned in
previous steps, this step in the build script will run the command to upload the
signed application package to the Test Cloud servers

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[188]

Compiling the application
Now that we have our Android Keystore ready and prepped for use, we can look at the
Visual Studio project. In order to automate this in the build system, we need to configure
the project to use our Keystore credentials:

In Visual Studio, edit the Android application .csproj file and add another1.
PropertyGroup element as shown in the following code:

<PropertyGroup Condition="'$(Configuration)' == 'Release'">
<AndroidKeyStore>True</AndroidKeyStore>
<AndroidSigningKeyStore>myandroid.keystore</AndroidSigningKeyStore>
<AndroidSigningStorePass>yourpassword</AndroidSigningStorePass>
<AndroidSigningKeyAlias>myaliasdroidpub</AndroidSigningKeyAlias>
<AndroidSigningKeyPass>yourpassword</AndroidSigningKeyPass>
</PropertyGroup>

Now our .csproj file knows how to use our Keystore unattended. We can tie in2.
to the Xamarin build process from within our automated builds and produce the
base Android package. You can test that this is working using the following
command:

msbuild.exe PhoneCallApp.csproj /p:Configuration=Release /t:Rebuild

This command uses MSBuild to build the application with the given
configuration; in our case, it should be release.

We have our application package now and we can apply the signing processes.3.
To sign the package created in the previous step, we need to execute the
following command:

"C:\Program Files (x86)\Java\jdk1.7.0_71\binjarsigner.exe" -verbose
-sigalg SHA1withRSA -digestalg SHA1 -keystore youFileName.keystore
-storepass yourpassword -keypass yourpassword -signedjar
\bin\Release\packagename-signed.apk \bin\Release\packagename.apk
your_alias_for_keystore

This package is now digitally signed using your certificate from the Keystore we
made earlier.

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[189]

Now that we have a signed package, we can zip-align this package and then4.
publish this as an artifact of our TeamCity build process. This command makes
use of the Android SDK's zipalign.exe program. You'll have to find where this
is on your machine, as there are many potential locations. The command you
need will look something like this:

"C:\Users\<name>\AppData\Local\Android\android-sdk\build-tools
<version>\zipalign.exe" -f -v 4 packagename-signed.apk packagename-
zipaligned.apk

Now it is time to upload our tests and Android package to Xamarin Test Cloud to5.
be UI tested. We created Xamarin.UITest in the previous chapter, and it is
assumed that you are aware of the process of creating and uploading the test to
Xamarin Test Cloud.
So, include the following command to your build process to upload the test to6.
Test Cloud:

test-cloud.exe <path-to-apk-or-ipa-file> <test-cloud-team-api-key>
--devices <device-selection-id> --assembly-dir <path-to-tests-
containing-test-assemblies> --nunit-xml report.xml --user <email>

When the test is run, the test results will be returned in the form of an NUnit-style
XML file called report.xml. TeamCity will display the information in the build
log.

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[190]

Installing and configuring TeamCity
To install and configure TeamCity on a Windows machine, follow these steps:

Go to https://www.jetbrains.com/teamcity/download/#section=windows and1.
click on the DOWNLOAD button to download the TeamCity installation
package from the TeamCity website:

https://www.jetbrains.com/teamcity/download/#section=windows

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[191]

Once downloaded, open the installation package and click Next:2.

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[192]

On the next screen, agree to the license and go to the next step:3.

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[193]

Select the path to install TeamCity in and click Next:4.

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[194]

Select the packages to be installed; for example, if you are installing Build Agent5.
and Server on different servers, then select accordingly. For learning purposes,
you can select to install both on the same machine:

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[195]

Once the installation is done, select the port you would like the TeamCity server6.
to run on. Make sure this port is not used by other services on the machine, and
choose a unique port number and not the default one if possible:

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[196]

In the next screen, you'll be able to see the configurations and ports configured7.
for the server, and you can also change them here if you want to:

Click on OK to save the configuration.8.

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[197]

Select the account to run TeamCity:9.

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[198]

Start the build server and build agent:10.

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[199]

Check Open TeamCity Web UI after Setup is completed and click Finish:11.

This will open the TeamCity web UI where we can create a TeamCity project.12.

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[200]

Creating a TeamCity project
Once the installation is done, the TeamCity web user interface will open in the browser and
we can create a new TeamCity project there. To do so, follow these steps:

Once you have logged in to TeamCity UI, click on Create project:1.

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[201]

To connect to our project from GitHub, click on From GitHub on the next screen:2.

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[202]

This will open a popup with instructions to add a TeamCity application to your3.
GitHub account:

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[203]

Click on the register TeamCity link and it should take you to the GitHub page4.
where you can register a new OAuth app.
Give the details of the application, homepage URL, and callback URL, as shown5.
in the following screenshot, and register the OAuth app:

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[204]

Once you register, on the next screen you'll get a Client ID and Client Secret;6.
copy those details since they will be required for the TeamCity project:

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[205]

Go back to TeamCity, put the Client ID and Client Secret in the required fields,7.
and click Save:

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[206]

Next, you need to do a one-time sign in to allow TeamCity to use GitHub8.
repositories. Click on Sign in to GitHub:

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[207]

Authorize the TeamCity app to use GitHub by clicking on Authorize app:9.

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[208]

Once authorized, select the PhoneCallApp repository from the list of repositories10.
shown on TeamCity:

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[209]

On the next screen, TeamCity will offer to create a new project from the URL11.
selected. Give it a name and click Proceed:

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[210]

This should create two things. The first is a trigger in TeamCity for each code12.
check-in you do; each will trigger a build. The second is a build step from the
repository automatically:

We need to configure the build steps manually and use the build scripts13.
described in the Creating a build script section. Use those scripts, described
sequentially in previous steps, to create the build steps in TeamCity.
Finally, your build steps should look like the following screenshot, consisting of14.
all the steps mentioned in the Creating a build script section:

Configuring TeamCity for CI/CD with Xamarin Chapter 6

[211]

Now, your TeamCity continuous build is ready, and a trigger is already15.
configured to perform this build on each code check-in, or whenever it finds any
code changes in the repository. This finally provides you with an Android
package that is ready to be distributed.

Summary
In this chapter, we learned about continuous integration and continuous delivery. We
learned about various tools for continuous integration. We used TeamCity to implement
CI/CD in the Xamarin project developed in earlier chapters, and learned how to create a
project in TeamCity to automate the build process and finally get a distributable Android
package.

In the next chapter, you'll learn more about continuous distribution and delivery using
Visual Studio Team Services.

7
CI/CD for Android with Visual

Studio Team Services
In the last chapter, we learned about continuous integration and various tools to implement
it in a development life cycle. We also learned in detail about continuous integration using
TeamCity as a CI tool.

In this chapter, we will go into more detail about continuous integration and continuous
delivery using Visual Studio Team Services (VSTS) as a tool. We will be discussing all the
steps that you require to set up and put VSTS to work.

VSTS is another tool provided by Microsoft for DevOps that works with almost any third-
party DevOps chain tool in the market. It has great integration with GitHub, Jenkins, Azure,
and many other similar tools for your continuous integration needs.

Some of the topics covered in this chapter are as follows:

Creating an account in Visual Studio
Getting the code from GitHub
Creating the build definition
Configuring a repository
Queue build
Building with every commit

Creating an account in Visual Studio
To get started with VSTS, head to your web browser and follow these steps:

Open Microsoft's website at this URL: https:/ ​/​www. ​visualstudio. ​com/ ​team-1.
services/ ​.

https://www.visualstudio.com/team-services/
https://www.visualstudio.com/team-services/
https://www.visualstudio.com/team-services/
https://www.visualstudio.com/team-services/
https://www.visualstudio.com/team-services/
https://www.visualstudio.com/team-services/
https://www.visualstudio.com/team-services/
https://www.visualstudio.com/team-services/
https://www.visualstudio.com/team-services/
https://www.visualstudio.com/team-services/
https://www.visualstudio.com/team-services/
https://www.visualstudio.com/team-services/
https://www.visualstudio.com/team-services/

CI/CD for Android with Visual Studio Team Services Chapter 7

[213]

On the website, you'll see a Get started for free button, as shown in the next2.
screenshot. Click on that button:

Clicking on the button will take you to the signup page, where you can log in3.
using your existing Microsoft account:

CI/CD for Android with Visual Studio Team Services Chapter 7

[214]

If you don't already have a Microsoft account, then you can click on the Create4.
account link on the same page.
Clicking on the Create account link will take you to the next page, where you can5.
choose a username and password for your account and click Next:

CI/CD for Android with Visual Studio Team Services Chapter 7

[215]

It might ask you to verify that you are an actual person creating an account, so6.
after completing that step, your account should be ready to use.
After completing the signup form, the next step is to set up the URL to host your7.
Team Services project at https://www.visualstudio.com/.
Here, you give the URL for the project hosting and select the way you will be 8.
managing your code's source version (that is, TFS or Git):

https://www.visualstudio.com/

CI/CD for Android with Visual Studio Team Services Chapter 7

[216]

We will be using Git as our source code repository to manage our project.9.
Select Git as the code managing platform and click on the Continue button, and10.
the signup process is done.

Getting the code from GitHub
Now that your account is created, it's time to import your code into VSTS:

On the next page, you'll see different options to integrate your project from your1.
computer, using the command line and even by initializing a new Git repository.
We already have our project synced on Git, so we'll be choosing the option to2.
import a project from Git, as shown in the following screenshot:

Clicking on the Import button will open a small popup window where you can3.
choose either Git or TFS as your source type and provide your repository URL.

CI/CD for Android with Visual Studio Team Services Chapter 7

[217]

Please note that it will require you to give this application permission to access4.
using your Git credentials:

After providing the repository URL and login information, click on the Import5.
button.
This will import your project from Git into the VSTS server, where you then can6.
manage all the processes related to the DevOps life cycle.

CI/CD for Android with Visual Studio Team Services Chapter 7

[218]

Once your code is imported, you'll be able to see all the directories and code in7.
the code section of VSTS:

So now that your code is also imported into VSTS, it is time to create a build for8.
the project.

Creating the build definition
Creating the build definition in VSTS is a straightforward and simple process. It provides
you with templates for various tools to help you create build definitions.

Follow these steps to start creating the build definitions for your project:

On the code page, click on the Set up build button, as shown in the following1.
screenshot:

CI/CD for Android with Visual Studio Team Services Chapter 7

[219]

This will take you to the next page where you can select a predefined VSTS2.
template to use.
On the next page, select GitHub or your choice of any other source versioning3.
the build would be connecting from.
Give a connection name in the input box provided and click on the Authorize4.
using OAuth button:

A pop-up window will open; you might need to unblock the popup from the5.
VSTS website to see it.

CI/CD for Android with Visual Studio Team Services Chapter 7

[220]

Authorize and give VSTS OAuth permissions to access your GitHub repository:6.

CI/CD for Android with Visual Studio Team Services Chapter 7

[221]

Click on the Authorize vsonline button to authorize and give permissions to7.
access the account.
Once done, on the next step it will ask you to select the project repository and8.
branch to take the code from:

Select the project repository from the repository dropdown provided, and then9.
the branch accordingly, and click on the Continue button, as shown in the
preceding screenshot.

CI/CD for Android with Visual Studio Team Services Chapter 7

[222]

In this example, we are following up with the same project we developed and10.
used as an example in previous projects, which was the Android app we
developed with Xamarin.Android.
Now, because VSTS and Xamarin are both Microsoft tools, they have great11.
compatibility and built-in templates.
So, on the next page, scroll down the list of templates until you see the12.
Xamarin.Android template and apply that template:

Now that a template is applied, it's time to configure the build definition.13.

CI/CD for Android with Visual Studio Team Services Chapter 7

[223]

Configuring the build definition
VSTS has great support for the Xamarin application build process, and automatically takes
all the steps you might require for the project's build configuration. But, you might need to
provide some extra information for some of the build steps involved:

You will see the build steps already in place on the next page in VSTS:1.

Let's stop here for a second and look at the build steps provided by VSTS, all2.
automatically set up for you to just start the build.

CI/CD for Android with Visual Studio Team Services Chapter 7

[224]

It's a good idea to have a brief look at the steps involved, starting from Nuget3.
package restore, to building the packages, and finally to publishing them:

Here we need to provide some information related to our Xamarin Test Cloud4.
account so VSTS can run Test Cloud tests there.

Click on the Test step on the left-hand side of the screen. It will highlight the5.
required information fields on the right-hand side of the screen:

CI/CD for Android with Visual Studio Team Services Chapter 7

[225]

You'll have to use the team API key from your Xamarin Test Cloud account and6.
the user email under which you would like the build to run, and also the devices
you would like the tests to run on.
Let's go back and log in to Xamarin Test Cloud, then go to Account settings:7.

CI/CD for Android with Visual Studio Team Services Chapter 7

[226]

Click on Account settings and there you need to go to the Teams & Apps section8.
to get the API and other required details.
In the Accounts settings, click on the Teams & Apps link from the left pane9.
which will open the Teams & Apps section:

As shown in the preceding screenshot, the team we had created to run the tests is10.
visible.
In that Teams & Apps section, there will be a link to show API key, as shown in11.
the preceding screenshot.
Click on that same link to see the API key for the team defined, and note it down:12.

CI/CD for Android with Visual Studio Team Services Chapter 7

[227]

Then, click on the gear icon to get the team members' details and their emails:13.

Make sure you note the user credentials that have all the permissions required to14.
run the tests.
Copy the email of the user and note it down.15.
The last value required is the devices string; this string stores information about16.
the list of devices to run the Xamarin Tests on.

CI/CD for Android with Visual Studio Team Services Chapter 7

[228]

The devices string can be found as the value of the -devices command line17.
argument of a Test Cloud test run as described in previous chapters:

Now that we have all the values required, let's get back to the build configuration18.
steps and put the values in.

CI/CD for Android with Visual Studio Team Services Chapter 7

[229]

Queue build
All the configurations are done, and now we can save the configuration and queue the
build:

Once the preceding steps are completed, click on the Save & queue button at the1.
top of the build configuration page:

CI/CD for Android with Visual Studio Team Services Chapter 7

[230]

Give your name to the build and commit comments, and click Save & queue:2.

CI/CD for Android with Visual Studio Team Services Chapter 7

[231]

Once the build is saved and queued, you'll get a small notification, as shown in3.
the following screenshot:

Congratulations, you have now successfully completed the build configuration4.
and queued the build for execution.

Triggers - build with every commit
Now we have covered how to configure the build steps and queue them manually. In
continuous integration, it is important to automate the build, especially whenever
developers check code in. This helps keep the latest build up to date with all the changes
made and lets developers know of any issues in the build at earlier stages of development.

CI/CD for Android with Visual Studio Team Services Chapter 7

[232]

Follow these steps now to set up triggers and automate the build:

Click on the Triggers tab in the configurations section shown in previous steps:1.

In the Triggers tab, in the left pane, you'll see a section for Continuous2.
integration, under which you will find your repository linked.
Click on that link to open the continuous integration section on the right-hand3.
side:

CI/CD for Android with Visual Studio Team Services Chapter 7

[233]

Check the Enable continuous integration box.4.
You'll notice there is one more checkbox, to Batch changes while build in5.
progress. This option is useful when you have many developers frequently
checking in changes to a repository. Checking this option will batch the new
changes in the repository while a build is already in process, queue further
changes in a batch until the build completes, and then queue a new build for
those changes.
The following are the integration checkboxes; you'll see options to select specific6.
branches to include in the build. You can also exclude some branches specifically,
as per your requirements:

Once the changes are done, you can save the build definition and now the build7.
is part of our continuous integration process, which will:

Start building your project with every check-in or in batches, as per
your configurations
Run tests on Xamarin Test Cloud
Sign and zipalign the project's APK file
Publish your app

CI/CD for Android with Visual Studio Team Services Chapter 7

[234]

All these steps will be performed as part of your build configuration, with everything
automated.

Now, all developers need to worry about is writing quality code, and they can get their
code tested in real time on real devices using Microsoft's CI tools and get them published
with every build.

This helps quality app development with quicker feedback and a continuous workflow
between all the stages of development.

Summary
In this chapter, we discussed continuous integration using VSTS, a great tool for CI needs if
you use a lot of Microsoft tools in your development life cycle, especially Xamarin. We
learned how to configure build steps in VSTS and integrate the Xamarin Test Cloud Teams
API for continuous testing, and at the end, we set up triggers for continuous builds.

In the next chapter, we'll discuss deploying and migrating your applications to the cloud.

8
Deploying Applications on AWS

In this chapter, we will cover how to deploy applications to the cloud and look at the
prerequisites to do so. Before going forward, we need to understand why we want to
deploy applications to the cloud. We have gone through the differences of Cloud versus on-
premises systems in Chapter 1, Introduction.

So far, we have gone through various DevOps mechanisms, which are where you will start
writing your code and pushing it to a code repository (GitHub), as the commands are pretty
straightforward (such as git add, git commit, and git push).

Once the new version of the code is available in GitHub, it will be pulled as a new change to
the Continuous Integration and Continuous Deployment (CI/CD) pipeline. We have
demonstrated two examples in our book of how to deploy a CI/CD pipeline (Teamcity and
VSTS). CI will start the process of building different parts of the software, including the
code/software, database, and other dependent components of the pipeline. The software
scripts will then be deployed to the environment.

Before we deploy the code, we need to set up the environment, and the environment here
includes a set of machines running on AWS. The virtual machines in AWS are called Elastic
Compute Cloud (EC2). As the software is running on multiple machines, we have to make
sure the requests go to all the machines. For that, we will create an Elastic Load Balancer
(ELB). An ELB distributes user requests to multiple EC2 nodes and gives a single DNS host
entry to point end user requests. In this chapter, we will also use Auto Scaling Groups
(ASGs), used to scale in and out EC2 instances on the basis of various metrics, such as
workload, CPU, memory consumption, and so on. You can configure an ASG to meet your
application requirements.

Deploying Applications on AWS Chapter 8

[236]

In this chapter, we will cover application deployment on AWS:

Creation of an instance:
Lightsail
EC2 CLI

Terraform
Creating an Elastic Load Balancer, launch configuration, and Auto Scaling
Groups

Creation of an instance
Now, let's continue with creating an EC2 instance. There are various methods to create EC2
instances in AWS. We will be going through the following:

Lightsail
EC2 CLI
Teraform

Lightsail
Lightsail is a one-click easy service to create instances, and it is very important for testing
applications and development environments where you don't want to spend time on
spinning and maintaining nodes. Lightsail also supports creating instances with predefined
templates for MEAN, LAMP, Node.js, and LEMP (Nginx). Let's see how we can create
instances with Lightsail.

Deploying Applications on AWS Chapter 8

[237]

The following are the required steps to create instances in Lightsail:

Log in to the AWS console.1.
Click on Lightsail under the Compute section:2.

Deploying Applications on AWS Chapter 8

[238]

The first screen of Lightsail is pretty straightforward; just click on Create3.
instance:

Now, you will be asked a bunch of basic questions:4.
Select your instance location:1.

Deploying Applications on AWS Chapter 8

[239]

Pick your instance image and select a blueprint:2.

Click Create New and create a key pair for your instance:3.

Deploying Applications on AWS Chapter 8

[240]

Provide a name to the key and click on Generate key pair:4.

Choose your instance plan:5.

Deploying Applications on AWS Chapter 8

[241]

Name the instance. You can create multiple instances as per your requirements.5.
Instances will look as follows:

You can connect to the instance by clicking on the three dots at the top-right6.
corner of the instance icon and clicking on Connect:

Deploying Applications on AWS Chapter 8

[242]

A connection screen will be shown as follows:7.

Now, the instance has been created. We will now create instances using Terraform.

Terraform
Terraform provides simple Infrastructure as a Service for multiple cloud providers and
existing house systems. Using Terraform, we can manage very low-level tasks, such as
creating an instance, adding EBS volume to the instance, and registering the instance to
Route 53. We will be using Terraform as self-service code; for example, for when we have
developed the code and we want to deploy it somewhere, do the integration testing, and
then destroy the machines/cluster. The setup can be very useful for software showcase/trial,
multiple cloud setup, and replaceable infrastructure.

Deploying Applications on AWS Chapter 8

[243]

Installation
Terraform installation can be done through downloading a single binary package.
Download the binary package from https:/ ​/​www. ​terraform. ​io/​downloads. ​html according
to your OS.

Once the installation is done, verify it by running the following command:

$ terraform --version

Configuration files
Now we will see how to create EC2 instances using Terraform.

Create a directory for your configuration file. Terraform will load all the files (*.tf) inside
the directory called workspace, so make sure to keep the necessary files inside the
directory:

$ mkdir terraform
$ cd terraform
$ terraform workspace new MyTestMachine
$ terraform workspace select MyTestMachine

Terraform uses the *.tf format, known as Terraform configuration.

Creating instances
To pass the variable for the AWS instance type, use the following code:1.

variable "instance_type" {
 description = "the AWS instance type to use"
}

You can also define secret variables in a file called terraform.tfvars or
*.auto.tfvars.

https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html

Deploying Applications on AWS Chapter 8

[244]

Define the AMI before you create an instance; ami-id will be different for all the2.
regions. Please use the proper image ID as per your region. You can use tools
such as Packer to create your own golden AMI. I've also attached Ansible code
that you can use to create custom AMIs:

resource "aws_instance" "testapp" {
 ami = "ami-12345t67"
 instance_type = "${var.instance_type}"
}

Use providers, such as "aws", to create instances in AWS. You can also set3.
multiple providers in the configuration file to create instances in multiple
providers in one go:

Provider "aws" {
 access_key = "ENTER_ACCESS_KEY"
 secret_key = "ENTER_SECRET_KEY"
 region = "us-west-2" // you can select any region
}

Don't pass the access_key and secret_key variables if you want to use
IAM roles. We will create IAM roles in a later section.

Also, access_key and secret_key can be saved in
~/.aws/credentials using the profile option:

aws configure --profile user1

AWS Access Key ID [None]: ABCDEFGHIJKLMNOPQ
AWS Secret Access Key [None]:
wjVDFVdfdfklfF/G6vFGFGr/fsjfERDFFDGgFGDFGDF
Default region name [None]: us-west-2
Default output format [None]: json

Region details are given as follows:

Region Region Name

US East (Ohio) us-east-2

US East (N. Virginia) us-east-1

US West (N. California) us-west-1

Deploying Applications on AWS Chapter 8

[245]

US West (Oregon) us-west-2

Asia Pacific (Tokyo) ap-northeast-1

Asia Pacific (Seoul) ap-northeast-2

Asia Pacific (Osaka-Local) ap-northeast-3

Asia Pacific (Mumbai) ap-south-1

Asia Pacific (Singapore) ap-southeast-1

Asia Pacific (Sydney) ap-southeast-2

Canada (Central) ca-central-1

China (Beijing) cn-north-1

China (Ningxia) cn-northwest-1

EU (Frankfurt) eu-central-1

EU (Ireland) eu-west-1

EU (London) eu-west-2

EU (Paris) eu-west-3

South America (São Paulo) sa-east-1

Initialize the configuration file by running the following command:4.

$ terraform init
$ terraform plan -var 'instance_type=t2.micro'

Once the configuration is done, the AWS plugin is set in a separate directory for
further use.

Run the configuration in the same directory where your main.tf exists. You can5.
also pass multiple variables in the command line:

$ terraform apply -var 'instance_type=t2.micro'

The output is pretty human-readable and equivalent to Git output. The output6.
contains the implementation steps in detail. If the implementation starts with + (a
plus sign), that means Terraform is creating resources.

Deploying Applications on AWS Chapter 8

[246]

Before starting the creation of instances, Terraform will ask for confirmation. You7.
can review the plan and click yes. If you are running Terraform as part of your
automation, add auto-approve to automatically approve all the configurations:

terraform apply -auto-approve -var 'instance_type=t2.micro'

The instance creation can take some time and once the instances are available, you
can look for them in the console.

To get the current status of Terraform, enter the following command:8.

terraform show

Modifying instances
To modify the instances, you need to make changes in main.tf. For example, I'm1.
updating the elastic IP of the instance. The aws_eip module is used for allocation
of elastic IPs:

resource "aws_eip" "ip" {
 instance = "${aws_instance.testapp.id}"
}

Save the file and run the following commands again to make the changes in the2.
instance:

$ terraform apply

+ aws_eip.ip
 allocation_id: "<computed>"
 association_id: "<computed>"
 domain: "<computed>"
 instance: "${aws_instance.example.id}"
 network_interface: "<computed>"
 private_ip: "<computed>"
 public_ip: "<computed>"

Type yes to accept the changes and see the changes using the AWS console, or
run the terraform show command.

Deploying Applications on AWS Chapter 8

[247]

Get the output by creating another output.tf file in the same directory. Add the3.
following configuration details in the file:

output "ip" {
 value = "${aws_eip.ip.public_ip}"
}

You can query separately to the IP output:4.

$ terraform output ip

Terminating instances
Instances can be terminated with single commands. Make sure to run the commands from
the same directory where your main.tf exists:

terraform destroy
...

- aws_instance.testap

If you want to forcefully destroy the instance, use the "-force" flag with
the command.

Example of instance creation using Terraform
We have a sample configuration file to create an instance and set up a Route 531.
DNS using that instance. Save the file as main.tf:

$ vi main.tf

variable "stack_name" { default = "MyTestMachine"}
variable "aws_region" { default = "us-east-1" }
variable "instance_type" { default = "t2.micro" }
variable "instance_count" { default = "1" }
variable "route53_zone_id"
variable "security_group_id"
provider "aws" {
 region = "${var.aws_region}"
}
module "MyTestMachine" {
 source = "./ec2_nodes"
 instance_type = "${var.instance_type}"

Deploying Applications on AWS Chapter 8

[248]

 stack_name = "${var.stack_name}"
 role = "MyTestMachine"
 count = "1"
 security_group_id = "${var.security_group_id}"
}
resource "aws_route53_record" "MyTestMachine" {
 zone_id = "${var.route53_zone_id}"
 name = "${var.stack_name}-domainname.com"
 type = "A"
 ttl = "300"
 records = ["${module.MyTestMachine.firstip}"]
}

I've put the source details in another file, so a single configuration file can be used2.
to create multiple machines. Create an ec2_nodes folder and create main.tf
inside the directory:

$ mkdir ec2_nodes
$ cd ec2_nodes
$ vi main.tf

variable "stack_name" {}
variable "count" {}
variable "role" {}
variable "instance_type" {}
variable "security_group_id" {}
variable "route53_zone_id" {}
resource "aws_instance" "MyTestMachine" {
 ami = "ami-97785bed" # you can select any AMI instance
 instance_type = "${var.instance_type}"
 count = "${var.count}"
 vpc_security_group_ids = [
 "${var.security_group_id}"
]
 associate_public_ip_address = false
 iam_instance_profile = "MyTestRole"
 subnet_id = "subnet-12345678"
 key_name = "aws-key-1234"
 user_data = <<EOF
yum update
sudo yum update -y
EOF
 tags {
 Name = "${var.stack_name}"
 Role = "${var.role}"
 }
}

Deploying Applications on AWS Chapter 8

[249]

resource "aws_route53_record" "nodecname" {
 zone_id = "${var.route53_zone_id}"
 count = "${var.count}"
 name = "${var.stack_name}-${var.role}-
${count.index}.domainname.com"
 type = "A"
 ttl = "300"
 records = ["${element(aws_instance.MyTestMachine.*.private_ip,
count.index)}"]
}

Now, we will create another output file inside the same directory, ec2_nodes:3.

output "first_ip" {
 value = "${aws_instance.MyTestMachine.0.private_ip}"
}

Run the Terraform installation using the following commands:4.

$ terraform workspace new MyTestMachine
$ terraform workspace select MyTestMachine

$ terraform plan \
 -var "stack_name=MyTestMachine" \
 -var "instance_type=t2.micro" \
 -var "route53_zone_id=123456789" \
 -var "security_group_id=sg-12345678"

$ terraform apply -auto-approve \
 -var "stack_name=MyTestMachine" \
 -var "instance_type=t2.micro" \
 -var "route53_zone_id=123456789" \
 -var "security_group_id=sg-12345678"

EC2 CLI
AWS CLI contains multiple modules to manage AWS resources. EC2 CLI is a very
straightforward way of creating and managing instances.

Deploying Applications on AWS Chapter 8

[250]

Install AWS CLI (commands):

$ curl -O https://bootstrap.pypa.io/get-pip.py
 // Download pip

$ python get-pip.py --user
 // Install pip for the user

$pip install awscli --upgrade --user
 // Install AWS CLI (remove --user if you
want to install for all users)

Format:

$ aws ec2 run-instances <Pass parameters>

Example:

$ aws ec2 run-instances --count 1 --security-groups launch-wizard-1 --
subnet-id subnet-1234rt78 --instance-type t2.micro --key-name myTestKey --
image-id ami-abc123dec --associate-public-ip-address --iam-instance-profile
Name=MyTestIAM-Role

The output will contain all the details of the instance, including the instance ID as follows:

{
 "Instances": [
 {
 "Monitoring": {
 "State": "disabled"
 },
 "PublicDnsName": "",
 "StateReason": {
 "Message": "pending",
 "Code": "pending"
 },
 "State": {
 "Code": 0,
 "Name": "pending"
 },
 "EbsOptimized": false,
 "LaunchTime": "2018-03-10T07:55:32.000Z",
 "PrivateIpAddress": "10.10.81.24",
 "ProductCodes": [],
 "VpcId": "vpc-123456b",
 "StateTransitionReason": "",
 "InstanceId": "i-1234d5r6t7y8g9aws",

Deploying Applications on AWS Chapter 8

[251]

 "ImageId": "ami-12345678",
 "PrivateDnsName": "ip-10-10-81-24.ap-
southeast-1.compute.internal",
 "KeyName": "MyTestKey",
 "SecurityGroups": [
 {
 "GroupName": "launch-wizard-1",
 "GroupId": "sg-12345678"
 }
],
 "ClientToken": "",
 "SubnetId": "subnet-1234rt78",
 "InstanceType": "t2.micro",
 "NetworkInterfaces": [
 {
 "Status": "in-use",
 "MacAddress": "02:d4:43:07:9c:a4",
 "SourceDestCheck": true,
 "VpcId": "vpc-12345678",
 "Description": "",
 "NetworkInterfaceId": "eni-12345678",
 "PrivateIpAddresses": [
 {
 "Primary": true,
 "PrivateIpAddress": "10.10.81.24"
 }
],
 "SubnetId": "subnet-1234rt78",
 "Attachment": {
 "Status": "attaching",
 "DeviceIndex": 0,
 "DeleteOnTermination": true,
 "AttachmentId": "eni-attach-c5d3e72e",
 "AttachTime": "2018-03-12T07:55:32.000Z"
 },
 "Groups": [
 {
 "GroupName": "launch-wizard-1",
 "GroupId": "sg-12345678"
 }
],
 "Ipv6Addresses": [],
 "OwnerId": "1234567891011",
 "PrivateIpAddress": "10.10.81.24"
 }
],
 "SourceDestCheck": true,
 "Placement": {

Deploying Applications on AWS Chapter 8

[252]

 "Tenancy": "default",
 "GroupName": "",
 "AvailabilityZone": "us-east-1a"
 },
 "Hypervisor": "xen",
 "BlockDeviceMappings": [],
 "Architecture": "x86_64",
 "RootDeviceType": "ebs",
 "IamInstanceProfile": {
 "Id": "A1B2C3D4E5S6F7G8I9J1K0",
 "Arn": "arn:aws:iam::1234567891011:instance-
profile/MyTestIAM-Role"
 },
 "RootDeviceName": "/dev/xvda",
 "VirtualizationType": "hvm",
 "AmiLaunchIndex": 0
 }
],
 "ReservationId": "r-123456789101112",
 "Groups": [],
 "OwnerId": "1234567891011"
}

You can get the details of the instance ID:

$ aws ec2 describe-instances --instance-id <id-awsinstanceid>

To terminate an instance, use the following command:

$ aws ec2 terminate-instances --instance-ids "i-1234d5r6t7y8g9aws"
{
 "TerminatingInstances": [
 {
 "InstanceId": "i-1234d5r6t7y8g9aws",
 "CurrentState": {
 "Code": 32,
 "Name": "shutting-down"
 },
 "PreviousState": {
 "Code": 16,
 "Name": "running"
 }
 }
]
}

Deploying Applications on AWS Chapter 8

[253]

Creating an Elastic Load Balancer, launch
configuration, and Auto Scaling Groups
In this section, we will see how to create ELB and ASG using AWS CLI.

Elastic Load Balancer
An ELB automatically distributes a load/traffic across multiple instances in a part of
different availability zones (AZs). The member instances can be part of single AZ or
multiple AZs. An ELB becomes the single point of contact for the DNS and the end users.
An ELB also monitors the instance via a health check; if the instance is healthy, then only
the requests will be routed to the instance.

As we have already created instances, we will create an ELB using CLI. The command to do
so is as follows:

$ aws elb create-load-balancer --load-balancer-name my-test-elb --listeners
"Protocol=HTTP,LoadBalancerPort=80,InstanceProtocol=HTTP,InstancePort=80" -
-availability-zones us-west-2a us-west-2b

Add the newly created instance to the ELB:

$ aws elb register-instances-with-load-balancer --load-balancer-name my-
test-elb --instances i-awsinstance12fd

An ELB can be monitored using CloudWatch, access logs, and AWS
CloudTrail. An ELB can be internal or internet facing. Internet-facing ELBs
can be associated with domain names.

Auto Scaling Groups
Let's understand basic infrastructure scaling:

Scale out: Achieving scalability by increasing the number of EC2 instances
Scale up: Achieving scalability by resizing the capacity (compute, memory, and
EBS) of existing EC2 instances
Scale down: Decreasing the number of EC2 instances of the configuration for
existing EC2

Deploying Applications on AWS Chapter 8

[254]

Auto Scaling takes care of scale out and scale down. Auto Scaling components are managed
into groups so that they can be treated as separate logical units for management and scaling
purposes. Auto Scaling Groups use launch configuration as a template to create EC2
instances

$ aws autoscaling create-launch-configuration --launch-configuration-name
my-test-launch --key-name my-key-pair --image-id ami-c1wjdlakf6 --instance-
type m1.small --security-groups sg-lkjl3kmm --instance-type m1.small

Scaling plans will define the threshold and conditions for triggering the ASG:

$ aws autoscaling create-auto-scaling-group --auto-scaling-group-name my-
test-asg-group --launch-configuration-name test-launch --load-balancer-
names my-test-elb --health-check-type ELB --health-check-grace-period 120 -
-min-size 1 --max-size 3 --desired-capacity 2 --default-cooldown 600--
termination-policies "OldestInstance"

IAM roles
AWS IAM role gives an extra layer of security by managing and rotating the keys
themselves. Keys are encrypted credentials known as access key and secret key.

Access key example is as follows:

aws iam create-role --role-name myTestKey --assume-role-policy-document
file://myTestKeyPolicy.json --description "Role for testing access from EC2
to S3 and Route 53"

A policy is JSON document consist of permission delegated from one AWS service to
another AWS service. The default permission of an IAM role is all deny (by default blocks
all the requests to any service until specified explicitly). Sample policy is for creating and
managing an EC2 instance, S3 bucket, and Route 53.

Sample policy (save the following text as myTestKeyPolicy.json):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "ec2:*",
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Effect": "Allow",

Deploying Applications on AWS Chapter 8

[255]

 "Action": "elasticloadbalancing:*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "cloudwatch:*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "autoscaling:*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:AWSServiceName": [
 "autoscaling.amazonaws.com",
 "ec2scheduled.amazonaws.com",
 "elasticloadbalancing.amazonaws.com",
 "spot.amazonaws.com",
 "spotfleet.amazonaws.com"
]
 }
 }

Summary
In this chapter, we looked at various methods of creating EC2 instances for our software
deployment. Once an instance has been created, push the software jars into your instances.
Use the private instance IP, username (ec2-user), and private key (test.pem) to connect
to your machine. Once the testing is completed, make sure you terminate the test instances
so you don't pay for them.

T2.micro EC2 instance type is free for use for one year for new AWS
accounts.

Deploying Applications on AWS Chapter 8

[256]

Later on in the chapter, we went through the creation of ELBs and ASGs using AWS CLI.

You can register your ELB DNS name with your domain service provider
(for example, Route 53, GoDaddy, and BigRock) to resolve your
application.

You can also try putting some workload into your application and see whether Auto
Scaling is increasing the number of instances, and then remove the workload to test the
termination policy.

You can also use distributed filesystems, such as EFS, NFS, and GlusterFS,
to share the workspaces among all nodes.

In the next chapter, we will cover the optimization and monitoring of applications using
Test Cloud and Android monitoring tools. Test cloud is a mobile testing tool powered by
Xamarin that it tests the applications of over 2000 devices. Android Monitor provides a GUI
to debug and optimize applications.

9
Monitoring and Optimizing

Application
Application monitoring is the simple process of keeping track of various aspects of an
application and how they are performing. It is very important for consistent quality checks
and improvement, and it is important for finding out problems in an application before it
gets to users.

Application monitoring will not only let us know the performance of an application and
issues within it, but will also keep records of the status of its related databases and APIs.

In this chapter, we'll be discussing various methods for application monitoring. Here are
the high-level topics that we'll be covering in this chapter:

API level monitoring and various tools for API monitoring
Monitoring the application with Test Cloud
Monitoring the application using Android monitoring tools

API level monitoring
Application Programming Interfaces (APIs) are an integral part of today's integrated
development environments. They can also be understood through the client-server
relationship, where the mobile app is the client requesting a resource and the API is at the
server side and has a URL for any application that wants to make a request.

Monitoring and Optimizing Application Chapter 9

[258]

Most applications share common APIs between web and mobile. APIs are a great way of
providing consistent operating behavior across different platforms. It also helps share the
same business and data layer operations between different mobile application platforms, so
you can use the same APIs for iOS, Android, and web applications.

APIs are so important in the development of a mobile application that it becomes equally
critical to monitor APIs to ensure high availability. If an API goes down, the entire
application can stop working and the user might not be able to perform any operation that
requires the API to be available, which usually is any server operation, though not offline.

Why API monitoring is critical
APIs are a very important part of any kind of app, be it a mobile or web application. APIs
are used extensively in projects nowadays to provide more flexibility in the way the client
(mobile app or web app) interacts with the server-side business logic and data access layers.
Because applications are so dependent on APIs to perform operations for the user, it is
critical to have API monitoring in place to avoid any kind of downtime or bad user
experience. When proper API monitoring is not in place, it can compromise the quality of
the application and response times, and sometimes even result in application downtime.

Also, it is very important to monitor APIs not only that you are developing, but also third-
party ones that you might be using in the application.

Important factors in API monitoring
When monitoring APIs, there are some key points or areas that need to be covered to ensure
availability:

API availability: We need to make sure the API is available; sometimes the
server might be down for some reason or the connection can be interrupted based
on location and server
Quality of response: When we call an API, what is the quality of the response
returned from the API—is it according to the agreement or not?
Response time: What is the response time to get a result when calling the API

Monitoring and Optimizing Application Chapter 9

[259]

Developer's role in handling API unavailability
It is also a good idea for an application developer to keep in mind that APIs might not be
available some of the time, and write code in a way that handles these kinds of situations
gracefully. Even when the application is not able to perform some API operations, if it
informs the user in a nice way, it can help the user experience much more than facing
runtime exceptions. Write code to handle API exceptions and scenarios where the API does
not respond.

Various tools for API monitoring
There are many tools available in the market for API monitoring and testing. What to
choose totally depends on what you want to achieve through those tools. Some tools
provide great support for performance monitoring, and other tools are better suited for
quality testing and recognizing erroneous data.

Some popular tools are as follows:

Postman
Karate DSL
SoapUI
HttpMaster
REST Assured
RestSharp
Mockbin

You can read more about the benefits of, and support for, these tools on their respective
sites and choose the tools best suited to the project's needs.

Using Test Cloud for monitoring
You learned about Xamarin Test Cloud in previous chapters and how to use it for
continuous testing in the continuous integration life cycle. Here, we will discuss in more
detail how to use Xamarin Test Cloud and the analytics it provides after running an
application on different sets of devices.

Monitoring and Optimizing Application Chapter 9

[260]

We will be using two different applications here to see the monitoring analytics and
compare them, to get a better understanding of how this helps us identify various
performance and functionality-related issues in our application.

These are the applications we will be using for the walkthrough:

PhoneCallApp (the application we developed in previous chapters)
Xamarin Store (a sample Android application provided by Test Cloud)

Xamarin Test Cloud can help us identify applications' functionality-related issues on real
devices.

It is a great source of application monitoring in terms of testing on different mobile devices
and with different versions of operating systems.

Getting a detailed analysis of various applications' functions is very important to make sure
our application is running as expected on our target devices.

With that being said, it is also critical to the application to be able to run on different
operating system versions, and to analyze how it performs and how much memory usage it
has.

Benefits of monitoring with Test Cloud
Test Cloud not only provides monitoring capabilities, but also relieves us from testing the
same application's functionality on different devices manually, thus giving us a true
continuous integration process.

It provides continuous testing capabilities to our CI process with automated test
runs and detailed reports with notifications
Testing an application on different OS versions is critical to the success of a
mobile application, and Test Cloud serves that purpose very well
Testing an application on different devices from its huge device list is available
on the cloud
Test Cloud analyzes the performance of applications
Test Cloud analyzes memory usage on different devices with different hardware
configurations

Monitoring and Optimizing Application Chapter 9

[261]

PhoneCallApp
Let's go through some steps to see how to monitor our PhoneCallApp:

Go to https://testcloud.xamarin.com/.1.
Click on the PhoneCallApp icon to get to the details of the test runs:2.

https://testcloud.xamarin.com/

Monitoring and Optimizing Application Chapter 9

[262]

On the next page, you'll see a list of tests run for the application:3.

Now, because we have only run one test so far, Test Cloud does not provide us4.
with the graphical metrics shown in the preceding screenshot. In other examples
we'll see next, you'll be able to see a more detailed comparison of different test
runs.

Monitoring and Optimizing Application Chapter 9

[263]

Click on the test run from the list to see its results:5.

The test run listed is the one we ran earlier in previous chapters and uploaded6.
from our machine to Xamarin Test Cloud using the command line.
To get an idea of this interface, let's have a look at different parts of Xamarin Test7.
Cloud's interface.

Monitoring and Optimizing Application Chapter 9

[264]

Now, this is an overview screen that shows a summary of all the tests run for this8.
application:

This screen shows summary details, such as how many tests failed from the total9.
number of tests run, how many times the app ran on a device, how many devices
these tests were run on, and much more.
This screen is very useful to get a brief idea when you want to get a report on10.
how your application is doing on different devices and OS versions.

Monitoring and Optimizing Application Chapter 9

[265]

The next thing you'll see in the left pane is the list of UITests included in the test11.
run:

Monitoring and Optimizing Application Chapter 9

[266]

This screen basically has a list of all the Xamarin.UITests that you included in12.
your project. You can click on these different tests to see their respective results
on the right side of the screen.
Let's click on the test from the list in the preceding screen.13.

This will take us to the next screen, which has detailed reports for the test run:14.

Have a close look at the left pane on this screen.15.
It gives us some steps of the test run on the device.16.
These steps are only what we had written previously in the code to take a17.
screenshot of every activity the test does.
The steps are as mentioned (we are using the screens of the test code written in18.
previous chapters here):

App started: Take a screenshot when the app starts; this was written in
the BeforeEachTest() method in the Tests.cs file:

Monitoring and Optimizing Application Chapter 9

[267]

Call button pressed: This step is when the Xamarin.UITest presses
the call button to make a call:

Failed step (the assert): This is the last step and is shown to
provide proof of the failed step, so you can see the outcome that we
received and compare it with what was expected. This was the
final assert that decides whether the test passes or not, based on the
outcome in the Assert.IsTrue() condition.

You can click on each of these steps in the left pane and analyze the screenshots19.
taken to see exactly what went on during the test. This is a great way to see
exactly what went wrong when the test failed.

Monitoring and Optimizing Application Chapter 9

[268]

Now, sometimes the screenshots are not enough to identify the issue. For a more20.
detailed analysis, Test Cloud also provides us with Device Log, as shown in the
following screenshot:

Device logs are a great way to see what's going on under the hood and get more21.
detailed information about the application's behavior and how the device itself
behaves when the application is run on it.
This can help pinpoint the issues when a test fails on the device; logs are always a22.
savior in that sort of scenario.

Monitoring and Optimizing Application Chapter 9

[269]

Click on the Device Log and you can see step-by-step logs for each screenshot on23.
the same screen:

Monitoring and Optimizing Application Chapter 9

[270]

When a test fails, Test Cloud provides us with one more option, to see the Test24.
Failures:

It's very useful for automated test developers to see the exception information25.
when a test fails.
Last but not least, there is also a Test Log option, which can be used to get a26.
consolidated log of the entire test run:

Monitoring and Optimizing Application Chapter 9

[271]

Xamarin Store app
Now that we have seen different options provided by Test Cloud to monitor our application
and its functionality using test runs, let's see how the dashboard and tests look when we
have multiple test runs on various physical devices with different OS versions.

This will give us a better idea of how comparative monitoring can be done on Test Cloud to
analyze an application's behavior on different devices, and compare them with one another.

Monitoring and Optimizing Application Chapter 9

[272]

The Xamarin Store application is a sample application provided by Test Cloud on its
platform to help understand the platform and get an idea of the dashboard. Let's go
through the steps to understand how to monitor your application running on multiple
devices, and how to compare different test runs:

Go to the Test Cloud home page, just like in the previous example, and click on1.
the Xamarin Store icon:

Monitoring and Optimizing Application Chapter 9

[273]

On the next screen, you'll see a graphical representation of different test runs and2.
brief information about how many tests failed of the total tests run, what the
application size is, and its peak memory usage information during different test
runs:

This gives us a nice comparative look at how our application is performing on3.
different test runs. It is possible that the application was performing fine during
the first run, and then some code changes made some functionality fail. So, this
graph is very useful to monitor a timeline of changes that affected application
functionality.
You can further click on the graph or the test run to see an overview of it.4.

Monitoring and Optimizing Application Chapter 9

[274]

Now, this screen gives us a great view of how an application running on different5.
devices can be monitored. It's a very nice way to keep track of the application on
different devices and OS versions:

Monitoring and Optimizing Application Chapter 9

[275]

Let's click on one of the steps to see the results of the step on multiple devices:6.

The red icon shows failed tests. This page shows all the devices you chose to run7.
the test on; it shows all the devices the test passed on, and shows a red flag on
failed devices.
You can further click on each device to get device-specific screens and logs.8.

Monitoring and Optimizing Application Chapter 9

[276]

Using Android monitoring tools
An Android app's performance is equally important for a great user experience and a fast-
responsive application. Android Device Monitor (ADM) is a great tool to identify
performance issues and build reports upon them, for profiling and to ensure good
application performance when it comes to Android apps:

Go to Visual Studio, and from the toolbar, run Android Device Monitor:1.

Monitoring and Optimizing Application Chapter 9

[277]

A new application, Android Device Manager, should open:2.

Go back to Visual Studio and run PhoneCallApp to get the device listed in3.
Android Device Monitor.
You can run the application on an emulator or a physical device connected to the4.
computer.

Monitoring and Optimizing Application Chapter 9

[278]

Once the application has started, come back to Android Device Monitor and you5.
should be able to see the device running in the left pane.
Under the device name, you should be able to see all the processes running on6.
the device.
In that list, select your application and you should be able to see related info:7.

Monitoring and Optimizing Application Chapter 9

[279]

To monitor different threads running in your application, click on the Update8.
Threads button on the left pane's toolbar, and then you should be able to see
different threads running by your application on the right-hand side:

Being able to monitor threads run by your application can be very helpful in9.
finding any unwanted background threads that might be causing extra battery
usage or slowing down your application.

Monitoring and Optimizing Application Chapter 9

[280]

Sometimes, a thread might get deadlocked and it is very difficult to identify10.
issues in such scenarios. This feature of ADM helps in a big way.
Similarly, monitoring the memory usage of your application is a great tool to11.
optimize your app and support low-memory devices, and sometimes improve
the performance by reducing memory consumption.
Click on Cause garbage collection (GC) from the toolbar in the left pane and then12.
select Heap on the right side to see the heap memory allocation details:

Monitoring and Optimizing Application Chapter 9

[281]

You can get more detailed allocation monitoring in the Allocation Tracker tab.13.
Click on Start Tracking and then the Get Allocations button to get allocation
details:

There are also options to monitor network-related usage.14.
A very important feature of Android Device Monitor is profiling, which helps in15.
profiling time taken and other details, based on methods in your application
code. It is a great tool to identify method-level performance and latency.

Monitoring and Optimizing Application Chapter 9

[282]

To use this feature, click on the Start Method Profiling button on the toolbar in the
left pane:

For the next step, select whether you want Sample based profiling or Trace16.
based profiling and click OK:

Monitoring and Optimizing Application Chapter 9

[283]

Do your tasks on the application, come back to ADM, and click on the Stop17.
Method Profiling button.
A trace file is generated, containing the trace information you want to analyze:18.

A timeline panel: It describes when each thread and method started
and stopped. We can go to a specific timespan and check what each
thread did at that moment.
A profile panel: This provides a summary of what happened inside a
method. We can see which one took the most CPU time, or how many
calls it made.

Methods are at the Android level, and you might need to compare to see which19.
method might have called these Android methods.

Monitoring and Optimizing Application Chapter 9

[284]

Summary
In this chapter, we learned about different types of monitoring techniques, such as API
monitoring, performance monitoring, and functional monitoring. We also discussed
different tools for API level monitoring. We learned in detail about functional monitoring
on multiple devices using Xamarin Test Cloud and performance monitoring using Android
Device Monitor. In the next chapter, we'll discuss debugging and troubleshooting during
different phases of development.

10
Debugging the Application

Debugging, in application development, is the process of identifying an issue or a problem,
using a debugging tool or IDE that provides debugging methods. It involves stepping
through the code and analyzing the variables and methods, and their values, to pinpoint the
exact place of the issue.

If you have been an application developer for some time now, you should have an idea
about how important debugging is in the process of application development, and even if
you are a new developer or just starting out, this chapter will help you get started with
debugging terminology, how to debug Xamarin applications in Visual Studio, and how to
troubleshoot other issues that might arise during development.

In this chapter, you'll be learning in depth about the following topics:

Debugging a Xamarin application in Visual Studio
Debugging and troubleshooting in the Android emulator
Debugging Mono class libraries and using debug logs
Debugging Git connections

Debugging the Application Chapter 10

[286]

Terminology
It's better first to get an idea of the different terms used in the process of debugging. These
are commonly used terms and are common to all debugging platforms:

Bug: A bug is a defect or a problem that is stopping the program or the
application from performing its expected functions.
Debug: You might have guessed it by now, but a debug, as the name suggests,
involves removing bugs from the system or program. It usually denotes finding
the problem by digging into the program and resolving it after it is identified by
correcting the erroneous code.
Breakpoint: As the name suggests, a breakpoint is a point where you want to
break the running application, and by break, we mean pause. So, it is a point in
your application program's code where you want to pause the running
application and see what's happened, or what's happening. It is very useful and a
critical tool in debugging an application.

Debugging with Xamarin on Visual Studio
Visual Studio is a great IDE for debugging any application, whether it's a web, mobile, or a
desktop application. It uses the same debugger that comes with the IDE for all three, and is
very easy to follow.

To keep the chapter easy to follow, we'll be using the same Android application we
developed and tested on Xamarin while debugging in Visual Studio.

Debugging the Application Chapter 10

[287]

Using the output window
The output window in Visual Studio is a window where you can see the output of what's
happening. To view the output window in Visual Studio, follow these steps:

Go to View and click Output:1.

Debugging the Application Chapter 10

[288]

This will open a small window at the bottom where you can see the current and2.
useful output being written by Visual Studio. For example, this is what is shown
in the output windows when we rebuild the application:

Using the Console class to show useful output
The Console class can be used to print some useful information, such as logs, to the output
window to get an idea of what steps are being executed. This can help if a method is failing
after certain steps, as that will be printed in the output window.

Debugging the Application Chapter 10

[289]

To achieve this, C# has the Console class, which is a static class. This class has methods
such as Write() and WriteLine() to write anything to the output window. The Write()
method writes anything to the output window, and the WriteLine() method writes the
same way with a new line at the end:

Look at the following screenshot and analyze how Console.WriteLine() is1.
used to break down the method into several steps (it is the same Click event
method that was written while developing PhoneCallApp):

Debugging the Application Chapter 10

[290]

Add Console.WriteLine() to your code, as shown in the preceding screenshot.2.
Now, run the application, perform the operation, and see the output written as3.
per your code:

This way, Console.WriteLine() can be used to write useful step-based4.
outputs/logs to the output window, which can be analyzed to identify issues
while debugging.

Debugging the Application Chapter 10

[291]

Using breakpoints
As described earlier, breakpoints are a great way to dig deep into the code without much
hassle. They can help check variables and their values, and the flow at a point or line in the
code.

Using breakpoints is very simple:

The simplest way to add a breakpoint on a line is to click on the margin, which is1.
on the left side, in front of the line, or click on the line and hit the F9 key:

Debugging the Application Chapter 10

[292]

You'll see a red dot in the margin area where you clicked when the breakpoint is2.
set, as shown in the preceding screenshot.
Now, run the application and perform a call button click on it; the flow should3.
stop at the breakpoint and the line will turn yellow when it does:

Debugging the Application Chapter 10

[293]

At this point, you can inspect the values of variables before the breakpoint line by4.
hovering over them:

Debugging the Application Chapter 10

[294]

Setting a conditional breakpoint
You can also set a conditional breakpoint in the code, which is basically telling Visual
Studio to pause the flow only when a certain condition is met:

Right-click on the breakpoint set in the previous steps, and click Conditions:1.

Debugging the Application Chapter 10

[295]

This will open a small window over the code to set a condition for the breakpoint.2.
For example, in the following screenshot, a condition is set to when
phoneNumber == "9900000700".

So, the breakpoint will only be hit when this condition is met; otherwise, it'll not
be hit.

Debugging the Application Chapter 10

[296]

Stepping through the code
When a breakpoint has been reached, the debug tools enable you to get control over the
program's execution flow. You'll see some buttons in the toolbar, allowing you to run and
step through the code:

You can hover over these buttons to see their respective names:

Step Over (F10): This executes the next line of code. Step Over will execute the
function if the next line is a function call, and will stop after the function:

Debugging the Application Chapter 10

[297]

Step Into (F11): Step Into will stop at the next line in the case of a function call,
allowing you to continue line-by-line debugging of the function. If the next line is
not a function, it will behave the same as Step Over:

Step Out (Shift + F11): This will return to the line where the current function was
called:

Continue: This will continue the execution and run until the next breakpoint is
reached:

Stop Debugging: This will stop the debugging process:

Debugging the Application Chapter 10

[298]

Using a watch
A watch is a very useful function in debugging; it allows us to see the values, types, and
other details related to variables, and evaluate them in a better way than hovering over the
variables.

There are two types of watch tools available in Visual Studio:

QuickWatch
QuickWatch is similar to watch, but as the name suggests, it allows us to evaluate the
values at the time. Follow these steps to use QuickWatch in Visual Studio:

Right-click on the variable you want to analyze and click on QuickWatch:1.

Debugging the Application Chapter 10

[299]

This will open a new window where you can see the type, value, and other2.
details related to the variable:

This is very useful when a variable has a long value or string that cannot be read3.
and evaluated properly by just hovering over the variable.

Adding a watch
Adding a watch is similar to QuickWatch, but it is more useful when you have multiple
variables to analyze, and looking at each variable's value can take a lot of time.

Debugging the Application Chapter 10

[300]

Follow these steps to add a watch on variables:

Right-click on the variable and click Add Watch:1.

Debugging the Application Chapter 10

[301]

This will add the variable to watch and show you its value always, as well as2.
reflect any time it changes at runtime.
You can also see these variable values in a particular format for different data3.
types, so you can have an XML value shown in XML format, or a JSON object
value shown in .json format:

It is a lifesaver when you want to evaluate a variable's value in each step of the4.
code, and see how it changes with every line.

Debugging the Application Chapter 10

[302]

Debugging Mono class libraries
Xamarin ships with the source code for Mono class libraries, and you can use this to debug
the Xamarin (formerly known as Mono) source code:

To be able to use this option, go to Debug | Options:1.

Debugging the Application Chapter 10

[303]

Then, go to General, uncheck the Enable Just My Code option, and click OK:2.

Once this is disabled, we can step into Mono class libraries and debug them.3.

Android debug log
As mentioned in previous sections of this chapter, we have seen how to use the
Console.WriteLine() method to write some output steps while debugging in Visual
Studio.

However, on a mobile platform like Android, there is no console and it is only available for
us during debugging in Visual Studio. Android devices provide a log that you can utilize
while coding Android apps. This is also known as logcat due to the command used to
retrieve this log.

Debugging the Application Chapter 10

[304]

To access this from Visual Studio, follow these steps:

Either you can directly click on the Device Log (logcat) icon from the Android1.
tools in the toolbar, or you can go to Tools | Android | Device Log:

Debugging the Application Chapter 10

[305]

This will open a new window where you can choose the device your application2.
is running on. The application needs to be running on a physical device to be
clear, since it is debugging when the app is running on the device and the log is
provided by Android devices:

Select the device from the dropdown that lists running applications.3.

Debugging the Application Chapter 10

[306]

When the device is selected, it automatically starts to add log entries from a4.
running app in the table. Switching between devices will stop and start the device
logging:

Accessing logcat from the command line
Another option to view the debug log is via the command line:

Open a console window and navigate to the Android SDK platform-tools1.
folder (such as C:\Program Files (x86)\Android\android-
sdk\platform-tools).

Debugging the Application Chapter 10

[307]

If only one device is attached, the log can be viewed with the following2.
command:

$ adb logcat

If more than one device is attached, then the device must be identified. For3.
example, adb -d logcat shows the log of the only physical device connected,
while adb -e logcat shows the log of the only emulator running.

Writing to the debug log
You can log messages to the debug log using the Android.Util.Log class. It has different
levels of logging:

Info
Debug
Warning
Error

Debugging the Application Chapter 10

[308]

All these levels are self-explanatory.

Let's replace the Console.WriteLine() written in the previous section with1.
Log.Debug() to write the logs into logcat:

Debugging the Application Chapter 10

[309]

Go to the logcat (Device Log) window and filter tags with the tag given in the2.
code to see only the logs we have written in the code. In this case, the tag will be
PhoneCall:

This is a very simple and straightforward way of debugging and monitoring an3.
application running on a physical device.

Debugging the Application Chapter 10

[310]

Debugging Git connections
Git is essential for saving code into repositories, but there can be some times when it is not
working as expected, just like with our application. To debug Git when you are not able to
fetch or clone code from the repo, try the following steps:

Check your connectivity: This will be the first thing to check when you are facing
any issues with Git. It might be possible that your connection is not as you think
it is. Ping any public domain site, such as https://www.google.com, to check
your connectivity:

If you get a response like the one shown in the preceding screenshot and are able
to ping successfully, that means your connection is totally fine.

https://www.google.com

Debugging the Application Chapter 10

[311]

GIT_TRACE: This configuration option gives us a more verbose trace to Git
network connections and all the internal commands it goes through. Type your
git command with GIT_TRACE = 1 and it should give you a detailed verbose
trace for it:

Add a new environment variable named GIT_TRACE and give it the1.
value of 1.

Debugging the Application Chapter 10

[312]

Run the git command and get details to identify the issue:2.

Summary
In this chapter, we covered debugging in different ways and learned to use the tools
available in Visual Studio and Xamarin (Android) for debugging. This chapter also
explained the Android Device Log, also known as logcat, to read and write logs when
debugging applications on a physical device. In the next chapter, we'll be going through the
entire development, testing, and debugging process with some case studies.

11
Case Studies

In this chapter, we'll be going through the entire process of mobile DevOps, from mobile
application development and integration, to continuous testing and deployment.

We'll be using two applications as case studies to show the entire process:

A basic Hello World GUI
A ButtonWidget

Case study 1 - Hello World GUI
In this case study, we'll be covering the mobile DevOps cycle with a simple Android
application that will have a MainActivity with a Hello World text label on it.

This study is going to cover the entire process in brief, and show you a step-by-step
workflow.

Prerequisites
Since these case studies will be covering all the steps involved in the lifecycle, it will not be
possible to cover these topics in detail and explain different parts of the IDE and Android
development fundamentals.

The following are the minimum prerequisites to follow this chapter smoothly. If you need a
greater understanding of any of the following topics, please refer to previous chapters:

It is assumed that you have Visual Studio and Xamarin installed on your
computer, and configured and ready for Android application development. If
you do not have Visual Studio and Xamarin installed on your system, please refer
to Chapter 3, Cross-Platform Mobile App Development with Xamarin, and install
them first.

Case Studies Chapter 11

[314]

A basic understanding of Visual Studio.
A basic understanding of Android development fundamentals.
You should have a working Git account that you are able to access.

Let's get started with the following steps to put together a complete practical workflow for
mobile app development:

Open Visual Studio and go to File | New| Project:1.

Case Studies Chapter 11

[315]

In the next window, select Android from the left-hand pane and then Blank App2.
(Android). Give your project a name and also tick the Create a new Git
repository checkbox (this will create a new Git repository for your project) and
click OK:

Visual Studio will create a new project called HelloWorld for you:3.

Case Studies Chapter 11

[316]

Once this is done, open Solution Explorer to see the project structure. Go to View4.
| Solution Explorer:

Case Studies Chapter 11

[317]

In Solution Explorer, expand the Resources folder and the layout folder, and5.
find a file called Main.axml. This is the layout file, or you can say the view, of
our MainActivity:

Case Studies Chapter 11

[318]

Open Main.axml by double-clicking on it. This should open the layout designer6.
for you:

If you are not able to see the toolbox on the left-hand side, go to View | Toolbox7.
to make it appear:

Case Studies Chapter 11

[319]

Now, we will just add a text view on the activity, which says, HelloWorld.8.

Case Studies Chapter 11

[320]

From the toolbox on the left, select Text (Medium) from the Form Widgets9.
section and drag and drop it to the Activity View:

Case Studies Chapter 11

[321]

Double-click on the text view and change its text to Hello World:10.

Case Studies Chapter 11

[322]

Awesome, the HelloWorld app is done, now we just need to build the solution11.
to make sure everything is fine and ready to be deployed on an Android device
or emulator.
Right-click on the solution and click on Build Solution:12.

This will build the solution for you and it should say Build Succeeded in the13.
bottom-left corner, on the blue line, when it's done.

Case Studies Chapter 11

[323]

To deploy and test the application on an emulator, click on the Android Emulator14.
Manager (AVD) icon from the toolbar at the top:

Case Studies Chapter 11

[324]

This will open Android Emulator Manager, where you can select any existing15.
virtual device from the list provided by Visual Studio and hit the Start button:

Case Studies Chapter 11

[325]

Then, click on Launch without changing any configurations in the next window:16.

This should start a new AVD on your machine:17.

Case Studies Chapter 11

[326]

Now, come back to Visual Studio after the AVD has started and hit the play18.
button by selecting your device from the list to deploy and starting your
application on the AVD:

Case Studies Chapter 11

[327]

Once the application is deployed, it will be opened on the AVD and you should19.
be able to see your Hello World text on the MainActivity screen:

Congratulations, your HelloWorld app is up and running on the emulator!20.

Case Studies Chapter 11

[328]

It is time to push our newly created project to the Git remote repository.21.
Remember that we have created a local repository already while creating the
project, so now we need to connect this local repository to a remote Git repository
and then push the code.
Click on the push logo in the bottom-right corner in Visual Studio. It will open22.
Team Explorer, as shown in the following screenshot:

Case Studies Chapter 11

[329]

Now, before publishing we need to create a repository in GitHub to connect to23.
this local repository.
Head over to GitHub and log in to your account.24.
Create a new repository called HelloWorld and copy the URL to that repository.25.
Once done, come back to Visual Studio and hit Publish Git Repo, as shown in26.
the preceding screenshot, then copy the link to the repository and hit Publish:

Case Studies Chapter 11

[330]

Visual Studio might ask you to provide your credentials for the first time to27.
connect to Git, but once done it should configure the remote repository with the
local one.
After this, click on the edit icon that says Changes (2) to commit your changes28.
locally.
Make some commit comments and then hit Commit All:29.

Case Studies Chapter 11

[331]

Next, click on the Sync link to share your committed changes with the remote30.
repository:

On the next page, hit Push to push your changes to the GitHub remote31.
repository.

Since there isn't much to test in this application, we'll be covering that in the next case
study.

Case Studies Chapter 11

[332]

Case study 2 - ButtonWidget
In this case study, we'll be creating a new Android application that will have a button
which that show a new text view when clicked. We'll also be writing UITest for this
application:

Create a new blank Android application project in Visual Studio, name it1.
ButtonWidget, and click OK:

After creating the project, open the Main.axml file from Resources | Layout in2.
Solution Explorer.
Then, add a text view and a button to the view from the Toolbox on the left.3.
Give each of these IDs to identify them in the code. You can select them, then4.
show the property window, and give them IDs there:

Case Studies Chapter 11

[333]

Also, set the visibility of the text view to hidden, because we'll be showing this5.
text only on a button-click:

Case Studies Chapter 11

[334]

Now, open the MainActivity.cs file from Solution Explorer:6.

In MainActivtiy.cs, add code to show the text view when the button is clicked.7.
Change your code to match what is shown in the following screenshot:

Case Studies Chapter 11

[335]

That's it. The coding part is done for the application. Now, the text view will be8.
added, but will not be shown in the application until the button is clicked.

Case Studies Chapter 11

[336]

Build your application and hit Run. You'll see that the text view is not visible9.
when the app loads:

Case Studies Chapter 11

[337]

Now, click on the button and see that the text view appears:10.

Case Studies Chapter 11

[338]

Now that the application is working, let's write Xamarin.UITest for it and upload11.
it to Xamarin Test Cloud.
Add a new test project to the solution:12.

Case Studies Chapter 11

[339]

In the Add New Project window, click on Test from the left pane and then select13.
UI Test App (Xamarin.UITest | Android). Give the project a name and click OK:

Case Studies Chapter 11

[340]

Next, we need to add a reference to the application project, so the UITest project14.
can build and run the application.
Right-click on References under the UITest project and click on Add Reference:15.

Case Studies Chapter 11

[341]

On the next screen, select Projects from the left section and then select the16.
ButtonWidget (the application project we want to test) and click on OK:

Case Studies Chapter 11

[342]

We are all set to start writing our tests for the ButtonWidget app. Open the17.
Tests.cs file from Solution Explorer under TestProjectName | Tests.cs:

Case Studies Chapter 11

[343]

Now, change the code to add a new test in the Tests.cs file, to test that the text18.
view is displayed when the button is pressed:

Case Studies Chapter 11

[344]

Now, rebuild and deploy the solution, then click Test | Windows | Test19.
Explorer:

You should be able to see the tests written in the Test Explorer:20.

Case Studies Chapter 11

[345]

Click on Run All to run the tests.21.
Now, to upload these tests to Xamarin Test Cloud, log in to your Xamarin Test22.
Cloud account.
Go to Account Settings | Teams & Apps.23.
Click on the New Team button to create a new team.24.
Add members to the team and then click on New Test Run.25.
This will open a self-guiding dialog box, where we can select the platform, choose26.
devices, and much more.
Set the operating system as Android and then the devices of your choice, and go27.
to the last step.
You'll find a screen like the following, where you get a command to upload the28.
tests to Xamarin Test Cloud:

Case Studies Chapter 11

[346]

Before you upload your application to Xamarin Test Cloud, it is important to29.
build your application in the Release build configuration.
Add internet permissions to the project in the project's manifest file.30.
Once you have built the project with Release, you are ready to upload your31.
application on Xamarin and tune the UITests there. Use the command from the
previous step, modify Xamarin.UITest.[version] to your UITest version,
then enter the APK filename with the full path to the APK and a relative path to
the UITest folder, and then run it in the root directory of your project.
Once you have made these changes to the command, go to the root directory,32.
open command prompt windows there, and run the command to upload UITests
to Xamarin:

With this, the application is being deployed and tested on Xamarin Test Cloud on33.
real physical devices.
You can use this command with your CI tool to automate this process as part of34.
continuous integration and continuous testing.

Case Studies Chapter 11

[347]

On checking back in Xamarin Test Cloud's web application, we can see that the35.
test has passed on the selected device:

Summary
In this chapter, we have gone through the entire process of application development,
deployment, writing test cases, and testing the application by using continuous testing on
Xamarin Test Cloud. There were two case studies used in this chapter to explain the process
step by step, from creating a simple Android project to writing UITests and using Test
Cloud for continuous testing.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Continuous Delivery for Mobile with fastlane
Doron Katz

ISBN: 978-1-78839-851-0

Harness the fastlane tools for the Continuous Deployment strategy
Integrate Continuous Deployment with existing Continuous Integration.
Automate upload of screenshots across all device screen-sizes
Manage push notifications, provisioning profiles, and code-signing certificates
Orchestrate automated build and deployments of new versions of your app
Regulate your TestFlight users and on-board new testers

https://www.packtpub.com/application-development/continuous-delivery-mobile-fastlane

Other Books You May Enjoy

[349]

Hands-on DevOps
Sricharan Vadapalli

ISBN: 978-1-78847-118-3

Learn about the DevOps culture, its frameworks, maturity, and design patterns
Get acquainted with multiple niche technologies microservices, containers,
kubernetes, IoT, and cloud
Build big data clusters, enterprise applications and data science models
Apply DevOps concepts for continuous integration, delivery, deployment and
monitoring
Get introduced to Open source tools, service offerings from multiple vendors
Start digital journey to apply DevOps concepts to migrate big data, cloud,
microservices, IoT, security, ERP systems

https://www.packtpub.com/virtualization-and-cloud/hands-devops

Other Books You May Enjoy

[350]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
account
 creating, in Visual Studio 212, 214, 215, 216
 creating, with GitHub 24
activities 116
Activity class
 about 116
 methods 118, 119, 121
activity life cycle
 about 122
 paused 123
 restarted/resumed 123
 running 123
 stopped/backgrounded 123
ahead-of-time (AOT) compiler 57
Android APIs 110, 111
Android app
 icon, adding for 101, 103, 104, 105, 106
android debug bridge (adb) 129
Android debug log
 about 303, 305, 306
 logcat, accessing from command line 306
 messages, writing to 307
Android Device Monitor (ADM) 276
Android Keystore
 about 186
 custom Keystore, creating 187
Android Manifest
 permissions, adding to 98, 99, 101
Android monitoring tools
 using 276, 277, 279, 281, 282, 283
Android project
 creating 78, 79
Android Virtual Device
 setting up, for development 66, 68, 70, 72, 75
API monitoring

 about 258
 critical factors 258
 developer's role 259
 key points 258
 tools, used 259
application code
 elements, in PhoneCallApp 151
 recalling 151
 user interactions, in PhoneCallApp 151
application monitoring 257
Application Programming Interfaces (APIs) 257
application
 deploying, on mobile device 123
Arrange-Act-Assert (AAA) pattern 140
Auto Scaling Groups (ASGs)
 about 235
 creating 253
automation testing, DevOps cycle
 important factors 136
availability zones (AZs) 253

B
Bamboo
 about 184
 features 184
breakpoint
 about 286
 conditional breakpoint 294
 stepping, through code 296
bug 286
build definition
 configuring 223, 225, 227, 228
 creating, in VSTS 218, 219, 221
build script
 application, compiling 188
 creating 187

[352]

build server
 Android Keystore 186
 firewall configuration 186
 preparing 186
 Visual Studio, installing with Xamarin 186
button widget case study 332, 333, 334, 336,

338, 339, 341, 343, 344, 346, 347

C
Calabash framework 161
CentOS
 Git, installing on 44
centralized version control 24
CI tools
 Bamboo 184
 Jenkins 183
 selecting 182
 TeamCity 183
 Visual Studio Team Services 184
code
 obtaining, from GitHub 216, 218
 saving, to Git repository 130, 132, 133, 134
computer
 mobile device, connecting to 129
conditional breakpoint
 setting 294
Continuous Delivery (CD)
 about 180
 for mobile application 181
 for web application 181
Continuous Integration (CI)
 about 179
 for mobile application 181
 for web application 181
Continuous Integration and Continuous Deployment

(CI/CD) pipeline 235
custom Keystore
 creating 187

D
Debian system
 Git, installing on 45
debug 286
debugging

 enabling, on mobile device 124, 125, 126, 127,
128

DevOps, applying to mobile
 application stores 18
 backward compatibility 18
 challenges 16, 17
 feedback mechanism 18
 multi-platform support 17
 releases 17
 technology adaptation 17
DevOps, versus mobile DevOps
 about 14
 continuous delivery 16
 deployment 16
 development 15
 monitoring 16
 testing 15
DevOps
 about 8, 9
 cultural aspects 10
 post DevOps 11
 pre DevOps 11
distributed version control 24

E
EC2 CLI
 about 249
 instances, creating 250
 instances, terminating 252
EC2 instance
 creating 236
 EC2 CLI 249
 Lightsail 236
 Terraform 242
Elastic Compute Cloud (EC2) 235
Elastic Load Balancer (ELB)
 about 235
 creating 253

F
fundamentals, of UITest
 test 140
 test fixture 140

[353]

G
garbage collection (GC) 280
Git connections
 debugging 310, 312
Git repository
 code, saving to 130, 132, 134
Git
 installing, on CentOS/RHEL servers 44
 installing, on Debian system 45
 installing, on Ubuntu system 45
 installing, on Windows 37, 41
GitHub
 account, creating 24
 code, obtaining from 216, 218
 repository, creating on 25, 27

H
Hello World GUI case study
 about 313
 prerequisites 313, 315, 317, 318, 320, 321,

323, 324, 326, 327, 328, 330

I
IAM roles 254
icon
 adding, for Android app 101, 104, 105, 106,

107

integrated development environments (IDEs) 258

J
Jenkins
 about 183
 features 183
just-in-time (JIT) compiler 57

L
launch configuration 254
Lightsail
 about 236
 instances, creating 237, 238, 239, 240, 241,

242

M
members
 adding, to team 34, 36
mobile app development
 about 55
 process 56
mobile app testing
 challenges 160
 devices, with different screen sizes 160
 different mobile OS versions 160
mobile application
 challenges, in testing 137
 continuous feedback 139
 testing 137
 testing frequently 138
 testing, against real environment 137
mobile device
 application, deploying on 123
 connecting, to computer 129
 debugging, enabling on 124, 125, 126, 127,

128

mobile DevOps
 about 12
 backlog, significance 14
 continuous development 13
 continuous feedback 13
monitoring, with Test Cloud
 about 260
 benefits 260
Mono class libraries
 debugging 302, 303
Mono project 51
MonoTouch 51

N
NUnit 140

O
organization
 creating 29
 users, inviting for join 29

[354]

P
permissions
 adding, to Android Manifest 98, 99, 101
PhoneCallApp
 activities 109
 Activity class 116
 Android APIs 109, 110, 111
 fundamentals 109
 monitoring, with Test Cloud 261, 262, 264, 266,

268, 270
 resources 109, 114, 115

Q
queue build 229, 231
QuickWatch 298

R
repository
 creating, on GitHub 25, 27
RHEL server
 Git, installing on 44

S
source code management tools
 about 23
 centralized version control 24
 distributed version control 24
source code management
 about 21
 branch 22
 change 23
 checkout 23
 clone 23
 commit 23
 conflict 23
 merge 23
 need for 21
 types 23
SSH keys
 configuring 46, 48, 49, 50

T
team
 creating 34, 36
 members, adding to 34, 36
TeamCity project
 creating 200, 201, 203, 204, 205, 207, 208,

210, 211
TeamCity
 about 183
 configuring 190, 191, 193, 195, 196, 197, 199
 features 183
 installing 190, 191, 193, 195
 requirements 185
 setting up 185
 using, with Xamarin for CI/CD 185
Terraform
 about 242
 configuration files 243
 example, of instance creation 247
 installation 243
 instances, creating 243, 245, 246
 instances, modifying 246
 instances, terminating 247
Test Cloud
 used, for monitoring 259
 used, for monitoring PhoneCallApp 261
 used, for monitoring Xamarin Store app 271
test run, for application
 creating 171, 173, 175, 176, 178
tests.cs
 [Setup] 150
 [Test] 150
 [TextFixture] 150
tools, for API monitoring 259
triggers
 setting up 232, 233

U
Ubuntu system
 Git, installing on 45
UI Acceptance Testing 161
UI tests, with Xamarin.UITest
 tests.cs 150
 UITest project, adding to solution 141, 143, 144,

146, 148, 149
 writing 139
UI
 creating, for application 81, 82, 84, 85
UITest
 fundamentals 140
 running, on local machine 156, 158, 159
 steps 152
 writing 153, 155
Universal Windows Platform (UWP) apps 57
USB drivers
 installing 129
user interactions
 handling 86, 87, 88, 90, 92, 94, 95, 96, 97
 testing 107

V
variables, for selecting CI tools
 cost 182
 integration, with code repository 182
 operating system 182
 programming language support 182
 support, for application platform deployment 182
Visual Studio Team Services (VSTS)
 about 184, 212
 features 184
Visual Studio
 account, creating in 212, 214, 215, 216
 installing, on Windows 58, 59, 60, 63

W
watch
 about 298
 adding 299
 QuickWatch 298
Windows
 Git, installing on 37, 38, 41
 Visual Studio, installing on 58
 Xamarin, installing on 58, 59, 60, 62

X

Xamarin application, debugging in Visual Studio
 about 286
 breakpoints, using 291, 293
 Console class, used for displaying output 288,

290

 output window 287, 288
 watch, using 298
Xamarin for Windows 57
Xamarin solution structure
 about 80
 references 80
 resources 81
Xamarin Store app
 monitoring, with Test Cloud 271, 273, 274, 275
Xamarin Test Cloud
 about 161, 162
 hierarchy structure 166
 organizations 165
 organizations, creating 164, 165
 team, creating 167, 169, 170
 users 165
 users, creating 163, 165
 using, as part of continuous integration 162
 using, for testing on multiple devices 160
 Xamarin Test Recorder 162
 Xamarin.UITest 161
Xamarin, on Visual Studio
 about 58
 add-ons 58
 extensions 58
Xamarin.Android 57
Xamarin.iOS 57
Xamarin.Mac 57
Xamarin.UITest 136
 about 140
Xamarin
 benefits of cross-platform development 55
 history 51
 installing, on Windows 58, 59, 60
 need for 51
 supported platform 57

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction
	Introduction to DevOps
	Cultural aspects of DevOps
	Before DevOps
	After DevOps

	Introduction to mobile DevOps
	Continuous feedback and continuous development
	Importance of backlog in mobile DevOps

	DevOps versus mobile DevOps
	Development
	Testing
	Deployment
	Monitoring
	Continuous delivery

	Challenges of applying DevOps to mobiles
	Rapid technology adaptation
	Multi-platform support
	Keeping up with mobile development
	Releases
	Backward compatibility
	Application stores
	Feedback mechanism

	Summary

	Chapter 2: Working with Code Repository Systems
	Source code management
	Need for source code management
	Common terms used in source code management and versioning
	Variety of source code management
	Centralized version control
	Distributed version control

	Creating an account with GitHub and using Git to create a repository
	Managing organization users and teams
	Creating an organization and inviting users to join
	Creating a team and adding members to the team

	Installing Git on different servers
	Installing Git on Windows
	Installing Git on CentOS/RHEL servers
	Installing Git on Ubuntu/Debian systems

	Configuring SSH keys
	Summary

	Chapter 3: Cross-Platform Mobile App Development with Xamarin
	History of Xamarin
	Why you should learn Xamarin
	Benefits of cross-platform development using Xamarin
	Introduction to mobile app development
	Process involved in mobile app development

	Platforms supported by Xamarin
	Xamarin on Visual Studio
	Extensions and add-ons

	Installing Visual Studio and Xamarin on Windows
	Setting up our Android Virtual Device for development
	Summary

	Chapter 4: Writing Your First Android Application with Xamarin
	Create your first Android project
	Xamarin solution structure
	Creating the UI for the application
	Handling user interactions
	Adding permissions to Android Manifest
	Adding an icon for the Android app
	Testing user interaction
	Application fundamentals
	Android APIs
	Resources
	Understanding Activities
	Activity class
	Methods in the Activity class
	Activity life cycle

	Deploying an application on a mobile device
	Enable debugging on the device
	Install USB drivers
	Connect the device to a computer
	Pushing code to a Git repository
	Summary

	Chapter 5: Implementing Automatic Testing Using Xamarin
	Understanding the importance of automation testing in the DevOps cycle
	Testing a mobile application
	Challenges in testing a mobile application
	Testing against a real environment
	Deploy and test frequently
	Continuous feedback

	Writing tests with Xamarin.UITest
	Xamarin.UITest
	Fundamentals of UITest
	Understanding the AAA pattern
	Adding a UITest project to Solution
	Tests.cs

	Recall the application code
	Elements in the PhoneCallApp
	User interactions in the PhoneCallApp

	Steps to include in the test
	Writing your first UITest
	Running your test on your local machine

	Using Xamarin Test Cloud to test on multiple devices
	Challenges in mobile app testing
	Different mobile OS versions
	Devices with different screen sizes

	Introduction to Xamarin Test Cloud
	Xamarin.UITest
	Test Cloud
	Xamarin Test Recorder

	Using Xamarin Test Cloud as part of continuous integration

	Creating users and organizations on Test Cloud
	Users and organizations
	Test Cloud hierarchy
	Creating a team

	Creating a test run for your application
	Summary

	Configuring TeamCity for CI/CD with Chapter 6: Xamarin
	Introduction to continuous integration
	CI/CD for a web application
	CI/CD for a mobile application
	Choosing tools for continuous integration
	Various tools for continuous integration
	TeamCity
	Jenkins
	Visual Studio Team Services
	Bamboo

	Using TeamCity with Xamarin for CI/CD
	Requirements for using TeamCity
	Steps involved in TeamCity setup

	Preparing the build server
	Firewall configuration
	Installing Visual Studio with Xamarin
	Android Keystore
	Creating your own Keystore

	Creating a build script
	Compiling the application

	Installing and configuring TeamCity
	Creating a TeamCity project

	Summary

	Chapter 7: CI/CD for Android with Visual Studio Team Services
	Creating an account in Visual Studio
	Getting the code from GitHub
	Creating the build definition
	Configuring the build definition
	Queue build
	Triggers - build with every commit
	Summary

	Chapter 8: Deploying Applications on AWS
	Creation of an instance
	Lightsail
	Terraform
	Installation
	Configuration files
	Creating instances
	Modifying instances
	Terminating instances
	Example of instance creation using Terraform

	EC2 CLI

	Creating an Elastic Load Balancer, launch configuration, and Auto Scaling Groups
	Elastic Load Balancer
	Auto Scaling Groups

	IAM roles
	Summary

	Chapter 9: Monitoring and Optimizing Application
	API level monitoring
	Why API monitoring is critical
	Important factors in API monitoring
	Developer's role in handling API unavailability

	Various tools for API monitoring
	Using Test Cloud for monitoring
	Benefits of monitoring with Test Cloud
	PhoneCallApp
	Xamarin Store app

	Using Android monitoring tools
	Summary

	Chapter 10: Debugging the Application
	Terminology
	Debugging with Xamarin on Visual Studio
	Using the output window
	Using the Console class to show useful output
	Using breakpoints
	Setting a conditional breakpoint
	Stepping through the code

	Using a watch
	QuickWatch
	Adding a watch

	Debugging Mono class libraries
	Android debug log
	Accessing logcat from the command line
	Writing to the debug log

	Debugging Git connections
	Summary

	Chapter 11: Case Studies
	Case study 1 - Hello World GUI
	Prerequisites

	Case study 2 - ButtonWidget
	Summary

	Other Books You May Enjoy
	Index

