Codeless Game
Development

New School Game Engines

Robert Ciesla

ApPress’

Mostly Codeless
Game Development

Robert Ciesla

Apress®

Mostly Codeless Game Development: New School Game Engines

Robert Ciesla
Helsinki, Finland

ISBN-13 (pbk): 978-1-4842-2969-9 ISBN-13 (electronic): 978-1-4842-2970-5
DOI10.1007/978-1-4842-2970-5

Library of Congress Control Number: 2017948735
Copyright © 2017 by Robert Ciesla

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the

date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Pramila Balan
Development Editor: Matthew Moodie
Technical Reviewer: Nakul Verma
Coordinating Editor: Prachi Mehta
Copy Editor: Kim Wimpsett
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit waw.springeronline.com. Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484229699.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com/rights-permissions
www.apress.com/rights-permissions
www.apress.com/bulk-sales
www.apress.com/9781484229699
www.apress.com/source-code

This book is dedicated to Dennis Ritchie (1941-2011),
the creator of the C programming language

and

my friend Tuomas Mdikeld.

Contents at a Glance

About the AUthorcccnvemmismn s ———— Xix
About the Technical ReVIeWErcciussmmsmsmssssmsmssmsmsmssssssmssssssnsnnss xxi
Acknowledgments.......c.cccmmmmsemnnmnsssnnnmsssssnsnnssssssnmssssssnsnssnnnns Xxiii
Introduction.........ccuvcinismms s ———————— XXV
Chapter 1: Getting Ready!ccvremmmmnnemnnmmsssensnmnssssssnssssssssssssssnnns 1
Chapter 2: Game Engine MuSeUM......cuucumsssesssssnsssssanssssasssssanssssnns 11
Chapter 3: A Game Maker’s Lexicon: Level 1........ccucemmmmsssennnnnsnns 21
Chapter 4: Commercial Game ENgiNesccuseerrmmsssenssssssssnsssssnns 41
Chapter 5: Freeware Game ENngines........ccuesmmssesmsssesmsssasssssasssssans 97
Chapter 6: Audiovisual ASSetS........cccrrmmssnmmnmmssssnnnmsssssnanssssssnnnnnss 123
Chapter 7: Selling Your Game.........ccceusssnennsmssssnnnsnssssssssssssssnnnnns 145
Chapter 8: Knowing Your Old-School Games.........ccusseermmssssensnnas 161
Chapter 9: Game Developer’s Battle Station..............cccinninnennnnns 181
Chapter 10: A Game Maker’s Lexicon: Level 2..........cccuunssssnmnennn 187
Chapter 11: The Mostly Codeless Challenge.......cccceurssssssssnnnnnnns 211
111 213

Contents

Abhout the AULNOFcoveeeeiiiireeriir e nnmnns Xix
Ahout the Technical ReVIEWETccueeeerrrrremmssssssnsssssnsssssssssnnssssnsnnnnns XXi

Acknowledgments........ccuemmmnsssennnmnsssssnnmsssssssssssssssssssssssssssssssnsnes. XXiii

Introduction........cccccnnemmmnsmnmmssnnmmsssnmssssssas s XXV
Chapter 1: Getting Ready!cccureemmmnssmnnnmmssssnnnsnsssssssssssssssnsssssnns 1
Who Does What in the Video Game Industryccccevvvrercercscescennne, 2

PrOUUCET ...t 2
DTS T T TS 3
PrOQrammMe.......cov ot 3
VISUGI ALIST......c.ceieeeceereee ettt 4
Sound DeSigNer/MUSICIAN..........coreeeererrenerererenesesesesse e ses s sesssssseens 4
L O 4
WILEI/COPYWIIEET ...ttt 5
Common Pitfalls for New DeVelOpEers.......ccccvververveerierseeresseesesssessessaesas 5
The Motivational HOIE ... 5
The Ugly Date SYNUrOMEc.cocveeerrcreerererereseresereresersesessesessssessesassessssesssnesssenaes 6
The Wrong Game ENQINE ISSUEeccvuerereerereererererersssersesessesessssessesessessssessenessssesaes 6
The Prequel SYNAIOME ... s se e se e e sae e sae e sassenaes 7
The No Testing Needed APProach...........ccceeveeerererveressereeseresesesesesesersesessesessssenaes 7
Perfectionism QUESL ... 8
A Programmer’s MING..........ccoceererrrereerereneresesesesessssessesessesesssssssesassessssessesessssenaes 8
IN ClOSING....coiiierircre e a e e 9

vii

CONTENTS

Chapter 2: Game Engine MuS@UM.........cccusemrmssansssssnsssssnsssssssssssnnes 11
The Quill (1983) by GilSOftccerererererererrrre e 1
Pinball Construction Set (1983) by Electronic Arts.........ccceevrrrercerenne. 11
Adventure Construction Set (1984) by Electronic Artsccccocevveernene 12
Garry Kitchen’s GameMaker (1985) by Activision.........c..cccveereerrerienienne 13
Shoot-’Em-Up Construction Kit (1987) by Sensible Software 14
Arcade Game Construction Kit (1988) by Broderbund Software 15
STOS BASIC (1988)/AMOS BASIC (1990) by Mandarin Software............ 16
Allegro (1990) by Shawn Hargreaves and the Allegro Developers......... 17
3D Construction Kit (1991) by Domark............cccoeeveeriernncrienensesesenaens 18
RSD Game-Maker (1991) by Recreational Software Designs................ 19
Zillions of Games (1998) by Zillions Development Corp.cccvverrernene 20
Chapter 3: A Game Maker’s Lexicon: Level 1..........cccunnnnnnnnnnnnnnnnns 21
General Terminology.......ccuerverrerrersersersersessessessessessessessessesssssssssssesssssenns 21
AX covtvrreeeeesssseesesssss st eSS 21
ABA ..o ceooreeeessssseseessssses st RS R R 21
V0T 113 22
Application Programming Interface (AP)..........ccccvrrerererierersererserenserseseresesseressenes 22
Bits, Bytes, and BiNary..........cccccerverrrereerererereresseresserssessesessesessersssessssesassesaesssaenes 22
{181 0T R 23
DLC/MICrOtranSaCctionscococeeeeeeeesssssessssss e e e sesesese e e e e e e e e e enens 23
FPS evetuuseeeeesssseeesssssesessssssessessssssesesss s s E RS 24
MMOG/MMORPGorveeessseeeessssssessssssmseessesses 24
Particles (i.e., Particle EffeCtS).......ccurrererrereriererierenrereesereeseresesseressessssesassessenessenes 24
] o 24
PIXE cvvvuuseeeeeesssseeesssssnsessssssseessssssesesssssesesssssssessssssssessssssssesssssssssssssssssssssssssssnesses 25

viii

CONTENTS

POLYGON ...t 25
PONG...cic e e e e 25
PHIMILIVE ..ot 26
RESOIULION......cciiciiiice 26
SNAUET ... ————————— 26
SNOVEIWAIE......cecviriririri 26
LS 0 (OSSR 27
STBAM .. ————————————— 27
Rendering and Prerendering..........ccoeeriernsenescsnssssesesessssesss s sessssesssssssessssenns 28
RESOUICES......ocuiiccnticc bbb bbb 28
SANADOX GAME......ceccrticcst bbb 28
SKYDOX ...ttt s p e e R e e R e e nennnne 29
Vertical SYNC (V-SYNC) ..ot sn s 29
WASDcooteeereuressesessssesseas s es s s s bbb s bbb bbb 29
The Fundamentals of Programming.........c.ccveeenierennnsesnsesessssessesensens 29
Programming LanQUAGEcceeeeererrnesererssesesessssssessssssssssesssssssessssssssessssssssssssnns 29
How 10 Talk 10 YOUr COMPULEN........ccvreerererisesererise e se s sesesnns 30
High-Level vs. Low-Level LangUAQES.........cccceeeerrrreresersssesesessssssesessssssssesssssssessssnns 31
Compiled vs. Interpreted LANGUAGEScverererrnresesersssesssessssssesessssssssessssssssessssnns 3
Control Flow: Nonstructured vs. Procedural Programmingc.cceeeeeereresseserenens 31
ProCEAUIES ..ot 32
A FEW LiNES OF COUEccreeeecrerererererereresese e seseseseseseseseseseseseseseses 32
L LT o] PP 33
Object-Oriented Programming (O0P)..........cccceeverrnenesesssssssesessssesessssssesessssssssesessnns 33
Classes and Objects (i.e., Classes and InStances)...........cccevvererererereserererserensenns 34
INNEITANCE. ... 34
METhOUS.... ..o —————————— 35
Abstraction and ENCapsulation..............ccecevresenerenssesesssssssesessssesesessssssesessssssssesnns 35

ix

CONTENTS

Common Programming Languages: A Primerccccccvvrvervenversensenienne 36
BASIC......coeureeeceresremseeesssessessesesses s s 36
G eeeereee et R AR R AR RE R E AR R R E s 37
G cerererererererereresesesesereseserene e e e e e e e e e e e e e e e e R A A nEnEnEnEnEnEnEeEnEnEnEnEnEnEnEnEnEnEnEnEnEs 37
G ettt R AR 37
JAVA o ———————————————— 37
B T T 1T]| 37
10 S) 38
GIVIL ..o ceeeemeesee e s 38
PYLNON. ...t ereeee e 38
R PP 38
Some Words About Optimization............cccceevievrsrernsesnscsnesessese e 38
IN ClOSING....cctiirecrerre e 39
Chapter 4: Commercial Game Enginesccucummsemsmsssnsssssnsssssnnas 41
Before YOUu EMDArK.........cccvceerneienninsssssssss s ssssessesnas 42
Your First Game ENQINecocevevevvrerrersesres s ses e e e e sesens 43
YOUr FirSt GAMEcocvveciiriicss s snsens 43
GM Classes and ODJECLScccvuererereriererrerersersrsersesereresersssessssessessssessssessssesssesaens 43
Game ENngine REVIEWS........cccccevevercerenrc s ses s 51
GameMaker Studio Professional 1.4 by YOYO GAMEScccovvvererernnnscnesesssenenenns 51
001 Game Creator (formerly known as 001 Engine) by Mike Weirccccccceceeenne. 58
GameGuru by The Game Creators.........cocuerrnnesesessnnssesesess s sesessssssesesenns 61
Case Study: Halflight by S0iree Games..........cccovrievenirnnnscsennnsesenes s sesesenns 65
Shoot-"Em-Up Kit by Tall StUAIOS........ccceerrnrereririnercsirs e sesesenns 68
Leadwerks Game Engine 4.3 by Leadwerks SOftwarec.couoeecrrnesenerenssesenenns 70
CopperCube 5/CopperCube 5 Pro by AmDbiera..........ccoovvvcvnnnnescnsnsescnessssesesenenns 73
RPG Maker VX/RPG Maker VX Ace by Kadokawa Games/Enterbrain 76
RPG Maker MV by Kadokawa Games/Enterbrain............cccoevevenenenenenensnsnesssessseenns 79

Clickteam Fusion 2.5 by Clickteam.........c.ccccccevnnnnscnnnnncssnns e sesssseesenns 81

CONTENTS

Game Salad 1.25 (Mac)/Game Salad 1.00 (Windows) by GameSalad Inc............... 85
S2 Engine HD 1.4.6 by Profenix Studio SRLS ... 88
Tyranobuilder Visual Novel Studio by STRIKEWORKScoccverrirrniennrcrnenennes 91
RTS Creator by Infotread, LLC...........cccoeerierniernscrenresre e ssseens 93
Chapter 5: Freeware Game ENgines........ccccusssemnmssssssnnssssssssssssssnns 97
Unity 5.5 by Unity Technologies.........cccceererenereresenessee s seens 98
A Beginner and His Unity Experience: Developer Interview.........cccoeeevrevnicnnnnens 100
UNITY TIPS et sr s a e p e s p e e 101
Unity License OPLioNSccccreericnnncneser s ses s ssesessesesnes 102
Construct Classic/Construct 2 by SCirra.........cccccvvernieresnsesnsesesennens 103
Ren'Py 6.99.12.3 by Tom Rothamel and His Teamccccccvvercerennnne 105
Gamelooper by Oyun DOnguisii Ltdccoovvcvenriennccnesniesensesenenaens 111
Stencyl 3.4 by Stencyl, LLC ... 113
Godot 2.1 by Juan Linietsky and Ariel Manzurcccoeevvvvverrerrennens 116
Chapter 6: Audiovisual ASSetS.......cccrrmssmmmmmmssssnnnmsssssnssssssssnsnsnss 123
The Basics of Digital Audio..........cccerverrmrierrrenier e 123
MIDE .. s 124
Lossy Audio Formats (i.e., Delivery FOrmats).........ccocevevvvvernnnnnnnsnsnssssensensennns 124
Nonlossy Audio Formats (i.e., Source FOrmats).........ccceevererererierenseressereesersnsenas 125
o 10 T OSSOSO 125
The Fundamental Concepts of Audio Processing..........cccveereerrersennnnns 126
DECIDEIS (AB) ... 126
0 O 127
Common Types of EQ FIltersccvviecierniennc e sessesesnes 127
How to EQ Your Materialc.covvennininmnininnnnsssssssss s 128
Dynamics (Compression and Limiting)ccceevverinnennnnennesnesssesssesesesesenns 129
70 o] T OSSPSR 129
NOrMalization ... ——————— 129

xi

CONTENTS

REVEID ... ——————— 130
Free Audio RESOUICES ... s 130
Some Tools of the Audio Trade.........ccvvrnnmnn i ——— 130
Digital Audio QUESTIONScccecerrermierrrrree s 133
Software for Game ViSualScovinininennnssese s 134
Lossy Image Formats (i.e., Delivery Formats)........c.ccocevvvnnvnininsnsencnsensessensennns 134
Nonlossy Image Formats (i.€., Source FOrmats)..........cccceevrereerererersesersesesserensenes 134
TrANSPATENCYevererererierse st e e e s 135
TOOIS FOr 2D.....ccciciiiirrr e —————— 135
TOOIS FOr 3D ———————— 140
Chapter 7: Selling Your GaAme.........cccusesmsmsssassmsassssssssassssassssnsnsns 145
Product ... ———— 145
o 145
PSychological PriCiNg.........occceceerereicerineieese e s 146
Penetration PriCing ..ot s 146
HONBYMOON PriCING......cceeieeecerire et 146
Premium PriCINGocceeeieeecne s 146
o0 0 T0] 001 o T T O 146
Product BUNdIiNgcoceeierecnerinecine e s 146
Free-to-Play (Also Pay-to-Win and Freemium)............ccovvrvcnennnnencnesensescsenennnnes 147
MiCrotranSactions..........covnnnnnn s ———————— 147
Place (DiStribution).......cccccvveeercerenesesense s snse s 147
Steam (SteampPOWEred.COM)cvvvererrresreresrsssssesesessssesesssssssesessssesesssessssessenes 147
Amazon Appstore (amazon.CoOm/apPStOre).......ccevrresererrssesesessssssesesesssesesessassnns 148
Amazon Digital Game Store (amazon.com/gamedownloads)..........cccueerererernsenns 148
Google Play (play.go0gIe.Com).........ccceeeerrrrreresersssssesesessssesessssssssessssssssssssssssssssenes 148
Apple App STOre (APPIE.COM) ...cveececerrrreeeressse s sr s snsessasennns 149
APPIE MAC APD STOTEcvrerccrrrreseerr s se s snnsasanns 149

xii

CONTENTS

Go0d Old GAMES (JOU-COM)cvrurueerernrueeresssseesesssssssesessssssesesssssesessssssssesssssssaes 150
HCN.i0 (WWWLITCH.I0).....ccueiccctccr e 150
Humble Store (humblestore.com)..........ccooruieenrncicsreccsee s 151
IndieGameStand (indiegamestand.com)............cooreecrrernicncnnnnssese e 151
Playism (playiSm-games.Com)ccueererermrenesersssessesesssssesesssssesessssssssesssssssas 151
PrOmMOLION......ccoieerrcrcise e 152
WED SIEE ...cveveecceerreeese e a e a s nsnn e 152
Route A: Custom Domain and Hosting..........cccveerververvennensensensessensennens 152
Route B: NO BUdgetccocviriercirercer e 153
SCreNSNOLS ... —————— 153
Vid@O TraIEYeeeeeccerercce e 153
SOCIAl MEI@.......curiicirriict s ——————— 154
In-Game AdVvertising (IGA)........ccovrerererererrerserse s se e ses s ssesessesesnes 155
T 1)1 155
Indiecade (INdieCAUE.COMY).......c.oueerererrecir e 155
Independent Game Festival (igf.COM)ccoreierrieicsreec s 155
Assembly Summer (aSSEMDIY.OIG)cceererurererernreeresree e se s eeens 156
Business and FINANCEcccceerrerenrssessnsnesnse s sse s sssssnsens 156
Return on Investment (ROI)..........cccocrurrrenerenrnesesenssssesesessse s sessssssssessssssens 156
Economies of Scale/ECONOMIes 0f SCOPE........cccvrrrerererrrssesesesssesesesssssesessssasens 157
R TC T 1] (L 157
Securities and Exchange CommisSion (SEC)cccovverererrmesesessssesssesssssssesensnns 157
Nonaccredited INVESION ... 157
ACCredited INVESTON.........cocoeeeeeecere e 157
(0 €010 10 o T o 158
Kickstarter (KiCkStarter.Com)ccceverenienenenine s sse e s s seenes 158
LT (0 1) SRS 159
Indiegogo (iNdieg0g0.COM)cccerererererere e sre e ssessessesaessessesressssseseeses 159
Gambitious (gamDbitioUS.COM).......ccceeerererererrererere e ra e e saenenaes 160

CONTENTS

Chapter 8: Knowing Your Old-School Games..........cccursrsssnnnnsnsans 161
TO7T e —————————————————— 162
AEATT 2600ceceeereeeeeeeesessesessest s e s st 162
TOB2 ... ————————————— 163
AT 5200cecceeeeercere e e e 163
COMMOAONE B4ocvierrrireirri i 164
1083 .. ———————————————— 165
Nintendo Entertainment System (NES)...........ccoccrrnnencnmrnnncnenesssesesesesssesesessenes 165
The Great Video Game Crash of 1983........c.cccovvnnnnnnnnnnneeeeenes 166
1085 .. ———————————————— 166
COMMOUOrE AMIGAcoveeeeererereererrse s s s e e e e s s e e e nns 166
2 168
L 169
Sega Master SYSTEM.........cccvviiererrnsererrrn e 169
AT 7800ceeceeerereereresesesesssesesesessssese e s e e e sss e e e sss e e e ses s s s e nssssnssnsansanes 170
L L 172
PC Engine (Turbografx-16) by NEG Corporation...........c.cceveererrerererserereresserensenens 172
TOBB ... ———————————————— 173
Sega GEenesiS (MEGAANIVE)ccvverererererererserersersssersesessesessessssersssessssssssssssensssenes 173
1990 ... nn 174
Y170 7= 1 T (=T 3o [174
TOOL ... ——————————————————— 175
Sony PlayStation (PST1 0r PSX).......ccoerincrirrcerise e 175
2000ccceiieeeersre e ———————————————————————— 176
PlayStation 2 by SONY ..o s 176
2007 ..o a e er e e nnean 177
Gamecube by NIintENdOcccceeeerrieierrreererre e 177
XDOX DY MICIOSOft ...ttt 178
The Homebrew Market............coverinnnnn 179

Xiv

CONTENTS

Chapter 9: Game Developer’s Battle Station............ccccvrssnnnnninnns 181
RESOUICES.....ccuetiueeririesise s 181
CPU ettt 181
3T I D] 11 O 183
Random Access Memory (RAM)ocococererencnereneesesessse e sessssess 183
Lo LoTo 0 o OO 184
Your Hardware Needs as an Indie DeVelopercccecevveereerreereriennaens 184
Option 1: WIiNdOWS 7/8/10 PGcoueceeeeeeerererereres e rereesersesessesesseseesessesesasnenas 184
Option 2: iMac (Previous Generation), Mac Pro, or Mac Mini.........c.cceeeeeveeeereeene. 185
The Ecological Imperative.ccccvvrreiirrnsr e 186
A Few Words on DiSPlayscccereerererreressessessessssssssssssssssssssssssssssssnsnns 186
Chapter 10: A Game Maker’s Lexicon: Level 2..........ccceevssnnnnnnnsns 187
Digital Units of Measurement............cccoceenrinennnmnensnnssnsssesesssssssesnens 187
32-Bit/64-Bit ArchiteCtureooeeeeerercrrreerrecse s 187
Hard Drives ReviSited ... 188
Advanced Visual Terminologyccoceeeererrerresessessessssssssessssssssssssssnns 188
ANLIAlIASING (AA) .eeeeecerereeerereeee e se s se s s s e ne e 189
BillDOAI ... 189
05T I 1 - o] o O 189
ClipPING PIANE.....c.eeeeeeeeeer e 189
0T TS 189
VIEWING FIUSTUM........ceeeee e 190
A o1 13 T TR 191
Shader LANQUAGES........cocoererureerirereesersss s e se s sesnns 191
Pixel Shaders (Fragment Shader)..........ccccorureenrreccserisesce s 191
VErteX SNAAEKSccoeeeeccer e 191
GEOMETrY SNAUEIScoereeeeeerereecrer e s 192
How to Implement SRAAETS ..o s 192

XV

CONTENTS

TEXIUNE .. 192
TEXIUE ALIAS ... 193
Texture MapPing ..o e e r s e nnen 193
BUMP MAPPING ..ottt 194
NOrmal Mappingcccccecreirerresn s e enas 194
Environment Mapping.......cccccovenienninnscnnsess s sessesssseenas 194
INTErPOIALION ...t 195
TEXTUIE FIEIING....cv ettt e 195
MIDIMAPS ... e e nan 195
Transform and Lighting (T&L)ccceererererererecrenerseese e sesseenens 196
3TN T o OO 196
BIOOM (GIOW) ...ttt e 196
Depth Of FIeld (DOF)......c.cereererereeeeerearesesessssssessesessssssesseasesessssssessessesssssssees 196
Gradient NOISEcvuveierrirniin s 196
Parallax SCrolling.........cccovreecrererecrire e 197
L0 197
Delta TIME (AL) et 198
Finite State Maching (FSM) ..ot 199
UML and FSM, Best BUAIES.........ccecerverrerrerierserrerser s sesses s sessessessessesses e sessessesnes 199
Machinima.......cccoc i ——————— 199
The Golden Age of Arcade Video GAMES..........cccerereeererersencsesesseseesesssesesesssenens 200
(€T 10 140 TP 200
KONami COdE ... s 200
More on Programmingcccoueeveeesresessessesessesssssssesssssssssesssssssssssssssens 200
Variables and OPeratorsc.coveeceernesesesenssesssesssessse e sesss s sessssssssssssssanns 201
Data SErUCLUIES......c.ceeeeeeeeeee e e 202
0] (o] 203
Pseudocode and Code COMMENTSceeecvinrrmscssnsnnnmsinsss s 204

xvi

CONTENTS

MOFE 0N PRYSICScveririrririrserse st se s se e e 207
Newton’s Laws Of MOEIONcceeceeineccrrsese s s 207
EUler’s Method........c..cooeeccercercre s 208
3210010 208
Rigid-Body DYNAMICSccccevererrrrereerereeneresersereserassessssessesessesessesassessssesssnesssesaes 208
SOft-Body DYNAMICScoveereeereerererererererassersesessesessesessesasessesessesessessssesassesssseres 208
Physics ENGiNES RUNAOWN............cccverereerererererereres e seraesessesessesessessssesesesasnenaes 208

Chapter 11: The Mostly Codeless Challenge..........ccuusssmsnsnsnsnnss 211

1T L 213

xvii

About the Author

Robert Ciesla is a freelance writer from Helsinki, Finland. He earned a bachelor of arts
degree in journalism and has a knack for writing urban fiction and directing short films.
Robert has worked on many video games on several platforms since being a kid in the
mid-1990s. His latest venture is Soiree Games, a burgeoning games company specializing
in products with a socially aware slant. Robert’s personal web site is at robertciesla.com.

Xix

About the Technical
Reviewer

Nakul Verma is a professional game developer and currently works as a senior unity
developer at Aquimo Sports Pvt Ltd. He has worked in a variety of game genres using
multiple technologies. Specifically, he has worked on casual puzzle games, an endless
runner, an endless casual game, card games (rummy on Cocos2d-JS and an African
game), and a physics simulation sample and is currently working independently on his
own game that will be hitting stores soon. He is proficient in game technologies such as
Unity, Cocos2d-x/JS, Construct, and Allegro. Gaming has always been one of his favorite
hobbies along with sports, music, and break dancing. His favorite game genres are first-
person shooters, platformers, and puzzlers. When he is not making or playing games, he
is working out, break dancing, or messing around with some gadget.

He earned a bachelor of technology degree from PEC University of Technology in the
field of electronics and electrical communication.

xxi

Acknowledgments

I'd like to thank the entire Apress editorial team for their support and constructive
criticism. Their input greatly helped shape my vision for this book for the better. As
Robocop once so eloquently put it, thank you for your cooperation.

xxiii

Introduction

Why would anyone get into the video game industry? I'll give you two pretty good reasons.

e Asof2017, the global games market was estimated to be worth
more than $100 billion.

e Itwon'tstop at $100 billion.

From the rectangles on the TV that used to excite people in the 1970s to the
painstakingly drawn pixel art of the 1980s and the 1990s to the 3D revolution of the
2000s, video games have been increasingly influencing the aesthetic enterprises around
them. Now, in 2017, we have truly reached the Golden Age of the Video Game. The line
between cutting edge and retro has never been this blurry. It’s hip again to be pixelated.
Unlike those early millennial times, a gigantic software team is no longer a must-have
prerequisite for success. Thanks to some new tools and digital delivery systems, the
one-person operation is back.

Not only do we have the technical know-how to produce nearly movie-quality game
experiences, but some very powerful pieces of game making-software are becoming
both numerous and widely available. In addition to having top-notch hardware support,
this type of software is finally becoming accessible to all. There are tools for every budget
and every skill level. And the end results can be more impressive than the audiovisuals
in Hollywood. Finally, after 40 years or so, making game creation software is a truly
viable option for investors and programmers alike. This is where we, the small-time
entrepreneurs, cash in. This is it.

But as great as all of these tools are, this book is not about productivity software per
se; it's more about every future game visionary out there. This book is about you, my
friend, and together we will take your ideas from your consciousness to all those little
screens in the world. Video games are no longer a mere industry. They are a culture, and
you're part of it. Now more than ever.

—Robert Ciesla
CEO, Soiree Games

XXV

CHAPTER 1

Getting Ready!

Before you felt the urge to create your own games, you probably were a consumer of
games for quite some time. You've played a lot of them over the years, and you have

intuitive ideas of what appeals to gamers like you.

Prior to getting serious about game development, you should consciously seek
factors that make a game great. The biggest overall successes in entertainment software
history all share common traits. To a degree, you are wise to emulate them. Let’s take look

at these titles, shall we?

Tetris for mobile devices by Alexey Pajitnov & EA: More than 100
million copies sold. It was originally released in 1984 for the
Electronika 60, a then-hip computer from the Soviet Union.

Wii Sports by Nintendo: More than 82 million copies sold.
Minecraft by Mojang: More than 70 million copies sold.

Grand Theft Auto V (GTA V) by Rockstar Games: More than 52
million copies sold.

Super Mario Bros by Nintendo: More than 40 million copies sold.

Now let’s take a look at the indie contestants.

What do all of these titles have in common? They’re multiplatform. In some cases,
they’re very, very multiplatform. One of them, Wii Sports, came bundled with a cool new
system—see if you can get on that bandwagon! These ten games are intuitive to grasp and
control, offering a smooth gaming experience. There are also memorable main characters
with highly merchandisable gimmicks—Italian plumbers, anyone? And there’s a lot of

Minecraft by Mojang: More than 70 million copies sold

Super Meat Boy by Team Meat: More than 40 million copies sold
Fez by Polytron Corporation: More than 40 million copies sold
World of Goo by 2D Boy: More than 40 million copies sold

Bastion by Supergiant Games: More than 3 million copies sold

© Robert Ciesla 2017
R. Ciesla, Mostly Codeless Game Development, DOI 10.1007/978-1-4842-2970-5_1

CHAPTER 1 " GETTING READY!

violence, in the case of GTA V (and many hit games that didn’t quite make the list), which
is a gangbanger simulation of the highest caliber. For some reason, the people of this
planet really, really enjoy their extreme violence.

So, the following features are what sells:

e Flawless game mechanics: The player doesn’t have to struggle
with controls or grasping the idea of the franchise. The basics are
simple, and they work at all times.

e Lasting challenge: The game is virtually unbeatable (like Tetris and
Wii Sports) and/or provides tons of replayability.

e Deployment for multiple platforms: Keep those Windows-only
games to a minimum.

e Memorable, merchandisable characters.

e Conflict and violence. In general, this planet loves it. In games, it
certainly helps.

Now, as a small developer, it’s likely you will need to wear many hats. Let’s take
alook at these roles in the video game industry next. Working with modern video
game-making software, it’s unlikely you will need to ever dwell very deep into more
complex areas of programming, but it’s still a good idea to get acquainted with some
common industry job titles.

Who Does What in the Video Game Industry

Many of the following development team roles are increasingly becoming specialized as
video games rival blockbuster movies in their armies of creative people working on them.

Producer

Responsible for keeping the whole project together, a video game producer benefits from
both hands-on experience in as many related fields as possible and a sense of overall
vision. The number of a producer’s creative responsibilities varies within development
teams. In some cases, a producer solely works as management, solving conflicts and
keeping a team going.

This may be an unnecessary post in smaller projects, however. A tiny operation
obviously doesn’t benefit much from a hired producer.

Some typical producer duties include the following:

¢ Building and maintaining a functional team
e Contracting out work and delegating responsibilities

e Mediarelations

CHAPTER 1 " GETTING READY!

Designer

Video game designers come up with the conceptual part of a product. Good game

design is timeless. Think of chess: it was designed in the sixth century and is still going
strong. Creating balanced game dynamics and a low enough learning curve are the
designer’s job. Also, as sprawling 3D games are all the rage, level designers are very much
in demand. Modern level designers usually work with dedicated software, sometimes
provided by the programmers in the team.

Programmer

Programmers handle perhaps the most diverse bunch of duties within game production.
There are numerous specialized programming fields needed in creating a competitive
product. In the early days of the 1980s, being a programmer meant you were the sole
person behind a title. Not so much in modern times, although there are exceptions
(Minecraft, for one, is a one-person operation). Being a programmer can mean these
things and much more.

e Game core creator: This is what people usually mean by
programmer. The game core creator is responsible for game
mechanics, main visuals, and player controls.

e Artificial intelligence developer: This person is responsible for
making smart enemies within a game.

e Problem solver: If you're really good, you may be hired as a
mercenary programmer to solve a development team’s issues
within a project.

e Physics expert: This person is responsible for creating realistic
maps/levels for games with a set of artificial laws of physics
governing the game world.

e Networking specialist: Many games are run online these days as
multiplayer war zones. This creates a whole host of challenges to
a project.

Usually, being a good programmer requires a strong sense of logic and/or
mathematics. The importance of math is somewhat exaggerated in most programming
literature, but it always helps. Some fields of programming work, such as physics, simply
do require strong math skills.

Many programmers have a “pet language,” which is one they are most comfortable
with. Make sure yours is one of the more useful ones, such as C++ or Java.

CHAPTER 1 " GETTING READY!

Visual Artist

Video games used to mostly feature simple on-screen shapes for visuals. Since the advent
of 3D graphics in the mid-to-late 1980s, visual artists span an increasingly large group of
subfields. These include the following:

e 2D artist: This includes duties such as presentation and, in the
case of 2D games, in-game visuals.

e 3D artist/3D modeler: These artists create 3D objects with
software such as Blender or Maya.

e 3D animator: This may in many cases be the job of the modeler
also. An animator works with the 3D objects created by the
modeler and crafts fetching animated sequences, such as a 3D
human walking, running, or fighting.

e Texture artist: In essence, 3D objects need a coat of digital paint
on them to make them look less bland and more realistic, which is
the duty of the texture artist.

e Environmental artist: Most 3D games need compelling vistas to
make them draw the players in.

e Conceptual artist: Especially bigger projects benefit from unified
art direction. Concept drawings on whatever media help with
this goal.

Sound Designer/Musician

If you are an experienced musician, you can in theory make it as a video game

composer. Earlier on, as in the 1980s, computer musicians were required to create their

compositions pretty much using programming skills. As of late, as long as the output is in

digital form, your audio work can be quickly incorporated into a video game project.
Sound designers may or may not also be musicians. What they need is the ability

to create audio usable in a video game context, meaning mostly sound effects and

atmospheres.

Tester

Testing is a very important phase in a video game’s life. If you are a one-person developer,
you should put considerable effort into testing your products thoroughly before release.

There are roughly two stages of game testing: alpha (in-house) and beta. Beta testing
refers to the public at large volunteering to spot issues in your game. Beta testing can be
either by invitation only or in public.

CHAPTER 1 " GETTING READY!

Game testing is actually a rather grueling line of work. Therefore, getting beta
volunteers for a company with no industry status can be difficult. Here are some steps
you may want to consider if you are in this position:

e Have an attractive company web site with a clearly marked beta
testing page.

e Betimely and considerate in your communications. Do not
advertise the position until you have a product ready to be tested.

e Proudly announce your projects in all of your social media
accounts.

e Utilize sites dedicated to discovering beta testers, such as
Betahound.com.

As fun as it sounds, game testing is not for everybody. Your testers need to have
attention to detail (e.g., STEM major students) and the ability to work under serious
stress. Emphasize and look for these qualities in your future beta testers.

Writer/Copywriter
Here are some of the types of work a writer may be doing in a video game project:

e Character dialogue. This may or may not refer to fixing lousy
dialogue some programmer came up with.

e Tutorial prompts.

e Copywriting (i.e., advertising text, usually provided by
freelancers).

Common Pitfalls for New Developers

Make sure you read the following common pitfalls and know them absolutely by heart
before you start work on your first serious game. The indie game industry is one of great
hopes and disappointments. But if life gets in the way, you weren’t ready in the first place.

The Motivational Hole

The developer loses interest in his or her product and keeps the number of levels
to a minimum. Usually this means the product should be considered commercially
unviable.

Make sure you can realize your game before you start work on it. Don’t try to make
a four-dimensional game with an infinite number of artificial intelligences dancing
perfect polka, unless you are sure you can do just that. Don’t waste time. Stay different but
realistic. Also, leave multiplayer to the big houses. It eats months of one’s resources and is
hardly a striking feature anymore.

CHAPTER 1 " GETTING READY!

Having said all that, do not rush out a product. There is probably no electronic
arts (EA) executive behind your back with a cattle prod, gently reminding you there’s a
deadline in two days. You are the boss. Your ultimate and only concern should be a
high-quality product shipping out when it’s ready. Look back on the list of hit games.
Your game, too, needs to provide a lasting challenge.

If you get stuck, take breaks. Stop thinking altogether every now and then to reboot
your brain. Some people, especially the academics and theorists, tell you every game
should re-innovate something. They're just being grandiose. It must be all that grant
money. Turn on the radio. Do you hear that? Mediocre sells most. Let innovation come
to you if you can, but know that it’s not necessary. Your first release doesn’t have to be
groundbreaking. Aim for a good overall product.

The Ugly Date Syndrome

The developer uses subpar (audio)visuals for the product and hopes no one notices.

For many entrepreneurs, getting some unique and high-quality graphics is a pain.
Unless one takes the decidedly lo-fi route, a good game needs to look presentable.
Would you go out in a stained old tracksuit from 1975? As is the case in realms of human
interaction, appearances matter quite a bit. Also, while the user can switch off the audio,
they cannot do so with the graphics.

If you're sure you need cartoony or otherwise competitive graphics of the traditional
kind, befriend some graphic artists. If you can afford it, pay them. If not, promise them
exposure. Be nice and talk them into it with numbers; show the artists magnificent ways
to boost their portfolios. Visit Behance.net and other online portfolios to find what you
need. Never stop at one potential artist. Send dozens of e-mails if need be.

You can also make games without graphics, bypassing the possibility for this pitfall
altogether. Think abstract action games, where the graphics are generated in-game.
Digital photography is an awesome way to create atmosphere for visual novels.

The reason there are not many titles available to list with the Ugly Date Syndrome is
simply that most developers take the illness seriously. Well, I could mention Superman
64 for the Nintendo 64 here, as well as Gods and Generals for Windows, a truly atrocious
display of indifference for the graphical abilities of the PC.

But no, Minecraft doesn’t fit the list: it does have a clumsy aesthetic, but it works
while being charmingly retro. Legions of bearded hipsters agree: that’s part of a game’s
overall appeal.

The Wrong Game Engine Issue

The developer chooses a game engine not really suited to his or her grand idea
(and notices this after weeks or months of work).

The most important choice you make as an indie games entrepreneur is the choice of
game engine. Look for the engine that best suits the genre of your project. Make sure other
developers working in the same genre have used the same tools you have your eyes on.

CHAPTER 1 " GETTING READY!

Don’t take any game engine developers’ promises as gospel. The engine you're
interested in must work with your concept today. Don’t wait for this or that version
(that may or may not come out in the future). If an important platform isn’t being
deployed to the moment you purchase the engine, forget it. If that important feature
that makes or breaks your game isn'’t there, neither should your money. While freeware
engines often have a passionate community around them, they may not be getting very
many donations to spur them on into the future.

The Prequel Syndrome

The developer ignores all criticism and forges ahead in an intellectual vacuum.
The result is what happened with a well-known sci-fi movie prequel trilogy
(with laser swords in it).

Not all criticism is intended to help you. But not all criticism is trolling. You need
to consider just one thing: is the criticism constructive? If the answer is yes, you must
toughen up and start thinking of ways to incorporating the input into your project to
some degree. Good ideas give your game wings.

There are many ways a developer can receive feedback. Start with Steam Greenlight
Concepts and IndieDB to name just two. Get a few presentable screenshots of your game
in there. Spam these links to your friends. Create awareness. When you have something
truly exciting to show the world, create a trailer video of your game. A video is the best
way to promote your product. It’s cheap and cross-platform, reaching way beyond
desktop computers, all the way to pretty much any mobile device out there. Besides
Steam and IndieDB, host your video on big video sites, such as YouTube and Vimeo.

Ask for feedback in your videos and messages to potential customers.

The last stage before release is to get in touch with the press. Approach the
publications geographically closest to your operation first. This way you may draw some
feelings of camaraderie from the journalists and thus keep you going. Then take on the
world. You need a good video trailer of your game at this stage with ideally a lot of views.

The No Testing Needed Approach

The developer hopes his or her own skill level is the perfect measuring stick of that of
the overall population’s.

The thing is, you may not share the reaction times and brain power of the good
customers at large. In case of more cerebral games, keep your puzzles logical and at least
somewhat intuitive. Try to keep the difficulty level even throughout all of your games,
apart from the slight upward curve everyone expects. There’s nothing like an overtly
difficult level 4 to make people frustrated enough to stop playing your game altogether.
Take the horrible nest level in the mega-hit Alien: Isolation from 2014. Loading a saved
game every three seconds or so isn’t very entertaining, no matter how great the rest of the
game is.

Consider releasing a demo or a free beta of your blockbuster with built-in feedback
capabilities. At a minimum, play your games with someone other than your tortoise
and/or goldfish.

CHAPTER 1 " GETTING READY!

Perfectionism Quest

The developer continues to hone his or her product indefinitely, never wrapping up
the development process. Eventually the project is shelved indefinitely.

As an indie, you rarely have deadlines etched on any stones. This can be problematic
when it comes to actually delivering a product. Perfectionism Quest is simply the antithesis
of The Motivational Hole. You can always allocate too many—or not enough—time on a
product and sabotage it in the process.

If you are called a “perfectionist” by people who know you well, you may benefit
from taking this scenario seriously. Once your product meets these minimum
requirements for going on sale, any further work on it is simply unnecessary.

e Competitive audiovisuals
¢ Working game mechanics
e Alasting challenge

e A completed testing phase

No developer can release a perfect product, especially as their first release.
Remember, updating software products is trivial in these times. You can and should
always be prepared to release frequent updates to your game—and/or make a sequel!

A Programmer’s Mind

The developer’s head is full of exciting new concepts for video games. Why should
only the original project take all their resources? They can work on a little something
on the side too!

While it’s great to have a flourishing creative mind, sometimes you just have to resist
the urge to start another game project when the original is not complete. In a worst-case
scenario, working on multiple projects confuses the developer so that eventually they can’t
really tell which is the one game they should be focusing on. This is all to the detriment of
the developer’s list of completed titles.

Draw the line between your learning phase and your first serious game. While
learning the ropes of video game making, you obviously shouldn’t try to turn every
tutorial file into a finished product. However, in the context of creating your very first
serious game, you should resist the urge to start work on games B, C, and D. If you a
drawn to experimenting with certain new elements, why not incorporate them into your
original project?

Let’s say your first release will be a top-down racer game. Suddenly you feel like
some on-screen violence. Should you start a tank-based shooting game on the side?

No. Just add a few bonus weapons into your original racing game to satisfy your needs for
projectile weapons—and get back to work.

CHAPTER 1 " GETTING READY!

In Closing

You should now have an idea about which factors contribute to a marketable video
game. You are also aware of the main types of job assignments in the industry as well

as the most common pitfalls facing indie developers. The next chapter deals with some
historical game creation tools, giving you an idea of how the industry has developed over

the decades.

CHAPTER 2

Game Engine Museum

History is a gallery of pictures in which there are few originals and
many copies.

—Alexis de Tocqueville

Modern game engines are far from being the only ones. Far, far in the history of mankind,
some noble individuals attempted to bring the same ease of creating games to more
technically limited systems, such as the Commodore 64 and other 8-bit wonders. You'll
now take a look at some of these archaic pieces of software, presented in this chapter in
chronological order.

To qualify for this chapter of the book, a software package must include all the
tools needed to create at least a relatively presentable game. Also, the end result must
be a game that is playable without any additional software installed on the end user’s
computer.

The Quill (1983) by Gilsoft

Interactive fiction (i.e., text-based adventures) was a big thing in the late 1970s and early
1980s. As it happens, almost all major 8-bit platforms had a conversion of The Quill by
Graeme Yeandle, a renowned game developer in his own right. Being a hit product and
having text as the only element to work with, the software was eventually localized into
Swedish, French, and other languages. Not just a tool for the general public to fool around
with, The Quill was chosen as a main development tool by many a commercial game
developer. Some 450 commercial titles were created with the system before the genre of
interactive fiction fizzled out.

Pinball Construction Set (1983) by Electronic Arts

While perhaps a simplistic framework by today’s standards, Pinball Construction Set
(PCS) does qualify as a bona fide game engine (see Figure 2-1). Even though the scope

of what types of games could be achieved with it is obviously limited, what it did it did
well. In addition, you could distribute your pinball tables as stand-alone releases without
relying on the editor software. Also, PCS was probably the first video game creation
software with markedly realistic physics.

© Robert Ciesla 2017 11
R. Ciesla, Mostly Codeless Game Development, DOI 10.1007/978-1-4842-2970-5_2

CHAPTER 2 "' GAME ENGINE MUSEUM

HE® 4 ND A

Ll ET

Figure 2-1. Pinball Construction Set had a spartan but functional interface

Originally released on the Apple 2, PCS found its way to the IBM PC, Commodore
64, and Atari 8-bit computers. Created by former Apple employer Bill Budge, the concept
of the program was simply to allow users to create their dream pinball machine on a
desktop computer. You did this by dropping elements of such a machine on a vestigial
representation of a stripped-down coin-hogger. A variety of bumpers, flippers, and other
such gadgets were at one’s disposal. In 1983 the intuitive user interface was very well
received and contributed quite a bit to the software’s popularity.

Adventure Construction Set (1984) by
Electronic Arts

In 1984, just two years into the business, Electronic Arts (EA) was but a thirsty little
games house. It was during the 8-bit era’s apex when EA released a revolutionary piece
of software called Adventure Construction Set, commonly known simply as ACS

(see Figure 2-2). The second in the series of EA construction sets, ACS was an ambitious
undertaking by Stuart Smith. The product went on to influence countless game
developers, especially in the role-playing game (RPG) genre. ACS did quite a bit to build
EA into the behemoth it is today with its $7 billion in assets.

12

CHAPTER 2 "' GAME ENGINE MUSEUM

' "GARDEN OF PERIL

Figure 2-2. An Adventure Construction Set demo game on an Amiga computer

EA’s contributions to early game-making magic are split into several categories of
assets, including world map, creatures, and pictures. You can assemble relatively large
tile-based adventures in whatever genre of RPG you're into, whether it’s fantasy or sci-fi,
thanks to the customizable resources. If for some reason you get tired of crafting your
masterpiece and can’t wait to finish the damn thing, Mr. Smith provided a feature called
auto-construct. By specifying a few parameters, you could delegate your unfinished RPG
game’s fate to your computer and get a ready game in an instant. Ideally, game engine
developers of the future will revisit ACS for this time-saving and amazing feature alone!

Although not visually exciting, ACS can output some rather engrossing RPG
entertainment. Its legacy is clearly seen in several current game engines, such as the
entire RPG Maker series.

Garry Kitchen’s GameMaker (1985) by Activision

Not to be confused with Mark Overmars’ Gamemaker, Garry Kitchen’s GameMaker
(GKGM) was a set of tools that provided a programming-free way of crafting a multitude
of games for several platforms (see Figure 2-3). Although the bulk of Mr. Kitchen’s
expertise clearly went into the Commodore 64 version, his GameMaker was released also
for the IBM PC and the Apple 2.

13

CHAPTER 2 "' GAME ENGINE MUSEUM

Figure 2-3. Garry Kitchen’s GameMaker game running on a Commodore 64

GKGM was split into several specialized tools, each assigned to a unique task.

In addition to the main editor program that worked in an uncomplicated variety of the
BASIC language, you had SceneMaker, SpriteMaker, MusicMaker, and SoundMaker to
create all the various assets for your projects. The software definitely took advantage of
the then-impressive audiovisual capabilities of the Commodore 64. Clever use of

the provided audio editors, in particular, resulted in commercial-quality sound.

This component was sadly lacking from the IBM PC and Apple versions of the software,
as they did not natively include the means to produce impressive audio.

Garry Kitchen’s GameMaker is honestly an impressive piece of software. Fans of the
retro aesthetic could do a lot worse than load up a copy on their (emulated) Commodore
64 and get busy making their own little titles. Also, the software provided a delightful
alternative for chiptune composers to work their old-school musical magic with.

Shoot-’Em-Up Construction Kit (1987) by
Sensible Software

Shoot-"Em-Up Construction Kit (SEUCK) is a notorious yet legendary piece of software
for the Commodore 64, Amiga, and Atari ST computers (see Figure 2-4). In theory, you
could create near-commercial-quality games with remarkable ease. Trouble was, all

of them had the same mechanics. There were no upgrades for your ship, dragon, or
plane. You shot at things. Things shot at you. You could have either a constantly scrolling
playfield or one where the player pushed the screen forward. You had the option to
change the title screen, and that was it.

14

CHAPTER 2 "' GAME ENGINE MUSEUM

Figure 2-4. A SEUCK game running on an Amiga computer

Like some famous screwball once said, “If you gaze long enough into an abyss, the
abyss also gazes into you.” In the case of the typical SEUCK game, it’s a lone score meter
in a horrible font staring deep into the player’s soul, accompanied by some grating sound
effects and searing pangs of existential suffering.

While working in SEUCK is quite effortless, the games created with it are often
a painful experience. Game reviewers at the time used the expression SEUCK-like
as a seriously derogatory term when reviewing simplistic shoot-’em-up games that
began flooding their offices in the mid-1980s. Also, the 16-bit version of the software
was actually more sluggish and its output less presentable than the one from its 8-bit
counterpart. No mean feat.

Ideally, game engine developers have learned one lesson from SEUCK: don’t force a
monotonous game mechanic to the users of your product, even if it’s not a multipurpose tool
per se. No game engine should enable the absolutely most clichéd way of doing things and
nothing more. And no, you don’t get any slack even if your product was released in 1987.

However, SEUCK deserves some kudos for being absolutely a beginner’s tool. There
was nothing wrong with the user interface. Drawing and animating sprites with the
program was quite enjoyable. In addition, the software still has a dedicated fan base that
has worked on some visual enhancements for the product, decades after its release. There
are even some annual competitions out there with categories such as “most original
SEUCK game” among others. SEUCK may be quite basic, but it’s certainly not forgotten.

Arcade Game Construction Kit (1988) by
Broderbund Software

A brainchild of one Mike Livesay, Arcade Game Construction Kit (AGCK) provided
Commodore 64 owners with the tools to make polished, if simplistic, action games
(see Figure 2-5). Coming on four mighty floppy disks, the software included all the
relevant tools to create perfectly adequate visuals, audio, and levels. However, you were

15

CHAPTER 2 "' GAME ENGINE MUSEUM

limited to nonscrolling games. You did have the option of using a technique called
flick screen, which changed the room whenever you were at the edge of the screen.

SCORE : 886476080 TOP: 8847886 LIVES:86

Figure 2-5. The Arcade Game Construction Kit was great for creating platform titles

The software was bundled with several games demonstrating the capabilities
of the system. While hardly top tier, they were decent and workable into something
commercially viable at the time.

AGCK was a rather ambitious piece of work and much loved by hobbyists at the time.
Mr. Livesay did very well considering the limitations of the hardware—and the fact that
most Commodore users didn’t have the luxury of working on the machine with a mouse.
Decent joystick-based interfaces are never easy to create.

STOS BASIC (1988)/AMOS BASIC (1990) by
Mandarin Software

Written in part by Francois Lionet of Clickteam Fusion fame, AMOS and STOS are
basically two versions of the same programming framework for two different platforms
(see Figure 2-6). Also aboard the project was one Richard Vanner of The Games Creators
fame, who has since worked on GameGuru, for one.

16

CHAPTER 2 "' GAME ENGINE MUSEUM

Figure 2-6. Valhalla by Vulcan Software, a commercial Amiga game made with AMOS

As you may have guessed, STOS ran on Atari STs and AMOS on the Commodore
Amigas. The extra two years spent on perfecting AMOS meant the Amiga version had
several improvements, mainly in support for the unique audiovisual hardware found in
the Amigas. The work put into STOS and AMOS did probably influence later Clickteam
products, such as The Games Factory and the wildly successful Fusion series.

While they were marketed as beginner’s game-making software, neither STOS nor
AMOS allowed casual users to create titles with commercial viability without spending
dozens of hours knee-deep in BASIC programming—and add-ons. Most often, games
produced with these systems performed shoddily with a low frames per second (fps)
rate. The key was either keeping your projects as elementary as possible or investing
in additional Mandarin Software products. The STOS/AMOS compiler accelerated
programs written with the base software considerably.

Several core editions of Mandarin Software were available. In addition to the
standard AMOS, there was an Easy AMOS for beginners as well as a more feature-rich
AMOS Professional. The Atari side of things got expansions, too, with a slightly different
focus. STOS Maestro attempted to rectify the ST’s poor audio capabilities by adding
support of sampled sound playback to STOS projects. Mandarin also released STOS
Maestro Plus, which featured a hardware audio-sampler cartridge. 3D add-ons were
released for both STOS and AMOS in 1992 to lukewarm reception.

Allegro (1990) by Shawn Hargreaves and the
Allegro Developers

Not a game engine per se, Allegro (an acronym for Atari Low-level Game Routines) is

an API for game development in C or C++ (www.1iballeg.org). Starting its life on the
Atari ST, the software library has been ported to more current platforms. Many games
programmers have benefitted from giving Allegro a go, but mastering the framework is a
learning experience for most. There’s a reason why as of 2017 Allegro is 27 years old and
still going relatively strong.

17

http://www.liballeg.org/

CHAPTER 2 "' GAME ENGINE MUSEUM

Although the API is very capable of most types of video games, it hasn’t been used by
many big franchises. One of the only exceptions is Icy Tower, the long-running hit game
by Swedish developers Free Lunch Design. Icy Tower 2 hit mobile devices in late 2012.

3D Construction Kit (1991) by Domark

The publishers made some grandiose claims with their 3D Construction Kit (3DCK), but
the software didn’t really deliver on them (see Figure 2-7). 3DCK came with an awkward
VHS tape explaining all the wonderful things you could do with it, which only served to
twist the knife. Although 3D was still in an embryonic stage in 1991, game mechanics

are a timeless affair. 3DCK simply offered very little to do. You hovered around sparse
landscapes. You could either collide with objects or shoot at them; at most, you could get
shot back a few times. The software was fine as a rudimentary house-planning tool, but it
offered very little else.

v
S
i
3
S
‘-
‘
'
:

Figure 2-7. The Atari ST version of the 3D Construction Kit demo game

3DCK was released on pretty much every home computer platform of 1991. Based
on a filled-polygon engine called Freescape, the tool ran slower than an octogenarian
with rigor mortis. The 8-bit crowd would completely choke on the engine, presenting
an average screen update rate of a couple of frames per second. The frame rate was
only marginally better on 16-bit platforms. The much hyped built-in scripting language,
Freescape Command Language (FCL), allowed for a decent degree of customization
for the barren proceedings. But not even that could save such a product of limited
possibilities. Again, the included VHS tape didn’t help at all.

18

CHAPTER 2 "' GAME ENGINE MUSEUM

RSD Game-Maker (1991) by Recreational
Software Designs

Not to be confused with Garry Kitchen’s GameMaker, the RSD Game-Maker (RSDGM)
is a charming little suite of tools for the early 1990s PC (see Figure 2-8). Working in

a homely custom resolution of 312x196 (except for the menus, which were ata
then-standard 320x200), RSDGM tools (and games) had a specific aesthetic about them.
They were surely an acquired taste, as not everyone is a fan of blocky visuals and garish
colors. Apparently, the creators (i.e. the Stone family) were!

Figure 2-8. The alluring title screen of Blinky 2 on a 1990s PC

Alot of the games produced with the software had an unpolished look to them and were
mostly enjoyed by kids. This doesn’t mean RSDGM didn’t have its share of hit franchises.

Probably one of the biggest such hit series on the RSDGM is Blinky, which depicts
the various escapades of a dinosaur-like creature. Created (and probably voiced, too)
by Jeremy Lamar, the side-scrolling platformer got a decent amount of exposure in its
heyday in the 1990s thanks to distribution on the AOL platform.

RSDGM was entirely codeless, relying on a mouse-driven user interface at all times.
This was one of the main reasons for its worldwide popularity, in addition to the support
offered for the latest hardware of the early 1990s, such as early sound cards and GPUs.

Although official support for the engine was dropped in 1995, the community behind
RSDGM was rather active until the turn of the millennium. The engine in its entirety had
its source code released to the public in 2014.

19

CHAPTER 2 "' GAME ENGINE MUSEUM

Zillions of Games (1998) by Zillions
Development Corp.

An exotic contender, Zillions of Games (ZOG) works solely in the realm of board games
(www.zillions-of-games.com). As the name hints, you do get an awful lot of board games
out of it. The software operates on a scripting language, ZRE in which one specifies the board,
the rules, the pieces, and other properties of each project. Not exactly beginner-friendly, but it
does get the job done.

Z0G only works with games running on the perfect information principle. This refers
to games where all of the proceedings can be monitored by all of the participants (i.e., there
are no unknown game elements for anyone). Despite its name, zillions of board games have
not quite surfaced yet. Still, some 2,500 games have been made with it. Clearly, a serious fan
base exists for the product.

Interestingly, the software is apparently still supported by the developers,
making this a pretty successful endeavor. Also, a free expansion, Axiom, is available
for all legitimate customers. With this add-on, developers can modify some deeper
characteristics of the artificial intelligence.

20

http://www.zillions-of-games.com/

CHAPTER 3

A Game Maker’s Lexicon:
Level 1

Before moving into the territory of game-making software, you should have a grasp of the
basic terms of the trade. By understanding the meanings behind these concepts, you can
make a more useful comparison of the software packages available. Also, you'll get more
out of game-related forums and conversations.

Some of the concepts mentioned next will be relevant for all video games, while
others will have no bearing on your project whatsoever. It all depends on your choice of
game type. For example, I've yet to hear of a text-based adventure that benefits from a
visual effect called anisotropic filtering. Read on, and feel free to skip all the concepts you
are already familiar with.

General Terminology

Next, we'll go through some select terms of the video game trade followed by a gentle
primer on programming.

4X

In a video game context, 4X refers to a strategy game genre popularized by the likes of
SimCity and Civilization. It refers to the core elements of the genre: eXplore, eXpand,
eXploit, and eXterminate.

AAA

This is a high-budget video game with usually a large team behind it. Think Star Wars
games or the Call of Duty series. As a beginner/indie developer, you probably won'’t be
participating in making AAA titles right away (not that you ever need to).

© Robert Ciesla 2017 21
R. Ciesla, Mostly Codeless Game Development, DOI 10.1007/978-1-4842-2970-5_3

CHAPTER 3 "' A GAME MAKER’S LEXICON: LEVEL 1

Algorithm

This refers to the series of steps needed to solve a problem. A finished game, in short, is
one big algorithm, or rather a collection of hundreds or thousands of them. You solve all
kinds of problems with all kinds of steps, such as implementing user control, graphics,
audio, and so on. Usually, an algorithm refers to smaller problems.

Application Programming Interface (API)

An API is a collection of tools for the creation of a specific type of software. There are
many game-related APIs out there. The most important ones in this context are perhaps
Microsoft’s DirectX and Khronos Group’s OpenGL (see Table 1-1). Most game engines
presented in this book support DirectX, although there are exceptions.

As anew-school indie developer, you rarely need to go very deep with these
technologies, but knowing their basics doesn’t hurt.

How well a game runs on these two APIs depends on the underlying video card in
a system. Most video card manufacturers have full DirectX support in their products.
Unfortunately, the same doesn’t always apply on the OpenGL side of things. See Table 3-1
for a comparison.

Table 3-1. DirectX and OpenGL Comparison

API License Supported Platforms Main Benefits
DirectX Proprietary; license Windows, Xbox Best video card
included with every hardware support
legal copy of Windows
OpenGL Open standard with Windows, macOS, Faster visual output;
some patented parts i0S§, Linux, modern supports all major
PlayStation and platforms apart from
Nintendo consoles Xbox

Each revision of these suites of development tools contains improvements in their
multimedia capabilities, such as more detailed 3D graphics and video playback. The first
version of Microsoft’s DirectX came out in 1995, while OpenGL 1.0 made its debut all the
way back in 1992.

Bits, Bytes, and Binary

Computers and digital devices think in binary notation. This means all information is
stored as Os and 1s. All kinds of data can be created this way. Compact discs (remember
those?) use binary data to store audio. Digital video cameras use binary to store video and
audio. Computers use binary to store and manipulate many kinds of data. The Internet is
a bunch of digital devices stuck together, all generating and interpreting binary.

22

CHAPTER 3 " A GAME MAKER’S LEXICON: LEVEL 1

We, the people, aren’t too fond of binary code. Some of us are, sure, but for the vast
majority it will be translated into something much more meaningful for us to enjoy, such
as a nice graphical view of the system. So, have no fear. We do not deal in actual binary in
the video game business.

A computer system has many layers to it. The highest layer is known as a graphical
user interface (GUI). It's here where keyboards, mice, and visual representation of
information come into play and make all the difference. This is the only layer a player
needs when gaming. It’s from the GUI that the programmers work their magic, too. We no
longer need to type in obscure commands to get things done.

The lowest layer in any digital device is binary code. Actions in the GUI level are
translated to binary for the computer to work with. Again, we don’t need to know how to
create any kind of program in binary. Instead, we'll use a nice graphical user interface for
that, or any other, purpose.

Now, let’s recap.

e A bitis the smallest amount of data a computer can access. It is
either a 0 or a 1. Every file on any type of computer, on the deepest
level, consists of sequences of these two bits.

e A byteis a collection of eight bits. It may signify things like, “What
is the next displayed letter going to be? Isita Wor a C?”

e Example time. Here’s a random bit: 1. Here’s a random byte:
10010101.

The meaning of our two examples depends on the context. Take our random bit
friend (1) and use it in a video game context. You can bet your left eyebrow games use
single bits, too, and not just huge chunks of data. A single bit could donate the answer to
the question: “Is the door open?” Usually 1 means yes; usually 0 means no. If you have a
door in your game, in particular one that can open, this would make sense. This would all
happen out of sight. See, even as a game maker, you wouldn’t necessarily notice you just
dedicated a single bit to this door-business. But your computer would. It knows things.

It may be through the webcam or maybe just the keyboard, but the fact of the matter
is, your computer is observing you.

Chiptune

This is a type of video game music that first emerged in the 1980s. Typically chiptunes
were synthesized in-computer with audio hardware unique to each system, instead of
being recorded from an analog, external source. As the indie game boom came about in
the late 2000s, chiptunes became hip again. There are several free programs for making
this type of music, called trackers, including Milkytracker and OpenMTP, available for
most popular platforms.

DLC/Microtransactions

DLC stands for downloadable content. In the age of high-speed Internet, developers
came up with a concept to make considerable profit out of their product even after the
initial sale. DLC refers to any extra content to a game, such as new maps, characters, or
customization options.

23

CHAPTER 3 "' A GAME MAKER’S LEXICON: LEVEL 1

A related term, microtransaction, refers to smaller in-game purchases of cosmetic or
game-enhancing virtual items.

FPS

This refers to both “frames per second” and “first-person shooter.”

Usually lowercase, fps is the rate at which a monitor displays consecutive images
called frames. These days, 60 fps is considered smooth output. Some game designers even
go for the magical 100 fps. A 3D game usually looks rather dreadful and jittery at anything
below 30 fps. Usually, the frame rate on any machine is mostly derived from the oomph in
its video card. More on this later.

FPS in a game type context refers to the ubiquitous genre of shooting things as seen
from the killer’s point of view. These kinds of games are a dime a dozen. For one, there’s
a huge franchise called Call of Duty out there. We can all thank Doom from 1993 for
this. In my most humble opinion, the Half-Life saga by Valve Software was the last truly
interesting FPS.

MMOG/MMORPG

MMOG stands for “massively multiplayer online game.” It refers to any video game played
en masse on the Internet. These games have anything between a few dozen to more than
a thousand players participating simultaneously. This genre includes titles like League of
Legends and Eve Online.

MMORPG simply stands for “massively multiplayer online role-playing game,” thus
referring to a more specific type of video game genre.

Particles (i.e., Particle Effects)

A particle refers usually to a type of non-resource-intensive graphical object, such as a
drop of water, a snowflake, a spark, or some part of an explosion. Each particle has a set of
attributes, such as life span, direction, and possibly gravitational pull. Particles are cheap
and effective. For one, most of the time they lack an artificial intelligence, making them
fast to execute even in a low-end system. Thanks to this, particles are usually used in large
numbers without much of a slowdown for the system.

Most explosions, injury-related displays of blood, smoke, and other effects are
created with particles these days, as they rarely need to be hand-drawn anymore. The
public seems to prefer it this way. This is a matter of taste, of course. Particles can be
used in both 2D and 3D games. You'd think developers would make sure each particle
conforms to a rigorous scientific simulation of physics. Meh, most of the time particle
speed and direction are randomized. Still, it looks good.

Ping
Depicted usually in milliseconds, ping refers to the lag in network connections. This is a
central concept in multiplayer games and Internet use in general. The smaller the ping,

the less delay there is in interacting in a network. Player connections with a ping of less
than 30 ms or so is considered a playable network.

24

CHAPTER 3 © A GAME MAKER’S LEXICON: LEVEL 1

Pixel

A pixel is the smallest graphical unit on a display screen. This translates to a tiny colored
dot. Everything you see on your display device consists of pixels.

Polygon

A polygon in a computer graphics context refers to a triangular geometric shape. This
shape, for reasons we need not get into now, is the fastest type of elementary shape a
computer can draw. All 3D graphics consist of polygons. The fewer polygons there are,
the less complex the object, and the fewer resources it needs to run smoothly. You can
create any object with a polygon, including circles, arches, cars, and people.

A 3D video game would look wonderful if all objects in it would be highly detailed
and consist of, say, tens of thousands of polygons each. Unfortunately, there is always a
trade-off between detail and speed. The more polygons per object, the more detail, but
the slower the output.

Thankfully, not all objects need to be high in polygons. Objects far away in the
distance in a scene get away with being quite low in the polygonal count.

Now, a “low-poly” object means one with a modest amount of detail (think of a
single distant skyscraper), while a “high-poly” object (think of a realistic human face)
can withstand scrutiny up-close and personal and still look presentable (see Figure 3-1).
Some 3D developers choose a low-poly look for their whole games for aesthetic reasons
or to seriously lower their games’ hardware requirements.

Figure 3-1. A low-poly object depicting the amazing aesthetics of a handsome gentleman.
Also, a high-poly fox.

Pong

Pong was the first mass-produced sports video game. Introduced in 1972, Pong featured
two paddles on the side of the screen, bouncing a square “ball” between them. It was
written by Allan Alcorn.

25

CHAPTER 3 "' A GAME MAKER’S LEXICON: LEVEL 1

Primitive
This is a rectangle, a circle, or a square (or maybe even a triangle). As you may have

gathered, primitives in computer graphics mean simple two-dimensional shapes. They
have their uses (see “Particles”) and are quickly drawn by even the slowest of video cards.

Resolution

Resolution depicts the amount of pixels available at once on a display, in other words,
the screen size. Some common resolutions include Full HD (1920 pixels wide, 1080
pixels high) and 720p (1280 pixels wide, 720 pixels high). The larger the resolution in

a game is, the less jagged the edges are and the more viewing room there is, but this
comes with a strain on the video card. Find a good compromise between screen size and
computational demands on the average system.

Your basic retro game runs fine in the classic resolution of 1024x768 or less. A game’s
worth is not in its resolution. The original Atari 2600 systems ran at a modest 40x192
pixels, and that system lived from 1977 to 1992.

Also, resolution often refers to the size and detail level of graphics in 3D games.
Higher-resolution textures are impressive and more detailed but require more resources
from the system.

Shader

A shader is simply a program-within-a-program that makes the computer draw
something interesting on the display screen. Shader programs are usually executed
directly on the video card, instead of your computer. This allows for offloading of some
pretty complex tasks onto those powerful video cards of today. Video cards from, say,
2000 and onward are actually very much like miniature computers. As such, they are still
under-used.

A common shader may, for example, change the entire game to black and white or
to sepia. Shaders can also create psychedelic backdrops or realistic mountain vistas. You
name it. There are hardly any limits to how a shader can change the visuals in a game. Of
course, the more complex the shader is, the more resources it'll take from the system.

Most shaders are written in GLSL or HLSL, which are programming languages
designed for this use. So, in addition to whatever language the game itself is written in,
you'll find snippets of GLSL (or a similar language) here and there.

The first mention and use of a shader is from 1988 by the good people of Pixar.

Shovelware

Not related to Steam in any way whatsoever, this term simply refers to low-quality
software or bundles of said type of software. The term originates in the 1990s CD-ROM
craze, when large quantities of some rather atrocious programs were getting shoved onto
the new-at-the-time medium. A single disc could indeed hold hundreds of oftentimes
dire pieces of software.

26

CHAPTER 3 © A GAME MAKER’S LEXICON: LEVEL 1

Sprite

Simply put, a sprite is a small and usually moving graphical representation of something
in a game’s universe (see Figure 3-2). This term is usually used in a 2D context. In a car
game, each car is a sprite from a developer’s perspective. In a space-themed game, the
ships and asteroids are sprites.

Figure 3-2. A single sprite depicting a robot

Instead of making changes to the entire screen, which is not necessary most of
the time, you work on a sprite level to keep the momentum of the game going in order
to save a system’s resources. Most of the time our little sprites don’t take a lot of video
card memory. A much sillier approach would be to draw the tens of millions of various
possible states in a game with full-screen visuals only.

The term sprite originates from the mid-1970s. It was made popular by Atari with its
2600 console, and it has been in use ever since. Who are we to complain?

Steam

This generally refers to a major online software distribution service owned by Valve
Corporation, the creators of the Half Life franchise. While specializing in Windows games,
it also serves Mac and Linux customers, as well as providing other types of content. In
2015, Steam provided 15 percent of the global PC game sales for the year. The service
holds roughly 130 million registered user accounts.

27

CHAPTER 3 "' A GAME MAKER’S LEXICON: LEVEL 1

Rendering and Prerendering

To render means to draw something using automated computer software dedicated

to that function. To render a scene refers to the process of drawing all the various
objects, lights, and shadows included in one area of a level or map. Before rendering,
programmers and 3D artists tell the computer where all the objects are to be located,
what they look like, and what they’re up to. This is usually done with separate graphics
tools, such as Blender or Maya 3D.

Rendering can be in real time, meaning all of the position and other data associated
with the various objects is calculated on the spot, as you move your character around.
This can of course be resource intensive with complicated scenes, but it's common in
avideo game context as it provides the greatest degree of flexibility in the overall visual
experience. Real-time rendering puts the user in the greatest amount of control. Plus
ultra-powerful video cards take care of this type of rendering.

Prerendering, on the other hand, refers to the process of generating (usually)
complicated and life-like images before the user has any interaction with them. An
example of a video game with mostly prerendered graphics includes the Myst series by
Ubisoft. Prerendered games extract very little resources from a system but provide the
user with quite a rigid visual experience, as all paths to be taken are predecided on by
the game team, and not the player per se. There’s no rotating the view usually, and no
bobbing your character’s head around with the mouse. You simply choose various paths
the programmers have laid out before you and watch the animation unfold.

Not only is prerendering stale in the interaction and immersion departments, it’s
also the least space-saving method of providing a game. Early full-motion video (FMV)
games were often delivered on many, many compact discs or even DVDs. Plumbers Don't
Wear Ties, anyone? For the love of video games, don’t look it up. Thank goodness those
times are over.

Understandably, prerendering is mostly used in digital cinema (and related fields)
where user interaction is nonexistent.

Resources

This term refers to the total number of assets a computer system has at its disposal. The
computer consists of several different components, which combined form its overall
processing ability. These components include the central processing unit (CPU), random
access memory (RAM), video card, and hard drive (or drives).

Modern game software is probably the most resource-hungry type of program
available, aside from high-definition video processing. When designing games, you want
to make sure you require only the minimum resources from the buyer’s hardware. Cut
down on eye candy whenever you can without looking amateurish. Either do it well or
don’tdoitatall.

Sandbox Game

This is a genre of video game where the player enjoys considerable freedom in his or
her in-game activities. Instead of offering a rigid gameplay framework, players are pretty
much free to do whatever they want in any order (within the confines of the game’s
universe). Think The Sims or Grand Theft Auto series.

28

CHAPTER 3 " A GAME MAKER’S LEXICON: LEVEL 1

Skybox

A skybox refers to a method of mapping four or more 2D images to form a coherent,
realistic view of a sky, and possibly some unreachable objects, such as distant buildings,
over the player in a 3D environment.

Vertical Sync (V-sync)

This is a technique to avoid screen tearing, which is an unpleasant separation of the
parts of a display screen. Screen tearing sometimes occurs when a system is moving large
amounts of visual data around, such as complicated 3D scenes, and the hardware isn’t
really keeping up.

While screen tearing is never pleasant, vertical syncing in some games can seriously
slow things down. Some video cards just don’t get along with certain games. If your
update is slow, try switching off the v-sync.

WASD

This is probably the most preferred control method of video game characters on a
computer keyboard in many types of games. It simply refers to W for up, A for left, S for
down, and D for right.

The Fundamentals of Programming

Now it’s time to up the ante, if ever so slightly. Let’s proceed to take a look at the very
basics of the fascinating subject of programming, shall we?

Programming Language

A programming language is a formal constructed language designed to communicate
instructions to a computer. Programming languages can be used to create programs, such
as games, or to otherwise control the behavior of a computer system on a deeper level.

In other words, when you're programming, you are telling your computer to perform
some very specific tasks, instead of just “open Firefox” and so on. Different programming
languages usually have a different set of unique commands and syntax and are largely not
interchangeable with one and other.

The software that runs a programming language is called a programming environment
or an integrated development environment (IDE). A lot of this type of software is free these
days, and quite a few support more than one programming language.

The game engines discussed in this book are all far more than rudimentary IDEs.
Most of them feature extensive built-in tools to help a developer reach his or her vision in
a quicker fashion. If you want to experiment with a more barren IDE, perhaps trying out
various programming languages, Eclipse would be the most popular choice. It is available
free of charge, after all.

29

CHAPTER 3 "' A GAME MAKER’S LEXICON: LEVEL 1

There are dozens of various programming languages in the world today. New ones
keep appearing on a sporadic basis. A lot of them are designed for many a useful purpose
such as, indeed, making games. However, some languages are nothing but excessively
brainy programmers’ attempts at levity. Take brainfuck, for example. Commands are
issued in plus signs and other unintuitive markings. How about Ziim, which only accepts
arrow symbols pasted all over the screen?

These days it’s uncommon for a programmer to create a game from the ground up
all the way to a finished product just by typing in obscure commands, although this was
the de facto method of game making in the past (think the 1970s and early-to-mid 1980s).
Nowadays such an approach would simply be too time-consuming and rarely result in
anything more than tic-tac-toe. There’s no need to reinvent the wheel.

So, ever since the 1980s, developers have used dedicated development tools to create
games. These tools include map, graphics, and audio editors, among other such utilities.
Most of these were meant for the design team’s internal use only. There were exceptions,
but serious game-making tools for the public started appearing in the 1990s. In recent
years the trend has, luckily, escalated. Creating a visually complicated modern video
game from the ground up would be a form of insanity. That’s where the game-making
tools come in. But before we get to the game engines of the day, let’s explore the theory of
programming a little further.

How to Talk to Your Computer

There are three stages a software project must go through to end up as an executable file.
Often all steps but the first are automated.

1. Source code (or project file) in a programming language
(or game engine file format)

2. Assembler code
3. Machine code

You start with the programming language or game engine environment of your
choice. You type a listing and/or use a mouse-driven IDE to create your project. Some
of the game engines in this book are visual in nature and require no coding whatsoever.
The product of this stage (i.e., the source code) is then turned into assembler code by
specialized software known as a compiler. All game engines feature a built-in compiler
of varying quality, by definition. At this level the code is still understandable by a lot of
programmers.

The assembler code is then turned into machine code. Now all but the most nihilistic
eggheads run away. Machine code is not compatible with most biological lifeforms.
Finally, this horrific machine code is executed by your computer, and your potential
customers get a game they can launch at their leisure.

30

CHAPTER 3 © A GAME MAKER’S LEXICON: LEVEL 1

High-Level vs. Low-Level Languages

A high-level programming language is usually the most intelligible kind to human beings
and far removed from the clunky and often incomprehensible machine code. The focus
of high-level languages is on usability and the ability to deploy to several platforms.
Examples of high-level languages include Java, C++, and Python.

A low-level programming language forsakes much of the ease of use and cross-platform
support for performance. Examples of low-level languages include the various versions of
Assembler. The lowest-level language that exists is the dreaded machine code.

Compiled vs. Interpreted Languages

A distinction in implementation can be made with all programming languages. That
is, they are either compiled or interpreted. In general, the lower the language level, the
more likely they are using a compiled approach. This usually provides the best level of
performance and security for most applications. Assembler code is almost universally
delivered in a compiled form, as is C and C++, among many others.

An interpreted language, on the other hand, doesn’t compile the source code into
machine language prior to running the program. It merely interprets the code on the fly.
Interpreted languages usually result in less efficient software and may not be optimal for
audiovisually rich video game delivery. Interpreted languages also present some security
concerns in the online environment as malicious code can be injected mid-execution.

Some languages, such as Java, are somewhere in the middle of the spectrum, as they
use both compiled and interpreted components.

Control Flow: Nonstructured vs. Procedural Programming

As I have established, the syntax between programming languages varies considerably.
However, there are some key elements that are shared by them all. Control flow
statements are used to control the direction of code execution. With these statements you
can stop the linear flow of the program and run parts of it at will. The most traditional
form of control flow includes the use of user-defined labels (or computer-defined line
numbers) and a GOTO command.

A well-implemented control flow is a must in serious programming projects. In the
early days of coding a so-called nonstructured approach was popular. Nonstructured
languages like BASIC used control flow commands (like the aforementioned GOTO) to
navigate a code listing. This linear style of programming often resulted in spaghetti code,
a term referring to confusing and inefficient code. It fell out of popularity as less linear
and thus more robust approaches were developed. Virtually all modern programming
languages are based on a more advanced paradigm, called procedural programming. This
approach uses procedures to implement easily readable and, to an extent, reusable code.

Read more on these and other important programming elements in detail in Chapter 10,
“A Game Maker’s Lexicon: Level 2"

31

http://dx.doi.org/10.1007/978-1-4842-2970-5_10

CHAPTER 3 "' A GAME MAKER’S LEXICON: LEVEL 1

Procedures

A procedure (known in modern parlance as method) is basically a small program within a
program that executes any type of task, from playing a sound effect to closing a program
to displaying the number of player 1’s lives. Procedures can be called as many times
as needed, whenever needed. When a procedure is done executing its tasks, it returns
control to the main portion of the program. Using procedures is a much more effective
way of programming than the old-fashioned linear (i.e., nonstructured) style.

Although newer languages do support the older approach, it’s actually considered
a bad practice to use traditional control flow statements as it does cause cluttered code.
Instead, it’s a solid idea to use procedures to perform tasks whenever possible.

A Few Lines of Code

Now, just like you can communicate the same ideas with more than one human language,
you can also do so in computer languages. You issue commands, in a specific syntax, to
achieve whatever results are needed. You'll next take a gander at the act of putting the
same five words on the screen in three different programming languages. These will be
presented in order of increasing complexity, as shown in Listings 3-1, 3-2, and 3-3.

Listing 3-1 shows a rudimentary program written with the Commodore 64 BASIC
language from 1982. Notice the use of line numbers and a control statement, GOTO.

Listing 3-1. Written with the Commodore 64 BASIC language from 1982

10 PRINT "Your favorite movie is Zardoz"
20 GOTO 10

Listing 3-2 shows the same program in generic C++ code. The print command is
called printf in this language.

Listing 3-2. Same Program in Generic C++

#include <stdio.h>
int main(void) {

printf("Your favorite movie is Zardoz");
}

Listing 3-3 shows the same program in the pre-Windows Assembler language on the
PC. Don’t worry, game developing in 2017 is nothing like this.

Listing 3-3. Same Program in Pre-Windows Assembler Language

main proc

mov ah, 9

mov dx, offset hello

int 21h

retn

hello db 'Your favorite movie is Zardoz$'
main endp

end main

32

CHAPTER 3 © A GAME MAKER’S LEXICON: LEVEL 1

Variable

A variable is an arbitrary, often user-defined, label for a storage location of meaningful
data. Manual declaration of variable types is not needed in many of the game engines
featured in this book. However, you should understand how they work as they are a
fundamental concept in any kind of software development.

The most common examples of variables in a game context include object
coordinates, typically designated as x and y. These simply refer to an object’s position
on-screen. Other game-related variables might include the score count, the number of
enemies destroyed, and the amount of time left.

The tiny example in Listing 3-4 might shed some light on how most variables work.
Now, all variables need a name, which you pick (presented here in bold), and a variable
type, which determines the allowed contents of data in that variable (i.e., whether it’s a
bunch of text or numbers).

Listing 3-4. Two Variables, first_ name and player_one_lives, as Defined in C++

char first_name[] = "Peter";
int player_one_lives=3;

Here, first_name is a type char variable, which tells the computer this variable
can consist of alphanumeric data only. You cannot, for example, perform arithmetic
operations with variables of this type.

The int before the second variable is short for “integer,” as in a type of number,
which lets the programming environment know the variable must consist of numbers
only. Arithmetic operations are fine between integers. If one tried forcing letters into
the variable player_one_lives, you'd get an error. Don’t confuse computers. They are
terrible at guessing.

Variables are declared differently in different programming languages. In many
types of BASIC, for example, you don’t need to declare the variable type. It is done
automatically based on what information you input. For example, the statement
MYVARIABLE1="HAHA" assigns alphanumeric data, while MYVARIABLE2=3.14 assigns
numeric (i.e., integer) data into the respective variables.

Now, let’s recap.

e Avariable is a small amount of RAM, named by the programmer,
for storing meaningful data (number of player 1’s lives, etc.).

e Variables need both a type (number/integer, text, etc.) and a
unique identifier (e.g., player_one_lives).

Object-Oriented Programming (OOP)

This is not a buzzword, and every budding game producer should get acquainted

with it. First introduced in 1983 with the C++ language, the OOP methodology is now

a programming staple. I'll now go through some of the basic concepts in OOP as they
pretty much apply to most, if not all, modern software design. Most current programming
languages and game engines are object-oriented in nature.

33

CHAPTER 3 "' A GAME MAKER’S LEXICON: LEVEL 1

OOP builds on the aforementioned procedural programming paradigm. In procedural
programming, data (i.e., information) and procedures (i.e., the actors on that information)
are kept separate. In OOP, they come together in the form of objects. This allows for more
complex programs with less code. Well-designed OOP projects offer more reusability than
those created with the procedural approach.

An object-oriented program doesn’t automatically provide any wonderful graphics
or rousing soundtracks for a game. All that is to be added later by additional, increasingly
complex programming and the integration of audiovisual data. Before you get to the part
where realistic 3D jets fly all over the screen, you have to organize the data. This goes for
every game. At the very core of every program there’s the data organization process.

It needs to be logical so that other team members, possibly joining your team at a later
time, understand what’s going on.

Classes and Objects (i.e., Classes and Instances)

Object-oriented programming refers to an approach where the organization of meaningful
data is the first priority. Now, there are two fundamental concepts in any OOP-based
language: classes and objects. Think of classes as the blueprints for any logical structures
in a project. There are objects and classes in any OOP-based program. All objects receive
the same basic features of their respective classes. When an object is created based on
a class blueprint, we refer to this act as instantiating a class. An object is therefore an
instance of a class.

Now, say you are working on a program with cars in it. You probably should have
a class called Cars. That would only make sense. Why would you call it anything else?
Within this class, some basic properties (i.e., variables) are defined to be included with
every car based on this class. For the sake of brevity, let’s keep this list short. We'll have
two properties: top speed and color. The Cars class contains instructions to keep the top
speed at 100 mph for all automobiles. Also, for some unknown reason, the color is to be
green for all of the automobiles by default.

Inheritance

Now, say you want a more luxurious line of automobiles. Let’s make a new class for
them. But wait, there’s no need to create a new class from scratch. You can just make a
subclass from the Cars class and call it something else, say, a SportsCars class. All the
data programmed into the original Cars class is now in your new class, just like that. But
for these faster cars, you'll upgrade the top speed to 150 mph. You'll let that be the only
difference between your two classes.

This is known as inheritance. To reiterate, the original Cars class is now a superclass
to the SportsCars class. The new SportsCars class is a subclass of the Cars class.
Through inheritance, a programmer can reuse large amounts of class data to spawn new
types of objects.

34

CHAPTER 3 © A GAME MAKER’S LEXICON: LEVEL 1

Methods

A method is simply a procedure in an OOP context. Methods therefore refer to actions
invoked from within an object. Such actions might include displaying or manipulating
the various properties of your automobiles.

And there you have the basic building blocks of OOP thinking. You include only
meaningful data in classes. You organize the data so that both computers and people can
make good sense of it. You reuse data where possible. It’s a beautiful paradigm.

Abstraction and Encapsulation

Data is compartmentalized in the OOP paradigm; information is shared on a
“need-to-know” basis. Not all information needs to be displayed to the end user

(i.e., gamer) or even all members of a programming team. This approach translates to
two more core concepts central to OOP: abstraction and encapsulation.

Abstraction refers to the approach of providing users with only pertinent
information. In a game-related context, this might mean things such as the score count
and the number of lives for player 1. There simply isn’t a need to provide the gamer with
exact numeric x and/or y coordinates of his or her spacecraft. The coordinates of this
spacecraft can be simply represented by visual means.

Encapsulation works on a deeper level. It refers to the process of combining relevant
data sets of variables (i.e., properties), methods (i.e., procedures), and other definitions
into a class. A class can contain either public or private data. Private resources, unlike
public data, are not accessible from actors outside of a class. For one, this prevents rookie
members of a development team from messing up a project. The components (i.e., classes)
in a program are more or less interconnected. By protecting the contents of a class, all other
classes dependent on said construct are less likely to end up broken. The keywords of public
and private in an OOP context are commonly known as access modifiers.

Let’s focus on our little example of the automobile factory and imagine the powers
that be decide to only ever manufacture green automobiles. Therefore, the variable
(i.e., property) called color can be safely set to private as this will never need to be
anything else. It simply doesn’t need to get altered, ever.

Now, just for the sake of being tangible, let’s take a look at some actual object-oriented
code in Java with the automotive concept at its core. Listing 3-5 defines a class, two attributes,
and a single method. Can you tell which element is which? A lot of modern game-making
software doesn’t require much of this, but learning some essentials never hurts.

Listing 3-5. Cars Class in Java

class Cars {

public:

int top_speed="100";

int Top_Speed Query() { return top_speed; }
private:

string color="green";
}

35

CHAPTER 3 "' A GAME MAKER’S LEXICON: LEVEL 1

Next, Listing 3-6 defines the SportsCars class for the more luxurious vehicles. This is
a new, derived class from the Cars class.

Listing 3-6. SportsCars Class

class SportsCars: public Cars {
public:
int top_speed="150";
int Top_Speed Query() { return top_ speed; }

Now, let’s reiterate.

e OOP is an approach where the organization of meaningful
data is the first priority within a software development project.
Inheritable data sets, called classes, are at the core of this system.

e In OOP parlance, variables are referred to as properties, and
procedures are referred to as methods.

e C(Classes are encapsulated sets of data that can contain both private
and public data assets.

Common Programming Languages: A Primer

To further enhance your developer parlance, let’s take a look at some historical and
current programming languages. They all vary in complexity, power, and purpose.

BASIC

Created all the way back in 1964, BASIC stands for Beginner’s All-purpose Symbolic
Instruction Code. The language was devised to teach computer use for those not studying
mathematics or computer science. Most computer manufacturers have implemented
their own form of BASIC on their hardware. These variations include Atari BASIC,
Commodore BASIC, and Q-BASIC for IBM-compatible PCs. Often, as was the case with
the Commodore 64, BASIC was included in the computer’s hardware, being available
immediately after the computer was switched on.

Even in the past few years, some new variations of BASIC have been developed.

The most modern variation of the language is probably Microsoft’s Visual Basic.

A great beginner’s language, BASIC in its variations may not be the ideal language for
serious video game development, being somewhat clumsy and lacking in performance.
Nonetheless, it is the most widespread programming language in the history of the
personal computer, and it did wonders to educate people in all matters computer. And
for this we may thank John G. Kemeny (1926-1992) and Thomas E. Kurtz from Dartmouth
College.

36

CHAPTER 3 " A GAME MAKER’S LEXICON: LEVEL 1

C

Perhaps the most influential programming language of all time, C is a so-called
procedural language. This means a program written in C consists of various subprograms
(i.e., procedures) that are executed when necessary, making for efficient, reusable code.
A simple example of a procedure in a C-based game would be one that displays, say,
player 1’s name.

C was developed by Dennis Ritchie (1941-2011) sometime between 1969 and 1973
while working at AT&T Bell Labs.

C++

Devised in 1978, C++ is one of the most powerful multipurpose programming languages
out there. Known mostly for its high-performance output, this is the language for many a
serious computer scientist and video game developer, as well as many hobbyists.

C++ added object-oriented programming into the C-language command set. A very
influential language, C++ has left its traces on Java and C#, to name just two. The world of
programming owns a big thank-you to the Dane behind C++, Bjarne Stroustrup.

C#

Pronounced “C sharp,” this is a new language influenced strongly by, yes, C++. Introduced
in 2000 by Microsoft, C# was designed to cater to a wide array of applications including
those ending up on the Web. Like C++, the language is object-oriented in nature. Projects
coded in C++, however, may run quite a bit faster than those created in C# and tend to be
smaller in size. What the new language has in its favor is simplified operation; memory
allocation is automated in C#, for one. The language is fast becoming a staple among
many a budding programmer, as it is increasingly popular in colleges the world over.

Java

Java is a popular general-purpose computer programming language. Many other
languages, in game creation use as well, are off-shoots of it. It is therefore recommended
that a budding developer get acquainted with Java basics post haste. If there’s one
language worth mastering, it’s Java. The first version of the language was introduced by
Sun Microsystems in 1995, as envisioned by James Gosling.

JavaScript

Dating back to 1995, JavaScript was designed to extend the functionality of web browsers.
The language helped usher in an era of more accessible and snazzy web sites. Still very
popular as a general-purpose web site language, JavaScript has since seen other uses.
Several game development frameworks for the language have been released for creating
some rather impressive browser-based games. HTMLS5, the new de facto web standard
released in 2014, works beautifully in tandem with JavaScript to create rich media apps
and games for mobile devices, too. In fact, many of the game engines discussed in this
book deploy to HTMLS5.

37

CHAPTER 3 "' A GAME MAKER’S LEXICON: LEVEL 1

While there are a few similarities, JavaScript is similar to Java mostly in name only;
the two are not interchangeable.

ActionScript

ActionScript is used in conjunction with Flash, the (dying) Internet-related content

standard. The language was created in 2000 to make Flash presentations more complex

and interactive. Originally devised by Macromedia, ActionScript is now under Adobe’s

auspices. A derivative of the C language, ActionScript also closely resembles JavaScript,

which itself was greatly influenced by Java, which, in turn, was influenced by C++.
We're no longer in Kansas, people.

GML

Game Making Language (GML) is a Java-based programming language used in the
popular GameMaker series of software suites. While not producing the fastest output
of all time, it does have a nice set of graphics-related built-in commands. Also, both the
Windows and macOS versions share the syntax. GML was developed by the venerable
Dutchman Mark Overmars in 1999.

Python

Python is a language used by the likes of the Ren’Py visual novel game engine. The
Python language is user-friendly while being relatively powerful. Python puts a priority
on a more minimalist approach to coding than most languages. The language was
devised by another Dutchman named Guido van Rossum back in 1989.

Lua

Lua is a fast scripting language, used by the Game Guru game engine among others.
Lua is also well-suited for a wide variety of mobile systems, including Android and iOS
devices. Based on the C language, lua means “moon” in Portuguese, just so you know.
Also, they don’t want you to spell it in all caps. See Listing 3-7.

Listing 3-7. A Simple Program in Lua

io.write('It's Lua, not LUA\n")

Some Words About Optimization

Before I get to the game engines, you should heed some universal advice on the
important topic of optimization. It’s a good practice to stay aware of this practice during
all stages of your game development journey.

38

CHAPTER 3 " A GAME MAKER’S LEXICON: LEVEL 1

A programmer should require the very minimum of resources (RAM, hard drive
space, CPU power, and so on) from the user’s system in order to present a playable game.
Optimizing a game means keeping all code-related speed bottlenecks, as well as all file
sizes, to a minimum. This means rigorously testing different approaches to problems
and sticking with the solution that uses the least amount of system resources. Sloppy
coding equals unhappy customers. Spend as much time optimizing a game as you spent
developing it.

Common optimization techniques include the following:

e Keeping the code as simple as possible: Don’t go all fancy and
convoluted if you can avoid it. Use simple data structures. Don’t
get clumsy or lazy either with dozens of lines of unnecessary code.
Computers like chomping on straightforward data. The fewer
lines of code needed to solve a problem, the faster the end result
usually is.

e Removing redundant resources from the project: It’s not
uncommon to have (especially budding) programmers keep all
kinds of junk files in their projects, just bloating the project file
size. So, if you have a video file or an audio track that is never
used in the game, take it out to save memory and keep the game
file size as small as possible. Take out all the crap well before you
forget about it.

e Keeping individual file sizes within reasonable limits: This goes
for audiovisual materials and thus the final executable. If your
game has a 20-minute soundtrack file in it, don’t keep it in there
uncompressed. Use MP3 or some other compressed file format,
for heaven’s sake. There’s always a trade-off between file size and
quality. At first it may seem daunting to fiddle with all the quality
settings, but in time you'll find these optimal figures with ease. If you
have the choice between a 400MB game and a 1.4GB game, take the
smaller one, please. Remember, smaller game file size means fewer
minutes spent downloading and getting it to run in general.

e Proper optimization of sprite animation: Keep the number of
frames at a minimum. The more frames an animation has, the
bigger the file size. For example, instead of using duplicate frames
to create a slower animation, adjust the sprite animation speed in
code instead.

In Closing

The choice of programming language used affects the end results greatly. Java, while
popular, is slow compared to languages such as C++ and some of its derivatives. However,
in these modern times, the effects of this choice are kept at a minimum, unless your game
deals with thousands of instances on-screen at once. Most games are graphics-intensive
and utilize the video card more so than the CPU. Also, none of the tools presented in this
book requires extensive programming experience.

39

CHAPTER 3 © A GAME MAKER'’S LEXICON: LEVEL 1
What a time to be alive.
Finishing this chapter, you should be able to answer the following questions:
e Whatis avariable?
e When are particles generally used?

e What are access modifiers?

40

CHAPTER 4

Commercial Game Engines/

A game engine is simply a set of tools that allows for rapid development of video games.
By incorporating (ideally original) audiovisual resources and game logic, even a single
developer can come up with impressive results in a relatively short span of time. Many
game engines use a fully graphical interface and require very little, if any, programming
to get things moving. Most game engines are dedicated to either 2D or 3D development,
although with the newer ones (e.g., Unity), the line is getting quite blurry.

Now, a game library is a very different affair compared to a game engine. Sometimes
called game programming libraries, these are large sets of code meant to be accessed
from a more traditional programming environment. Game libraries offer a lot of power
and functionality, often more so than your average game engine. For beginners they
may not be the best option because of the complexity involved in leveraging that power.
Alot of heavy lifting in the form of intricate coding is involved. One needs to learn the
essentials of some popular programming language, such as Java or C++, to get anything
out of game libraries. Most game engines also incorporate some kind of scripting
language for that extra custom control many developers will start to eventually crave.
GameMaker has GML for scripting purposes, GameGuru has Lua, and so on.

From a developer’s point of view, game engine software is usually split into four
components. There’s the resource view for managing audiovisual assets, a map designer,
tools for game logic, and a scripting module. These may not be presented as separate
modules; rather, some engines use the approach of a more unified design. Scripting
support and editing, for one, may be incorporated into several places throughout the
engine interface, from the map designer to each in-game object.

Deep underneath the developer view there’s a lot more going on. Game engines take
care of such things as physics simulation, object collision detection, graphics rendering
(i-e., the act of drawing things on-screen), and other crucial functionality needed to create
avideo game. Game engines offer not only a user-friendly take on games development
but a considerable degree of reusability of project components.

In many cases, using freeware game engines gets you only so far. Their developers
are less likely to provide frequent updates, for one. Also, usually the most visually
impressive cutting-edge technology is kept strictly in the commercial software sector.

We'll start the game engine review with some older versions of GameMaker (GM),
since either they are still being sold or they have just not yet been released as open
source. These versions of GM provide the perfect programming environment for the
budding video games entrepreneur, teaching all the basics needed to get into games
creation. They are simple to use yet powerful enough to demonstrate all the important

© Robert Ciesla 2017 41
R. Ciesla, Mostly Codeless Game Development, DOI 10.1007/978-1-4842-2970-5_4

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

video game mechanics. And yes, many current video game companies are still using
these tools to make a lot of money.

Before You Embark

There are very few, if any, video game development software applications built around
a Create Game button. Games created with such a system wouldn’t make anyone proud
anyway. You must put in the hours, whatever genre or software package you're working
with. The good news is, most game engines share a considerable number of concepts.
Programming languages do vary, sure, but programming logic less so. Despite the growing
number of beginner-friendly tools, serious video game development is hard work.
Eventually, you might steer away from the one-person “team” approach altogether.
This is a big business with many opportunities. You might discover your own niche in
the field, whether it’s 2D graphic artist, general-purpose coder, or voice actor. Wherever
your professional life takes you, the many, many hours spent on crafting your more or less
successful titles will be a time fondly remembered—and well spent. Hands-on experience
with the mechanics of game making is valuable experience for anyone in the industry.
The game-making tools are numerous, but this book is not about cramming all those
(even more numerous) tutorials into one book. That would serve no purpose. The point is
to help you pick the best development tools for your personal growth as a game designer
to get you moving into the right direction. The primary purpose of this book is simply to
empower you as a budding independent games developer, and that’s exactly what I'll do.
By at least now you should be putting on your favorite eyewear as we dwell ever deeper
into game development (see Figure 4-1).

Figure 4-1. A pair of glasses. You might be needing them. (© https://www. fl1ickr.com/
photos/mayeesherr/, used under CC-BY-2.0)

42

https://www.flickr.com/photos/mayeesherr/
https://www.flickr.com/photos/mayeesherr/

CHAPTER 4 © COMMERCIAL GAME ENGINES

Your First Game Engine

It can be daunting to pick a starting point if you have no previous experience creating
video games or programming. All the terminology and seeming complexities involved
can be intimidating. Still, you are reading this book because you want to learn the fine
craft of video game development. Let’s help you get started right now.

GameMaker Studio is the current best-selling product of YoYo Games. While it has
its issues, the software is popular for a reason and quite flexible in many respects. There’s
a free version available for download for the Windows platform. Also, for Mac users
without access to Windows, an older and slightly compromised version of the software
GameMaker 7 can still be downloaded for free to learn the ropes. The principles of use are
virtually identical in all versions of GameMaker.

There are several good reasons to pick this piece of software as a starting point for
your games programming career.

e Itallows you to quickly experiment with all major video game
mechanics (collisions, enemy path-finding, difficulty levels, etc.).

e Itwill teach you some universal programming skills through its
scripting language, GML.

e Finally, its output is very much commercially viable.

You can download GameMaker Studio (the nonprofessional version) for free from
www . yoyogames . com/get. You can download GameMaker 7 for the Mac for free from
https://web.archive.org/web/20130831034342/http://yoyogames.com/legacy.

Your First Game

The following tutorial is for you if you have no experience making games. In it, you'll
create a very basic video game. The process shouldn’t take more than 30 minutes. It’s
important you do this step by step instead of loading a tutorial file.

This tutorial will demonstrate the basic concepts I went through in Chapter 3, such
as using variables and the basics of object-oriented development. While all the software
applications presented in this book are different in their approaches, they all share these
universal characteristics.

Now, before running GameMaker (GM), please familiarize yourself with the
following mechanics common to all versions of the software.

GM Classes and Objects

Remember classes from Chapter 1 of the book? In general, objects derive the same basic
features from their respective classes. A SportsCars class uses the regular Cars class

for most of its functionality and so on. Well, in GameMaker, classes double as objects.
There is no separation between the two. Object properties and behavior in GameMaker
are derived from other objects. You won’t find many mentions of the word class within
GameMaker. But that doesn’t mean it doesn’t use them!

43

http://www.yoyogames.com/get
https://web.archive.org/web/20130831034342/http://yoyogames.com/legacy
http://dx.doi.org/10.1007/978-1-4842-2970-5_3
http://dx.doi.org/10.1007/978-1-4842-2970-5_1

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

Events

Each object in GameMaker is controlled using a series of events, all available within any
object. Table 4-1 describes some of the most important events in GM.

Table 4-1. Typical GameMaker Object Events and Their Associated Actions

Event Name When the Event Is Triggered Typical Associated Actions
Create When the object is created Set object starting position
Destroy When the object is removed Play (explosion) sound
effects
Step The time between the create and Manipulate and monitor
destroy events of the object object position on-screen
Draw The time between the create Draw object sprite,
and destroy events of the object incorporate particle effects
(for visual actions)
Collision When objects collide on-screen Destroy object (or objects)
Outside Room When an object crosses the Destroy object (or objects)
room edges
Actions

Actions are simply the specific methods (i.e., procedures) within a GM object’s
events, such as “set variable x to 20” or “play sound effect number 2.” You can either
type actions with GML, GameMaker’s internal programming language, or drag and
drop the actions in their desired events (at least when it comes to simple projects
and tasks).

The drag-and-drop functions in GameMaker do not cover the entirety of
the software’s capabilities. After you've grasped the basics, it’s much easier to just
add an action called “execute script” within an event and manually code what
needs to be done. You can, again, make a more simplistic game entirely with the
drag-and-drop interface.

Table 4-2 describes some typical drag-and-drop actions in GM.

44

CHAPTER 4 © COMMERCIAL GAME ENGINES

Table 4-2. Some Specific GameMaker Actions and Their Uses

Action Name

Purpose

Example

Vertical speed

Horizontal speed

Create instance

Different room

Execute code

Destroy instance

Set variable

End game

Set an object’s vertical speed

Set an object’s horizontal
speed

Add more objects to the
screen

Change the room

Incorporate manual
GML-code

Remove objects from screen

Manipulate data in a variable

Exit the game program

Move enemy left.

Move player bullet up.

Create missiles when the player
presses left mouse button.

End the game and enter a “game
over” screen.

Use GML to display some
advanced particle effects
unavailable when dragging and
dropping.

Destroy enemy object when hit
with player’s bullets. Also remove
involved player’s bullet object.

Increase variable score by 200.

Exit to Windows after player
selects Quit in the main menu.

Now, ladies and gentlemen, it’s time to fire up your GameMaker. First, you'll
create some more or less rudimentary graphical resources. You'll be operating in the
GameMaker Studio IDE (see Figure 4-2).

45

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

Figure 4-2. The GameMaker Studio IDE. On the left side is the Resource Tree which is an
organizer for all assets in your game.

1. In this tutorial you need to have only three sprites. They
are an enemy, the player, and a general-purpose ammunition
sprite. Let’s draw them all with the built-in sprite editor.
Repeat the following steps for each of the three images.

46

Find the Sprites section on the left side of the display.
Right-click it and select Create New Sprite.

Now, click Edit Sprite. Click the white icon labeled “Create a
new sprite.”

You now get to specify the sprite dimensions. The default of
32x32 pixels is fine. Click OK.

Click the pencil icon, labeled “Edit the image.” You are now in
the sprite-drawing mode.

Zoom in on the empty image a few times from the View menu.

On the left, there are a bunch of drawing tools. Experiment
with them. You are now plotting pixels that will comprise the
sprite when you're happy with it. Draw a happy face or a rocket.
Or go crazy with the shapes and colors. Use your imagination.

e A maskin the context of sprites is simply the sprite collision
area. You select this with the Modify Mask button in the
sprite properties window. The different choices for the sprite

”u ” u

mask are “precise,” “rectangular,” “ellipse,” and “diamond.”

3.

CHAPTER 4 © COMMERCIAL GAME ENGINES

The sprite mask should correspond to the overall shape of the
sprite. A square object works best with a rectangular mask, for
obvious reasons.

While the “precise” setting is the most accurate by far, having
large amounts of in-game sprites use this mask type may
cause an overall slowdown, as it uses slightly more CPU
processing power. Use the other mask shapes if you can.

Now you should have three different sprites in your library.

If you are looking for some sprites created externally, you can
simply use the Load Sprite button in the sprite properties
window to import them into the project. Experiment with
downloading sprite graphics from online resources and
transferring them into GameMaker.

e Pro Tip: Try http://opengameart.org for all your
copyright-free graphical needs.

Next, you'll create a playground (also known as a map,
level, or room) to experiment in. You can later add objects
into a room simply by locating the objects-panel in the
room view, selecting an object, and left-clicking at the
desired location for said object.

¢ Right-click Rooms and select Create Room or choose this
option from the Resources menu.

e Click the Settings tab. Here there are some important options
for you to use:

e Width and Height set the room’s size in pixels. For this
tutorial, stay with a width of 1024 and a height of 768
pixels.

e Speed sets the update frequency (per second) of the
room. You will want to keep this at 60 for most rooms.
This ensures the smoothest update on visuals.

e Exit the room editor.

Now it’s time to create a player object. This is the object the
player will be controlling.

e Right-click the Objects category on the far left of the screen.
Select Create New Object. Name it player_object. Select a
visual representation for the object using the Sprite-section,
which is right under the name field. You should have a
choice of three different sprites if you followed the tutorial.

¢ You'll now set the player’s initial position on-screen.
Click Add Event. Select a Create event.

47

http://opengameart.org/

CHAPTER 4 © COMMERCIAL GAME ENGINES
e Find the Set Variable action from the right. It’s listed under
the control-section.

e Dragthe Set Variable action onto the Actions-section of the
Create event.

e Anew window will open. Enter the letter X into the
“variable” input prompt.

e For “value,” enter 30.

e Draganother Set Variable action onto the same part of the
Create event.

e Anewwindow will open. Enter the letter Y into the
“variable” input prompt.

e For this “value,” enter 700.

e Theplayer object is now starting the room at 30 pixels from
the left and 700 pixels down from the top. Remember, the Create
event only deals with the moment the object is first created.

¢ Next, you'll add some keyboard controls. Click Add Event.
Select the Key Press event.

e Select <left> from the menu. This refers to the left arrow
key on the keyboard.

e Dragyetanother Set Variable action, this time onto the Press
<left> event.

e Enter hspeed into the “variable” input prompt. hspeed
is a built-in variable which controls horizontal speed in
GameMaker.

e TFor this “value,” enter -4.

e Click Add Event. Select the Key Press event again. Now,
select <right> from the menu.

e Dragyetanother Set Variable action, this time onto the
Press <right> event.

e Enter hspeed into the “variable” input prompt.
e For this “value,” enter 4.
4. You will now create your mighty opponent.

e Again, right-click Objects. Select Create New Object. Name it
enemy_object. You'll now set up the enemy’s initial position.
Associate a sprite for the object.

e Add aCreate event. Drag an action called Speed
Horizontal onto the Create-event. Input 1 as its value.

e Addvariables called X and Y. Assign 800 in X and 30in Y.

48

CHAPTER 4 © COMMERCIAL GAME ENGINES

You’ll make some safeguards for not losing sight of the
enemy.

e Add aStep event.

¢ Tind the Execute Code action in the control-section of
actions.

e Drag this into the Step event.
e A GML code window will open. Enter the following code:
e if x<0 x=room_width;

e if x>room width x=0;

It’s time for an enemy bullet object.

Yes, you know the drill by now! Create another new object,
and call it enemy_bullet.

Associate a sprite for the object. Add a Create event on the
object.

Activate the move group of actions. Drag the Speed Vertical
action to the Create event. Input a 7 as the object’s vertical speed.
This means the bullet will fall down seven pixels each frame.

Let’s get some collision detection going on between these
bullets and the player.

Click Add Event and then pick Collision. Choose the player
(player_object). The game now detects collisions between
the enemy bullet and the player.

e Let’s make the player die if he or she hits an enemy.
Click the mainl group of actions.

e Dragan action called Destroy Instance onto the collision
event (it looks like a trash can).

¢ You'll then be presented with three options. Choose
“other” This means the action will affect the object
colliding with the current object (i.e., the player object
colliding with the enemy bullet object, not vice versa).

e Ifyouhad picked “self” you would be destroying the
enemy bullet instead upon this collision. Actually, let’s do
that too. Drag another action called Destroy Instance onto
the collision event. This time choose “self” Voila. Now the
enemy bullet is also destroyed upon impact with the player.

Next you'll make sure all enemy bullets not visible
on-screen are destroyed to save resources.

Click Add Event and Other. Choose the Outside Room action.

Drag a Destroy Instance action into this event. Make sure it’s
set to self.

49

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

6. Now you'll make the enemy fire his or her bullets at specific
intervals using an Alarm event.

e Openenemy object.

e Add an event called Alarm. Select Alarm 0 from the menu
that appears.

e Find the Set Alarm action from the submenu called main 2
within the object. Drag this into both the Create event and
the Alarm 0 event inside of enemy_ob7ject. Enter a value of 30
into “number of steps” in both cases.

e This will trigger the alarm event every half a second, as
the room speed was set to 60 in the room settings.

. Now, drag a Create Instance action into the Alarm 0 actions.
You'll find it in the main 1 -submenu within the object.

e Selectthe enemy_bullet object for this action.

e Click “relative.” This option will use the X and Y coordinates
relative to enemy_object when a new instance of enemy_
bullet is created.

7. Now, you'll make some bullets for you, player 1.
e (Create another new object, called player_bullet.

e Locate the object enemy_bullet from the GameMaker
Resource Tree and right click on it. Select Duplicate to make
a copy of the object. Rename it to player_bullet.

° Hold on! Instead of a 7 as the object’s vertical speed,
input -7. This means the bullet will go up seven pixels
per frame. Also, change the collision-event in the new
object to monitor collisions against enemy_object,
instead of player_object.

Now, for the grand finale of our little tutorial, use the techniques presented
previously to create the following additional mechanics for the game:

e Pressing the spacebar will fire a player bullet from a relative
position to player object.
e Moving player_object out of one side of the screen will make it

appear on the other side.

e The enemy changes direction every six seconds (hint: use
GameMaker’s alarms).

Oh, and, did you remember to add both the player and the enemy into the room?
If not, now’s the perfect time to do so. There you have it! Your first functional bare-bones
video game with all the basic mechanics in place. It may not ever equal Tetris in popularity,
but your journey has begun. Congratulations.

50

CHAPTER 4 © COMMERCIAL GAME ENGINES

Game Engine Reviews

Now, on to the tools of the trade. There are many commercial game engines. Here I cover
engines geared for both 2D and 3D development. Unless stated otherwise, each game
engine runs on Windows PCs only. The software is not presented in any particular order.
All prices are approximate. The engines are rated on a scale of one to five in the following

categories:
Commercial Potential

e Arethere any notable games created with the system?

e Does the system allow export to more than one current platform?

Usability

e Isthe engine intuitive to use?

e Isthe user interface uncluttered and logical?
Audiovisuals

¢ Does the engine provide adequate technologies to create modern
visual output?

e Do the engine’s audio features allow a good degree of flexibility in
formats?

Support
¢ Does the engine have busy forums?

¢ Do the engine developers respond swiftly to technical and other
queries?

Overall

e Thisis the bottom-line grade based on the four previous factors as
well as various intangibles.

GameMaker Studio Professional 1.4 by YoYo Games
WWW . yoyogames . com/

Price (Q1 2017): $147
GameMaker Studio Professional 1.4 is for creating any types of games.
The software can deploy on the following systems:

e Windows
. macOS

e Linux (Ubuntu)

51

http://www.yoyogames.com/

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

e HTMLS5 (browser)
e i0OS

e Android

e Tizen (Samsung)

The first GameMaker was envisioned by Mark Overmars and released in 1999 to
much acclaim. Some seven revisions later, GameMaker Studio is the next generation
in the GameMaker series of tools. The program offers much: there’s seven deployable
platforms and a track record of dozens of commercially successful games made with the
engine. The performance is fine across the board, but some issues persist.

Commercial Potential: 4/5

Here are some notable games created with the system:
e Undertale by Toby Fox (2015)
e Risk of Rain by Chucklefish Games (2013)
e Spelunky Remake by Mossmouth (2013)

Usability: 3/5

Let’s not kid ourselves: the GameMaker interface is quite lousy. You're greeted with tiny
icons that have changed little since the first version of the software. Don’t let that fool you.
Using the engine becomes intuitive in no time.

Deployment for anything other than Windows can get clunky in GameMaker Studio.
The other platforms all need tons of settings adjustments to start working. As your
projects get more complex, the compilation time will increase considerably (shader users,
I'm looking at you). Also, GameMaker Studio seems to struggle with application loading
times. Unless you optimize your games by keeping the amount of in-game resources and
shaders to a minimum, expect to spend up to five minutes waiting for your game to load.
I'm not kidding. It’s not an attractive proposal for the average gamer or developer.

Audiovisuals: 4/5

GameMaker Studio seems to have a sturdy 2D visual engine. It is based on the venerable
version 8.1 after all. Most such projects zip along on even below average hardware.

Complicated projects in particular benefit from a setting called YYC. Many of the
platforms on offer support this YoYo Compiler, which speeds up the game experience
considerably in some scenarios. This used to be a separately purchased module; thank
goodness it now comes standard. Projects with more than a few hundred moving objects
in particular seem to thrive on this setting. Keep it on for all projects; it rarely hurts.

Since version 1.3, GameMaker Studio has supported shaders. This opened up a lot
of opportunities for modern and funky screen manipulation. Think film grain or lens
distortion effects. However, shaders slow down a project’s launching time considerably.
Try to keep them to a minimum in GameMaker Studio.

52

CHAPTER 4 © COMMERCIAL GAME ENGINES

While the software supports 3D models, I found this functionality quite lacking.
There’s hardly any in-interface support for these features. Think of GameMaker Studio
as a 2D engine with some 3D possibilities. Yet, if you're ambitious, you might carve a 3D
space opera with this one. Who knows?

Like the classic editions of GameMaker, the vertical syncing in GameMaker Studio
slows things down drastically and should be kept off at all times. YoYo Games and vertical
Sync are sworn enemies.

A handy companion tool for any version of GameMaker is Particle Designer 2
by Alert Games (see Figure 4-3). It's freeware and allows you to design and preview
beautiful particles in real time. Simply create your particle and then export the data,
which is automatically saved in GameMaker format via clipboard or copy and paste.

All GameMaker versions that support particles will work with Particle Designer 2.

@roas3 o X
Fila View Expot Options Help
icle Ee Po R "3 (o ™3 3

nesigner

_a B Mn Max hcresse Wiggle <]
[Coete | FIL] 3] im_snape_ses Speed ([] [zos] [597] [ooz [0]
Mint Max Increass Wigge Min Max bcrease Wigghe
Size: (] [o10] [0 o1 [Direction: B[] [To] [3%8] [o] [o]
£ X Mn Max hcresse Vigge Retmve
Scale: (] [243 [23] Onemation (] [o] [o] [o] [o] [o]
= Z Colert. Cowpr2 Cokel i Amourt. Direcion o, Deathe
Coloe (0] 3 | [] [] Gty B0 [o | [2m0] [;p} 0|
T phal Apaz Aphe3 ; Ma Max = '
Alpha: (11 =] [0:56] 0.4z} [0.00] bfec L] 34) [] L] i
Blend: p——
end: (1L EI r_ﬁ- | Execue | emtw Roam Speed:
X | E Leo]
Relative Mouse: (-70.3) Paticles: 168 FPS 42 (Few o)

Figure 4-3. The main view in Particle Designer 2

You can download Particle Designer 2 from www.alertgames.net/old/index.
php?page=software.

53

http://www.alertgames.net/old/index.php?page=software
http://www.alertgames.net/old/index.php?page=software

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

Support: 4/5

YoYo Games has a good track record in support. The forums are also densely populated. You'll

find a wealth of tutorials both from within the software and from the community at large.
There’s also a store called GameMaker: Marketplace that sells thousands of high-quality

resources (https://marketplace.yoyogames.com). From extra sprites and backgrounds

to full code libraries, you'll find what you need right there. The marketplace also has a fine

selection of free assets.

Overall: 4/5

Mark Overmars did a big favor to the game engine industry with his monumentally
influential work on GameMaker. Even the older GameMaker versions (versions 7, 8, and 8.1)
are still loved around the world. In fact, they've been used to make highly successful
commercial games in recent years, including Gunpoint (2013), Hotline Miami (2012),

and its sequel Hotline Miami 2: Wrong Number (2015). Obviously this is a successful
franchise in the game engine world. The powerful scripting language GML in particular is
why pretty much any version of the GameMaker software is ideal for the beginning video
game entrepreneur. What GameMaker Studio brings to the table is mainly multiplatform
deployment and shader support.

While GameMaker veterans are right at home, GameMaker Studio may seem daunting
at first for the novice as the interface is still somewhat clumsy. However, the engine is easy
to use and becomes intuitive after a mere half-hour of using it. The end results can be
impressive and will compete with many of the most successful titles out there.

Here are the GameMaker Studio minimum system requirements:

e Windows XP

e 512MBRAM

e DirectX 9.0c-compliant card with 128MB onboard RAM
e 200MB available space

GameMaker Tips
These techniques apply to all versions of GameMaker:

e Learn to use the alarm events: Assign them to all things that don’t
need to be set every single frame. The Step event is not your friend,
as anything in it is executed every frame. If an object needs to change
direction every now and then, do it with an Alarm event instead.

e Make sure you remove all objects that leave the room and don’t
come back: You don’t want thousands of bullets that were
once shot and will never hit anything again sucking out all the
resources from the player’s system. Simply add an Outside Room
event to such an object and put a “Destroy the instance” action in
it. Remember, objects exist even if they leave the view. They are
not automatically destroyed.

54

https://marketplace.yoyogames.com/

CHAPTER 4 © COMMERCIAL GAME ENGINES

You shouldn’t execute scripts within the main action scenes, where
all the hubbub takes place: This might slow your game down.
Scripts are fine, as long as you run them before or after the main
action rooms. So, use the Execute Code action in these rooms
instead of the Execute Script one. This is known as programming
inline. So, let’s not “call scripts.” Let’s keep it inline, people, with
Execute Code instead.

Keep the drawing event clear of anything not related to graphics
operations: Don’t calculate anything not directly related to
drawing things on the screen. Doing that may slow your game
down. For calculating anything and for all variable-related affairs,
use the Alarm (and possibly the Step) event instead.

Disable the Draw Background Color setting in the room options:
This amounts to one less drawing event in the room, but only
if your backdrop covers the whole screen. Otherwise, you get a
mess.

Don'’t use views unless you absolutely must: One such scenario
might be split-screen two-player action. Having said that, how
about having two players on-screen sharing a single view instead,
with the players’ coordinates determining the room position?

Do not ever use the synchronization setting in GameMaker: Disable
it at all times. Some atrocious speed reductions may otherwise
occur. Several different video cards show this behavior.

Make sure you keep the room speed at 60 fps at all times: Do not
artificially slow things down by altering the room speed; do it by
other means if necessary. This approach provides the smoothest
output. Also, any setting other than 60 fps may result in severe
screen tearing, and the only way to fix that is the dreaded vertical
sync.

Keep the amount of objects on-screen at sane levels: Use the Test
Instance Count action for this purpose before creating any series
of objects. This means a few dozen enemies, bullets, and other
categories of objects at most.

Settle for the smallest passable resolution for your game:

Even with optimization, GameMaker isn’t really great in the
higher resolutions. This goes for any game engine, but classic
GameMaker versions (7, 8, 8.1) seem to be really sensitive to this
logic. Hey, you love retro, don’t you?

55

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

e Utilize surfaces: They are tedious at first, but they provide
much, much better performance than objects with sprites in
GameMaker 7. Surfaces are data written directly to the video card
memory. Some examples of good surface use are moving logos,
backdrops, and related detail, and even some massive enemies
that don’t require precise collision detection. Use these lines of
GML to define each surface:

surface name = surface create(x _size, y size);
surface_set target(surface name);

<Draw your graphics here with draw_sprite,
draw_background or draw a primitive>
surface_reset_target();

Congratulations. You now have a new surface to use! Use it
with the draw_surface(surface_name, x, y)command. As
always, keep this in the Draw event.

e Keep your audio at 44.100Hz and 16 bits: Other sampling rates or
24-bit samples may not play at all. Don’t bother with Ogg, which
may or may not work. Stick to MP3 for background music.

Colliding objects with surfaces is possible. Instead of using
collision masks, you use coordinates. X and Y, we love you.

e Particles can collide, too: Assign to a bullet object, or any
projectile, a collision mask by choosing a sprite of roughly the
same size as the particle stream you're about to implement. Then,
put a particle emitter in its Draw action. This will overwrite the
sprite in the object with a bunch of particles but keep the collision
mask. Great for plasma-like weapons, fire, smoke, etc.

GameMaker 7 (Free) for the Mac

The free Mac OS X (Intel only) version of GameMaker 7 “is still available for download
(see Figure 4-4). This version has no particle support and may have other serious
limitations. The last update for the software was version 7.5.12 in 2010, which resulted in
arelatively stable program. As GameMaker 7 for Mac is a relatively competent engine for
budding Mac developers, YoYo Games should release the full version of this software as
freeware. It shouldn’t hurt the sales of its main products in any way.

56

CHAPTER 4 © COMMERCIAL GAME ENGINES

(X X] Object Propesties
1 Move.
' Bame: | plasmabonus2 Events: Actions: 7 -
serte . Create [#] vove towaras poant (x,800) ﬁ %
Kl pasmaicon B sm;tmq 8] Transtorm the sprite El &]
- EB-'. # Cutside Room (=] [a] i
t sy 2
£ visinle Solid @ E @ E
Depth:0 =) E‘] e
Persistent El ;
Pats
Barent «no parent> =,
Mask: csame as sprite> & E §
Show Information M ‘M
s i
Acdd Event ;

Delete | Change

L arsenalbony
B et
B 3 bombs and pelets
B Dperticle projecties

B) teleporting
B Cipods

B iaselas

Figure 4-4. The IDE from GameMaker 7 for Mac

Even though it will never get another update, the full Mac version of GameMaker 7
is a solid and speedy alternative for Mac indie developers learning the ropes. It’s a little
gem, actually, if you can find it or were lucky enough to purchase it when it was still sold.

GameMaker 7 provides adequate tools for creating most types of 2D games. You
can create platformers and shoot-"em-ups with ease. You're only limited by your own
artistic abilities and the other artists in your team. Particle effects are implemented well
in the full version of GameMaker 7 for Mac. While 3D is supported, it is rudimentary at
best and hardly cutting edge. Simpler, Mario Kart-like driving games are a doozy on this
suite, however. The 2D performance on offer is fine. You would have to run games made
with these on a very low-spec Mac to have sluggish screen update. I'm talking pre-2004
hardware. Anything newer and the game will stay at an enjoyable speed, unless you
layer dozens of backgrounds with hundreds of particles at the same time and forsake
optimization completely. GameMaker 7 doesn’t need a spectacular battle station from
the developing point of view. A 2011 Mac mini with OS X Lion and an average graphics
card runs GameMaker 7 quite admirably.

The games GameMaker 7 for Mac exports run well on Mac OS X 10.6 (Snow
Leopard), but they do so even better on newer versions of macOS. From Lion onward,
GameMaker 7 works wonderfully. No doubt this is because of Apple updating its OpenGL
support to version 3.2—from the ancient version 2.1 in Snow Leopard.

Most audiovisual formats are supported by the software. There has been some talk
about the macOS version not supporting the MP3 format to a full degree, but this seems
to be an unfounded claim.

57

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

Note that if using GameMaker 7, make sure you state “Lion” in the operating system
requirements. In my estimation, this requirement provides more than a 10 percent speed
boost to graphical operations compared to Snow Leopard. This reflects on the developer
well.

Additionally, if you use a lot of surfaces in your GameMaker 7 game, state “video
card with 512MB of memory” in the requirements too. Surfaces can eat a lot of video card
RAM. All those error messages you may be getting might have something to do with your
video card running out of memory. Integrated video chips, such as the Intel GMA, are
notorious for having low amounts of RAM at their disposal.

001 Game Creator (formerly known as 001 Engine) by
Mike Weir

www . engine001.com/

Price (Q12017): $98
001 Game Creator is for creating 2D and simple 3D games.
The software can deploy on the following systems:

e Windows

e Android
e iOS
. HTML5

001 Game Creator (001GC) is a multipurpose tool for the beginner entrepreneur. The
team boasts no programming is necessary with their engine—and for once they’re right.
Sporting an RPG Maker-like history and design, 001GC is capable of several different
genres.

Commercial Potential: 3/5

There are no notable games created with this system. While the potential for commercial
titles is there, this engine is mostly used by hobbyists.

Usability: 4/5

The interface in 001GC feels somewhat dated, which is typical for engines that have been
in development since the 1990s (see Figure 4-5). Everything works: the sprite editor is
simple enough to use and animate your characters with, adding events is simple, and the
testing abilities are pretty much lightning fast. There’s even a built-in device simulator

of all your typical smartphones and tablets in case you're deploying on these devices. Of
course, you're better off testing on actual mobile devices via Wi-Fi, which is an option in
001GC too.

58

http://www.engine001.com/

gl System Script

Script Mode Help

Lonplmiy Camera '-.’;c'v.s
CRERE L ‘]ChangaDis‘.ance
T anges the pixe!
Custom Events Chengs V_'ew
Metwark Messages .

Fade In
Structure i Fades

Variables { Switches ﬁﬂ Farce Focus on Actar

Collections
Tables @Lu:kﬂ.:nlock Camera
System K o L
Actors g‘shake Screen

Curmant Flayer [Party

Spaciic Flayer g S?QShakmg’;:creen)

Moo Wit for Camera
Timers/Spawns t i e

Fields
Lights
Speakers { Audio
Zones
Maps
Intgriaces
Camera
Input Sets
Game

Fila System

Internet

a“ Change Horizontal Orbit
” esthe al fleft

Change Visusl Range

E Fade Out
ﬁ Force Focus on Map
* Pan Camera

m Show Screen Sprte

g Stop Flashing Screen

CHAPTER 4 © COMMERCIAL GAME ENGINES

@4 Change Varical Angle
@ Cha;\g; Zcom. .
g-l-' Fiash é_c:een ~
g Hide Screen Sprite

@ Retun Camera
g Start Flashing Screen

g Stop Shaking Screen

Edit Local Vasiables |

Expand Events

Figure 4-5. Some events from the 001 Game Creator script editor

Newcomers to the engine are greeted with a handy selection of demo games. These
include the mandatory space shooter, a tower defense game, and a card game for good

measure.

You can tell this software started out mostly as a tool for role-playing games (RPGs).
This is not a bad thing, as it has greatly ventured beyond this genre. There are still menus
for items, parties, and team alliances (for allied, neutral, and evil actors, respectively).
These take nothing away from the engine even if you're not into RPGs much. If you're
familiar with the RPG Maker series of game creation software, you'll feel at home in
001GC. Also, the terrain editor is very impressive with a great implementation of lights to
boot. You'll be drawing paths on eye-pleasing terrains literally within seconds.

At the heart of the engine is the visual script tool. Although the option for text-based
scripting is available, this is rarely needed to create commercially viable titles. In fact, the
engine graphical user interface (GUI) warns against text-based input, preferring the user
sticks to its mouse-driven approach instead. It’s simple enough to drag conditions and
events onto the script canvas to get things done.

A word of warning: your mouse’s scroll wheel may not play nice with this tool. Scripts
are known to vanish off-screen if you use it too much. You have been warned.

59

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

Audiovisuals: 4/5

Although the demo games don'’t give the greatest impression of the engine with sluggish
controls and dated graphics, it’s obvious 001GC is capable of producing perfectly hip
arcade titles. There’s an adequate particle system, high-resolution audio, and even some
fine (more or less pseudo) 3D graphical abilities available in the engine. 001GC supports
several lossless image formats, including BMP, PNG, and TGA. The amount of support
for 3D models is more than adequate for an engine with focus on 2D. You can import
objects in FBX, OBJ, 3DS, DXF, DAE, and even the good old Microsoft X format. While the
3D capabilities of 001GC aren’t AAA quality, they are perfect for casual and/or mobile
projects.

The impressive support for different file formats doesn’t end there. When it comes to
audio, 001GC has your back. You can safely import audio files in WAV, MP3, Ogg Vorbis,
AIFF, and even the classic MIDI format (MP3 and MIDI are not supported for HTMLS5 or
Android deployment because of licensing issues). Your speakers and headphones get to
churn out audio in stereo or surround in either 5.1 or 7.1.

Support: 4/5

001 Game Creator is pretty much maintained by one person. Having said that, the
software clearly is a labor of love for Mike Weir. The engine had a bit of a nosedive in
popularity in recent years but seems to have regained momentum. The community
around the product has been reinvigorated, and even some downloadable content (DLC)
is on its way. The product wiki is extensive and useful (www.engine001.com/wiki/start).
There’s a ton of additional free resources for the engine on the official web site (www.
engine001.com/resources.htm).

This engine is simply pretty much universally well-liked, as is evident from the
official forum. The forum has nearly 400,000 posts by mostly enthusiastic users. See for
yourself: waw.engine001.com/forum/.

Speaking of DLC, you can now purchase an MMORPG kit for the engine. This takes
care of the many tedious tasks when creating an online environment for a large number
of players. With it installed, a developer is free to invest time on the core product, instead
of worrying about user registrations, logins, and networking protocols. At $15 this is very
much a mandatory purchase for those looking to make the next League of Legends.

Also on its way is first-person shooter (FPS)-based DLC. This obviously can’t
upgrade the engine into a AAA platform for 3D graphics, but it will open some doors for
mobile developers looking to make less resource-intensive FPS titles with lower-poly
models. Also, these projects will be stuck in 720p resolution. Another DLC perhaps more
suited for the engine is dedicated to the point-and-click genre of 2D adventure games
(think LucasArts and Sierra titles from the 1990s). This is more familiar territory for
001GC, and it's doubtful there will be any major technological hurdles to overcome with
the expansion.

60

http://www.engine001.com/wiki/start
http://www.engine001.com/resources.htm
http://www.engine001.com/resources.htm
http://www.engine001.com/forum/

CHAPTER 4 © COMMERCIAL GAME ENGINES

Overall: 4/5

Perhaps best known for its RPG output, 001 Game Creator is a versatile game engine for
several genres. Pretty much only a cutting-edge FPS is out of the picture with the system.
Despite its somewhat antiquated GUI, it’s a powerful engine for developers of most
skill levels.

Here are the 001 Game Creator minimum system requirements:

e Windows XP, Vista, 7, 8, or 10

e 2GHz or faster CPU

e 512MB RAM

e Video card supporting OpenGL 2.1 or newer

e 300MB free hard drive space

Starting Point

After purchasing the engine or installing a demo, watch the video tutorial at
https://www.youtube.com/watch?v=ca1CXm2Y_AY made by the creators of the software.
Explore YouTube for similar videos.

GameGuru by The Game Creators
https://waw.game-guru.com/

Price (Q12017): $19.99

GameGuru is for creating 3D (FPS) games.

It deploys on Windows.

GameGuru is a beginner’s 3D game toolkit. Although flawed, this software package
is frequently updated. It does have some fancy visual effects, such as some great depth
of field and motion blur, as well as a rudimentary built-in character creator. Surprisingly,
GameGuru offers a fine building editor as well.

Commercial Potential: 3/5

There are no notable games created with the system. The system is barely able to
produce commercial output at this stage because of limitations in map size and overall
performance.

Usability: 4/5

Described by some as a glorified map editor, GameGuru does offer a lot more. You
populate the scenes with objects, attaching Lua scripts to them, where appropriate,
for special purposes (e.g., making a car object drive around instead of just staying still).

61

https://www.youtube.com/watch?v=ca1CXm2Y_AY
https://www.youtube.com/watch?v=ca1CXm2Y_AY
https://www.game-guru.com/

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

The software supports DirectX files (. x) for 3D entities. You may have difficulty exporting
to this format from your 3D editing program.

When you're done with your game, simply select Save as Standalone from the File
menu and you're all set. You now have an independently running 3D game you can
distribute.

Many of the visual settings of your map are controlled in real time from within the
preview system. You get to see the changes immediately. There are settings for skyboxes,
terrain, and vegetation. Surface color, brightness, and other controls are available as well
for immediate tweaking.

There are two types of objects in the GameGuru workflow: entities and markers.
Entities refer to any 3D objects in the developer’s library, such as robots, ducks, or cars
(see Figure 4-6). Markers are basically scripts, and this is where Lua comes in. Entities can
be set to be either physics or nonphysics objects, the difference being nonphysics objects
can'’t be collided with, but they need less processing power.

TR BRI

e

D i~ 1= |

Figure 4-6. A helicopter in the GameGuru editor

The Easy Building Editor

Released in early 2017, version 1.14 of GameGuru received its most impressive single
feature yet: the Easy Building Editor (EBE). This easily adds a point in this category, such
is the usefulness of the tool.

You simply add a site into your terrain and start adding the walls, floors, and roof
elements on top of that building site. Elegantly mouse-driven, the tool is something
most people can master in minutes. EBE allows for multilevel buildings, with the Page
Up and Page Down keys on your keyboard taking your efforts one level higher or lower,
respectively. By tapping the Tab key, you temporarily remove walls to work with the inner
confines of your dream house. The buildings created with the EBE are fully explorable by
the player, as long as you provide means to an entry to them.

62

CHAPTER 4 © COMMERCIAL GAME ENGINES

All of the EBE elements naturally come with textures. There are several types of these
textures for you to choose from, and nothing is stopping you from either purchasing new
ones or making your own, should you feel like it.

What all this means is a) you no longer have to purchase custom structures for your
maps and b) you can craft complicated dungeons and spaceship interiors with minimum
effort. Well done, The Game Creators.

Audiovisuals: 3/5

You get a resolution scaled to your desktop’s; apparently selecting a resolution in-game
is ano-no. This can be annoying if you enjoy keeping your OS resolution well over Full
HD specs as rendering anything at such high resolution is slow in general, including in
GameGuru. There’s depth of field and some high-resolution skyboxes to make sure your
projects do look presentable.

Despite being primarily made for FPS projects, GameGuru allows for the creation of
third-person view games, with ample camera control for the developer to toy with.

The physics in GameGuru are powered by no less than Bullet Physics, a physics
engine used in GTA IV and GTA Vto name just two, but here the system seems quite
underused. While the advertisements claim full ragdoll functionality, most of the enemies
seem to just fall down and stay there after you slay them, not sliding more than an inch
down the sides of slopes.

Also, the player cannot easily ride on top of moving physics objects. What's up
with that? This means there’s no raft or elevator rides in GameGuru just yet. You walk
around, maybe teleporting every so often, and that’s it. You can only script movement for
nonphysics objects it seems (unless you factor enemy soldiers in), and your protagonist
just falls through these.

GameGuru was initially criticized for slow visual performance. In late 2015 the Game
Creators overhauled the underlying engine with good results. The average project on an
average PC now runs between 40 fps to 45 fps, which is relatively smooth sailing.

There are dedicated height-map generating software out there, such as Raiseland
and Geovox, which greatly speed up the terrain generation process in game development.
Unfortunately, there is no height map support available in GameGuru. This is a mainstay
in higher-end engines, but with the GameGuru market segment and price, we can’t
complain.

The water in GameGuru maps stays on one level at all times (so you can forget about
waterfalls), and the maps aren’t very big. Also, creating and venturing on high terrain
causes unpredictable behavior, such as flickering landscapes.

In 2016 GameGuru got another facelift, in the form of a trio of visual techniques:
scalable ambient obscurance (SAQ), fast approximate antialiasing (FXAA), and lens flare.
FXAA basically softens the whole screen estate, so you see less of jagged edges in objects
and terrain. SAO, on the other hand, is a technique to add realistic corner shadows and
other soft shadows into and around 3D models—a hit-and-miss effect. While the FXAA
especially makes a positive difference on the visuals, the new effects do take a toll on the
frame rate with about 5 to 8 fps. The lens flare is simply an age-old halo effect of what
happens when one glances straight into the digital sun, but it’s a nice little addition
nonetheless.

63

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

Support: 4/5

GameGuru-related forums are pleasantly busy. The system has a Steam-powered store
available, offering thousands of extra 3D entities and other resources for a few bucks each.
This in itself offers a lucrative business-to-business opportunity for 3D artists, skybox
makers, and Lua script writers, as long as you don’t have issues with PayPal.

Game-guru.com has a decent news section with details on each product update.
There’s also a community-based voting system on future GG features on the web site.
Some items on the long list include player-operated boats and planes, a day and night
cycle, and antialiasing. Clearly The Game Creators is serious about future-proofing this
software suite.

Overall: 3/5

GameGuru has a lot of promise. Its main appeal is in its map editor, which is easy to
use and intuitive. The visual side is quite adequate for creating an atmosphere of your
choosing (think games circa 2010). However, the waypoints system is extremely poor.
Populating your maps with enemies is easy, but making these guys follow paths is a pain.
The poor waypoint system aside, GameGuru offers limited terrain creation possibilities.
Also, the loading times for the stand-alones are very old-school, meaning you do get a lot
of time for meditation and/or watching paint-covered surfaces dehydrate.

Despite its shortcomings, GameGuru is a great choice as one’s first 3D game-making
tool. It’s just such fun. Just keep in mind that using static stock objects in a projectisn’t
a great way to create a commercial product. You probably need a crew of at least three
passionate people in order to come up with original 3D objects and other resources for
GameGuru. This is not a viable single-person tool for commercial development, unless
you have considerable experience in 3D modeling.

Here are the GameGuru minimum system requirements:

e Windows XP, Vista, 7, or 8
e Intel Dual-Core 2GHz or AMD Dual-Core 2GHz
° 2GB RAM

e NVIDIA GeForce 400 series or AMD Radeon HD 6000 series, 1GB
video card (minimum Shader Model 2.0)

e Version 9.0c

e 4GB available space

Starting Point

Start working on the tutorials on the official GameGuru site, from the Quick Start and
onward (https://www.game-guru.com/tutorials).

Also, get acquainted with the official forums for the product (https://forum.game-
guru.com).

64

https://www.game-guru.com/tutorials
https://forum.game-guru.com/
https://forum.game-guru.com/

CHAPTER 4 © COMMERCIAL GAME ENGINES

Case Study: Halflight by Soiree Games

For a trailer of this project, see https://vimeo.com/157925079 (see Figure 4-7).

Figure 4-7. A scene from Halflight, a GameGuru-project. Notice the use of depth of field.

GameGuru promises a lot of paper: low price, a decent map editor, fine visuals,
and an active developer team. The Games Creators is indeed known to provide frequent
updates to many of its products, including GameGuru. Soiree Games, my outfit, looked
in-depth into developing its first 3D title with the engine, just to see whether it could be
done.

Now, without dwelling too heavily on the storyline, Halflight (a working title) will
feature a wide variety of vistas. There’s a forest, an ocean, beaches on tropical islands, an
icy landscape, and even a big metropolis with skyscrapers. At one point you're riding on the
back of a big cargo plane. The game will feature very few guns and violence but ideally a lot
of dreamy and nightmarish scenes to inspire one’s imagination (see Figures 4-7 and 4-8).
Using Game Guru in its current form is a challenge. Scripting a decent adventure game in
what is primarily a simple first-person shooter engine is relatively taxing.

65

https://vimeo.com/157925079

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

Figure 4-8. A second scene from Halflight, a GameGuru project

The visual engine in Game Guru is decent, and with careful use of color and bloom,
any atmosphere can be created quite effectively, from a night downtown to a bright desert
noon. The choice of skybox affects a map’s ambience greatly. Also, spot lights can be
made to shine in any color and brightness level. There are scripts for them to flicker, too.
At the moment all lights are immobile, however. The performance is also quite lackluster
at this stage. The frame rate is not outstanding even on higher-end hardware, staying in
the 30 to 35 fps range most times with more object-heavy scenes.

Terrain creation is still in its infancy in Game Guru. You can start with a flat
terrain, which requires plenty of tweaking to make it into anything interesting, or you
may pick a randomized, dune-like map, which is also far from interesting from the
get-go. There’s about 20 very well put together tutorial maps in the map folder
(see /mapbank/tutorialmaps). However, turning these into something to call your own is
time-consuming. Generally it’s bad practice to reuse stock maps in your creations. If you
choose to do so, prepare for negative product reviews.

Map sizes are relatively large in Game Guru, although you can forget about a Fallout
3-type of seamless flow of outdoor scenery. GameGuru is definitely an old-school
map-based tool. You do get to switch these maps at will, and there doesn’t seem to be an
upper limit on the total number of locations in a project.

And now for the biggest issues: there are constant problems with the waypoint
system. On some of the maps, the waypoints just don’t show up, no matter how
frequently the icon is clicked. It seems the waypoints appear along the edges of the
map—sometimes. This is not intuitive, people. We tried everything from validating the
Game Guru application cache on Steam to reinstalling the program numerous times.
Enemy combatants also displayed some glitchy behavior when assigned a path to follow.
Nothing fixed these issues.

66

CHAPTER 4 © COMMERCIAL GAME ENGINES

Lee Bamber, the lead programmer behind the project, is no doubt a talented
coder. Still, Soiree Games will wait until GameGuru matures a little bit before releasing
a 3D game made with the engine. Games made with the engine at its current state may
not have much commercial appeal, but GameGuru itself holds a ton of potential
(see Figure 4-8).

GameGuru Hints

This is where your scripts usually reside: C: \Program Files (x86)\Steam\SteamApps\
common\Game Guru\Files\scriptbank. Just edit these files with WordPad or some other
word processor. To make a new script, copy an old one and rename it. You can'’t edit
scripts from within the GameGuru software.

The file name of a script needs to be in the script itself—twice. Say you have made
a Lua-script called cheese. lua. You need to incorporate the file name within this script
file, in the init and main spots. So, it should have both function cheese init(e)and
function cheese_main(e) inside the script, instead of, say, function program_init(e)
and function program main(e).

Use the Win zone -marker to load a new map. Simply add the name of the map you
want to load through the zone in the ifUsed-portion of the parameters. This functionality
cannot be tested within the preview, only from the finished, stand-alone program. You
will get a notification, however, in the preview as well, to signal the marker works.

To require the player to press E in a Win zone, overwrite the contents of the winzone. lua
script with the following:

function winzone init(e)
end
function winzone main(e)
if g Entity[e]['plrinzone']==1 then
Prompt("Press 'E' to fix the radar (or whatever) and move to the
next level")
if GetInKey() == "e" then
JumpToLevelIfUsed(e)
end
end
end

Make sure you keep your media file names short. For one, your audio files may not
play if you use a long file name such as happybigexplosion32423-32433.wav. Instead, try
happyexplosion.wav.

Using more than four dynamic lights per scene goes to waste. GameGuru supports
up to four dynamic lights in one view simultaneously, so stick to that amount and no
more. Two lights can totally make a scene anyway.

Always utilize some DOF. The depth of field in GameGuru is beautifully implemented
to add smooth softening to faraway objects. The result is very nice layer of polish. There’s
really no need to keep this effect switched off.

67

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

Shoot-"Em-Up Kit by Tall Studios

www.tallstudios.com

Price (Q1 2017): $39

Shoot-"Em-Up Kit is for creating 2D and pseudo-3D shoot-"em-up games.

It deploys on Windows.

Shoot-"Em-Up Kit (SEUK) allows anyone to create visually ambitious retro-ish
shoot-'em-up games. The pseudo-3D visuals are certainly very impressive as is the overall
ease of use. Like the software’s title suggests, this is for a very specific genre of games, but
you do get exactly what you pay for.

Commercial Potential: 4/5

There are no notable games created with the system so far. The potential for them does exist.

Usability: 5/5

SEUK uses its 100 percent mouse-driven drag-and-drop approach to video game creation
beautifully. You do not need to type one line of code to create a commercially competent
title. Everything is logically grouped and graphically represented, including your enemies’
attack patterns, in-game lighting, and the physics properties of your game universe.

You do get quite far just by checking boxes and adjusting sliders (in the case of SEUK,
that is). Most aspects of a game’s universe are easily manipulated within the software.
Like with many things in life, you will not master SEUK in a few days. Fully grasping what
the system is capable of will still take months. You do have a ton of features including
enemy Al, bullet patterns, camera angles, and particles to work with after all.

Audiovisuals: 5/5

Simply stated, SEUK offers some stunning, commercial-quality audiovisuals (see Figure 4-9).
It also features many graphical approaches from 1980s retro to modern-day arcade blasters
with impressive lighting, amazing explosions, and plenty of detail. Like many current
game-making tools, SEUK comes with a hip physics system. In this case, it’s no other than
PhysX from Nvidia, familiar from dozens of smash hits over the past decade or so, appearing
in titles such as Borderlands 2, Fallout 4, and Mafia 2 (to name just three). For one, you could
use gravity to make rocks fall on the player’s ship when flying inside a cavern in a pretty
convincing manner. Picture the player having to blast through them on their way out with
realistic debris flying around. When it comes to physics, SEUK has you covered.

68

http://www.tallstudios.com/

CHAPTER 4 © COMMERCIAL GAME ENGINES

Position

Rotation

Figure 4-9. Shoot-’Em-Up Kit has some truly impressive visuals

Particle effects are also put to good use in the system, offering the developer full
customization over their lasers, explosions, and other graphical touches. Shaders are
supported with a considerable amount of customization at your disposal for all your
post-processing needs. As for in-game 3D objects, SEUK accepts either .x or .obj models.

One of the finest features in SEUK is the camera. The flexibility provided by the
camera system is simply outstanding, allowing the developers to create tasty cut scenes
and experimental visual approaches with ease. Combine this with the amazing lighting
system, shaders, and particles, and you have all the tools you need for some jaw-dropping
visuals, if that is your thing. Again, you are not forced to use any of these features if you
want to reach that blocky 1970s aesthetic. That would be a “thing” with indie developers
after all.

Support: 4/5

Tall Studios in general has an active approach to its customers’ worries. Tall Studios
clearly cares about the product and has a reputation of responding promptly to whatever
concerns developers have. The forums may not be the busiest out there, but that is only
because of the relative lack of awareness of the product.

69

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

Overall: 4/5

A winner in every regard, the software delivers exactly what it promises. If shoot-'em-ups
are your genre of choice as a developer, you couldn’t do much better than the Tall Studios
offering. Do prepare for a considerable amount of work on custom graphics and audio.
Remember, it is a bad idea to use stock resources only, even if they're plentiful, as is the
case with Shoot-’"Em-Up Kit.

Having said all that, don’t rely on this software as your only development tool, just
in case you feel like experimenting on other, perhaps vastly different video game genres.
That’s why I deducted a point in this category. But for your very first commercially viable
rooting-and-tooting title, it just might do the trick.

Here are the Shoot-’"Em-Up Kit minimum system requirements:

e Windows XP, Vista, 7, or 8
e Intel dual-core 2GHz or AMD dual-core 2GHz
e 4GB of RAM

e 1GB of hard drive space

Starting Point

Start watching the tutorial videos on the Shoot-’"Em-Up Kit site, from top to bottom
(www.tallstudios.com/tutorials).

Leadwerks Game Engine 4.3 by Leadwerks Software
www . 1leadwerks . com

Price (Q1 2017): $98

Leadwerks Game Engine 4.3 is for creating 3D games.

It deploys on Windows.

Leadwerks is a grown-up’s 3D system. Visually ambitious, it suffers from some
usability issues. Despite the ease of achieving a basic 3D game with it, Leadwerks is for a
more advanced user, mostly because of a heavy reliance on scripting. You may want to try
it after you're done with GameGuru, for example.

Commercial Potential: 4/5

Here are some notable games created with the system:
e A Demon’s Game: Episode One by RP Studios (2016)

® Rogue System by Digits Crossed Interactive (2016)

70

http://www.tallstudios.com/tutorials
http://www.leadwerks.com/

CHAPTER 4 © COMMERCIAL GAME ENGINES

Usability: 4/5

Leadwerks is definitely not for absolute beginners although it’s marketed as an easy game
engine. This is a system for moderate to advanced programmers. It supports (and very
much requires) either Lua or C++ scripting depending on the edition you choose. The
indie version works with Lua scripts only, while the more expensive professional version
covers both languages. C++ output in general is faster.

Leadwerks features a built-in script editor unlike, say, GameGuru. Whether you're
working in Lua or C++, you will quickly learn to appreciate this workflow. Using the
scripts themselves is straightforward: simply add one to an object for the functionality
you need. Unfortunately, objects can all take just a single script file each. Leadwerks
also includes a nifty graphical tool, or flowchart editor, for managing simple game
functionality. With it one can easily create most common actions in the game world, such
as opening doors when the player flips a switch.

Another great feature is the NavMesh generation, which is pretty much a
single-button-click affair. A NavMesh stands for navigation mesh and simply defines
areas on a map where enemy units can move without hindrance. In the past, on most
game engines, keeping enemies from becoming stuck on the scenery may have been a
slow and tedious process.

But let’s face it, Leadwerks is buggy. All kinds of error messages and crashes are
common. The trick is to try many of the available beta versions. One of them just might
work on your hardware. The most current version of the software deemed stable may
actually be less so than the beta versions on your configuration. Also, the system is very
finicky with your video cards. Some cards simply do not work at all with Leadwerks. This
may be perhaps because of the software using OpenGL instead of DirectX, which is the
preferred API of most video card manufacturers.

Audiovisuals: 4/5

The OpenGL-powered visuals in Leadwerks are of very high quality. The experience of a
well-made Leadwerks terrain is simply a feast for one’s eyes (see Figure 4-10). The terrain
creation system itself is intuitive and powerful. Everything including arid prairies,
snow-capped mountain vistas, and dense forests are a joy to create. You have the usual
tools to flatten and raise land among others, but you can also import height mapsi.e.,
bring in terrains created externally using specialized software such as Raiseland.

71

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

Figure 4-10. Leadwerks terrain

The Leadwerks vegetation system is a breeze to use. You simply “paint” an area in
the terrain you want your luscious vegetation growing in. Then, with a few adjustments,
you can fine-tune your vegetation’s attributes to your liking when it comes to things such
as plant height, density, and whether the foliage casts shadows or not. However, the water
shader isn’t all that.

When importing 3D objects, Leadwerks supports the industry-standard Autodesk
(.fbx) models. The engine also supports an approach called constructive solid geometry
(CSG), which is basically the method of creating 3D primitives out of thin air and
manipulating them into useful objects in the game world. For example, by hollowing out
arectangular CSG object, you can create a basic but functional tunnel for your game,
adding detail with automatic texture maps. You have your box, wedge, cylinder, sphere,
arch, tube, and torus shapes to experiment with. Sometimes this can be a time-saving
approach, just in case you need something large and simple in your map and don’t have
anything as an Autodesk 3D model available.

The audio format support in Leadwerks is known to be limited. For a long time,
the system only supported traditional WAV files. While this is a high-fidelity format, it
takes a lot of hard drive space and is only ever useful for sound effects. Since version 4.3,
Leadwerks has supported the popular Ogg Vorbis audio format, which is known for both
great quality and small file size. This finally enables music and voice acting tracks for your
Leadwerks projects. Also, the engine supports full 3D sound spatialization.

Support: 4/5

The documentation and available tutorials are plentiful and easy to understand.
YouTube, too, has a wealth of video tutorials for the software. In particular, Jorn
Theunissen has created a formidable number of video tutorials for the engine.

72

CHAPTER 4 © COMMERCIAL GAME ENGINES

The learning curve remains quite steep. Also, there doesn’t seem to be a clear vision for
the future (i.e., a road map) for Leadwerks. Updates to the engine are still frequent and
show commitment from the development team. Version 4.1 of the software debuted in
June 2016 and version 4.2 in December of the same year.

The Leadwerks Workshop (a workshop refers to a Steam-based add-on store) is quite
well-equipped. There you'll find numerous user-generated 3D models, scripts, and sound
effects for your buying pleasure. The quality of the items is above average in all categories.

Overall: 3/5

Leadwerks offers some very professional features, but it’s not one for the complete
beginner despite what the marketing materials claim. Think of it as a next step on your
journey as an indie developer. Also, without the bugs and icky video card support, the
software would rate at least one point higher in this category. Having said that, Leadwerks
is clearly alive and well and continues to improve every update.

Here are the Leadwerks minimum system requirements:

e Windows Vista, 7, 8, 8.1, or 10

e 2.0GHzdual core

¢ 2GBRAM

¢ OpenGL 4.0 or DirectX 11 graphics

e 2GB hard drive space

Starting Point

Start working on the basic tutorials on the Leadwerks site, from top to bottom
(www.leadwerks.com/werkspace/page/tutorials).

CopperCube 5/CopperCube 5 Pro by Ambiera
www.ambiera.com/coppercube

Price (Q12017): $38/$300 for Pro
CopperCube is for creating 3D games.
It deploys on the following:

e Windows

e macOS

e WebGL (HTML)
e Android

e Flash

73

http://www.leadwerks.com/werkspace/page/tutorials
http://www.ambiera.com/coppercube

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

A product for lower-end systems, CopperCube 5 is an easy-to-use system for most
types of 3D products with a beautiful terrain editor.

Commercial Potential: 4/5

Here are some notable games created with the system:
e Post Collapse by Ambiera (2016)
e Painted Legend by Vitaly Shikhovtsev (2016)

Usability: 4/5

CopperCube 5 comes in two flavors. The more expensive Pro version differs from the
regular one in many regards: you get (in-scene) video playback, an unlimited number
of scenes, scene metrics, and a command-line interface. The regular version is perfectly
competent for creating any kind of 3D game or app.

The editor interface in CopperCube is as good and intuitive as they come
(see Figure 4-11). It's easy to add new objects to a scene, swap textures, or create gorgeous
colorful liquid surfaces. The terrain editor is a pleasure to use as well, with the software
also able to accept externally created height maps. Unlike some engines (such as
GameGuru), you have a large number of textures available to paint your terrains with.
You even get to populate your terrains with randomized trees, a feature called a
procedural tree generator.

LA N CopperCube 5 - Untitied Document

=1 e I T

kA & O > BlE @ B

Select Move Rotate Scale Persp. Top Front Left PO L=-Fa2AVHBY L0 @200 - HO -~

SceneGraph Explorer
New 10 Scenel
o startup skybon
W male

Properties
matributes waterials [SEEELEERY

Fly in a circle

Rotate

Fly along a line
Foliow a Path
Collide when moved
Behaviors triggered by events

" Wnen clicked on this do something . r .

Game behaviors
Scripted behaviors

On proximity do something
Every few seconds do something
When a kay is pressed do something

>

Effect behaviors [3 When cursor moved over do something
»
>

Prafabs o Xtures

Sefault sioybox. daor fre fowerper ump | ‘
© ; b = - — e e

nightitaad person female bilbour perion male billboard pintol pisted hand
- - asg., | « | - mooesehkced

Figure 4-11. The CopperCube user interface

74

CHAPTER 4 © COMMERCIAL GAME ENGINES

CopperCube works in a comfortably codeless, mouse-driven environment. No
coding is required to create commercially viable projects. However, the system does have
full JavaScript support in case you need to dig deeper.

To create new JavaScript functionality, just put a script file into the extension
directory (Documents\CopperCube\extensions on Windows or ~/Documents/CopperCube/
extensions on macOS) and call it ScriptName. js (e.g., action_MovePosition. js).

Each valid script file will appear within the CopperCube engine upon restarting as an extra
action or behavior.

The in-game camera in CopperCube is straightforward to add and manipulate.

You simply click the Create a Camera icon and pick from a selection of presets to get the
functionality you need. There are six highly useful presets to choose from, including both
a first-person camera (with typical mouse and keyboard controls) and a third-person
camera that follows the path of an object of your choosing.

Audiovisuals: 4/5

CopperCube features competitive enough graphical capabilities, but there are other
engines out there with more modern visual effects available. What CopperCube

does well is optimization. You'll no doubt be able to create reasonably attractive games
for lower-end systems, such as mobile devices. CopperCube supports Blender (.blend),
DirectX (. x), Blitz3D (.b3d), Milkshape (.ms3d), and many other formats for its models.
The system may rarely crash trying to import higher-poly objects.

CopperCube has custom shader support. You access this functionality through
JavaScript because at the moment there is no extensive shader support in the main GUI
This is not an easy-to-use solution for rookie developers, but it’s there.

The audio support in the system is very impressive. All current formats can be
imported and used as convincing 3D audio, such as .wav, .mp3, and .ogg-audio files.
However, you may also add some classic audio formats from the 1990s, including .mod
and Scream Tracker 3 music files. Very nerdy, very chic.

Support: 4/5

The Ambiera forums are busy. There are some free 3D models for you to download as
well as a quite a few (also free) JavaScripts to add functionality to the system. CopperCube
seems to be going places as a viable games development platform.

Overall: 4/5

As a newcomer, you could do a lot worse than CopperCube 5. Basically the only major
hurdle to overcome with the program is the same with any 3D engine: you need to have
your custom 3D models handy to create a commercial-quality product. With CopperCube
you get a great terrain editor and a simple enough interface for most beginners to learn
the ropes with. It’s perfectly capable of amazing games for mobile systems as well.

75

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

Here are the CopperCube minimum system requirements:
e Windows XP, Vista, 7, 8, 8.1, or 10
e Intel Celeron, AMD Sempron or faster CPU
e 1GBRAM
e DirectX 9.0c graphics
e 60MB hard drive space

Starting Point

Study the tutorials provided by Ambiera on the official web site (www.ambiera.com/
coppercube/doc/index.html).

RPG Maker VX/RPG Maker VX Ace by Kadokawa
Games/Enterbrain

www . Tpgmakerweb . com/

Price (Q1 2017): $37 (VX) / $65 (VX Ace)

RPG Maker VX s for creating 2D role-playing games.

It deploys on Windows.

If you like games like Zelda, you'll love the RPG Maker series of software. It provides
you with quick means for creating maps, enemies, weapons, and special events. The VX
Ace edition is a somewhat more expensive and refined version of the VX system.

Commercial Potential: 3/5

Here is a notable game created with the system:

e To The Moon by Freebird Games (2011)

Usability: 5/5

Think of RPG Maker as a database of role-playing assets. It shouldn’t take more than a
few minutes to get you going and start building your worlds. This database is split into
such categories as friends, enemies, items, and events. You enter several attributes for
the different categories, associating audiovisual assets with the objects where necessary.
As with most role-playing games, the emphasis is on party management. As the “general
manager,” you must pick the best group of warriors you can find. You must tend to your
troop’s health as well as to their battle actions on an individual level during combat,
equipping them with weapons and gear best suited to their skills.

76

http://www.ambiera.com/coppercube/doc/index.html
http://www.ambiera.com/coppercube/doc/index.html
http://www.rpgmakerweb.com/

CHAPTER 4 © COMMERCIAL GAME ENGINES

The software package features an intuitive map editor for all your world creation
needs. It is effortless to create good-looking maps in RPG Maker and to make the player
navigate between them.

Modern versions of RPG Maker utilize a powerful scripting language, Ruby Game
Scripting System (RGSS), which is based on the Ruby language. While not an easy
language to master, it is very versatile and, in conjunction with RPG Maker, allows for
a lot of control over the proceedings. Anything from graphical effects to overall game
mechanics can be adjusted with RGSS.

RPG Maker VX comes with RGSS2. The pricier RPG Maker VX Ace uses a more
advanced version of the scripting language called RGSS3. You can create more
complicated scripts with this version as it executes code much faster than the previous
generation of the language, eliminating most slowdowns experienced with RGSS2.

Audiovisuals: 2/5

The first version of RPG Maker came out in 1992, and it has retained its retro charm
admirably. Think Super Nintendo-era output. However, this means the game resolution
is very, very low at 640x400 pixels. I could only increase it to 640x480. Hence, I gave it a
low rating in this category. If you're into high-resolution graphics, this tool may not be
what you're looking for.

The default visual style in RPG Maker is not a great way to go as far as commercial
products are concerned. There are a lot of amateur titles that all use the same gaudy look.
Luckily, there are a lot of extra scripts for RPG Maker, some of which combined give the
software a graphical overhaul. You can, and should, go for that complete overhaul of the
menus, map graphics, and character portraits in your RPG Maker games.

The slightly more expensive VX Ace version adds a character generator (see Figure 4-12)
into the proceedings, allowing for some customization possibilities right out of the box. With
this feature you can (and indeed should) assemble new characters for use with your game.
Still, an even better approach would be to draw everything from scratch, if you have the time
and the team for it. The Ace version of the software also adds video file support for those cut
scenes. Also, an easy shadow system has been implemented in this version of RPG Maker.

77

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

Character Generator x

Male |Female |

Hair Color: Eye Color: Skin Color: Generate

I - . - - Random |

Shape: Ears:
- Type 1 -

Mouth:
Type 1 - Type 1 - Type 1 - Type 1 -

Eyes Level: Beard: Kemonomimi: Tail:

Middle - None - None - None -

Neck: Cloth: Cloak: wing:

Type 1 - Type 1 - None - None -

Color 1 - Color 1 - Color 1 - Color 1 ad
Output ‘

| Face...

P——— None - None - None - None 3
Output

l Character... Color 1 - Color 1 - Color 1 - Color 1 -

" Close |

Tattoo: Glasses: Accessory 1: Accessory 2:

Figure 4-12. The character generator from RPG Maker VX Ace

Since all RPG Makers are heavily intertwined with the Ruby Game Scripting System,
there is some room to enhance the audiovisuals to your liking. There are dozens of free
scripts online for these matters.

Support: 5/5

RPG Maker forums are very busy with hundreds of thousands of posts. This is, after all,

alegendary line of software dating all the way back to 1992. You also have several DLCs
available on Steam. There are plenty of additional graphics and tunes already. More are
probably on their way.

Overall: 3/5

Like its name states, RPG Maker offers quite a narrow experience in game making. It’s
hardly meant for any other genre than the Zelda-ish role players. Luckily, this is a very
popular genre of video games, and not just in Japan. However, the online world is flooded
with more or less substandard games made with RPG Maker, which has reflected rather
poorly on the product, which is the reason for the low rating of 2 in the Commercial
Potential category. But what it does it does well. The learning curve for making simple
games is lenient enough, and most of the challenge comes from creating fresh audiovisual

78

CHAPTER 4 © COMMERCIAL GAME ENGINES

content, unless you are happy with ready-made assets. Again, you shouldn’t work with
those as RPG Maker games using stock graphics are considered extremely amateurish in
most cases and way, way too common.

The scripting element is really what makes or breaks an RPG Maker game.
It unfortunately doesn’t share the gentle approach of the rest of the suite. Beginners
will have a hard time coding anything useful from scratch. Thankfully, the Internet
is absolutely loaded with custom-made RPG Maker scripts. Beginners are advised to
download a bunch of scripts and modify the heck out of them to get ahead.

Here are the RPG Maker VX Ace minimum system requirements:

e Windows XP, Vista, 7
° Intel Pentium 4 2.0GHz or faster
e 512MB RAM

e 1024x768 or better video resolution

Starting Point

Start working on the basic tutorials on the RPG Maker site, from top to bottom
(www . rpgmakerweb . com/support/products/tutorials). Find the tutorials specific to the
VX Ace brand of the series.

RPG Maker MV by Kadokawa Games/Enterbrain

www . Tpgmakerweb . com/

Price (Q1 2017): $75

RPG Maker MV is for creating 2D role-playing games.
There is an editor available for both Windows and macOS.
It deploys on the following systems:

e Windows

e macOS

e Android

e i0S-devices

e HTMLS5 (browser)

The MV version is the high-end RPG Maker. In addition to export support for
multiple platforms, it features improved graphical capabilities and many other updates.
At a slightly higher price you get simply a much better development system for your
RPG-related projects.

79

http://www.rpgmakerweb.com/support/products/tutorials
http://www.rpgmakerweb.com/

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

Commercial Potential: 3/5

Here are some notable games created with the system:
e Corpse Party by GrisGris (2016)
e Angels of Death by Makoto Sanada (2016)
e The Deed: Dynasty by Pilgrim Adventures (2016)

Usability: 5/5

Running also on macOS, RPG Maker MV uses the same friendly mechanics as its
cheaper counterparts. However, there are some major improvements. For one, it adds an
expanded item database. You now get to have 2,000 items, twice the number available in
previous versions.

The scripting system also gets a major overhaul. You now get to utilize the very
popular JavaScript language for your scripting needs. This provides a high level of
compatibility for several new platforms, such as HTML5.

The VX versions did suffer from clunky script management. Now, the MV includes a
new feature called the plug-in manager, which makes integrating and configuring those
JavaScript files a breeze.

They added mouse support for desktops, and with the new support for mobile
devices, you also have full touchscreen functionality built in.

Audiovisuals: 4/5

Not only did they upgrade the usability features in the MV version, they also enhanced
the graphical capabilities of the software. The screen area is now set to approximately
800x600 pixels, which provides a more modern amount of screen estate in comparison to
the VX’s 640x400 resolution. In fact, all the visuals were multiplied by 1.5 times, including
the sprites. You now have a sharper, less pixelated look available for the first time in

an RPG Maker, right out of the box. Installing additional scripts allows for even larger
resolutions.

The previous RPG Makers featured only one type of visual battle system, the front
view, although you could add others using custom scripts. But the MV version has not
only the original battle view but a gorgeous side view for you to choose from. It’s a nice
little touch indeed.

And like the RPG Maker VX Ace, there’s a built-in character generator, now in higher
resolution as per with the overall visual improvement.

Support: 5/5

RPG Maker forums are, again, very busy with hundreds of thousands of posts. The
community welcomed the MV version with open arms. It, too, has dozens of free scripts
for additional visual effects and functionality. Product updates have ironed out some
export-related glitches in the original MV release. Note that because the MV and VX RPG
Makers use different languages, their scripts are not interchangeable.

80

CHAPTER 4 © COMMERCIAL GAME ENGINES

Overall: 4/5

If you enjoy making games in the RPG genre, many would agree this is the superior
version of the software with its higher-resolution graphics and additional export options.
The previous versions have few benefits over this one, unless you count some older
scripts incompatible with MV. However, as the community behind this product is very
vibrant, that scenario is becoming less likely.

Here are the RPG Maker MV minimum system requirements:

e Windows 7, 8, 8.1, 10 or Mac OS X 10.10 or newer
e Intel Core 2 Duo
e 2GBRAM

e 1280x768 or better video resolution

Starting Point

Start working on the basic tutorials on the RPG Maker site, from top to bottom
(www . rpgmakerweb . com/support/products/tutorials). Find the tutorials specific to the
MV brand of the series.

Clickteam Fusion 2.5 by Clickteam
www. clickteam.com/

Price (Q1 2017): $80
Clickteam Fusion is for creating 2D and rudimentary 3D games.
It deploys on the following:

e Windows

¢ macOS (paid module)

e i0S (paid module)

e Android (paid module)

e XNA (paid module)

e Flash

e HTMLS5 (limited free, full support paid module)

Fusion feels like a more hip cousin of the classic GameMaker versions. Such are the
similarities in the user interface—and the end results. This is not a criticism. Plenty of
successful games have used this tool. It has a solid reputation among platformer-fanatics,
but any other genre is an option, too.

81

http://www.rpgmakerweb.com/support/products/tutorials
http://www.clickteam.com/

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

Commercial Potential: 5/5

Here are some notable games created with the system:

e Spryke by Volnaiskra (2017)
e Concrete Jungle by ColePowered Games (2015)
e Angry Video Game Nerd Adventures by FreakZone Games (2013)

Usability: 5/5

The user interface in Fusion is quite sleek and accessible, if ever so old-school. And there’s
no coding to be done—it’s all drag and drop with the mouse. The software comes bundled
with a massive library of drag-and-drop modules, and a lot of additional ones are out there
just waiting to be installed. The free edition of Fusion is perfect for getting started with the
system, but as soon as you begin to feel confident with it, you should upgrade to a paid
version (see Table 4-3). Creating anything commercially viable with the free edition of
Fusion is an unlikely prospect. The limitations in it are simply too overbearing.

Table 4-3. Fusion License Options

Product Notes Cost (Q1 2017)

Fusion 2.5 Free Edition Limited HTML5 export only; projects may Free
contain three frames (i.e., rooms) only

Fusion 2.5 Exports only to Windows out of the box $80
Fusion 2.5 Developer Contains additional objects and interface ~ $220
enhancements; removes Clickteam logo
from your projects
Android support Exports an .apk package $70
HTMLS5 support Enables full HTML5 exporting for Fusion $60
Flash support Supports Flash video (. flv format) $60
iOS support Exports an Xcode project $100
UWP support Enables exporting to Xbox One, Surface, $180

and other Windows platforms

Firefly 3D Additional 3D functionality for Fusion 2.5 $80
and Developer

Now, you have an action module in Fusion for all the usual game mechanics: play sound,
move object, display image, and, indeed, tons of others. These are then associated with the
corresponding objects within your game in the so-called event editor (see Figure 4-13). It's
quick, logical, and very friendly to beginners.

82

CHAPTER 4 © COMMERCIAL GAME ENGINES

&% Clidteam Fusion 2.5 - [Choco-Break-Tutorial - Game?*] - (] %
ED File Edit View Insert Events Run Tools Window Help

bed sP0 0 QO EDOBB % 2-cme Y4r 58O|N|y

o B EERARSRE

Werspace Tooor *o =8
2 Introduction Al Bounce -
= Game Phay sample POPL g
™y
SugarHorizantal * Colsion between | © |and
SugarVerticall 2 © | : Bounce
SugarVertical? & | : Ply sampie PORYL
- ilk =
© BallGolden T beimee Sy
e 3 ©|: Bource
i Score [& | : Py sampie o
~ Lives « Colson batween [©)] nd [
s v
SCOWS 4 U Bounce
EROpeTtis - Caoper =g & | : Play sample POROS
B bhEBOQ + Upen pressng “Escape”
Display Options ~l 2 % : End the appication
¥ Viible 3t siart [-
& | : Py sarrple MPACTIR
6 © | : Bounce
- ey
‘ : Add 100 to Score

o | ¢ Subtract 1 from Humber of Lives
& | : Play sample DOWNOL (uninteniptabie) w

Select an item to see its description

Ready X 262,393 E7686 % -2-111 %0

Figure 4-13. The Fusion event editor

Audiovisuals: 4/5

Fusion produces smoothly updating 2D graphics, perhaps even faster than the
GameMaker versions do. In addition, it has easy-to-use shader support built in.

This comes at the expense of fine-tuned manual control, which is a prominent feature
of the shader support in the GameMaker versions. But for beginners, Fusion does win
hands-down in the shader department. The building time for projects is also light-years
ahead of GameMaker Studio. There’s no need to wait for three to five minutes to run a
more visually complicated project.

For software that has changed externally so little over the years, Fusion 2.5 is lenient
when it comes to choosing resolutions for your games. Unlike the previous generation of
GameMaker versions, choosing wide-screen resolutions isn’t difficult. There’s minimal
3D support, too, for those able to do something with it, but Fusion is clearly a tool for
those with a hankering for classic arcade action.

Firefly 3D

Price (Q1 2017): $80

Clickteam released Firefly, a 3D extension for Fusion in late 2016. While a far cry
from the 3D quality of, say, Unity, Firefly expands Fusion’s capabilities considerably.
It’s fascinating to see the venerable ChocoBreak tutorial of Fusion get its 3D update.

83

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

However, there seems to be quite a few technical issues with Firefly’s visuals; ragged
object edges and strange shadows pop up from time to time. The lack of AAA shaders
give Firefly an aura of visual antiquity. Think 3D from 2007 at the most. Having said that,
the visuals on offer are far from unusable. While not suited for cutting-edge FPS projects,
more casual genres will look great in Firefly 3D. Also, it’s easy to implement FPS-style
controls with this add-on or even implement a flight simulator-style control method.
Doing that in plain Fusion might cause a few strokes.

Knowing Clickteam’s commitment to its products, Firefly will surely be getting the
updates it needs and thus have a better future ahead of it. It’s a fine product but not quite
worth $80 yet. Caveat emptor.

Support: 4/5

A lot of budding developers have found this tool, making the forums a lively experience.
Clickteam products have been around since 1993 after all.

A rather impressive asset store, dubbed Clickstore, is online, providing developers
with massive amounts of extra graphics, audio, and other resources.

Overall: 4/5

Fusion has a lot going for it. It’s neck to neck with GameMaker Studio in features. It even
uses the same robust physics system of Box 2D. However, Fusion is severely limited by not
having any scripting language support. You are more or less stuck with the drag-and-drop
interface. Some developers are fine with that, but others crave the flexibility of, say, GML.
Despite this shortcoming, Fusion is an amazing product for beginners, especially those
who enjoy making games in the platformer genre.

Here are the Clickteam Fusion 2.5 minimum system requirements:

e Windows XP, Vista, 7, 8
e Intel Pentium 4 2.0 GHz or faster
U 512MB RAM

. 1024x768 or better video resolution

Starting Point

Open Fusion and click Display Tutorial. Select and complete the legendary ChocoBreak
tutorial. Work down the list of tutorials at your leisure.
Table 4-3 lists the license options.

84

CHAPTER 4 © COMMERCIAL GAME ENGINES

Game Salad 1.25 (Mac)/Game Salad 1.00 (Windows)
by GameSalad Inc.

www . gamesalad.com

This is an editor available for macOS and Windows.
Price (Q1 2017): Starting at $19 per month

Game Salad is for creating any type of games.

It deploys on the following:

e Windows 8

e macOS
e iOS

e Android
e Tizen

Game Salad is 100 percent a programming-free, mouse-driven game engine perfect
for 2D games of most kinds. It features a lightning-fast preview mode of your projects and
alogical layout for the editor. Game Salad is simply a great piece of software for beginners.

Commercial Potential: 4/5

Here are some notable games created with the system:
e Stickman Highbar by Boxed Up Studios (2015)
e Spooky Hoofs by Gamesmold (2014)
e Tiny Goalie by Fat Fish Games (2014)

Usability: 5/5

Game Salad is a joy to use. You can create simple game mechanics comfortably even
without any tutorials. The main program logic is divided into scenes, actors, behaviors,
and rules. Scenes are simply the views in a project, whether they represent an intro screen
or a particular level/map in a game.

Dragging a sprite onto a scene turns it into an actor, which can then accept
behaviors. These behaviors in Game Salad consist of the usual kinds, such as “move actor
around the scene” or “change scene.” There are a couple of dozen useful game-related
behaviors built in.

Rules in Game Salad context refer to conditional checks, as in “if mouse button is
pressed then (activate behavior).” An attractive combination of rules and behaviors make
a game (see Figure 4-14). It’s all pretty standard and intuitive logic. One is hard-pressed to
find faults in the Game Salad interface.

85

www.gamesalad.com

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

[X X Untitled 2 - aija_egg (Prototype)

oy - -
< > AN D= » \ @
B L]
Back/Forwaed Home Scenes Tables Preview HTMLS Proview Publish Foedback Help
[<] Create Group Create Rule
[TED Rue Q)
When | All cenditions are valid: =]
= Actar receives ovent mouse butten is | down
Attributes i) |
Name aija_egg ot Direction: Clockwise © Counter-clocikwise
Time real
» Position point Spaect |60 . J |
2 L.
* Size size
Rotation 0 angle | Oaherwise P,
* Calor color . -
Image image
Tags tent
Preload Art a boclean
* Graphics attributes
v
Library Behe Images | Sounds | Fonts
Custom
&3 rotate to Angle Rule (Bahavior
3 Rotate to Position Container)
& Rue X Create a condition or sel
B3 save Attribute of conditions 1o check for
B3 save Table playes input of an
atribute change. 1 can
3 show Banner 8is0 bo crasted by
B3 show More Games cicking the Create Rule
R Camuin bnsas hutton M nie bcina

Figure 4-14. The rule-editing view in Game Salad

Remember to copy and paste rules when you need several similar events, such as
when implementing WASD controls, to speed up the development time.

Audiovisuals: 4/5

Marketed primarily as a mobile phone engine, it’s understandable that Game Salad
doesn’t support any type of 3D game development. You are given the tools to make
perfectly commercially viable 2D output with decent particle and physics support built
in. Most, if not all, popular image file formats are supported in Game Salad. The engine
supports MP3, WAV, M4A, and OGG audio formats, too, of which the Ogg Vorbis seems to
be a staple among mobile developers thanks to its excellent size-to-quality ratio.

Game Salad has an acceptable proprietary physics system, which gives the typical
attributes of friction, bounciness, and center of mass to its actors. A global gravity setting
called Scene Gravity affects all actors. The only flaw with Game Salad physics is the
lack of built-in collision shapes because you get only two: rectangle and circle. You can
assign custom collision shapes in Game Salad, but this is somewhat tricky for beginners.
An external program (such as the Physics Body Editor by Aurelion Ribon) is needed to
generate a collision shape data file in JavaScript Object Notation (JSON), which is then
imported into Game Salad.

86

CHAPTER 4 © COMMERCIAL GAME ENGINES

Support: 5/5

Game Salad has been well-received by budding developers. The forums are densely
populated. Not only that, the makers of the software have made sure the engine is as
beginner-friendly as possible. There are a commendable number of resources online for
getting one’s bearings with Game Salad and/or getting acquainted with some advanced
topics. The tutorials are useful and plentiful. There’s even an online “cookbook” chock full
of useful tips available for both Mac and Windows versions of the software, in particular
when it comes to exporting your projects to the various available platforms.

GS Helper (http://gshelper.com) is the official Game Salad marketplace with tons
of resources for your purchasing pleasure. The store features audiovisual assets and many
game templates to get you started in most genres. There aren’t that many free resources
in GS Helper, but the item quality in general is very high.

The store also sells custom coding services starting at $40 an hour, apparently
provided by the Game Salad team. They claim their clients include not only clueless
indies but multinational corporate clients as well.

Overall: 5/5

One of Game Salad’s strongest pros is the device emulator; there’s no need to hook up
your iPhone or other devices to your computer to develop games for Game Salad. This
is great news for developers who prefer to test their projects after even the smallest of
changes.

The whole Game Salad ecosystem is geared to facilitate quick and painless mobile
game development. Not surprisingly, the engine is marketed for educational purposes.
The clientele ranges from high schools to higher institutions of learning (http://edu.
gamesalad.com).

To sum it up, Game Salad is perhaps the best beginner-friendly game engine for iOS
and Android. It’s both simple and powerful. Let’s hope it doesn’t go away anytime soon.

Here are some Game Salad minimum system requirements:

e Windows 7, 8, 8.1 or Mac OS X 10.7 (Lion)
e Core 2 Duo CPU
° 2GB RAM

Starting Point

Complete the free tutorial labeled My First Game on the Game Salad Academy
(http://learn.gamesalad.com/) for Mac or Windows, depending on your system.
They are presented in video form and come with all of the audiovisual assets necessary
to complete them.

87

http://gshelper.com/
http://edu.gamesalad.com/
http://edu.gamesalad.com/
http://learn.gamesalad.com/

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

S2 Engine HD 1.4.6 by Profenix Studio SRLS

Www . s2powered. com

Price (Q1 2017): $20

S2 Engine HD is for creating 3D games.

It deploys on Windows.

In short, this is one visually stunning system. This is clearly a labor of love for Fabio
Di Paola, who is a very able and motivated programmer. Older versions of this software
are available to download for free, but we’ll take a look at the latest commercial version of
the S2 Engine HD.

Commercial Potential: 3/5

Here are some notable games created with the system:
e Blacksoul by Xeniosvision (2014)
e I'm Not Alone by PixRev (2010)

Current bugs reduce the points in this category.

Usability: 3/5

The main editor program groups your project’s resources in a logical fashion as 3D
models, audio, fonts, animations, and so on. Terrain creation is quick and painless

in S2. You have the usual tools of raising and lowering land, as well as the option to
autogenerate a terrain or import one created externally. Since the technical aspects of
the software are so advanced, it’s possible to create some breathtaking scenery within
minutes. The time of day of your virtual world can be adjusted to the minute, affecting the
artificial sun in a very believable way.

The testing of your levels from the player’s perspective is a simple affair of clicking
Start in the Game menu. You then get the usual WASD controls to run around in the
scenery with.

Presentation is obviously high on the list of priorities with the S2 system. Like
the Leadwerks engine, S2 utilizes a visual flowchart system for game logic, called
GameEngine, which is interwoven with a handy GUI editor. This makes creating game
menus a breeze. However, beginners may be confused with the flowcharts in S2 as they
present themselves in a relatively complex array of boxes and connections.

Every aspect of the impressive visuals in S2 is controlled mostly with the graphical
user interface, enabling quick adjustments. Shaders can be switched on and off from a
simple menu. Also included is a cut-scene editor that feels like a video editing suite a la
Premiere Pro: a definite bonus. S2 even allows for some modification of your project’s 3D
models geometry, so if you feel like fine-adjusting a model, there’s no need to fire up an
external 3D editor program.

88

http://www.s2powered.com/

CHAPTER 4 © COMMERCIAL GAME ENGINES

Scripting in S2, when needed, is based on the C programming language. This is not
an easy language to master, and beginners are better off using the visual GameEngine tool
to coordinate events in their games (such as “if player pulls lever, open door”).

Audiovisuals: 5/5

S2 Engine HD features some of the best visual capabilities of any engine in this book. The
engine is absolutely packed with some of the most modern visual technologies available.
According to the creator, the software deploys on Windows only in order to reach the very
best potential of a single system, instead of compromising the visual output, which is the
case for many multiplatform engines. When it comes to visual finesse, this approach pays
off. The attention to visual detail is remarkable. Shadows are cast beautifully by every
object without much (if any) flickering or strange behavior. Also, you can scale your 3D
models to massive sizes and they still manage to look presentable in the engine. You can
import objects in many common 3D model formats.

The physics in S2 are provided by none other than Nvidia’s venerable PhysX system,
providing robust, realistic portrayal of the way real-world laws of physics simulate. The
engine has extensive physics options for all of your models—that’s another impressive
and easily adjustable set of features in the S2.

Also, the water shader is perhaps the most convincing one out there. You may think
this is a somewhat trivial matter, but any open world game suffers greatly if some of
the largest masses in it look mediocre. That is not the case with S2. One could gaze for
hours at the formidable foam and wonderful waves of water in this engine. Remember, if
utilized in the slightest, water is just as important as terrain.

Impressive as the vast oceans in S2 are, the fun with digital liquid doesn’t stop there.
Unlike some lesser engines, you have multileveled, dynamic water. This means realistic
waterfalls, rivers, and ponds are an option in S2; even the foaming is calculated to look as
realistic as possible under all scenarios.

The vegetation in S2 reacts beautifully to the wind settings in the program with the
grass and trees flailing in a faux storm quite convincingly. Thunder and rain, too, have
numerous settings both making for a fine, atmospheric experience when need be. The
raindrops even bounce off surfaces and mix with larger bodies of water in a convincing
manner. Sadly, there’s no snow.

Now, on to the problems of the S2 engine. There have been numerous reports of
the software crashing periodically on even some newer video cards. Also, the frame rate
may stoop as low as less than 30 fps on some hardware, even on a decent CPU. Your
mileage will vary. The engine runs currently on an OpenGL platform, but there are
plans to provide a DirectX implementation, which will probably reduce the number of
these issues. Your best bet is to go with a video card with decent OpenGL support. It’s
a close shave, but in general Nvidia delivers better on this front. Also, while their CPUs
are great, do stay away from Intel’s graphics chips. Even the developer-stated minimum
requirements on Steam for the software warn against those.

Oddly, S2 supports only .wav audio files, which is not great for music or voice acting
in games distributed online as the file sizes are just too big for comfortable downloading.

89

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

Support: 4/5

There’s plenty of documentation and support available online for this engine. The S2
forums are active, and replies to questions in the separate Q&A section are provided
promptly. The engine has a small but loyal customer base.

There are a few DLCs available for the engine since early 2017, such as the Medieval
Town Pack and an Easy Game Pack. While the first one is self-explanatory, the Easy Game
Pack contains numerous resources in many categories. These include additional items
such as a couple of new weapons (the iconic M4 rifle), implementing a third-person
perspective, and the ability to drive vehicles. If you invest in the S2 engine, you should
get the Easy Game Pack as well, as it really enhances the experience. There’s talk of even
more DLCs for the S2, so the fun won't stop here.

Overall: 4/5

The S2 engine has a moderately steep learning curve for the beginner. It’s easy to create
beautiful outdoor maps with it, but it’s harder to come up with a commercially viable
title as you then have to dig much deeper into the underlying mechanics, such as the
flowchart editor. Do persist with the tutorials as the end results are worth it. Once you
master the GameEngine flowchart technique, you can practically create any kind of 3D
game with the system.

Also, the system still has some bugs to be ironed out, as well as some frame rate
issues. The hardware support in the program is not quite there yet; the performance and
stability of this engine may or may not be adequate on your PC (granted, some of these
issues have to do with video card manufacturers and their driver support). However, if
Di Paola continues his impressive work into the future, it’s quite likely his product will be
among the gold standard of game development suites, standing proudly with the likes of
Unity within a couple of years. Features such as outstanding visuals, a built-in cut-scene
editor, and a mostly mouse-driven workflow make the S2 an appealing software package.
Therefore, this engine is highly recommended with only some minor reservations.

Here are the S2 Engine HD minimum system requirements:

e Windows 7,8, 10
° 4GB of RAM
e Dual-core CPU

e Nvidia Geforce 640 GTX, Radeon HD 5850, or IntelHD 4000 video
card/chipset

e 2GB ofhard disk space

Starting Point

Start watching and working on the introductory S2 Engine tutorials on the official web site
(www. s2powered. com/copiasito/?page id=2487).

90

http://www.s2powered.com/copiasito/?page_id=2487

CHAPTER 4 © COMMERCIAL GAME ENGINES

Tyranobuilder Visual Novel Studio by STRIKEWORKS

www. tyranobuilder.com

Price (Q1 2017): $15
Tyranobuilder Visual Novel Studio is for creating visual novels.
It deploys on the following:

e Windows

e macOS
° Linux
e Android

e HTMLS5 (browser)

The visual novel is a genre of video games no longer popular only in Japan. Thanks to
the proliferation of anime culture on a global scale, the visual novel is here to stay—and
the tools are more and more numerous. Tyranobuilder is one of the more accessible ones
with very few flaws.

Commercial Potential: 4/5

Here are some notable games created with the system:
e Panzermadels: Tank Dating Simulator by DEVGRU-B (2016)

e True Lover’s Knot by Sapphire Dragon Productions (2015)

Usability: 4/5

Tyranobuilder prides itself on being a fully codeless game engine. Game events are
entered using the mouse-driven interface. If you want to dwell deeper into visual novel
mechanics, you can access the underlying scripting language, Tyranoscript, directly. This
is a JavaScript-based universal programming language, which explains the multiplatform
nature of the product.

Audiovisuals: 4/5

The visuals in Tyranobuilder are probably the best in any game engine of the visual novel
genre. For one, the system supports video backgrounds in .ogv or .webm format. These
can greatly enhance the immersion level of these types of games, especially if shot on a
(semi)pro camera rig—or rendered in a professional 3D animation suite.

Tyranobuilder also supports Live2D, which is a very impressive technology for
creating pseudo-3D animated characters. You do not need 3D models to create rather
convincing 3D characters using Live2D. Instead, these objects are constructed from layers
of flat 2D images (of body, eyes, attire, etc.). When combined, they create an animated
character full of depth and emotion.

91

http://www.tyranobuilder.com/

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

If you're not happy with the Live2D material shipped with Tyranobuilder, a
separately sold software suite, Cubism Editor, is needed to create new Live2D characters.

The only visual issue with the engine is the lack of full-screen support. To some, that
in itselfis a deal-breaker. A smaller issue may be the lack of support for custom fonts.
Developers are stuck with four clean and classic fonts for their games.

Because of licensing issues, Tyranobuilder doesn’t support .mp3 audio or .mp4 video
files. Ogg Vorbis, however, is fully supported. Actually, the Ogg file format is all you need.
It's perfectly usable in a game-making context thanks to its high fidelity and small file size.
Interestingly, the old .mpa format is also supported.

Support: 4/5

Some 1,200 threads can be found in the Tyranobuilder Steam Discussions, the product’s
official support community. A comprehensive FAQ section adorns the official web site, too.

Overall: 4/5

Tyranobuilder is very much a beginner’s game engine in the best sense of the term. If
visual novels are what interest you, you shouldn’t hesitate to get this product off of Steam.
The learning curve is gentle, but underneath the hood there’s plenty of potential to
unleash. Also, the fact that Tyranobuilder exports to such a vast array of devices is one of
its major selling points. For a single-genre game engine, you can’t do much better.

Here are the Tyranobuilder minimum system requirements:

e Windows XP, Vista, 7, 8

e 1GBof RAM

e Video card with 512MB of memory
e 500MB of hard disk space

Starting Point

Start working on the basic tutorials on the Tyranobuilder site, from The Basics and
onward (http://tyranobuilder.com/1-getting-started/).

RTS Creator by Infotread, LLC

www.rtscreator.net
Price (Q12017): $10

RTS Creator is for creating 3D and 2D real-time strategy (RTS) games.
It deploys on Windows.

92

http://tyranobuilder.com/1-getting-started/
http://www.rtscreator.net/

CHAPTER 4 © COMMERCIAL GAME ENGINES

The real-time strategy genre is a big one. You can trace its roots back to Dune 2 by
Westwood Studios in 1992. Then, in late 1990s, a franchise called StarCraft happened,
ending up selling more than 15 million copies. Clearly the genre is here to stay. RTS
Creator is an ambitious and user-friendly take on building your very own StarCraft killers.
It features high-quality graphics, but sadly the development seems to have stopped.

Commercial Potential: 1/5

While RTS Creator is still on sale on Steam, the last time the software received an update
was in late 2015. That pretty much means the product is a nonviable option. You may,
however, learn a few things by experimenting with it, in particular if you are a big friend of
the RTS genre. Luckily, there’s a free demo version available for download.

Usability: 3/5

Every aspect of your RTS project—from particles to textures to audio—is easily editable
with mouse-driven tools in RTS Creator. Scripting is not required. The interface is
user-friendly to a great degree and serves users of all skill levels. The default key
controls are, however, oddly mapped and largely counterintuitive. You can use this
engine without typing a line of code. For those who do want more functionality, there’s
the option of using Lua for event scripting. Lua, of course, is a solid choice because of
its popularity and stability.

RTS Creator is quite prone to crash. If you want to experiment with it, save frequently.

Audiovisuals: 3/5

RTS Creator features fairly modern visual output all around (see Figure 4-15), from
supporting high-screen resolutions to providing decent particle effects. One could create
a competitive offering with this tool if only it wasn’t so broken. The graphics do tend to lag
even on decent systems as the armies grow bigger, however, which is why it gets a 3 in this
category. There are settings to make the visuals less demanding on lower-spec hardware.
You can switch off antialiasing, ambient occlusion, bloom, and shadows at your will.

93

CHAPTER 4 ©' COMMERCIAL GAME ENGINES

FILE VIEW EDIT ADD HELP
L] O]
Assety CRIOCtE Mees | 1"

7 Fachons =

“'N o
iy i
‘\l& Wiy gt "

Medium

Radar

Research Facility
Siko

Small Rocket Suggy
Weapons Eaciory

rg-raplosion
g smoke

eplasion-01 >
< 3

Figure 4-15. Despite its shortcomings, the visual rendering is impressive in RTS Creator

The engine accepts 3D models in several popular formats, mainly Blender (.b3d),
Autodesk (. fbx), and 3D Max (.gmf). Despite the numerous bugs in RTS Creator,
importing 3D models in these formats works just fine. Therefore, it is, in theory, possible
to create a game with any theme with the software. Generic land war strategy games
aside, you could set your epics in space (a la Sierra’s Homeworld series), in medieval
times, or in some wacky, cartoony setting.

Support: 1/5

The forums were densely populated, and replies to questions were provided promptly.
Notice the past tense. The user documentation for the product is also lacking in many
areas. Some informative tutorial videos would be nice, as they are pretty much a
requirement for these types of software.

Overall: 1/5

It does what it promises—barely. Last updated in late 2015, RTS Creator has some serious
technical limitations in the form of bugs, slow screen update, and poor keyboard controls.
Despite this, it’s a fine prototype for a specialized game-making tool with a future ahead
of it, if the team behind it suddenly pulls together and takes criticism seriously. However,
it’s becoming less and less likely.

The RTS Engine is a classic case of great unrealized potential. With continued
development, the engine would make an easy 4 in this category. As it stands, it cannot
be recommended. Even the basic event of exporting a ready-to-play file out of the RTS
Creator editor sometimes results in a crash.

94

CHAPTER 4 © COMMERCIAL GAME ENGINES

Here are the RTS Creator minimum system requirements:
e Windows XP, Vista, 7, 8
e 1GBof RAM
e Video card with 512MB of memory
e 500MB of hard disk space

Starting Point

Watch this two-video tutorial series on YouTube: https://www.youtube.com/
watch?v=Qu9ChetoCio. There’s hardly any other documentation available.

95

https://www.youtube.com/watch?v=Qu9CWetoCi0
https://www.youtube.com/watch?v=Qu9CWetoCi0

CHAPTER 5

Freeware Game Engines)

The quality of free game creation software is surprisingly high. Many engines in this
chapter actually represent a hybrid business model, offering a free, fully functional
version of the system and also a paid version with additional functionality.

The answer to the following question determines whether a game engine is fit for
this chapter:

e (Can a developer make commercially viable games with the free
version of the software?

If that answer is yes, you could do much worse than downloading said development
kit for free and starting work on your first games. Like in the previous chapter, the
software is not presented in any particular order, and the following categories are rated
onascaleoflto5.

Commercial Potential

e Arethere any notable games created with the system?

e Does the system allow export to more than one current platform?
Usability

e Isthe engine intuitive to use?

e Isthe user interface uncluttered and logical?
Audiovisuals

e Does the engine provide adequate technologies to create modern
visual output?

e Do the engine’s audio features allow a good degree of flexibility in
formats?

Support
¢ Does the engine have busy forums?

e Do the engine developers respond swiftly to technical and other
queries?

© Robert Ciesla 2017 97
R. Ciesla, Mostly Codeless Game Development, DOI 10.1007/978-1-4842-2970-5_5

CHAPTER 5 "' FREEWARE GAME ENGINES

Overall

e Thisis the bottom-line grade based on the four previous factors as
well as various intangibles.

Unity 5.5 by Unity Technologies
https://unity3d.com

This is an editor available for macOS and Windows.
It’s for creating any type of games.
It deploys on the following:

e Windows

e macOS
e Linux

e i0OS

e Android
e Tizen

e Browser (via the Unity Web Player plug-in or HTMLS5)
e VR

e PS4andPsVita

e XboxOne

e Nintendo Wii U, 3DS, and Switch

First appearing for Mac OS X in 2005, Unity is perhaps the most popular suite of tools
for creating any type of modern game. It comes with a massive track record of successful
games. There are four tiers of Unity, one of which is free to download and use. For this
reason, this is the first noncommercial engine in this book.

Commercial Potential: 5/5
Here are some notable games created with the system:
e Super Mario Run by Nintendo (2016)
e Kerbal Space Program by Squad (2015)
e Slender: The Arrival by Blue Isle Studios (2013)

98

https://unity3d.com/

CHAPTER 5 ' FREEWARE GAME ENGINES

Usability: 4/5

The Unity editor has a logical, well-organized user interface split between four main
windows. Hierarchy shows all the logical objects (called GameObjects in Unity) in the
project, Scene is where you assemble and view the project at hand, Inspector allows you
to set the properties for any selected objects, and Project is there to display all the files
(i.e., scripts, images, audio) in your game. It’s pretty standard fare.

When starting a new project, Unity asks whether you'd like to work in 2D or 3D. This
choice sets the program settings appropriate for the respective approach.

For 3D projects, terrain and vegetation creation in the engine are relatively simple
processes. You have the usual terrain-shaping tools as well as a tree generator in the
editor. There are, however, many tools in the well-received Unity Asset Store that facilitate
even easier terrain creation. Some worth mentioning are World Creator and Gaia.

Unity scripting works both in C# and in JavaScript. Thanks to the way Unity is built,
you may not have to type large amounts of elaborate code to create a game. Depending
on the project, a few lines of code here and there may be all that is needed. Also, Unity
comes shipped with a fine programming IDE called MonoDevelop.

There are some beginner-friendly aspects to coding in Unity. Memory management,
a rather tedious aspect of programming, is automated in the engine. This will only upset
expert programmers who crave that extra amount of control over the proceedings.

Compared to competing products such as GameMaker Studio, Unity isn’t really a
framework for rapid games development for those just starting out. If Unity Technologies
figures out a way to pander to the low-attention-span crowd with an even more simplified UI,
the engine will score full marks in the usability department. As it stands, the system works.

Audiovisuals: 5/5

Unity is perfectly capable of creating commercially viable visuals. It wouldn’t have gained
the support it has otherwise. Virtually every modern graphics technology is available in
the engine, and the quality and scope of post-processing effects are quite striking. This
wasn't always the case, as the first few versions of Unity were considered lacking in visual
immersion among developers.

One of the most impressive features of Unity, the post-processing stack, is a collection
of easily implementable shaders for that trendy film-like look. Available from the Asset
Store, the stack is provided free of charge and consists of more than a dozen effects. The
stack includes bloom, motion blur, depth of field, and two types of antialiasing, among
others. There really aren’t many flaws in Unity’s post-processing capabilities in terms of
quality. The effects are optimized to work together in any configuration, and the graphics
rendering doesn’t suffer from any particular combination. Using them in your projects
is very easy; you simply check boxes to enable these effects in the Unity editor, whether
working in 2D or 3D. For those with experience in writing shader code, Unity leverages a
shader language known as Cg, which is quite similar to Microsoft’s HLSL.

There are two isolated physics systems in Unity, one for 2D and the other for 3D.

On offer are Nvidia’s PhysX for 3D projects, and Box2D, which is also found in engines
such as Gamemaker Studio. Physics support in the engine is available as drag-and-drop
components within a scene.

99

CHAPTER 5 "' FREEWARE GAME ENGINES

For rendering, Unity uses OpenGL on Mac and Linux, while defaulting to DirectX on
Windows. This setting, however, can be changed to either in Windows. The engine also
supports a wide range of audio formats, including some rather obscure and geeky ones,
such as Scream Tracker 3 and Impulse Tracker for the ultimate in chiptune goodness.
Best of all, Unity comes with some wonderful real-time audio-mixing capabilities out
of the box. A dedicated sound mixer component is there to allow for in-project audio
processing, reducing the need to switch between Unity and an external sound editor.
Also, the 3D positional audio is both convincing to the ears and easily implementable.

Support: 5/5

Because of its popularity and proven track record, Unity has an extremely vibrant
community behind it. The Unity Asset Store is full of 3D models and other resources. The
engine forums are very populated, and the available additional resources grow pretty much
on a daily basis. When it comes to game engines, it just doesn’t get any better support-wise.
There’s a clear road map for Unity on the web site, and the future seems bright.

Overall: 5/5

While primarily known as a small-time indie developer’s engine of choice, Unity has
outgrown its somewhat humble reputation when it comes to visuals. Unity Technologies
has kept adding hot new shaders into the engine and will no doubt be doing so in the
future. The community behind the product is massive and doesn’t show any signs of
stagnation. There has been somewhat of a tidal wave of less than fantastic games made
with Unity, but that’s hardly the game engine’s fault. The developers of those titles simply
needed to put in more work with the engine.

Unity is a robust, still developing system that deploys for many platforms with ease.
There have been dozens of very successful games on several platforms over the last 12
years made with Unity. That says it all really.

Here are the Unity minimum system requirements:

e Windows 7 Service Pack 1, 8, 10/Mac OS X 10.8 or newer
e Video card with DirectX 9 or DirectX 11

A Beginner and His Unity Experience: Developer
Interview

So, what is the Unity experience like for the complete beginner? Let’s ask Jim Baker, a
game maker and host of the increasingly popular JimPlaysGames channel on YouTube.
Mr. Baker is behind such quirky and innovative titles as Conker the Universe and The Day
Earth Got Mooned. Check them out at jimmakesgames . com.

Jim: If you're looking to get into coding and game development as more than a
hobby, Unity is a good way to go. It has a graphical interface that allows you to get things
happening on-screen with only a few lines of code. There are tons of tutorials by the Unity
developers and third parties that make it easy to get started too.

100

CHAPTER 5 ' FREEWARE GAME ENGINES

The programming languages Unity uses aren’t the worst either. C# and JavaScript
don’t have the complexities and pitfalls of languages that are more powerful but harder
to use like C++. However, there might be better ways to get a start in learning game
development, like RPG Maker or GameMaker.

Couldn’t agree more, Jim. Unity does have a learning curve, doesn’t it?

Jim: Resist the temptation to jump in. Take the time to research and design. Look
at other games in the same genre and analyze their design, UI, and aesthetics. There’s
nothing wrong with trying to take an existing game type and building on it. It doesn’t have
to be the most original thing ever, as long as it’'s well made and engaging to play.

Make a simplified version of your game’s core mechanics and try it out, without
any of the fancy stuff that you’re planning for later. Make sure the core concept of your
game loop is engaging before taking on the development fully. Depending on the game
type, you can even make a pen-and-paper version or use miniatures, if you're making a
turn-based tactical game, for instance.

Finally, don’t worry if you struggle and feel like you're spending a lot of time staring
at your code in complete puzzlement as to why it isn’t working. That's all part of the
process. Take advantage of the community of coders and designers on the Unity forums
and Stack Exchange. Oh, and I almost forgot. Don’t forget to comment your code. You'll
thank yourself for it later.

So, how would you sum up your advice to games makers starting out in Unity?

Jim: My advice to someone who wants to get started with Unity is at first to watch all
the tutorials on the Unity site and follow along with them. Look around for other tutorials
relevant to your interests too. It'll be tempting to just jump in and start making something,
but you'll likely get frustrated if you try to do too much too quickly.

Your first project should be just a learning experience. Make something simple, like
Breakout or Space Invaders. I've had a problem myself with biting off more than I can
chew and then getting discouraged because I don’t yet have the skills to make it as well as
I could have ifI'd learned the fundamentals first.

Starting Point

Take a look at the excellent selection of tutorials on the official Unity web site (https://
unity3d.com/learn/tutorials). There are countless more by third parties on YouTube
and other sites.

Unity Tips
Here are some tips for using Unity:

e Use subfolders in your hierarchy view. Group objects by role.
For example, make a subfolder for bonus items, another one for
enemies, etc. Clutter is a big issue among Unity developers.

e Click an object and press F to center on it in the scene view.

e Unity can automatically build a texture atlas for your sprites
to optimize 2D performance. The Sprite Packer utility can be
enabled by selecting Edit » Project Settings » Editor.

101

https://unity3d.com/learn/tutorials
https://unity3d.com/learn/tutorials

CHAPTER 5 "' FREEWARE GAME ENGINES

e In Unity parlance, a prefab is simply a class (see Chapter 3 for
more about object-oriented programming).

e WASD controls are easily added in 2D projects. Just attach a script
to the object you want to control and add this function in it:

void FixedUpdate() {

float moveHorizontal = Input.GetAxis ("Horizontal");

float moveVertical = Input.GetAxis ("Vertical");

Vector2 movement = new Vector2 (moveHorizontal, moveVertical); }

Unity License Options

Unity offers several types of licenses for developers at different points in their careers
(see Table 5-1). Since 2015, Unity also offers a free Personal edition. This is obviously the
best way to get acquainted with the engine as there is no financial risk involved. Nothing is
stopping you from developing the next big indie hit with this edition, unless you count the
splash screen displayed for a few seconds at the beginning of your projects. Also, multiplayer
games are limited to a maximum of 20 participants. You may still earn up to a rather
generous $100,000 under this license. Unity doesn’t charge royalties at any license level.

Table 5-1. A Rundown on Unity License Options

Product Notes Revenue Capacity Cost (Q1 2017)
Personal “Made with Unity” splash $100,000 Free
screen, 20-user multiplayer
Plus No splash screen, 50-user $200,000 $35 per seat per
multiplayer, 20 percent off month
asset kits ($420 per year)
Pro 200-user multiplayer, 40 Unlimited $125 per seat
percent off asset kits per month
($1,500 per
year)
Enterprise Custom multiplayer, 40 Unlimited Contact Unity
percent off asset kits Technologies for
details

For the more established developers, Unity offers the Plus, Pro, and Enterprise
editions. Going up the tiers gradually reduces the limitations on multiplayer and revenue
capacity. The costlier licenses use seats to calculate the price. A seat is simply a member of
a development team that uses the software. So, if your team has five programmers and you
want a Unity Plus license, the cost would be $175 per month (5 x 35) or $2,100 per year.

An asset kit is a large compilation of resources for specific genres of games when
working in Unity. Each kit contains scripts and/or various audiovisual assets for different
types of projects. Think of them as booster packs to accelerate your Unity development.

102

http://dx.doi.org/10.1007/978-1-4842-2970-5_3

CHAPTER 5 ' FREEWARE GAME ENGINES

There are asset kits for racing games, first-person shooter (FPS) games, and dungeon
crawlers, to name just three. They are priced between roughly $100 to $300 each. Unity Plus,
Pro, and Enterprise licenses cover asset kit discounts at either 20 percent or 40 percent.

Construct Classic/Construct 2 by Scirra

Www.scirra.com/

Construct is for creating 2D games.
It deploys on the following:

e HTML5 (Construct 2 only)

e iOS and Android (Construct 2 Personal and Business
licenses only)

e Windows, macOS, and Linux desktop (using node-webkit)
e Native Windows (Construct Classic only)

Scirra’s offerings are beginner-friendly, 100 percent drag-and-drop, game
development tools. Construct Classic is a free, unlimited development kit (for Windows
export only), while Construct 2 offers three tiers of licenses, one of which is a somewhat
compromised free version. In Construct 2, in particular, the feature set is extremely
impressive, from the sheer number of templates to the shader support.

Commercial Potential: 4/5
Here are some notable games created with the system:
e Super Ubie Island Remix by Notion Games (2016)
e Cosmochoria by Nate Schmold (2015)
e Airscape: The Fall of Gravity by Cross-Product (2014)

Usability: 4/5

Construct Classic and Construct 2 share most of their usability features. The most obvious
initial difference is the lack of built-in game templates and other material in Construct
Classic. Also, their project files are not compatible as Construct 2 was rewritten from the
ground up. Classic supports manually coded scripting in the Python language, while
Construct 2 is a drag-and-drop interface only.

While it’s possible to export to desktop platforms with Construct 2, this is only
achieved through a node-webkit system. This refers to an HTML5 project wrapped in a
Google Chrome browser. The visual output of these types of exports is likely to be slower
than native desktop applications. Construct Classic exports straight to Windows in
DirectX, giving excellent visual performance.

103

http://www.scirra.com/

CHAPTER 5 "' FREEWARE GAME ENGINES

Since 2012 Construct Classic has not been officially developed by Scirra, but an
active team of volunteer developers still work on it and release occasional updates.

Download the latest version of Construct Classic from https://sourceforge.net/
projects/construct/.

The free version of Construct 2 is not time-limited or lacking any sets of tools.
However, it has some very specific limitations in the form of being able to export only
smaller projects. You can have a maximum of 100 events, 4 layers per layout, and 2 effects
(shaders) per project exported from the free version. Also, there’s the barely noticeable
three-second waiting period when you close the program. These limitations still allow a
developer to come up with some virally friendly and thus simplistic browser games, in the
mold of the venerable Flappy Birds and the like.

To make full use of the software, you really need to purchase the Personal license
from Scirra for about $99. This enables i0OS and Android export as well as the creation
of multiplayer games among other additional features. If you get comfortable with
Construct 2, you should invest in this type of license at some point as it’s well worth it.

As an indie starting out, there’s very little benefit from the much more expensive
Business license at $330. This version of Construct 2 features exactly the same feature
package as the Personal license, except the $5,000 revenue limit is removed.

Audiovisuals: 4/5

The visual output of Construct 2 is highly competitive. Virtually any type of modern 2D
graphics technique is implementable with the system. Construct 2 includes some 70
shader effects, ranging from classics such as grayscale and sepia tone to more exotic types.

The Classic version of Construct features support for HLSL language scripts,
meaning one can import shaders into the program. This is not possible in Construct 2.
Advanced programmers may enjoy this feature.

Support: 5/5

The communities for both software versions are vibrant. As stated, even the “obsolete”
Construct Classic has a huge fan base with more than 80,000 posts about it on the official
Scirra forums. The fact that a team of volunteer developers are still updating the software
speaks volumes about its quality.

Of course, the current version of the software, Construct 2, commands even more
attention from its users and developers. This is an immensely popular product with more
than 600,000 posts in the forum.

The Scirra Store holds approximately 60,000 additional assets for Construct 2,
ranging from extra audiovisual resources to complicated software extensions. With
this store, you can both expand your Construct 2 experience and cut down on the
development time.

Overall: 4/5

You literally can’t write code with Construct 2. It takes that much pride in its drag-and-
drop approach. This is, naturally, great news for the junior developers out there. The
incredible number of extensions available for the software further facilitates quick and
painless game-making.

104

https://sourceforge.net/projects/construct/
https://sourceforge.net/projects/construct/

CHAPTER 5 ' FREEWARE GAME ENGINES

The output from Construct 2 is only hampered by the HTML5 approach. Although
great for browsers and platforms like Facebook, this is not a flawless format of delivery.
Since most forms of export require wrapping your project in a browser, including
desktops, you will fail to reach optimal the frame rates the hardware is capable of. If Scirra
fixed the performance approach with true native deployment, the software would reach a
perfect 5 in this category. This doesn’t mean your projects can’t be visually ambitious, but
you need to optimize them carefully. Most importantly, keep the number of on-screen
objects as low as possible in Construct 2.

It is a worthwhile idea to start your Scirra journey with Construct Classic as it is
unrestricted in every way. For Windows desktop development, it is actually a much more
robust system than the newest iteration of the software. The few remaining bugs are being
neutralized by the team of volunteers one by one, meaning Construct Classic will stick around
for many years to come. Having said that, Construct 2 contains such a huge amount of game
templates, even the free version is quite likely to jump-start your indie development career.

Starting Point

Complete the official Beginners Guide to Construct 2 (https://www.scirra.com/tutorials/
37/beginners-guide-to-construct-2). This will result in a simple shoot-'em-up game and
teach you most of the essential elements of Construct 2 development.

Here are the Construct Classic/Construct 2 minimum system requirements:

e Windows XP SP 3

e 1GHz or faster CPU

e 512MB RAM

e 500MB of free hard drive space

Ren'Py 6.99.12.3 by Tom Rothamel and His Team

Www.renpy.org/

This is an editor available for macOS, Windows, and Linux.
It is for creating visual novel games.
It deploys on the following:

e Windows

e macOS
e Linux

e Android
e i0S

One for the more code-savvy or wanting to learn the ropes, Ren'Py is a popular
choice for visual novel enthusiasts. In development since 2004, Ren’Py has inspired game
makers to create more than 1,000 games. Some of these titles are even sold on major
digital distribution platforms like Steam.

105

https://www.scirra.com/tutorials/37/beginners-guide-to-construct-2
https://www.scirra.com/tutorials/37/beginners-guide-to-construct-2
http://www.renpy.org/

CHAPTER 5 "' FREEWARE GAME ENGINES

Commercial Potential: 4/5
Here are some notable games created with the system:

e Max’s Big Bust: A Captain Nekorai Tale by Lached Up Games
(2017)

e Sound of Drop: Fall into Poison by Sekai Project (2015)
e Heileen 3: New Horizons by Winter Wolves (2012)

Usability: 4/5

Ren’Py is all about programming. There’s no dragging and dropping here. However, don’t
let that trouble you. There are only a handful of commands needed to create basic visual
novel core mechanics. The engine is outwardly rustic but very powerful underneath the
lack of UI gloss.

The first thing you see running Ren’Py is the launcher. The engine works in tandem
with any text editor capable of creating plain text. You are provided with the option of
downloading Editra, a rather fine text editor on its own merit, in the launcher program.

Deployment to all of the available desktop platforms is painless. Simply clicking
Build Distributions on the launcher menu gives you the options needed to build for
Windows, Mac, and Linux in both 32-bit and 64-bit versions. Exporting to iOS requires
the installation of the Renios software, a free download available from in the launcher
and on the main Ren’Py web site. For Android, you need the RAPT software, which is also
free and readily available.

The Ren’Py launcher also provides an error-checking function for your script and the
option to extract dialogue from your game into an external text file. Very handy!

Audiovisuals: 4/5

One of the benefits of working in the visual novel genre is the low hardware requirements
for both developing and playing the games. Ren’Py is no exception. To a degree, this
guarantees some extra global market penetration.

The engine supports a wide variety of formats for images, video files, audio, and
fonts. Virtually any high-resolution 2D image files will work with the engine. Videos
can be looped in your games to create impressive animated backgrounds. Supported
video formats include Ogg Theora, several MPEG types, and Google’s new VP8 and VP9
formats. Google’s formats are lossless and work great for even higher resolutions than Full
HD, too. While the support for these video formats is impressive on paper, getting a video
to actually play in Ren’Py in the past has been a hard task. Apparently, the software is still
somewhat picky when it comes to video files. Your mileage may vary. Read the Ren’Py
documentation carefully and encode your files accordingly.

106

CHAPTER 5 ' FREEWARE GAME ENGINES

The engine also supports quite a few audio formats, including Ogg Vorbis, WAY,
MP3, and even MP2, which is best known from almost all European DVD releases of
popular movies. You shouldn’t use the MP formats in your commercial games, as they are
patented technology. However, Ogg Vorbis is probably all you need for both sound effects
and soundtracks.

Support: 4/5

Updates for Ren’Py are frequent and useful, and the engine is not going to disappear
anytime soon. The Ren’Py community is absolutely crowded with enthusiastic users

of the engine as is evident on the Lemma Soft forums (http://lemmasoft.renai.us/
forums/). Since 2003 they have catered for the visual novel genre in general, but a sizable
part of the forums is dedicated to Ren’Py. Some 100,000 messages have been posted
about the software. Much of the genre knowledge is not engine dependent anyway.

Overall: 4/5

The coding aspect is actually one of Ren’Py strengths. After you conquer the gentle
learning curve, you will have grasped some universal aspects of programming in general.
Ren’Py has proven to be a commercially viable choice for visual novels. It gives
developers lots of control over their projects and has virtually no limitations when
it comes to working in the genre. It is obviously not an all-purpose tool, but as a
single-genre engine it’s probably the best one out there. You cannot beat this price-to-
performance ratio.

Here are the Ren’Py minimum system requirements:

e Windows XP SP 3
e Mac OSX10.6 (Snow Leopard)
e Linux (32- or 64-bit)

Starting Point

Create a new project in the Ren’Py launcher (see Figure 5-1). Open the main script file
with Edit File » Script.rpy. Using the mechanics presented in this section, create a set of
characters, dialogue, and working menus that point to labels by following the tutorial. Use
the Open Directory command in the launcher to open the images folder. Download or
create some graphical content and place it in that folder.

107

http://lemmasoft.renai.us/forums/
http://lemmasoft.renai.us/forums/

CHAPTER 5 "' FREEWARE GAME ENGINES

®e Ren'Py Launcher

PROJECTS:

Navigate Script

Launch Project

Figure 5-1. The mighty Ren’Py launcher

A typical Ren’Py project consists simply of working on a single main script file (called
script.rpy) and its related preference files and audiovisual resources. The nongraphical
interface might scare a few people off, but it actually provides the maximum amount of
control for your projects as soon as you grasp the basics. I'll now go through these basics.

Click Projects » Create a New Project. You are then given the option to choose
between New GUI Interface and Legacy Theme Interface. The latter is only ever useful
for specific aesthetic reasons when deploying to desktop platforms. In general, it’s better
to pick New GUI Interface as it works best for mobile systems. Next, give your project a
name and select the game interface color theme. You now have a new Ren’Py project with
all the right folders and files.

The next section is intended for your reading pleasure only. You don’t have to
integrate any of the following code to your project. It’s there only to decipher some of
Ren’Py’s inner workings. See the “Starting Point” section for actual tutorials you should
be working on with the engine.

Now, the graphics files are generally stored in a subfolder of your main project folder,
usually named images. Just open this folder via the launcher by clicking Open Directory
» Images. In our example, you would create a file called dungeon. jpg in your favorite
visual editor (or download and rename some image file) and drag it into the images
folder.

A word of warning is in order to all Ren’Py developers. The language is indentation-
sensitive, meaning you can’t have any arbitrary number of spaces before each line of
code. Notice in the example the first line (init:) is on a different level of indentation
compared to the following three lines. It has to be this way; otherwise, the project will
refuse to run. These levels of indentation are known as blocks in Ren’Py and Python
language parlance. So, work that Tab key in an orderly fashion with these fine, if slightly
finicky, programming languages.

108

CHAPTER 5 ' FREEWARE GAME ENGINES

The following are the contents of a simple Ren’Py script, called script.rpy, which
isn’t much of a game, but it'll demonstrate the engine basics well enough. Let’s take a
look at a basic Ren’Py project file and then go into more detail, shall we?

init:
image backdrop dungeon1l = "dungeon.jpg"
image backdrop dungeon2 = "darkerdungeon.jpg"
define man = Character("Man", color="#0000ff")
define potatoperson = Character("Potato", color="#o00ff00")

This is the initialization portion of a Ren’Py script. Here you define things such as
which audiovisual files are used, what the different game characters are called, and what
color their dialogue text is.

Now, let’s dissect the second line. You shouldn’t address image files directly. Instead,
you use intermediary handles (i.e., variables) to do this. So, the second line in the script
assigns an image file called dungeon. jpg to an image variable I decided to call backdrop
dungeon. The first part of the variable, backdrop, is a base name for the image. The
second part, dungeon1, is an additional tag for the image. Images sharing the base name
(in this case backdrop) can be easily swapped with one another, as replacing one will
position the new image in the same place and capacity as the old one. More on this later.

Next, the following lines create two characters for the project, called Man and Potato, the
latter whom is some kind of sentient perennial plant. Again, you are assigning specific handles
for these characters so that you don’t need to specify the attributes over and over. You do this
with the define command. The displayed name and the color of text for both characters are
stored in the variables man and potatoperson in the syntax provided by this example.

As with web sites and many other applications, colors for the character dialogue
in Ren’Py are designated using the RGB method. This refers to red, green, and blue
presented in hexadecimal (base 16) notation. The first two digits after the hashtag define
the amount of red in the color. The following controls the amount of green, and—you
guessed it—the last two digits indicate how much blue is in the color. Mixing these
three primary colors is what makes all the colors of the rainbow possible in the digital
realm. In this example, the character man is represented by an electric blue color, while
potatoperson will receive a rather lovely toxic green as their color of choice.

There are very few limits as to how many characters and audiovisual assets you can
use per project in Ren’Py, but don’t overdo anything to avoid player confusion. Now, let’s
move on to an actual scene. You'll notice some lines beginning with a hashtag in the next
segment.

This is a code comment. Yes, hashtags turn lines into comments in Ren'Py.
These are not expected to do anything, except store reminders for the
coder!

You can insert these in your script file at your leisure.

label start:

First, we show a background.

scene background dungeonl

109

CHAPTER 5 "' FREEWARE GAME ENGINES

These three lines display lines of dialogue.

"Once upon a time.."
man "Dear Potatoperson. What is your favorite movie?"
potatoperson "That would be Zardoz starring Sean Connery"

The label command represents just what you might think: it’s a label meant for
navigating the storyline and script. Here I have named the label start. By labeling
segments of the script, you allow the player to reach that precise point at a later time by
making specific choices.

Now let’s take a look at another core Ren’Py concept: the menu. A menu is where
a player interacts with the game universe. All menus are designated by the command
"menu:", as is the case with this example. An integral part of the menu mechanic is the
command called jump. It is simply used to take the player to a different, labeled part of the
script. In the case of the example menu, the player may choose to jump to the agree or
disagree labels with their corresponding text prompts.

menu:
"Agree with Potatoperson.”:
jump agree
"Strongly disagree with Potatoperson.":
jump disagree

label agree:
"It is a wonderful piece of cinema!"
return

If we disagree with Potatoperson, we get to witness a new
background graphic fade in

label disagree:
scene background dungeon2
with fade

"I find Zardoz un-watchable."
return

Remember the image tags? In the previous lines, one is being put to good use.
The image designated as background gets replaced with the image with the same base
designation, but a different image tag. So, the image file pointed to in the dungeon2
variable (i.e., darkerdungeon. jpg) will now become the background graphic in this
example. Not only that, it’s done via a fancy fade to black, thanks to thewith fade
command. For a film-like dissolve between two graphics, you would replace that line with
with dissolve.

110

CHAPTER 5 ' FREEWARE GAME ENGINES

Finally, you have the return statement. This simply returns the player to the main
menu, where they may either play the magnum opus again or quit the program. And with
this you reach the end of the little demonstration of the Ren’Py basic mechanics.

Make sure to visit the Ren’Py cookbook and start experimenting with the various
techniques presented there (www.renpy.org/wiki/renpy/doc/cookbook/Cookbook).

Gamelooper by Oyun Dongusu Ltd

www. gamelooper . com

This is an editor available for macOS and Windows.
It is for creating simple mobile 2D games.
It deploys on the following:

e iOS

e Android

Definitely an engine suitable for absolute beginners, Gamelooper has its limitations
but also some serious strengths. One of these is the 100 percent drag-and-drop approach,
which works very well.

Commercial Potential: 3/5

There are no notable games created with the system. The potential for making hits with
this engine is modest, but it’s there.

Usability: 3/5

The main editor view in Gamelooper is logical enough, with different categories for
screens and objects, audiovisual resources, and variables. The engine offers a choice
between Basic and Pro interfaces (see Figure 5-2), with the professional mode adding
extensive controls for analytics and in-app purchases, among other things. Splitting the
interface this way is a good approach to keep beginners less confused.

111

http://www.renpy.org/wiki/renpy/doc/cookbook/Cookbook
http://www.gamelooper.com/

CHAPTER 5 "' FREEWARE GAME ENGINES

L L X] GameLooper
Basic Mode -«
w 4 A
- O EO®~ °
JumpyBind1.gu $Dkwctor -
SCREEN Noha : 1

xfnchor: 05 7 yAncher: 0.5
DO ;S

Wil D spawned in run lime

g BoyTe: hone "
O gameover Body Shape : v

Accuracy Porforman:
® S
9 l Screent Friction :]
Bounce a
s Fined Rotation
@ -« greeting @ s Bulot :
Is Sensor :
IMAGE « Ted: BLACKBELLA
ANIMATION I
Text Font: Cabas reos
SOUND Text Size : 100
VARIABLE o Color: [

Figure 5-2. Gamelooper in Basic Mode

Because the deployment will be for mobile devices only, the supported player
controls are based on touchscreens only. You won't be integrating any key presses or
mouse action into your Gamelooper projects, ruling out accurate desktop-based testing
of your games. There is a rather clumsy and incomplete simulator method available
for the engine, but it doesn’t really do the trick. Make sure you've invested in an iOS or
Android device before downloading a copy of Gamelooper.

When it comes to keeping your workflow simple, this engine is among the best out
there. Parts of the user interface, however, are unintuitive. Why are there two red icons
side by side in confirmation dialogs? Get it right, developer people. Go with the traffic
light logic.

Some of the best features of Gamelooper are the publishing options. You can either
publish with the development team’s help or do it by yourself. Now, should you go with
team-assisted route, you get a lot of the technicalities of the publishing process taken care
of for you. First you need to upload your project to the Showcase section of Gamelooper.
com. Should the team deem your game commercially viable enough, they will help you get
it distributed on the Apple App Store and the Google Play Store. This publishing method
won't cost anything. The revenue from games published via this method will be then split
between the Gamelooper team and the developer.

The self-publishing route with Gamelooper projects costs $199 per game and
requires a whole lot of working with digital certificates and the like. However, you do get
to keep all of the revenue. This may be a better publishing method if you're sitting on a
sure hit (if one can ever be sure of these things). Luckily, there is an extensive guide on
the main site for all of the technical specifications needed for self-publishing.

You do need a cloud storage account from Dropbox for both testing and publishing
your projects on Gamelooper. However, these are free and facilitate on-the-go development
of your games. Running your projects on your mobile device is pleasantly trivial with
Gamelooper. There’s no need for those pesky digital testing certificates at that stage.

112

CHAPTER 5 ' FREEWARE GAME ENGINES

Audiovisuals: 3/5

Simplicity (or elegance, depending on how you want to look at it) seems to be a crucial
tenet in Gamelooper. The engine only supports PNG image files and MP3 audio files.
There’s no shader support for post-processing or anything of the like. Animations are
made from sprite sheets by specifying the number of rows and columns in the file as well
as the playing speed in milliseconds. It’s all very basic, but it works.

Support: 3/5

There are some fine tutorials built right into the software. Apparently the engine has more
than 50,000 users as of early 2016. There is a smallish forum for the product on Facebook
(https://www.facebook.com/groups/gamelooperforum/), and the developers seem to
respond to queries in a timely manner. The followers of Gamelooper on social media are
not very numerous. Clearly, it’s still a relatively small-scale operation.

Overall: 3/5

A most delightful little piece of software, Gamelooper allows pretty much anyone to
create visually modest mobile games within an hour. For one, the engine is perfectly
capable for the rather popular infinite runner genre, and it can handle simple shoot-
’em-ups just fine. Complexity does not necessarily make a good game. Extra kudos to the
team in Turkey for the unique publishing options in Gamelooper. Based on these factors,
the system is definitely worthy of downloading as a “my first game engine” for mobile
development.

Here are the Gamelooper minimum system requirements:

e Windows 7
e Mac0SX10.7 (Lion)

Starting Point

Download Gamelooper for your Max OS X or Windows computer from Steam or http://
gamelooper.com/download/. Run the program and select Go To Tutorials. Start working
on the Bananas tutorial. To learn the ropes even more thoroughly, complete Jumpy Bird,
Bug Shooter, and Spin Stick Soccer at your leisure.

To test these projects on your iOS or Android mobile device, you need the mobile
versions of the Gamelooper software, as well as a free Dropbox account.

Stencyl 3.4 by Stencyl, LLC

www. stencyl.com

This is an editor available for macOS, Windows, and Linux.
It is for creating 2D games.
The freeware version deploys on Flash.

113

https://www.facebook.com/groups/gamelooperforum/
http://gamelooper.com/download/
http://gamelooper.com/download/
http://www.stencyl.com/

CHAPTER 5 "' FREEWARE GAME ENGINES

The paid version deploys on the following:

e Windows

e macOS
e Linux

e i0S

e Android

e HTMLS5 (browser)

Branded as a beginner-friendly toolkit for making hit mobile games, Stencyl is a fully
codeless environment. The engine is free only for Flash development, which is what I'll
focus on in this review. Getting access to other available platforms requires the purchase of
additional modules. However, the Stencyl development process is the same for all exports.

Commercial Potential: 4/5

Here are some notable games created with the system:
e Battle Slimes by DoDreams Fairytale Company (2015)
e Foxtrot! by Bull and Gate Ltd (2014)
e Impossible Pixel by 99 Up Games (2013)

Usability: 4/5

The Stencyl motto “Design Once, Play Anywhere” says it all. Great care has been taken
with this approach, making multiplatform releases the main appeal of this engine.

The projects in Stencyl are divided as Resources and Logic in the editor. Resources
contain audiovisual assets, tilesets, and game objects (called actors), while Logic stores
object and scene behavior and scripts.

The Stencyl editor includes built-in access to StencylForge, which is a modest
collection of free, downloadable assets of all types. It’s worth using these assets when
you're experimenting with the software, but using these resources in your finished games
isn’t a wonderful idea. Always keep your content as original as you can.

The language of choice here is Haxe, which shares most of its syntax with the Flash
scripting language ActionScript. Although the Stencyl GUI runs on top of a Haxe-based
framework, you are not required to type a single line of code to complete your projects. If
you do end up coding manually in Haxe, rest assured the code will be compatible with all
the available export platforms in the engine. The whole programming language was built
on the premise of delivering compatible code for all modern platforms, making it ideal for
this engine.

Some say Flash is dying. Apple cofounder Steve Jobs hated it, and hence it won’t be
supported on i0OS devices. Granted, Flash has some security and stability issues. However,
the format is still very much alive on some rather massive online gaming sites, such as
Kongregate among others. The dying process for Flash sure seems to be a drawn-out one.

114

CHAPTER 5 ' FREEWARE GAME ENGINES

Audiovisuals: 4/5

The engine is capable of modern 2D visual output with basic shader support available for
Windows, macOS, and Linux exports. It’s simple enough to implement, say, a grayscale
effect, some film grain, or a combination of the two. Desktop platforms also get advanced
shaders in the form of GLSL scripting for those willing to work with that language.

Stencyl has fine physics support in the form of Box2D. Each object in the system has
a set of controls for mass (in kilograms, no less), friction, and other physics attributes.
There’s a reason Box2D is popular. However, if your project doesn’t need realistic physics
(think board games) or you want to keep things running fast as possible, you can opt for
simple physics instead.

Audio support in Stencyl is limited to Ogg Vorbis (. ogg) on all platforms, apart from
Flash, which uses MP3 files exclusively. The engine has handy, live controls for fade-ins
and fade-outs for your soundtracks.

Support: 4/5

Stencyl has a reasonably packed Extensions Market with free and low-cost extensions for
the engine. These range from additional ad service functionality to extra visual effects.

The software was clearly well-received and has a thriving online forum community.
The Stencylpedia is a comprehensive collection of tutorials and sample projects available
on the main engine web site (www.stencyl.com/help).

Overall: 4/5

If you are looking to develop 2D mobile games in a rush, Stencyl is a fine engine for
this purpose. Impressive as the list of export platforms is, the issue with the engine is
the simplicity of the output from the drag-and-drop interface. Basic tile-based games
(think Pacman or Gauntlet) are quickly crafted with the system, but you will have to go
knee-deep in scripting in Haxe to come up with anything more advanced. However, as a
beginner’s tool, Stencyl is among the best out there.

Here are the Stencyl minimum system requirements:

e Windows 7
e Mac OS X 10.9 (Mavericks)
e Ubuntu Linux 10.04

e Javaversion 8 for all systems (free download from www. java.com)

Starting Point

Start working on the Stencyl Crash Courses from top to bottom (www.stencyl.com/help/
start/). The downloadable assets needed by the lessons are provided on the site.

In addition, you may benefit from downloading actual completed mini-games and
examining how they work (www.stencyl.com/developers/samples/).

115

http://www.stencyl.com/help
http://www.java.com/
http://www.stencyl.com/help/start/
http://www.stencyl.com/help/start/
http://www.stencyl.com/developers/samples/

CHAPTER 5 "' FREEWARE GAME ENGINES

Godot 2.1 by Juan Linietsky and Ariel Manzur

www.godotengine.org

This is an editor available for macOS, Windows, and Linux.
It is for creating 2D and 3D games.
It deploys on the following:

e Windows

e macOS
e Linux

e iOS

e Android

e Blackberry OS
e HTMLS5 (browser)

Godot is a lesser known engine with a lot of power and potential. The editor is
available for all major desktops and exports to as many as seven platforms. While it relies
quite heavily on scripting, it’s worth looking into perhaps as your second-ever game
engine. It may be the only engine you’'ll need.

Commercial Potential: 4/5
Here are some notable games created with the system:

e The Interactive Adventures of Dog Mendonca & Pizzaboy by
Ravenscourt (2016)

e Steno Arcade by For All To Play (2016)
e Egg Returns Home by PigelPix (2015)

Usability: 4/5

The GUI layout in Godot is intuitive and has very little to fault (see Figure 5-3). I'll next go
through the necessary basics of Godot to ease you into the engine. There are four central
concepts in the system: scenes, nodes, signals, and singletons.

116

http://www.godotengine.org/

CHAPTER 5 ' FREEWARE GAME ENGINES

(X X) Godot Engine - Godot Engine - Node2D.isen

Output:

Figure 5-3. The Godot GUI with the seminal icon put to great use

Scenes

A scene is basically a level or aroom in a game. You need to define a main scene before
trying your project, which refers to the first scene to be displayed. You do this by
activating the scene you want, selecting Scenes » Project Settings » Application, and
selecting the main scene check box. Lastly, you need to click the folder icon on the right
and navigate to the actual scene file in your project folder.

Now, on to how to change scenes. Let’s assume you have two scenes, scenel.tscn
and scene2.tscn. Simply add the following line of code to a script in some node in
scenel to change to the other scene:

get_tree().change_scene("res://scene2.tscn")

Nodes

Nodes are the building blocks of a project, which include clickable buttons, enemy units,
jukebox objects, and so on. Think of nodes simply as objects of all kinds. Let’'s now create
a couple of useful Godot nodes, shall we?

First, you need to click the plus sign in the Nodes window to create your first node.
A window will open. Click Node2D. The description window will state “Base node for 2D
system.” Now click Create. All scenes need a base node, and this is what you just created.
These don’t do a whole lot, but they are required for functional scenes in Godot. Try
renaming the base node to Main or World.

117

CHAPTER 5 "' FREEWARE GAME ENGINES

Next, let’s create a simple player-controlled node. Select the base node you just
created. Click the plus sign. Type body in the search box. Three search results should
come up: StaticBody2D, KinematicBody2D, and RigidBody2D. These are the main node
types for 2D objects in Godot.

e AStaticBody2D is used for static objects that don’t need to be
affected by physics properties.

¢ AKinematicBody2D will collide with physics objects but is not
affected be the physics simulation. It’s great for player-controlled
objects.

e ARigidBody2D is a general-purpose node/object.

Create a KinematicBody2D node. You'll notice it is now underneath the previously
created base node. Rename the new node to something like Player. You'll also notice
the new player node has no visual representation yet. That’s easily fixed: select the player
node from the node view and create a new node of the type Sprite. The player node now
has a subnode of the type Sprite with the default name of Sprite. Next you assign an
actual sprite (i.e., image file) to this sprite node. Select the Sprite node and focus your
attention on the Inspector module in the GUI. On the top there’s a field labeled Texture.
This stores visual data for the node. Click the part where it says <null> and select Load.
Find an image file on your hard drive and select it. That'’s it. The sprite node now has an
image associated with it. Because the sprite node is a child node of the player node, it will
inherit this visual representation.

And that’s how you attach sprites to your nodes/objects in Godot. The sprites can
be easily manipulated inside the inspector in Godot when it comes to attributes such as
scale and rotation.

Signals

Now, signals are the actions in the Godot engine. A robot node on a scene may receive a
signal of, say, having the A key pressed on the keyboard, which then results in movement
of said node.

Let’s get some WASD action going. To begin adding user interaction in your Godot
projects, you should first get acquainted with the input map. Go to Scene » Project
Settings » Input Maps. Here you can map your keys to specific signals (i.e., actions). Type
a name for the actions in the top bar. Let’s start with W.

The way to implement player control into Godot is based on scripting. You simply
need to attach a script to the player character node, which contains the interactive
elements you need for your game.

The following script, when attached to a node, enables WASD controls in Godot. It
may look complicated, but it actually isn’t.

var location

func _ready():
Called every time the node is added to the scene.
set_fixed process(true)
pass

118

CHAPTER 5 ' FREEWARE GAME ENGINES

func _fixed process(delta):
if(Input.is action pressed("W")):
location=get_pos()
set_pos(location+Vector2(0,-100)*delta)

if(Input.is action_pressed("S")):
location=get pos()
set_pos(location+Vector2(0,100)*delta)

if(Input.is action pressed("A")):
location=get _pos()
set_pos(location+Vector2(-100,0)*delta)

if(Input.is action pressed("D")):
location=get_pos()
set_pos(location+Vector2(100,0)*delta)

Let’s break down the input code block in GDScript.

e Input.is_action_pressedis a GDScript command for observing
when an input event registers.

e That command checks out each of the key mappings you
stored in the input maps (W, A, etc.) and, when triggered,
stores the current coordinates of the node into the location
variable using a command for that purpose, called get_pos().

e The variable called location is used to track and change the
location of the node. Look back and you'll see you defined this
variable in very first line of the script.

e You then tell Godot to set the position of the node with a
dedicated command, set_pos.

e That command takes the current location and a two-dimensional
vector as its attributes.

¢ TheVector2 command sets a direction for the node its working
with, on the classic Cartesian coordinates (i.e., x and y). The first
variable in the command sets the x or horizontal direction. The
next one works with the vertical direction.

e Negative numbers input into the vector simply move the
node in the reverse direction on the respective plane!

119

CHAPTER 5 "' FREEWARE GAME ENGINES

Singletons

Singletons are data storages for global variables. These are needed when the player
navigates from scene to scene and specific variables need to persist throughout the scene
changes (e.g., a score variable would benefit from being stored in a singleton). Simple
games may not need this functionality, but you should get acquainted with it as it is a core
concept in Godot.

To begin working with singletons, you start off by creating a new script. Click Script
» File » New. Type singletonl.gd in the path box. You can type any name for this script,
of course, but for the sake of simplicity I chose the most obvious one. Now, you need to
work with a feature called Autoload. Go to Scene » Project Settings » Autoload. Navigate
the path to the file you just created. Click Add and make sure the check box called
Singleton is enabled. The very spartan singleton1 script creates a variable called score,
which is globally available for all scenes and their nodes in the project.

extends World
var score = 0

That's your script. Now, how to access this singleton data from within some other
node? Just use the syntax of <name of singleton>.<singleton variable you want to
access>, i.e., singletoni.score.

GDScript

Godot supports a C++ API but relies primarily on a proprietary language called GDScript
for scripting. This is based on the Python language. The developers claim GDScript

is easy to learn and gels best with the engine. The C++ API is recommended only for
performance-critical parts of a project and requires quite a bit of prior experience in that
language. All projects made with Godot require varying degrees of scripting. The software
does have a learning curve, but it’s worth investing the time.

Overall, the engine is comfortable to use. Godot has a well-integrated and
beautifully color-coded built-in script editor. The IDE has both autocompletion and
auto-indentation. The latter feature is quite useful, as GDScript is a whitespace-sensitive
programming language, much like Ren’'Py.

In addition to all this, Godot is very much a lightweight program coming at you at
hardly 30MB in size. With broadband, it’s yours within ten seconds.

Audiovisuals: 4/5

Godot has a custom physics engine, which does the job well. In addition to the three
types of 2D physics bodies, the engine naturally caters for 3D nodes/objects as well. Note
that there’s a strict division between 2D and 3D node types. For one, the base class for
projects in 3D is called Spatial.

Godot supports full-scene importing in 3D. Individual models in the Wavefront
format (.obj) can naturally also be imported.

120

CHAPTER 5 ' FREEWARE GAME ENGINES

The particle system in Godot is extensive and fits the bill just fine. However, it would
be nice to be able to use animated sprites for your particles. You only get nonanimated
sprites for your explosions and other effects. Still, there are four phases of color available
in addition to comprehensive particle attributes, including gravity direction, orbit
velocity, and spread. You do get to craft some pretty convincing fire and magic effects
with the system as it is.

The engine also has a visual animation tool for both 2D and 3D projects. This is a
very user-friendly, timeline-based feature, reminiscent of many popular video-editing
software applications.

Imported audio can only be in the venerable .wav format. You can, however,
normalize the samples (i.e., pump up their volume level) and/or convert them to mono
upon import, which may come in handy. Godot also allows you to resample your audio
files at a sampling frequency of your choosing and/or convert them into 8 bits, if disk
space is a priority in your project.

Support: 4/5

The Godot team has a clear vision for the future of the engine, and there’s a very detailed
road map available online. Updates to the engine are frequent. Social media is pleasantly
getting more and more saturated with all things Godot. In addition to the (as of yet small)
official forum and a busy Reddit thread, there’s some real-time support available in the
form of Discord and IRC chats. In short, people seem to love this engine because the
developers take it seriously.

However, the official Godot documentation, while ample in scope, can be patchy in
places.

Overall: 5/5

Godot is a great new engine on all fronts even for beginner developers. It got its first
stable release in August 2016, but it’s already gaining major ground among indies. Once
you internalize the core concepts, you can come up with some rather ambitious titles for
several popular platforms. The audiovisuals are strong. Although not AAA quality, the
output from this engine is technically impressive and lends itself well to both professional
2D and casual 3D development. Best of all, this software is 100 percent open source.

In my opinion, Godot is the best game engine presented in this book. It deserves a
much larger user base among indies and established developers alike.

Here are the Godot minimum system requirements:

e Windows 7
e Mac0SX10.7 (Lion)
e AnyLinuxdistribution

e OpenGL 2.1 or newer capabilities

Starting Point

Start working on the “Step by step” section in the online tutorials (http://docs.
godotengine.org/en/stable/tutorials/step by step/_step_by step.html).

121

http://docs.godotengine.org/en/stable/tutorials/step_by_step/_step_by_step.html
http://docs.godotengine.org/en/stable/tutorials/step_by_step/_step_by_step.html

CHAPTER 6

Audiovisual Assets

Most of the time video games are audiovisually engaging. Good old-fashioned text
adventures, while they are still played by many, speak to only a handful of potential
customers. This means a developer must know his or her way around at least some basic
audiovisual terms, which are presented next. First, I'll take on some core audio concepts
followed by a look at current audio-editing software. Then, I'll do the same for graphics.

The Basics of Digital Audio

Compact disc-quality audio is still the gold standard you want to aim for in video
games. This method of capturing audio in a digital environment is known as pulse-code
modulation (PCM). It means using a 44.100 sample rate in 16 bits for all recording and
playback. Going higher with these numbers (such as doing the 24-bit thing) in a video
game context is overkill, no matter what some audio card manufacturers claim. The
bigger the bit depth and sampling rate, the more disk space the audio eats. This may not
matter at the delivery stage, but on a sound designer’s workstation it does.

Now, the term sample rate refers to the number of times a sound source is sampled
per second by the hardware/sound card. This information is donated with the hertz
(i.e., Hz). The bigger this number is, the higher the frequencies you can record. Material
sampled at a low frequency of, say, 8000Hz, sounds muffled or muted to our ears. That’s
why you want to keep your audio at that magical CD sampling rate of 44.100Hz. Most
audio played back at this rate sounds natural enough to the majority of listeners.

Let’s take a moment to learn about the Nyquist theorem. As physicist Harry Nyquist
demonstrated, the actual highest frequency we can hear after sampling audio is half
the rate the audio passage was recorded in. In other words, a sampling rate of 44.100Hz
results in audio with its highest frequency being 22.050Hz instead of 44.100Hz. But don’t
worry—22KHz is enough for our precious ears.

There’s also a great anatomical reason we stick to the CD standard. Human ears detect
only up to 22.000 Hz at age 18 or so. After that, our ears begin to lose sensitivity and we hear
only up to about 16.000 hertz at 25. At age 75 you're lucky to have 10.000 Hz available. This
age-induced type of hearing loss is known as presbycusis. It happens to everyone.

Now, let’s tackle the other important number in digital audio, the bit depth. To
put it simply, the bit depth in digital audio simply means how many volume levels are
available for the signal; 16 bits provides adequate dynamics with its 65,536 possible levels
of volume. The bigger the bit depth, the more “volume ladders” there are—and the less
background hiss there generally is. Sixteen bits is plenty to reproduce any kind of audio,

© Robert Ciesla 2017 123
R. Ciesla, Mostly Codeless Game Development, DOI 10.1007/978-1-4842-2970-5_6

CHAPTER 6 ' AUDIOVISUAL ASSETS

including classical music with quiet passages, heavy metal, beeps, explosions, and even
poorly voice-acted dialogue.

One may argue for 24 bits in a recording studio context (with its impressive on-paper
16.7 million volume steps) if you intend to record very quiet audio passages, but in the
video game industry we’re happy with 16 bits.

Say, do you want to go retro? Convert (i.e., downsample) your audio material to 8
bits. It’s an instant 1990s sound. There are also some chic effects available to downgrade
the hell out of your audio material, taking your players right back to the 1970s and Pong.

MIDI

Musical Instrument Digital Interface (MIDI) is just that: a way to interface specific
instruments, usually keyboards, with digital workstations, such as computers. MIDI data
differs from pure digital audio in several important ways. Think of it as messages instead
of audio. MIDI devices transmit streams of notes (i.e., songs), their pitches, and velocities.
You can’t listen to a MIDI stream without a computer or some other device, which
provides the sounds for all this note data to trigger.

There are many benefits to MIDI-based music making. For one, you can easily
change entire instruments without touching the rest of the song’s arrangement in any
way. Also, MIDI song data takes very little room, often way, way less than 1MB. MIDI
music used to sound cheesy, but these days there are some very convincing sound
libraries available for any instruments you can think of, including the human voice. These
libraries do take a lot of space, often being distributed on several DVDs. Needless to say,
downloading them might take a few days in a row.

MIDI was made public in 1983 as a U.S./Japan partnership. It completely revolutionized
music creation, enabling countless hobbyists to make pro-grade arrangements. MIDI is still a
very large part of the global music industry, also in video games.

Lossy Audio Formats (i.e., Delivery Formats)

As is the case with graphics, there are two major groups of audio formats: lossy and
nonlossy. Lossy includes MP3, Ogg Vorbis, Windows Media Audio, etc.

Think of lossy formats as old audio cassettes or VHS tapes—remember those? If you
took a copy of one such recording onto a similar format, the new copy would be inferior
in quality. In other words, lossy formats degrade after each copy, or after each “save as” in
computer software.

The most well-known lossy audio format is our good friend MP3 from 1995. Other
popular ones include Ogg Vorbis and Windows Media Audio (WMA). What is the purpose
of all of these lossy formats? Well, because of their small file size, they make for fine
delivery formats in a finished product. So, when there’s no need to work on an audio
file anymore, you save it as a, say, MP3. Remember, you do want to try to provide the
customer the shortest possible downloading time in these times of digital distribution.

MP3 files, still the most popular lossy format, can be saved at different quality
settings, known as bit rates (or kbps). The higher the bit rate, the closer the file is to
anoncompressed file in overall fidelity. These rates range from 32 kbps to 320 kbps.
Needless to say, you want to stay away from the low bit rates at all times. This is not 1996
anymore. There’s plenty of Internet bandwidth for all.

124

CHAPTER 6 - AUDIOVISUAL ASSETS

Nonlossy Audio Formats (i.e., Source Formats)

Nonlossy audio formats, such as WAV, AIFE, and FLAC, are what you need when you're
still working on some sound effects or music. You can safely save and copy in a nonlossy
audio format without any degradation in audio quality. Large nonlossy audio files

can take hundreds of megabytes in size. Therefore, you usually want to end the audio
workflow with that “save as lossy” step.

The bosses of uncompressed audio formats are WAV in the Windows environment
and AIFF on Macs. They’re not system-specific, so you can work on both formats on either
type of system. Both are archive ready and just love working with you and your musicians.

Now, here’s some no-nonsense advice:

e Deliver high-quality lossy files only: Everything you release with
your game should reflect well on you, including the audio quality
in your files. Keep your MP3 output at 160kbps minimum to
retain decent high-frequency fidelity—think hi-hats, cymbals, the
“edge” in a vocal. Nobody wants to listen to that hip soundtrack
shipping with your product at 32kbps. The same goes for sound
effects. At lower bitrates they lose all “punch.”

e Make sure you keep your master audio material backed up and
handy: In case you decide to alter the audio in your project, you
need the uncompressed master audio tracks at your disposal.
Never go back and “enhance” a lossy piece of audio. Load up
the master, work on it, and then save it as lossy, overwriting the
old lossy file. There’s nothing worse than an MP3 that’s been
compressed twice or more.

e Keep the “holy numbers” with compressed audio as well:
Remember, 44.100 is the ideal sampling frequency for MP3
and other lossy formats, too—not 32.000Hz and certainly not
22.000Hz, unless you really need to keep your file sizes small.

e Testyour audio on several sets of speakers and headphones before
release: I'm assuming that as an indie developer you aren’t going
to invest in expensive and ultra-accurate monitoring speakers.

e So, what might sound great on your personal setup may
sound muddy or harsh on some other system. Try to
minimize the amount of variation of quality between setups.

Plug-in

A plug-in is any type of extension to an audio editor’s effect library. Some manufacturers
of note include Waves, Slate Digital, and IK Multimedia. Plug-ins are a big business and
are widely responsible for the sounds you hear on records, the radio, and in-video games.
You can do any kind of effect with the right collection of plug-ins, from creating natural-
sounding reverberations to enhancing specific frequencies in the audio.

125

CHAPTER 6 ' AUDIOVISUAL ASSETS

There are roughly two types of plug-ins: effects and instruments. Plug-in effects
consist of various mixing tools and special effects applicable on any type of audio with a
graphical user interface usually modeled after studio hardware. Plug-in instruments refer
to MIDI-based software synthesizers as well as MIDI-triggered instruments sampled from
actual recorded strings, pianos, and other instrumentation.

Different operating systems support different types of plug-ins to a varying degree
(see Table 6-1). Apple systems are 100 percent compatible only with Audio Units, which
is no surprise since Apple implemented the specification itself. You may or may not
have success running VST-based plug-ins in macOS, as is the case with Linux. Windows
supports all plug-in types, apart from the aforementioned Audio Units.

Table 6-1. A Rundown on the Typical Plug-in Formats for Current Systems

Plug-in Format System Developer Type
Virtual Studio Windows, Steinberg Effects, instruments
Technology (VST) Linux, and
macOS with
partial support
Audio Units (AU) macOS Apple Effects, instruments
LADSPA Linux, Various Effects
Windows,
macOS
LV2 Linux, Various Effects, instruments
Windows,
macOS
Nyquist plug-ins Linux, Audacity Effects, instruments
Windows,
macOS

The Fundamental Concepts of Audio Processing

When working with any kind of audio, some concepts are universal. Even if you never
work in this exact field, it is useful to be aware of their meanings. These effects are to be
found pretty much in every single decent audio-editing tool.

Decibels (dB)

A decibel is a sound-pressure unit used to measure relative audio loudness. Human ears
experience pain with sounds clocked at around 130 dB. These may include gunshots or
someone performing low-quality slam poetry at you through a megaphone. Decibels are
commonly used in audio workstations to exhibit volume levels and the intensity of any
applied effects, such as EQ.

126

CHAPTER 6 - AUDIOVISUAL ASSETS

EQ

EQ is short for equalization. This is the most crucial component in audio post-processing.
EQ is used to manipulate—and in many cases fix—audio material, using mostly digital,
software-based filters. These filters boost bass or cut treble or work on any frequencies in
the middle. Remember, your average digital audio track contains frequency data from the
hardly ever audible 20Hz all the way up to 22.000Hz. Only in rare cases should you leave a
freshly recorded audio track as it is. Let’s take a look at some of the most common points
of frequency intervention.

e Below 50Hz is the very low end and is felt more than heard: This
is the domain of the rumble and the chest pain. Material rich in
these frequencies might sound great on a pair of headphones,
but it might cause earthquakes on the average subwoofers. Don’t
overdo this and monitor closely.

e 200Hz, the mud: Try cutting this for extra clarity on any type of
material.

e 3KHz to 4KHz, the upper mids, which is the area the human ear
is most sensitive to: Too much of these and your listeners will get
ear fatigue. Too little and the material sounds unfocused; this will
work for background ambience but not for gunshots or dramatic
interludes.

It’s always better to cut than boost, unless your material is incredibly lacking on
wanted frequencies. Boosting a frequency may introduce unwanted artifacts into your
audio material, changing its character to something more artificial or unpleasant.

Not all EQs are built the same, however. Most of the built-in equalizers in audio-editing
software are intended to deliver a precise, sterile effect. There’s nothing wrong with that,
but a whole industry has emerged around digital emulations of actual studio hardware.
Big-name studio EQs, such as Neve, SSL, and Trident, have been emulated to a great extent
in plug-in form. The reason for this? A thing called character. None of these boutique EQs
sounds the same even when working on the same frequencies. A great equalizer can change
a miserable audio file into a decent one—and beyond. This naturally goes for any type of
material, including video game sound.

Common Types of EQ Filters

EQs and individual filters come in many types. You'll now take a look at the most
common varieties.

e High-pass filter: These types of filters cut frequency content
beneath a set point in the frequency spectrum. A common use for
high-pass filters is to tame the rumble at the very low end (< 50Hz).

e Low-pass filter: Basically the opposite of a high-pass filter, these
filters cut content above a set point in the frequency domain.
They are used mostly to tone down harshness in the upper
frequencies (> 10KHz).

127

CHAPTER 6 ' AUDIOVISUAL ASSETS

e Graphic EQ: Like the name suggests, these types of EQs provide a
visual representation of their workings in the form of a sliders set
at specific points in the frequency spectrum.

e Parametric EQ: These devices/plug-ins usually feature between
two to six adjustable frequency bands with separate cut and
boost knobs for each. With a parametric EQ, you essentially get
to carefully define which are the most relevant frequencies in the
material you're currently working on.

e Parametrics also usually feature a control labeled Q, which
refers to the reach (i.e., amplitude) of each frequency center.
A wide Q affects more frequencies next to the one being
worked on than a narrow Q does.

How to EQ Your Material

The best way to get acquainted with the critical skill of equalizing audio is simply to open
an audio file in a digital audio workstation and start adjusting the parameters. There’s
always room for taste in these matters, but don’t even think about releasing a game with
lackluster audio. Again, your game’s audio should sound decent in as many speakers and
headphones as possible. To achieve this, you should adhere to the following tips:

o Chisel off the sonic marble: This refers to simply removing
frequencies that are not crucial to an audio track. A tambourine
doesn’t need anything below 300Hz, most of the time, so high-
pass that track. A bass line or an explosion doesn’t benefit much
from content upwards of 12KHz. Take out the unnecessary bands
from your material, but don’t overdo it. Go for a neutral or natural
sound overall.

e Deal with frequency competition: Many different audio sources
have similar frequency components. A busy audio collage
with lasers and human voices might need you to adjust the
fundamental frequencies of one element at, say, between 1KHz
and 2KHz. Overlapping these elements without EQ might create
a subtle cacophony and, at worst, an undecipherable mess in
which every other syllable is inaudible. Sometimes a mere volume
adjustment doesn’t work, creating instead a glued-on sound.

e Cut, don’t boost: To boost frequencies, it’s often better to do
some cutting. Paradoxical as it sounds, this technique, known
as subtractive equalization, is a must. This is how it works: let’s
assume your explosion is missing some bass rumble. Instead of
boosting below 160Hz, try cutting between 800Hz and 2KHz. The
technique works the other way around as well. Not enough mid?
Try cutting the low and/or high frequencies.

128

CHAPTER 6 - AUDIOVISUAL ASSETS

Dynamics (Compression and Limiting)

Compression is an effect that reduces the dynamic range of audio. In essence this means
decreasing the volume of the loud parts and increasing the volume of the softer parts to
create a nice, audible, and commercially acceptable track or sound effect. You don’t want
the user to fiddle with the volume controls mid-song, do you?

Limiting, on the other hand, is an extreme form of compression. A limiter evens out
a track in a less subtle way, pumping out solid and usually loud material. Both effects
may be used to eliminate digital distortion (i.e., clipping), which is the least desirable end
result in digital audio and a sure sign of an amateur at work. Think of a limiter as an aural
safety net to keep overly loud passages in check.

Here are examples of dynamics processing in daily life:

e FMradio uses heavy limiting to guarantee audible broadcasts
even in busy urban environments.

e Any sporting event PA system has a limiter to guarantee overload-
free sound amplification.

e Almostall tracks on a pop music album that make up each song
are compressed to varying degrees.

Clipping
Clipping occurs when the overall signal level overloads its boundaries. This results in a
very unpleasant popping sound in most cases. In addition to your ears, this type of signal
overload can also damage speakers and headphones. You do not want clipped audio in
your projects.

Here are some examples of when audio usually gets recorded with major clipping
without compression:

¢ Gunshots at close range

e Gigs and concerts (in-field)

e Low-flyingjet airplanes

e Your roomie’s parties in the other room

Down in the land of bits, if your 16-bit audio with its 32,767 possible volume values
is boosted too hard over the maximum value of 32,767, you enter clipping territory.
In practice, this means keeping an eye on the volume levels in your digital audio
workstation (DAW). Stay away from the red zone. If you clip a signal badly enough and
are unfortunate to save and overwrite the original file, restoring the original audio fidelity
may be impossible.

Normalization

There are two main types of normalization: peak and root mean square (RMS). I will
now briefly discuss the former. This is a rather crude but common method of bringing
the average volume level of audio up to a target level. While it obviously does make your

129

CHAPTER 6 ' AUDIOVISUAL ASSETS

material louder, which can be a necessity in many cases, peak normalization also boosts
the noise level. It doesn’t discriminate; everything in your material gets a lift.

Instead of normalizing your material, you should stick to limiting and/or compression
to control its overall volume. This goes especially for soundtracks. Only normalize when
the source material is completely unusable because of being of extremely low volume and
when you have no chance of replacing it with material of a higher caliber.

Reverb

Short for “reverberation,” reverb is a digital simulation of acoustic spaces, sometimes
emulating a realistic environment, such as a cathedral...or your average toilet. This
should be the last effect you apply. Pros approach the audio material with their open ears
first, then EQ, then dynamics, and only then, maybe, reverb.

In a video game context you may be better off using real-time reverberation systems,
keeping your sound effects effects-free. This way you can alter the acoustics within the
game engine as the project unfolds. Of course, audio processing on the go is quite hard on
the CPU, so if you're absolutely sure you don’t mind not having real-time effects, go with
the traditional approach by all means. Many smaller, casual projects don’t need the exact,
live approximation of the Taj Mahal.

Free Audio Resources
Here are some free audio resources:

e http://dig.ccmixter.org: Dig ccMixter, despite its clumsy
name, provides hundreds of looped sounds and other types of
audio for your game projects, 100 percent free of charge. Just
visit the site, preview, and download. You must give credit to the
composer, however.

e www.freesound.org: The Freesound Library contains thousands
of samples of varying quality, most of which are good. It’s great for
your background ambience needs.

e www.soundbible.com: Sound Bible is another, smaller library with
hundreds of usable sound effects.

e www.incompetech.com: Incompetech is a project by the venerable
composer Kevin Macleod. You are free to use his multigenre work
in your games provided you give full credit. While somewhat
overused these days, the Incompetech library provides at least
some fine placeholder music for your projects.

Some Tools of the Audio Trade

Presented next are some of the best tools for working with game audio in my opinion.
Pick an audio editor you feel comfortable with and stick to it. You will need one; stock
sound effects get you only so far. Some audio manipulation is necessary.

130

http://dig.ccmixter.org/
http://www.freesound.org/
http://www.soundbible.com/
http://www.incompetech.com/

CHAPTER 6 - AUDIOVISUAL ASSETS

Modern freeware audio editors are very close in features to the available commercial
software. The major differences are in the availability and quality of MIDI and plug-in-
support and stability.

Most audio software packages these days support all major compressed and
uncompressed formats. As a games entrepreneur, this is what counts most. You have
plenty of choice when it comes to this type of software too.

Audition CC by Adobe

www.adobe. com

Price (Q1 2017): $19.99 per month

This is available for Windows and macOS.

Audition is a fine piece of software with excellent, time-saving features. In particular,
the multitrack section of the program is quite flawless, if you can live without MIDI support.

Starting its life as Cool Edit Pro in the late 1990s, Audition has evolved into a popular
professional audio-editing suite. While the support for plug-ins is robust, Audition has
virtually every sound-editing capability built in, including great compressors. However,
the multitracking section still does not support MIDI instrumentation. This makes
Audition a great choice for a sound effect person, but not one for the composers, unless
you are planning to record actual sound sources/instruments only.

The latest versions of Audition are very stable and not likely to crash. For
comprehensive sound effects and ambience work, you could do a lot worse.

Audacity 2.1.2 by The Audacity Team

http://audacityteam.org/

This is available for Windows, macOS, Linux, and Unix. Slightly older versions of
Audacity are also available for PowerPC Macs on the official site.

A classic among freeware audio editors, Audacity is the clumsier sibling of Audition.
It does provide fine basic features for the game maker, however, such as wide format
support. There’s no MIDI support, but this is a great free program for small-time game
developers looking to work with their audio.

First released in 2000, Audacity has reached close to 100 million happy users as of
early 2017. The software has an old-time charm about it. The interface remains somewhat
unintuitive, relying quite a bit on your operating system to set up the audio routing. You
have several windows to navigate to get to some basic adjustments in Audacity.

However, underneath the clumsy exterior there are lots of great processing
capabilities. For one, the noise reduction effect included in the software is among the
best. When it comes to plug-ins, Audacity supports VST, Audio Units, LADSPA, LV2, and
the emerging Nyquist format, for the respective platforms.

Ardour 5.8 by Paul Davis

http://ardour.org

This is available on Windows, macOS (Intel and PowerPC), and Linux.

131

http://www.adobe.com/
http://audacityteam.org/
http://ardour.org/

CHAPTER 6 ' AUDIOVISUAL ASSETS

Continuing the theme of audio-editing software starting with the first letter of the
alphabet, Ardour is one of the finest programs out there.

Ardour is capable of some serious work with great plug-in support. You are asked to
donate a minimum of $1 to keep the “nag screens” at bay, which is a fair price to pay for
such a high-quality product. Mixing tracks works wonderfully in the program’s multitrack
view. Crashes are few and far between. Ardour seems extremely stable.

There’s very little to fault with Ardour. At some early point in its development it
featured an experimental collaborative system called Ardour Session Exchange, which
was unfortunately dropped. It's wholeheartedly recommended you download this
software and make the aforementioned donation to keep the development cycle going.

Ohm Studio by OhmForce
http://ohmforce.com/

This is available for Windows and macOS.

Ohm Studio is a collaborative audio workstation. This means you get to work on your
material online with team members and strangers alike.

The software opens with a chat screen and a view of both your personal, local
projects and all the public projects available for participation. The projects are associated
with keywords when it comes to the genre and overall vibe of the song (e.g., happy, epic,
tense, and so on).

Ohm Studio lacks the versatility of many other audio workstations. It’s clearly built
around its collaborative capabilities, which is not a bad thing. However, this comes at some
price in regard to the processing prowess and stability. Ohm Studio is not the fastest when it
comes to mixing your projects. There are continuing issues with both plug-in and hardware
support. You may or may not be able to even launch the program with your particular setup.

Ohm Studio comes in four editions, as presented in Table 6-2. While you are limited
to exporting in the Ogg lossy format in the free edition, you at least get the full-quality
setting of 500kbps. This is not source-quality audio, but it’s pretty close.

Table 6-2. A Rundown on Available Ohm Studio Editions

Product Features Maximum Projects Cost (Q1 2017)

Ohm Studio 16-bit recording and 10 Free
compressed audio format
export only

Ohm Studio 24-bit recording; export 10 $39
Pro also in uncompressed WAV
format; two extra plug-ins
by OhmForce
Ohm Studio All Pro features and seven 10 $89
Pro XL additional plug-ins by Ohm
Force
Ohm Studio 200 $9 per month
Cloud

132

http://ohmforce.com/

CHAPTER 6 - AUDIOVISUAL ASSETS

Overall, Ohm Studio is an impressive concept and sadly one of the few collaborative
audio tools available. The software isn’t updated frequently, which is a shame, as this type
of solution is sorely needed.

sfxr/cfxr

www.drpetter.se/project_sfxr.html
http://thirdcog.eu/apps/cfxr

sfxr is available for Windows, and cfxr is available for macOS.

This duo of sound-generating software makes it simple and fun to populate your
projects with old-school sound effects. It doesn’t get much easier to create 8-bit audio on
your modern desktop.

There are some presets for various types of common sound effects on the left of
the interface. Clicking one of these buttons creates a new sound in the chosen category,
which include “laser,” “explosion,” and “powerup.” Alternatively, select the main type
of audio from a variety of waveform types, adjust some parameters, and click Play to
preview. If that feels like too much work, you can always click “random” to generate just
that—arbitrary sounds that may or may not work in your projects.

When it comes to usability, these two are second to none. However, the audio output
itself is rarely usable out of the box. The samples are quite hard on the ears with vast
amounts of upper-mid frequencies (2KHz to 4KHz). These can be tamed with EQ in any
audio-editing program, of course, making this software a must-have for indies.

Wavosaur 1.3 by The Wavosaur Team

http://wavosaur.com

This is available for Windows.

A most lightweight piece of software, Wavosaur offers competent audio processing
for Windows with great file format support.

You can run Wavosaur from a USB stick; there’s no installation is needed. This is one
highly portable piece of software. That’s the reason there’s a limited number of effects coming
with Wavosaur out of the box. You get your basic audio cut-and-paste editing, normalization,
frequency analysis, and other expected features. Instead of a ton of built-in effects like most
audio editors, you are advised to add them using VST plug-ins at your leisure.

Wavosaur has extensive file format support, covering everything you need from
current audio staples to more exotic formats, such as Akai S1000 samples and even
some Amiga file types. For an audio file format converter and basic editor, Wavosaur is
an impressive piece of software. Just add a few EQ and compressor plug-ins, and it'll do
everything you need for your sound effects.

Digital Audio Questions

Finishing this section, you should be able to answer the following questions:

e What are the gold standard settings for audio in a video game
context and why?

e What are the differences and uses for lossy and nonlossy audio formats?

133

http://www.drpetter.se/project_sfxr.html
http://thirdcog.eu/apps/cfxr
http://wavosaur.com/

CHAPTER 6 ' AUDIOVISUAL ASSETS

Software for Game Visuals

By now you are probably familiar with pixels, resolutions, and some of the basics of digital
graphics. These and many other related concepts were covered in Chapter 1 and will be
discussed more in-depth in Chapter 10.

In this section I'll mostly focus on the tools that allow you to actually create visuals
for your games. There are a plethora of fine software applications for this purpose, both
commercial and free. This section of the book will be divided between software geared
toward 2D and 3D visuals. By the latter, I mean products that output models and height
maps (i.e., actual 3D resources).

Before beginning the software review, let’s take a look at a few more crucial concepts
for the subject matter you may not be familiar with.

Lossy Image Formats (i.e., Delivery Formats)

As is the case with audio, there are two major groups of image formats: lossy and
nonlossy. When you're ready to publish a game, downgrade its image files into a lossy
format of your choice such as JPEG or GIF whenever possible. In this context, compression
refers to the reduction in file size and quality of lossy images. Heavily compressed images
take less space but are also less faithful to the original, uncompressed files. Go with the
smallest file sizes you can attain without compromising the color and detail too much. It’s
a balancing act, especially on size-critical platforms such as mobile games. Remember,
you can’t convert a lossy image file back into a nonlossy one and expect great results.

Graphics delivery in lossy formats usually works best for presentation (e.g., title
screens and related contexts). Lossy formats aren’t great with transparency.

Nonlossy Image Formats (i.e., Source Formats)

Nonlossy image files are large but immune to image-quality degradation when saving.
Not always fantastic for delivery, they are a must when still in the editing phase. Make
sure you keep the latest version of your work in a nonlossy image format such as PNG,
TIFE, BMP, and TGA. Portable Network Graphics (PNG) is perhaps the darling of the day
among image formats. To know it is to love it.

There are usually several varieties to nonlossy image formats. Images in PNG come
in 8-bit type, too, meaning a maximum of 256 colors per such files. This often gives the
effect of an image originating from 1995 or so, at least in the case of more complicated
scenes. Stick to the highest bit depths when editing your image files. In the case of PNG,
that would be a color depth of 32 bits, offering millions of colors per file.

Now, there’s also a format called Fireworks PNG. This format is used by Adobe’s now
sadly discontinued Fireworks graphics-editing suite (which is still much loved by me, for
one). This format allows for layered image files with high fidelity and offers a great source
format for video game graphics.

134

http://dx.doi.org/10.1007/978-1-4842-2970-5_1
http://dx.doi.org/10.1007/978-1-4842-2970-5_10

CHAPTER 6 - AUDIOVISUAL ASSETS

Transparency

This term simply refers to the “invisible” parts in an image file. Most, if not all, nonlossy
image formats support transparency. Sprites (i.e., moving objects) are in many cases
deliverable in the PNG format as it offers sharp image quality and excellent transparency.
Although GIFs have basic transparency support, they are limited to a maximum of 256
colors per image. In the context of hip retro games this is rarely an issue; however, as the
whole, an aesthetic thrives on limited color palettes.

There are two types of transparency: alpha transparency and index transparency. The
former has multiple levels of transparency, which allows for those smooth drop shadows
and a higher fidelity of the effect in general. You can also adjust the level of alpha
transparency, from complete to partial, making these types of images jell with others with
sometimes interesting results.

Index transparency, found in some GIF files, is simply a specific color in the image
file’s palette, which will be interpreted as transparent. It offers a rudimentary type of the
effect that mostly works with images with more simple, jagged edges and no need for
partial transparency. Again, this approach is fine for retro titles in most cases.

Tools for 2D

Now you’ll explore some options a developer has for 2D tools, after which you'll take a
peek at 3D software. Of course, these approaches are not mutually exclusive. Most 3D
projects feature quite a bit of flat 2D artwork in the form of presentation. Also, even some
of the most retro-like 2D titles may include elements of 3D in their presentation. Before
getting into the software, let’s take a look at some terms of this particular trade.

PD Howler 11/PD Artist by Dan Ritchie

www. thebest3d. com/dogwaffle/

Price (Q1 2017): $49 for PD Howler/$27 for PD Artist

This is available for Windows.

The Project Dogwaffle line of software, like the name may suggest, is an eccentric one.
There’s a lot underneath the hood; it’s very powerful and rich in features but suffers from
some usability issues. If you persist, however, some truly impressive art can be yours.

PD Howler has a long list of possible applications: digital painting program, realistic
terrain generator, Photoshop replacement, and animation suite, just to name a few. Note
that PD Artist differs from PD Howler mostly in that it doesn’t feature the aforementioned
animation tools.

The learning curve for the PD line of software is relatively steep. You can do the
average color correction and resizing of images in no time, but the more advanced
features can take a while to master. The design philosophy behind this software gives
artists some great tools for rapid expression.

Creating any type of near-photorealistic terrain is a simple process in PD Howler.

It shouldn’t take more than a few minutes, and the end result is very impressive. Start by
selecting Render » Plasma Noise to create a topographic representation of the terrain.
Adjust parameters according to your taste. Next, go to Transform » 3D Designer.

You now get a rotatable 3D view of the terrain with some powerful options for further

135

http://www.thebest3d.com/dogwaffle/

CHAPTER 6 ' AUDIOVISUAL ASSETS

refinement. Additional controls are enabled by clicking More on the top-left corner of
the window. You can now adjust properties like erosion and sediment, both of which are
implemented very well in the software. By clicking Create Texture, you get a customizable
texture for your terrain simulating snow, grass, and rock, applied on three respective
levels on your vista. You have full control over the intensity and distribution of these
elements, as well as the option of infusing the scene with some artificial sediment of any
color, which is great for wintery scenes.

One of the most iconic Howler features is the swap image, which can be accessed
most easily by pressing J on your keyboard. Think of the swap just as a secondary, spare
image layer. Use it to sketch your ideas or combine it with the primary layer. This is a useful
feature and a callback to 1990s painter programs, such as Deluxe Paint by Dan Silva.

Pixen 4 by The Open Sword Group
http://pixenapp.com

This is available for macOS.

One for friends of old-school graphics, Pixen is a tried and trusted companion of
many a 2D artist. The feature set is more than adequate for most tasks in the hallowed
halls of pixel art. Since going commercial, Pixen has become even more enjoyable to use.

Once an open source piece of software, Pixen has been turned into a commercial
project in recent times. The biggest reason probably was the fact that the Apple App Store
got flooded with clones of this program. This naturally didn’t please the developers.
Going commercial ensured a proper development path. The price is still very low for such
a fine 2D image editor.

Apart from a new look, Pixen 4 feels like the Pixen you may have grown up with. The
classic approach is still there: you get to assign a separate drawing tool for each mouse
button (e.g., you may choose to have a plot pixel function for the left mouse button and
an erase pixel function for the right one). But since version 4, Pixen has added quite a
few features. These include filters (i.e., post-processing effects), video card-accelerated
processing, and optimized CPU utilization of drawing operations. The new Pixen will run
great on even the most modest of Mac minis. Animation is still one of Pixen’s strong suits.
Using a filmstrip approach, developers can effortlessly craft sprite sheets for their game
engines of choice or plain old animated GIFs.

You may be able to download an older, free version of Pixen for quite some time at
some software repository. However, Pixen’s commercial edition is the recommended one
for those working in the chic realm of 2D pixel art. It’s the tool of choice for many mobile
game artists and indies in general, for a reason. The feature set, simplicity, and continuing
support are what makes Pixen 4 a winner.

Spriter by Brash Monkey

www . brashmonkey . com

Price (Q1 2017): $60

This is available for Windows, macOS, and Linux.

Spriter emphasizes rapid 2D art creation, without compromises. It makes that
approaching deadline much less daunting for those in a hurry to deliver.

136

http://pixenapp.com/
http://www.brashmonkey.com/

CHAPTER 6 - AUDIOVISUAL ASSETS

Spriter has a modular approach to sprite making. This means you compose your
characters, limb by limb or part by part, from different resources at your will, instead of
plotting each pixel as you do with programs like Pixen. This speeds things up considerably
for the 2D artist. But that’s not the only thing Spriter does to accelerate your creative
impulses. The animation system in the program utilizes an approach where you define a
second set of invisible elements (called bones) over your character image elements. This
virtual skeleton then controls the angles and motion of the underlying parts, making for
some smooth animations. This speeds up the animating process quite a bit.

There’s a limited version of Spriter available for download in addition to the full
commercial Pro version. Spriter’s free edition disables animations-within-animations and
image set swapping among other features. The Pro version also ships with a whopping 260
animations to make your characters walk, jump, and punch like there’s no tomorrow.

Spriter is not a mere stand-alone tool. It can be integrated into several game engines,
making the workflow even more convenient. An API of the software is available for
GameMaker Studio, Unity, and Construct 2, to name a few. This extension adds some
programming commands to your respective engine for operating directly with the Spriter
system. It may be too cumbersome and/or unnecessary for beginners to implement, but
more advanced developers (especially those working in larger teams) will benefit from
this approach.

Brash Monkey sells quite a few art packs for Spriter. These include characters and
other graphical resources tailored for platform games, role-playing games (RPGs), and
sci-fi shoot-"em-ups. The prices range from $12 to $24. You can start your Spriter journey
with a free Essentials art pack available from Brashmonkey.com and see if you and the
program are a fit.

Spine by Esoteric Software

http://esotericsoftware.com

Price (Q1 2017): $70 for Essentials Edition, $300 for Professional Edition

This is available for Windows, macOS, and Linux.

Stemming from the same school of ideology as Spriter, Spine is a modular sprite
maker. The biggest difference seems to be in the price, with Spriter being the wallet-
friendly option.

The cheaper Essentials Edition might work for smaller game project, but the
Professional Edition is where it’s really at. Spine allows you to export your image files in
PNG, GIE and JPEG. Your actual character data can be saved in either binary or JSON
formats. The game engine API support in Spine isn’t as impressive as that in Spriter. Some
major technologies are supported out of the box, and these include Unity, HTML5, and
Flash. Although lacking official support, a Spine API has been developed for such systems
as GameMaker and Construct 2.

But what do you get for the steeper price in Spine that you don’t get with Spriter?
Well, the biggest feature would be freeform deformation (FFD). This refers to the
approach of having a transformable mesh cover your objects, which can then be used
to alter their overall shape at will. You can add bounciness with this method, as well as
making hair and cloth on a sprite more realistic. Spriter includes a somewhat similar
(if ever so experimental) feature called skin mode, which is simply not as versatile.

137

http://esotericsoftware.com/

CHAPTER 6 ' AUDIOVISUAL ASSETS

Spine is a popular and rather powerful tool for speeding up your sprite making.
The interface is professional, and the documentation is adequate. Tons of smaller-scale
commercial games have used Spine during development to save the developers some
time. You should do so, too.

Creature by Kestrel Moon Studios

http://creature.kestrelmoon.com/

Price (Q1 2017): $99 for Basic version, $199 for Pro

This is available for Windows and macOS.

Creature is a highly advanced sprite creator. It offers both rapid development of
visuals and a ton of features, some of which can enhance your original artwork.

The software comes in three flavors: the free trial, Standard, and Pro. Saving is
disabled in the trial version, but otherwise you get to experiment with Creature without
many limitations with it.

Creature is an amazing piece of software from a technical standpoint. The main buzz
with it is in its capability to create perfectly usable animation from a single image file. This
actually works and is done with a clever use of freeform deformation. You can also import
an image file containing several body parts, and the software will automatically create
separate elements for you to animate (based on the space between the different body
parts). Very handy.

Next, you rig your character, i.e., create the virtual skeleton. This is a simple, intuitive
process in Creature as there are several preset rigs available for your starting points. You
then assign weight to your “bones.” The Auto Weighting option in the software usually
does a good job at this.

Creature offers a decent number of formats when exporting. These include
individual PNG frames or sprite sheets, Autodesk FBX, and Alembic. When exporting in
an image or video format, there’s the option of doing so using a technique called High
Quality Super Sampling. This is a video card-accelerated approach that reduces jagged
edges and makes the end result look more polished. There’s also some convincing GPU-
accelerated post-processing available, including a pixel-art filter with variable block size
(this is great for that 8-bit or 16-bit look, if you start with high-resolution material). Most
of these features in Creature work in a wide variety of both Nvidia and AMD video cards.
Your mileage may vary.

Making impressive sprites has perhaps never been as fast or fun. Not only does Creature
speed up your sprite making, it actually can actually add artistic value to it with lighting and
other effects. The software is well worth the money, even at $200 for the Pro version.

TerraRay 6.5 by Synium Software

www. syniumsoftware.com/terraray

Price (Q1 2017): $10

This is available for macOS.

Not capable of animated scenes or exporting height maps for 3D game engines,
TerraRay is still a valuable addition to your 2D graphics arsenal. If your projects need
high-quality, still 2D sceneries, this program will do the trick.

138

http://creature.kestrelmoon.com/
http://www.syniumsoftware.com/terraray

CHAPTER 6 - AUDIOVISUAL ASSETS

In addition to the intuitive interface, TerraRay is powered by an impressive array of
visual technologies. You get some pretty realistic lighting rendering, volumetric (i.e., god
ray) clouds and fog, high-quality water, and even some decent vegetation to plot on your
terrains with. The most impressive feature in the software is, again, the user interface. The
tools are grouped in a very understandable fashion. Most of the time you simply paint
your terrains with the various elements (e.g., vegetation, water, and others). TerraRay is
very much a beginner-friendly piece of software.

The camera tool in TerraRay is versatile, offering five types of perspectives in
addition to complete freedom to pan and zoom as much as you like. A handy, resizable
preview window helps you keep an eye on the proceedings. You can speed up the
previewing by going to Preferences > Preview and switching the antialiasing settings to 1.

If you don’t feel like sculpting a terrain from the ground up, you can speed things
up by allowing TerraRay to generate one for you. You do this by selecting the Terrain
Elevation tab. Then, simply select Filters and Add Noise. By adjusting a few sliders and
clicking Apply, you get great starting points for your work. The best approach usually is to
combine a noise map with some manual adjustment where necessary.

There are a few built-in 3D objects included in TerraRay for you to insert into your
vistas. You can import 3DS models into the program, too. While external models usually
import just fine, the associated textures may not. However, for simple objects, at least you
can easily assign a flat color surface or a stock texture within TerraRay, in case the original
texture doesn’t quite import successfully.

For such a low price you might think TerraRay is not quite up there with the visual
quality. That is not the case; the output from the program is on par with most commercial
solutions. Just make sure you set the detail level to Very High Quality in the render
settings by the time you're satisfied with the view.

VUE Infinite 2015 PLE by E-on Software

www.e-onsoftware.com/products/vue

This is available for Windows and macOS.

VUE is a terrain generator with a strong track record. It’s been used to create
backdrops in such movies as Avatar and the latest Indiana Jones. While obviously
powerful, VUE is also surprisingly comfortable to use. It won’t take hours to come up with
some impressive vistas, including animated ones.

VUE is available as a free personal learning edition (PLE) with some limitations.
These include limiting animation exports to the base HD resolution (1280x720) and
watermarked output after 30 days of use. Also, you are not allowed to use any output
commercially. However, the PLE never expires. This is still a great way to learn the basics
of this rather splendid software.

Another option for the dilettante users is VUE Pioneer. It’s pretty much the same
product as the PLE, although it watermarks your output from day 1. Also a free piece of
software, this edition differs from PLE mostly in that you get Full HD (1920x1080) export
and you can upgrade it to a nonwatermarking product with a paid module.

The user interface in VUE is intuitive. You simply use the left mouse button to
select elements in the terrain, hold down right mouse button to pan, and use the scroll
wheel to zoom in and out. To get started, simply go to Object » Create and select the
type of element you want to incorporate in your scene. The available selection includes
procedural terrain, celestial bodies, rocks, and everything an artificial landscape can use.

139

http://www.e-onsoftware.com/products/vue

CHAPTER 6 ' AUDIOVISUAL ASSETS

Before rendering a scene to a file, you are treated with the option of a few common
post-processing filters, including contrast, brightness, and color filtering. While not
exciting on paper, these filters work exceptionally well with VUE’s visuals and can really
change the ambience in a terrain. You then get to save your image in some gorgeous,
high-resolution formats such as Targa, TIFE, and PNG. Good times!

The animations in VUE are effortlessly made. An Animation Wizard inside the
program takes care of this in a very enjoyable manner. First, you select an object on your
terrain or the camera, in case you want a first-person perspective animation. Then it’s
time for the wizard to work some magic. By selecting Animation » Animation Wizard,
you get to pick your type of object or camera movement in your animation. There are
motion presets for both airborne objects (such as an airplane or a missile) and ground
vehicles, all with differences when it comes to banking behavior and other attributes.
Next, you define the behavior of the object at the end of the animation. You get to either
have it play just once, set it on repeat, or have the object reverse its movement upon
completion. Next there’s a visual waypoint system for you to plot the object’s course with
on the terrain. Finally, you get to set the duration of the sequence in seconds. That’s all it
takes to animate objects in VUE.

There’s also a comprehensive collection of plug-ins available for the VUE family of
products. These include exporting functionality for 3D programs and various extra visual
capabilities, such as plug-ins for populating your terrains with highly realistic vegetation.

VUE is great for creating some jaw-dropping presentations within your projects. The
output is of a very high technical standard and, if used carefully, can really add to the
atmosphere of a video game. Not surprisingly, AAA video game houses like Activision and
EA have used VUE in their products. Thanks to the ease of use of the software, so can you.
Just make sure your video card has solid OpenGL support before you give VUE a spin. In
fact, your entire hardware setup should be ample in resources before trying this one. Not
even your average quad-core CPU combined with an above-average video card can make
the most of software as demanding as VUE.

Tools for 3D

Now it’s time to look at some common solutions for creating 3D visuals. This is a more
challenging realm of content creation. However, each featured product does have a
robust community behind it. Naturally, plenty of online tutorials are also available to get
you started.

Blender 2.78 by Blender Foundation

www.blender.org

This is available for Windows, macOS, and Linux.

A free piece of software since 2003, Blender has amassed a massive user base over
the years. Primarily a 3D modeling program, Blender is the most versatile suite of 3D tools
out there.

140

http://www.blender.org/

CHAPTER 6 - AUDIOVISUAL ASSETS

With power comes a steep learning curve, and Blender is no exception. Absolutely
packed with features, the software suite takes a while to master. As is the case with all
complex software, the secret to working comfortably in Blender is to memorize all of the
most useful keyboard shortcuts. Do this and your experience with the software will be
greatly improved.

It can be daunting to create an interesting 3D model from scratch for a beginner. If
you are one, you're better off importing a ready-made object and modifying it to get to
grips with the Blender tools and interface. There are plenty of free 3D models out there in
the Blender community.

Blender includes a built-in game prototyping system. While not very beginner-
friendly, the game engine can produce impressive results with more experienced
developers. It has been used to make commercial titles such as Tomato Jones and KRUM:
Edge of Darkness. Clearly Blender has the potential to be a game engine in its own right.
Unfortunately, the developers behind the project are having some issues with this
feature, so it might get dropped at some point. The Blender game engine uses the Python
language for scripting but can be also controlled to a degree by a visual logic engine.

Blender supports a wide variety of the most common export formats. While
hardware accelerated on both Nvidia and AMD video cards, the former is supported
to a much greater degree. Many elements of rendering, such as smoke and fire, remain
unaccelerated on AMD hardware.

Not only a fan favorite, Blender has friends in high places. Its users include Marvel
Enterprises (for the movie Spiderman 2) and good old NASA, no less. One of Blender’s
main appeals is its use of a world-class physics system that lends itself well to both
cinema and scientific applications. Bullet Physics has also been used in several AAA titles.

In technical terms, Blender output is just as impressive as that from any of the expensive
software applications. The GUI is consistent over different platforms, so if your Window PC
melts down, you can continue your work on your nerdy friend’s Linux version of Blender
without any usability issues. There’s also a lightweight video editor in there with some basic
built-in effects. You shouldn’t forsake your Premiere and Final Cut just yet, however.

If you're just starting out on the long and uphill journey in 3D modeling, Blender is a
great choice for a multitude of reasons, the biggest one being the supportive community
behind it. Not only is the built-in feature set impressive, but Blender is constantly getting
new extensions and features for you to experiment with. And if you persist, some rather
dazzling visuals can be achieved with it for pretty much any type of project.

Daz Studio Pro 4.9 by Daz3D

https://www.daz3d.com

This is available for Windows and macOS.

While very much a beginner’s toolset, Daz Studio offers plenty of uses if you dig
deeper. The final output from the software, especially when it comes to realistic 3D
humans, is among the best.

Daz Studio Pro is not the most feature-rich piece of software. It can’t be used to create
new 3D models per se. Think of it as an accessible character poser, a simplified animator,
and a file format converter. It does support wonderfully realistic human characters
available at the Daz3D store and elsewhere. There’s only so much you can do with the
spartan objects that ship with Daz Studio Pro, but they are great for learning the workflow.
The interface is intuitive with a collection of sliders controlling the various attributes.

141

https://www.daz3d.com/

CHAPTER 6 ' AUDIOVISUAL ASSETS

Animating your models is a joy. There’s a keyframe-based editing system for you to
play with. Posing your characters is easy and fun with the Daz universal tool. Some preset
poses are also available built in and in the store. Also, Daz Studio projects are supposed
to link up with Adobe Photoshop via a plug-in called 3D Bridge, but this seems to be an
experimental feature.

Daz Studio Pro has robust OpenGL support for rendering in both basic and
intermediate varieties, the latter which allows you to experiment with the “passes per light”
parameter. Interestingly, Daz Studio Pro also supports Nvidia’s Iray, which is a technology
that can add a whole new level of photorealism to your renders. Iray is based on a technique
called physically based rendering (PBR), which simulates the interaction between light and
material in the 3D world as realistically as possible. For a free product, this is no small feat.
Naturally, for hardware-accelerated Iray work, you do need an Nvidia video card.

Daz Studio Pro allows you to export 3D models in a variety of formats, including
Wavefront (.obj), Collada, and Autodesk FBX. You also get to import models in more
than a dozen formats. Of course, nothing is stopping you from exporting a still image with
the highest-quality settings from Daz Studio for 2D presentational purposes. For working
with realistic 3D human characters, Daz Studio Pro is a beginner’s best friend.

Fuse 1.3 by Mixamo
https://www.mixamo.com/fuse

This is available for Windows and macOS.

Fuse is a modular 3D character creation tool. You combine various body parts to
your liking, animate the character, and export to your game engine of choice. Fuse is a
fine addition to your rapid development arsenal.

Fuse is an ambitious but somewhat troubled piece of software. The main desktop
program used to create your characters is a free download. Now, to animate them, you
need a free Adobe account on the Mixamo web site and upload your files there. You used
to be limited to making two character animations per week on this free setup. You could
break this limit by paying $50 for the service, but thankfully this business model is no
more; animating is free for all since mid-2015.

Adobe has deemed Mixamo a worthwhile partner, and the quality of the product is
indeed quite high. When it comes to the user interface, Fuse shines. It couldn’t be much
simpler: you are given dozens for choices for your character’s head, torso, limbs, and
clothes. Countless combinations are therefore available.

You can also tweak and fine-tune your character elements’ shape to your heart’s
content. You do this by clicking and dragging on the several points of modification
provided for each part of the character. Alternatively, you can adjust a rather large
number of sliders—so large, in fact, that it might get slightly confusing at times operating
them. There are buttons in the GUI, too, for randomizing the shape and size of both the
individual elements of the character (e.g., legs or torso) and the entire character. You also
have a choice of texture sizes ranging between a meager 64x64 to a more presentable
1024x1024. Some of the elements are provided with the option of high-resolution
2048x2048 textures. Fuse exports in the Wavefront format (. ob3j), which is supported by
many popular game engines.

142

https://www.mixamo.com/fuse

CHAPTER 6 - AUDIOVISUAL ASSETS

Although criticized for dropping support for a few additional output formats, Fuse
offers exactly what it promises: fast and easy 3D character creation. In technical terms the
models created with the software are quite impressive as well as being compatible with a
wide range of game creator software.

Raiseland by David Manzanares Miguel
http://raiselandsoft.com

This is available for Windows and Linux.

Most serious 3D game creation tools have some type of terrain creation capabilities
built in. However, developers are usually delighted if the game engine they use supports the
importing of external terrains, as these can be designed more easily inside dedicated terrain
creation software. Raiseland is one of these specialized programs, and it does offer much.

Basically, Raiseland operates with a very streamlined user interface. A collection
of sliders control the height, type, and other properties of a terrain. The most important
properties implemented are amplitude (terrain height scale), frequency (terrain width
and depth scale), and exponent (terrain sharpness and uniformity). Simply adjusting
these attributes is how you create some rather impressive terrains in Raiseland.

The program features some decent enough textures for you to work with, but you
are encouraged to import your own in the PNG format in a square (i.e., 1:1) aspect ratio.
Raiseland supports exporting height maps in the . raw format. The exported terrains can
be used in Unity and Leadwerks, to name but two engines.

Raiseland is a so-called hybrid terrain creator. While it's powered by a procedural
approach, it also allows some manual fine-tuning in real time where necessary. The
design paradigm behind the software exhibits a nice sense of simplicity, allowing for
a rapid workflow. You will become best of friends with the scroll wheel in your mouse.
There is no typing to be done. The game-like WASD controls are also a pleasure to
navigate the terrains with.

There are no apparent limitations when it comes to the size of the terrains in
Raiseland. These are only set by the hardware you run the software in. But as you go, for
bigger terrain sizes the program does turn down the detail level somewhat. Experiment
and avoid overkill.

For previewing purposes only, Raiseland allows you to experiment with different
lighting setups. In addition, fog and water are available inside the program too. Please
note that how these elements of the terrain will ultimately look depend on the game
engine you will be importing into; Raiseland will merely simulate them for you.

The software offers some impressive crater effects. This is achieved with a feature
known as the probability density function (PDF). A set of sliders control the number of
meteor-like impact craters on the surface of your land masses. These look great in any
lunar/sci-fi terrains you might come up with.

In closing, Raiseland is a fine piece of software for its elegance and real-time
nature. It does crash a few times, but it will work just fine 99 percent of the time. For an
apparently one-person project, this is to be expected. If you are in need of highly detailed
and vast landscapes for your games, you can no wrong by investing in Raiseland. Do
remember to keep your terrain sizes under certain commonsense limits. While your
system may be able to run them comfortably, your eventual audience could be using
much more modest hardware.

143

http://raiselandsoft.com/

CHAPTER 7

Selling Your Game

First, there’s the thirst to create. Then, there’s the process of making the game. Finally,
the third (and perhaps the most unintuitive) act is selling that game. Let’s take a look at
what you need to know about the business by the time you're ready to go pro in games
development.

To succeed in any business, you need an understanding of the fundamentals
of marketing. Mentioned in countless business textbooks, the four Ps is an essential
concept for you, too, as an indie developer. Here they are in no particular order: product,
price, place, and promotion. All successful business owners need to understand how to
properly approach these concepts to make it. I'll now go through all four of these magical
Ps in detail.

Product

In the case of video games, there’s less of the tangible to worry about than before when
digital distribution wasn’t a thing. Product packaging is mostly a concern for big-name AAA
titles and special editions from smaller development teams. All this means more focus on
the core product, which works to your advantage, saving time and other resources.

What you also need to focus on is the product life cycle. The four stages in a
product’s life are introduction, growth, maturity, and decline. Care must be taken to
ensure your customers get updates to your projects. Digital distribution guarantees easy
update delivery to your games. While focusing most resources on the introduction phase
is a good idea, what follows is equally important for your brand reputation. The most
overlooked stages in a game’s life cycle are the two in the middle.

Price

Although there are many long-term strategies when it comes to pricing, in general there’s
only one motivation behind selling video games: making a modest to decent profit. You
probably won'’t be doing a lot of social engineering with your product pricing, as might be
the case with overpriced cigarettes and other hazardous products. Having said that, there
are many creative short-term tactics to approach the pricing of your precious products with.

© Robert Ciesla 2017 145
R. Ciesla, Mostly Codeless Game Development, DOI 10.1007/978-1-4842-2970-5_7

CHAPTER 7 " SELLING YOUR GAME

Psychological Pricing

Prices ending in specific digits are more appealing to the masses. This is the case with
the number nine, in particular. Simply put, a game that costs $0.99 is perceived as more
tempting than one that costs $1, even though it’s only 1 cent less. This is a universal
technique, and there’s no reason to not use it in your business, too. In part, it gives the
impression of a bargain.

Penetration Pricing

A new business enters the market with lower-priced products than most (or all) of its
direct competitors. This might secure a lot of brand awareness. Eventually, the business
compensates for this initial cheapskate phase, possibly with a range of premium products.
Quirky retro titles benefit from this pricing model when it comes to video games.

Honeymoon Pricing

This tactic is a variation on penetration pricing and is used in established businesses.

A new game is introduced to the market with a low price point only to get more expensive
after a while, perhaps after additional features are introduced into the product to justify
the extra dollars.

Premium Pricing

Maintaining high prices enforces the idea of a business that sells superior products. It rarely
works for humdrum products and should be used when the concept is so unique it isn’t
offered by many, if any, competitors. In the realm of video games, never-before-seen visual
technology often warrants this price tag. Think Call of Duty or the GTA series of games.

Economy Pricing

When a business focuses on delivering low-end products on the cheap with minimal
marketing costs, it is working from the economy pricing model. This is perhaps the best
approach for low-end products with very few innovations in them. Think run-of-the-mill
genre games or your average first-person shooter (FPS) or shoot-"em-up.

Product Bundling

Bundling games has always been a common approach in the world of games, and more
so in the era of digital distribution. There’s no harm in applying this concept to your
marketing efforts. The idea of discounts is always appetizing to potential customers.
Flexibility with product options only sweetens the deal from the customer’s perspective.
By offering several tiers of games or related assets (e.g., soundtracks), the buyer feels more
comfortable making a payment. You don’t even have to set rigid prices. Giving customers

146

CHAPTER 7 * SELLING YOUR GAME

a degree of freedom by merely setting a minimum payment amount for your products
usually works to your advantage. The very successful Humble Bundle online brand of
game compilations isn’t (and doesn’t have to be) the only example of these approaches.

Free-to-Play (Also Pay-to-Win and Freemium)

An increasingly common approach for newcomers and established developers alike is

to use a business model known as free-to-play and sometimes, mockingly, pay-to-win.
This refers to releasing the core product as a free download, with the game having some
more or less serious limitations. This usually includes providing players with rather lousy
virtual equipment to fight their battles and saving the big guns for those willing to engage
in microtransactions with actual dollars.

This business model has been criticized both for limiting the gameplay artificially
unless payments are made and for shoving in-game add-ons down the players’ throats.
The free-to-play approach has also garnered criticism from angry parents whose offspring
sometimes manages to spend thousands of dollars on virtual items.

Microtransactions

The purchase of virtual goods is generally referred to as microtransactions. They range
from cosmetic aspects (i.e., new costumes for characters) to items that enhance functional
gameplay aspects. Microtransactions are usually delivered through an in-app interface.
Apple and Google provide their own frameworks for embedding these transactions into
games. They both let developers keep 70 percent of any microtransactions they manage
to sell.

Gamers hooked on a particular free-to-play game give game companies enormous
amounts of money each year for virtual equipment. The total amount of virtual goods
in the games industry was a colossal $15 billion in 2012, most of which came in from the
Asia-Pacific markets.

Place (Distribution)

Let’s now take a look at some viable alternatives for the distribution of your video games.
All portals reviewed in this section offer nonexclusive contracts, meaning you can sell
your product (or products) on competing platforms without issues.

Steam (steampowered.com)

For Windows, macOS, and Linux games.

Although briefly discussed in Chapter 1 of this book, it’s time to remind you of
probably the most lucrative method of video game distribution. Launched in 2003,
Steam is a client-based software and media distribution system available for all major
desktop platforms. As of mid-2017, Steam has some 12,000 titles on sale. Although Valve
is tight-lipped about statistics, it’s been estimated the store holds 70 percent of the digital
distribution market share. The reach is, in a word, monumental.

147

http://dx.doi.org/10.1007/978-1-4842-2970-5_1

CHAPTER 7 " SELLING YOUR GAME

Getting your titles on Steam isn’t cheap, unfortunately. Steam Greenlight,
implemented in 2012, asked for a one-time payment of $100 per developer to get their
titles listed on the community voting system. Since June 2017, Greenlight was no more,
replaced by Steam Direct. Under the new system, developers are required to pay $100 per
title. Instead of a community vote, Valve does the judging, which might take up to 30 days.
This does at least remove some of the bureaucracy from the proceedings. In addition
to your precious funds, you'll be required to share your tax forms and other digital
paperwork upon submitting your games.

Amazon Appstore (amazon.com/appstore)

For Android and BlackBerry games.

Online since 2011, the Amazon Appstore is among the most popular mobile app
stores. Some 600,000 Android titles are available as of early 2017. The submission process
is easy and best of all completely free. All you need to submit your games to the store is
an Amazon developer account, which doesn’t cost a thing. Developers receive 70 percent
of revenue from their sold apps. In-app purchases are also supported by the portal. All
games must simply adhere to the Amazon Appstore content policy requirements. These
are pretty standard fare as far as content-related limitations are concerned; excessive
violence and pornographic material are not well tolerated.

Amazon caters to Apple developers, too. Although the Amazon Appstore doesn’t
distribute software for iOS devices per se, iOS developers can still enjoy the benefits of
various tried-and-tested Amazon solutions. You get to integrate services such as Amazon
Drive and Amazon Mobile Ads into your iOS projects courtesy of Amazon, to name just two.

Amazon Digital Game Store (amazon.com/
gamedownloads)

For Windows, macOS, and various console games.

Amazon has offered a way to sell downloadable games since 2009 for desktop
computers. The store is still doing some good business. Amazon Digital Game Store
provides distribution also for popular console platforms, including for the PlayStation
and Xbox families of devices. The store uses the same application procedures and
requirements as the Amazon Appstore.

Google Play (play.google.com)

For Android, ChromeQOS, and online games.

In February 2017, Google Play had 2.7 million apps on sale, with the total number of
downloads rapidly approaching 100 billion units. Like many of its competitors, Google
Play offers developers 70 percent of revenue from their app sales. As of early 2017,
developers may have also opted to sell their products at a discount for limited periods
of time. The store supports both traditional installable apps and the more lightweight
Android Instant Apps. There are some discovery tools on the store, such as automated
personalized collections of software for fans of specific genres.

148

CHAPTER 7 * SELLING YOUR GAME

True to Google, the statistics on Play are quite detailed and rather formidable in their
scope. The platform naturally supports Google’s AdMob in-app advertisement service for
extra income (and user annoyance) you may want to integrate into your games.

For a one-time fee of $25, a Google developer account and thus Google Play
distribution are yours. All Android developers are advised to look into this service.

Apple App Store (apple.com)

For iOS games.

The Apple App Store has turned out to be a resounding success. Since its launch
in the summer of 2008, the store has garnered well over 2 million titles. With a total of
140 billion downloaded apps as of late 2016, the platform definitely has a large reach.
The most popular category in the store is games, so developers of mobile entertainment
should make distribution on the Apple App Store a high priority.

The submission process to the App Store is a relatively painstaking one. It isn’t
quite as simple as uploading a file for Apple’s approval. There are many steps to be taken
before that, including both technical and content-related considerations. Thankfully, the
turnaround is usually only a week or so for the average app.

A developer should look carefully into Apple’s Human Interface Guidelines (HIG)
way before the submission stage of their games. This is a set of guidelines for the look and
feel of what Apple finds acceptable in its App Store content. Also, Apple takes software
security very seriously. All distributed apps are expected to use sandboxing, which is
a technique to provide a set of tightly controlled resources from the operating system
instead of granting full access. Whatever apps Apple deems offensive are also a no-no.
Pornographic or overtly political apps will not be well received.

Developers receive 70 percent from any App Store revenue. There are no file hosting
fees, and Apple gladly handles all payment processing for you.

To submit an app to the Apple App Store, you first need to enroll in the Apple
Developer Program for $99 per year. You also need access to a physical iOS device such
as an iPhone and iPad. A digital iOS development certificate and an iOS distribution
certificate are also needed to identify you, which you can generate from inside current
versions of Xcode, Apple’s free programming IDE. For Xcode and the certificates, you
need a computer running a modern version of macOS. iTunes, primarily known as
Apple’s digital music software, can also be used to purchase and manage iOS apps.

Apple Mac App Store

For macOS games.

In addition to the distribution of iOS titles, Apple naturally provides for its sizable
macOS clientele. The Mac App Store started its run in 2011 a few months before the
release of macOS Lion. The store has been integrated into all versions of macOS from
Snow Leopard version 10.6.6 onward.

The Apple Developer Program license ($99 per year) covers both the App Store for
iOS and the Mac App Store. As you would expect, all software submitted to the Mac App
Store must meet some rather stringent sets of requirements. The Apple Human Interface
Guidelines still apply and so does the sandboxing requirement. Also, Mac App Store
doesn’t accept demo versions of games. The free-to-play approach is naturally acceptable
(i.e., titles with in-game purchases are fine).

149

CHAPTER 7 " SELLING YOUR GAME

Both Apple App Stores use an online interface called iTunes Connect to provide
content management tools for developers (https://itunesconnect.apple.com/login).
User accounts on the system remain live even if the yearly Apple Developer Program
license expires. However, the program membership is needed to update or upload apps.

Good Old Games (gog.com)

For Windows, macOS, and Linux games.

Specializing in older games like the name suggests, Good Old Games also offers
newcomers some decent distribution possibilities. It introduces a lot of classic games for
both the current Macintosh platform and modern Windows PCs. It used to be a hassle
to get 1990s games running properly on newer machines, but GOG usually provides a
fine experience in retro gaming with their pre-optimized games. A smaller platform with
some 2,000 games as of 2017, Good Old Games is nonetheless a viable option for new
developers with a dedicated staff behind it.

As for indies getting their first taste of digital distribution, the submission process
is painless at GOG. For one, there’s no submission fee. You simply fill out a submission
form on the site, under Submit Your Game. You're asked to provide a gameplay video and
enter some basic information about the game. Click Submit and wait. The GOG folks will
respond rather promptly, often with constructive criticism. Soiree Games'’ first offering,
Office Quest, didn’t quite make the cut, but the team was met with tender words of advice
and encouragement. Apparently toilet humor is not a major priority with GOG.

The best way to acquaint yourself with what Good Old Games is looking for is
perhaps to visit the indie section on the web site. You'll see some classic independent
titles such as Don’t Starve and Undertale, and there’s clearly room for creative titles in all
genres. The pricing of these titles will also give you a hint on what your products might be
worth on GOG.

In addition to a free submission process, GOG grants developers a decent marketing
package in the form of social media exposure and banner graphics for a limited time.

Itch.io (www.itch.1io)

For Windows, macOS, Linux, Android, and iOS games.

Itch.io is an increasingly popular distribution platform with more pros than cons. For
one, there are no submission fees. Also, like Steam, the platform offers a desktop program
for its customers to browse and purchase games with. You can even accept bitcoin for
your games! The feature set of Itch.io is, in a word, splendid.

The platform uses a business model called open revenue sharing. Basically it means
you, as the developer, get to decide both the price of your products and what percentage
of your sales go to Itch.io. This amount ranges from 0 to 100 percent, with the default
setting being 10 percent. Believe it or not, this is a great model for both developers and
the service itself as is evident from its popularity. As of 2016, Itch.io was hosting well over
40,000 titles.

Itch.io offers free online web site storage for your projects with decent customization
options. It doubles as a relatively hip web site for your efforts, but it doesn’t offer much
in the way of cool, custom e-mail addresses and the like. In addition to games, you may
also sell pretty much any kind of digital products on the site, such as comics, music, and

150

https://itunesconnect.apple.com/login
http://gog.com/
http://www.itch.io/

CHAPTER 7 * SELLING YOUR GAME

graphical assets. There’s also a sizable amount of tools available for general use and for
various game engines. The latter includes a keyboard shortcut extension for Unity and a
particle editor for GameMaker Studio.

In closing, Itch.io is a pretty smart way to sell your products. With no up-front costs
there’s very little to lose. Take that, Steam.

Humble Store (humblestore.com)

For Windows, macOS, and Linux games.

Launched in 2013, Humb]e Store is an online distribution platform based on the
Humble Bundles, which entered the fray in 2010. The concept was to promote indie
games and donate part of the proceedings to charity. The Humble Bundles utilize a
pay-what-you-want model requiring a minimum of just $1 for purchases. The more you
pay, the more software you get in your bundle. Since 2010 the concept has made more
than $65 million for 50 different charities, with the developers making a total of $100
million across 10 million or so customers.

The Humble Store uses a more traditional business model of a set price for its
selection of games. Any indie can approach the store with offerings and potentially get
some exposure next to AAA titles in the store. After 5 percent of processing fees, the
revenue is split between 75 percent to developers, 10 percent to charity, and 15 percent
to Humble Bundle.

Originally for video games only, Humble Store has expanded its business into
e-books and comics. Since early 2017, the business has branched also into publishing on
several platforms.

IndieGameStand (indiegamestand.com)

For Windows, macOS, and Linux games.

Starting out as the now-defunct crowdfunding platform 8-bit Funding,
IndieGameStand offers a wide variety of indie games for the exact price of pay-what-you-
want. A portion of the sales go to charity. Instead of bundled software, as is the case with
Humble Bundle, the company showcases a new single game every 96 hours on the site.

IndieGameStand is definitely a low-risk option for distribution. There are no
submission fees when uploading your games. Developers choose which charity receives a
10 percent donation per sale.

Playism (playism-games.com)

For Windows games.

Playism is an ambitious business that localizes and distributes games to the very big
video game markets of Japan. Playism’s publishing arm is impressive, spanning several
PlayStation stores in Japan and several popular online stores in the English-speaking
world. The latter include Steam, Good Old Games, Humble Bundle, Gamersgate, and
Desura. If you score a deal with these guys, you are well and truly in business.

151

CHAPTER 7 " SELLING YOUR GAME

All of this comes understandably with a price, however. Playism’s services are
probably not for indie novices, but if you are seeking to break into the Japanese market
later in your career, they are your best bet. Moreover, they don’t seek AAA titles per se.
They’ve worked with developers behind such runaway hits as Papers Please and Dear
Esther, which is great news for the quirkier indies among us.

Promotion

A great game on its own is never enough. There are some additional materials a developer
needs to make it in the business. Luckily, there are not a lot of these, and they can be
attained with very little cost.

Web Site

You need an interesting, inviting web site for your games. You should approach your indie
ventures as your future profession. Come up with a cool and memorable name for your
business. There’s something about the aura of a larger organization that reflects well on
one’s games.

Route A: Custom Domain and Hosting

This approach is most impressive to future employers, casual gamers, and their grandparents.
First, you need to register a domain name (e.g., www . happygames . com) for your business.
Introduce each game on this site as a microsite. This way you not only have a memorable
website but also get your own custom e-mail address (e.g., theresa@happygames . com) too.
Next, you require hosting for your site. In many cases, both domain registration and hosting
are provided by the same businesses. These are some popular services:

e HostGator (hostgator.com)
e GoDaddy (godaddy.com)
e Dreamhost Web Hosting (dreamhost . com)

Now, if you are working on a ground-breaking game or you have no shortage of funds,
you may want to register a domain on a single game basis (e.g., www.mygreatgame. com).
This certainly draws more attention to your projects and makes them seem rather special.
Make sure your web site is designed and tested to work well on mobile devices. Also, keep
those gigantic image files in check. JPEG should be your format of choice.

There’s no need to create a web site from scratch. There are plenty of great services
offering solid frameworks for mobile-friendly web sites of any kind. Such solutions
include the following:

e Bootstrap (www.getbootstrap.com)
e Foundation (http://foundation.zurp.com/sites.html)
e Wix (http://wix.com)

152

http://www.happygames.com/
http://www.mygreatgame.com/
http://www.getbootstrap.com/
http://foundation.zurp.com/sites.html
http://wix.com/

CHAPTER 7 * SELLING YOUR GAME

Route B: No Budget

Use free hosting for your business and games. Most edgy gamers don’t really care how
you host your products. Blogging platforms are therefore a worthwhile option for indie
developers. Some of these free platforms include the following:

e Tumblr (www.tumblxr.com)
e Wix (Www.wix.com)

e Blogger (www.blogger.com)
e Medium (www.medium.com)

e Itch.io (www.itch.io)

Screenshots

Screenshots are a necessary part of your promotional campaign. Make sure you have at
least ten interesting stills per game demonstrating all the core mechanics of your project.
Include presentation screens if they are of high quality, but keep the focus on the game
itself. Make that Print Screen key on Windows your friend. Cmd+Shift+3 works for Mac
(or Cmd+Shift+4 if you want to grab a specific area on the screen). Store your screenshots
in a place you can keep them easily organized.

Video Trailer

Avideo trailer is a must for your game. In this day and age it’s virtually impossible to
promote a game successfully in any genre without one. Also, gamer channels are very
popular on sites such as YouTube and Twitch.tv. For this reason the Web is flooded with
screen capture software, both free and commercial. The benefits of expensive video
capture software are often exaggerated. Also, not every piece of software works equally
well for everyone; much depends on your hardware profile.

Settle for nothing less than smooth 60 fps capture in at least HD resolution
(1280x720). Do keep in mind a lot of video capture success also depends on the software
settings. Experiment with different formats. Don’t try to capture video while other
programs are running in the background; shut them down first. If you still get stutter or
screen artifacts, it’s time to try different software or invest in a more powerful hardware,
especially when it comes to your video card or CPU.

The online world is increasingly a world of video. Both major video card brands,
Nvidia and AMD, are very much aware of this and are doing their best with their own
cost-free offerings. The Nvidia Geforce Experience software suite contains a video capture
feature called simply Share. It provides reliable, stutter-free screen capture even on
average systems. AMD released its Radeon ReLive screen-sharing software in early 2017
to great acclaim. Depending on your video card, you could do a lot worse than capture
with either of these programs. Nvidia’s and AMD'’s software offerings are naturally highly
optimized for their respective hardware platform. However, double-check that your video
card drivers are up-to-date before clicking Record.

153

http://www.tumblr.com/
http://www.wix.com/
http://www.blogger.com/
http://www.medium.com/
http://www.itch.io/

CHAPTER 7 " SELLING YOUR GAME

Other popular video capture software includes MSI Afterburner, which doubles as
avideo card overclocking suite, and Open Broadcaster Software (OBS). Both of these
programs work with a wide assortment of video cards.

Social Media

There’s no question current social media services have a massive worldwide reach.

The literally billions of combined users of Facebook, Twitter, and YouTube get bombarded
with content every single minute of the day. A lot of that content, especially from
newcomers to those platforms, is understandably ignored. You should still want to put
yourself out there in these crowded social media platforms because they are both free and
it can lead to a variety of opportunities.

Your comments and tweets are your calling cards on social media. To get your foot
in a potential customer’s (or collaborator’s) door, participate in the debates at hand. Like,
comment, and subscribe. Target your original content at those who are most likely to be
interested. In your case it’s gamers, game developers, and related technology buffs.

On Facebook, there are quite a few major indie-friendly groups you should engage
with. These include Indie Game Developers Public Group, Indie Game Promo, and
GameDev Beginners, to name but three. YouTube has countless channels dedicated to
the subject. Twitter has hashtags related to indie games emerging on a constant basis,
such as #IndieGameInitiative and variations on #indiegames. These are all fine tools of
promotion available for you, for free.

Many indie games share traits with software in the world of retro gaming. The charm
and aesthetics of 1980s and 1990s video games are definitely a thing. Therefore, it pays
to network with this branch of the online community if your output can be considered
retro-ish to at least some degree.

Invest yourself into the proceedings as a personality. Always network offline as well
to whichever degree you're comfortable with. Use social media not only to advertise your
games but to share behind-the-scenes stories and shed light on the decisions you make
as a developer.

Now, make sure you familiarize yourself with the following tidbits of social media
know-how:

e Have all of your social media profiles share a unified visual theme
and company logo.

¢ Join as many groups as you can on every platform made
specifically for indie games developers.

e Always respond politely even if approached by asinine individuals
on social media.

e When posting, use good grammar and punctuation, but don’t be
boring.

e Be quirky with your posts; never sound like a head of marketing
at work.

e Bemore than just a business name; it's about your games, your
face, and your personality.

154

CHAPTER 7 * SELLING YOUR GAME

e Cross-link your social media content thoroughly.

e Do not waste time uploading your material to unpopular social
media platforms; obscurity rarely helps.

e Here are indie-friendly keywords for all media: indie, game dev,
retro, arcade games, digital distribution.

In-Game Advertising (IGA)

According to Forbes magazine, in-game advertising generated more than $7 billion

in revenue in 2016. Many free-to-play games usually feature several types of in-game
advertising from splash screens to banner ads. IGA has the benefits of being both
engaging and highly targetable, based on properties such as customer age group and
location. Actual product placement, while very lucrative in both movie and video games,
is usually not a realistic option for indie developers. Some more palatable advertising
solutions for indie mobile apps include the free-to-use AdMob by Google and the
Singapore-based InMobi.

Festivals

If you have an innovative product to promote, indie game festivals are among the best
ways to do it. The competition, however, is stiff and the placement space limited. Still, if
you have the money for a couple of submission fees, you might want to hand it over to an
indie-friendly games convention. For best results, you should study past winners at each
festival and see how your projects measure against them.

Indiecade (indiecade.com)
e 2017 venue: Culver City, California
e Submission fees in 2017: $95 regular, $140 late

Founded in 2005, Indiecade offers promotional opportunities for budding indie
developers. It's open to the public, and indies are encouraged to submit their games to
the jury. A few dozen titles are featured at the festival each year. The main exhibition
takes place in a so-called GameWalk, which consists of a series of improvised galleries in
downtown Culver. This is a free event for the public. There are several other events as well
under the Indiecade auspices, such as the GameSlam, which offers developers 90 seconds
of pitch time in front of a live audience. Past titles featured at Indiecade include Rollers of
the Realm in 2013, iO in 2014, and 1979 Revolution: Black Friday in 2016.

Independent Game Festival (igf.com)

e 2017 venue: San Francisco, California

e Submission fees in 2017: $75 regular, $25 for students

155

CHAPTER 7 " SELLING YOUR GAME

The Independent Game Festival (IGF) is the largest annual gathering of the indie games
industry. Open to developers worldwide and founded in 1998, IGF is offering more than
$50,000 in prize money to its participants in 2017. The Seumas McNally Grand Prize is
worth $30,000 alone. The prize was named after the programmer behind Tread Marks (a
winning title of three IGF awards), who sadly passed away in 2000. Past winning entries of
the grand prize include Darwinia in 2006, Minecraft in 2011, and Papers, Please in 2014.
There are also categories for browser games, technical excellence, and narrative. The IGF
audience prize, worth $3,000, has been given to titles such as FTL: Faster Than Light in
2013 and Undertale in 2016.

Assembly Summer (assembly.org)
e 2016 venue: Helsinki, Finland

e Submission fees in 2017: 80 to 115 euros, depending on the
seating

A place of pilgrimage for Nordic nerds, Assembly has been around since 1992 to uphold
demoscene technical excellence. The term demoscene refers to a computer art subculture.
Perhaps Finland’s finest ever export, Assembly has been split between Summer and
Winter editions since 2007, with the wintery gathering focusing on e-sports. While
primarily for noninteractive technical presentations (i.e., demos), Assembly Summer also
caters to indie game developers and is worth a shot.

Business and Finance

Game development may start out as a hobby, but eventually you are likely to want to
make a living out of what you enjoy doing best. Whenever money and transactions are in
the picture, it pays to know what you're talking about somewhat. Let’s go through some
fundamental concepts of business next.

Return on Investment (ROI)

ROI measures the amount of return on an investment relative to the cost. To calculate
ROJ, the benefit of an investment is divided by the cost of the investment, and the result is
expressed as a percentage. So, the formula for return on investment is as follows:

ROI = (Benefit - Cost) / Cost

It's time for an example. If you buy 30 shares of Soiree Games for $11 a share,
your investment cost is $330. If you sell those shares for $420, then your ROI is
($420 - 330)/$330 for a total of 0.27, or 27 percent.

156

CHAPTER 7 * SELLING YOUR GAME

Economies of Scale/Economies of Scope

Economies of scale refer to the cost advantages that a business can exploit by focusing on
their production output. The effect of economies of scale is to reduce the average product
unit costs. Think of a development house pushing out 99-cent games in large numbers.
They have all the basic building blocks of creating an immense number of these games
after producing just a handful of these titles. Such a business embodies the philosophy of
economies of scale.

Economies of scope, on the other hand, refer to product diversity or benefiting from
outsourcing company functions. This approach refers to releasing products in different
price ranges or on different platforms. Economies of scope also arise from cooperation
between businesses; a development house may gain the means of outsourcing part of
their production process such as marketing or conversions to different platforms or
to other specialized businesses. Other examples of economies of scope are product
bundling and diverse distribution chains.

Securities

A security is any tradable financial asset, such as banknotes (i.e., cash), bonds, or stocks.

Securities and Exchange Commission (SEC)

The SEC is an agency of the U.S. federal government granted with the responsibilities of
proposing federal securities laws and enforcing these laws. The SEC came into existence
in 1934 in the aftermath of Black Thursday, the stock market crash of 1929. Basically the
SEC is there to hold companies accountable on the nature of their business and the risks
in investing in them. The SEC becomes relevant to your business, too, when your stocks
hit the exchange.

Nonaccredited Investor

This is an investor who does not meet the net worth requirements for an accredited
investor as defined by the SEC. A nonaccredited individual investor is one who has a net
worth of less than $1 million, including a spouse, and who earned less than $200,000
annually ($300,000 with spouse) in the last two years.

Accredited Investor

To be an accredited investor, a person must have an annual income of $200,000 (or $300,000
for joint income) for the last two years. An individual must have earned income above the
thresholds either alone or with a spouse over the last three years.

157

CHAPTER 7 " SELLING YOUR GAME

Crowdfunding

Alot of smaller-scale projects are funded with a bedroom model, i.e., a single individual
working on his or her games in their spare time. While a lot of successful titles have been
created using this approach since the 1970s, it’s not the only option for funding your projects.

Crowdfunding is an increasingly popular method of securing adequate financial
resources for your games. Pay attention to your local laws and terms of service for each
platform as they may or may not be compatible. Let’s take a look at some of the more
popular crowdfunding solutions.

Kickstarter (kickstarter.com)

Project creation available to citizens of the following countries only: the United States,
the United Kingdom, Canada, Australia, New Zealand, the Netherlands, Denmark,
Ireland, Norway, Sweden, Germany, France, Spain, Italy, Austria, Belgium, Switzerland,
Luxembourg, Hong Kong, Singapore, and Mexico.

Since its inception in 2009, Kickstarter has garnered a hefty $1.9 billion in project
donations from nearly 10 million supporters. As of 2017, roughly a quarter of a million
creative projects have been featured on the site. These include movies, music, hardware
projects, and video games. Top projects make millions on this platform. Currently, the
undisputed king of Kickstarter projects is Star Citizen, a video game by Chris Roberts of
Wing Commander fame. Roberts has made a staggering $140 million for his team’s efforts,
and the funding is still ongoing.

Kickstarter operates on the principle of all-or-nothing. The developers set a specific
financial goal for the project, and if that goal is never reached, nobody pays a thing.

This approach is less risky for both developers and their audience. In addition, it provides
potentially more word-of-mouth advertising, as the backers usually want to see the funding
behind their project of choice reach its goal. Many developers provide additional incentives
in the form of special rewards for donations. These include, naturally, the finished product
in question (if feasible) as well as related merchandise or customized items.

There are three simple rules to qualify your project for crowdfunding on Kickstarter:
creators can fund projects only, all projects must fit within one of the site’s 13 creative
categories, and creators must abide by the site’s prohibited uses. Charity or investment
projects are not allowed. Also, heavily regulated or potentially dangerous items (such as
weapons or drugs) cannot receive funding in Kickstarter. Projects of the offensive kind are
often discarded. Try to be politically correct with these guys. The service takes 5 percent in
fees for all successful projects. In addition, free processing removes another 3 to 5 percent.

Of course, while all developers appreciate millions, even more modest amounts of
crowdfunding cash can make all the difference in helping newcomers get their games off
the ground. Such indie hits as Faeria, Undertale, and FTL: Faster Than Light all received
considerable financial gains from Kickstarter. Dozens of indie developers have benefited
from leveraging the community on the site. In short, there’s very little to lose in trying out
this route of financing.

158

CHAPTER 7 * SELLING YOUR GAME

Fig (fig.co)

While Kickstarter offers more or less a general-purpose platform for crowdfunding, Fig is
a specialized service working solely in the domain of video games. Established in 2015,
Fig offers not only the typical crowdfunding experience for pledgers but an actual cut of
the revenue once the game is released. Revenue shares are meant for anyone who invests
a minimum of $1,000 in a project. The SEC has approved of Fig’s revenue shares in late
2016. Investing is optional for all projects, and Fig is perfectly happy with the established
crowdfunding approach of public pledging. Naturally, the amount of general community
support a title generates helps potential investors assess the risk involved.

Fig takes a curated, restricted approach to crowdfunding. The focus is on quality and
overall viability of projects. This has translated into a much bigger success rate than its
competitors. Some completed campaigns on Fig include Psychonauts 2 by Double Fine
Productions, which made an impressive $3.8 million, and Outer Wilds by Mobius Digital,
which took in more than $126,000.

The company also has a Fig Finishing Fund, which aims to help with the costs
of successfully backed projects should they have any late-stage budgeting hurdles to
overcome. For this purpose alone Fig has budgeted $500,000 in 2017. Projects qualified
for the fund receive up to $20,000 each.

Fig is a brave attempt at tackling the rather overpopulated scene of crowdfunding by
careful curation and allocation of resources. The business has made a great track record
for such a new company; clearly their approach works. Fig is perhaps best suited for more
established game developers with some success already looking to take their projects to
the next level.

Indiegogo (indiegogo.com)

Project creation available to citizens of most countries except Iran, Syria, Sudan, North
Korea, and Cuba.

As of 2017 Indiegogo has raised more than $1 billion for well over 200,000 projects
in various categories. An all-purpose crowdfunding service, Indiegogo has been around
since 2008, launching also many successful indie game projects during its continuing
run. The site receives roughly 15 million visitors each month. These include StarForge by
CodeHatch and a remake of the classic FPS System Shock by Night Dive Studios.

Kickstarter and Indiegogo are obviously the two top crowdfunding platforms for
newcomers in the indie game world. However, Kickstarter has a stronger track record
in amassing more funds for its video game campaigns. On the other hand, Indiegogo is
more lenient about reaching your crowdfunding goals. Unlike Kickstarter, the platform
has an option called flexible funding, which means you get to keep pledged funds even if
the goal amount is not met. Another feature called InDemand allows the public donate
to your campaign even after the campaign end date. This type of flexibility is exactly what
good crowdfunding is all about.

Kickstarter is a bigger platform overall but not quite as flexible. Indiegogo’s terms
of service are not as strict as those of Kickstarter, allowing for political, religious, and
environmental campaigns. In addition to for-profit crowdfunding, Indiegogo offers a
platform for charitable purposes called Generosity.com.

159

CHAPTER 7 " SELLING YOUR GAME

Gambitious (gambitious.com)

Seeing the light of day in 2011, Gambitious is a Dutch video game publisher and a
crowdfunding platform. The company offers developers the support of accredited
investors in exchange for game revenue shares. Gambitious and their investors had their
break with Train Fever by Urban Games in 2014, a business simulation game, which has
sold more than 140,000 copies so far. Starting out with an investment option first, the
company has since expanded into more open types of crowdfunding.

Like Fig, Gambitious is a curated platform, set on correcting the overpopulated world
of crowdfunding. There don’t seem to be any limitations as to the genre of supported
video games at Gambitious. The company has had success with every game it has funded,
with four of the first six titles delivering profits in the first month following release.
Because of the selective nature of Gambitious, it may be a platform for developers with
previous successes in the video game industry or a game with a killer concept. But if you
get your foot in the Gambitious door, you can probably expect a lot of dedication and
resources for your efforts.

160

CHAPTER 8

Knowing Your Old-School
Games

The challenge of history is to recover the past and introduce it to the
present.

—David Thelen, historian

In this chapter you'll take a detailed look at some of the most successful and historically
significant gaming computers and consoles in chronological order of release. Each system
will be presented with its biggest selling points at the time of its entry into the market. I'll
focus on the early days of gaming, during which history was made and pioneers ruled the
day, specifically, the exciting and dramatic era that spanned from 1977 to 2001.

In 1977 the Atari 2600 was introduced. During its 15-year production run, the
console became the epitome of the 8-bit era and thus a building block for the ensuing
16-bit era—and beyond. The 2600 even went on to survive the Great Video Game Crash of
1983, an industry disaster of monumental proportions.

In 2001 Microsoft’s Xbox was released to great acclaim. This heralded both the
beginning of Microsoft’s multibillion-dollar Halo franchise and the giant’s entry into the
console market with a technologically superior product.

The platforms presented in this chapter were primarily chosen for their historical
importance. Some bias was admittedly present in choosing which systems to showcase.
This bias extends to the selection of important games for each platform as well. And
although all of these systems had a ton of accessories made for them in the form of light
guns, steering wheels, and other such exotic devices, won’t be focusing on any of these
gadgets. Also, for the sake of brevity I won’t cover portable game consoles.

The games for these systems have in most cases sold millions or even hundreds of
millions of copies on a global scale. These older platforms have all obviously contributed
to the video game mechanics and aesthetics we enjoy today. Also, some of these gaming
platforms continue to live on in current times, either as game franchises originating
on them or as actual manufactured hardware as in the case of some of the Sega and
Nintendo consoles.

A successful entrepreneur focuses not only on the present or the future; they are
familiar with past innovation. Please try each one of the important games listed in
this chapter, preferably on the original hardware (although free emulation software is
plentiful). Let the past inspire your present. What worked in the past still works today.

© Robert Ciesla 2017 161
R. Ciesla, Mostly Codeless Game Development, DOI 10.1007/978-1-4842-2970-5_8

CHAPTER 8 "' KNOWING YOUR OLD-SCHOOL GAMES

1977
Atari 2600

e Sold more than 30 million units.

e Best-selling game for the system: Pac-Man from 1982. Sold more
than 7 million copies.

As all those generic and simplistic Pong consoles faded into obscurity, 1977 saw Atari
launch one of the most successful gaming systems to date. For one, the system had
impressive visuals for the times, and the cartridge-based delivery format was fast-loading
and durable. Also, the controller that shipped with the 2600, the Atari Joystick, became a
somewhat revered piece of industrial design.

The Atari 2600 Jr. was released in 1986 as a budget version of the original
(see Figure 8-1).

Figure 8-1. The Atari 2600 Jr.

Spanning three decades, the 2600 had a software library of about 600 games and
continues to live even in 2017 in the so-called home-grown segment. Many a games
enthusiast is working on an Atari 2600 title as you read this, some of them quite
impressive in both technical and gameplay-related terms.

Like any system, the 2600 had to have both huge successes and massive failures
during such a long run. Those iconic, timeless classics are what made the machine thrive:
Pac-Man, Space Invaders, Missile Command, and one of my favorite games of all time,
H.E.R.O. by Activision. Even in the 1990s, the little Atari wonder churned out decent titles,
including Klax, Pick 'n Pile, and Xenophobe.

Of course, there is the little disaster called E.T. for the 2600, a game some consider
one of the worst ever made. Another one called A-Team actually made your 2600 cry a
little. These titles demonstrated the power of licensed games. Developers even then knew
a title from popular culture sells, even if you stick it on a reprehensible product. Naturally,
in modern times, most developers abhor such a practice.

162

CHAPTER 8 "' KNOWING YOUR OLD-SCHOOL GAMES

Here are some important games:
e H.E.R.O.(1984) by Activision
e Pitfall 2: The Lost Caverns (1984) by Activision
e Solaris (1983) by Atari
e Pitfall! (1982) by Activision
e River Raid (1982) by Activision

This is the worst game on the system and perhaps the entire galaxy (as per popular
opinion):

e ET (1982) by Atari

1982
Atari 5200

e Sold a meager 1 million units

While its predecessor, the 2600, enjoyed a lengthy 15-year commercial life span, the

Atari 5200 went on for just two (see Figure 8-2). In a word, the Atari 5200 was a flop. The
reasons for this were numerous: poor controllers, bulky externals, and games that didn’t
utilize new hardware to its full being perhaps the biggest culprits. Discontinued in 1984,
the 5200 nonetheless provided the video game community with some valuable lessons.
Of these, the biggest is without a doubt this: make sure your products have zero controller
issues. This goes for both hardware manufacturers and game developers at any level.

Figure 8-2. Atari 5200

Instead of originality, Atari opted to encourage predictability with 5,200 titles.
The system received (only slightly) visually updated versions of arcade and Atari 2600
classics. These included titles like Breakout, Defender, and H.E.R.O. Again, many of these
games failed to impress audiences. The graphics chip wasn’t revolutionary compared to
the 2600, but it was much more capable. Another lesson this failed system taught us is
this: make sure you make the most of available hardware.

163

CHAPTER 8 "' KNOWING YOUR OLD-SCHOOL GAMES

Here are some important games:
e Ballblazer (1986) by Lucasfilm Games
e Rescue on Fractalus (1984) by Lucasfilm Games/Atari
e Robotron: 2084 (1983) by Atari
e Frogger (1983) by Sega
e Zaxxon (1982) by Sega

Commodore 64
e Sold more than 20 million units.

e Best-selling game for the system: The Last Ninja 2 from 1988. Sold
more than 5.5 million copies.

The Commodore 64 is a much-loved computer that dominated the markets during the
1980s in America and abroad (see Figure 8-3). A versatile beast, the Commodore 64 used
at least three types of data formats for storage. You had floppy disks, cartridges, and—of
course—cassettes to load your software from. The tape-based format was notorious for
taking an eon to load a game (as in, say, 20 minutes) only for a corrupted screen to appear
where the game should’ve been. Back to square one. Good times.

Figure 8-3. Commodore 64

It can be safely said that no other computer system had as big of an influence on
the entire home computer game scene as the Commodore 64. Dozens of trends can be
traced on the machine. One of these has to do with the unique sound generation chip in
the Commodore 64, or the sound interface device (SID) as it’s more commonly known.
Providing three simultaneous voices and a ton of different tones, the chip is a surprisingly
capable one. That chic “8-bit sound” still prevalent in many new indie games is probably
inspired by the SID music in thousands of Commodore 64 games played by electronic
musicians in their youth.

The Commodore 64 era lasted from 1982 to around 1993. That’s more than a decade
of great, memorable games and superior 8-bit aesthetics. Best suited for arcade games,
the Commodore 64 struggled with 3D games, but some attempts were made in that style.

164

CHAPTER 8 "' KNOWING YOUR OLD-SCHOOL GAMES

There was an element of stubbornness with many Commodore 64 developers.
They simply refused to yield in front of seemingly unsurpassable technical obstacles.

One of the most ambitious 3D titles for the system was Elite by Ian Bell and David
Braben in 1984. A conversion from the BBC Micro computer version, the C64 Elite was a
space shooter and stock market simulation rolled into one. Players would roam a black-
and-white wireframe galaxy in search for goods, trade them for profit, and fire a few lasers
along the way. A massive hit on all systems, Elife went on to spawn several sequels. The
latest, the highly acclaimed Elite Dangerous, was released for modern platforms in 2014.

Here are some important games:

e Outrun Europa (1991) by U.S. Gold

e Turrican (1989) by Rainbow Arts

e Paradroid (1987) by Hewson

e FElite(1984) by Ian Bell and David Braben
e Archon (1983) by Electronic Arts

1983
Nintendo Entertainment System (NES)

e Sold more than 61 million units.

e Best-selling game for the system: Super Mario Bros from 1985.
Sold more than 40 million copies.

The Nintendo Entertainment System is an iconic piece of hardware with an amazing library
of games (see Figure 8-4). It is quite simply the Stratocaster guitar of game consoles. Many
things were overlooked with the unit, such as the oft-flickering sprites, a garish palette of
color, arather feeble sound generator, and the most pain-inducing controller pad of all time
(with its razor-sharp edges and pollex-destroying ergonomics). What pushed the NES out of
the junkyard of mediocre electronics was an Italian plumber, one Mario, and the numerous
titles based on his escapades. The success of the Mario Bros franchise alone made Nintendo
a household name. Running and jumping had never been as fun.

Figure 8-4. Nintendo Entertainment System

165

CHAPTER 8 "' KNOWING YOUR OLD-SCHOOL GAMES

The Mario story is an important one for several reasons. First, the level of violence
in the games is negligible. Second, perhaps Tetris aside, Super Mario Bros is a series of
games that take the basic mechanics of gameplay very seriously. The graphics, while
decent, are functional at best. Instead, the emphasis is on fluid controls and a greater
degree of flexibility in the era of rigid, maze-like game mechanics.

Here are some important games:

e Contra (1988) by Konami

e Super Mario Bros 2 (1988) by Kensune Tanabe and Shigeru
Miyamoto

e Megaman (1987) by Capcom

e The Legend of Zelda (1986) by Shigeru Miyamoto and Takashi
Tezuka

e Super Mario Bros (1985) by Shigeru Miyamoto

The Great Video Game Crash of 1983

Pretty much the Black Tuesday of the video game industry, the Great Video Game Crash
of 1983 hit several console platforms hard. The most affected brands included Atari,
ColecoVision, and Odyssey. A sharp decline in revenue began in 1983, reaching its

low in 1985, a two-year period of time during which the scene permanently changed.
The market was simply over-saturated with both consoles and their games, and there
were fewer and fewer hit products. Also, some stiff competition began between gaming
consoles and personal computers. The latter stepped on the former’s territory, providing
not only business applications but games as well. The then-current consoles were simply
becoming obsolete. As a result, revenues fell from $3.1 billion in 1983 to a mere $100
million in 1985. Tons of unsold game cartridges were dumped in deserts, and more and
more customers walked home with a hip PC under their arm.

Many console brands went bankrupt during these dark years. ColecoVision never
recovered and folded in 1985. Yet there were strong survivors. For Atari, one of the biggest
lifeboats during the storm was in its line of personal computers: the Atari 400 and 800 in
particular. Nintendo pulled through mostly on the strength of its game franchises such as
Super Mario and Donkey Kong.

1985
Commodore Amiga

e Sold approximately 5 million units.

e Best-selling game for the system: Lemmings from 1990. Sold more
than half a million copies.

166

CHAPTER 8 "' KNOWING YOUR OLD-SCHOOL GAMES

Launching Commodore’s 16-bit era, the Amiga range was an audiovisually sophisticated
piece of hardware, favored by creative people and gamers alike. Notable users included
Andy Warhol, who loved demonstrating the visual power of the machine. Graphical
qualities aside, the Amiga line was a great computer for sound production and desktop
publishing. Being easy to expand, the Amiga could pretty much do it all.

The line started out with the Amiga 1000 in 1985. However, the most popular
16-bit Commodore turned out to be the more compact Amiga 500, released in 1987
(see Figure 8-5). After a few more models, such as the abhorrent Amiga 600 and the rather
wonderful Amiga 1200 (which sadly entered the game far too late to make a difference),
Commodore folded in 1994. The company’s last-ditch effort was the Commodore CD32,
a CD-based game console. Very much up to the task even considering the competition
from Sega and Nintendo, the console was based on the last-generation Amigas but
unfortunately failed to reinvigorate the Commodore brand.

B S,

[—

i L
fusu=1-.-.|-'.:§.;.] 1

<=0 0000 T N l"l

1

Figure 8-5. The Amiga 500 Plus from 1991

While never selling by the dozens of millions, the Amiga line was nonetheless a
popular platform over the course of its life. The secret to its success was both in its
(for the time) superior hardware as well as in the multitude of uses it provided. From
a games machine to a more or less serious audio-recording workstation, the Amiga
handled most tasks with ease, especially after some hardware upgrades.

Some of the best 2D games of the 1990s came out on the Amiga platform. The
hardware was capable of relatively fast 3D as well, but a main bulk of the game software
came strictly in two dimensions. The Amigas did more for pixel art than any other system.
A color palette of 16 was often preferred by graphics people operating the hardware. This,
combined with a rather fine resolution of 320x256 pixels (in the European models), led
to the development of some beautiful hand-drawn antialiasing and dithering techniques.
Software houses such as Psygnosis and The Bitmap Brothers utilized every speck of the
Amiga’s audiovisual prowess, constantly pushing the envelope. Also, one of the most
successful puzzle game franchises of all time, Lemmings, started its life as a Psygnosis
game on the Amiga. The green-haired simpletons eventually made it to most systems
of the era, including the Sega Genesis, Super Nintendo, and the PC Engine. The latest
Lemmings game appeared on the PlayStation Vita portable console in 2014.

167

CHAPTER 8 "' KNOWING YOUR OLD-SCHOOL GAMES

Here are some important games:
o Turrican I (1991) by Rainbow Arts
o Lemmings (1991) by Psygnosis
e Paradroid 90 (1990) by Graftgold
e Xenon 2 Megablast (1989) by Bitmap Brothers
o Starglider 2 (1988) by Argonaut Software

Atari ST

e Sold approximately 3 million units.

e Best-selling game for the system: Lemmings from 1990. Sold more
than half a million copies.

The Atari ST series of computers went neck and neck with its main competitor, the
Commodore Amiga, getting introduced and perishing at the same time (see Figure 8-6).
The hardware was quite similar, with both systems having a Motorola CPU. Both platforms
had strong followings among hobbyists as well as some segments of the creative industry.
The main difference between the STs and Amigas was in the audiovisual capabilities, with
the Commodore offering more powerful audio and video chips.

AR S
T R e B el A Gl O G W 1 = =
e T r L L .

Figure 8-6. The Atari 1040ST. Image © Bill Bertram 2006. Used under CC-BY-2.5 license.

Although the Atari ST had pretty much an obsolete sound generator (dating from
1978 no less), the machine came with two MIDI ports out of the box. MIDI was, and is,
a very desirable technology among musicians. In 1985 it was pretty much unheard of to
have this functionality in a home computer without expensive upgrades. Many ST models
still work relatively well for music creation purposes. In fact, the Atari MIDI controller is
considered one of the most reliable even today and prized by many musicians.

168

CHAPTER 8 "' KNOWING YOUR OLD-SCHOOL GAMES

The ST fared well in the games department, too. One of the most iconic role-player
games (RPGs) of all time, Dungeon Master, debuted on the system in 1987. It’s estimated
this game alone sold more than 100,000 copies during its run.

Soon after its release, games in all genres, from flight simulators to simple arcade
games, began to appear on the ST in earnest. Eventually the games library for the system
reached well into the thousands, making the ST a veritable games machine.

Here are some important games:

1986

Frontier: Elite 2 (1993) by Gametek/Konami
Midwinter 2: Flames of Freedom (1991) by Microprose
Gauntlet 2 (1988) by U.S. Gold

Falcon (1988) by Spectrum Holobyte

Dungeon Master (1987) by FTL

Sega Master System

Sold more than 18 million units and counting, thanks to Brazilian
Sega fans.

Best-selling game for the system: Sonic the Hedgehog from 1991.
Sold more than 6 million copies.

Relatively late in the game, Sega introduced the Master System to America in 1986 (see
Figure 8-7). An 8-bit console, it was naturally created to butt heads with the NES. The
graphics hardware, for one, was superior compared to the competition. You simply won’t
find as many games with feeble sound and flickering sprites in the Master System library.

Figure 8-7. Sega Master System

169

CHAPTER 8 "' KNOWING YOUR OLD-SCHOOL GAMES

Bundled with the modest shooter Safari Hunt and the far better racing game Hang-On,
the Master System was released to modest acclaim. However, Sega did manage to find more
success with its 8-bit platform a couple of years later. Conversions of popular arcade games,
such as R-Type and Space Harrier, did contribute to the Master System eventually becoming
a console to be reckoned with. The system’s technical edge made sure these conversions
were usually better than the ones Nintendo came up with.

Most people, whether into video games or not, know exactly to whom Super Mario
refers to. The same can’t be said for Alex Kidd, can it? Designed to be the Master System’s
Mario, the Alex Kidd series of games were fine run 'n’ jumpers. They did everything
except deliver Sega a mascot. To fill the mascot void, Sega released the Wonderboy series
of games for the platform. A popular enough franchise on its own merit, Wonderboy, too,
failed to become a household name.

The Master System received a massive shot in the arm in 1991 in the form of Sonic
the Hedgehog. The franchise is still going strong in 2017 with new games appearing
every so often on newer platforms, including in the mobile world. Sonic, a blue
anthropomorphic hedgehog, also makes for some great fan merchandise and spin-offs.
However, even a strong, memorable character may not be enough to stay in the lead in
the video game industry. You often also need a technological gimmick, and in Sonic’s
case it was the then unheard of speed of the proceedings, combined with some smooth
scrolling, even on these older systems. Sega bounced back, big time, and on to new
heights. The Sonic franchise is its definitive contribution to game development strategy.

The Sega Master System was officially scrapped in 1992. Interestingly, the console
continues to be commercially viable in 2017, perhaps now more than ever. The platform
is still profitable in Brazil, a fairly large market of more than 200 million potential
customers. Manufactured by Tectoy, the Brazilian Master System comes bundled with
more than 100 games, making for a cheap console with an instant library of fine titles.
The annual sales of this “new” Master System were estimated at around 100,000 in 2015,
making it about as popular as PlayStation 4.

Here are some important games:

e Sonic the Hedgehog (1991) by Naoto Oshima, Y(ji Naka, and
Hirokazu Yasuhara

e Operation Wolf(1990) by Taito

e Wonderboy III: The Dragon’s Trap (1989) by Westone

e California Games (1989) by Sega

e Alex Kidd in Miracle World (1987) by Kotaro Hayashida

Atari 7800

e Sold approximately 3.5 million units

A successor to the failed 5200 and the last third-generation Atari console, the 7800 had
some serious potential (see Figure 8-8). As was the case for the Sega Master System, the
graphics chip in the Atari 7800 was superior to the one in the NES, the market leader

at the time. Originally slated to be released in 1984, the 7800 was shelved for two years
because of changes in ownership. New CEO Jack Tramiel wanted to carefully re-assess all
Atari hardware prior to release.

170

CHAPTER 8 "' KNOWING YOUR OLD-SCHOOL GAMES

Figure 8-8. The Atari 7800. © Adam Jenkins 2010. Used under CC-BY-2.0 license.

Wisely, Atari decided to capitalize on the (back then) ongoing success of its 1977
console, the 2600. In addition to supporting that platform on its own merit, Atari also
made the 7800 nearly 100 percent compatible with 2600 game cartridges. This guaranteed
a massive library of hundreds of titles for the new console at launch.

Unlike its predecessor, the 5200, the Atari 7800 utilized its enhanced visual
capabilities to their fullest in many titles. The only technical flaw with the Atari 7800 was
in its sound capabilities. The units used the same audio chip as the original Atari 2600,
which even by the standards of 1986 was inadequate. In many cases, the 7800 sound is
best enjoyed silent.

Despite the hardware’s potential, the 7800 sadly never caught on as the next big Atari
machine. The sales were rather lukewarm, with fewer than 4 million units sold, despite
the decent games library. The 7800 will mostly be remembered as Atari’s reaction to the
failure that was the 5200.

Here are some important games:

e Midnight Mutants (1990) by Atari

e Ninja Golf(1990) by BlueSky Software
e Alien Brigade (1990) by Atari

e Tower Toppler/ Nebulus (1988) by Atari

e Pole Position II (1984) by Atari (the game sat on the shelf for two
years prior to release)

171

CHAPTER 8 "' KNOWING YOUR OLD-SCHOOL GAMES

1987
PC Engine (Turbografx-16) by NEC Corporation

e Sold approximately 5.8 million units

The mighty PC Engine was a unique 8-bit console with a lot going for it (see Figure 8-

9). Released during the 16-bit era, the platform was able to compete directly with more
modern hardware. Part of this was because of the hybrid nature of its inner workings.
While the CPU in the unit was 8-bit, PC Engine had not one but two 16-bit graphics
processing units. For comparison, the Sega Master System, a fellow 8-bit console, could
muster a maximum of 32 colors on-screen at once, while PC Engine could output an
impressive 482 colors. This was rather unheard of back in the day and resulted in a console
that could deliver very accurate ports of arcade games onto the little screens at home.

,

@ > |

Figure 8-9. PC Engine

The audio capabilities of PC Engine were on par with the graphics chips in the
console, meaning they were vastly superior to both NES and the Master System. The
console was capable of generating both impressive synthesized and sampled audio like a
beast, strengthening its technical edge over the other 8-bit consoles. Unfortunately, none
of this technological prestige helped challenge the sales of either NES or Sega’s Master
System, which combined went on to sell some 79 million units. PC Engine ended up
shipping a mere 5.8 million consoles. The console did manage to gather an impressive
games library for itself.

Here are some important games:

e Air Zonk (1992) by Red Company/Hudson Soft
e Parasol Stars (1991) by Working Designs

e Bomberman (1990) by Hudson Soft

e Bonk’s Adventure (1989) by Hudson Soft

e Military Madness (1989) by Hudson Soft

172

CHAPTER 8 "' KNOWING YOUR OLD-SCHOOL GAMES

1988
Sega Genesis (Megadrive)

e Sold more than 35 million units—and counting.

e Best-selling game for the system: Sonic the Hedgehog from 1991.
Sold more than 15 million copies.

Sleek, sexy, and very successful, Sega Genesis is more than a game console: it’s a central
piece of pop culture of the 1990s (see Figure 8-10). Many a jaw dropped to the floor as
words like radical and mega were uttered by gamers in the throes of puberty. Every
single 1990s kid either knew someone who had a Genesis or owned one themselves. For
an audience used to blocky sprites and garish colors, Genesis provided some amazing
graphics.

Figure 8-10. Sega Genesis

The Genesis wasn’t quite the hit in Japan the executives had hoped for. The
system fared much better in North America and Europe. Also, in 1991 the Genesis got a
considerable global sales boost from Sega introducing Sonic the Hedgehog to the world.
Of course, Sonic wasn’t the only reason people love these consoles. The overall quality
of games was high on the Genesis. Many popular Genesis games have been converted to
Windows to be sold on platforms like Steam.

Like the Master System, the Genesis is still being manufactured in Brazil. Tectoy is
introducing a new version of the console in the summer of 2017 with a couple of dozen
built-in games as well as a cartridge slot and support for SD memory cards. Brazilians
sure love their Sega.

Here are some important games:

e Comix Zone (1995) by Sega

e Virtua Racing (1994) by Sega

e Sonic the Hedgehog (1991) by Sega
e Road Rash (1991) by Electronic Arts
e Golden Axe (1989) by Sega

173

CHAPTER 8 "' KNOWING YOUR OLD-SCHOOL GAMES

1990
Super Nintendo

e Sold close to 50 million units.

e Best-selling game for the system: Super Mario World from 1990.
Sold more than 20 million copies.

The NES made Nintendo a household name. The Super Nintendo (i.e., the SNES)
solidified Nintendo as a market leader (see Figure 8-11). The hardware was very
impressive for the time, capable of producing games indistinguishable from their arcade
counterparts. The SNES thrived for 13 years, being manufactured from 1990 all the way
to 2003 in many parts of the world. Nintendo had all the bases covered: a loyal following,
some amazing audiovisuals, and plenty of top-notch games. The console was in direct
competition with both the Sega Genesis and PC Engine by NEC. While all three systems
did well, it was Nintendo that won in the sales game, with some 50 million customers.

Figure 8-11. Super Nintendo

Three-dimensional games were in their infancy in 1990. The SNES, however, wiped
the floor with its competition in this category. The hardware was capable of a drawing
process called Mode 7, which allowed for smooth (if rudimentary) 3D surface scaling.
Games utilizing this technique included the popular racers Super Mario Kart and F-Zero,
as well as the arcade flight simulator Pilotwings. Mode 7 was hyped at the time of the
release of the console and for a good reason. It provided visuals unheard of in any home
gaming system at the time.

A major factor in the long shelf life of the SNES was that it provided the means to
expand the hardware of the console with extra chips built into specific game cartridges.
The most popular chip upgrade for the SNES was undoubtedly Super FX, built into
cartridges like the popular 3D shooters Star Fox and Vortex. Super FX enabled decent
polygon-based 3D graphics and particle effects for the SNES and, again, helped keep the
console relevant well into the new millennium. Even the mother of all FPS games, Doom,
got a decent SNES port thanks to coming on a cartridge featuring the Super FX 2 chip, a
greatly improved model from 1995.

174

CHAPTER 8 "' KNOWING YOUR OLD-SCHOOL GAMES

Here are some important games:
e Yoshi’s Island (1995) by Nintendo
e Super Mario Kart (1992) by Shigeru Miyamoto
o Street Fighter 2(1991) by Yoshiki Otamoto
e Pilot Wings (1990) by Bandai/Nintendo
e Super Mario World (1990) by Nintendo

1994
Sony PlayStation (PS1 or PSX)

e Sold more than 102 million units.

e Best-selling game for the system: Gran Turismo from 1997. Sold
close to 11 million copies.

Sony PlayStation was the first console to sell more than 100 million units

(see Figure 8-12). At the time of its release in 1994, it came with some pretty advanced
hardware capable of some fine 3D graphics. Part of the PS1 success story was in how Sony
handled its relationship with third-party developers. Instead of focusing mostly on in-house
games development like Sega and Nintendo, Sony offered its APIs for any programmers
atlarge. Also, the dual analog controller was a refreshingly bold affair, offering two control
sticks in addition to the traditional configuration of a D-pad and four buttons.

Figure 8-12. Sony PlayStation

Although a huge success, the PS1 had its share of issues. One of the major ones was
overheating. Another issue was a graphical one; the PS1 is not known for fantastic texture
mapping. Often textures in PS1 titles appear warped. This is because the console used
affine texture mapping, which is a fast but inaccurate way of mapping textures.

The PS1 had an impressive life span from 1994 to 2005. Not only that, it made
Sony a market leader in the game console world. All PlayStation models have garnered
considerable worldwide success.

175

CHAPTER 8 "' KNOWING YOUR OLD-SCHOOL GAMES

Here are some important games:
e Silent Hill (1999) by Konami
e Driver (1999) by GT Interactive Software
e Tekken 3(1998) by Namco
e Gran Turismo (1997) by Sony
e Wipeout (1995) by Psygnosis

2000
PlayStation 2 by Sony

e Sold more than 150 million units.

e Best-selling game for the system: Grand Theft Auto: San Andreas
from 2004. Sold more than 17 million copies.

After the massive success of PlayStation, Sony proceeded to make game console history
with PlayStation 2 (see Figure 8-13). Moving well more than 150 million units, PS2
became the best-selling game console of all time. The total number of games sold for the
system is a staggering 1.5 billion. During its run from 2000 to 2012, PS2 and its impressive
games library influenced untold numbers of budding games developers.

Figure 8-13. Two main editions of PS2: regular (left) and slim

176

CHAPTER 8 "' KNOWING YOUR OLD-SCHOOL GAMES

By 1999 the original PlayStation had begun to show its age, mostly because of
low-resolution games with graphical glitches, especially in 3D titles. The competition
was getting stiff: the average desktop PC was becoming a major gaming platform thanks
to its modular design and a steady stream of powerful 3D video cards. Sony took on
the challenge by including the Emotion Engine chip in PS2, a rather capable piece of
hardware. It offered high-resolution graphics with hardly any “glitching” of textures.

Sony also made sure PS2 could run a majority of PS1 games, adding to its appeal.
Not only that, but many games running on PS2 from the previous console had noticeable
graphical improvements thanks to improved texture filtering. The console also offered
subscription-free online multiplayer on titles such as Final Fantasy X and FlatOut.

Here are some important games:

e Tekken 5(2005) by Namco

e God of War (2005) by Sony

e Shadow Of The Colossus (2005) by SCE/Sony

e Gran Turismo 4 (2004) by Polyphony Digital/Sony
e Soul Calibur 2 (2003) by Namco

2001
Gamecube by Nintendo

e Sold more than 21 million units.

e Best-selling game for the system: Super Smash Bros Melee from
2001. Sold more than 7 million copies.

The turn of the millennium wasn’t an easy time for Nintendo. In a market dominated by
two generations of Sony PlayStations, the Mario franchise makers began to lag behind in
sales and innovation. With Gamecube, Nintendo focused on creating a developer-friendly
system (see Figure 8-14). From a programmer’s standpoint, it was easier to harness

the impressive graphical prowess of the platform than it was on the main competitor,

PS2. Also, the CPU of the Gamecube was simply more powerful to begin with. The last
technological cherry on top in favor of the Nintendo machine was a superior audio chip.

177

CHAPTER 8 "' KNOWING YOUR OLD-SCHOOL GAMES

Figure 8-14. Gamecube

As was to be expected, the Gamecube built on strong franchises for its games
library. Titles like Super Mario Sunshine went on to solidify these already well-received
franchises. In addition, Nintendo came up with two new, wildly successful series of games
in the form of Animal Crossing and Pikmin. Unfortunately, not even the combination of a
strong hardware platform and a killer games library could do enough to thwart PS2 from
the position of the console market leader. Gamecube ended up being somewhat of a flop.
Here are some important games:

e F-Zero GX(2003) by Nintendo

e The Legend of Zelda: The Wind Waker (2002) by Nintendo
e Animal Crossing (2001) by Nintendo

e Super Smash Bros Melee (2001) by Nintendo

e Star Wars Rogue Squadron II (2001) by Factor 5/Lucasarts

Xbox by Microsoft
e Sold more than 24 million units.

e Best-selling game for the system: Halo 2 from 2004. Sold more
than 8 million copies.

The Xbox made Microsoft hip again (Figure 8-15). Instead of being “that Windows
business,” Microsoft became a veritable competitor to the likes of Sony and Nintendo

on the console market. Released in 2001, the Xbox had fierce competition in the form of
PlayStation 2 and Gamecube. Thanks to the best graphics chips at the time, Microsoft’s
offering became very popular very fast. Not even the clunky, heavy chassis of the console
would hurt its popularity.

178

CHAPTER 8 "' KNOWING YOUR OLD-SCHOOL GAMES

Figure 8-15. Xbox

In addition to great technical specifications, the Xbox launched with a great
franchise. The big-budget first-person shooter Halo became a multimillion-dollar seller
for the system and went on to spawn several successful sequels on multiple platforms.
Project Gotham Racing was another franchise builder released with the Xbox. The racer
had outstanding visuals for the time and went on to spawn three sequels, all of which
have been favorably received. A console is only as strong as its games, and the Xbox had a
great line-up for the time.

As the Xbox matured, several other great titles were introduced for the system.
Outrun, a highly successful arcade cabinet driving game from 1986, got a brilliant sequel
in 2003. Outrun 2 was ported to Xbox in 2004 by Sumo Digital and remains one of the best
arcade racers of all time. Halo, too, got an impressive sequel the same year. Halo 2 went
on to become a best-selling game on Xbox.

Here are some important games:

e Outrun 2006: Coast 2 Coast (2006) by Sumo Digital
e Elder Scrolls III: Morrowind (2002) by Ubisoft

e MechAssault (2002) by Day 1 Studios/Microsoft

e Project Gotham Racing (2001) by Microsoft

e Halo(2001) by Bungie

The Homebrew Market

Often the fandom of a gaming system doesn’t end when the system is taken off the shelf.
Even decades after the third-party production of games grinds to a halt, some hobbyists
insist on keeping the hardware alive on some level. So-called homebrew games are
definitely a thing. All of the platforms featured in this chapter are part of this scene. In
fact, even the most obscure gaming systems have some kind of homebrew crowd out
there for them. Many homebrew titles dig deep into the sometimes primitive hardware
to pull something magnificent out, which can be attributed to both the skill of the
programmer and the lack of deadlines. To see what old hardware is really capable of, you
should get acquainted with the homebrew scene.

179

CHAPTER 8 "' KNOWING YOUR OLD-SCHOOL GAMES

While most of these projects are offered as free online downloads, some are
delivered as boutique items with high-quality packaging on either cartridges, tapes,
floppy disks, or other media compatible with the original system.

The Atari 2600 (from 1977) is still a semisupported system. Since 1995, three years
after Atari dropped the platform, more than 100 new games have been released as
homebrews. The 2600 is notoriously hard to program, but some coders really love the
challenge. Popular newer releases for the fossilized Atari include the innovative shoot-
‘'em-ups Oystron by Piero Cavina and Thrust by XYPE. Even an understandably simplistic
conversion of Halo found its way to the Atari 2600 in 2010. Halo 2600 was programmed by
Ed Fries, a former vice president of game publishing at Microsoft no less.

One of the most prolific homebrew scenes revolves around the Commodore 64. The
system has seen hundreds of new games since its demise in the early 1990s. No special
hardware is needed to develop for the Commodore 64 after all. Brands such as Psytronik
and Protovision continue to release an occasional game, all of which are very professional
and polished within the technical limitations of the hardware. Back in the day these titles
would’'ve been among the best commercial games out there. Not content with merely
creating new Commodore 64 software, Protovision is manufacturing hardware such as
four-player joystick adapters and network cards for the computer. The dedication in the
scene is immense.

Newer gaming platforms have their fair share of homebrews as well. Sony
encouraged PlayStation-related hobbyism during the console’s first run. This was done in
the form of a development system called Net Yaroze, released by Sony in 1997 with a price
of $750. Consisting of a special-edition PlayStation console and a whole host of assorted
accessories, the system allowed motivated gamers to have a go at games development.
By connecting the system to a desktop PC, one could in theory come up with the next
big hit game for the console. Sony did cripple the system so that Yaroze developers
couldn’t actually distribute their games on physical media. Distribution on CD-ROMs
was reserved for those with the official developer license. So, while no commercially
successful titles actually emerged from the bedrooms of Net Yaroze enthusiasts, quite a
few of these games were in fact distributed on the cover of magazines dedicated to the
PlayStation. The handful of universities teaching courses in games design at the time
utilized the system as a learning tool, too.

Coding a game on a Net Yaroze system is not an easy feat. Only a handful of coders
persevered to actually produce a commercially viable title. One such title, Devil Dice, was
picked up by Sony itself. A brilliant puzzle game by developers Shift, Sony couldn’t say
no to providing distribution for the title. Devil Dice went on to sell a million or so copies.
Other impressive Yaroze titles include the enjoyable top-down sports simulation Total
Soccer by Charles Chapman and Blitter Boy by Chris Chadwick, a delightful arena shooter
with some eloquent production values.

180

CHAPTER 9

Game Developer’s Battle
Station

Before you install any software, you'll need the right hardware for it to work on. I'll now
go through the components in modern computer systems and what they mean to the
indie developer.

Resources

The term resources refers to the total assets a computer system has at its disposal. The
computer consists of several different components, which combine to form its overall
processing ability. These components include the central processing unit (CPU), random
access memory (RAM), video card, and hard drive(s).

Modern game software is probably the most resource-hungry type of program
available, aside from high-definition video processing. When designing games, you
want to make sure you require only the minimum amount of resources from the buyer’s
hardware. Cut down on eye candy whenever you can without looking amateurish. Either
do itwell or don’t do it at all.

CPU

CPU stands for central processing unit. This is the brains of your computer and in general
a good indicator of the swiftness of the system. It’s that tiny, well-ventilated silicone

chip inside your hardware with a price range of $30 to $1,000. As of 2017, there are two
contenders for the processor crown: Intel and AMD. While AMD'’s offerings are usually
more cost-effective, they are generally the less powerful of the two brands. Any midrange
Intel CPU (see Figure 9-1) provides a good dose of efficiency for your game-making needs
without costing you any limbs.

In the past CPU speed was presented in megahertz (MHz) or one million cycles per
second. Many processors of yesteryear rarely reached past the one-to-two megahertz
range (see Figure 9-2). Today CPU speed is usually specified in gigahertz (GHz) or
one billion cycles per second. The more gigahertz a CPU has, the faster it usually runs
anything you throw at it. For example, a 2.66GHz CPU provides a faster system than a
1.66GHz one.

© Robert Ciesla 2017 181
R. Ciesla, Mostly Codeless Game Development, DOI 10.1007/978-1-4842-2970-5_9

CHAPTER 9 " GAME DEVELOPER’S BATTLE STATION

Figure 9-2. The CPU of a primordial Commodore 64 computer. Photographed by
Konstantin Lanzet.

CPUs and Cores

One other factor worth considering is the core count of a CPU. Most CPUs since 2005
or so have been multicore processors, meaning they contain two or more separate
processors within one physical unit. Dual cores, quad cores, and even eight cores are
all the rage nowadays. The more the merrier, but all that core multiplication tends to
hurt one’s wallet. Also, not all software supports more than one processor. Most, if not
all, modern operating systems do. The same can’t be said for all (or even most) game
development toolkits. If a toolkit’s blurb mentions “multicore” or “n-core” support, it
benefits from more than one CPU core, which is the way to go.

Scientific fun fact one of the most successful home computers ever, the Commodore
64 from 1982 had an impressive 1MHz CPU. This is roughly 0.001GHz.

182

CHAPTER 9 © GAME DEVELOPER’S BATTLE STATION

Hard Drive

A hard drive is a block of metal inside a computer where data is more or less permanently
stored, unless disaster strikes in the form of fire, flood, or alien invasion. There are
roughly two types of hard drives: mechanical and solid-state disk (SSD). Mechanical
drives have moving parts in them (i.e., spinning magnetic discs), while SSDs don’t. As a
result, SSD technology is silent—and cool (not cool as in hipster tats, but cool as in ice;
not Vanilla Ice, rather, ice as in frozen water).

The amount of data a disk stores is usually indicated in gigabytes (GB). Rare is even
a basic computer in 2017 with less than 320GB of hard disk space. For game developers’
needs, a 500GB drive is usually a minimum. It all depends how resource heavy you intend
to go.

Mechanical drives are still largely in use because of their good price-to-performance
ratio. An SSD drive often costs nearly twice the amount of moolah compared to a
traditional disk of the same size.

Gigabytes and Megabytes

A gigabyte is one of the most common units of measurement in digital information. It
can specify anything from the amount of information stored on a computer to the size of
avideo file on a smartphone. One gigabyte is roughly one billion bytes worth of data. A
megabyte is simply a smaller unit, equating to a mere one million bytes of data. A single
byte consists of eight bits. A bit is the smallest unit of measurement in any digital system,
and it’s eithera 1 ora 0.

A modern video game requires anything between 2GB and 10GB of free space on a
computer. In the 1990s most games needed much less than 1GB of such space, thanks to
incorporating less audiovisual data. Requirements were usually specified in megabytes
back in the day.

e The amount of data storable available on a modern computer
ranges from 250GB to 2000GB.

e The total amount of data available on a standard DVD is 4.7GB.
e Compactdiscs hold 700MB of data (or 0.7GB).

e Asingle high-quality digital photo is roughly 5MB to 10MB
(or 0.005GB to 0.01GB) in size.

Random Access Memory (RAM)

Random access memory is a temporary storage area for your computer (or other device).
Its contents are erased as soon as you switch the system off. The more RAM you have,

the smoother your system will run. Also, more RAM equals the ability to run several
software packages simultaneously without much in the way of slowdowns. Think Firefox,
Photoshop, iTunes, and your favorite games engine all starting up and running at the
same time without a single hiccup. Having 16GB of RAM (or greater) will help with such
an endeavor. These days, at least in theory, a single gigabyte of RAM is usually enough for
basic operation, such as getting online or playing visually less intense games.

183

CHAPTER 9 " GAME DEVELOPER’S BATTLE STATION

Video Card

Also called the graphics processing unit (GPU) or a graphics card, a video card handles

all those complicated operations to provide the user with a graphical display. There are
many different GPUs on the market; some are able to handle a complicated 3D game
with ease, and others struggle with YouTube. As a developer using software on a Windows
PC or a Mac, switching video cards is often plausible, and you should get a card that sits
somewhere between the aforementioned extremes.

Just like the computer itself, a video card has some built-in RAM in it. The amount of
graphics memory varies from as low as, say, 16MB (which translates to 0.016GB) to well
over 2GB. The more video card memory is present, the higher the display resolutions your
system can use. Also, some high-detail settings in games may require large amounts of
video card RAM to display correctly. However, the GPU memory amount does not usually
affect the unit’s visual processing prowess.

In physical terms, a dedicated (or discreet) video card is a replaceable component in
the system. That is, it’s a card you can pull out and sell on eBay and upgrade to a better
one. Integrated video refers to a nonreplaceable system of chips within your computer.
These types of chips are the kind that allow one to go online—and not much else.

So, a dedicated video card is almost always much more powerful than integrated
video. You should get a computer that has a decent dedicated card in it right from the
get-go. Video card prices range from $30 to $300 and more. Also, there’s nothing wrong
with an older and/or secondhand GPU. They aren’t toothbrushes, for goodness sake. A
geriatric, diaper-wearing GPU from, say, 1999 is fine as long as its specs are still usable for
your developmental plans.

When taking a look at video card specs, examine bandwidth carefully.

e Cards with at least 20 gigabytes per second (GBps) of bandwidth
are adequate for most 2D needs. Examples: Radeon 9800, Geforce
GT 530.

e 60GBps or more means the video card in question is ready for
serious 3D development. Examples: Radeon 4850, Geforce GTX 750.

Your Hardware Needs as an Indie Developer

Basically, there are only two sensible options for your development system. You'll take a
closer look at them next.

Option 1: Windows 7/8/10 PC

$500 to $800
Windows 7/8/8.1/10 in 64-bit

Most of today’s game development software runs on Windows. The most elegant
solution is therefore to stick to a midrange, branded or custom-built PC running this
type of operating system. The lower-end PCs below $400 or so tend to last a few months
at a time and are not a wise investment. As a developer, you'll be doing more than firing
up Firefox.

184

CHAPTER 9 © GAME DEVELOPER’S BATTLE STATION

Unlike with Apple products, there’s not much point in going to the secondhand
market for these types of PCs. Midrange Windows machines, which is what I'm talking
about, really need that warranty. Let’s face it: they are somewhat flimsy and generally
aren’t built to last longer than a couple of years. Again, make sure the video card in your
battle station is not integrated.

Here are the recommended minimum hardware specs:

e Dual-core CPU, clocked at 2.66GHz or faster

e AMD 4850 or Nvidia GT 650M or equivalent video card (100Gbps
bandwidth)

e 8GBof RAM
e A7200 rpm 500GB hard drive

Option 2: iMac (Previous Generation), Mac Pro, or
Mac Mini

$300 to $900 secondhand/$500 to $2,000 new
Mac OS X El Capitan or newer running Windows 7/8/10 on Bootcamp

You'd think the Mac is not really one for the hardcore gamer, let alone the serious
games developer. You got a lot of nerve. Also, you'd be wrong. These machines are
extremely durable and do handle most things you can throw at them. Macs can also
have Windows running on them via the included Bootcamp software. Over the years
I've owned almost a dozen Apple computers, from a modest Power Mac G3 to a late
2012 iMac, most of them acquired secondhand. None of them failed on me. None had
hardware-related issues.

There’s no need to go for the $5,000 Mac Pros from 2015. iMacs, Mac minis, and Mac
Pros from 2009 or so onward are still a decent catch for the budding games developer. If
the specs are adequate, go get yourself a Mac from the secondhand market.

Here are the recommended minimum hardware specs:

e Intel Core 2 Duo or i5 CPU, clocked at 2.66GHz or faster

e AMD 4850 or Nvidia GT 650M or equivalent video card (100Gbps
bandwidth)

e 8GBof RAM
e A7200 rpm 500GB hard drive

Bootcamp: Windows on a Mac

Most game development software is on Windows. So, why go Mac? Here’s the kicker.
Bootcamp is a free utility included with every version of Mac OS X since 2006. This
software allows you to run a legitimate version of Windows on your Mac without too
much of a hassle. With Bootcamp, your Mac essentially has two rock-solid operating
systems. You do need a license for Windows, though (i.e., a legitimate Windows install
DVD), which needs to be purchased separately.

185

CHAPTER 9 " GAME DEVELOPER’S BATTLE STATION

After Bootcamp is installed, you can choose between Mac OS X and Windows at each
bootup of your Mac. This unlocks all Windows-based software for your Mac.

Learn more about Bootcamp at www.apple.com/support/bootcamp/.

The Ecological Imperative

Mac OS is a great operating system, even in its earlier iterations. In fact, part of the Soiree
Games machinery runs on OS X 10.4.11 Tiger (from 2009) and OS X 10.5.8 Leopard (from
2010). We have both a backup server and a 2D graphics development system running on
these old operating systems.

Up until 2005, Apple utilized IBM’s PowerPC processors for the whole Mac series
of computers. When buying secondhand Macs, make sure the CPU type is Intel, if you
intend to develop competitive games for current-generation crowds. PowerPC games
development, while interesting, has very little money in it in 2017 and beyond. One
notable PowerPC developer still selling software for the platform is Ambrosia Software.

Older operating systems can handle most 2D and even some 3D object design with
ease. Think earlier versions of Photoshop and Blender; there’s no need to ditch that
Power Mac from 1999 just yet, my friend. That would be most unecological, for one.

For about $30 to $40 you do get a decent computer. Go for a Power Mac G4 or G5.
Heck, even go G3 if you dare. Donate your old computers to your graphic and audio
artists; they will love them. After all, the audiovisual output from these older systems is
pretty much future-proof; you get the same, relevant JPEG, PNG, WAV formats (and many
others) out of them. While PowerPC machinery may not be powerful enough for your
primary development computer needs, there are plenty of tasks the ecological developer
can relegate onto these old-school systems.

Of course, the same applies on the Windows side of things. Don’t throw away that
Pentium 4 just yet. It probably has quite a bit of mileage left in some creative tasks crucial
to games development. Think graphics, audio, or testing. Even a Pentium 3 from the
Proterozoic era' is up for all that, and more. So, reinstall that Windows XP (just don’t go
online) and get some work done.

A Few Words on Displays

As for your display needs, a Full HD-capable monitor is enough when it comes to
resolution (1920x1080 pixels). Anything between 21 inches and 24 inches of screen estate
is usually fine.

186

http://www.apple.com/support/bootcamp/

CHAPTER 10

A Game Maker’s Lexicon:
Level 2

This chapter aims to further educate you about some concepts crucial to video game
making. While this chapter is optional, it is recommended reading for everyone.
Remember, the more understanding you have of these concepts, the more fluently you
can communicate with people in the industry.

Tread on without fear. Because this is a beginner’s book, actual lines of programming
code will be kept to a minimum in this chapter as well.

Digital Units of Measurement

There are four important expressions related to units of measurement in the digital world
(see Table 10-1). It's quite easy to get them confused. Basically, you can thank various
lobbying groups for this.

Table 10-1. A Comparison of Different File Size Units

Unit Abbreviation Unitin Bytes First Known Use
Gibibyte GiB 1,073,741,824 1998
Gigabyte GB 1,000,000,000 1975
Mebibyte MiB 1,048,576 1998
Megabyte ~ MB 1,000,000 1965

32-Bit/64-Bit Architecture

To simplify, bit architecture refers to the amount of random access memory (RAM) a
central processing unit (CPU) can access. A 32-bit CPU can utilize a maximum of 4GB
of RAM. If you want more RAM in your system, you need to go 64-bit. More RAM equals
(among other things) less hard disk access, which in turn leads to having a faster system.
As 64-bit devices can move twice the amount of data than their 32-bit counterparts

per second, some gains in speed are to be expected. However, these mostly apply to
multitasking situations or dealing with large data sources such as video files.

© Robert Ciesla 2017 187
R. Ciesla, Mostly Codeless Game Development, DOI 10.1007/978-1-4842-2970-5_10

CHAPTER 10 I A GAME MAKER'’S LEXICON: LEVEL 2

Most CPUs gained 64-bit capabilities around 2004 to 2005. Some examples include
Intel Core 2 processors; the Intel i3, i5, and i7 families; and AMDs Phenom and Athlon
processors.

Now, to sum up:

e A 64-bit processor performs best with 64-bit software (think
Windows 64-bit editions).

e A 32-bit processor is not compatible with 64-bit software.

e A 64-bit processor is compatible with both 64-bit and 32-bit
software.

For a game developer’s system, any 64-bit CPU paired with a 64-bit edition of
Windows 7 or 8 should suffice. Also go for 8GB of RAM,; it’s a good compromise of having
a speedy system and emulating the average user’s machinery. Don’t invest in a $5,000
system; the average gamer certainly won’t. But if you do, why not invest in an average PC,
as well, for testing purposes?

Hard Drives Revisited

Mechanical drive speed is measured in rotations per minute (rpm). Generally speaking,
there are three speed standards available without extra hardware. They’re rated at 5400
rpm, 7200 rpm, and 10000 rpm. While some geeks with large glasses may insist “a 7200
rpm drive is not any faster than a 5400 rpm one,” I beg to differ. Please, make sure your
disks go to at least 7200 rpm. This will cut precious seconds, hours, and ultimately days
from your development time. If possible, get a Western Digital Velociraptor—if you have
the money. They go to 10000 rpm.

Solid-state drive (SSD) performance, while initially very impressive, tends to
deteriorate the more data the drive accesses. You might experience a gradual reduction in
disk performance as the months go by. Therefore, I recommend you stick to the cheaper
mechanical drives—and always back up your data on at least two separate external
drives. However, it’s worth keeping in mind that since SSD drives have no moving parts,
they’re more durable against physical damage.

Potential Mac buyers watch out. Does that older iMac/Mac mini appear enticing
with good features and a reasonable price tag? It probably has a 5400 rpm drive. Check
out all the specs with vigor, especially if you go secondhand. Oh, and, some early
Macbook Airs had a lovely hard drive spinning data at 4200 rpm. Needless to say, do not
acquire these devices.

Advanced Visual Terminology

In this section, you'll find the meanings of some common computer graphics-related
terms. Also discussed are some common visual processing effects. Most of the time you
don’t have to actually program any of these techniques into your games. The game-making
software takes care of that.

The terms are described here to give you some basic insight into their workings and
the effects they have on your projects and games in general.

188

CHAPTER 10 A GAME MAKER'’S LEXICON: LEVEL 2

Antialiasing (AA)

This is a technique to reduce the jagged edges in digital graphics. There are new, fancy
techniques out every montbh, it seems. As 0f 2017, a 3D game without some form of
constant antialiasing is a rare sight. Some 2D games forsake the antialiased look for the
most part to create an old-school vibe. Sometimes jagged edges are all you need.
Hand-drawn antialiasing has been a common technique in 2D game graphics
since the 1980s. These days AA usually refers to an automated feature in a 2D or 3D
environment, calculated in real time by one’s video card. You may be able to speed up
your game by toning down or switching off AA entirely.
Some forms of antialiasing eat up a lot of graphics processing unit (GPU) power and
are best avoided. These hungry varieties include super-sampling antialiasing (SSAA) and
multisample antialiasing (MSAA).

Billboard

A billboard is a texture that always faces the player right in the eye. This usually means
any type of user interfaces in 3D games, such as score and health displays. Think of
billboards as 2D elements in a 3D world.

Cel Shading

Also known as toon shading, this technique refers to a cartoony rendering method of 3D
graphics. Think comic books and animated movies. There’s less detail and realism at play,
so cel shading is easier on the video card than more photorealistic types of rendering.
Dozens of developers prefer the aesthetics of cel shaded graphics. The successful
Borderlands franchise, for one, relies on this technique for its visuals.

Clipping Plane

In essence, clipping refers to the discarding of some visual data. What is not needed to
be drawn gets clipped, at least in any decently optimized project. Every act of drawing
something on-screen takes a toll on a computer’s resources after all.

A clipping plane refers to the invisible border crossing that hides any visual objects,
including scenery. In a 2D context, a clipping plane usually refers to the edges of the visible
screen. There’s no reason to draw what the user doesn’t see. In 3D a clipping plane also
operates on the z-axis or depth level. Usually, the clipping plane operates in tandem with fog.

Fog

In a computer graphics-related context, fog refers to the technique of blending 3D objects
into the same color hue and fading them out as they move away into the distance. Not
only does digital fog add to the atmosphere of the proceedings, but it’s also an efficient
way of disguising the clipping plane. While not usually a very realistic representation

of actual atmospheric conditions, digital fog is a cheap and well-established technique
used in video games since the late 1990s. Some type of fog is pretty much a necessity to
maximize the frame rate in most 3D video games.

189

CHAPTER 10 I A GAME MAKER'’S LEXICON: LEVEL 2

Viewing Frustum

In geometry parlance, a frustum means a cone or pyramid shape with part of the top
sliced off. When it comes to computer graphics, a viewing frustum is a 3D volume that
specifies which objects are visible. Only objects inside the frustum are rendered. Think
of it as a virtual camera. Now, view frustum culling refers to the process of cutting specific
objects off the rendering queue. Again, either these objects are not inside the frustum or
they are occluded by other objects and thus not in need of being rendered. Remember,
the less that is rendered, the smoother the proceedings are in general. Only the smallest
of 3D worlds don’t need frustum culling of any kind (think 3D puzzle games).

There are basically two types of projection in viewing frustums.

e Perspective projection (see Figure 10-1): The frustum is in the
shape of a pyramid with part of the top missing. This is the most
common type of frustum in 3D video games. Like actual cameras,
this type of projection works on the concept of a focal point.

Figure 10-1. A viewing frustum using perspective projection

e Orthographic projection (see Figure 10-2): The frustum is in the
shape of a rectangle. This results in imagery that is most suited
for side-viewed (pseudo) 2D games, such as platformers or other
arcade games. Objects don’t change size in relation to the virtual
horizon, because there is no such horizon in an orthographic
projection in the first place.

Figure 10-2. A viewing frustum using orthographic projection

190

CHAPTER 10 A GAME MAKER'’S LEXICON: LEVEL 2

Let’s break down the main components of the viewing frustum. These basic
components include the camera (A), the near plane (B), and the far plane (C). Graphics
rendering is done between the two planes (i.e., inside the frustum). Any objects outside of
this space should exist only as variables.

Z-buffer

Z-buffer refers to an algorithm that makes sure the perspective system in a 3D
environment is kept as realistic as possible. This means making sure objects designated
as belonging in the background aren’t blocking the ones placed in front of them, no
matter what the viewing angle is. The Z-buffer is part of any working viewing frustum.

Shader Languages

Shaders are a relatively complicated topic and one that you are not required to master.
While not necessary for a compelling gaming experience, visual effects in the form of
these shader programs can be used to enhance the production values in a game and
also to offload visual effects onto the video card. Like discussed in earlier chapters, this
offloading process usually speeds up the overall execution of the game since video cards
are specialized pieces of hardware capable of some very serious data crunching.

Shaders can be written in several languages. The most common languages in use
today are the two main variations of the OpenGL Shading Languages (GLSL and GLSL ES)
and Microsoft’s High-Level Shading Language (HLSL). All of these shader languages are
based on the C language syntax.

Like the name suggests, both GLSL and GLSL ES are part of the universally
supported OpenGL API. GLSL is meant for desktop computers, while GLSL ES works best
on projects for mobile devices, such as smartphones.

HLSL is a proprietary Microsoft technology running off of the DirectX platform. This
shader language was made available in DirectX version 8.0 and remains popular.

Different game engines support different shader languages. GameMaker Studio, for
one, supports GLSL, GLSL ES, and HLSL for your shaders. Some platforms support only a
specific type of shader dialect. For example, Microsoft’s HLSL shaders do not run well
(or at all) on other than Windows or Xbox devices as the language relies on the DirectX API.

Now, a shader program can be split into different elements. Let’s take a look at these
building blocks next.

Pixel Shaders (Fragment Shader)

A technique for 2D projects, pixel shaders (also called fragment shaders) simply alter the
color and other properties of pixels (sometimes called fragments in this context).

Vertex Shaders

Vertex shaders act on 3D models and geometry, altering their color and other attributes.
Remember, 3D objects are comprised of vertices. These shaders cannot create new
vertices or even any kind of visual primitive shapes. Vertex shaders are used solely to
modify existing graphical data.

191

CHAPTER 10 I A GAME MAKER'’S LEXICON: LEVEL 2

Geometry Shaders

These types of shader programs are capable of drawing new graphical primitives such
as triangles and lines. Geometry shaders can add detail to a scene, such as deeper, more
realistic shadows.

How to Implement Shaders

The actual implementation of shader effects varies from game engine to game engine.
In some tools, the process is made easy. Clickteam’s Fusion, for one, offers shader
implementation with a few mouse clicks; no coding is needed. In GameMaker Studio,
you are required to enter both a fragment and vertex shader code for every effectin a
dedicated shader code editor. Then, you integrate this code into the draw event of your
project using a few specific commands in GML (the GameMaker scripting language). It
sounds complicated, but as soon as you've achieved it once, you can simply copy and
paste the necessary objects in your projects, make a few changes here and there, and
focus on writing the actual shader code.

Texture

You can think of a texture as an image file that in turn is a series of pixels arranged to form
a functional picture (see Figure 10-3). Textures in a 3D context are the “paint” slapped on
3D objects. For most purposes, textures need to be in a 1:1 aspect ratio (e.g., 1024x1024 or
2048x2048 pixels in size).

Figure 10-3. Typical textures depicting metallic surfaces. © http://jojo-o0joj.
deviantart.com/ used under CC-BY-3.0.

192

http://jojo-ojoj.deviantart.com/
http://jojo-ojoj.deviantart.com/

CHAPTER 10 A GAME MAKER'’S LEXICON: LEVEL 2

Texture Atlas

Also known as a sprite sheet, a texture atlas is a single large image file containing all or
most of a game’s sprites (see Figure 10-4). Basically every object you see moving around
in a video game is taken from texture atlases particular to that game. Texture atlases are
used both in 2D and 3D contexts. Larger projects usually include several texture atlases
for different levels in the game and other uses.

B

e
s
P
p

Figure 10-4. A small texture atlas containing keys, flags, a cactus, and other game-related
graphics

While not a necessary approach for manipulating in-game visual data, the use of
texture atlases is a popular approach for modern graphics hardware. It's more efficient for
the video card to access specific regions from a single large image file than to constantly
access different individual sprite files.

Texture Mapping

This is a method of wrapping textures (i.e., images) around a 3D model. Think of it as
a coat of paint being applied on a three-dimensional object. There are all sorts of math
involved in this, but we don’t need to go there. This process is more user-friendly than
that in today’s computer graphics software.

193

CHAPTER 10 I A GAME MAKER'’S LEXICON: LEVEL 2

Note that a texture is laid on top of an object using UV coordinates, which are a
texture’s coordinates on top of the 3D object. What do the U and V stand for? Nothing
at all. It’s just a well-established notation. Think of U as X and V as Y in the context of
positioning textures.

Now, there are actually many kinds of texture mapping going on in a typical 3D video
game, in addition to the technique of slapping on a coat of paint on an object. Think
of all of these techniques as additional layers of visual information, each contributing
something to the finished look of a 3D model.

Bump Mapping

Simple bump mapping is an older method used to add surface detail to a 3D object, such
as blemishes on human characters, without much in the way of simulating reflective
surfaces.

Normal Mapping

A normal map is usually a purple and blue texture that works as an advanced type of
bump mapping. Normal maps create the illusion of light reflecting off a surface without
adding actual polygons (i.e., detail) to a model. A normal map will add realistic sheen and
depth to any object for most viewing angles.

Environment Mapping

The term environment mapping refers to the method of simulating a reflective surface
on a 3D model, in particular one that reflects a predetermined texture image. Think of
the windows of a car reflecting a texture of some 3D surroundings in a driving game. Also
called reflective mapping, this technique is seldom scientifically accurate but pleasing
nonetheless for the average gamer. Environment mapping is often used in combination
with normal mapping for more realistic results.

Environment mapping can be split into specific techniques. The two most common
varieties are briefly discussed next:

e Sphere mapping: The surface consists of a spherical wall (a kind
of a disco ball if you will) surrounding the objects in the scene,
reflecting off of them where necessary. Sphere mapping is easy on
the resources (especially video card RAM), but it doesn’t provide
the most detailed simulation of reflective surfaces.

e Cube mapping: This is a more advanced form of environment
mapping that uses six faces of a cube to portray a scene, which
will then be reflected on objects. Cube mapping uses a larger
texture than sphere mapping, which means more memory usage.
However, the end result is more detailed.

194

CHAPTER 10 A GAME MAKER'’S LEXICON: LEVEL 2

Interpolation

This term refers to the process of determining the in-between values from two or more
values. For example, the interpolated values of 0 and 3 would be 1 and 2. Interpolation is
used in all types of texture mapping and filtering.

Texture Filtering

Texture filtering is a type of antialiasing (remember that one?) for 3D surfaces. There are
mostly three types of filtering used in games these days. You'll meet the three contestants
now, in order of resource intensity.

Bilinear Filtering

This is an older method used to smooth textures when displayed larger or smaller than
they actually are. Most of the time, when drawing a textured shape on the screen, the
texture is not displayed exactly as it is stored without distortion. This is where bilinear
filtering comes in, performing corrective action where needed. Rare is the system in 2017
that doesn’t run bilinear well.

Trilinear Filtering

Trilinear filtering is an extension of the bilinear filtering method. It is less blurry but takes
more resources, although this was only a problem in early millennial times; current-
generation video cards can tackle this type of filtering with ease.

Anisotropic Filtering (AF)

This is texture filtering method that eliminates some of the blurriness apparent in older
filtering methods. AF is somewhat resource intensive. Low-spec video cards may struggle
with this technique even today. Use this with caution, and never force it.

Mipmaps

Mipmaps are textures stored at various sizes. Take a brick wall. Think up-close, medium
distance, and far in the horizon types of scenarios in a game. Instead of resizing one
texture fully in real time (based on the distance of the player from the brick wall), special
prestored texture maps are taken from a mipmap file and displayed instead. Using
mipmaps usually means the graphics run faster.

The highest-resolution texture is first in the image file. Each following texture in the
mipmap set is smaller in height and width by a power of 2. Now, let’s say the maximum
resolution mipmap of an imaginary brick wall is 512 pixels by 512 pixels. So, the next
texture is 256 by 256 pixels, followed by one that is 128 by 128 pixels, and so on. A mipmap
file contains eight textures, with the biggest texture on the left gradually halved when
moving to the right.

195

CHAPTER 10 I A GAME MAKER'’S LEXICON: LEVEL 2

Note that the abbreviation comes from Latin multum in parvo. Roughly translated, it
means “a great amount in a small space.”

Transform and Lighting (T&L)

Transformation is the technique of producing a two-dimensional representation from
visual material that is three-dimensional in its properties. Lighting simply refers to the
application of simulated lighting conditions on textures, such as rendering the reflections
of a streetlamp in a 3D game onto a representation of a brick wall. In essence, T&L is the
task of calculating geometry in a computer context.

Until 1999 or so, T&L was performed on the CPUs of computers. Since the advent
of 3D video cards, the process has moved onto the video hardware side of things, which
allows for much more complicated scenes. The first video card to support hardware T&L
was the Nvidia Geforce 256 from late 1999.

Raytracing

This is a computationally intense technique of simulating the behavior of light in a digital
context. Raytracing produces very realistic images where most kinds of real-world optical
effects are accurately simulated. The resulting images can be almost indistinguishable
from actual photography.

The technique is rarely used in real-time applications, such as video games, unless
it’sin a prerendered sequence, such as an introductory video. Most computers today are
not capable of creating a smoothly running interactive raytraced scene, at least one of a
more complicated nature.

Bloom (Glow)

This is a visual effect that simulates over-exposure in film cameras. Quite simply, bloom
makes objects or entire scenes glow. Over-use of bloom is quite common in modern
video games. Bloom should have realistic light sources in a scene. A tiny candle glowing
like a nuclear reactor isn’t a realistic approach and might look comical.

Depth of Field (DOF)

This is another effect that aims to emulate the way cameras work. You may have noticed
how cameras can be made to focus on specific parts in a view. The background is blurry,
while the area of focus is not. This is known as depth of field. It can be quite cinematic and
thus desirable in video games, especially in those of the 3D variety.

Gradient Noise

In a visual context, a little noise can be a great thing. In fact, mathematical noise is used
to create realistic terrain for video games and movies all the time. Gradient noise refers to
algorithms that output visual procedural content (i.e., noise maps), which can then

be interpreted in various creative ways depending on the context (see Figure 10-5).

The aforementioned terrains are made by a combination of gradient noise and the

196

CHAPTER 10 A GAME MAKER'’S LEXICON: LEVEL 2

interpretation of this noise in a 3D world as height maps. The term gradient is used because
these noise algorithms interpolate values between specific “hotspots” of the noise map.
This approach allows for smooth transitions between these values and thus the pleasantly
undulating, realistic terrain.

[

Figure 10-5. A typical noise map used to create 3D terrain. Think of it as the top-down
view of the terrain.

There are many different gradient noise algorithms. Perhaps the most popular one is
Perlin noise, named after its inventor Ken Perlin. You'll see this type of noise generation
implemented in most 3D games and game engines.

Parallax Scrolling

This is a technique where two or more layers of background images move by the viewer at
different speeds, some slower and some faster. This creates the illusion of depth. Parallax
scrolling in video games was popularized in the 1980s and is still popular in 2D titles. In
recent years the technique has been implemented on many a web site, as well.

Voxel

This term is short for volume pixel (see Figure 10-6). An alternative to using “traditional”
polygons (i.e., vertices) in 3D graphics, voxels are a technique used to create terrains in
several games from the 1990s and onward. In this context, a single voxel represents a
very small part of a terrain, which makes the approach well-suited to destructible and
modifiable terrain. Detailed voxel-terrains, however, are quite hungry for memory and
can slow even a powerful computer to a halt. Luckily, using voxels for simple terrains
works well and is acceptable among both gamers and developers. The “voxel look” of
blocky, semi-retro aesthetics is considered quite hip by some indies. Having said that, I
am not a fan of this look.

197

CHAPTER 10 I A GAME MAKER'’S LEXICON: LEVEL 2

Figure 10-6. A voxel-based sphere

Some voxel-based games include Novalogic’s Comanche series of helicopter
simulators and more recently the indie hit Minecraft.

Delta Time (At)

Delta time refers to a technique that allows for frame rate independence in graphics-
intense applications such as video games. With delta time, the proceedings at hand

are kept running at a consistent rate, regardless of any slowdowns a computer might
experience because of old hardware or other issues. The same goes for systems running
excessively fast; delta time takes care of those as well, delivering a unified experience
across all platforms.

Think of it this way: a frame rate-dependent (non-delta-timed) game would run
twice as fast on a system doing 120 fps compared to a system running at 60 fps. With delta
time in place, they would both deliver a game seemingly executing at the same speed.
Now, if a third system could reach only 15 fps, with delta time the crummy old computer,
too, would deliver a somewhat playable experience. All the in-game events would take
place concurrently with the other systems in real-world time, if only appearing less
smooth. Object movement per frame would just have to be multiplied by 4 to compensate
for the lack of frames per second to reach the updated state of an optimal 60 fps system.

In addition, in the context of multiplayer online games, delta time keeps all
participating devices with different network speeds on a level playing field. A delta time
approach provides a synchronized experience for all connected devices regardless of
differences in hardware and Internet bandwidth.

198

CHAPTER 10 A GAME MAKER'’S LEXICON: LEVEL 2

Finite State Machine (FSM)

In short, a finite state machine is the means of simplifying the inner workings of a
software program to specific states that are activated at meaningful points during the user
experience. Instead of telling a computer to move a character left by 20 pixels, looking up
at the sky, smiling, playing a sound effect, and right levitating by 7 pixels, the programmer
can create a process called, say, “State Four: A Happy Guy Levitates,” by creating such a
state within the development software’s finite state machine. From a user’s viewpoint,
you get the whole aforementioned shebang actually on-screen, of course. From the
programmer’s viewpoint, you work in simplified states rather than thousands of lines of
code each time you want a certain spectacle on-screen.

So, a finite state machine can be used both as a simplifying tool and an effective
means of documenting a software program to all members of a team, current and future.
Also, I've yet to hear of a single programming language that didn’t support some type
of finite state machine. There are implementations for all living languages, including
GameMaker’s GML.

Working in simple arcade games, a finite state machine might sound overkill, but if
you take it on once, it will forever change the way you see code. Know-how in finite state
machines gives you confidence to tackle large, complex projects—and to present such
projects in understandable terms.

UML and FSM, Best Buddies

Unified Modeling Language (UML) is an outwardly simple general-purpose visual
modeling language commonly used in software engineering. The charts it produces are
helpful in representing information in a succinct and understandable manner. Think of
UML as a meta-language to make software blueprints with.
Small and large teams alike will benefit from using UML. Using UML facilitates the
use of the finite state machine approach greatly as you can visualize each state with ease.
Here is a list of implementable FSMs:

e Zero Engine by Ace: A game development engine designed to aid
in the process of making 2D games quickly and easily (in essence,
a game engine within a game engine).

For GameMaker.
http://gmc.yoyogames.com/index.php?showtopic=454506.

e Deterministic Finite State Machine framework based on Game
Programming Gems 1 by Eric Dybsend: For Unity. http://wiki.
unity3d.com/index.php?title=Finite State Machine.

Machinima

This term machinima refers to the use of computer graphics, usually visuals from a specific
video game engine, to create noninteractive content. In essence, it’s digital puppetry with
premade assets. Most often, machinima is a type of art indulged in by fans of video games.

199

http://gmc.yoyogames.com/index.php?showtopic=454506
http://wiki.unity3d.com/index.php?title=Finite_State_Machine
http://wiki.unity3d.com/index.php?title=Finite_State_Machine

CHAPTER 10 I A GAME MAKER'’S LEXICON: LEVEL 2

The practice was perhaps best established in 1993 with Id Software’s Doom, which
allowed players to record sequences of gameplay. Since then, entire series of machinima
have emerged. The first major machinima film sequence was The Diary of a Camper,
released in 1996 and based on the Quake engine. Created by Rangers, a gaming clan,
the video is a mere minute-and-a-half long (and may or may not make much sense to
modern casual gamers). Nonetheless, it’s considered a milestone of machinima.

The term was coined in 2000 by Hugh Hancock who launched a web site simply
called Machinima.com dedicated to the art form. In addition to Doom and Quake,
popular game assets used for machinima films include those found in Halo and The Sims.

The Golden Age of Arcade Video Games

This is generally considered the period of time between 1978 and 1983, when coin-
operated arcade cabinets became popular attractions around the world. Many evergreen
games were introduced during this time including Space Invaders, Robotron 2084,
Asteroids, and Missile Command.

Grinding

This is the process of a player performing repetitive tasks (such as slaying a set number of
enemies or traveling between two points almost endlessly) to attain rewards of some kind in a
game. These might include specific items or character skills. Grinding is a popular mechanic
in many free-to-play games, where the ensuing frustration is used to manipulate players into
paying actual money to bypass the grinding process and get to the rewards faster.

Konami Code

This term refers to a controller button combination introduced in the popular NES shoot-
‘'em-up Gradius in 1986. Entering the code enables a cheat mode for the game. It has been
since used in dozens of video games for varying purposes. As for the code, it’s simply up,
up, down, down, left, right, left, right, B-button, and A-button on the D-pad.

More on Programming

In Chapter 3 you learned what programming is all about. Let’s now take a deeper look

at some fundamental concepts of programming. Some concepts will be familiar, but

repetition rarely hurts the beginner in these matters. I'll approach the curriculum from a

more or less universal standpoint, as most programming languages follow this set of logic.
There are many types of programming tasks with numerous approaches and

related concepts. For the purposes of this book, I'll narrow these to three core concepts.

Understanding them will help you write and decipher code in the programming language

of your choosing.

e Variables and operators (i.e., data organization)
e Data structures (i.e., variable arrays and lists)

e Flow control (i.e., flow control statements)

200

http://dx.doi.org/10.1007/978-1-4842-2970-5_3

CHAPTER 10 A GAME MAKER'’S LEXICON: LEVEL 2

Variables and Operators

As mentioned in Chapter 3, a variable is an arbitrary, often user-defined, label for a
storage location of meaningful data. Every piece of software includes several variables,
from spaceship coordinates to the name of player 1, and more.

The first step to using variables is to define what type of values they will accept.
Variables come in many varieties as different types of data need to be stored in different
ways (see Table 10-2). Some simple programming languages don’t require you to define
the variable type, but most do.

Table 10-2. A Comparison of Variable Definitions in Common Programming Languages

Language Variable Type Variable Type Name Example Definition(s)
Generic C++ Character (single char char example='a';
alphanumeric)
String (text variable) char * char *name="Joe";
Boolean (true or bool bool happy=true;
false, 1 or 0)
Numeric integer int int level=4;
(for values between
-32768 and 32768)
GML Any type var var level=5;
(GameMaker) var myname="Joe";
var happy=true;
Java Character (single char char example='a';
alphanumeric)
String String String name="Joe";
Boolean boolean boolean
happy=true;
Numeric integer Int int level=4;
Python Any type n/a level=5;
name="Joe";

Why have different types of variables in the first place? Why can’t you just have a
general-purpose variable for all uses? Simply put, that would be a waste of resources.

Not all information in a program needs to have a ton of bits reserved for it. Many smaller
operations within a software project need only a couple of bits to get the job done. Why
reserve dozens of bits to a variable that exists only to, say, store a player’s initials?

Note that in many languages, a semicolon (;) must be added after each code
statement. This is implemented simply to separate major statement elements. In this
context, the semicolon is referred to as a statement terminator.

Just defining variables isn’t enough. You also need some operators (see Table 10-3) to
do something useful with them, such as simple arithmetic or comparisons.

201

http://dx.doi.org/10.1007/978-1-4842-2970-5_3

CHAPTER 10 I A GAME MAKER'’S LEXICON: LEVEL 2

Table 10-3. Typical Variable Operators

Symbol Operator Name Examples of Use in Most Languages
- Subtraction a=a-1; // decrease value of variable
-- Decrement "a" by one
-= Compound subtraction --a; // same as above
a-=5; // subtract 5 from "a"
+ Addition a=a+l;
++ Increment ++a;
+= Compound addition a+=8; // add 8 to "a"
* Multiplication a=a*2; // double the value of "a"
= Multiplication compound a=2; // same as above
/ Division a=a/4; // divide "a" by four
/= Compound division a/=4; // same as above
% Modulo (remainder) a=20%38; // the value of "a" will
be 4
< Less than if (a>b)...
> Greater than if (b>a)...
== Equal to if (b==a)...
I= Not equal to if (b!=a) // if b does NOT equal a
>= Greater than or equal if (a»=b) // if a is greater or equal
<= Less than or equal tob
if (a<=b) // if a is less or equal
tob
88 Logical AND if (a==b 8& b==c) // if a equals b
[Logical OR AND b equals c
! Logical negation (NOT) if (a==b || b==c) // if a equals b OR

b equals ¢
if (!

In general, it’s a good programming practice to use compound operators whenever
possible. Also, you should use multiplication to divide values (a*=0.5 is faster for the CPU
to process than a/=2).

Data Structures

A data structure is simply a group of variables and in some cases methods/procedures.
They are often useful to organize large amounts of data into easily accessible structures.
Most major programming languages support several types of data structures

(see Table 10-4).

202

CHAPTER 10 A GAME MAKER'’S LEXICON: LEVEL 2

Table 10-4. A Comparison of Different Common Data Structures

Data Structure Type Usage Example
1D array Storing large amounts of Creating a list of character
simple data names (Bob, Mackenzie,
Becket)
2D array Storing data benefiting from Storing the coordinates of
having both row and column pieces on a chess board with
attributes (e.g., grids) an 8x8 two-dimensional
array
Class Providing more complex A class called Cars is used
“blueprints” for objects in to store data with top speed,
object-oriented programming, color, and license number for
including both variables and all cars
methods
3D array Solving 3D problems Storing three-dimensional
locations or choices in a
game
Linked list Optimizing a project for Storing large data sets of

minimal memory (RAM)
usage instead of speed

indeterminate size

Because arrays and linked lists can sometimes get confusing, I'll now discuss
the differences between the two. First, linked lists are preferred if you're not sure how
many elements your data structure will include. Re-declaring an array’s size can get

cumbersome. Also, linked lists allow for more flexible insertion of new elements, unlike
arrays that only let you add elements after the most recent one. On the other hand, arrays
allow for random access of a data element, which is not possible with linked lists.

Flow Control

Think of any game program as a script that the computer is reading from top to bottom.
At first, variables are declared and initialized. Then the player probably views the title
screen, interacts with it, and enters the game itself. The player is then entering the
main loop (or game loop) of the program. At this point in the “script,” a specific set of
steps are repeated until the player dies or decides to spontaneously quit. These steps
usually include drawing the graphics, checking for collisions, and observing the player’s
interaction with the program and acting accordingly.

Now, there are basic flow control elements in every programming language
(see Table 10-5). For the most part, the commands are identical in every modern
language.

203

CHAPTER 10 I A GAME MAKER'’S LEXICON: LEVEL 2

Table 10-5. Five Most Common Flow Control Commands

Type Usage Example

If Examine status of variables or if (age==99) printf("Hello
functions. spring chicken!");

Then Direct the flow of the program. IF AGE<100 THEN PRINT "YOU ARE
Usually needed only in older STILL YOUNG"
languages or BASIC (see the
example).

Else Alternative flow direction if the if (old==true) printf("You are
condition or conditions are 0ld"); else printf("You are
not met. not that old");

While Repeat part of the program as while (age==100) { printf
long as specific conditions are met. ("You are old!"); }

Goto Jump to a different label in the IF HEALTH<1 THEN GOTO 10
listing. This is pretty much a relic (BASIC)
from the older days. These days goto Gameover; (C++)
you're expected to break out of a
(while) loop structure instead.

Labels Labels work in tandem with the Gameover:

goto command. They are usually
defined with an arbitrary name
followed by a colon (:) in most
languages. Again, labels are not
considered chic anymore.

Pseudocode and Code Comments

Let’s take a look at a simple game listing in pseudocode. While not actually an
implementable programming language, pseudocode can be used to demonstrate flow

control.

What is actual programming in the example is in the code comments. There is a way
in most, if not all, programming languages to insert lines of text that the computer will not
process in any way. These strings of text are solely for the programmers themselves—or
their teams. Listing 10-1 shows a snippet of some rather silly C++ code in Listing 10-1 to
demonstrate code commenting in action. The comments are presented here in bold.

Listing 10-1. C++ Code Demonstrating Correct Code Comment Usage

printf("Mackenzie, I need you to get on that plane\n") // A superior idea
right there.
printf("You know what, Bob, I think I shall.\n") /* She agrees. */

204

CHAPTER 10 A GAME MAKER'’S LEXICON: LEVEL 2

You see, most languages consider anything after a double slash (i.e., //) an
“invisible” bunch of characters. In addition, a slash and asterisk (i.e., /*) work to the same
effect, but do remember to close these types of comment segments with as asterisk and
slash (i.e., */). The latter type of commenting can span several lines.

Now, hold on to your neckbeards and behold the pseudocode listing of a very basic
Flappy Bird clone (see Listing 10-2).

Listing 10-2. A Pseudocode Listing of a Flappy Bird Clone

Beginning:
set player x coordinate variable to left side of the screen
set player y coordinate variable to middle of the screen
set obstacle x coordinate variable to the right edge of the screen

/* start playing some theme music before entering the title screen -loop.
we don't want to start playing the music every single frame update! */

play theme music

Title screen:
draw title screen // drawing events are generally performed every
frame update
IF enter is pressed GOTO Game loop
IF escape is pressed exit program
GOTO Title screen

Game loop:
draw player
draw obstacles
reduce 5 pixels from obstacle x // move obstacle to the left by 5
pixels at all times
// below: if obstacle reaches left side of the screen re-
locate the obstacle
// to the right edge of the screen
IF obstacle x < 0 obstacle x = screen_width
IF space bar is pressed // self-explanatory
IF space bar is pressed THEN reduce 5 pixels from player y
ELSE add 1 pixel to player y // if space bar not pressed,
move player down
IF player collides with obstacle GOTO Game over
GOTO Game loop

Game over:

draw game over -screen

IF escape is pressed THEN exit program
GOTO Game over

That concludes the example. Learn to think in pseudocode. Absorbing this way of
thinking makes you a programmer.

205

CHAPTER 10 I A GAME MAKER'’S LEXICON: LEVEL 2

Let’s now see some actual code and repeat the example in some tasty generic C++
(see Listing 10-3). You will not input any detailed low-level commands. The code won’t
actually work from any programming IDE as some crucial functionality is missing. The
listing is meant to demonstrate how the pseudocode translates into an actual programming
language. Also, for reference, I'm working with a screen resolution of 1024x768 pixels.

Listing 10-3. A Partial Listing of a Flappy Bird Clone in Generic C++

// First, we define and initialize some variables
int player x=20, player y=384;
bool player dead=false; /* player dead is a boolean variable. it uses a
minimal amount of

resources (one bit) as it has two states: true or false */
int obstacle x=1024;
/* in C++ and its derivatives, you define functions next. the actual code
for these functions will be placed after the main program part. we won't be
doing that in our example. the expression before each function ("bool" or
"void") refers to the RETURN VALUE of each function. in our example, each
function returns either a boolean value (false or true) or nothing at all
(void). not all functions need to return a variable. */

bool Space Key Pressed();
bool Escape Pressed();

bool Check Collisions();
void Draw_Things();

void Draw Title();

void Play Theme Music();
void Draw_Gameover Screen();

/* the main program part begins next. note: this is not the game loop,
rather it donates the end of the definition part in C++ and begins the
actual activities in a program */

int main(void) {
Play_Theme_Music(); // execute a function that plays some delightful theme music

while (!Space Key Pressed()) { /* repeat the title screen-loop as long as
the space key is not
pressed. notice no GOTO-statements are needed:
when space is
pressed, this loop will no longer run and whatever is
beneath it
will take place next */
Draw_Title();
if(Escape Pressed()) exit(0); /* if the player presses ESC, we quit the
whole program. Such

}

is the power of the exit-command in C++ */

206

CHAPTER 10 A GAME MAKER'’S LEXICON: LEVEL 2

/* below is the main game loop. it will repeat until the variable
"player dead" returns a value of true */
while (player dead==false) {

Draw_Things();

if(Space_Key Pressed()) player y-=5; else ++player y;

if(Check Collisions()) player dead=true; /* player and obstacle

collide. This means the

end of the current loop. */
// Move the obstacle left..
obstacle x-=5;

/* ..and bring it back to the right edge of the screen when it
disappears off the left one */
if(obstacle_x<0) obstacle x=1024;

}

// once the player dead-variable receives a value of "true", the section
below is reached.

while(!Escape_Pressed()) Draw_Gameover Screen(); /* display game
over -screen until the player

presses escape */
exit(0); // exit the program

}

More on Physics

To come across as less of a dolt when surrounded by any insufferable beta males,
we'll now go through some elementary physics.

Newton’s Laws of Motion

Sir Isaac Newton (1643 to 1727) formulated the basis for modern physics in his
magnum opus, Philosphiae Naturalis Principia Mathematica (often simply referred to
as Newton'’s Principia). His core findings can be summed into three laws of motion.
As all digital physics engines are based on these laws, you might as well take a closer
look at them.

e Anobject either remains at rest or continues to move at a constant
velocity, unless acted upon by an external force.

e Ifaforce acts on an object, it will cause an acceleration of that
object (for bigger masses, a stronger force is needed).

e For every action there is an equal and opposite reaction.

207

CHAPTER 10 I A GAME MAKER'’S LEXICON: LEVEL 2

Euler’s Method

Not so fast! There’s more physics goodness ahead of you. Leonhard Euler (1707 to 1783)
was a Swiss scientist who expanded on Newton’s work. His work is actually a big part of
video game physics today.

In a computer context, the various properties in a physics simulation are sampled
at specific intervals. Sampling them near-continuously would be optimal. Such an
approach, however, is a tad too heavy on the hardware today.

This is where the Euler’s method (i.e., Euler’s integration) comes in. It simply refers
to the technique of making predictions at set intervals when simulating the laws of
physics. The approach is precise enough to sample relatively accurate data for computer
physics without being too heavy on the resources. However, the various attributes
involved (such as velocity and position of a mass) might act unpredictably. Some
“glitching” is to be expected when using the Euler method in the game world.

Ragdoll

A ragdoll is a combination of physics bodies that, when put together, simulate a more or
less realistic (usually human-like) character. This is used for death animations in both
2D and 3D games because ragdolling provides a relatively convincing collapse for dead
characters. However, programmers frequently struggle to keep the collapsed ragdolls still
as various unwanted twitching effects are both common and comical.

Rigid-Body Dynamics

Arigid body is a physics object that cannot be deformed. The object remains in static
condition throughout the simulation, no matter what external forces are applied to it.
These types of objects cannot exist in the real world, but they provide a decent amount of
realism to video game characters and props.

Soft-Body Dynamics

This is a field in computer physics simulation that deals with malleable bodies. These
include cloth, water, and other more elastic types of applications. This is a rather complex
and resource-intense form of physics processing. Accurate soft-body dynamics therefore
take a heavier toll on one’s system. They are mostly fully simulated in more realistic
games, such as the BeamNG driving simulator, although several titles use them for
cosmetic purposes where collisions aren'’t a factor.

Physics Engines Rundown

Let’s take a look at the most widely used physics systems in game engines today, as shown
in Table 10-6. They are available for all major platforms, both on the desktop computer
and on the console side of things.

208

CHAPTER 10 A GAME MAKER'’S LEXICON: LEVEL 2

Table 10-6. Comparison of Popular Video Game Physics Engines

Engine License Game Engine Support Main Benefits
PhysX Proprietary Shoot-"Em-Up Kit, Offers hardware-accelerated
Unity output with a compatible
Nvidia video card
Bullet Open source GameGuru, Blender Optimization available
for Nvidia, AMD, and PS3
hardware
Box2D Open source GameMaker Studio, High performance for
Stencyl, Construct 2, large-scale 2D projects
Unity (2D)
Newton Game Open source Leadwerks Exceptionally stable
Dynamics skeletal simulation
(ragdoll)

209

CHAPTER 11

The Mostly Codeless
Challenge

You have done well so far, my friend. Only three things remain for you to do.

e Create a game for the platform of your choosing using the topics
discussed in this book.

¢ Distribute your game through a well-established digital store,
such as Steam.

e Sell atleast 100 copies of this game at a competitive price.

If you manage all this, your video game developer potential has been unlocked.
You are then on the right path. May you continue to make great games and have them
sell way more than 100 copies each.

In any case, congratulations!

If you fail this challenge, simply reread the book and try, try again.

Sincerely,

Robert Ciesla

CEO, Soiree Games
Proud nerd

© Robert Ciesla 2017 211
R. Ciesla, Mostly Codeless Game Development, DOI 10.1007/978-1-4842-2970-5_11

Index

A

AAA, 21
Accredited investor, 157
ActionScript, 38
Adventure Construction Set (ACS), 12-13
Algorithm, 22
Amazon Appstore, 148
Amazon Digital Game Store, 148
Anisotropic filtering (AF), 195
Antialiasing (AA), 189
Apple App Store, 149
Apple Mac App Store, 149-150
Application programming
interface (API), 22
Arcade Game Construction
Kit (AGCK), 15-16
Artificial intelligence, 3
Assembly Summer, 156
Atari 2600, 161-162
Atari 5200, 163
Atari 7800, 170-171
Atari Low-level Game Routines
(Allegro), 17-18
Atari ST, 168-169

B

Beginner’s All-purpose Symbolic
Instruction Code (BASIC), 36

Bilinear filtering, 195

Billboards, 189

32-Bit/64-bit architecture, 187-188

Bits, bytes and binary, 22-23

Bump mapping, 194

© Robert Ciesla 2017

C

C, 37
C#, 37
C++, 37
Cel shading, 189
Central processing unit (CPU), 181
and cores, 182
Chiptune, 23
Clickteam Fusion 2.5, 81-84
Clipping plane, 189
Commodore 64, 164-165
Commodore Amiga, 166-168
Compiled vs. interpreted languages, 31
Compiler, 30
Conceptual artist, 4
Construct Classic/Construct 2, 103-105
Control flow statements, 31
CopperCube 5/CopperCube 5 Pro, 73, 75
Crowdfunding, 158
Fig, 159
Gambitious, 160
Indiegogo, 159
Kickstarter, 158
Cube mapping, 194

D

3D animator, 4

2D artist, 4

3D artist/3D modeler, 4

3D Construction Kit (3DCK), 18
Dedicated (or discreet) video card, 184
Delta time, 198

Depth of field, 196

213

R. Ciesla, Mostly Codeless Game Development, DOI 10.1007/978-1-4842-2970-5

INDEX

Developers, pitfalls for new, 5
motivational hole, 5
no testing needed approach, 7
Perfectionism Quest, 8
prequel syndrome, 7
programmer’s mind, 8
ugly date syndrome, 6
wrong game engine issue, 6
Digital audio
Adobe, 131
Ardour 5.8, 131
Audacity 2.1.2, 131
clipping, 129
decibel, 126
dynamics (compression and
limiting), 129
EQ filters, 127-128
equalization, 127
free audio resources, 130
lossy audio formats, 124
MIDI, 124
nonlossy audio formats, 125
normalization, 129
Ohm Studio, 132
PCM, 123
plug-in, 125
reverb, 130
sfxr/cfxr, 133
tools, 130
Wavosaur 1.3, 133
Digital units of measurement, 187
Displays, 186
DLC/microtransactions, 23

E

Easy Building Editor (EBE), 62
Economies of scale, 157
Economies of scope, 157
Electronic arts (EA), 12-13
Environmental artist, 4
Environment mapping, 194
Euler’s method, 208

F

Fig, 159

Finite state machine (FSM), 199
Fog, 189

Fragment shaders, 191

214

Frames per second/first-person shooter
(EPS), 24
Free-to-play business model, 147

G

Gambitious, 160
Game core creator, 3
001 Game Creator
audiovisuals, 60
software, 58
support, 60
system requirements, 61
usability, 58-59
Gamecube, 177-178
Game development, 1
Game engine museum
ACS (1984) by EA, 12-13
AGCK (1988) by Broderbund
software, 15-16
Allegro (1990), 17-18
3DCK (1991) by Domark, 18
GKGM (1985) by Activision, 13-14
PCS (1983) by EA, 12
Quill (1983) by Gilsoft, 11
RSDGM (1991) by Recreational
Software Designs, 19
SEUCK (1987) by Sensible
Software, 14-15
STOS BASIC (1988)/AMOS BASIC
(1990) by Mandarin
software, 16-17
Z0G (1998) by Zillions Development
Corp., 20
GameGuru
audiovisuals, 62-63
EBE, 62
Halflight, 65-66
support, 64
system requirements, 64
usability, 61
winzone.lua, 67
Gamelooper, 111-113
GameMaker Studio
actions, drag-and-drop functions,
44, 46-50
Clickteam Fusion 2.5, 81-84
CopperCube 5/CopperCube 5
Pro, 73,75
download, 43

001Engine (see 001 Game Creator)
events, 44
GameGuru (see GameGuru)
GameMaker Studio Professional 1.4
(see GameMaker Studio
Professional 1.4)
Game Salad, 85-87
GM classes and objects, 43
Leadwerks Game, 70-73
RPG Maker MV, 79-81
RPG Maker VX/RPG Maker
VX Ace, 76-79
RTS Creator, 92, 94-95
S2 Engine HD, 88-90
SEUK, 68-70
types, 51
Tyranobuilder Visual Novel
Studio, 91-92
GameMaker Studio Professional 1.4
audiovisuals, 52-53
GameMaker 7, 56-57
software, 51
support, 54
system requirements, 54
techniques, 54-56
usability, 52
Game Making Language (GML), 38
Game programming libraries, 41
Game Salad, 85, 87
Game testing, 5
Game visuals
2D tools
Creature, 138
PD Howler 11/PD Artist, 135
Pixen 4, 136
Spine, 137
Spriter, 136-137
TerraRay, 138
VUE, 139-140
3D tools
Blender 2.78, 140-141
Daz Studio Pro 4.9, 141-142
Fuse 1.3, 142-143
Raiseland, 143
nonlossy image formats, 134
software, lossy image formats, 134
transparency, 135
VUE, 140
Gaming computers and consoles
Atari (1986), 170-171

INDEX

Atari 2600 (1977), 162-163
Atari 5200 (1982), 163
Atari ST (1985), 168-169
Commodore 64 (1982), 164-165
Commodore Amiga (1985), 166-168
Gamecube by Nintendo (2001),
177-178
the Great Video Game Crash
of 1983, 166
homebrew market, 179-180
NES (1983), 165-166
PC Engine (1987), 172
PlayStation 2 by Sony (2000), 176-177
Sega Genesis (1988), 173
Sega Master System (1986), 169-170
Sony PlayStation (1994), 175-176
Super Nintendo (1990), 174-175
Xbox by Microsoft (2001), 178-179
Garry Kitchen’s GameMaker
(GKGM), 13-14
Generosity.com, 159
Geometry shaders, 192
Godot 2.1
audiovisuals, 120
GDScript, 120
nodes, 117-118
scenes, 117
signals, 117-119
singletons, 120
software, 116
support, 121
system requirements, 121
usability, 116
Good Old Games, 150
Google Play, 148-149
Gradient noise, 196-197
Graphics card, 184
Graphics processing unit (GPU), 184

H

Hard drives

Macbook Airs, 188

mechanical drive, 188

SSD, 188
High-Level Shading Language (HLSL), 191
High-level vs. low-level languages, 31
Homebrew market, 179-180
Human Interface Guidelines (HIG), 149
Humble Store, 151

215

INDEX

Independent Game Festival (IGF), 156
Indiecade, 155
Indie developer, 184

iMac (Previous Generation), Mac Pro,

or Mac Mini, 185
Bootcamp, 185

Windows 7/8/10 PC, 184
IndieGameStand, 151
Indiegogo, 159
In-game advertising (IGA), 155
Integrated development environment

(IDE), 29

Integrated video, 184
Itch.io, 150-151
iTunes Connect, 150

J

Java, 37
JavaScript, 37

K

Kickstarter, 158

L

Leadwerks Game, 70-73
Lines of code, 32
Lua, 38

Machinima, 199-200
Mac OS, 186
Marketing
business and finance, 156
accredited investor, 157
economies of scale, 157
economies of scope, 157
nonaccredited investor, 157
ROI, 156
SEC, 157
securities, 157
crowdfunding, 158
Fig, 159
Gambitious, 160
Indiegogo, 159
Kickstarter, 158

216

custom domain and hosting, 152
no budget, 153
place (distribution), 147
Amazon Appstore, 148
Amazon Digital Game Store, 148
Apple App Store, 149
Apple Mac App Store, 149-150
Good Old Games, 150
Google Play, 148-149
Humb]e Store, 151
IndieGameStand, 151
Itch.io, 150-151
Playism, 151
Steam, 147
price, 145
economy pricing, 146
free-to-play business
model, 147
honeymoon pricing, 146
microtransactions, 147
penetration pricing, 146
premium pricing, 146
product building, 146
psychological pricing, 146
product, 145
promotion, 152
Assembly Summer, 156
festivals, 155
IGF 156
Indiecade, 155
in-game advertising, 155
screenshots, 153
social media, 154
video trailer, 153
web site, 152
Massively multiplayer online game
(MMOG), 24
Massively multiplayer online role-playing
game (MMORPG), 24
Mechanical drive, 188
Microtransactions, 147
Mipmaps, 195-196
Musical Instrument Digital Interface
(MIDI), 124

N

Networking specialist, 3

Newton’s laws of motion, 207

Nintendo Entertainment System
(NES), 165-166

Nonaccredited investor, 157

Nonstructured vs. procedural
programming, 31

Normal mapping, 194

(0

Object-oriented programming (OOP)
abstraction and encapsulation, 35-36
classes and objects, 34
inheritance, 34
methods, 35

Open Broadcaster Software (OBS), 154

Open revenue sharing, 150

Operating systems, 186

P

Parallax scrolling, 197
Particles, 24
PC Engine, 172
Physically based rendering (PBR), 142
Physics, 207
engines rundown, 208
Euler’s method, 208
expert, 3
Newton’s laws of motion, 207
ragdoll, 208
rigid-body dynamics, 208
soft-body dynamics, 208
Pinball Construction Set (PCS), 11
Ping, 24
Pixel, 25
Pixel shaders, 191
Playism, 151
PlayStation by Sony, 176-177
Polygon, 25
Pong, 25
Portable Network Graphics
(PNG), 134
Prerendering, 28
Primitive, 26
Problem solver, 3
Procedural programming, 32
Programmers, 3
Programming, 200
data structures, 202-203
flow control, 203-204
language, 29-30

INDEX

pseudocode and code
comments, 204-207
variables and operators, 201-202
Pulse-code modulation (PCM), 123
Python, 38

Q

Quill (1983), 11

R

Ragdoll, 208
Raytracing, 196
Rendering, 28
Ren’Py 6.99.12.3
audiovisuals, 106
creation, 105, 107-111
support, 107
system requirements, 107
usability, 106
Resolution, 26
Resources, 28, 181
CPU, 181
and cores, 182
hard drive, 183
gigabytes and megabytes, 183
random access memory (RAM), 183
video cards, 184
Return on investment (ROI), 156
Role-playing game (RPG), 12
RPG Maker MV, 79-81
RPG Maker VX/RPG Maker VX Ace, 76-79
RSD Game-Maker (RSDGM), 19
RTS Creator, 92, 94-95

S

S2 Engine HD, 88-90

Sandbox Game, 28

Securities and Exchange Commission

(SEC), 157

Sega Genesis, 173

Sega Master System, 169-170

Selling, game, 145

marketing

business and finance, 156-157
crowdfunding, 158-160
custom domain and hosting, 152

217

INDEX

Selling, game (cont.)
no budget, 153
place (distribution), 147-151
price, 145-147
product, 145
promotion, 152-156
Shaders, 26, 191
implementing, 192
Shoot-"Em-Up Construction Kit
(SEUCK), 14-15
Shoot-"Em-Up Kit (SEUK), 68-70
Shovelware, 26
Skybox, 29
Solid-state drive (SSD), 188
Sony PlayStation, 175-176
Sound designer/musician, 4
Sound interface device (SID), 164
Sphere mapping, 194
Sprite, 27
Sprite sheet, 193
Steam, 27, 148, 211
Stencyl 3.4, 113-115
STOS BASIC (1988)/AMOS BASIC
(1990), 16-17
Super Nintendo, 174-175

T

Texture artist, 4

Texture filtering, 195

Toon shading, 189

Transform and Lighting (T&L), 196
Trilinear filtering, 195

Tyranobuilder Visual Novel Studio, 91-92

U

Unified Modeling Language (UML), 199

Unity 5.5
audiovisuals, 99
license options, 102-103
support, 100
system requirements, 100
type of games, 98
usability, 99

\'

Variable, 33
Vertex shaders, 191

218

Vertical Sync (V-sync), 29
Video game industry, 2

designers, 3

producer, 2

programmers, 3

sound designer/musician, 4
tester, 4-5

visual artists, 4
writer/copywriter, 5

Visual artists, 4
Visual terminology, 188

AF, 195
antialiasing (AA), 189
bilinear filtering, 195
billboards, 189
bloom (glow), 196
bump mapping, 194
cel shading, 189
clipping plane, 189
delta time, 198
depth of field, 196
environment mapping, 194
fog, 189
FSM, 199
geometry shaders, 192
golden age arcade video games, 200
gradient noise, 196-197
grinding, 200
implementing shaders, 192
interpolation, 195
Konami code, 200
machinima, 199-200
mipmaps, 195-196
normal mapping, 194
parallax scrolling, 197
pixel shaders, 191
raytracing, 196
shaders languages, 191
T&L, 196
texture, 192

atlases, 193

filtering, 195

mapping, 193
trilinear filtering, 195
UML and FSM, best buddies, 199
vertex shaders, 191
viewing frustum, 190-191
voxel, 197-198
Z-buffer, 191

Volume pixel (voxel), 197, 198

INDEX

W Z
WASD, 29 Z-buffer algorithm, 191
Zillions of Games (ZOG), 20
X, Y
4X, 21

Xbox by Microsoft, 178-179

219

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Ready!
	Who Does What in the Video Game Industry
	Producer
	Designer
	Programmer
	Visual Artist
	Sound Designer/Musician
	Tester
	Writer/Copywriter

	Common Pitfalls for New Developers
	The Motivational Hole
	The Ugly Date Syndrome
	The Wrong Game Engine Issue
	The Prequel Syndrome
	The No Testing Needed Approach
	Perfectionism Quest
	A Programmer’s Mind

	In Closing

	Chapter 2: Game Engine Museum
	The Quill (1983) by Gilsoft
	Pinball Construction Set (1983) by Electronic Arts
	Adventure Construction Set (1984) by Electronic Arts
	Garry Kitchen’s GameMaker (1985) by Activision
	Shoot-’Em-Up Construction Kit (1987) by Sensible Software
	Arcade Game Construction Kit (1988) by Broderbund Software
	STOS BASIC (1988)/AMOS BASIC (1990) by Mandarin Software
	Allegro (1990) by Shawn Hargreaves and the Allegro Developers
	3D Construction Kit (1991) by Domark
	RSD Game-Maker (1991) by Recreational Software Designs
	Zillions of Games (1998) by Zillions Development Corp.

	Chapter 3: A Game Maker’s Lexicon: Level 1
	General Terminology
	4X
	AAA
	Algorithm
	Application Programming Interface (API)
	Bits, Bytes, and Binary
	Chiptune
	DLC/Microtransactions
	FPS
	MMOG/MMORPG
	Particles (i.e., Particle Effects)
	Ping
	Pixel
	Polygon
	Pong
	Primitive
	Resolution
	Shader
	Shovelware
	Sprite
	Steam
	Rendering and Prerendering
	Resources
	Sandbox Game
	Skybox
	Vertical Sync (V-sync)
	WASD

	The Fundamentals of Programming
	Programming Language
	How to Talk to Your Computer
	High-Level vs. Low-Level Languages
	Compiled vs. Interpreted Languages
	Control Flow: Nonstructured vs. Procedural Programming
	Procedures
	A Few Lines of Code
	Variable
	Object-Oriented Programming (OOP)
	Classes and Objects (i.e., Classes and Instances)
	Inheritance
	Methods
	Abstraction and Encapsulation

	Common Programming Languages: A Primer
	BASIC
	C
	C++
	C#
	Java
	JavaScript
	ActionScript
	GML
	Python
	Lua

	Some Words About Optimization
	In Closing

	Chapter 4: Commercial Game Engines
	Before You Embark
	Your First Game Engine
	Your First Game
	GM Classes and Objects
	Events
	Actions

	Game Engine Reviews
	GameMaker Studio Professional 1.4 by YoYo Games
	Commercial Potential: 4/5
	Usability: 3/5
	Audiovisuals: 4/5
	Support: 4/5
	Overall: 4/5
	GameMaker Tips
	GameMaker 7 (Free) for the Mac

	001 Game Creator (formerly known as 001 Engine) by Mike Weir
	Commercial Potential: 3/5
	Usability: 4/5
	Audiovisuals: 4/5
	Support: 4/5
	Overall: 4/5
	Starting Point

	GameGuru by The Game Creators
	Commercial Potential: 3/5
	Usability: 4/5
	The Easy Building Editor
	Audiovisuals: 3/5
	Support: 4/5
	Overall: 3/5
	Starting Point

	Case Study: Halflight by Soiree Games
	GameGuru Hints

	Shoot-’Em-Up Kit by Tall Studios
	Commercial Potential: 4/5
	Usability: 5/5
	Audiovisuals: 5/5
	Support: 4/5
	Overall: 4/5
	Starting Point

	Leadwerks Game Engine 4.3 by Leadwerks Software
	Commercial Potential: 4/5
	Usability: 4/5
	Audiovisuals: 4/5
	Support: 4/5
	Overall: 3/5
	Starting Point

	CopperCube 5/CopperCube 5 Pro by Ambiera
	Commercial Potential: 4/5
	Usability: 4/5
	Audiovisuals: 4/5
	Support: 4/5
	Overall: 4/5
	Starting Point

	RPG Maker VX/RPG Maker VX Ace by Kadokawa Games/Enterbrain
	Commercial Potential: 3/5
	Usability: 5/5
	Audiovisuals: 2/5
	Support: 5/5
	Overall: 3/5
	Starting Point

	RPG Maker MV by Kadokawa Games/Enterbrain
	Commercial Potential: 3/5
	Usability: 5/5
	Audiovisuals: 4/5
	Support: 5/5
	Overall: 4/5
	Starting Point

	Clickteam Fusion 2.5 by Clickteam
	Commercial Potential: 5/5
	Usability: 5/5
	Audiovisuals: 4/5
	Firefly 3D
	Support: 4/5
	Overall: 4/5
	Starting Point

	Game Salad 1.25 (Mac)/Game Salad 1.00 (Windows) by GameSalad Inc.
	Commercial Potential: 4/5
	Usability: 5/5
	Audiovisuals: 4/5
	Support: 5/5
	Overall: 5/5
	Starting Point

	S2 Engine HD 1.4.6 by Profenix Studio SRLS
	Commercial Potential: 3/5
	Usability: 3/5
	Audiovisuals: 5/5
	Support: 4/5
	Overall: 4/5
	Starting Point

	Tyranobuilder Visual Novel Studio by STRIKEWORKS
	Commercial Potential: 4/5
	Usability: 4/5
	Audiovisuals: 4/5
	Support: 4/5
	Overall: 4/5
	Starting Point

	RTS Creator by Infotread, LLC
	Commercial Potential: 1/5
	Usability: 3/5
	Audiovisuals: 3/5
	Support: 1/5
	Overall: 1/5
	Starting Point

	Chapter 5: Freeware Game Engines
	Unity 5.5 by Unity Technologies
	Commercial Potential: 5/5
	Usability: 4/5
	Audiovisuals: 5/5
	Support: 5/5
	Overall: 5/5
	A Beginner and His Unity Experience: Developer Interview
	Starting Point
	Unity Tips
	Unity License Options

	Construct Classic/Construct 2 by Scirra
	Commercial Potential: 4/5
	Usability: 4/5
	Audiovisuals: 4/5
	Support: 5/5
	Overall: 4/5
	Starting Point

	Ren'Py 6.99.12.3 by Tom Rothamel and His Team
	Commercial Potential: 4/5
	Usability: 4/5
	Audiovisuals: 4/5
	Support: 4/5
	Overall: 4/5
	Starting Point

	Gamelooper by Oyun Döngüsü Ltd
	Commercial Potential: 3/5
	Usability: 3/5
	Audiovisuals: 3/5
	Support: 3/5
	Overall: 3/5
	Starting Point

	Stencyl 3.4 by Stencyl, LLC
	Commercial Potential: 4/5
	Usability: 4/5
	Audiovisuals: 4/5
	Support: 4/5
	Overall: 4/5
	Starting Point

	Godot 2.1 by Juan Linietsky and Ariel Manzur
	Commercial Potential: 4/5
	Usability: 4/5
	Scenes
	Nodes
	Signals
	Singletons
	GDScript

	Audiovisuals: 4/5
	Support: 4/5
	Overall: 5/5
	Starting Point

	Chapter 6: Audiovisual Assets
	The Basics of Digital Audio
	MIDI
	Lossy Audio Formats (i.e., Delivery Formats)
	Nonlossy Audio Formats (i.e., Source Formats)
	Plug-in

	The Fundamental Concepts of Audio Processing
	Decibels (dB)
	EQ
	Common Types of EQ Filters
	How to EQ Your Material
	Dynamics (Compression and Limiting)
	Clipping
	Normalization
	Reverb
	Free Audio Resources
	Some Tools of the Audio Trade
	Audition CC by Adobe
	Audacity 2.1.2 by The Audacity Team
	Ardour 5.8 by Paul Davis
	Ohm Studio by OhmForce
	sfxr/cfxr
	Wavosaur 1.3 by The Wavosaur Team

	Digital Audio Questions
	Software for Game Visuals
	Lossy Image Formats (i.e., Delivery Formats)
	Nonlossy Image Formats (i.e., Source Formats)
	Transparency
	Tools for 2D
	PD Howler 11/PD Artist by Dan Ritchie
	Pixen 4 by The Open Sword Group
	Spriter by Brash Monkey
	Spine by Esoteric Software
	Creature by Kestrel Moon Studios
	TerraRay 6.5 by Synium Software
	VUE Infinite 2015 PLE by E-on Software

	Tools for 3D
	Blender 2.78 by Blender Foundation
	Daz Studio Pro 4.9 by Daz3D
	Fuse 1.3 by Mixamo
	Raiseland by David Manzanares Miguel

	Chapter 7: Selling Your Game
	Product
	Price
	Psychological Pricing
	Penetration Pricing
	Honeymoon Pricing
	Premium Pricing
	Economy Pricing
	Product Bundling
	Free-to-Play (Also Pay-to-Win and Freemium)
	Microtransactions

	Place (Distribution)
	Steam (steampowered.com)
	Amazon Appstore (amazon.com/appstore)
	Amazon Digital Game Store (amazon.com/ gamedownloads)
	Google Play (play.google.com)
	Apple App Store (apple.com)
	Apple Mac App Store
	Good Old Games (gog.com)
	Itch.io (www.itch.io)
	Humble Store (humblestore.com)
	IndieGameStand (indiegamestand.com)
	Playism (playism-games.com)

	Promotion
	Web Site

	Route A: Custom Domain and Hosting
	Route B: No Budget
	Screenshots
	Video Trailer
	Social Media
	In-Game Advertising (IGA)
	Festivals
	Indiecade (indiecade.com)
	Independent Game Festival (igf.com)
	Assembly Summer (assembly.org)

	Business and Finance
	Return on Investment (ROI)
	Economies of Scale/Economies of Scope
	Securities
	Securities and Exchange Commission (SEC)
	Nonaccredited Investor
	Accredited Investor

	Crowdfunding
	Kickstarter (kickstarter.com)
	Fig (fig.co)
	Indiegogo (indiegogo.com)
	Gambitious (gambitious.com)

	Chapter 8: Knowing Your Old-School Games
	1977
	Atari 2600

	1982
	Atari 5200
	Commodore 64

	1983
	Nintendo Entertainment System (NES)
	The Great Video Game Crash of 1983

	1985
	Commodore Amiga
	Atari ST

	1986
	Sega Master System
	Atari 7800

	1987
	PC Engine (Turbografx-16) by NEC Corporation

	1988
	Sega Genesis (Megadrive)

	1990
	Super Nintendo

	1994
	Sony PlayStation (PS1 or PSX)

	2000
	PlayStation 2 by Sony

	2001
	Gamecube by Nintendo
	Xbox by Microsoft

	The Homebrew Market

	Chapter 9: Game Developer’s Battle Station
	Resources
	CPU
	CPUs and Cores

	Hard Drive
	Gigabytes and Megabytes

	Random Access Memory (RAM)
	Video Card

	Your Hardware Needs as an Indie Developer
	Option 1: Windows 7/8/10 PC
	Option 2: iMac (Previous Generation), Mac Pro, or Mac Mini
	Bootcamp: Windows on a Mac

	The Ecological Imperative
	A Few Words on Displays

	Chapter 10: A Game Maker’s Lexicon: Level 2
	Digital Units of Measurement
	32-Bit/64-Bit Architecture
	Hard Drives Revisited
	Advanced Visual Terminology
	Antialiasing (AA)
	Billboard
	Cel Shading
	Clipping Plane
	Fog
	Viewing Frustum
	Z-buffer
	Shader Languages
	Pixel Shaders (Fragment Shader)
	Vertex Shaders
	Geometry Shaders
	How to Implement Shaders
	Texture
	Texture Atlas
	Texture Mapping
	Bump Mapping
	Normal Mapping
	Environment Mapping
	Interpolation
	Texture Filtering
	Bilinear Filtering
	Trilinear Filtering
	Anisotropic Filtering (AF)

	Mipmaps
	Transform and Lighting (T&L)
	Raytracing
	Bloom (Glow)
	Depth of Field (DOF)
	Gradient Noise
	Parallax Scrolling
	Voxel
	Delta Time (Δt)
	Finite State Machine (FSM)
	UML and FSM, Best Buddies
	Machinima
	The Golden Age of Arcade Video Games
	Grinding
	Konami Code

	More on Programming
	Variables and Operators
	Data Structures
	Flow Control
	Pseudocode and Code Comments

	More on Physics
	Newton’s Laws of Motion
	Euler’s Method
	Ragdoll
	Rigid-Body Dynamics
	Soft-Body Dynamics
	Physics Engines Rundown

	Chapter 11: The Mostly Codeless Challenge
	Index

