Android 9

Development
Cookbook

Third Edition

Android 9 Development
Cookbook
Third Edition

Over 100 recipes and solutions to solve the most common
problems faced by Android developers

Rick Boyer

Packh

BIRMINGHAM - MUMBAI

Android 9 Development Cookbook
Third Edition

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amarabha Banerjee
Acquisition Editor: Larissa Pinto

Content Development Editor: Francis Carneiro
Technical Editor: Ralph Rosario

Copy Editor: Safis Editing

Project Coordinator: Sheejal Shah

Proofreader: Safis Editing

Indexer: Priyanka Dhadke

Graphics: Alishon Mendonsa

Production Coordinator: Nilesh Mohite

First published: July 2011
Second edition: March 2016
Third edition: October 2018

Production reference: 2091118
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78899-121-6

www . packtpub.com

http://www.packtpub.com

To my family for their patience while I focused on writing. To my mom, who is very excited
about the book, even though she uses a phone from a different (unnamed) platform. And of
course, to my wife Karen, for her encouragement and understanding!

A Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt .com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author

Rick Boyer has been programming professionally for over 20 years. He has written apps on
Windows, created websites, and coded for various mobile devices, including Windows CE,
Windows Phone, and Android. Almost eight years ago, he took the plunge and started his
own software consulting business, NightSky Development, focusing exclusively on
Android development.

1'd like to thank all the people at Packt Publishing for making this update to the book possible! A
special thanks to the content development editor, Francis Carneiro, for his tireless efforts at
keeping the book schedule. I'd also like to thank Emil Atanasov and Jason Morris for their
technical review work. Your comments and corrections were much appreciated and made for a
better book!

About the reviewers

Emil Atanasov is an IT consultant who has extensive experience with mobile technologies.
He runs his own contracting and consulting company, serving clients from around the
world: Appose Studio Inc. He is an MSc graduate of RWTH Aachen University, Germany,
and Sofia University "St. Kliment Ohridski", Bulgaria. He has been a contractor for several
large companies in the U.S. and U.K,, serving variously as team leader, project manager,
iOS developer, and Android developer. He teaches courses at Sofia University in Swift and
iOS development. He is the author of Learn Swift by Building Applications and has served as
technical reviewer and contributor on the following Packt titles: Objective C Memory
Management and Android High-Performance Programming.

"I want to thank my wife, Elena, and my daughter, Sophia, and the rest of my family and
friends for being very supportive, really patient, and super cool. Thank you for keeping me
motivated through the endless working days. I know that, in your eyes, I'm a bizarre geeky
person who is spending most of the time in the digital world. I appreciate your understanding.
Thank you, guys!”

Jason Morris is a multi-discipline software developer and technical author. He has been
developing software for as long as he can remember. He's written software for desktop,
servers, feature phones, smartphones, the web, and even microcontrollers. Jason programs
in a range of programming languages, and delights in knowing how software works. When
he's not writing code, spending time with his family, or playing synthesizers, he's probably
dreaming up a new code challenge. In 2010 through 2011, he wrote Android User Interface
Development: A Beginner’s Guide, and in 2017, he wrote Hands-On Android Ul Development.
On the internet, Jason is often known as "lemnik."

Thanks again to my wife and daughter for always being there.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface

N

Chapter 1: Activities

Introduction

Declaring an activity
Getting ready
How to do it...
How it works...

Starting a new activity with an intent object
Getting ready
How to do it...
How it works...
There's more...
See also

Switching between activities
Getting ready
How to do it...
How it works...
See also

Passing data to another activity
Getting ready
How to do it...
How it works...
There's more...

Returning a result from an activity
Getting ready
How to do it...
How it works...
There's more...
See also

Saving an activity's state
Getting ready
How to do it...
How it works...
There's more...
See also

Storing persistent activity data
Getting ready
How to do it...
How it works...

0o 00 N N

14
15
15
17
18
18
18
18
19
22
22
23
23
23
24
25
25
25
25
26
27
27
27
28
29
30
30
31
31
31
31
32

Table of Contents

There's more...
Using more than one preference file
See also
Understanding the activity life cycle

Getting ready

How to do it...

How it works...

There's more...

Chapter 2: Layouts

Introduction

Defining and inflating a layout
Getting ready
How to do it...
How it works...
There's more...
See also

Using RelativeLayout
Getting ready
How to do it...
How it works...
There's more...
See also

Using LinearLayout
Getting ready
How to do it...
How it works...
There's more...
See also

Creating tables — TableLayout and GridLayout

Getting ready
How to do it...
How it works...
There's more...
RecyclerView replaces ListView
Getting ready
How to do it...
How it works...
There’s more...
Changing layout properties during runtime
Getting ready
How to do it...
How it works...

Chapter 3: Views, Widgets, and Styles
Introduction

32
32
32
33
34
34
35
36

37
37
38
39
39
40
41
41
41
41
41
42
43
43
44
44
44
45
46
46
46
47
47
50
50
51
52
52
55
56
56
57
57
58

59
59

[ii]

Table of Contents

Inserting a widget into a layout
Getting ready
How to do it...
How it works...
There's more...
See also
Using graphics to show button state
Getting ready
How to do it...
How it works...
There's more...
Using designated folders for screen-specific resources
See also
Creating a widget at runtime
Getting ready
How to do it...
How it works...
There's more...
Creating a custom component
Getting ready
How to do it...
How it works...
There's more...
See also
Applying a style to a View
Getting ready
How to do it...
How it works...
There's more...
See also
Turning a style into a theme
Getting ready
How to do it...
How it works...
There's more...
Selecting a theme based on the Android version
Getting ready
How to do it...
How it works...
There's more...

Chapter 4: Menus and Action Mode
Introduction
Creating an options menu
Getting ready

61
61
62
65
66
66
66
67
67
68
69
69
69
70
70
70
71
71
71
72
72
73
74
75
75
75
76
77
77
78
78
78
79
79
80
80
80
81
83
84

85
85
86
87

[iii]

Table of Contents

How to do it...
How it works...
There's more...
Using a menu item to launch an activity
Creating submenus
Grouping menu items
See also
Modifying menus and menu items during runtime
Getting ready
How to do it...
How it works...
There's more...
Enabling Contextual Action Mode for a view
Creating a floating context menu
Getting ready
How to do it...
How it works...
There's more...
See also
Using Contextual Batch Mode with RecyclerView
Getting ready
How to do it...
How it works...
There's more...
See also
Creating a pop-up menu
Getting ready
How to do it...
How it works...

Chapter 5: Fragments

Introduction

Creating and using a Fragment
Getting ready
How to do it...
How it works...
There's more...
See also

Adding and removing Fragments during runtime
Getting ready
How to do it...
How it works...
There's more...
See also

Passing data between Fragments
Getting ready

89
90
91
91
92
92
93
93
93
94
95
96
97
97
97
98
100
101
101
101
103
103
106
107
108
108
109
109
111

112
112
112
113
113
115
115
115
115
116
116
119
119
120
120
123

[iv]

Table of Contents

How to do it...

How it works...

There's more...

See also

Handling the Fragment back stack

Getting ready

How to do it...

How it works...

There's more...

Chapter 6: Home Screen Widgets, Search, and the System Ul
Introduction
Creating a shortcut on the Home screen
Getting ready
How to do it...
How it works...
There's more...
Creating a Home screen widget
Getting ready
How to do it...
How it works...
There's more...
See also
Adding Search to the Action Bar
Getting ready
How to do it...
How it works...
See also
Showing your app full-screen
Getting ready
How to do it...
How it works...
There's more...
Sticky Immersion
Dimming the System Ul
Setting the Action Bar as an overlay
Translucent system bars
See also

Chapter 7: Data Storage
Introduction
Storing simple data
Getting ready
How to do it...
How it works...
There's more...

123
129
131
131
131
132
132
135
135

137
137
138
139
139
140
140
140
144
145
147
148
148
149
149
149
152
154
154
155
155
157
157
157
157
158
158
158

159
159
160
162
163
164
164

[v]

Table of Contents

Read and write a text file to internal storage
Getting ready
How to do it...
How it works...
There's more...
Caching files
See also
Read and write a text file to external storage
Getting ready
How to do it...
How it works...
There's more...
Getting public folders
Checking available space
Deleting a file
Working with directories
Preventing files from being included in galleries
See also
Including resource files in your project
Getting ready
How to do it...
How it works...
There's more...
See also
Creating and using an SQLite database
Getting ready
How to do it...
How it works...
There's more...
Upgrading a database
See also
Accessing data in the background using a Loader
Getting ready
How to do it...
How it works...
There's more...
See also
Accessing external storage with scoped directories in Android N
Getting ready
How to do it...
How it works...
There's more...
See also

Chapter 8: Alerts and Notifications
Introduction

165
165
165
167
167
167
168
168
168
169
171
172
172
173
173
173
173
174
174
175
175
179
179
180
180
180
181
186
187
187
187
188
188
188
192
192
192
193
193
193
195
195
195

196
196

[vil

Table of Contents

Lights, Action, and Sound — getting the user's attention! 197
Getting ready 198
How to do it... 198
How it works... 200
There's more... 201
See also 202

Creating a Toast with a custom layout 202
Getting ready 204
How to do it... 204
How it works... 206
See also 206

Displaying a message box with AlertDialog 206
Getting ready 207
How to do it... 207
How it works... 208
There's more... 208

Add an icon 208
Using a list 208
Custom layout 209

Displaying a progress dialog 209
Getting ready 211
How to do it... 211
How it works... 212
There's more... 212

Lights, Action, and Sound Redux using Notifications 212
Getting ready 213
How to do it... 213
How it works... 215
There's more... 216

Adding a button to the notification using addAction() 216
Expanded notifications 217
Lock screen notifications 219
See also 219

Creating a Media Player Notification 220
Getting ready 220
How to do it... 220
How it works... 223
There's more... 224
See also 224

Making a Flashlight with a Heads-Up Notification 224
Getting ready 225
How to do it... 225
How it works... 228
There's more... 229
See also 229

[vii]

Table of Contents

Notifications with Direct Reply
Getting ready
How to do it...
How it works...
See also

Chapter 9: Using the Touchscreen and Sensors
Introduction
Listening for click and long-press events
Getting ready
How to do it...
How it works...
There's more...
Recognizing tap and other common gestures
Getting ready
How to do it...
How it works...
There's more...
See also
Pinch-to-zoom with multi-touch gestures
Getting ready
How to do it...
How it works...
Swipe-to-Refresh
Getting ready
How to do it...
How it works...
There's more...

Listing available sensors — an introduction to the Android Sensor

Framework
Getting ready
How to do it...
How it works...
There's more...
See also

Reading sensor data — using Android Sensor Framework events

Getting ready

How to do it...

How it works...

There's more...
Environment sensors
Position sensors
Motion sensors

See also

Reading device orientation

230
230
230
232
233

234
234
235
235
236
237
237
237
238
238
239
240
240
240
241
241
242
243
244
244
245
246

246
249
249
250
250
250
251
251
251
253
253
253
253
254
255
255

[viii]

Table of Contents

Getting ready
How to do it...
How it works...
There's more...
Getting current device rotation
See also

Chapter 10: Graphics and Animation
Introduction

Scaling down large images to avoid Out of Memory exceptions

Getting ready
How to do it...
How it works...
There's more...
See also

A transition animation — defining scenes and applying a transition

Getting ready
How to do it...
How it works...
There's more...
See also

Creating a Compass using sensor data and RotateAnimation

Getting ready
How to do it...
How it works...
There's more...
See also
Creating a slideshow with ViewPager
Getting ready
How to do it...
How it works...
There's more...
Creating a Setup Wizard
See also
Creating a Card Flip Animation with Fragments
Getting ready
How to do it...
How it works...
See also

Creating a Zoom Animation with a Custom Transition

Getting ready
How to do it...
How it works...
There's more...
Getting the default animation duration
See also

256
256
257
257
257
258

259
259
261
262
263
264
265
265
266
267
267
269
270
270
271
272
272
275
275
276
276
277
277
280
280
280
281
281
282
282
287
287
287
288
288
292
293
293
294

[ix]

Table of Contents

Displaying animated image (GIF/WebP) with the new ImageDecoder

library 294
Getting ready 294
How to do it... 295
How it works... 296
See also 297

Creating a circle image with the new ImageDecoder 297
Getting ready 299
How to do it... 299
How it works... 300
There's more... 301
See also 301

Chapter 11: A First Look at OpenGL ES 302

Introduction 302

Setting up the OpenGL ES environment 303
Getting ready 303
How to do it... 303
How it works... 304

Declaring OpenGL in the Android Manifest 305
Extending the GLSurfaceView class 305
Creating an OpenGL rendered class 305
There's more... 306

Drawing shapes on GLSurfaceView 306
Getting ready 308
How to do it... 308
How it works... 310
There's more... 311
See also 311

Applying the projection and camera view while drawing 312
Getting ready 313
How to do it... 313
How it works... 315
There's more... 315

Moving the triangle with rotation 315
Getting ready 317
How to do it... 317
How it works... 317
There's more... 318

The render mode 318

Rotating the triangle with user input 318
Getting ready 319
How to do it... 319
How it works... 321
There's more... 321
See also 321

[x]

Table of Contents

Chapter 12: Multimedia
Introduction
Playing sound effects with SoundPool
Getting ready
How to do it...
How it works...
There's more...
See also
Playing audio with MediaPlayer
Getting ready
How to do it...
How it works...
There's more...
Playing music in the background

Using hardware volume keys to control your app's audio volume

See also

Responding to hardware media controls in your app

Getting ready
How to do it...
How it works...
There's more...
Checking the hardware type
See also

Taking a photo with the default camera app

Getting ready
How to do it...
How it works...
There's more...
Calling the default video app
See also
Taking a picture using the Camera2 API
Getting ready
How to do it...
How it works...
Setting up the camera preview
Capturing the image
There's more...
See also

Chapter 13: Telephony, Networks, and the Web

Introduction
How to make a phone call
Getting ready
How to do it...
How it works...
See also

322
322
323
323
324
326
327
327
327
328
329
331
331
331
332
332
332
333
333
334
335
335
335
336
336
336
338
339
339
339
340
340
340
347
347
347
348
349

350
350
350
351
351
352
353

[xil

Table of Contents

Monitoring phone call events 353
Getting ready 353
How to do it... 353
How it works... 354
There's more... 355
See also 355

How to send SMS (text) messages 355
Getting ready 356
How to do it... 356
How it works... 358
There's more... 358

Multipart messages 359
Delivery status notification 359
See also 360

Receiving SMS messages 360
Getting ready 360
How to do it... 360
How it works... 362
There's more... 363

Reading existing SMS messages 363
See also 364

Displaying a web page in your application 364
Getting ready 365
How to do it... 365
How it works... 366
There's more... 366

Controlling page navigation 366
How to enable JavaScript 367
Enable built-in zoom 367
See also 367

Checking online status and connection type 367
Getting ready 367
How to do it... 368
How it works... 369
There's more... 369

Monitoring network state changes 370
See also 370

Phone number blocking API 371
Getting ready 371
How to do it... 371
How it works... 374
There's more... 374
See also 375

Chapter 14: Location and Using Geofencing 376

Introduction 376

[xii]

Table of Contents

How to get the device location
Getting ready
How to do it...
How it works...
There's more...
Mock locations
See also
Resolving problems reported with the GoogleApiClient
OnConnectionFailedListener
Getting ready
How to do it...
How it works...
There's more...
See also
Creating and monitoring a Geofence
Getting ready
How to do it...
How it works...
There's more...
See also

Chapter 15: Getting Your App Ready for the Play Store
Introduction
The Android 6.0 Runtime Permission Model
Getting ready
How to do it...
How it works...
There's more...
See also
How to schedule an alarm
Getting ready
How to do it...
How it works...
There's more...
Cancel the alarm
Repeating alarm
See also
Receiving notification of device boot
Getting ready
How to do it...
How it works...
There's more...
See also
Using the AsyncTask for background work
Getting ready
How to do it...

378
378
378
380
381
381
383

383
383
384
386
387
387
387
388
388
391
392
393

394
394
395
395
396
398
399
399
399
401
401
403
403
403
404
404
404
404
405
405
406
406
407
407
408

[xiii]

Table of Contents

How it works... 409
There's more... 409
Parameter types 410
Canceling the task 410

See also 411
Adding speech recognition to your app 411
Getting ready 411
How to do it... 411
How it works... 413
There's more... 414
See also 414
How to add Google sign-in to your app 414
Getting ready 416
How to do it... 416
How it works... 418
There's more... 419
See also 419
Chapter 16: Getting Started with Kotlin 420
Introduction 420
How to create an Android project with Kotlin 421
Getting ready 421
How to do it... 421
How it works... 422
There's more... 423
See also 423
Creating a Toast in Kotlin 424
Getting ready 425
How to do it... 425
How it works... 426
See also 426
Runtime permission in Kotlin 426
Getting ready 426
How to do it... 427
How it works... 429
See also 429
Other Books You May Enjoy 430
Index 433

[xiv]

Preface

Android was first released in 2007 after being acquired by Google, Inc. Initially, Android
was primarily used on a handset. Android 3.0 added features to take advantage of the
growing tablet market.

In 2014, Google announced Android had over 1 billion active users! With over 1 million
applications available on Google Play, there's never been a more exciting time to join the
Android community!

This year, 2018, marks a significant milestone for Android - 10 year anniversary since the
first Android phone was released! And with that, we have a new OS version release as well
- Android Pie. In this new edition of the book, we'll cover features released for the platform
in several new topics across many chapters, as well as updates to existing popular topics to
cover SDK changes. As usual, the Android platform is constantly changing!

Who this book is for

This book assumes basic familiarity with programming concepts and Android
fundamentals. Or, if you are new to Android and learn best by jumping into the code, this
book provides a wide range of the most common tasks. If you are new to Android, you can
start at the beginning of the book and work your way through the topics as they build on
previous knowledge.

As a cookbook, the topics are designed to be stand-along (with noted exceptions), to make
it easy to jump to a particular topic and get the code working in your own application as
quickly as possible.

What this book covers

Chapter 1, Activities, the Activity represents the fundamental building block for most
applications. See examples of the most common tasks such as creating an activity, and
passing control from one activity to another.

Chapter 2, Layouts, while Activities are fundamental to the UlI, the Layout actually defines
what the user sees on the screen. Learn the main layout options available and best to use
cases.

Preface

Chapter 3, Views, Widgets and Styles, explores the basic UI object, from which all layouts are
built. The chapter starts by exploring views and widgets - the basic building block of any
app then goes on to styling the widgets and turning those styles into themes.

Chapter 4, Menus and Action Mode, teaches you how to use menus in Android. Learn how
to create menus and how to control their behavior at runtime, including Action Mode.

Chapter 5, Fragments, shows how to create more flexible user interfaces by reusing Ul
components with Fragments.

Chapter 6, Home Screen Widgets, Search and the System U], takes us to topics outside your
app such as how to create a widget for the Home Screen, adding search functionality UI to
your app and running your app in full-screen mode.

Chapter 7, Data Storage, compares multiple methods Android offers for persisting data,
and when best to use each option.

Chapter 8, Alerts and Notifications, shows multiple options for displaying notifications to
your users. Options range from alerts in your application, using the system notification and
the “Heads Up notification”.

Chapter 9, Using the Touchscreen and Sensors, learn the events for handling the standard
user interactions, such as button clicks, long presses, and gestures. Access the device
hardware sensors to determine orientation changes, device movement, and compass
bearing.

Chapter 10, Graphics and Animation, bring your app to life with animations! Take advantage
of the many options Android offers for creating animations — from simple bitmaps to
custom property animations.

Chapter 11, A first look at OpenGL ES, when you need high-performance 2D and 3D
graphics, turn to the Open Graphics Library. Android supports Open GL, a cross-platform
Graphics APL

Chapter 12, Multimedia - Sounds and Camera, take advantage of the hardware features for
playing audio. Use Android intents to call the default camera application or delve into the
camera APIs to control the camera directly.

Chapter 13, Telephony, Networks, and the Web, use the Telephony functions to initiate a
phone call and to listen for incoming phone events. See how to send and receive SMS (text)
messages. Use the WebView in your application to display web pages and learn to use
Volley to communicate directly with web services.

[2]

Preface

Chapter 14, Location and using Geofencing, shows you how to determine the user's location
and the best-practices so your app doesn’t drain the battery. Use the new Location APIs to
receive location updates and create Geofences.

Chapter 15, Getting your app ready for the Play Store, as your polish your app for the Play
Store, learn how to implement more advanced features such as Alarms, AsynchTask for
background processing and add Google Sign-In to your app.

Chapter 16, Getting started with Kotlin, offers a first-look at the new Android language and
several topics to get you started.

To get the most out of this book

1. You should know basic programming fundamentals. This book assumes the
reader understands basic programming syntax and concepts. Language features
such as i f/then, for next and try/catch should already be familiar and
understood.

2. Download and install the official Android development environment - Android
Studio. Refer to the Hardware-Software List section for details.

Download the example code files

You can download the example code files for this book from your account at
www.packt . com. If you purchased this book elsewhere, you can visit
www . packt . com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

[3]

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Android-9-Development-Cookbook. In case there's an update to the code,
it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://www.packtpub.com/sites/default/files/
downloads/9781788991216_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

<activity
android:name=".MainActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>

[4]

https://github.com/PacktPublishing/Android-9-Development-Cookbook
https://github.com/PacktPublishing/Android-9-Development-Cookbook
https://github.com/PacktPublishing/Android-9-Development-Cookbook
https://github.com/PacktPublishing/Android-9-Development-Cookbook
https://github.com/PacktPublishing/Android-9-Development-Cookbook
https://github.com/PacktPublishing/Android-9-Development-Cookbook
https://github.com/PacktPublishing/Android-9-Development-Cookbook
https://github.com/PacktPublishing/Android-9-Development-Cookbook
https://github.com/PacktPublishing/Android-9-Development-Cookbook
https://github.com/PacktPublishing/Android-9-Development-Cookbook
https://github.com/PacktPublishing/Android-9-Development-Cookbook
https://github.com/PacktPublishing/Android-9-Development-Cookbook
https://github.com/PacktPublishing/Android-9-Development-Cookbook
https://github.com/PacktPublishing/Android-9-Development-Cookbook
https://github.com/PacktPublishing/Android-9-Development-Cookbook
https://github.com/PacktPublishing/Android-9-Development-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781788991216_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991216_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991216_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991216_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991216_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991216_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991216_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991216_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991216_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991216_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991216_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991216_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991216_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991216_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991216_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991216_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991216_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991216_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991216_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991216_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991216_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788991216_ColorImages.pdf

Preface

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel.”

0 Warnings or important notes appear like this.
8 Tips and tricks appear like this.

Sections

In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There’s more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready

This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

How it works...

This section usually consists of a detailed explanation of what happened in the previous
section.

There's more...

This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

[5]

Preface

See also

This section provides helpful links to other useful information for the recipe.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in

and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[6]

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://authors.packtpub.com/
http://www.packt.com/

Activities

This chapter covers the following recipes:

e Declaring an activity

e Starting a new activity with an intent object
¢ Switching between activities

e Passing data to another activity

e Returning a result from an activity

¢ Saving an activity's state

e Storing persistent activity data

e Understanding the activity life cycle

Introduction

The Android SDK provides a powerful tool to program mobile devices, and the best way to
master such a tool is to jump right in. Although you can read this book from beginning to
end, as it is a cookbook, it is specifically designed to allow you to jump to specific tasks and
get the results immediately.

Activities are the fundamental building block of most Android applications as the activity
class provides the interface between the application and screen. Most Android applications
will have at least one activity, if not several (but they are not required). A background
service application will not necessarily require an activity if there is no user interface.

Activities Chapter 1

This chapter explains how to declare and launch activities within an application and how to
manage several activities at once by sharing data between them, requesting results from
them, and calling one activity from within another.

This chapter also briefly explores the intent object, which is often used in conjunction with
activities. Intents can be used to transfer data between activities in your own application, as
well as in external applications, such as those included with the Android operating system
(a common example would be to use an intent to launch the default web browser).

Studio page to download the new Android Studio IDE and the Android
SDK bundle:
http://developer.android.com/sdk/index.html.

0 To begin developing Android applications, head over to the Android

Declaring an activity

Activities and other application components, such as services, are declared in the
AndroidManifest.xml file. Declaring an activity node is how we tell the OS about our
Activity class and how it can be requested. For example, an application will usually
indicate that at least one activity should be visible as a desktop icon and serve as the main
entry point to the application.

Getting ready

Android Studio, now at version 3.2, is used for all the code samples shown in this book. If
you have not already installed it, visit the Android Studio website (see the link in the
previous tip) to install the IDE and the SDK bundle for your platform.

[8]

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

Activities Chapter 1

How to do it...

For this first example, we'll guide you through creating a new project. Android Studio
provides a Quick Start wizard, which makes the process extremely easy. Follow these steps

to get started:

1. Launch Android Studio, which brings up the Welcome to Android Studio
dialog:

@ Welcome to Android Studio

Android Studio

Start a new Android Studio project

Open an existing Android Studio project
Check out project from Version Control ~
Profile or debug APK

Import project (Gradle, Eclipse ADT, etc.)

¥ Import an Android code sample

Configure + Get Help ~

[9]

Activities Chapter 1

2. Click on the Start a new Android Studio project option.

3. Enter an application name; for this example, we used DeclareAnActivity.
Click on Next:

[BON) Create New Project

Create Android Project

Application name

DeclareAnActivity

Company domain

packtpub.com

Project location

/Users/rick/Repository/com.packtpub/Chapter1/DeclareAnActivity

Package name

Include C++ support

v| Include Kotlin support

Cancel

[10]

Activities Chapter 1

4. In the Target Android Devices dialog, you can leave the Phone and Tablet
checkbox selected with the default API 21: Android 5.0 (Lollipop) selection for
the minimum SDK (for this example, it really doesn't matter which API level you
choose, as activities have existed since API level 1). Click on Next:

[BON) Create New Project

Target Android Devices

Select the form factors and minimum SDK

Some devices require additional SDKs. Low API levels target more devices, but offer fewer API features.

v Phone and Tablet
API 21: Android 5.0 (Lollipop)
By targeting API 21 and later, your app will run on approximately 85.0% of devices.

Include Android Instant App support

Wear OS

API 23: Android 6.0 (Marshmallow)
TV

API 21: Android 5.0 (Lollipop)

Android Auto

Android Things

API 24: Android 7.0 (Nougat)

Cancel Previous

[11]

Activities Chapter 1

5. In the Add an Activity to Mobile dialog, select the Empty Activity option. Click
on Next:

[BON) Create New Project

N Add an Activity to Mobile

Add No Activity

Basic Activity Bottom Navigation Activity Empty Activity

€ o ¢
La

Previous

6. In the Configure Activity dialog, you can leave the defaults as provided, but
note that the default activity name is MainActivity. Click on Finish:

[12]

Activities Chapter 1

[BON) Create New Project

Configure Activity

Creates a new empty activity

Activity Name: MainActivity
V| Generate Layout File
Layout Name: activity_main

v/| Backwards Compatibility (AppCompat)

The name of the activity class to create

Cancel Previous Finish

After finishing the wizard, Android Studio will create the project files. For this recipe, the
two files that we will examine are MainActivity.java (which corresponds to the activity
name mentioned in step 6) and AndroidManifest .xml.

If you take a look at the MainActivity. java file, you will realize that it's pretty basic.
This is because we chose the Empty Activity option (in step 5). Now, look at the
AndroidManifest.xml file. This is where we actually declare the activity. Within the
<application> elementis the <activity> element:

<activity android:name=".MainActivity" android:label="@string/app_name">
<intent-filter> <action android:name="android.intent.action.MAIN"/>
<category android:name=

"android.intent.category.LAUNCHER" /> </intent-filter> </activity>

[13]

Activities Chapter 1

When viewing this xml in Android Studio, you may notice that the label
element shows the actual text (DeclareAnActivity in this case) as
defined in the strings.xml resource file.

How it works...

Declaring an activity is a simple matter of declaring the <activity> element and
specifying the name of the activity class with the android: name attribute. By adding the
<activity> element to the Android Manifest, we are specifying our intention to include
this component in our application. Any activities (or any other component for that matter)
that are not declared in the manifest will not be available to the application. Attempting to
access or utilize an undeclared component will result in an exception being thrown at
runtime.

In the preceding code, there is another attribute: android: label. This attribute indicates
the title shown on the screen, as well as the icon if this is the Launcher activity.

For a complete list of available Activity attributes, take a look at this

resource:
http://developer.android.com/guide/topics/manifest/activity—

element.html.

Starting a new activity with an intent object

The Android application model can be seen as a service-oriented one, with activities as
components and intents as the messages sent between them. Here, an intent is used to start
an activity that displays the user's call log, but intents can be used to do many things and
we will encounter them throughout this book.

[14]

http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/manifest/activity-element.html

Activities

Chapter 1

Getting ready

To keep things simple, we are going to use an intent object to start one of Android's built-in
applications rather than create a new one. This only requires a very basic application, so
start a new Android project with Android Studio and call it ActivityStarter.

How to do it...

Again, to keep the example simple so that we can focus on the task at hand, we will create a
function to show an intent in action and call this function from a button on our activity.

Once your new project is created in Android Studio, follow these steps:

1. Open the MainActivity. java class and add the following function:

public void launchIntent (View view) {
Intent intent = new
intent.setData (Uri.parse ("https://www.packtpub.com/"));
startActivity (intent);

Intent (Intent .ACTION_VIEW) ;

e While you are typing this code, Android Studio will give this warning
on View and intent: Cannot resolve symbol 'Intent'.

e This means that you need to add the library reference to the project.
You can do this manually by entering the following code in the import

section:

import
import
import
import
import

android.
android.
android.
android.
android.

content.Intent;

net .Uri;
support.v7.app.AppCompatActivity;
os.Bundle;

view.View;

Alternatively, let Android Studio add the library reference for you: just
click on the code highlighted with a red font and press Alt + Enter.

[15]

Activities Chapter 1

2. Open the activity_main.xml file and replace the <TextVview /> block with
the following XML:

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Launch Browser"
android:id="@+id/button"
android:onClick="launchIntent"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent"/>

activity_main.xml MainActivity.java

<?xml version= encoding= 7>
<android.support.constraint.ConstraintLayout xmlns:
xmlns: =
xmlns: =
:layout_width=
:layout_he
:context=

<Button
: layout_width=
: layout_height=
ttext=
rid=
:onClick=
: layout_constraintBottom_toBottom0f=
:layout_constraintLeft_tolLeft0f=
: layout_constraintRight_toRightOf=
:layout_constraintTop_toTopOf= />

</android.support.constraint.ConstraintLayout>

3. Now, it's time to run the application and see the intent in action. You will need to
either create an Android emulator (in Android Studio, go to
Tools | Android | AVDManager) or connect a physical device to your
computer.

4. When you press the Launch Browser button, you will see the default web
browser open with the URL specified.

[16]

Activities Chapter 1

How it works...

Though simple, this app demonstrates much of the power behind the Android OS. An
intent is a message object. Intents can be used to communicate across your application's
components (such as services and broadcast receivers) as well as with other applications on
the device. In this recipe, we asked the OS to start any app that could handle the data we
specified with the setData () method. (If the user has multiple browsers installed and no
default set, the OS will show a list of apps for the user to choose from.)

To test this on a physical device, you may need to install drivers for your
device (the drivers are specific to the hardware manufacturer). You will
also need to enable Developer Mode on your device. Enabling Developer
Mode varies according to the Android OS version. If you do not see the
Developer Mode option in your device settings, open the About Phone
option and begin tapping Build Number. After three taps, you should see
a Toast message telling you that you are on your way to being a
developer. Four more taps will enable the option.

In this recipe, we created an intent object with the ACTION_VIEW . as what we want to do
(our intention). You may have noticed that when you typed Intent and the

period, Android Studio provided a pop-up list of possibilities (this is the autocomplete
feature), like this:

launchIntent(View view) {
Intent intent = Intent(Intent.)
intent.setData(Uri.parse(EXTRA_ASSIST_CONTEXT
startActivity(intent) createChooser

}
}

createChooser
getIntentOld

gersiaeer
makeMainActivity
makeMainSelectorActivity
makeRestartActivityTask
normalizeMimeType
parseIntent

ACTION_VIEW, along with a URL in the data, indicates that the intention is to view the
website, so the default browser is launched (different data could launch different apps). In
this example, we just want to open a browser with the specified URL, so we call

the startActivity () method. There are other ways to call the intent depending on our
needs. In the Returning a result from an activity recipe, we will use the
startActivityForResult () method.

[17]

Activities Chapter 1

There's more...

It's very common for Android users to download their favorite apps for web browsing,
taking photos, text messaging, and so on. Using Intents, you allow your users to use their
favorite apps instead of trying to reinvent all of this functionality.

See also

To start an activity from a menu selection, refer to the Handling menu selections recipe in
Chapter 4, Menus and Action Mode.

Switching between activities

Often, we will want to activate one activity from within another activity. Although this is
not a difficult task, it will require a little more setting up to be done than the previous
recipes as it requires two activities. We will create two activity classes and declare them
both in the manifest. We'll also create a button, as we did in the previous recipe, to switch
to the activity.

Getting ready

We'll create a new project in Android Studio, just as we did in the previous recipes, and call
this one ActivitySwitcher. Android Studio will create the first activity, ActivityMain,
and automatically declare it in the manifest.

[18]

Activities Chapter 1

How to do it...

1. Since the Android Studio New Project wizard has already created the first
activity, we just need to create the second activity. Open the ActivitySwitcher
project and navigate to File | New | Activity | Empty Activity, as shown in this
screenshot:

Android activity_main.xml MainActivity.java
com. packtpub.activityswitcher
NEVENSEERS
Module
Kotlin File/Class MainActivity AppCompatActivity {
Android Resource File

Link C++ Project with Gradle

X) @0override
Android Resource Directory onCreate(Bundle savedInstanceState) {
Copy Path Sample Data Directory .onCreate(savedInstanceState)
. setContentView(R. layout.)
File
Scratch File
Package

> > |
> GG Paste
Find in Path...
Replace in Path...
Analyze C++ Class
C/C++ Source File
Refactor C/C++ Header File

Add to Favorites
Show Image Thumbnails

Image Asset
Vector Asset

Reformat Code Singleton

Optimize Imports Gradle Kotlin DSL Build Script

Local History Gradle Kotlin DSL Settings

D Synchronize ‘app' Edit File Templates...

Reveal in Finder AIDL

Activity
Android Auto
Open Module Settings Folder
Load/Unload Modules... Fragment

Compare With... Gallery...

B Android TV Activity

Google
Other
Service
Ul Component
Wear
Widget
v @ Build: completed successfully XML
¥ @ Run build Resource Bundle

> @ Load build

@ Create Gist... Basic Activity
i Bottom Navigation Activity
Empty Activity

Fullscreen Activity
B Login Activity
B Master/Detail Flow
m Navigation Drawer Activity
2 ey TRt ol
> @ Calculate task graph
> @ Run tasks Batch Drawable Import i Tabbed Activity

Multisource-Drawable

vV VvV VvV VYV VvV VYyVYVYVYYVYY

[19]

Activities Chapter 1

2. In the New Android Activity dialog, you can leave the default Activity Name as
is, or change it to SecondActivity, as follows:

[NON] New Android Activity

Configure Activity

Android Studio

Creates a new basic activity with an app bar.

The name of the activity class to create

Activity Name: SecondActivity|

Layout Name: activity_second

Title: SecondActivity

Launcher Activity

Use a Fragment

Hierarchical Parent:
Package name: com.packtpub.activityswitcher
Source Language: NEVE]

Target Source Set: main

The name of the activity class to create

Cancel Finish

3. Open the MainActivity.java file and add the following function:

public void onClickSwitchActivity (View view) {
Intent intent = new Intent (this, SecondActivity.class);
startActivity (intent);

[20]

Activities Chapter 1

4. Now, open the activity_main.xml file located in the res/layout folder and
replace the <TextVview /> with the following XML to create the button:

<Button
android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerVertical="true"
android:layout_centerHorizontal="true"
android:text="Launch Second Activity"
android:onClick="onClickSwitchActivity"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_tolLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent"/>

5. You can run the code at this point and see the second activity open. We're going
to go further and add a button to SecondActivity to close it, which will bring
us back to the first activity. Open the SecondActivity. java file and
add this function:

public void onClickClose (View view) {
finish();

}

6. Finally, add the Close button to the SecondActivity layout. Open
the activity_second.xml file and add the following <Button> element to the
auto-generated ConstraintLayout:

<Button
android:id="@+id/buttonClose"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Close"
android:layout_centerVertical="true"
android:layout_centerHorizontal="true"
android:onClick="onClickClose"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_tolLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent"/>

7. Run the application on your device or emulator and see the buttons in action.

[21]

Activities Chapter 1

How it works...

The real work of this exercise is in the onClickSwitchActivity () method from step 3.
This is where we declare the second activity for the Intent using SecondActivity.class.
We went one step further by adding the close button to the second activity to show a
common real-world situation: launching a new activity, then returning to the original
calling activity. This behavior is accomplished in the onClickClose () function. All it does
is call £inish (), but that tells the OS that we're done with the activity. Finish doesn't
actually return us to the calling activity (or any specific activity for that matter); it just
closes the current activity and relies on the application's back stack to show the last
activity. If we want a specific activity, we can again use the Intent object and specify the
activity class name when creating the Intent.

This activity switching does not make a very exciting application. Our activity does nothing
but demonstrates how to switch from one activity to another, which of course will form a
fundamental aspect of almost any application that we develop.

If we had manually created the activities, we would need to add them to the manifest.
Using the New Android Activity wizard will automatically add the necessary elements to
the Android Manifest file. To see what Android Studio did for you, open the
AndroidManifest .xml file and look at the <application> element:

<activity android:name=".MainActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name=".SecondActivity"></activity>

One thing to note in the preceding auto-generated code is that the second activity does not
have the <intent-filter> element. The main activity is generally the entry point when
starting the application. That's why MAIN and LAUNCHER are defined so that the system will
know which activity to launch when the application starts.

See also

¢ To learn more about embedding widgets such as the Button, visit chapter 2,
Views, Widgets, and Styles

[22]

Activities Chapter 1

Passing data to another activity

The intent object is defined as a messaging object. As a message object, its purpose is to
communicate with other components of the application. In this recipe, we'll show you
how to pass information with the intent and how to get it out again.

Getting ready

This recipe will pick up from where the previous one ended. We will call this project
SendData

How to do it...

Since this recipe is building on the previous recipe, most of the work is already done. We'll
add an EditText element to the main activity so that we have something to send to
SecondActivity. We'll use the (auto-generated) TextView view to display the message.
The following are the complete steps:

1. Open activity_main.xml and add the following <EditText> element above
the button:

<EditText
android:id="@+id/editTextData"
android:layout_width="match_parent"
android:layout_height="wrap_content"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent"
app:layout_constraintBottom_toTopOf="@+id/button" />

The <Button> element that we created in the previous recipe doesn't change.

2. Now, open the MainActivity. java file and change the
onClickSwitchActivity () method as follows:

public void onClickSwitchActivity (View view) {
EditText editText = (EditText)findViewById(R.id.editTextData);
String text = editText.getText ().toString();
Intent intent = new Intent (this, SecondActivity.class);
intent.putExtra (Intent.EXTRA_TEXT, text);
startActivity (intent);

[23]

Activities Chapter 1

3. Next, open the activity_second.xml file and add the following <TextView>
element:

<TextView
android:id="Q@+id/textViewText"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent"
app:layout_constraintBottom_toTopOf="@id/buttonClose"/>

4. The last change is to edit the second activity to look for this new data and display
it on the screen. Open SecondActivity. java and edit onCreate () as follows:

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.activity_second);
TextView textView = (TextView) findViewById(R.id.textViewText);
if (getIntent () != null &&
getIntent () .hasExtra (Intent .EXTRA_TEXT)) {
textView.setText (getIntent () .getStringExtra (Intent .EXTRA_TEXT)) ;
}
}

5. Now, run the project. Type some text in the main activity and press Launch
Second Activity to see it send the data.

How it works...

As expected, the Intent object is doing all the work. We created an intent just as in the
previous recipe and then added some extra data. Did you notice the putExtra () method
call? In our example, we used the already defined Intent .EXTRA_TEXT as the identifier,
but we didn't have to. We can use any key we want (you've seen this concept before if
you're familiar with name/value pairs).

The key point about using name/value pairs is that you have to use the same name to get
the data back out. That's why we used the same key identifier when we read the extra data
with getStringExtra ().

The second activity was launched with the intent that we created, so it's simply a matter of
getting the intent and checking for the data sent along with it. We do this in onCreate ():

textView.setText (getIntent () .getStringExtra (Intent .EXTRA_TEXT));

[24]

Activities Chapter 1

There's more...

We aren't limited to just sending St ring data. The intent object is very flexible and already
supports basic data types. Go back to Android Studio and click on the putExtra method.
Then, hit Ctrl and the spacebar. Android Studio will bring up the auto-complete list so that
you can see the different data types that you can store.

Returning a result from an activity

Being able to start one activity from another is very useful and commonly used, but there
are times when we need to know the result from the called activity. The
startActivityForResult () method provides the solution.

Getting ready

Returning a result from an activity is not very different from the way we just called the
activity in the previous recipes. You can either use the project from the previous recipe or
start a new project and call it Gett ingResults. Either way, once you have a project with
two activities and the code needed to call the second activity, you're ready to begin.

How to do it...

There are only a few changes needed to get the results:

1. First of all, open MainActivity. java and add the following constant to the
class:

public static final String REQUEST_RESULT="REQUEST_RESULT";

2. Next, change the way the intent is called by modifying the
onClickSwitchActivity () method to expect a result:

public void onClickSwitchActivity (View view) {
EditText editText = (EditText)findViewById(R.id.editTextData);
String text = editText.getText ().toString();
Intent intent = new Intent (this, SecondActivity.class);
intent.putExtra (Intent.EXTRA_TEXT, text);
startActivityForResult (intent,1);

[25]

Activities Chapter 1

3. Then, add this new method to receive the result:

@Override
protected void onActivityResult (int requestCode, int resultCode,
Intent data) {

super.onActivityResult (requestCode, resultCode, data);

if (resultCode==RESULT_OK) {

Toast .makeText (this,
Integer.toString(data.getIntExtra (REQUEST_RESULT,
0)), Toast.LENGTH_LONG) .show();

}

}

4. Finally, modify onClickClose in SecondActivity.java to set the return
value as follows:

public void onClickClose (View view) {
Intent returnIntent = new Intent();
returnIntent.putExtra (MainActivity.REQUEST_RESULT, 42);
setResult (RESULT_OK, returnIntent);
finish();

How it works...

As you can see, getting the results back is relatively straightforward. We just call the intent
with startActivityForResult, indicating we want a result back. We set up the
onActivityResult () callback handler to receive the results. Finally, we make sure that
the second activity returns a result with setResult () before closing the activity. In this
example, we are just setting a result with a static value. We use a simple Toast to display
the result back to the user.

It's good practice to check the result code to make sure that the user didn't cancel the action.
It's technically an integer, but the system uses it as a Boolean value. Check for either
RESULT_OK or RESULT_CANCEL and proceed accordingly. In our example, the second
activity doesn't have a cancel button, so why bother to check? What if the user hits the back
button? Android will set the result code to RESULT_CANCEL and the intent to null, which
would cause our code to throw an exception if we attempt to access the null result.

We made use of the Toast object, which displays a convenient pop-up message to
unobtrusively notify the user. It also functions as a handy method for debugging as it
doesn't need a special layout or screen space.

[26]

Activities Chapter 1

There's more...

Besides the result code, onActivityResults () also includes a Request Code. Are you
wondering where that came from? It is simply the integer value that was passed with the
startActivityForResult () call, which takes this form:

startActivityForResult (Intent intent, int requestCode);

We didn't check the request code because we knew we had only one result to handle, but in
non-trivial applications with several activities, this value can be used to identify which
Activity is returning a result.

If startActivityForResult () is called with a negative request code, it
will behave the same as if we used startActivity (), thatis, it will not
return a result.

See also

¢ To learn more about creating new activity classes, refer to the Switching between
activities recipe

¢ For more information about Toasts, check out the Making a Toast recipe in
Chapter 8, Alerts and Notifications

Saving an activity's state

The mobile environment is very dynamic, with users changing tasks much more often than
on desktops. With generally fewer resources on a mobile device, it should be expected that
your application will be interrupted at some point. It's also very possible that the system
will shut down your app completely to give additional resources to the task at hand. It's the
nature of mobiles.

A user might start typing something in your app, be interrupted by a phone call, or switch
over to send a text message, and by the time they get back to your app, the OS may have
closed your app completely to free up the memory. To provide the best user experience,
you need to expect such behavior and make it easier for your user to resume from where
they left off. The good thing is that the Android OS makes this easier by providing
callbacks to notify your app of state changes.

[27]

Activities Chapter 1

Simply rotating your device will cause the OS to destroy and recreate
your activity. This might seem a bit heavy-handed, but it's done for a
good reason: it's very common to have different layouts for portrait and
landscape, so this ensures that your app is using the correct resources.

In this recipe, you'll see how to handle the onSaveInstanceState () and
onRestorelInstanceState () callbacks to save your application's state. We will
demonstrate this by creating a counter variable and increment it each time the Count
button is pressed. We will also have an EditText and a TextView widget to see their
default behavior.

Getting ready

Create a new project in Android Studio and name it StateSaver. We need only a single
activity, so the auto-generated main activity is sufficient. However, we will need a few
widgets, including EditText, Button, and TextView. Their layout (in
activity_main.xml) will be as follows:

<EditText
android:id="@+id/editText"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:layout_alignParentStart="true"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent"
app:layout_constraintBottom_toTopOf="@+id/button"/>

<Button
android:id="Q@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerInParent="true"
android:text="Count"
android:onClick="onClickCounter"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent"
app:layout_constraintBottom_toBottomOf="parent"/>

<TextView
android:id="Q@+id/textViewCounter"
android:layout_width="wrap_content"

[28]

Activities Chapter 1

android:layout_height="wrap_content"
android:layout_below="@id/button"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toBottomOf="@id/button"
app:layout_constraintBottom_toBottomOf="parent"/>

How to do it...

Perform the following set of steps:

1. To keep track of the counter, we need to add a global variable to the project,
along with a key for saving and restoring. Add the following code to the
MainActivity.java class:

static final String KEY_COUNTER = "COUNTER";
private int mCounter=0;

2. Then, add the code needed to handle the button press; it increments the counter
and displays the result in the Textview widget:

public void onClickCounter (View view) {

mCounter++;
((TextView) findViewById (R.id.textViewCounter))
.setText ("Counter: " + Integer.toString(mCounter));

}

3. To receive notifications of application state change, we need to add the
onSaveInstanceState () and onRestoreInstanceState () methods to our
application. Open MainActivity. java and add the following:

@Override

protected void onSaveInstanceState (Bundle outState) {
super.onSavelnstanceState (outState);
outState.putInt (KEY_COUNTER,mCounter) ;

@Override

protected void onRestorelInstanceState (Bundle savedInstanceState) {
super.onRestoreInstanceState (savedInstanceState);
mCounter=savedInstanceState.getInt (KEY_COUNTER) ;

}

4. Run the program and try changing the orientation to see how it behaves (if
you're using the emulator, Ctrl + F11 will rotate the device).

[29]

Activities Chapter 1

How it works...

All activities go through multiple states during their lifetime. By setting up callbacks to
handle the events, we can have our code save important information before the activity is
destroyed.

Step 3 is where the actual saving and restoring occurs. The OS sends a Bundle (a data object
that also uses name/value pairs) to the methods. We use the onSaveInstanceState ()
callback to save the data and pull it out in the onRestoreInstanceState () callback.

But wait! Did you try typing text in the Edit Text view before rotating the device? If so,
you'd have noticed that the text was also restored, but we don't have any code to handle
that view. By default, the system will automatically save the state, provided it has a unique
ID.

Note that if you want Android to automatically save and restore the state
of a view, it must have a unique ID (specified with the android:id=
attribute in the layout). Bur beware: not all view types automatically save
and restore the state of a view.

There's more...

The onRestoreInstanceState () callback is not the only place where the state can be
restored. Look at the signature of onCreate ():

onCreate (Bundle savedInstanceState)

Both methods receive the same Bundle instance named savedInstanceState. You could
move the restore code to the onCreate () method and it would work the same. But one
catch is that the savedInstanceState bundle will be null if there is no data, such as
during the initial creation of the activity. If you want to move the code from

the onRestoreInstanceState () callback, just check to make sure that the data is not
null. Here's how that code would look:

if (savedInstanceState!=null) {
mCounter = savedInstanceState.getInt (KEY_COUNTER) ;

}

[30]

Activities Chapter 1

See also

o The Storing persistent activity data recipe will introduce persistent storage
e Take alook at chapter 7, Data Storage, for more examples on how to persist data

e The Understanding the activity life cycle recipe explains the Android Activity life
cycle

Storing persistent activity data

Being able to store information about our activities on a temporary basis is very useful, but
more often than not, we will want our application to remember information across multiple
sessions.

Android supports SQLite, but that could be a lot of overhead for simple data, such as the
user's name or a high score. Fortunately, Android also provides a lightweight option for

these scenarios with SharedPreferences. (In a real-world application, you'll likely use

both options for saving data.)

Getting ready

You can either use the project from the previous recipe or start a new project and call it
PersistentData. In the previous recipe, we saved mCounter in the session state. In this
recipe, we'll add a new method to handle onPause () and save mCounter to
SharedPreferences. We'll restore the value in onCreate ().

How to do it...

We have only two changes to make, and both are in MainActivity. java:
1. Add the following onPause () method to save the data before the activity closes:

@Override

protected void onPause () {
super.onPause () ;
SharedPreferences settings = getPreferences (MODE_PRIVATE) ;
SharedPreferences.Editor editor = settings.edit ();
editor.putInt (KEY_COUNTER, mCounter);
editor.commit () ;

[31]

Activities Chapter 1

2. Then, add the following code at the end of onCreate () to restore the counter:

SharedPreferences settings = getPreferences (MODE_PRIVATE) ;
int defaultCounter = 0;
mCounter = settings.getInt (KEY_COUNTER, defaultCounter);
((TextView) findViewById (R.id.textViewCounter))

.setText ("Counter: " + Integer.toString(mCounter));

3. Run the program and try it out.

How it works...

As you can see, this is very similar to saving state data, because it also uses name/value
pairs. Here, we just stored an int, but we can just as easily store one of the other primitive
data types. Each data type has equivalent getters and setters, for example,
SharedPreferences.getBoolean () or SharedPreferences.setString().

Saving our data requires the services of SharedPreferences.Editor. This is evoked with
edit () and accepts remove () and clear () procedures, as well as setters such as
putInt (). Note that we must conclude any changes with the commit () statement.

There's more...

There is a slightly more sophisticated variant of the getPreferences () accessor:
getSharedPreferences (). It can be used to store multiple preference sets.

Using more than one preference file

Using getSharedPreferences () is no different from using its counterpart, but it allows
for more than one preference file. It takes the following form:

getSharedPreferences (String name, int mode)

Here, name is the file. The mode can be either MODE_PRIVATE, MODE_WORLD_READABLE, Or
MODE_WORLD_WRITABLE and describes the file's access levels.

See also

e Chapter 7, Data Storage, for more examples on data storage

[32]

Activities Chapter 1

Understanding the activity life cycle

As mobile hardware continues to improve, so too does the demand placed on that
hardware. With increasingly more powerful applications and user multi-tasking, the
already limited resources can be quite challenging. The Android OS has many features built
in to help the user get the best performance from their device, such as limiting background
processes, disabling application notifications, and allowing data limits. The OS will also
manage application lifetime based on foreground tasks. If your application is in the
foreground, the life cycle is straightforward. But as soon as your user switches tasks and
your application is moved to the background, understanding the Android application life
cycle becomes very important.

The following diagram shows the stages through which an activity passes during its
lifetime:

Activity Starts

onStart()

v
onResume()
Process
is Killed

Activity is
4 Running

User Navigates
Back to the
Activity

7y

onRestart()

Another Activity
Comes to
the Foreground

Other Activity Returns
Applications to the
Need Memory Foreground

Activity is no
longer visible

A

Activity Returns
to the
Foreground

onStop()

onDestroy()

Activity is
Shut Down

[33]

Activities Chapter 1

Along with the stages, the diagram also shows the methods that can be overridden. As you
can see, we've already utilized most of these methods in the preceding recipes. Hopefully,
getting the big picture will help your understanding.

Getting ready

Create a new project in Android Studio with a Blank Activity, and call it
ActivityLifecycle. We will use the (auto-generated) TextVview method to display the
state information.

How to do it...

To see the application move through the various stages, we will create methods for all
the stages:

1. Open activity_main.xml and add an ID to the auto-generated TextView:
android:id="@+id/textViewState"

2. The remaining steps will be in MainActivity. java. Modify the onCreate ()
method to set the initial text:

((TextView) findViewById (R.id.textViewState)) .setText ("onCreate()n")

3. Add the following methods to handle the remaining events:

@Override
protected void onStart () {
super.onStart () ;
((TextView) findViewById(R.id.textViewState)) .append("onStart ()\n");
3

@Override
protected void onResume () {
super.onResume () ;
((TextView) findViewById (R.id.textViewState)) .append ("onResume () \n")
14

}

@Override
protected void onPause () {
super.onPause () ;
((TextView) findViewById(R.id.textViewState)) .append ("onPause () \n");

[34]

Activities Chapter 1

}

@Override
protected void onStop () {
super.onStop () ;
((TextView) findViewById(R.id.textViewState)) .append ("onStop () \n");
}

@Override
protected void onRestart () {
super.onRestart () ;
((TextView) findViewById (R.id.textViewState)) .append ("onRestart () \n"
)i
}

@Override
protected void onDestroy () {
super.onDestroy () ;
((TextView) findViewById(R.id.textViewState)) .append ("onDestroy () \n"
)i
}

4. Run the application and observe what happens when the activity is interrupted
by pressing the Back and Home keys. Try other actions, such as task switching, to
see how they impact your application.

How it works...

Our activity can exist in one of these three states: active, paused, or stopped. There is also
a fourth state, destroyed (but there's no guarantee the OS will ever call it):

¢ An activity is in the act ive state when its interface is available for the user. It
persists from onResume () until onPause (), which is brought about when
another activity comes to the foreground. If this new activity does not entirely
obscure our activity, then ours will remain in the paused state until the new
activity is finished or dismissed. It will then immediately call onResume () and
continue.

¢ When a newly started activity fills the screen or makes our activity invisible, then
our activity will enter the st opped state, and resumption will always invoke a
call to onRestart ().

e When an activity is in either the paused or stopped state, the operating system

can (and will) remove it from the memory when the memory is low or when
other applications demand it.

[35]

Activities Chapter 1

e It is worth noting that we never actually see the results of the onDestroy ()
method, as the activity is removed by this point. If you want to explore these
methods further, then it is well worth employing Activity.isFinishing() to
see whether the activity is really finishing before onDestroy () is executed, as
seen in the following snippet:

@Override
public void onPause () {
super.onPause () ;
((TextView) findViewById(R.id.textViewState)) .append ("onPause () \n");
if (isFinishing()){
((TextView) findViewById (R.id.textViewState)) .append ("
finishing");
}
}

When implementing these methods, always call the superclass before
doing any work.

There's more...

To shut down an activity, directly call its finish () method, which in turn calls
onDestroy (). To perform the same action from a child activity, use
finishFromChild (Activity child), where child is the calling subactivity.

It is often useful to know whether an activity is being shut down or merely paused, and the
isFinishing (boolean) method returns a value that indicates which of these two states
the activity is in.

[36]

Layouts

In this chapter, we will cover the following topics:

¢ Defining and inflating a layout
e Using RelativeLayout
e Using LinearLayout

Creating tables—TableLayout and GridLayout
e RecyclerView replaces ListView

Changing layout properties during runtime

Introduction

In Android, the user interface is defined in a layout. A layout can be declared in XML or
created dynamically in code. (It's recommended to declare the layout in XML rather than in
code to keep the presentation layer separate from the implementation layer.) A layout can
define an individual ListItem, a fragment, or even the entire activity. Layout files are
stored in the /res/layout folder and referenced in code with the following identifier:
R.layout.<filename_without_extension>.

Android provides a useful variety of Layout classes that contain and organize individual
elements of an activity (such as buttons, checkboxes, and other Views). The ViewGroup
object is a container object that serves as the base class for Android's family of Layout
classes. The Views placed in a layout form a hierarchy, with the topmost layout being the
parent.

Layouts Chapter 2

Android provides several built-in layout types designed for specific purposes, such as
RelativeLayout, which allows Views to be positioned with respect to other elements. The
LinearLayout can stack Views or align them horizontally, depending on the orientation
specified. The TableLayout can be used for laying out a grid of Views. Within various
layouts, we can also justify Views with Gravity and provide proportional size with
Weight control. Layouts and ViewGroups can be nested within each other to create
complex configurations. Over a dozen different Layout objects are provided for managing
widgets, lists, tables, galleries, and other display formats, plus you can always derive from
base classes to create your own custom layouts.

Google has released a new layout called ConstraintLayout. This layout is similar to
ReleativeLayout in that Views are positioned relative to each other and to the parent, as
well as a new element called guidelines. The focus of the layout is to keep the layout itself
as flat as possible (deeply nested layouts can cause performance issues) and for a visual
layout editor. Giving the best visual editing experience while keeping the editor in sync
with the underlying class is such a priority for Google, that the same team develops

both. ConstraintLayout is now the default layout created when using the Android
Studio and is the basis for most of the examples in this book. (The other layouts are still
available and are used when their layout provides the cleanest XML.) Here's the link to the
ConstraintLayout class, but for the best experience, it's recommended to use the visual
editor in Android Studio: https://developer.android.com/reference/android/support/

constraint/ConstraintLayout.

Defining and inflating a layout

When using the Android Studio wizard to create a new project, it automatically creates the
res/layout/activity_main.xml file (as shown in the following screenshot). It then
inflates the XML file in the onCreate () callback with

setContentView (R.layout.activity_main):

[38]

https://developer.android.com/reference/android/support/constraint/ConstraintLayout
https://developer.android.com/reference/android/support/constraint/ConstraintLayout
https://developer.android.com/reference/android/support/constraint/ConstraintLayout
https://developer.android.com/reference/android/support/constraint/ConstraintLayout
https://developer.android.com/reference/android/support/constraint/ConstraintLayout
https://developer.android.com/reference/android/support/constraint/ConstraintLayout
https://developer.android.com/reference/android/support/constraint/ConstraintLayout
https://developer.android.com/reference/android/support/constraint/ConstraintLayout
https://developer.android.com/reference/android/support/constraint/ConstraintLayout
https://developer.android.com/reference/android/support/constraint/ConstraintLayout
https://developer.android.com/reference/android/support/constraint/ConstraintLayout
https://developer.android.com/reference/android/support/constraint/ConstraintLayout
https://developer.android.com/reference/android/support/constraint/ConstraintLayout
https://developer.android.com/reference/android/support/constraint/ConstraintLayout
https://developer.android.com/reference/android/support/constraint/ConstraintLayout
https://developer.android.com/reference/android/support/constraint/ConstraintLayout
https://developer.android.com/reference/android/support/constraint/ConstraintLayout
https://developer.android.com/reference/android/support/constraint/ConstraintLayout

Layouts

Chapter 2

app

 Andreid v IR

1 manifests
[java

i res

& Gradlz Scripts

drawable
layout

] - -
B3 activity_mainzorml

FREAL
mipmap
values

For this recipe, we will create two slightly different layouts and switch between them with

a button.

Getting ready

Create a new project in Android Studio and call it InflateLayout. Once the project is
created, expand the res/layout folder so we can edit the activity _main.xml file. Use
the default Phone & Tablet settings on the Target Android devices and select Empty
Activity on the Add an Activity to Mobile dialog.

How to do it...

1. Edit the res/layout/activity_main.xml file so it includes a button as

defined here:

<Button

android:
android:
android:
android:
android:
android:
android:

id="@+id/buttonLeft"
layout_width="wrap_content"
layout_height="wrap_content"
layout_alignParentLeft="true"
layout_centerVertical="true"
onClick="onClickLeft"
text="Left Button"

app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintHorizontal bias="0.0"
app:layout_constraintLeft_toLeftOf="parent"

[39]

Layouts Chapter 2

app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent"/>

2. Now make a copy of activity_main.xml and callit activity_main2.xml.
Change the button so it matches the following:

<Button
android:id="Q@+id/buttonLeft"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentLeft="true"
android:layout_centerVertical="true"
android:onClick="onClickRight"
android:text="Right Button"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintHorizontal_bias="1.0"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent"/>

3. OpenMainActivity. java and add the following two methods to handle the
button clicks:

public void onClickLeft (View view) {
setContentView (R.layout.activity_main2);

public void onClickRight (View view) {
setContentView (R.layout.activity_main);

}

4. Run this application on a device or emulator to see it in action.

How it works...

The key here is the call to setContentView (), which we have come across before in the
autogenerated onCreate () code. Just pass a layout ID to setContentView () and it
automatically inflates the layout.

This code is meant to make the concept easy to understand but would be overkill for
simply changing the property of a button (in this example, we could just change the
alignment on the button click). Inflating the layout is usually needed once, in the
onCreate () method, but there are times when you may want to manually inflate a layout,
as we did here. (If you were manually handling orientation changes, it would be a good
example.)

[40]

Layouts Chapter 2

There's more...

As well as identifying a layout using a resource ID, as we did here,
setContentView () can also take a View as an argument, for example:

findViewById(R.id.myView)
setContentView (myView) ;

See also

As mentioned previously, read about Fragments in Chapter 5, Fragments, for creating
reusable screen components for your activities.

Using RelativeLayout

As mentioned in the Introduction section, RelativeLayout allows Views to be position-
relative to each other and the parent. RelativeLayout is particularly useful for reducing
the number of nested layouts, which is very important for reducing memory and
processing requirements.

Getting ready

Create a new project and call it RelativeLayout. Android Studio defaults to using a
ConstraintLayout , which we will replace with a RelativeLayout for this example. Use
the default Phone & Tablet settings on the Target Android devices and select Empty
Activity on the Add an Activity to Mobile dialog.

How to do it...

1. Open the res/layout/activity_main.xml file and change it as follows:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent" >
<TextView
android:id="Q@+id/textViewl"

[41]

Layouts Chapter 2

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Centered"
android:layout_centerVertical="true"
android:layout_centerHorizontal="true" />
<TextView
android:id="Q@+id/textView2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Below Left"
android:layout_below="@+id/textViewl"
android:layout_toLeftOf="@id/textViewl" />
<TextView
android:id="Q@+id/textView3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Bottom Right"
android:layout_alignParentBottom="true"
android:layout_alignParentRight="true" />
</Relativelayout>

2. Run the code, or view the layout in the Design tab

How it works...

This is a very straightforward exercise but it demonstrates several of the RelativeLayout
Opﬁons:layout_centerVertical,layout_centerHorizontal,layout_below,
layout_alignParentBottom, and so on.

The most commonly used RelativeLayout layout attributes include the following;:

e layout_below: This View should be below the View specified.

® layout_above: This View should be above the View specified.

e layout_alignParentTop: Align this View to the top edge of the parent.

e layout_alignParentBottom: Align this View to the bottom edge of the parent.
e layout_alignParentLeft: Align this View to the left edge of the parent.

e layout_alignParentRight: Align this View to the right edge of the parent.

® layout_centerVertical: Center this View vertically within the parent.

® layout_centerHorizontal: Center this View horizontally within the parent.

e layout_center: Center this View both horizontally and vertically within the
parent.

[42]

Layouts Chapter 2

For the complete list of RelativeLayout parameters,
visit http://developer.android.com/reference/android/widget /Relat

iveLayout.LayoutParams.html.

There's more...

In contrast to what we saw earlier, here is an example using LinearLayout just to
center TextView (creating the same effect as the layout_center parameter of
RelativeLayout):

<?xml version="1.0" encoding="utf-8"7?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="center">
<LinearLayout
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:gravity="center" >
<TextView
android:id="@+id/imageButton_speak"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Centered" />
</LinearLayout>
</LinearLayout>

Notice this layout is one level deeper than the equivalent RelativeLayout (which

is LinearLayout nested within the parent LinearLayout.) Though a simple example, it's
a good idea to avoid unnecessary nesting as it can impact performance, especially when a
layout is being repeatedly inflated (such as ListItem).

See also

The next recipe, Using LinearLayout, will give you an alternative layout.

See the Optimizing layouts with the Hierarchy Viewer recipe for more information on efficient
layout design.

[43]

http://developer.android.com/reference/android/widget/RelativeLayout.LayoutParams.html
http://developer.android.com/reference/android/widget/RelativeLayout.LayoutParams.html

Layouts Chapter 2

Using LinearLayout

Another common layout option is LinearLayout, which arranges the child Views in a
single column or single row, depending on the orientation specified. The default orientation
(if not specified) is vertical, which aligns the Views in a single column.

LinearLayout has a key feature not offered in RelativeLayout—the weight attribute.
We can specify a layout_weight parameter when defining a View to allow the View to
dynamically size based on the available space. Options include having a View fill all the
remaining space (if a View has a higher weight), having multiple Views fit within the given
space (if all have the same weight), or spacing the Views proportionally by their weight.

We will create LinearLayout with three EditText Views to demonstrate how the weight
attribute can be used. For this example, we will use three EditText Views-one to enter a
To Address parameter, another to enter Subject, and the third to enter Message. The To
and Subject Views will be a single line each, with the remaining space given to the
Message View.

Getting ready

Create a new project and call it LinearLayout. We will replace the default
RelativeLayout created in activity_main.xml with LinearLayout. Use the
default Phone & Tablet settings on the Target Android devices and select Empty
Activity on the Add an Activity to Mobile dialog.

How to do it...
1. Open the res/layout/activity_main.xml file and replace it as follows:

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent">
<EditText
android:id="@+id/editTextTo"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:hint="To" />
<EditText
android:id="Q@+id/editTextSubject"

[44]

Layouts Chapter 2

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:hint="Subject" />
<EditText
android:id="@+id/editTextMessage"
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="1"
android:gravity="top"
android:hint="Message" />
</LinearLayout>

2. Run the code, or view the layout in the Design tab.

How it works...

When using vertical orientation with LinearLayout, the child Views are created in a single
column (stacked on top of each other). The first two Views use the
android:layout_height="wrap_content™ attribute, giving them a single line each. To
specify the height, editTextMessage uses the following:

android:layout_height="0dp"
android:layout_weight="1"

When using LinearLayout, it tells Android to calculate the height based on the weight. A
weight of 0 (the default if not specified) indicates the View should not expand. In this
example, editTextMessage is the only View defined with a weight, so it alone will
expand to fill any remaining space in the parent layout.

When using the horizontal orientation, specify
android:layout_height="0dp" (along with the weight) to have
Andproid calculate the width.

It might be helpful to think of the weight attribute as a percentage. In this case, the total
weight defined is 1, so this View gets 100 percent of the remaining space. If we assigned a
weight of 1 to another View, the total would be 2, so this View would get 50 percent of the
space. Try adding a weight to one of the other Views (make sure to change the height to
0dp as well) to see it in action.

[45]

Layouts Chapter 2

If you added a weight to one (or both) of the other Views, did you notice the text position?
Without specifying a value for gravity, the text just remains in the center of the View
space. The editTextMessage View specifies android:gravity="top", which forces the
text to the top of the View.

There's more...

Multiple attribute options can be combined using bitwise OR. (Java uses the pipe character
(1) for or). For example, we could combine two gravity options to both align along the top
of the parent and center within the available space:

android:layout_gravity="top|center"

It should be noted that the layout_gravity and gravity tags are not the same thing.
Where layout_gravity dictates where in its parent a View should lie, gravity controls
the positioning of the contents within a View, for example, the alignment of text on a
button.

See also

The previous recipe, Using RelativeLayout.

Creating tables - TableLayout and
GridLayout

When you need to create a table in your Ul, Android provides two convenient layout
options: TableLayout (along with TableRow) and GridLayout (added in API 14). Both
layout options can create similar-looking tables, but each using a different approach. With
TableLayout, rows and columns are added dynamically as you build the table. With
GridLayout, row and column sizes are defined in the layout definition.

Neither layout is better, it's just a matter of using the best layout for your needs. We'll
create a 3 x 3 grid using each layout to give a comparison, as you could easily find yourself
using both layouts, even within the same application.

[46]

Layouts

Chapter 2

Getting ready

To stay focused on the layouts and offer an easier comparison, we will create two separate
applications for this recipe. Create two new Android projects, the first called TableLayout
and the other called GridLayout. Use the default Phone & Tablet settings on the Target
Android devices and select Empty Activity on the Add an Activity to Mobile dialog.

How to do it...

1.

2.

Starting with the TableLayout project, open activity_main.xml. Change the
root layout to TableLayout.

Add three TableRow objects with three sets of TextView objects to each
TableRow to create a 3 x 3 matrix. For demonstration purposes, the columns are
labeled A-C and the rows 1-3, so the first row of TextView objects will be A1, B1,
and C1. The final result will look like this:

<TableLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent">
<TableRow
android:layout_width="match_parent"
android:layout_height="match_parent">

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="A1"
android:id="@+id/textViewl" />
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="B1"
android:id="@+id/textView2" />
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="C1"
android:id="@+id/textView3" />
</TableRow>
<TableRow

android:layout_width="match_parent"
android:layout_height="match_parent">

<TextView

[47]

Layouts

Chapter 2

android:
android:
android:
android:

<TextView

android:
android:
android:
android:

<TextView

android:
android:
android:
android:

</TableRow>
<TableRow

layout_width="wrap_content"
layout_height="wrap_content"
text="A2"
id="@+id/textViewd" />

layout_width="wrap_content"
layout_height="wrap_content"
text="B2"
id="@+id/textView5" />

layout_width="wrap_content"
layout_height="wrap_content"
text="C2"
id="@+id/textViewo6" />

android:layout_width="match_parent"
android:layout_height="match_parent">

<TextView

android:
android:
android:
android:

<TextView

android:
android:
android:
android:

<TextView

android:
android:
android:
android:

</TableRow>
</TableLayout>

layout_width="wrap_content"
layout_height="wrap_content"
text="A3"
id="@+id/textView7" />

layout_width="wrap_content"
layout_height="wrap_content"
text="B3"
id="@+id/textView8" />

layout_width="wrap_content"
layout_height="wrap_content"
text="C3"
id="@+id/textView9" />

3. Now, open the GridLayout project to edit activity_main.xml. Change the

root layout to GridLayout. Add the columnCount=3 and rowCount=3

attributes to the GridLayout element.

4. Now, add nine TextView objects to GridLayout. We will use the same text as
the preceding TableLayout for a consistent comparison. Since Gridview does
not use TableRow objects, the first three TextView objects are in row 1, the next

three are in row 2, and so on. The final result will look like this:

<GridLayout

xmlns:android="http://schemas.android.com/apk/res/android"

[48]

Layouts

android:layout_width="match_parent"
android:layout_height="match_parent"
android:columnCount="3"
android:rowCount="3">

<TextView
android:
android:
android:
android:
<TextView
android:
android:
android:
android:
<TextView
android:
android:
android:
android:
<TextView
android:
android:
android:
android:
<TextView
android:
android:
android:
android:
<TextView
android:
android:
android:
android:
<TextView
android:
android:
android:
android:
<TextView
android:
android:
android:
android:
<TextView
android:
android:
android:

layout_width="wrap_content"
layout_height="wrap_content"
text="A1"
id="@+id/textViewl" />

layout_width="wrap_content"
layout_height="wrap_content"
text="B1"
id="@+id/textView2" />

layout_width="wrap_content"
layout_height="wrap_content"
text="C1"
id="@+id/textView3" />

layout_width="wrap_content"
layout_height="wrap_content"
text="A2"
id="@+id/textViewd" />

layout_width="wrap_content"
layout_height="wrap_content"
text="B2"
id="@+id/textView5" />

layout_width="wrap_content"
layout_height="wrap_content"
text="C2"
id="@+id/textViewo6" />

layout_width="wrap_content"
layout_height="wrap_content"
text="A3"
id="@+id/textView7" />

layout_width="wrap_content"
layout_height="wrap_content"
text="B3"
id="@+id/textView8" />

layout_width="wrap_content"
layout_height="wrap_content"
text="C3"

[49]

Layouts Chapter 2

android:id="Q@+id/textViewd" />
</GridLayout>

5. You can either run the application or use the Design tab to see the results.

How it works...

As you can see when viewing the tables created, the tables basically look the same on
screen. The main difference is the code to create them.

In the TableLayout XML, each row is added to the table using TableRow. Each View
becomes a column. This is not a requirement as cells can be skipped or left empty. (See how
to specify the cell location in TableRow in the following section.)

GridLayout uses the opposite approach. The number of rows and columns are specified
when creating the table. We don't have to specify the row or column information (though
we can, as discussed later). Android will automatically add each View to the cells in order.

There's more...

First, let's see more similarities between the layouts. Both layouts have the ability to stretch
columns to use the remaining screen space. For TableLayout, add the following attribute
to the XML declaration:

android:stretchColumns="1"

The stretchColumns attribute specifies the (zero-based) index of the columns to stretch
(android:shrinkColumns is a zero-based index of columns that can shrink, so the table
can fit the screen).

To achieve the same effect with GridLayout, add the following attribute to all the Views in
the B column (textView2, textView5, and textView8):

android:layout_columnWeight="1"

All cells in a given column must define the weight or it will not stretch.

[50]

Layouts Chapter 2

Now, let's look at some of the differences, as this is really the key to determining which
layout to use for a given task. The first item to note is how the columns and rows are
actually defined. In TableLayout, the rows are specifically defined, using TableRow.
(Android will determine the number of columns in the table based on the row with the
most cells.) Use the android: layoutColumn attribute when defining the View to specify
the column.

In contrast, with GridLayout, the row and column counts are specified when defining the
table (using columnCount and rowCount as shown previously).

In the preceding example, we just added TextView objects to GridLayout and let the
system position them automatically. We can alter this behavior by specifying the row and
column position when defining the View, such as the following:

android:layout_row="2"
android:layout_column="2"

Android automatically increments the cell counter after adding each
View, so the next View should also specify the row and column,
otherwise, you may not get the intended result.

Like LinearLayout, shown in the Using LinearLayout recipe, GridLayout also offers the
orientation attribute of supporting both horizontal (the default) and vertical. The
orientation determines how the cells are placed. (Horizontal fills the columns first, then
moves down to the next row. Vertical fills the first column on each row, then moves to the
next column.)

RecyclerView replaces ListView

As the name implies, ListView is designed for displaying lists of information. If you have
prior experience on Android, you've probably come across the ListView and possibly
Gridview controls before. If not while coding, most likely you’ve used it as an app, as it’s
one of the most commonly used controls available. For most applications and users, the
old ListView was probably sufficient and didn’t pose any problems. As an example, most
users could probably see their list of emails in their inbox without any problems. But for
some, they might have so many emails in their inbox that when scrolling through their list,
their device would stutter (slight pauses when scrolling). Unfortunately, ListView has
many such performance problems.

[51]

Layouts Chapter 2

The most significant performance issue with ListView is caused by creating new item
objects for each item when scrolling. Though much of the performance problem could be
eliminated with a properly implemented data adapter, the implementation was optional.
As the name implies, RecyclerView is based on recycling the list items (the part that was
optional in the ListView adapter). There are other changes to the control as well. Whereas
ListView has many features built-in, RecyclerView is very basic and relies on additional
helper classes to achieve the same functionality. For some, this feels like a step backward
with the new control but this design allows it to be expanded much easier.

Where RecylervView really shines is with the flexibility when extending it and animations.
Our example here uses a static list so it doesn’t show off the built-in animations, but with
dynamic data, your list will take advantage of the Material Design look and feel. Though
ListView is not officially deprecated, it is recommended to use RecyclerView for new
projects. It’s a bit more work to get started, but this recipe will give you all the code to get
set up.

Getting ready

Create a new project in Android Studio called Recyclerview. Use the default Phone &
Tablet settings on the Target Android devices and select Empty Activity on the Add an
Activity to Mobile dialog.

How to do it...

Creating RecyclerVieuw is as simple as placing the control on the screen. Most of the work
is with the adapter, which we'll create from a static list. RecyclerView is distributed in a
separate library so it needs to be added to the project as a dependency. The steps are as
follows:

1. Either add the dependency through the Android Studio UI or add the following
code to the dependencies section of the build.gradle (Module: app) file:
implementation 'com.android.support:recyclerview-v7:27.1

NOTE: v7:27.1 is current at the time of this writing, but should be updated
to the latest version. (The IDE will likely give you a warning if you're not
using the latest version.)

[52]

Layouts Chapter 2

2. Open activity_main.xml and replace the existing <TextView /> block with
the following Recyclerview widget:

<android.support.v7.widget.RecyclerView
android:id="@+id/recyclervView"
android:layout_width="match_parent"
android:layout_height="match_parent"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

3. We need another layout for the adapter to create the individual items in the list.
To do this, create a new file in the res\layout folder called item.xml as
follows:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">
<TextView
android:id="Q@+id/textView"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="TextView" />
</LinearLayout>

4. Now comes the heart of RecyclerView — the adapter. Create a new Java file
called MyAdapter. java. Our new class will extend from the
RecylerView.Adapter class so there are several key methods we need to
override. We'll discuss the details of this class later, but the full code is as follows:

public class MyAdapter extends
RecyclerView.Adapter<MyAdapter.MyViewHolder> {

private List<String> namelist;

public MyAdapter (List<String> list) {
namelList = list;

@Override
public MyViewHolder onCreateViewHolder (ViewGroup parent, int
viewType) {
LayoutInflater inflater =

[53]

Layouts Chapter 2

LayoutInflater.from(parent.getContext ());
View view = inflater.inflate(R.layout.item, parent, false);
MyViewHolder myViewHolder = new MyViewHolder (view) ;
return myViewHolder;

@Override
public void onBindViewHolder (@NonNull MyViewHolder holder,
final int position) {
final String name = namelList.get (position);
holder.textView.setText (name) ;

@Override
public int getItemCount () {
if (nameList==null) {
return 0;
} else {
return namelList.size();

public class MyViewHolder extends RecyclerView.ViewHolder {
public TextView textView;

public MyViewHolder (View itemVieww) {
super (itemVieww) ;
textView = itemView.findViewById(R.id.textView);

}

5. With all the pieces set up, the final step is to put it all together. Open the
MainActivity.java file and add the following code to the existing
onCreate () method:

List<String> list = new ArrayList<>();
list.add ("China");
list.add ("France");

(
list.add ("Germany") ;
list.add ("India");
list.add ("Russia");
list.add ("United Kingdom") ;
list.add ("United States");

RecyclerView recyclerView = findViewById(R.id.recyclerView);

recyclerView.setHasFixedSize (true);

[54]

Layouts Chapter 2

LinearLayoutManager linearLayoutManager = new
LinearLayoutManager (this);

linearLayoutManager.setOrientation (LinearLayoutManager.VERTICAL) ;
recyclerView.setLayoutManager (linearLayoutManager) ;

MyAdapter myAdapter = new MyAdapter (list);
recyclerView.setAdapter (myAdapter) ;

How it works...

We’ve purposely kept this recipe basic, but as you can see, there are still many steps even
for this basic implementation. The good news is, with this foundation set, you can easily
expand and modify RecyclerView as needed. Want your list to scroll sideways instead?
You can easily accomplish this by using LinearLayoutManager.HORIZONTAL in the
setOrientation () call.

If you have ever worked with Android ListView before, then the preceding steps will look
very familiar. The concept is the same: we create an adapter to hold a list of items. Steps 1
and 2 set up RecyclerView on the activity. In step 3, we specify the visual layout and pass
it to the adapter. In step 4, we created the adapter by extending the
RecycerView.Adapter class. Asyou can see from the code, there are three methods we
need to override: onCreateViewHolder (), onBindViewHolder (), and

getItemCount (). The key concept behind Recylerview is to recycle or reuse the item
Views. This means, when you have a very large list of items, instead of creating a new
view object for each item (which is very costly in terms of performance and memory usage),
the item Views are reused. So as a user scrolls through a long list, as a view goes off the
screen, it's reused for the next item being shown. Even if we added all the countries in the
world to our list, there wouldn't be enough items to see the performance difference, but
when you’re working with a list of thousands of items, especially if those items include
images, the performance when scrolling will be noticeable.

Now that you understand the concept behind Recyclerview, hopefully the methods we
need to override are self-explanatory. The adapter only calls onCreateviewHolder () to
create enough items to show on the screen (plus a few extra for scrolling),

whereas onBindviewHolder () is called for each item as it’s displayed.

[551]

Layouts Chapter 2

There’s more...

If you ran the code, then you saw it’s a very simple app. In fact, it doesn’t do anything more
than just display the list in a scrollable container. Most apps will require some interaction
with the list so how do we respond to click events? Unlike the older ListView,
RecyclerView does not have any click events built-in. It's up to you, the programmer, to
create the events you need. (For basic items like in our example, this may seem like more
work for the programmer, but when you get to complex list items with buttons and other
interactive controls, ListView would often get in your way and you’d need to implement
custom events anyway.)

To respond to item clicks, add the following code to the MyAdapter class:

private void remove (int position) {
nameList.remove (position);
notifyItemRemoved (position) ;

}

Then add the following code to the onBindViewHolder () method created in step 4:

holder.itemView.setOnClickListener (new View.OnClickListener () {
@Override
public void onClick (View v) {
remove (position);
}
}) i

Now, when you run the code, the app will respond to the click event by removing the
clicked item. You may also notice the smooth animation when removing the item. By
calling the notifyItemRemoved () and notifyItemInserted () methods

of RecyclerView, we can take advantage of the widget’s built-in Material Design
animations.

Changing layout properties during runtime

In Android development, it's generally the preferred practice to define the UI with XML
and the application code in Java, keeping the user interface code separate from the
application code. There are times where it is much easier or more efficient, to alter (or even
build) the UI from the Java code. Fortunately, this is easily supported in Android.

[561]

Layouts Chapter 2

In this recipe, we will obtain a reference to the LayoutParams object to change the margin
during runtime.

Getting ready

Here, we will set up a simple layout with XML and use a LinearLayout.LayoutParams
object to change the margins of a View during runtime. Create a new project using with an
Empty Activity called RuntimeProperties. Use the default Phone & Tablet settings on
the Target Android devices and select Empty Activity on the Add an Activity to

Mobile dialog.

How to do it...

We can create or manipulate any of the standard layouts or controls through code. For this
example, we will work with LinearLayout:

1. Open the activity_main.xml file and change the layout as follows:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent" >

</LinearLayout>
2. Add Textview with an ID value of textView, as follows:

<TextView
android:id="@+id/textView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="TextView" />

3. Add Button with an ID value of button, as follows:

<Button
android:id="Q@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Button" />

[571

Layouts Chapter 2

4. Open MainActivity.java and add the following code to the onCreate ()
method to respond to the button click:

Button button = (Button)findViewById (R.id.button);
button.setOnClickListener (new View.OnClickListener () {
@Override

public void onClick (View view) {
((TextView) findViewById (
R.id.textView)) .setText ("Changed at runtime!");
LinearLayout.LayoutParams params = (LinearLayout.
LayoutParams)view.getLayoutParams () ;
params.leftMargin += 5;

)i

5. Run the program on a device or emulator.

How it works...

Every View (and therefore ViewGroup) has a set of layout parameters associated with it. In
particular, all Views have parameters to inform their parent of their desired height and
width. These are defined with the 1ayout_height and layout_width parameters. We can
access this layout information from the code with the get LayoutParams () method. The

layout information includes the layout height, width, margins, and any class-specific
parameters.

In this example, we moved the button on each click by obtaining the current button
LayoutParams and increasing the margin.

[581]

Views, Widgets, and Styles

In this chapter, we will cover the following topics:

e Inserting a widget into a layout

¢ Using graphics to show the button state
¢ Creating a widget at runtime

e Creating a custom component

Applying a style to a View
e Turning a style into a theme

Selecting a theme based on the Android OS version

Introduction

The term widgets can refer to several different concepts in Android. When most people talk
about widgets, they are referring to app widgets, which are typically seen on the home
screen. App widgets are like mini applications by themselves as they usually provide a
subset of functionality, based on their main application. (Usually, most app widgets are
installed along with an application, but that is not a requirement. They can be standalone
apps in a widget format.) A common app widget example is a weather application that
offers several different app widgets for the home screen. chapter 6, Beyond Your App -
Home Screen Widgets, Search, and the System Ul, will discuss home screen app widgets and
provide recipes to create your own.

When developing for Android, the term widgets generally refers to specialized Views
placed in the layout files, such as a Button, TextView, CheckBox, and so on. This chapter
will focus on widgets for screen layouts.

Views, Widgets, and Styles Chapter 3

To see the list of widgets provided in the Android SDK, open a layout file in Android
Studio, and click on the Design tab. Along the left-hand side of the Design view, you will
see the list of items that can be placed on the layout: Common, Text, Buttons, Widgets,
Layouts, Containers, Google, and Legacy. Even though many of the items are not in the
Widget category, by definition, they are still widgets. As you can see in the following
screenshot, the Widgets category groups the more complicated controls:

InsertWidget % app main res layout activity_main.xml

Android v activity_main.xml MainActivity.java

v IR app Palette
[2 manifests .
> java Common O View

B 1: Project

M ImageView

v =res Text

> Pm drawable - (o} V\{ebVie-w
v layout O videoView
activity_main.xml Lol s (4 calendarView
> mipmap Layouts () ProgressBar
» values Containers == ProgressBar (Horizon...
» (=, Gradle Scripts =s- SeekBar
2 SeekBar (Discrete)
% RatingBar
Q, SearchView

== TextureView

7: Structure

Google

Legacy

©- Captures

«i SurfaceView
= Horizontal Divider
0J0 Vertical Divider

[60]

Views, Widgets, and Styles Chapter 3

As you can see from the list, the Android SDK provides many useful widgets—from a
simple TextView, Button, or Checkbox, to the much more complex widgets such as the
WebView, ProgressBar, and SearchView. As useful as the built-in widgets are, it's also
very easy to expand on what's provided in the SDK. We can extend an existing widget to
customize its functionality, or we can create our own widget from scratch by extending the
base View class. (We will provide an example of this in the Creating a custom component
recipe later.)

The visual look of widgets can also be customized. These settings can be used to create
styles, which in turn can be used to create themes. Just like with other development
environments, creating a theme offers the benefit of easily changing the appearance
throughout our entire application with minimal effort. Lastly, the Android SDK also
provides many built-in themes and variations, such as the Material theme introduced in
Android 5 and later the Material Design 2.0.

Inserting a widget into a layout

As you may have seen from previous recipes, widgets are declared in a layout file, or
created in code. For this recipe, we will go step by step to add a button with the Android
Studio Designer. (For later recipes, we will just show the layout XML.) After creating the
button, we will create a method to receive the button click events

using onClickListener ().

Getting ready

Start a new project in Android Studio and call it InsertwWidget. Use the default options for
creating a Phone and Tablet project and select Empty Activity when prompted for the
Activity Type. You can delete the default TextView (or leave it) as it will not be needed for
this recipe.

[61]

Views, Widgets, and Styles Chapter 3

How to do it...

To insert a widget into a layout, follow these steps:

1. Openthe activity_main.xml file in Android Studio and click on the Design
tab. As you can see, by default, Android Studio adds a TextView to the layout.
Select the TextView and delete it:

Cxapp v
InsertWidget = s app = I src main Wrzres I layout 24 activity_main.xml
MainActivityjava

% app Pale + © AppTheme @ Default (en-us) ~ S ACKON]
manifests
java

 1: Project
<

Ab TextView
@8 Button
P ImageView

=res
drawable =
layout i= RecyclerView
activity_main.xm| Widgets ¢5 cfragment>
> mipmap D ScrollView
> values Conta «® Switch
£ » (g Gradle Scripts

Z: Structure

InsertWidget

e

nstraintLayout
Ab TextVi "Hello World!"

:
§
b3
i
S— A—
:
%
b4

% 2: Favorites

ants

Design Text
Terminal % TODO € Event Log

[IDE and Plugin Upd dy to update. (today 2:32 AM)

[62]

Views, Widgets, and Styles Chapter 3

2. Find Button in the widget list and drag it to the center of the activity screen on
the right:

o0e InsertWidget [~/Repository/com.packtpub/Chapter3/insertWidget] - .../app/src/main/res/layout/activity_main.xml [app]

Cxapp ~
InsertWidget = I; app layout | 24 activity_main.xml
activity_main.xml MainActivity java

v mapp Palette S+ ([Nexus4+ =27+ © AppTheme @ Default (en-us) ~ © 68%
manifests
java

3 1: Project

Ab TextView S AT
=res @8 Button
> udrawable) P ImageView
Buttons X
v Pamlayout ecyclerView
dgets

senquy

Z: Structure

activity_main.xml <> <fragment>
> mipmap Layouts WU ScrollView
> B values Containers Switch

8 » (5 Gradle Scripts

InsertWidget

ponent Tree

“\, ConstraintLayout

1010/dx3 914 91A0a T1

Design Text

Terminal Build = 6:logcat % TODO @ Event Log

IDE and Plugin Updates: Android Studio is ready to update. (today 2:32 AM)

[63]

Views, Widgets, and Styles Chapter 3

3. Though we placed the button in the center of the screen, the button will not
actually be centered when you run the app. If we want it centered, we need to set
the layout properties accordingly. (Currently, the button is just centered in the
design tool to make it easier to work with but this has no affect when the app is
running.) To center the button, start by selecting the button in the design view.
When it is selected, you will see the edge nodes. Drag each edge node to the
corresponding edge of the screen as shown in the following screenshot:

®00 InsertWidget [~/Repository/com.packtpub/Chapter3/InsertWidget] - .../app/src/main/res/layout/activity_main.xml [app]

Cxapp ~
=res M layout 2% activity_main.xml
activity_mainxml MainActivity java

v I app O+ [0 Nexus4 v =27+ © AppTheme = @ Default (en-us) ~ S ACKORFN
manifests

 1: Project

Ab TextView
= res Text = Button
2 drawable M ImageView

Buttons —)
v Bulayout i= RecyclerView

java

Widgets
activity_main.xml i <> <fragment>

> mipmap Layouts D ScrollView

7: Structure

> Buvalues Containers =® Switch
» (& Gradle Scripts

Google

@& Captures

Legacy InsertWidget

Component Tree

v *\, ConstraintLayout

@8 button - "Button"

—.
§
2
E
H
2
H
i
) . L —
3
g
3
:
g
b
v

% 2: Favorites

Build Variants

Design Text

-] Terminal Build = 6:logcat % TODO @ Event Log

[0 1DE and Plugin Updates: Android Studio is ready to update. (toda: AM)

4. To view the xm1 created, click on the Text tab as shown in the following
screenshot. See how the button is centered using the ConstraintLayout
parameters. Also, take note of the default ID as we will need it for the next step:

[64]

Views, Widgets, and Styles Chapter 3

[] ® InsertWidget [~/Repository/com.packtpub/Chapter3/InsertWidget] - .../app/src/main/res/layout/activity_main.xml [app]

[— O] v 3 R ¢ Ciapp ~

InsertWidget = I app src main = Iz res layout activity_main.xml
_mainxml MainActivity java
v Mapp <?xnl version= encoding= >
TS <andro. rt.constraint.ConstraintLayout xmlns:
. xm
java
=res : layout_width=
> drawable :layout_height="
v Bulayout : context="
activity_main.xml <Button
> B mipmap
> values
8 » (& Gradle Scripts

 1: Project

icture

: layout_marginTop=
rtext=
:layout_constraintBottom_toBottomOf=’

:layout_constraintTop_toTopOf=
</android. support. constraint.ConstraintLayout>

Build Variants

android.support.constraint.ConstraintLayout + Button
Design Text
Terminal Build = 6:logcat g TODO

[IDE and Plugin Updates: Android Studio is ready to update. (20 minutes ago) 24chars 10:9 LF:

5. Now, open the MainActivity.java file to edit the code. Add the following
code to the onCreate () method to set up onClickListener ():

Button button = (Button)findviewById(R.id.button);
button.setOnClickListener (new View.OnClickListener () {
@Override
public void onClick (View view) {
Toast.makeText (MainActivity.this, "Clicked",
Toast .LENGTH_SHORT) .show () ;

)i

6. Run the application on a device or emulator.

How it works...

Creating the UI with the Android Studio is as simple as dragging and dropping Views. You
can also edit the properties of the Views directly in the Design tab. Switching to the XML
code is as simple as hitting the Text tab.

[65]

Views, Widgets, and Styles Chapter 3

What we did here is very common in Android development — creating the Ul in XML, then
hooking up the UI components (Views) in the Java code. To reference a View from code, it
must have a resource identifier associated with it. This is done using the id parameter:

android:id="Q@+id/button"

Our onClickListener function displays a pop-up message on the screen called Toast,
when the button is pressed.

There's more...

Take a look again at the format of the identifier we created previously, @+id/button. The
@ sign specifies this is going to be a resource and the + sign indicates a new resource. (If we
failed to include the plus sign, we would get a compile-time error stating No resource
matched the indicated name).

See also

 Butter Knife — Field and method binding for Android views (open source project):
http://jakewharton.github.io/butterknife/

Using graphics to show button state

We've talked about the versatility of Android Views and how behavior and visual
appearance can be customized. In this recipe, we will create a drawable state selector,
which is a resource defined in XML that specifies the drawable to use based on the View's
state.

The most commonly used states, along with the possible values, include the following:

® state_pressed=["true" | "false"]
e state_focused=["true" | "false"]
® state_selected=["true" | "false"]
e state_checked=["true" | "false"]
e state_enabled=["true" | "false"]

[66]

http://jakewharton.github.io/butterknife/

Views, Widgets, and Styles Chapter 3

To define a state selector, create an XML file with the <selector> element, as shown:

<?xml version="1.0" encoding="utf-8"7?>
<selector xmlns:android="http://schemas.android.com/apk/res/android" >
</selector>

Within the <selector> element, we define an <item> element to identify the drawable to
be used based on the specified state(s). Here's an example <item> element using multiple
states:

<item
android:drawable="@android:color/darker_gray"
android:state_checked="true"
android:state_selected="false"/>

It's important to remember the file is read from top to bottom so the first
item that meets the state requirements will be used. A default drawable,
one with no states included, would need to go last.

For this recipe, we will use a state selector to change the background color based on the
ToggleButton state.

Getting ready

Create a new project in Android Studio and call it StateSelector using the default Phone
& Tablet options. When prompted for the Activity Type, select Empty Activity. To make it
easier to type the code for this recipe, we will use a color as the graphic to represent the
button state.

How to do it...

We will start by creating the state selector, which is a resource file defined with XML code.
We will then set up the button to use our new state selector. Here are the steps:

1. Create a new Drawable resource file in the res/drawable folder and call it:
state_selector.xml. The file should contain the following code:

<?xml version="1.0" encoding="utf-8"?>
<selector
xmlns:android="http://schemas.android.com/apk/res/android">
<item
android:drawable="@android:color/darker_gray"

[671]

Views, Widgets, and Styles Chapter 3

android:state_checked="true"/>
<item
android:drawable="@android:color/white"
android:state_checked="false"/>
</selector>

2. Now open the activity_main.xml file and drop in ToggleButton as follows:

<ToggleButton
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="New ToggleButton"
android:id="Q@+id/toggleButton"
android:layout_centerVertical="true"
android:layout_centerHorizontal="true"
android:background="Q@drawable/state_selector" />

3. Run the application on a device or emulator.

How it works...

The main concept to understand here is the Android State Selector. As shown in step 1, we
created a resource file to specify a drawable (a color in this case) based on state_checked.

Android supports many other state conditions besides checked. While typing in
android:state, look at the autocomplete drop-down menu to see the list of other options.

Once we have the drawable resource created (the XML from step 1), we just have to tell the
view to use it. Since we want the background color to change based on the state, we use
the android:background property. The state_selector.xml is a drawable resource
that can be passed to any property that accepts a drawable. We could, for example, replace
the check image of a checkbox with the following XML:

<CheckBox
android:id="@+id/checkBox"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:button="Q@drawable/state_selector"
android:text="CheckBox" />

[68]

Views, Widgets, and Styles Chapter 3

There's more...

What if we wanted actual images for the graphics instead of just a color change? This is as
easy as changing the drawable referenced in the item state. The source code available for
download uses two graphics, downloaded from: https://pixabay.com/ (this site was
chosen because the images are free to use and don't require a login).

Once you have your desired images, place them in the res/drawable folder. Then, change
the state item line in the XML to reference your images. Here's an example:

<item
android:drawable="@drawable/checked_on"
android:state_checked="true"/>

(Change check_on to match your image resource name)

Using designated folders for screen-specific resources

When Android encounters a @drawable reference, it expects to find the target in one of the
res/drawable folders. These are designed for different screen densities - 1dpi (low dots
per inch), mdpi (medium), hdpi (high), and xhdpi (extra-high) - and they allow us to create
resources for specific target devices. When an application is running on a specific device,
Android will load resources from the designated folder that most closely matches the actual
screen density.

If it finds this folder empty, it will try the next nearest match and so on until it finds the
named resource. For tutorial purposes, a separate set of files for each possible density is not
required, and so placing our images in the drawable folder is a simple way to run the
exercise on any device.

For a complete list of resource identifiers available, visit
http://developer.android.com/guide/topics/resources/providing-re

sources.html.

See also

For another example of Android resource selection, see the Selecting a theme based on the
Android version recipe

[69]

https://pixabay.com/
http://developer.android.com/guide/topics/resources/providing-resources.html
http://developer.android.com/guide/topics/resources/providing-resources.html

Views, Widgets, and Styles Chapter 3

Creating a widget at runtime

As mentioned before, generally, the Ul is declared in XML files and then modified during
runtime through the Java code. It is possible to create the UI completely in Java code,
though for a complex layout, it would generally not be considered best practice.

In this recipe, we are going to add a view to the existing layout defined in
activity_main.xml.

Getting ready

Create a new project in Android Studio and call it Runt imeWidget. Select the Empty
Activity option when prompted for the Activity Type.

How to do it...

We will start by adding an ID attribute to the existing layout so we can access the layout in
code. Once we have a reference to the layout in code, we can add new views to the existing
layout. Here are the steps:

1. Openres/layout/activity_main.xml and add an ID attribute to the
root ConstraintLayout, as follows:

android:id="@+id/layout"

2. Completely remove the default <TextView> element.

3. Open the MainActivity.java file so we can add code to the onCreate ()
method. Add the following code (after setContentView()) to geta
reference to ConstraintLayout:

ConstraintLayout layout = findViewById(R.id.layout) ;
4. Create DatePicker and add it to the layout with the following code:

DatePicker datePicker = new DatePicker (this);
layout.addView (datePicker);

5. Run the program on a device or emulator.

[70]

Views, Widgets, and Styles Chapter 3

How it works...

This is hopefully very straightforward code. First, we get a reference to the parent layout
using findviewById. We added the ID to the existing ConstraintLayout (in step 1) to
get a reference. We create a DatePicker in code and add it to the layout with the
addview () method.

There's more...

What if we wanted to create the entire layout from code? Though it may not be considered
best practice, there are times when it is certainly easier (and less complex) to create the
entire layout from code. Let's see how this example would look if we didn't use the layout
from activity_main.xml. Here's how onCreate () would look:

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
ConstraintLayout layout = new ConstraintLayout (this);
DatePicker datePicker = new DatePicker (this);
layout.addView (datePicker) ;
setContentView (layout) ;

}

In this example, it's really not that different. If you create a view in code and want to
reference it later, you either need to keep a reference to the object, or assign the view an ID
touse findviewByID (). To give a view an ID, use the set ID () method by passing in
View.generateViewId () (to generate a unique ID) or define the ID using
<resources> in XML.

Creating a custom component

As we have seen in previous recipes, the Android SDK provides a wide range of
components. But what happens when you can't find a prebuilt component that fits your
unique needs? You can always create your own!

[71]

Views, Widgets, and Styles Chapter 3

In this recipe, we will walk through creating a custom component that derives from the
View class, just like the built-in widgets. Here's a high-level overview:

1.
2.
3.

Create a new class that extends View.

Create custom constructor(s).

Override onMeasure (), as the default implementation returns a size of 100 x
100.

Override onDraw (), as the default implementation draws nothing.

Define custom methods and listeners (such as the onClick () event).

Implement custom functionality.

Overriding onMeasure () and onDraw () is not strictly required, but the
default behavior is likely not what you would want.

Getting ready

Start a new project in Android Studio and call it Customview. Use the default wizard
options, including the Phone & Tablet SDK and select Empty Activity when prompted for
the Activity Type. Once the project files are created and open in Android Studio, you are
ready to begin.

How to do it...

We will create a new class for our custom component to derive from the Android view
class. Our custom component could be a subclass of an existing class, such as the activity,
but we will create it in a separate file to make it easier to maintain. Here are the steps:

1. Start by creating a new Java class and calling it Cust omview. This is where we

will implement our custom component, as described in the Introduction.

2. Change the class constructor so it extends View. It should look as follows:

public class CustomView extends View {

[72]

Views, Widgets, and Styles Chapter 3

3. Define a Paint object for the class, which will be used in onDraw ():
final Paint mPaint = new Paint ();

4. Create a default constructor, which requires the activity Context, so we can
inflate the view. We will set the paint properties here as well. The constructor
should look as follows:

public CustomView (Context context) {
super (context) ;
mPaint.setColor (Color.BLACK) ;
mPaint.setTextSize (30);

3

5. Override the onDraw () method as follows:

@Override
protected void onDraw (Canvas canvas) {
super.onDraw (canvas) ;
setBackgroundColor (Color.CYAN) ;
canvas.drawText ("Custom Text", 100, 100, mPaint);
invalidate () ;

}

6. Finally, inflate our custom view in MainActivity. java by
replacing setContentView () in the onCreate () method with our view, as

shown:

setContentView (new CustomView (this));

7. Run the application on a device or emulator to see it in action.

How it works...

We start by extending the vView class, just as the built-in components do. Next, we create
the default constructor. This is important as we need the context to pass down to the super
class, which we do with the following call:

super (context) ;

[73]

Views, Widgets, and Styles Chapter 3

We need to override onDraw (), otherwise, as mentioned in the Introduction, our custom
view won't display anything. When onDraw () is called, the system passes in a Canvas
object. The canvas is the screen area of our view. (Since we didn't override onMeasure (),
our view would be 100 x 100, but since our entire activity consists of just this view, we get
the whole screen as our canvas.)

We created the Paint object at the class level, and as final, to be more efficient with
memory allocation. (onDraw () should be as efficient as possible since it can be called
multiple times per second.) As you see from running the program, our onDraw ()
implementation just sets the background color to cyan and prints text to the screen (using
drawText ()).

There's more...

Actually, there's a lot more. We've just touched the surface of what you can do with a
custom component. Fortunately, as you see from this example, it doesn't take a lot of code
to get basic functionality. We could easily spend an entire chapter on topics such as passing
layout parameters to the view, adding listener callbacks, overriding onMeasure (), using
our view in the IDE, and so on. These are all features you can add as your needs dictate.

While a custom component is always an option, there are other options that might require
less coding. Extending an existing widget is often enough without the overhead of creating
a custom component from scratch. If what you need is a solution with multiple widgets,
there's also the compound control. A compound control, such as a combo box, is just two
or more controls grouped together as a single widget.

A compound control would generally extend from a layout, not a View, since you will be
adding multiple widgets. You probably wouldn't need to override onDraw () and
onMeasure (), as each widget would handle the drawing in their respective methods.

[74]

Views, Widgets, and Styles Chapter 3

See also

¢ For more information on drawing, look at chapter 10, Graphics and Animation.
e For full details on the View object, refer to the Android Developer resource

at http://developer.android.com/reference/android/view/View.html.

Applying a style to a View

A style is a collection of property settings to define the look of a View. As you have already
seen while defining layouts, a view offers many settings to determine how it looks, as well
as functions. We have already set a view height, width, background color, and padding,
plus there are many more settings such as text color, font, text size, margin, and so on.
Creating a style is as simple as pulling these settings from the layout and putting them in a
style resource.

In this recipe, we will go through the steps of creating a style and hooking it up to a view.

Similar to Cascading Style Sheets, Android Styles allow you to specify your design settings
separate from the UI code.

Getting ready

Create a new Android Studio project and call it Styles. Use the default wizard options to
create a Phone & Tablet project and select Empty Activity when prompted for the
Activity type. We haven't looked at it before, but by default, the wizard also creates a
styles.xml file, which we will use for this recipe.

[75]

http://developer.android.com/reference/android/view/View.html

Views, Widgets, and Styles Chapter 3

How to do it...

We will create our own style resource to change the appearance of TextvView. We can add
our new style to the styles.xml resource created by Android Studio using the following
steps:

1. Open the default styles.xml file located in res/values, as shown here:

Android
v I app
manifests
java
Zres
drawable

layout
mipmap
values
colors.xml
strings.xml
styles.xml
> (s; Gradle Scripts

2. We will create a new style called MyStyle by adding the following XML below
the existing AppTheme style:

<style name="MyStyle">
<item name="android:layout_width">match_parent</item>
<item name="android:layout_height">wrap_content</item>
<item name="android:background">#000000</item>
<item name="android:textColor">#AF0000</item>
<item name="android:textSize">20sp</item>
<item name="android:padding">8dp</item>
<item name="android:gravity">center</item>
</style>

3. Now tell the view to use this style. Open the activity_main.xml file and add
the following attribute to the existing <TextView> element:

style="(@style/MyStyle"

4. Either run the application or view the results in the Design tab.

[761]

Views, Widgets, and Styles Chapter 3

How it works...

A style is a resource, defined by using the <style> element in a <resources> element of
an XML file. We used the existing styles.xml file, but that is not a requirement, as we can
use whatever filename we want. As seen in this recipe, multiple <style> elements can be
included in one XML file.

Once the style is created, you can easily apply it to any number of other views as well.
What if you wanted to have a button with the same style? Just drop a button in the layout
and assign the same style.

What if we created a new button, but wanted the button to expand the full width of the
view? How do we override the style for just that view? Simply specify the attribute in the
layout as you've always done. The local attribute will take priority over the attribute in the

style.

There's more...

There is another feature of styles: inheritance. By specifying a parent when defining the
style, we can have styles build on each other, creating a hierarchy of styles. If you look at
the default style in styles.xml: AppTheme, you will see the following line:

<style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
AppTheme inherits from a theme defined in the Android SDK.

If you want to inherit from a style you have created yourself, there is a
shortcut method. Instead of using the parent attribute, you can specify the
parent name first, followed by a period, then the new name, such as the
following;:

<style name="MyParent.MyStyle" >

You saw how to specify a style for a view, but what if we wanted all the TextView objects
in our application to use a specific style? We'd have to go back to each Textview and
specify the style. But there's another way. We can include a textViewStyle item in a style
to automatically assign a style to all TextView objects. (There's a style for each of the
widget types so you can do this for Button, ToggleButton, TextView, and so on.)

To set the style for all TextView objects, add the following line to the AppTheme style:

<item name="android:textViewStyle">@style/MyStyle</item>

[77]

Views, Widgets, and Styles Chapter 3

Since the theme for our application already uses AppTheme, we only have to add that single
line to AppTheme to have all our TextView objects styled with our custom Mystyle.

See also

The Android Design Support Library at https://www.google.com/design/spec/material-

design/introduction.html.

Turning a style into a theme

A theme is a style applied to an activity or the whole application. To set a theme, use the
android:theme attribute in the AndroidManifest.xml file. The theme attribute applies
to the <Application> element as well as the <Activity> elements. All views within that
element will be styled with the theme specified.

It's common to set the application theme, but then override a specific activity with a
different theme.

In the previous recipe, we set textViewStyle using the AppTheme style (which the wizard
created automatically). In this recipe, you will learn how to set both the application and
activity themes.

Along with the style settings we have already explored, there are additional style options
we didn't discuss because they don't apply to a View, they apply to the window as a whole.
Settings such as hiding the application title or action bar and setting the window
background, just to name a few, apply to the window and therefore must be set as a theme.

For this recipe, we are going to create a new theme based on the autogenerated AppTheme.
Our new theme will modify the window appearance to make it a dialog. We will also look
at the theme settings in the AndroidManifest.xml.

Getting ready

Start a new project in Android Studio and call it Themes. Use the default wizard options
and select Empty Activity when prompted for the Activity type.

[78]

https://www.google.com/design/spec/material-design/introduction.html
https://www.google.com/design/spec/material-design/introduction.html
https://www.google.com/design/spec/material-design/introduction.html
https://www.google.com/design/spec/material-design/introduction.html
https://www.google.com/design/spec/material-design/introduction.html
https://www.google.com/design/spec/material-design/introduction.html
https://www.google.com/design/spec/material-design/introduction.html
https://www.google.com/design/spec/material-design/introduction.html
https://www.google.com/design/spec/material-design/introduction.html
https://www.google.com/design/spec/material-design/introduction.html
https://www.google.com/design/spec/material-design/introduction.html
https://www.google.com/design/spec/material-design/introduction.html
https://www.google.com/design/spec/material-design/introduction.html
https://www.google.com/design/spec/material-design/introduction.html
https://www.google.com/design/spec/material-design/introduction.html
https://www.google.com/design/spec/material-design/introduction.html
https://www.google.com/design/spec/material-design/introduction.html
https://www.google.com/design/spec/material-design/introduction.html
https://www.google.com/design/spec/material-design/introduction.html
https://www.google.com/design/spec/material-design/introduction.html

Views, Widgets, and Styles Chapter 3

How to do it...

We start by adding a new theme to the existing styles.xml file to make our activity look
like a dialog. Here are the steps to create the new theme and set the activity to use the new
theme:

1. Since themes are defined in the same resource as styles, open the styles.xml
file located in res/values and create a new style. We will create a new style
based on the AppTheme already provided, and set windowIsFloating. The XML

will be as follows:

<style name="AppTheme.MyDialog">
<item name="android:windowIsFloating">true</item>

</style>
2. Next, set the activity to use this new dialog theme. Open the
AndroidManifest.xml file and add a theme attribute to the activity element, as
shown:

<activity android:name=".MainActivity"
android:theme="@style/AppTheme.MyDialog">

Note that both application and activity will now have a theme specified.

3. Now run the application on a device or emulator to see the dialog theme in
action.

How it works...

Our new theme, MyDialog, inherits the base AppTheme using the alternative parent
declaration, since AppTheme is defined in our code (and not a system theme). As mentioned
in the Introduction, some settings apply to the window as a whole, which is what we see
with the windowIsFloating setting. Once our new theme is declared, we assign our
theme to the activity in the AndroidManifest file.

[79]

Views, Widgets, and Styles Chapter 3

There's more...

You might have noticed we could have just added windowIsFloating to the existing
AppTheme and been done. Since this application only has one activity, the end result would
be the same, but then any new activities would also appear as a dialog.

Selecting a theme based on the Android
version

Most users prefer to see apps using the latest themes provided by Android. To be
competitive with the many other apps in the market, you'll probably want to upgrade your
app as well, but what about your users who are still running older versions of Android? By
setting up our resources properly, we can use resource selection in Android to
automatically define the parent theme based on the Android OS version the user is
running.

First, let's explore the three main themes available in Android:

¢ Theme - Gingerbread and earlier
e Theme.Holo - Honeycomb (API 11)
¢ Theme.Material - Lollipop (API 21)

This recipe will show how to properly set up the resource directories for Android to use the
most appropriate theme based on the API version the app is running on.

Getting ready

Start a new project in Android Studio and call it AutomaticThemeSelector. Use the
default wizard option to make a Phone & Tablet project. Select the Empty Activity when
prompted for the Activity Type. On the Configure Activity dialog, deselect the Backwards
Compatibility (AppCompat) checkbox.

[80]

Views, Widgets, and Styles Chapter 3

How to do it...

Normally, we use the AppCompat option when creating a project but in the preceding
Getting ready section, we deselected this option as we need to explicitly set our resources
manually. We will verify we are extending from the generic Activity class, then we can
add our new style resources to select the theme based on the API. Here are the steps:

1. We need to make sure MainActivity extends from Activity and not
AppCompatActivity. Open ActivityMain. java and if necessary, change it to
read as follows:

public class MainActivity extends Activity {

2. Open activity_main.xml and drop in two views: Button and Checkbox.
3. Open styles.xml and remove AppTheme as it will not be used. Add our new
theme so the file reads as follows:

<resources>
<style name="AutomaticTheme" parent="android:Theme.Light">

</style>
</resources>

4. We need to create two new values folders for API 11 and 21. To do this, we need
to change Android Studio to use the project view rather than the Android view.
(Otherwise, we won't see the new folders in the next step.) At the top of the
Project window, it shows Android; change this to Project for the project view.
See the following screenshot:

Android
Project
Packages
Scratches
Android
Project Files

Problems
Production
Tests
Local Unit Tests
Android Instrumented Tests
styles.xml
» (s, Gradle Scripts

[81]

Views, Widgets, and Styles Chapter 3

5. Create a new directory by right-clicking on the res folder and navigating to New
| Directory, as shown in the following screenshot:

Project v activity_main.xml styles.xml MainActivity
AutomaticThemeSelector

> .gradle

> .idea

v I app <style name= parent=
build </style>
libs
src

Edit all themes in the project in the theme editor.
<resources>

</resources>
androidTest
main
> java

\4 = €

>
>
>
>
>
>
>
>
>
\4

B A

» test
.gitigno

% app.iml
(< build.gr
proguar

> gradle

.gitignore
AutomaticT
(< build.gradle
|1 gradle.prog

gradlew

gradlew.ba
1 local.prope
(< settings.gr

n ol Cvtacnal il

New

Link C++ Project with Gradle

o Cut

Copy

Copy Path

Copy Relative Path
Paste

Find Usages

Find in Path...
Replace in Path...
Analyze

Refactor

Add to Favorites
Show Image Thumbnails

Reformat Code
Optimize Imports
Delete...

Local History
Synchronize 'res'

Reveal in Finder

Compare With...

Kotlin File/Class

Android Resource File
Android Resource Directory
Sample Data Directory

File

Scratch File

Directory

C++ Class
C/C++ Source File
C/C++ Header File

Image Asset
Vector Asset

Gradle Kotlin DSL Build Script
Gradle Kotlin DSL Settings

Edit File Templates...

AIDL

Activity
Android Auto
Folder
Fragment
Google
Other
Service

vYyVVYyVYVYVYVYYVYYVYY

Ul Component

Use the following name for the first directory: values-v11.

Repeat this for the second directory using values-v21.

[82]

Views, Widgets, and Styles Chapter 3

6. Now create a styles.xml file in each of the new directories. (Right-click on the
values-v11 directory and go to the New | File option.) For values-v11, use
the following style to define the Holo theme:

<resources> <style name="AutomaticTheme"
parent="android:Theme.Holo.Light"> </style>
</resources>

For values-v21, use the following code to define the Material theme:

<resources> <style name="AutomaticTheme"
parent="android:Theme.Material.Light"> </style>
</resources>

7. The last step is to tell the application to use our new theme. To do this, open
AndroidManifest.xml and change the application android: theme attribute to
AutomaticTheme. It should read as follows:

android:theme="@style/AutomaticTheme"

8. Now run the application on a physical device or emulator. If you want to see the
three different themes, you will need to have a device or emulator running the
different versions of Android.

How it works...

In this recipe, we are using the Android resource selection process to assign the appropriate
theme (which is a resource) based on the API version. Since we need to choose the theme
based on the OS version in which it was released, we created two new values folders
specifying the API version. This gives us a total of three styles.xml files: the default style,
one in the values-v11 directory, and the last in the values-v21 directory.

Notice the same theme name is defined in all three styles.xml files. This is how the
resource selection works. Android will use the resource from the directory that best fits our
values. Here we are using the API level, but other criteria are available as well. It is very
common to define separate resources based on other criteria, such as screen size, screen
density, and even orientation.

The last step was to specify our new theme as the application theme, which we did in the
Android Manifest.

[83]

Views, Widgets, and Styles Chapter 3

There's more...

For more information on resource selection, see the Using designated folders for screen-specific
resources section as well as the Using graphics to show button state recipe.

[84]

Menus and Action Mode

In this chapter, we will cover the following topics:

¢ Creating an options menu

Modifying menus and menu items during runtime
Enabling Contextual Action Mode for a view
Using Contextual Batch Mode with Recyclerview

Creating a pop-up menu

Introduction

The Android OS is an ever-changing environment. The earliest Android devices (prior to
Android 3.0), were required to have a hardware menu button. Though a hardware button is
no longer required, menus are no less important. In fact, the Menu API has expanded to
now support three different types of menus:

¢ Options menu and action bar: This is the standard menu, which is used for
global options of your application. Use this for additional features such as search,
settings, and so on.

¢ ContextualMode (Contextual Action Mode): This is generally activated by a
long press. (Think of this as similar to a right-click on the desktop.) This is used
to take an action on the pressed item, such as replying to an email or deleting a
file.

¢ Pop-up menu: This provides a pop-up selection (like a spinner) for an additional
action. The menu options are not meant to affect the item pressed; instead, use
Contextual Mode as described previously. An example would be hitting the
share button and getting an additional list of share options.

Menu resources are similar to other Android UI components; they are generally created in
XML, but can be created in code as well. Our first recipe, as shown in the following section,
will show the XML menu format and how to inflate it.

Menus and Action Mode Chapter 4

Creating an options menu

Before we actually create and display a menu, let's look at a menu to see the end result. The
following is a screenshot showing the menu section of the Chrome app:

[New tab

(=

C D Search ortype URL w

The most obvious feature to note is that the menu will look different based on the screen
size. By default, menu items will be added to the overflow menu—that's the menu you see
when you press the three dots at the far right edge.

Menus are typically created in resource files using XML (like many other Android
resources) stored in the res/menu directory, though they can also be created in code. To
create a menu resource, use the <menu> element as shown:

<menu xmlns:android="http://schemas.android.com/apk/res/android">
</menu>

The <item> element defines each individual menu item and is enclosed in the <menu>
element. A basic menu item looks as follows:

<item
android:id="@+id/settings"
android:title="@string/settings" />

The most common <item> attributes are the following;:

e id: This is the standard resource identifier

e title: This indicates the text to display

e icon: This is a drawable resource

e showAsAction: This is explained in the following paragraph
e enabled: This is enabled by default

Let's look at showAsAction in more detail.

[86]

Menus and Action Mode Chapter 4

The showAsAction attribute controls how the menu item is shown. The options include
the following:

¢ ifRoom: This menu item should be included in the action bar if there's enough
space

e withText: This indicates that both the title and the icon should be shown

e never: This indicates that the menu item should never be included in the action
bar; it is always shown in the overflow menu

® always: This indicates that the menu item should be always included in the
action bar (use sparingly as space is limited)

Multiple options can be combined using the pipe (|) separator, such as
showAsAction="ifRoom|withText".

With the fundamentals of the menu resource covered, we are now ready to create a
standard options menu and inflate it.

Getting ready

Use Android Studio to create a new project called Opt ionsMenu. Use the default Phone &
Tablet option and select the Empty Activity option when prompted for the Activity Type.
The Android Studio wizard does not create the res/menu folder by default. You can create
it manually using File | New | Directory, or create it using the Android Resource
Directory wizard.

[871]

Menus and Action Mode

Chapter 4

Here are the steps to use the wizard:

1. First, right-click on the res folder and select New | Android Resource Directory
as shown here:

® 1: Project

7: Structure

©- Captures

% 2: Favorites

Build Variants

OptionsMenu

A4

% app

s app

manifests
JEVE]

res

] Terminal

Link C++ Project with Gradle

Copy Path
Copy Relative Path
Paste

Find Usages

Find in Path...
Replace in Path...
Analyze

Refactor

Add to Favorites
Show Image Thumbnails

Reformat Code
Optimize Imports

Local History
Synchronize 'res'

Reveal in Finder
Compare With...
Load/Unload Modules...

Create Gist...
Convert to WebP...

Build = 6: Logcat

[create new resource file

% TODO

Cxapp ¥

activity_main.xml

Kotlin File/CI

Android Resource File
Android Resource Directory
Sample Data Directory

File
Scratch File
Directory

C++ Class

MainActivity.java

com. packtpub.optionsmenu

MainArtivitv
ass

yout.

C/C++ Source File

C/C++ Head

Image Asset

er File

Vector Asset

Gradle Kotlin DSL Build Script
Gradle Kotlin DSL Settings

Edit File Templates...

AIDL
Activity

Android Auto

Folder
Fragment
Google
Other
Service

Ul Compone
Wear
Widget

XML
Resource Bu

nt

VYV VYV VYVYYVYVYYVYY

ndle

Icon Pack Drawable Importer

Vector Draw
Batch

AV R

[881]

able Importer

rawable Import

[EN TP

AppCompatActivity {

)

(Bundle savedInstanceState) {
dInstanceState)

Menus and Action Mode Chapter 4

2. On the New Resource Directory dialog, select the Resource type drop-down
menu and choose the menu option:

| NON) New Resource Directory
Directory name: | menu
Resource type: | menu

Source set: main

Available qualifiers: Chosen qualifiers:
&) Country Code
@) Network Code
& Locale
B Layout Direction
B Smallest Screen Width

B screen width

[l Screen Height

B size

A Ratio

) Orientation

8 Ul Mode
Night Mode

IG Density

i Touch Screen

Cancel

How to do it...

With the new project created as described in the preceding section, you are ready to create a
menu. First, we will add a string resource to strings.xml. We will use the new string for
the menu title when we create the XML for the menu. Here are the steps:

1. Start by opening the strings.xml file and adding the following <string>
element to the <resources> element:

<string name="menu_settings">Settings</string>

2. Create a new file in the res/menu directory and call it menu_main.xml.

[891]

Menus and Action Mode Chapter 4

3. Open the menu_main.xnl file and add the following XML to define the menu:

<?xml version="1.0" encoding="utf-8"7?>
<menu xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto">
<item android:id="@+id/menu_settings"
android:title="@string/menu_settings"
app:showAsAction="never">
</item>
</menu>

4. With the menu now defined in the XML, we just have to override the
onCreateOptionsMenu () method in ActivityMain. java to inflate the menu:

@Override
public boolean onCreateOptionsMenu (Menu menu) {
getMenulInflater () .inflate (R.menu.menu_main, menu);

return true;

}

5. Run the program on a device or emulator to see the menu in the action bar.

How it works...

There are two basic steps here:

1. Define the menu in XML
2. Inflate the menu when the activity is created

As a good programming habit, we define the string in the strings.xml file rather than
hard coding it in the XML. We then use the standard Android string identifier to set the
title for the menu in step 3. Since this is a Settings menu item, we used

the showAsAction="never" option so it wouldn't be shown as an individual menu option
in the action bar.

With the menu defined, we will use the menu inflater in step 4 to load the menu during the
activity creation. Notice the R.menu.menu_main menu resource syntax? This is why we
create the XML in the res/menu directory—so the system will know this is a menu
resource.

[90]

Menus and Action Mode Chapter 4

In step 4, we used app: showAsAction rather than Android: android: showAsAction.
This is because we are using the AppCompat library (also referred to as the Android
Support Library). By default, the Android Studio new project wizard includes the support
library in the project.

There's more...

If you ran the program in step 5, then you must have seen the Settings menu item when
you pressed the menu overflow button. But that was it. Nothing else happened. Obviously,
menu items aren't very useful if the application doesn't respond to them. Responding to the
Options menu is done through the onOptionsItemSelected () callback.

Add the following method to the application to see a Toast when the Settings menu is
selected:

@Override
public boolean onOptionsItemSelected (Menultem item) {
if (item.getItemId() == R.id.menu_settings) {
Toast .makeText (this, "Settings", Toast.LENGTH_LONG) .show () ;
} else {

return super.onContextItemSelected(item);

}

return true;

}
That's it. You now have a working menu!

As shown in the preceding example, return t rue when you've handled
the callback; otherwise, call the super class as shown in the else
statement.

Using a menu item to launch an activity

In the above example, we show a Toast in response to the menu click; however, we could
just as easily launch a new activity if needed. To start an activity, create an Intent and call it
with startActivity () as shown in the Starting a new activity with an Intent object recipe

in Chapter 1, Activities.

[91]

Menus and Action Mode Chapter 4

Creating submenus

Submenus are created and accessed in almost exactly the same manner as other menu
elements. They can be placed in any of the provided menus but not within other submenus.
To define a submenu, include a <menu> element within an <item> element. Here is the

XML for this recipe with two submenu items added:

<?xml version="1.0" encoding="utf-8"7?>

<menu
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto">
<item android:id="@+id/menu_settings
android:title="@string/menu_settings"
app:showAsAction="never">
<menu>
<item android:id="@+id/menu_subl"
android:title="Storage Settings" />
<item android:id="@+id/menu_sub2"
android:title="Screen Settings" />
</menu>
</item>
</menu>

Grouping menu items

Another menu feature that Android supports is grouping menu items. Android provides
several methods for groups, including the following:

® setGroupVisible (): Show or hide all items
® setGroupEnabled (): Enable or disable all items
® setGroupCheckable (): Set the checkable behavior

Android will keep all grouped items with showAsAction="ifRoom"
together. This means all items in the group with
showAsAction="1ifRoom" will be in the action bar or all items will be in

the overflow.

To create a group, add the <item> menu elements to a <group> element. Here is an
example using the menu XML from this recipe with two additional items in a group:

<?xml version="1.0" encoding="utf-8"7?>

<menu xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto">
<group android:id="@+id/group_one" >

[92]

Menus and Action Mode Chapter 4

<item android:id="@+id/menu_iteml"
android:title="Item 1"
app:showAsAction="ifRoom" />
<item android:id="@+id/menu_item2"
android:title="Item 2"
app:showAsAction="ifRoom" />
</group>
<item android:id="@+id/menu_settings"
android:title="@string/menu_settings"
app:showAsAction="never"/>
</menu>

See also

e For complete details on the menu, visit the Android Developer Menu Resources

site at
http://developer.android.com/guide/topics/resources/menu-resource.html

Modifying menus and menu items during
runtime

Though it's been stated many times it's considered the best programming practice to create
Uls in XML rather than in Java, there are still times when using code is the better option.
This is especially true if you wanted a menu item to be visible (or enabled) based on some
external criteria. Menus can also be included in resource folders, but there are times when
you need code to perform the logic of which resource to use. One example might be if you
wanted to offer an upload menu item only if the user is logged in to your app.

In this recipe, we will create and modify the menu only through code.

Getting ready

Create a new project in Android Studio and call it Runt imeMenu using the default Phone &
Tablet option. Select the Empty Activity option when prompted to add an activity. Since
we will create and modify the menu completely in code, we will not need to create a
res/menu directory.

[93]

http://developer.android.com/guide/topics/resources/menu-resource.html

Menus and Action Mode Chapter 4

How to do it...

To start, we will add string resources for our menu items and a button to toggle the menu
visibility. Open the res/strings.xml file and follow these steps:

1. Add the following two strings to the existing <resources> element:

<string name="menu_download">Download</string>
<string name="menu_settings">Settings</string>

2. Delete the existing TextView and add a button to activity_main.xml with
onClick () setto toggleMenu as shown here:

<Button
android:id="@+id/buttonToggleMenu"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Toggle Menu"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />

3. Open ActivityMain. java and add the following three lines of code just below
the class declaration:

private final int MENU_DOWNLOAD 1;
private final int MENU_SETTINGS 2;
private boolean showDownloadMenu = false;

4. Add the following method for the button click callback:

public void toggleMenu (View view) {
showDownloadMenu=!showDownloadMenu;

}

5. When the activity is first created, Android calls onCreateOptionsMenu () to
create the menu. Here is the code to dynamically build the menu:

@Override

public boolean onCreateOptionsMenu (Menu menu) {
menu.add (0, MENU_DOWNLOAD, 0, R.string.menu_download);
menu.add (0, MENU_SETTINGS, 0, R.string.menu_settings);
return true;

[94]

Menus and Action Mode Chapter 4

6. For best programming practice, don't use onCreateOptionsMenu () to update
or change your menu; instead, use onPrepareOptionsMenu (). Here is the code
to change the visibility of the Download menu item based on our flag:

@Override

public boolean onPrepareOptionsMenu (Menu menu) {
Menultem menultem = menu.findItem (MENU_DOWNLOAD) ;
menultem.setVisible (showDownloadMenu) ;
return true;

}

7. Though not technically required for this recipe, this
onOptionsItemSelected () code shows how to respond to each menu item:

@Override
public boolean onOptionsItemSelected (Menultem item) {
switch (item.getItemId()) |

case MENU_DOWNLOAD:
Toast .makeText (this, R.string.menu_download,
Toast .LENGTH_LONG) .show () ;
break;
case MENU_SETTINGS:
Toast .makeText (this, R.string.menu_settings,
Toast .LENGTH_LONG) .show () ;
break;
default:
return super.onContextItemSelected(item);

}

return true;

}

8. Run the program on a device or emulator to see the menu changes.

How it works...

We created an override for onCreateOptionsMenu (), just like we did in the previous
recipe, Creating an options menu. But instead of inflating an existing menu resource, we
created the menu using the Menu. add () method. Since we want to modify the menu items
later as well as respond to the menu item events, we defined our own menu IDs and passed
them to the add () method. The onOptionsItemSelected () objectis called for all the
menu items, so we get the menu ID and use a switch statement based on the ID. We return
true if we are handling the menu event, otherwise we pass the event to the super class.

[95]

Menus and Action Mode Chapter 4

Changing the menu occurs in the onPrepareOptionsMenu () method. To simulate an
external event, we created a button to toggle a Boolean flag. The visibility of the Download
menu is determined by the flag. This is where you would want to create your custom code
based on whatever criteria you set. Your flag could be set using the current player level or
maybe when a new level is ready for release, you send a push message to enable the menu
item.

There's more...

What if we wanted the Download option to stand out when it's available? We could tell
Android we want the menu in the action bar by adding the following code to
onPrepareOptionsMenu () (before the return statement):

menultem.setShowAsAction (Menultem.SHOW_AS_ACTION_ALWAYS) ;

Now if you run the code, you will see the Download menu item in the action bar, but the
behavior isn't correct.

Earlier, when we didn't have a menu item in the action bar, Android called
onPrepareOptionsMenu () each time we opened the overflow menu so the visibility was
always updated. To correct this behavior, add the following line of code to the
toggleMenu () method:

invalidateOptionsMenu () ;

The invalidateOptionsMenu () call tells Android that our option menu is no longer
valid, which then forces a call to onPrepareOptionsMenu (), giving us the behavior we
expect.

Android considers the menu as always open if a menu item is displayed
in the action bar.

[961]

Menus and Action Mode Chapter 4

Enabling Contextual Action Mode for a view

A context menu provides additional options related to a specific view—the same concept as
a right-click on the desktop. Android currently supports two different approaches: the
floating context menu and Contextual Mode. Contextual Action Mode was introduced in
Android 3.0. The older floating context menu could lead to confusion since there was no
indication of the currently selected item and it didn't support actions on multiple
items—such as selecting multiple emails to delete in one action.

Creating a floating context menu

If you need to use the old-style context menu, for example to support pre-Android 3.0
devices, it's very similar to the Option Menu AP], you just different method names. To
create the menu, use onCreateContextMenu () instead of onCreateOptionsMenu (). To
handle the menu item selection, use onContextItemSelected () instead of
onOptionsItemSelected (). Finally, call registerForContextMenu () to let the system
know you want context menu events for the view.

Since Contextual Mode is considered the preferred way to display context options, this
recipe will focus on the newer API. Contextual Mode offers the same features as the
floating context menu, but also adds additional functionality by allowing multiple item
selection when using batch mode.

This recipe will demonstrate the setup of Contextual Mode for a single view. Once
activated, with a long press in our example, a contextual action bar (CAB) will replace the
action bar until Contextual Mode is finished.

The CAB is not the same as the action bar and your activity does not need
to include an action bar.

Getting ready

Use Android Studio to create a new project and call it ContextualMode. Use the default
Phone & Tablet option and select Empty Activity when prompted to add an activity.
Create a menu directory (res/menu) as we did in the first recipe, Creating an options menu,
to store the XML for the contextual menu.

[97]

Menus and Action Mode Chapter 4

How to do it...

We will create ImageView to serve as the host view to initialize Contextual Mode. Since
Contextual Mode is usually triggered with a long press, we will set up a long click listener
in onCreate () for Imageview. When called, we will start Contextual Mode and pass an
ActionMode callback to handle the Contextual Mode events. Here are the steps:

1. We will start by adding two new string resources. Open the strings.xml file
and add the following:

<string name="menu_cast">Cast</string>
<string name="menu_print">Print</string>

2. With the strings created, we can now create the menu by creating a new file in
res/menu called context_menu.xml using the following XML:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res—auto">
<item android:id="@+id/menu_cast"
android:title="@string/menu_cast" />
<item android:id="Q@+id/menu_print"
android:title="@string/menu_print" />
</menu>

3. Now add ImageView to activity_main.xml to serve as the source for
initiating Contextual Mode. Here is the XML for Imageview:

<ImageView
android:id="@+id/imageView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent"
app:srcCompat="@mipmap/ic_launcher" />

4. With the Ul now set up, we can add the code for Contextual Mode. First, we
need a global variable to store the Act ionMode instance returned when we call
startActionMode (). Add the following line of code to MainActivity.java
below the class constructor:

ActionMode mActionMode;

[981]

Menus and Action Mode Chapter 4

5. Next, create an Act ionMode callback to pass to startActionMode () . Add the
following code to the MainActivity class below the code in the previous step:

private ActionMode.Callback mActionModeCallback = new
ActionMode.Callback () {

@Override
public boolean onCreateActionMode (ActionMode mode, Menu menu)
mode.getMenuInflater () .inflate (R.menu.context_menu, menu);
return true;
}
@Override
public boolean onPrepareActionMode (ActionMode mode, Menu menu)
{
return false;
}
@Override
public boolean onActionItemClicked(ActionMode mode, Menultem
item) {
switch (item.getItemId()) {
case R.id. menu_cast:
Toast .makeText (MainActivity.this, "Cast",
Toast .LENGTH_SHORT) .show () ;
mode.finish();
return true;
case R.id. menu_print:
Toast.makeText (MainActivity.this, "Print",
Toast .LENGTH_SHORT) .show () ;
mode.finish();
return true;
default:
return false;
}
}
@Override
public void onDestroyActionMode (ActionMode mode) {
mActionMode = null;
}

bi

[991]

Menus and Action Mode Chapter 4

6. With the ActionMode callback created, we just need to call startActionMode ()
to begin Contextual Mode. Add the following code to the onCreate () method to
set up the long click listener:

ImageView imageView = findViewById(R.id.imageView) ;
imageView.setOnLongClickListener (new View.OnLongClickListener () {
public boolean onLongClick (View view) {
if (mActionMode != null) return false;
mActionMode = startSupportActionMode (mActionModeCallback);
return true;

)i

7. Run the program on a device or emulator to see the CAB in action.

How it works...

As you saw in step 2, we used the same menu XML to define the contextual menu as the
other menus.

The main piece of code to understand is the Act ionMode callback. This is where we handle
the Contextual Mode events: initializing the menu, handling menu item selections, and
cleaning up. We start Contextual Mode in the long press event with a call to
startActionMode () by passing in the ActionMode callback created in step 5.

When action mode is triggered, the system calls the onCreateActionMode () callback,
which inflates the menu and displays it in the CAB. The user can dismiss the CAB by
pressing the back arrow or the back key. The CAB is also dismissed when the user makes a
menu selection. We show a Toast to give a visual feedback for this recipe but this is where
you would implement your functionality.

[100]

Menus and Action Mode Chapter 4

There's more...

In this example, we store Act ionMode returned from the startActionMode () call. We use
it to prevent a new instance from being created when the Action Mode is already active. We
could also use this instance to make changes to the CAB itself, such as changing the title
with the following:

mActionMode.setTitle ("New Title");

This is particularly useful when working with multiple item selections as we'll see in the
next recipe.

See also

e See the next recipe, Using Contextual Batch Mode with RecyclerView, to work with
multiple item selection

Using Contextual Batch Mode with
RecyclerView

As discussed in the previous recipe, Contextual Mode supports two forms of use: single
View mode (as demonstrated) and multiple selection (or batch) mode. Batch mode is where
Contextual Mode outperforms the old-style context menu as multiple selections were not
supported.

[101]

Menus and Action Mode Chapter 4

If you've ever used an email app such as Gmail or a file browser, you've probably seen
Contextual Mode when selecting multiple items. Here is a screenshot from Solid Explorer,
which shows an excellent implementation of Material Theme and Contextual Mode:

= il #(27%] 16:38

INTERNAL STORAGE
Alarms
Directory Apr 08,2015,17:43:13
albumthumbs
Directory Jun 07,2015, 19:30:42
Android
Directory Apr 08,2015, 17:43:20
DCIM
Directory May 27,2015, 18:43:31
Digest
Directory May 29, 2015, 08:21:09
Download
Directory Apr 08,2015,17:43:14
HoverChat
Directory May 28, 20% 9

When we introduced RecyclerViewin Chapter 2, Layouts, we discussed how many
features from the old ListView were not already included in the new Recyclerview.
Multiple item selection is one of the most missed features. In this recipe, we will
demonstrate multiple item selection with the Recyclerview using Action Mode.

[102]

Menus and Action Mode Chapter 4

Getting ready

We will use the RecyclervView example created in Chapter 2, Layouts as the base for this
recipe. If you have not already done so, go back to the RecyclerView replaces ListView recipe
in that chapter, then add the menu directory (res/menu) for the contextual menu as
demonstrated previously. From this point, you can perform the following steps to add
multiple item selection to RecyclerView. The project will be

called RecyclervViewActionMode.

How to do it...

We'll be combining several concepts already learned in previous recipes to enable multiple
item selection with Recyclerview. We'll start by adding the menu and related code, then
modify the RecyclervView item to show the state selection. Finally, we'll modify the
RecyclerView adapter to support click notification, which will start Action Mode. Here

are the steps:

1. Open the strings.xml file and add two new string resources for the menu
items as follows:

<string name="delete_all">Delete All</string>

2. Create a new file called contextual_menu.xml in the res/menu folder with the
following XML:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android" >
<item android:id="@+id/delete_all"
android:title="@string/delete_all" />
</menu>

3. Next, add a new file to the res/drawable folder called item_selector.xml
with the following XML:

<?xml version="1.0" encoding="utf-8"7?>

<menu xmlns:android="http://schemas.android.com/apk/res/android" >
<item android:id="Q@+id/delete_all"
android:title="@string/delete_all" />

</menu>

[103]

Menus and Action Mode Chapter 4

4. Open the item.xml file in res/layout and add the following line to the
LinearLayout:

android:background="@drawable/item_selector"

5. Next, create a new Java file called SelectMode to server as the click event
interface. The code is as follows:

public interface SelectMode {
void onSelect ();

}

6. Now open the MyAdapter file and add implements SelectMode to the class.
The final result will be as follows:

public class MyAdapter extends
RecyclerView.Adapter<MyAdapter.MyViewHolder>
implements SelectMode {

7. Add the onSelect method to the class using the following code:

@Override
public void onSelect () {
if (mListener!=null) {
mListener.onSelect () ;

}

8. Add the following declaration to the class to hold the list of selected items:

private SparseArray<Boolean> selectedList = new SparseArray<>();

9. We'll add another method to the adapter to handle the actual delete method
called from the Action Mode:

public void deleteAllSelected() {
if (selectedList.size()==0) { return; }
for (int index = namelist.size()-1; index >=0; index—--) {
if (selectedList.get (index, false)) {
remove (index) ;
}
;

selectedList.clear();

[104]

Menus and Action Mode Chapter 4

10. The final change to make to the MyAdapter class is to replace the existing
onClick () . The final code will be as follows:

@Override
public void onClick (View v) {
holder.itemView.setSelected(!holder.itemView.isSelected());
if (holder.itemView.isSelected()) {
selectedList.put (position, true);
} else {
selectedList.remove (position);

}

onSelect () ;

}

11. Now that we have the menu created and the adapter updated, we need to hook it
all up in the MainActivity class. To start, modify the MainActivity
declaration to implement the SelectMode interface. The final code will be as
follows:

public class MainActivity extends AppCompatActivity
implements SelectMode {

12. Below the class declaration, add the following two variable declarations:

MyAdapter myAdapter;
ActionMode mActionMode;

13. Then add the ActionMode callback declaration:

private ActionMode.Callback mActionModeCallback = new
ActionMode.Callback () A

@Override
public boolean onCreateActionMode (ActionMode mode, Menu menu) {
mode.getMenuInflater () .inflate (R.menu.context_menu, menu);

return true;

@Override
public boolean onPrepareActionMode (ActionMode mode, Menu menu)

{

return false;

@Override
public boolean onActionItemClicked (ActionMode mode, Menultem
item) <

switch (item.getItemId()) {

[105]

Menus and Action Mode Chapter 4

case R.id. delete_all:
myAdapter.deleteAllSelected();

mode.finish () ;
return true;

default:
return false;

}

@Override
public void onDestroyActionMode (ActionMode mode) {
mActionMode = null;
t
i
14. We need to store the MyAdapter reference so it can be called from ActionMode.
To do this, modify the myAdapter instantiation call in the onCreate () method

as follows:
myAdapter = new MyAdapter (list, this);

15. The final code is to implement the onSelect method to connect the adapter
callback to the Action Mode. Add the following method to the MainActivity

class:
@Override
public void onSelect () {
if (mActionMode != null) return;
mActionMode = startSupportActionMode (mActionModeCallback);

}

16. Run the program on a device or emulator to see the CAB in action.

How it works...

As mentioned in the Introduction to this recipe, multiple item selection is one of the most

missed features of RecyclerView and the one that receives the most questions. As you can
see from this example, even a basic implementation requires many steps but the end result
can be the exact implementation required for your task. You won't be limited to an existing

feature set since you'll be creating it yourself.

[106]

Menus and Action Mode Chapter 4

This recipe combines several concepts learned from previous recipes, including the
following;:

® RecyclerView

The RecyclerView adapter

The contextual menu
The action mode callback

To tie everything together, we created a custom interface so the adapter could notify when
an item was selected. MainActivity receives the onSelect () event to trigger
ActionMode. The ActionMode menu item calls the adapter when the user clicks the Delete
All menu item and then closes the CAB.

This is just one-way Act ionMode could be implemented. We could start Act ionMode with
a long press, a checkbox on the item, or maybe a menu item. The choice is yours.

There's more...

If you ran the application using the code shown previously, everything works as you'd
expect. But there's a problem. Our example only has a few items in the list—probably not
enough to even allow scrolling. The point of Recyclerview though is to efficiently handle
many items when scrolling. If you add many more items to the list, enough to allow
scrolling a screen or two, you'll see the problem. Recyclerview does exactly what it says:
it recycles the views. If you select the first item, then scroll down, you'll see the problem -
items you didn't select are selected.

What's happening is a common issue and confuses many developers new to
RecyclerView. Because the view is being reused, it's showing the state from the previous
item. The solution is simple: just set the state appropriately when binding a new item. We
can fix the preceding problem just by setting the initial state in the onBindviewHolder ()
call. Add the following line of code to the onBindviewHolder () method in the
MyAdapter class:

holder.itemView.setSelected(selectedList.get (position, false));

As you can see, we set the initial state by checking our list to see if the item was selected.

[107]

Menus and Action Mode Chapter 4

See also

¢ For more information on RecyclerView, refer to Chapter 2, Layouts

¢ For more information on the SparseArray, refer to https://developer.android.
com/reference/android/util/SparseArray

Creating a pop-up menu

A pop-up menu is attached to a view similar to the drop-down menu on a spinner. The idea
of a pop-up menu is to provide additional options to complete an action. A common
example might be a Reply button in an email app. When pressed, several reply options are
shown, such as: Reply, Reply All, and Forward.

Here is an example of the pop-up menu from the following recipe:

Reply
Reply All

Forward

Android will show the menu options below the anchor view if there is room; otherwise, the
menu will be shown above the view.

A pop-up menu is not meant to affect the view itself. That is the purpose
of a Context Menu. Instead refer to the Floating Menu/Context Mode
described in the Enabling Contextual Action Mode for a view recipe.

In this recipe, we will create the pop-up menu shown previously, using ImageButton as
the anchor view.

[108]

https://developer.android.com/reference/android/util/SparseArray
https://developer.android.com/reference/android/util/SparseArray
https://developer.android.com/reference/android/util/SparseArray
https://developer.android.com/reference/android/util/SparseArray
https://developer.android.com/reference/android/util/SparseArray
https://developer.android.com/reference/android/util/SparseArray
https://developer.android.com/reference/android/util/SparseArray
https://developer.android.com/reference/android/util/SparseArray
https://developer.android.com/reference/android/util/SparseArray
https://developer.android.com/reference/android/util/SparseArray
https://developer.android.com/reference/android/util/SparseArray
https://developer.android.com/reference/android/util/SparseArray
https://developer.android.com/reference/android/util/SparseArray
https://developer.android.com/reference/android/util/SparseArray
https://developer.android.com/reference/android/util/SparseArray
https://developer.android.com/reference/android/util/SparseArray

Menus and Action Mode Chapter 4

Getting ready

Create a new project in Android Studio and call it PopupMenu. Use the default Phone &
Tablet option and select Empty Activity on the Add an Activity to Mobile dialog. As
detailed in the first exercise of this chapter, create a menu directory (res/menu) to store the

menu XML.

How to do it...

We start by creating the XML menu to inflate on the button press. After inflating the pop-
up menu, we call setOnMenuItemClickListener () by passing in the callback to handle
the menu item selection. Start by opening the strings.xml file located in the res/values
folder, then follow these steps:

1. Add the following strings:

<string name="menu_reply">Reply</string>
<string name="menu_reply_all">Reply All</string>
<string name="menu_forward">Forward</string>

2. Create a new file in the res/menu directory called menu_popup . xml using the
following XML:

<?xml version="1.0" encoding="utf-8"7?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/menu_reply"
android:title="@string/menu_reply" />
<item android:id="@+id/menu_reply_all"
android:title="@string/menu_reply_all" />
<item android:id="@+id/menu_forward"
android:title="@string/menu_forward" />
</menu>

3. Create ImageButtonin activity_main.xml to provide the anchor view for the
pop-up menu. Create it as shown in the following XML code:

<ImageButton
android:id="@+id/imageButtonReply"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginStart="8dp"
android:layout_marginTop="8dp"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent"

[109]

Menus and Action Mode Chapter 4

app:srcCompat="Q@android:drawable/ic_menu_revert"
android:onClick="showPopupMenu"/>

4. OpenMainActivity. java and add the following OnMenuItemClickListener
below the class constructor:

private PopupMenu.OnMenultemClickListener mOnMenultemClickListener

= new
PopupMenu.OnMenultemClickListener () {
@Override
public boolean onMenultemClick (Menultem item) {
switch (item.getItemId()) {

case R.id.menu_reply:
Toast.makeText (MainActivity.this, "Reply",
Toast .LENGTH_SHORT) .show () ;
return true;
case R.id.menu_reply_all:
Toast.makeText (MainActivity.this, "Reply
All",Toast .LENGTH_SHORT) .show () ;
return true;
case R.id.menu_forward:
Toast.makeText (MainActivity.this, "Forward",
Toast .LENGTH_SHORT) .show () ;
return true;
default:
return false;

}i
5. The final code is to handle the button onClick () event, as follows:

public void showPopupMenu (View view) {
PopupMenu popupMenu = new PopupMenu (MainActivity.this,view);
popupMenu.inflate (R.menu.menu_popup) ;
popupMenu.setOnMenultemClickListener (mOnMenultemClickListener) ;
popupMenu.show () ;

}

6. Run the program on a device or emulator to see the pop-up menu.

[110]

Menus and Action Mode Chapter 4

How it works...

If you read the previous menu recipes, this will probably look very familiar. Basically, we
just inflate a pop-up menu when ImageButton is pressed. We set up a menu item listener
to respond to the menu selection.

The key is to understand each of the menu options available in Android so you can use the
correct menu type for a given scenario. This will help your application by providing a
consistent user experience and reducing the learning curve for the user as they will already
be familiar with the standard way of doing things.

[111]

Fragments

In this chapter, we will cover the following topics:

¢ Creating and using a Fragment

¢ Adding and removing Fragments during runtime
¢ Passing data between Fragments

¢ Handling the Fragment back stack

Introduction

With a firm understanding of layouts from chapter 2, Layouts, we'll dig deeper into Ul
development with Fragments. Fragments are a way to separate your Ul into smaller
sections that can easily be reused. Think of Fragments as mini-activities, complete with
their own classes, layouts, and life cycle. Instead of designing your screen in one Activity
Layout, possibly duplicating functionality across multiple layouts, you can break the screen
into smaller, logical sections and turn them into Fragments. Your Activity Layout can then
reference one or multiple Fragments, as needed.

Creating and using a Fragment

Android didn't always support Fragments. The early versions of Android were designed
for phones when screens had relatively small displays. It wasn't until Android started being
used on tablets that there was a need to split the screen into smaller sections. Android 3.0
introduced the Fragments class and the Fragment Manager.

Along with a new class, also came the Fragment Lifecycle. The Fragment Lifecycle is similar
to the Activity Lifecycle introduced in chapter 1, Activities, as most events parallel the
Activity Lifecycle.

Fragments Chapter 5

Here's a brief overview of the main callbacks:

e onAttach (): It's called when the Fragment is associated with an Activity.
e onCreate ():It's called when the Fragment is first created.

e onCreateView (): It's called when the Fragment is about to be displayed for the
first time.

e onActivityCreated():It's called when the associated Activity is created.
e onStart ():It's called when the Fragment will become visible to the user.
e onResume () : It's called just before a Fragment is displayed.

e onPause () It's called when the Fragment is first suspended. The user may
return to the Fragment, but this is where you should persist any user data.

e onstop (): It's called when the Fragment is no longer visible to the user.
e onDestroyView ():It's called to allow final cleanup.

e onDetach (): It's called when the Fragment is no longer associated with the
Activity.

For our first exercise, we will create a new Fragment derived from the standard Fragment
class. But there are several other Fragment classes we could derive from, including the
following;:

e DialogFragment:It's used for creating a floating dialog
e ListFragment: It creates a ListView in a Fragment, similar to ListActivity
e PreferenceFragment: It creates a list of Preference objects, commonly used

for a Settings page

In this recipe, we will walk through creating a basic Fragment derived from the Fragment
class and include it in an Activity Layout.

Getting ready

Create a new project in Android Studio and call it CreateFragment. Use the default Phone
& Tablet option and select Empty Activity on the Add an Activity to Mobile dialog.

How to do it...

In this recipe, we will create a new Fragment class with an accompanying layout file. We
will then add the Fragment to the Activity Layout so it will be visible when the activity
starts.

[113]

Fragments Chapter 5

Here are the steps to create and display a new Fragment:
1. Create a new layout called fragment_one.xml using the following XML:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_height="match_parent"
android:layout_width="match_parent">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Fragment One"
android:id="@+id/textView"
android:layout_centerVertical="true"
android:layout_centerHorizontal="true" />
</RelativeLayout>

2. Create a new Java class called FragmentOne. java with the following code:

public class FragmentOne extends Fragment {

@Override

public View onCreateView (LayoutInflater inflater, ViewGroup
container,

Bundle savedInstanceState) {
return inflater.inflate(R.layout.fragment_one, container,

false);

}
}

3. Open the activity_main.xml file and replace the existing <TextVview>
element with the following <fragment> element:

<fragment
android:name="com.packtpub.createfragment.FragmentOne"
android:id="@+id/fragment"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerVertical="true"
android:layout_centerHorizontal="true"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

4. Run the program on a device or emulator.

[114]

Fragments Chapter 5

How it works...

We start by creating a new class, the same as we do for an Activity. In this recipe, we only
create an overwrite for the onCreateview () method to load our Fragment layout. But, just
like with the Activity events, we can override the other events as we need them. Once the
new Fragment is created, we then add it to the Activity Layout. Since the

original Activity class was created before Fragments existed, they do not support
Fragments. That's why, unless otherwise indicated, all the examples for this book extend
from AppCompatActivity. (If you used the Android Studio New Project Wizard, then by
default MainActivity extends AppCompatActivity.)

There's more...

We're only creating a single, simple Fragment in this recipe to teach the fundamentals of
Fragments. But this is a good time to point out the power of Fragments. If we are creating
multiple Fragments (and usually we are, as that's the point of using Fragments), when
creating the Activity Layouts as we did in step 4, we could create different layout
configurations using the Android Resource Folders. The portrait layout may have only a
single Fragment while the landscape may have two or more. The Master/Detail layout
typically uses Fragments, thus only requiring each screen section to be designed and coded
once, then included in the layout as appropriate.

See also

¢ For more information on the Master/Detail pattern, see the Passing data between
Fragments recipe later in this chapter.

Adding and removing Fragments during
runtime

Defining a Fragment in the layout, as we did in the previous recipe, is known as a static
Fragment, which doesn't allow the fragment to be changed during runtime. Rather than
using the <fragment > element, we will create a container to hold the Fragment, then create
the Fragment dynamically in the Activity's onCreate () method.

[115]

Fragments Chapter 5

The FragmentManager provides the APIs for adding, removing, and changing Fragments
during runtime using a FragmentTransaction. A Fragment transaction consists of the
following;:

1. Starting a transaction
2. Performing one or multiple actions
3. Committing the transaction

This recipe will demonstrate the Fragment Manager by adding and removing Fragments
during runtime.

Getting ready

Create a new project in Android Studio and call it: Runt imeFragments. Use the
default Phone & Tablet option and select Empty Activity on the Add an Activity to
Mobile dialog.

How to do it...

To demonstrate adding and removing Fragments, we first need to create the Fragments,
which we will do by extending the Fragment class. After creating the new Fragments, we
need to alter the layout for the Main Activity to include the Fragment container. From
there, we just add the code to handle the Fragment transactions. Here are the steps:

1. Create a new layout file called fragment_one.xml and include the following
XML:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_height="match_parent"
android:layout_width="match_parent">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Fragment One"
android:id="@+id/textView"
android:layout_centerVertical="true"
android:layout_centerHorizontal="true" />
</RelativeLayout>

[116]

Fragments Chapter 5

2. The second layout file called fragment_two.xml is almost identical, with the
only difference being the text:

android:text="Fragment Two"
3. Create a new Java class called FragmentOne. java with the following code:

public class FragmentOne extends Fragment {
@Override
public View onCreateView (LayoutInflater inflater,
ViewGroup container, Bundle
savedInstanceState) {
return inflater.inflate(R.layout.fragment_one,
container, false);

}

e Import from the support library as follows:

import android.support.vé4.app.Fragment;
4. Create the second Java class called Fragment Two with the following code:

public class FragmentTwo extends Fragment {
@Override
public View onCreateView (LayoutInflater inflater,
ViewGroup container, Bundle
savedInstanceState) {
return inflater.inflate (R.layout.fragment_two,
container, false);

}

¢ As before, import from the support library:

import android.support.vé4.app.Fragment;

5. Now we need to add a container and a button to the Main Activity layout.
Change activity_main.xml as follows:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">
<FrameLayout
android:id="@+id/framelLayout"
android:layout_width="match_parent"

[117]

Fragments Chapter 5

android:layout_height="wrap_content"
android:layout_above="@+id/buttonSwitch"
android:layout_alignParentTop="true">
</FrameLayout>
<Button
android:id="@+id/buttonSwitch"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Switch"
android:layout_alignParentBottom="true"
android:layout_centerInParent="true"
android:onClick="switchFragment"/>
</Relativelayout>

6. With the Fragments created and the container added to the layout, we are now
ready to write the code to manipulate the Fragments. Open
MainActivity.java and add the following code below the class constructor:

FragmentOne mFragmentOne;
FragmentTwo mFragmentTwo;

int showingFragment=0;

7. Add the following code to the existing onCreate () method, below

setContentView ():
mFragmentOne = new FragmentOne () ;
mFragmentTwo = new FragmentTwo (

)i

FragmentManager fragmentManager = getSupportFragmentManager () ;

FragmentTransaction fragmentTransaction =
fragmentManager.beginTransaction () ;

fragmentTransaction.add(R.id.framelLayout, mFragmentOne) ;

fragmentTransaction.commit () ;

showingFragment=1;

e Import from the support libraries:

import android.support.vé4.app.FragmentManager;
import android.support.vé4.app.FragmentTransaction;

8. The last code we need to add handles the Fragment switching, called by the
button:

public void switchFragment (View view) {
FragmentManager fragmentManager = getSupportFragmentManager () ;
FragmentTransaction fragmentTransaction =
fragmentManager.beginTransaction () ;
if (showingFragment==1) {
fragmentTransaction.replace (R.1id.framelLayout,

[118]

Fragments Chapter 5

mFragmentTwo) ;
showingFragment = 2;
} else {
fragmentTransaction.replace (R.1id.framelLayout,
mFragmentOne) ;
showingFragment=1;
}

fragmentTransaction.commit () ;

}

9. Run the program on a device or emulator.

How it works...

Most of the steps for this recipe involve setting up the Fragments. Once the Fragments are
declared, we create them in the onCreate () method. Though the code can be condensed to
a single line, it's shown in the long form as it makes it easier to read and understand.

First, we get FragmentManager so we can begin FragmentTransaction. Once we
have Fragment Transaction, we start the transaction with beginTransaction ().
Multiple actions can occur within the transaction, but all we need here is to add () our
initial Fragment. We call the commit () method to finalize the transaction.

Now that you understand the Fragment transaction, here is the succinct version for
onCreate():

getSupportFragmentManager () .beginTransaction () .add (R.id.framelLayout,
mFragmentOne) .commit () ;

Our switchFragment () method does basically the same type of Fragment transaction.
Instead of calling the add () method, we call the replace () method with the existing
Fragment. We keep track of the current Fragment with the showingFragment variable so
we know which Fragment to show next. We are not limited to switching between two
Fragments either. If we needed additional Fragments, we just need to create them.

There's more...

In the Switching between activities recipe from Chapter 1, Activities, we discussed the back
stack. Most users would expect the back key to move backward through the "screens" and
they don't know or care if those screens are activities or Fragments. Fortunately, Android
makes it very easy to add Fragments to the back stack just by adding a call to
addToBackStack () before calling commit ().

[119]

Fragments Chapter 5

When a Fragment is removed or replaced without adding it to the back
stack, it is immediately destroyed. If it is added to the back stack, it is
stopped and, if the user returns to the Fragment, it is restarted, instead of
recreated.

See also

¢ For more information on managing the Fragment back stack, see the Handling the
Fragment back stack recipe later in this chapter.

Passing data between Fragments

Often, the need arises to pass information between Fragments. An email application serves
as a classic example. It's common to have the list of emails in one Fragment and show the
email details in another Fragment (this is commonly referred to as a Master/Detail pattern).
Fragments make creating this pattern easier because we only have to code each Fragment
once, then include them in different layouts. We can easily have a single Fragment in a
portrait layout with the ability to swap out the master Fragment with the detail Fragment
when an email is selected. We can also create a two-panel layout where both the list and
detail Fragments are side by side. Either way, when the user clicks the email in the list, the
email opens up in the detail panel. This is when we need to communicate between two
Fragments.

Since one of the primary goals of Fragments is that they be completely self-contained, direct
communication between Fragments is discouraged, and for good reason. If Fragments had
to rely on other Fragments, your code would likely break when the layouts changed and
only one Fragment was available. Fortunately, direct communication is not required for this
scenario either. All Fragment communication should pass through the host activity. The
host activity is responsible for managing the Fragments and can properly route the
messages.

Now the question becomes: How do Fragments communicate with the activity? The answer
is with an interface. You're probably already familiar with an interface, as that's how a view
communicates an event back to an activity. One of the most common examples is the button
onClick () interface.

[120]

Fragments Chapter 5

In this recipe, we will create two Fragments to demonstrate passing data from one
Fragment to another via the host activity. We'll also build on what we learned from the
previous recipe by including two different Activity Layouts-one for portrait and one for
landscape. When in portrait mode, the activity will swap the Fragments as needed. Here is
a screenshot of when the application first runs in portrait mode:

FragmentCommunication

China

France

Germany

India

Ruszsia

United Kingdom

United States

[121]

Fragments Chapter 5

This is the screen showing the detail Fragment when you click on a country name:

FragmentCommunication

China

[122]

Fragments Chapter 5

When in landscape, both Fragments will be side by side, as shown in the landscape
screenshot:

Ftagmentr_‘ammunicatinn
China
France
Gearmany
China

India

Russia

United Kingdom

Since the Master/Detail pattern generally involves a list for the master, we'll take advantage
of ListFragment (mentioned in the Creating and using a Fragment section). When an item in
the list is selected, the item text (country name in our example) will be sent to the detail
Fragment via the host activity.

Getting ready

Create a new project in Android Studio and call it FragmentCommunication. Use the
default Phone & Tablet option and select Empty Activity on the Add an Activity to
Mobile dialog.

How to do it...

To fully demonstrate working Fragments, we'll need to create two Fragments. The first
Fragment will extend from ListFragment so it will not need a layout. We're going to go
one step further by creating both portrait and landscape layouts for our Activity. For
portrait mode, we'll swap Fragments and for landscape mode, we'll show both Fragments
side by side.

[123]

Fragments Chapter 5

When typing this code, Android Studio will offer two different library
import options. Since the New Project Wizard automatically references the
AppCompat library, we need to use the support library APIs instead of
the framework APIs. Though very similar, the following code uses the
support Fragment APIs.

Here are the steps, starting with the first Fragment:

1. Create a new Java class called MasterFragment and change it so it extends
ListFragment as shown:

public class MasterFragment extends ListFragment

e Import from the following library:

android.support.v4d.app.ListFragment
2. Create the following interface inside the MasterFragment class:

public interface OnMasterSelectedListener {
public void onlItemSelected(String countryName) ;

}
3. Set up the interface callback listener with the following code:

private OnMasterSelectedListener mOnMasterSelectedListener=null;

public void setOnMasterSelectedListener (OnMasterSelectedListener
listener) {
mOnMasterSelectedListener=1listener;

}

4. The last step for the MasterFragment is to create ListAdapter to
populate ListView, which we do in the onViewCreated () method. When a
country name is selected, we'll use setOnItemClickListener () to call our
OnMasterSelectedListener interface with the following code:

public void onViewCreated(View view, Bundle savedInstanceState) {
super.onViewCreated(view, savedInstanceState);

String[] countries = new String[]{"China", "France",
"Germany", "India", "Russia", "United Kingdom",
"United States"};

ListAdapter countryAdapter = new ArrayAdapter<String> (
getActivity (), android.R.layout.simple_list_item_ 1,
countries);

[124]

Fragments Chapter 5

setListAdapter (countryAdapter);

getListView () .setChoiceMode (ListView.CHOICE_MODE_SINGLE) ;

getListView () .setOnItemClickListener (new
AdapterView.OnItemClickListener () {
@Override

public void onItemClick (AdapterView<?> parent, View
view, int position, long id) {
if (mOnMasterSelectedListener != null) {
mOnMasterSelectedListener.onItemSelected (((
TextView) view) .getText () .toString());

)i
}

5. Next, we need to create DetailFragment, starting with the layout. Create a new
layout file called fragment_detail.xml with the following XML:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">
<TextView
android:id="Q@+id/textViewCountryName"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerVertical="true"
android:layout_centerHorizontal="true" />
</Relativelayout>

6. Create a new Java class called DetailFragment extending from Fragment as
follows:

public class DetailFragment extends Fragment
e Import from the following library:
android. support.v4d.app.Fragment
7. Add the following constant to the class:

public static String KEY_COUNTRY_NAME="KEY_ COUNTRY_NAME";

[125]

Fragments Chapter 5

8. Override onCreatevView () as follows:

@Override
public View onCreateView (LayoutInflater inflater,
ViewGroup container,
Bundle savedInstanceState) {
return inflater.inflate(R.layout.fragment_detail, container,
false);

I3
9. Code onviewCreated () as follows:

@Override
public void onViewCreated (@NonNull View view, @Nullable Bundle
savedInstanceState) {

super.onViewCreated (view, savedInstanceState);

Bundle bundle = getArguments();

if (bundle !'= null && bundle.containsKey (KEY_COUNTRY_NAME)) {
showSelectedCountry (bundle.getString (KEY_COUNTRY_NAME)) ;

}

10. The last step for this Fragment is to update TextView when we receive the
selected country name. Add the following method to the class:

public void showSelectedCountry (String countryName) {
((TextView)getView() .findViewById(R.id.textViewCountryName)) .setTex
t (countryName) ;

}

11. The existing activity_main.xml layout will handle the portrait mode layout.
Remove the existing <TextView> and replace with the following
<FrameLayout>:

<FrameLayout
android:id="@+id/framelayout"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_marginTop="8dp"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

[126]

Fragments Chapter 5

12. For the landscape layout, create a new directory called 1ayout-landin the res
folder. The final result will be res/layout-land.

If you do not see the new res/layout-land directory, change from
Android view to project view.

13. Create anew activity_main.xml layoutin res/layout-land as follows:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal">
<FrameLayout
android:id="Q@+id/framelayoutMaster"
android:layout_width="0dp"
android:layout_weight="1"
android:layout_height="match_parent"/>
<FrameLayout
android:id="Q@+id/framelayoutDetail"
android:layout_width="0dp"
android:layout_weight="1"
android:layout_height="match_parent"/>
</LinearLayout>

14. The final steps are to set up MainActivity to handle the Fragments. Open the
MainActivity. java file and add the following class variable to track
single/dual pane:

boolean mDualPane;
15. Next, change onCreate () as follows:
@Override
protected void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState);

setContentView (R.layout.activity_main);

MasterFragment masterFragment = null;
FrameLayout frameLayout = findViewById(R.id.frameLayout);
if (framelLayout != null) {

mDualPane = false;

[127]

Fragments Chapter 5

FragmentTransaction fragmentTransaction =
getSupportFragmentManager () .beginTransaction();

masterFragment = (MasterFragment)
getSupportFragmentManager ()

.findFragmentByTag ("MASTER") ;
if (masterFragment == null) {
masterFragment = new MasterFragment () ;
fragmentTransaction.add(R.id. framelLayout,
masterFragment, "MASTER");

}

DetailFragment detailFragment = (DetailFragment)
getSupportFragmentManager () . findFragmentById (R.id.framelLayoutDetail
)i

if (detailFragment != null) {

fragmentTransaction.remove (detailFragment) ;

}

fragmentTransaction.commit () ;

} else {

mDualPane = true;

FragmentTransaction fragmentTransaction =
getSupportFragmentManager () .beginTransaction () ;

masterFragment = (MasterFragment)
getSupportFragmentManager ()

.findFragmentById(R.id.frameLayoutMaster) ;
if (masterFragment == null) {
masterFragment = new MasterFragment () ;
fragmentTransaction.add(R.id.framelLayoutMaster,
masterFragment) ;

}

DetailFragment detailFragment = (DetailFragment)
getSupportFragmentManager ()

.findFragmentById(R.id.frameLayoutDetail);
if (detailFragment == null) {
detailFragment = new DetailFragment () ;
fragmentTransaction.add(R.id.frameLayoutDetail,
detailFragment) ;

}

fragmentTransaction.commit () ;

}
masterFragment.setOnMasterSelectedListener (new
MasterFragment.OnMasterSelectedListener () {

@Override

public void onItemSelected(String countryName) {

sendCountryName (countryName) ;

[128]

Fragments Chapter 5

16. The last code to add is the sendCount ryName () method, which handles sending
the country name to DetailFragment:

private void sendCountryName (String countryName) {
DetailFragment detailFragment;
if (mDualPane) {
//Two pane layout
detailFragment = (DetailFragment)
getSupportFragmentManager () . findFragmentById (R.1id.framelLayoutDetail
)i

detailFragment.showSelectedCountry (countryName) ;

} else {
// Single pane layout
detailFragment = new DetailFragment ();

Bundle bundle = new Bundle();
bundle.putString (DetailFragment .KEY_COUNTRY_NAME,

countryName) ;
detailFragment.setArguments (bundle);
FragmentTransaction fragmentTransaction =

getSupportFragmentManager () .beginTransaction () ;
fragmentTransaction.replace (R.id.framelayout,

detailFragment) ;
fragmentTransaction.addToBackStack (null);
fragmentTransaction.commit () ;

}

17. Run the program on a device or emulator.

How it works...

We start by creating MasterFragment. In the Master/Detail pattern we are using, this
usually represents a list, so we create a list by extending ListFragment. ListFragment is
the Fragment equivalent of ListActivity. Other than extending from a Fragment, it's

basically the same.

As stated in the recipe introduction, we shouldn't attempt to communicate directly with
other Fragments.

[129]

Fragments Chapter 5

To provide a means to communicate the list item selection, we expose the interface:
OnMasterSelectedListener. We call onItemSelected () every time an item is selected
in the list.

Most of the work for passing data between Fragments is done in the host activity but,
ultimately, the receiving Fragment needs a way to receive the data. DetailFragment
supports this in two ways:

e Passing the country name in the argument bundle, available at creation time
¢ A public method for the activity to call directly.

When the activity creates the Fragment, it also creates a bundle to hold the data we want to
send. Here we add the country name using KEY_COUNTRY_NAME defined in step 7. We
retrieve this bundle with getArguments () in onViewCreated (). If the key is found in the
bundle, it is extracted and displayed using the showSelectedCountry () method. This is
the same method the activity will call directly if the Fragment is already visible (in the two-
panel layout).

Most of the work for this recipe is in the activity. We created two layouts: one for portrait
and one for landscape. When in landscape orientation, Android will choose the landscape
layout from the res/layout-1land directory created in step 12. Both layouts use a
<FrameLayout> placeholder, similar to the previous exercise. We manage the Fragments in
both onCreate () and sendCountryName ().

In onCreate (), we set the mbualPane flag by checking whether the current layout
includes the frameLayout view. If frameLayout is found (meaning it's not null), then we
have only a single panel because frameLayout is only defined in the portrait layout. If
frameLayout is not found, then we have two <FrameLayout > elements instead: one for
MasterFragment and another for DetailFragment.

The last thing we do in onCreate () is to set up the MasterFragment listener by creating
an anonymous callback, which passes the country name to

the sendCountryName () method. The sendCountryName () method is where the data is
actually passed to DetailFragment. If we are in portrait (or single-pane) mode, we need to
create DetailFragment and replace the existing MasterFragment. This is where we
create the bundle with the country name and call setArguments (). Notice how we call
addToBackStack () before committing the transaction? This allows the back key to bring
the user back to the list (MasterFragment). If we are in landscape mode, DetailFragment
is already visible so we call the howSelectedCountry () public method directly.

[130]

Fragments Chapter 5

There's more...

In MasterFragment, before sending the onItemSelected () event, we check to make sure
the listener is not null with the following code:

if (mOnMasterSelectedListener != null)

Though it's the job of the activity to set up the callback to receive the events, we don't want
this code to crash if there's no listener. An alternative approach would be to verify the
activity extends our interface in the Fragment's onAttach () callback.

The objective for this recipe was to demonstrate the proper pattern for communicating
between fragments (by using an interface) and how to pass data. We used the Listview
fragment because it made typing this example easier, but for real-world applications, it's
probably better to use RecyclerView. RecyclerView does not have a pre-made
Fragment class (or Activity class) so you need to roll your own but it's no different than
the examples shown in earlier chapters.

See also

e For RecyclerView examples, refer to the RecyclerView replaces ListView section in
Chapter 2, Layouts and the Using Contextual Batch Mode with RecyclerView section
in Chapter 4, Menus and Action Mode.

¢ For more information on resource directories, see the Selecting themes based on the
Android version section in Chapter 3, Views, Widgets, and Styles.

Handling the Fragment back stack

In several of the previous recipes, it was mentioned that you should call the
addToBackStack () method in the Fragment transaction to enable Android to maintain a
Fragment back stack. This is the first step, but may not be enough to provide a rich user
experience. In this recipe, we'll explore two other callbacks: onBackPressed ()

and onBackStackChanged (). As you'll see, by implementing these callbacks, your
application can provide specific behavior for the Fragment back stack. The
onBackPressed () callback allows the app to check the back stack state and provide
custom behavior, such as closing the app when appropriate.

[131]

Fragments Chapter 5

The onBackStackChanged () callback is called whenever the actual back stack changes -
such as when a Fragment is popped from the back stack. By overriding this callback, your
app can check the current Fragment and update the UI (such as the Home key back arrow)
as appropriate.

Getting ready

Create a new project in Android Studio and call it FragmentBackStack. Use the
default Phone & Tablet option and select Empty Activity on the Add an Activity to
Mobile dialog.

How to do it...

To demonstrate handling the Fragment back stack, we'll create two fragments with

a Next button to create a back stack. With that setup, we'll implement the
onBackPressed () callback to exit the app when the user reaches the top Fragment. We'll
be using the Fragment Manager from the support library, so be sure to choose the support
library version when prompted for the import library. We'll need two layout files - one for
each fragment - along with two fragment classes. Here are the steps in detail:

1. Create a new layout file called fragment_one.xml with the following XML:

<?xml version="1.0" encoding="utf-8"7?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_height="match_parent"
android:layout_width="match_parent">
<TextView
android:id="@+id/textView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Fragment One"
android:layout_centerVertical="true"
android:layout_centerHorizontal="true" />
</RelativeLayout>

2. Create the second fragment layout file called fragment_two.xml with the same
XML as above, changing the following text property:

android:text="Fragment Two"

[132]

Fragments Chapter 5

3. With the layout files created, it's time to create the classes for the fragments.
Create a new Java class called FragmentOne . java with the following code:

public class FragmentOne extends Fragment {
@Override
public View onCreateView (LayoutInflater inflater,
ViewGroup container, Bundle
savedInstanceState) {
return inflater.inflate (R.layout.fragment_one,
container, false);

}
4. Create the second Java class called Fragment Two with the following code:

public class FragmentTwo extends Fragment {
@Override
public View onCreateView (LayoutInflater inflater,
ViewGroup container, Bundle
savedInstanceState) {
return inflater.inflate(R.layout.fragment_two,
container, false);

}

5. Now we need to add a container and a button to the Main Activity layout.
Change activity_main.xml as follows:

<?xml version="1.0" encoding="utf-8"7?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">
<FrameLayout
android:id="Q@+id/frameLayout"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_above="@+id/buttonNext"
android:layout_alignParentTop="true">
</FrameLayout>
<Button
android:id="@+id/buttonNext"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Next"
android:layout_alignParentBottom="true"
android:layout_centerInParent="true"/>
</Relativelayout>

[133]

Fragments Chapter 5

6. With the Fragments created and the container added to the layout, we are now
ready to write the code to manipulate the Fragments.
Open MainActivity. java and add the following code below the class
constructor:

Button mButtonNext;

7. Add the following code to the existing onCreate () method,
below setContentView ():

mButtonNext = findViewById(R.id.buttonNext);
mButtonNext.setOnClickListener (new View.OnClickListener () {
@Override
public void onClick (View view) {
FragmentManager fragmentManager =
getSupportFragmentManager () ;
FragmentTransaction fragmentTransaction =
fragmentManager.beginTransaction () ;
fragmentTransaction.replace (R.id.framelLayout, new
FragmentTwo ()) ;
fragmentTransaction.addToBackStack (null);
fragmentTransaction.commit () ;
mButtonNext.setVisibility (View.INVISIBLE) ;

)i

FragmentManager fragmentManager = getSupportFragmentManager () ;
FragmentTransaction fragmentTransaction =

fragmentManager.beginTransaction () ;
fragmentTransaction.add(R.id.frameLayout, new FragmentOne());
fragmentTransaction.addToBackStack (null);
fragmentTransaction.commit () ;

8. The last method to implement is the onBackPressed () callback:

@Override
public void onBackPressed() {
if (getSupportFragmentManager () .getBackStackEntryCount () == 2)

super.onBackPressed () ;

mButtonNext.setVisibility (View.VISIBLE) ;
} else {

finish();

}

9. Run the program on a device or emulator.

[134]

Fragments Chapter 5

How it works...

Most of the steps are similar to the Adding and removing Fragments during runtime recipe
discussed previously, until step 8. The first seven steps just set up the app to create the
fragments for our demonstration. In step 8, we implement the onBackPressed () callback.
This is where we code for our specific situation. For this sample, all we need to do is make
the Next button visible again.

There's more...

With the basics covered for handling the back stack, it's time to discuss the other

callback: onBackStackChanged (). This is where you can implement custom behavior
when the stack changes. One common example is changing the Home icon to a back arrow.
We get this behavior automatically with an Activity when we set the parent property (in
AndroidManifest), but Android doesn't do this for fragments. What if we wanted to have a
back arrow on Fragment Two? Add this line of code to the NextButton onClick ():

getSupportActionBar () .setDisplayHomeAsUpEnabled (true);

If you run the app now, you'll see the back arrow when you go to FragmentTwo. The
problem is, the back arrow doesn't actually do anything. The next problem you may notice
is that if you use the back key, you still see the back arrow when you return to
FragmentOne.

To make the back arrow work, add the following code to MainActivity:

@Override
public boolean onOptionsItemSelected (Menultem menultem) {
if (menultem.getItemId() == android.R.id.home) {
onBackPressed() ;
return true;
} else {

return super.onOptionsItemSelected (menultem);

}
}

Now the app will respond to the back arrow and treat it the same as the back key. What
about the second issue? The Home icon still shows the back arrow. This is where we can
use the onBackStackChanged () callback. Instead of modifying the NextButton
onClick () as we did earlier, we can put all our code in onBackStackChanged ().

[135]

Fragments Chapter 5

To do this, we need to implement the OnBackStackChangedListener interface in the
class definition. Change the MainActivity declaration as follows:

public class MainActivity extends AppCompatActivity
implements FragmentManager.OnBackStackChangedListener {

Then add this line to the onCreate () method (below setContentView ()) to add the
listener:

getSupportFragmentManager () .addOnBackStackChangedListener (this);

Now we can implement the onBackStackChanged () callback:

@Override
public void onBackStackChanged() {
Fragment fragment =
getSupportFragmentManager () . findFragmentById(R.id.framelLayout) ;
if (fragment instanceof FragmentOne) {
getSupportActionBar () .setDisplayHomeAsUpEnabled (false);
} else if (fragment instanceof FragmentTwo) {
getSupportActionBar () .setDisplayHomeAsUpEnabled (true);

}

Now when you run the app, you'll see the back arrow when you go to FragmentTwo. You
can press the back arrow icon or use the back key to return to the first screen. Thanks to the
onBackStackChanged () callback, you won't see the back arrow when you're on
FragmentOne.

[136]

Home Screen Widgets, Search,
and the System Ul

In this chapter, we will cover the following topics:

¢ Creating a shortcut on the Home screen
e Creating a Home screen widget
Adding Search to the Action Bar
Showing your app full-screen

Lock screen shortcuts

Introduction

With an understanding of Fragments from the previous chapter, we're ready to expand on
our discussion of widgets. In chapter 3, Views, Widgets, and Styles, we discussed how to
add widgets to your own app. Now, we'll look at how to create an App Widget so users can
add your app on their Home screen.

The remaining recipes in this chapter will explore System UI options. There's a recipe for
adding a Search option to the Action Bar using the Android SearchManager API. Another
recipe will explore Full Screen mode and several additional variations on altering the
System UL The final recipe will showcase the new Lock Screen shortcuts introduced in
Android O (API 26).

Home Screen Widgets, Search, and the System Ul Chapter 6

Creating a shortcut on the Home screen

This recipe explains how to create a link or create a shortcut for your app on the user's
Home screen. So as not to be too obtrusive, it's generally best to make this an option for the

user to initiate, such as in the settings.

The following is a screenshot showing our shortcut on the Home screen:

[138]

Home Screen Widgets, Search, and the System Ul Chapter 6

As you can see, this is just a shortcut to your app. The next recipe will go deeper by creating
a Home screen (AppWidget).

Getting ready

Create a new project in Android Studio and call it HomeScreenShortcut. Use the
default Phone & Tablet options and select the Empty Activity option when prompted for
the Activity Type.

How to do it...

For an app to create a shortcut, it must have the INSTALL_SHORTCUT permission. With the
appropriate permission, it's a simple matter of calling an intent with your app properties.
The following are the steps:

1. Open the AndroidManifest file and add the following permission:

<uses-permission
android:name="com.android.launcher.permission.INSTALL_SHORTCUT" />

2. Next, open activity_main.xml and replace the existing TextView with the
following button:

<Button
android:id="Q@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Create Shortcut"
android:onClick="createShortcut"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

3. Add the following method to ActivityMain. java:

public void createShortcut (View view) {
Intent shortcutIntent = new Intent (this, MainActivity.class);
shortcutIntent.setAction (Intent .ACTION_MAIN) ;
Intent intent = new Intent();
intent.putExtra (Intent.EXTRA_SHORTCUT_INTENT, shortcutIntent);
intent.putExtra (Intent.EXTRA_SHORTCUT_NAME,

getString (R.string.app_name));

[139]

Home Screen Widgets, Search, and the System Ul Chapter 6

intent.putExtra (Intent.EXTRA_SHORTCUT_ICON_RESOURCE,
Intent.ShortcutIconResource.fromContext (this,
R.mipmap.ic_launcher));
intent.setAction ("com.android.launcher.action.INSTALL_SHORTCUT") ;
sendBroadcast (intent) ;

}

4. Run the program on a device or emulator. Notice that, each time you press the
button, the app will make a shortcut on the Home screen.

How it works...

Once you set up the proper permission, this is a rather straightforward task. When the
button is clicked, the code creates two intents. The first intent broadcasts to the OS that you
want a shortcut created. The second intent is the intent that launches your app when the
icon is pressed. One important consideration to keep in mind is that Home screens vary
and may not support the INSTALL_SHORTCUT intent.

There's more...

If you also wanted to remove the shortcut, you would need the following permission:

<uses-permission
android:name="com.android.launcher.permission.UNINSTALL_SHORTCUT" />

Instead of using the INSTALL_SHORTCUT action, you would set the following action
instead:

com.android.launcher.action.UNINSTALL_SHORTCUT

Creating a Home screen widget

Before we dig into the code for creating an App Widget, let's cover the basics. There are
three required and one optional component:

e The appWidgetProviderInfo file: It's an XML resource (described later)
e The appWidgetProvider class: Thisis aJava class

e The View layout file: It's a standard layout XML file, with some restrictions
(explained later)

[140]

Home Screen Widgets, Search, and the System Ul Chapter 6

e The App Widget configuration Activity (optional): This is an Activity the OS will
launch when placing the widget to provide configuration options

The AppWidgetProvider must also be declared in the AndroidManifest file. Since
AppWidgetProvider is a helper class based on the Broadcast Receiver, it is declared in the
manifest with the <receiver> element. Here is an example manifest entry:

<receiver android:name=".HomescreenWidgetProvider" >
<intent-filter>
<action android:name="android.appwidget.action.APPWIDGET_UPDATE" />
</intent-filter>
<meta-data android:name="android.appwidget.provider"
android:resource="@xml/appwidget_info" />
</receiver>

The metadata points to the AppWidgetProviderInfo file, which is placed in
the res/xml directory. Here is a sample AppWidgetProviderInfo.xml file:

<appwidget-provider

xmlns:android="http://schemas.android.com/apk/res/android"
android:minWidth="40dp"
android:minHeight="40dp"
android:updatePeriodMillis="0"
android:initiallLayout="@layout/widget"
android:resizeMode="none"
android:widgetCategory="home_screen">

</appwidget-provider>

The following is a brief overview of the available attributes:

e minWidth: The default width when placed on the Home screen
e minHeight: The default height when placed on the Home screen
e updatePeriodMillis: It's part of the onUpdate () polling interval (in
milliseconds)
e initiallLayout: The AppWidget layout
e previewImage (optional): The image shown when browsing App Widgets
e configure (optional): The activity to launch for configuration settings
¢ resizeMode (optional): The flags indicate resizing
options: horizontal, vertical, none
e minResizeWidth (optional): The minimum width allowed when resizing
e minResizeHeight (optional): The minimum height allowed when resizing
e widgetCategory (optional): Android 5+ only supports Home screen widgets

[141]

Home Screen Widgets, Search, and the System Ul Chapter 6

The AppWidgetProvider extends the BroadcastReceiver class, which is

why the <receiver> element is used when declaring the AppWidget in the Manifest. As
it's BroadcastReceiver, the class still receives OS broadcast events, but the helper class
filters those events down to those applicable for an App Widget.

The AppwWidgetProvider class exposes the following methods:

onUpdate () : It's called when initially created and at the interval specified.
onAppWidgetOptionsChanged (): It's called when initially created and any time
the size changes.

onDeleted (): It's called any time a widget is removed.

onEnabled ():It's called the first time a widget is placed (it isn't called when
adding second and subsequent widgets).

onDisabled () :It's called when the last widget is removed.

onReceive (): It's called on every event received, including the preceding event.

Usually not overridden as the default implementation only sends applicable
events.

The last required component is the layout. An App Widget uses a Remote View, which
only supports a subset of the available layouts:

AdapterViewFlipper
FrameLayout
GridLayout
GridView
LinearLayout
ListView
RelativeLayout
StackView
ViewFlipper

And it supports the following widgets:

AnalogClock
Button
Chronometer
ImageButton
ImageView
ProgressBar
TextClock

[142]

Home Screen Widgets, Search, and the System Ul Chapter 6

o TextView

With App Widget basics covered, it's now time to start coding. Our example will cover the
basics so you can expand the functionality as needed. This recipe uses a View with a clock,
which, when pressed, opens our activity.

The following screenshot shows the widget in the widget list when adding it to the Home
screen:

Q AppWidget

AppWidget 1x1

Calendar

Month 4x5 Schedule 2x3
August < Fri
Cow o April 25
o' mom ow e
Coffee with Eric
10:00 am at Milk Bar
@® Chrome
Chrome bookm... 3x3 Chrome search 4 x1
2 Google Maps

T New York Times

Search

-

B vYahoo

ESPN Soccer

g Clock

Analog clock 2x2 Digital clock 3x2

< -

The purpose of the image is to show how to add a widget to the home screen

[143]

Home Screen Widgets, Search, and the System Ul Chapter 6

0 The widget list's appearance varies by the launcher used.

Here's a screenshot showing the widget after it is added to the Home screen:

510 & 0 @ vain

Eridaysulk27

Getting ready

Create a new project in Android Studio and call it AppWidget. Use the default Phone &
Tablet options and select the Empty Activity option when prompted for the Activity Type.

[144]

Home Screen Widgets, Search, and the System Ul Chapter 6

How to do it...

We'll start by creating the widget layout, which resides in the standard layout resource
directory. Then, we'll create the XML resource directory to store

the AppWidgetProviderInfo file. We'll add a new Java class and

extend AppWidgetProvider, which handles the onUpdate () call for the widget. With the
receiver created, we can then add it to the Android Manifest.

Here are the detailed steps:
1. Create a new file in res/layout called widget .xml using the following XML:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">
<AnalogClock
android:id="Q@+id/analogClock"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerVertical="true"
android:layout_centerHorizontal="true" />
</Relativelayout>

2. Create a new directory called XML in the resource directory. The final result will
be res/xml.

3. Create a new file in res/xml called appwidget_info.xml using the following
XML:

<?xml version="1.0" encoding="utf-8"7?>

<appwidget-provider

xmlns:android="http://schemas.android.com/apk/res/android"
android:minWidth="40dp"
android:minHeight="40dp"
android:updatePeriodMillis="0"
android:initialLayout="@layout/widget"
android:resizeMode="none"
android:widgetCategory="home_screen">

</appwidget-provider>

[145]

Home Screen Widgets, Search, and the System Ul Chapter 6

If you cannot see the new XML directory, switch from Android view to
Project view in the Project panel drop-down.

4. Create a new Java class
called HomescreenWidgetProvider, extending from AppWidgetProvider.

5. Add the following onUpdate () method to
the HomescreenWidgetProvider class:

@Override
public void onUpdate (Context context, AppWidgetManager
appWidgetManager, int[] appWidgetIds) {

super.onUpdate (context, appWidgetManager, appWidgetIds);

for (int count=0; count<appWidgetIds.length; count++) {
RemoteViews appWidgetLayout = new
RemoteViews (context .getPackageName (),
R.layout.widget) ;
Intent intent = new Intent (context, MainActivity.class);
PendingIntent pendingIntent =
PendingIntent.getActivity (context, 0, intent, 0);
appWidgetLayout.setOnClickPendingIntent (R.id.analogClock,
pendingIntent);
appWidgetManager.updateAppWidget (appWidgetIds[count],
appWidgetLayout) ;
}
}

6. Add the HomescreenWidgetProvider to the AndroidManifest using the
following XML declaration within the <application> element:

<receiver android:name=".HomescreenWidgetProvider" >
<intent-filter>
<action
android:name="android.appwidget.action.APPWIDGET_UPDATE" />
</intent-filter>
<meta-data android:name="android.appwidget.provider"
android:resource="@xml/appwidget_info" />
</receiver>

7. Run the program on a device or emulator. After first running the application, the
widget will then be available to add to the Home screen.

[146]

Home Screen Widgets, Search, and the System Ul Chapter 6

How it works...

Our first step is to create the layout file for the widget. This is a standard layout resource
with the restrictions based on the App Widget being a Remote View, as discussed in the
recipe introduction. Although our example uses an Analog Clock widget, this is where
you'd want to expand the functionality based on your application needs.

The XML resource directory serves to store the AppWidgetProviderInfo, which defines the
default widget settings. The configuration settings determine how the widget is displayed
when initially browsing the available widgets. We use very basic settings for this recipe, but
they can easily be expanded to include additional features, such as a preview image to
show

a functioning widget and sizing options. The updatePeriodMillis attribute sets the
update frequency. Since the update will wake up the device, it's a trade-off between having
up-to-date data and battery life. (This is where the optional Settings Activity is useful by
letting the user decide.)

The AppWidgetProvider class is where we handle the onUpdate () event triggered by
the updatePeriodMillis polling. Our example doesn't need any updating so we set the
polling to zero. The update is still called when initially placing the widget. onUpdate () is
where we set the pending intent to open our app when the clock is pressed.

Since the onUpdate () method is probably the most complicated aspect of AppWidgets,
we'll explain this in some detail. First, it's worth noting that onUpdate () will occur only
once each polling interval for all the widgets is created by this provider. (All additional
widgets created will use the same cycle as the first widget created.) This explains

the for loop, as we need it to iterate through all the existing widgets. This is where we
create a pending intent, which calls our app when the clock widget is pressed. As discussed
earlier, an AppWidget is a Remote View. Therefore, to get the layout, we

call RemoteViews () with our fully qualified package name and the layout ID. Once we
have the layout, we can attach the pending intent to the clock view

using setOnClickPendingIntent (). We call

the AppWidgetManager named updateAppWidget () to initiate the changes we made.

The last step to make all this work is to declare the widget in the Android Manifest. We
identify the action we want to handle with the <intent-filter>. Most App Widgets will
likely want to handle the Update event, as ours does. The other item to note in the
declaration is the following line:

<meta-data android:name="android.appwidget.provider"

android:resource="@xml/appwidget_info" />

[147]

Home Screen Widgets, Search, and the System Ul Chapter 6

This tells the system where to find our configuration file.

There's more...

Adding an App Widget configuration Activity allows greater flexibility with your widget.
Not only can you offer polling options, but you could offer different layouts, click
behaviors, and so on. Users tend to really appreciate flexible App Widgets.

Adding a configuration Activity requires a few additional steps. The Activity needs to be
declared in the Manifest as usual, but needs to include the APPWIDGET_CONFIGURE action,
as shown in the following example:

<activity android:name=".AppWidgetConfigureActivity">
<intent-filter>
<action
android:name="android.appwidget.action.APPWIDGET_CONFIGURE"/>
</intent-filter>
</activity>

The Activity also needs to be specified in the AppWidgetProviderInfo file using the
configure attribute, as shown in this example:

android:configure="com.packtpub.appwidget.AppWidgetConfigureActivity"

The configure attribute requires the fully qualified package name as this Activity will be
called from outside of your application.

Remember, the onUpdate () method will not be called when using a
configuration Activity. The configuration Activity is responsible for
handling any initial setup if required.

See also

e For App Widget Design Guidelines, visit Google's
Ppage: http://developer.android.com/design/patterns/widgets.html

e For detailed information on RemoteViews, visit https://developer.android.
com/reference/android/widget/RemoteViews

[148]

http://developer.android.com/design/patterns/widgets.html
https://developer.android.com/reference/android/widget/RemoteViews
https://developer.android.com/reference/android/widget/RemoteViews
https://developer.android.com/reference/android/widget/RemoteViews
https://developer.android.com/reference/android/widget/RemoteViews
https://developer.android.com/reference/android/widget/RemoteViews
https://developer.android.com/reference/android/widget/RemoteViews
https://developer.android.com/reference/android/widget/RemoteViews
https://developer.android.com/reference/android/widget/RemoteViews
https://developer.android.com/reference/android/widget/RemoteViews
https://developer.android.com/reference/android/widget/RemoteViews
https://developer.android.com/reference/android/widget/RemoteViews
https://developer.android.com/reference/android/widget/RemoteViews
https://developer.android.com/reference/android/widget/RemoteViews
https://developer.android.com/reference/android/widget/RemoteViews
https://developer.android.com/reference/android/widget/RemoteViews
https://developer.android.com/reference/android/widget/RemoteViews

Home Screen Widgets, Search, and the System Ul Chapter 6

Adding Search to the Action Bar

Along with the Action Bar, Android 3.0 introduced the SearchView widget, which can be
included as a menu item when creating a menu. This is now the recommended Ul pattern
to provide a consistent user experience.

The following screenshot shows the initial appearance of the Search icon in the Action Bar:

¢ o * W H11:19

SearchView Q

The following screenshot shows how the Search option expands when pressed:

* W HE11:20

Enter text to search

If you want to add Search functionality to your application, this recipe will walk you
through the steps to set up your User Interface and properly configure the Search Manager
APL

Getting ready

Create a new project in Android Studio and call it Searchview. Use the default Phone &
Tablet options and select Empty Activity when prompted for the Activity Type.

How to do it...

To set up the Search Ul pattern, we need to create the Search menu item and a resource
called searchable. We'll create a second activity to receive the search query. Then, we'll
hook it all up in the AndroidManifest file. To get started, open the strings.xml file
in res/values and follow these steps:

1. Add the following string resources:

<string name="search_title">Search</string>
<string name="search_hint">Enter text to search</string>

[149]

Home Screen Widgets, Search, and the System Ul Chapter 6

2. Create the menu directory: res/menu.

3. Create a new menu resource called menu_search.xml in res/menu using the
following XML:

<?xml version="1.0" encoding="utf-8"7?>
<menu xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res—-auto">
<item android:id="Q@+id/menu_search"
android:title="@string/search_title"
android:icon="Q@android:drawable/ic_menu_search"
app:showAsAction="collapseActionView|ifRoom"
app:actionViewClass="android.support.v7.widget.SearchView"
/>

</menu>

4. Open ActivityMain and add the following onCreateOptionsMenu () to inflate
the menu and set up the Search Manager:

@Override
public boolean onCreateOptionsMenu (Menu menu) {
MenulInflater inflater = getMenulnflater();
inflater.inflate (R.menu.menu_search, menu);
SearchManager searchManager = (SearchManager)
getSystemService (Context.SEARCH_SERVICE) ;
Menultem searchItem = menu.findItem(R.id.menu_search);
SearchView searchView = (SearchView)
searchItem.getActionView () ;
searchView.setSearchableInfo (searchManager.getSearchableInfo (getCom
ponentName ()));
return true;

}

5. Create a new XML resource directory: res/xml.
6. Create a new file in res/xml called searchable.xml using the following XML:

<?xml version="1.0" encoding="utf-8"?>

<searchable

xmlns:android="http://schemas.android.com/apk/res/android"
android:label="@string/app_name"
android:hint="@string/search_hint" />

7. Create a new layout called activity_search_result.xml using this XML:

<?xml version="1.0" encoding="utf-8"?>

<Relativelayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"

[150]

Home Screen Widgets, Search, and the System Ul Chapter 6

android:layout_height="match_parent" >
<TextView
android:id="Q@+id/textViewSearchResult"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerInParent="true" />
</Relativelayout>

8. Add a new Empty Activity to the project called SsearchResultActivity.
9. Add the following variable to the class:

TextView mTextViewSearchResult;

10. Change onCreate () to load our layout, set the TextView, and check for
the QUERY action:

@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.activity_search_result);
mTextViewSearchResult =
findvViewById(R.id.textViewSearchResult) ;
if (Intent.ACTION_SEARCH.equals (getIntent ().getAction())) A
handleSearch (getIntent () .getStringExtra (SearchManager.QUERY)) ;
}
}

11. Add the following method to handle the search:

private void handleSearch (String searchQuery) {
mTextViewSearchResult.setText (searchQuery) ;

}

12. With the User Interface and code now complete, we just need to hook everything
up correctly in the AndroidManifest. Here is the complete manifest, including
both activities:

<?xml version="1.0" encoding="utf-8"7?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
package="com.packtpub.searchview">
<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"

[151]

Home Screen Widgets, Search, and the System Ul Chapter 6

android:theme="@style/AppTheme">
<meta-data android:name="android.app.default_searchable"
android:value=".SearchResultActivity" />
<activity android:name=".MainActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN"
/>
<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name=".SearchResultActivity">
<intent-filter>
<action android:name="android.intent.action.SEARCH"

/>
</intent-filter>
<meta-data android:name="android.app.searchable"
android:resource="@xml/searchable" />
</activity>
</application>
</manifest>

13. Run the application on a device or emulator. Type in a search query and hit
the Search button (or press Enter). The SearchResultActivity will be displayed,
showing the search query entered.

How it works...

Since the New Project Wizard uses the AppCompat library, our example uses the support
library API. Using the support library provides the greatest device compatibility as it
allows the use of modern features (such as the Action Bar) on older versions of the Android
OS. This can sometimes provide an extra challenge as often the official documentation
focuses on the framework API. Although usually the support library closely follows the
framework API, they are not always interchangeable. The Search Ul pattern is one of those
situations, so it's worth paying extra attention to the steps outlined previously.

We start by creating string resources for the Search View (which is declared later in step 6.)

In step 3, we create the menu resource, as we've done many times. One difference is that we
use the app namespace for the showAsAction and actionViewClass attributes. The
earlier versions of the Android OS don't include these attributes in the Android namespace,
which is why we create an app namespace. This serves as a way to bring new functionality
to older versions of the Android OS.

[152]

Home Screen Widgets, Search, and the System Ul Chapter 6

In step 4, we set up the SearchManager, using the support library APIs.

Step 6 is where we define the searchable XML resource, which is used by
the SearchManager. The only required attribute is the label, but a hint is recommended so
the user will have an idea of what they should type in the field.

The android:label must match the application name or the activity
name and must use a string resource (as it does not work with a
hardcoded string).

Steps 7-11 are for the SearchResultActivity. Calling the second activity is not a
requirement of the SearchManager, but is commonly done to provide a single activity for
all searches initiated in your application.

If you ran the application at this point, you would see the search icon, but nothing would
work. Step 12 is where we put it all together in the AndroidManifest file. The first item to
note is the following:

<meta-data android:name="android.app.default_searchable"
android:value=".SearchResultActivity" />

Notice this is in the <application> element and not in either of

the <activity> elements. By defining it at the <application> level, it will automatically
apply to all <activities>. If we moved it to the MainActivity element, it would behave
exactly the same in our example.

You can define styles for your application in the <application> node
and still override individual activity styles in the <activity> node.

We specify the searchable resource in the SearchResultActivity <meta-data> element:

<meta-data android:name="android.app.searchable"
android:resource="@xml/searchable" />

We also need to set the intent filter for SearchResultActivity as we do here:

<intent-filter>
<action android:name="android.intent.action.SEARCH" />
</intent-filter>

[153]

Home Screen Widgets, Search, and the System Ul Chapter 6

The SearchManager broadcasts the SEARCH intent when the user initiates the search. This
declaration directs the intent to the SearchResultActivity activity. Once the search is
triggered, the query text is sent to the SearchResultActivity using the SEARCH intent. We
check for the SEARCH intent in the onCreate () and extract the query string using the
following code:

if (Intent.ACTION_SEARCH.equals (getIntent ().getAction())) {
handleSearch (getIntent () .getStringExtra (SearchManager.QUERY)) ;
}

You now have the Search Ul pattern fully implemented. With the UI pattern complete,
what you do with the search results is specific to your application needs. Depending on
your application, you might search a local database or maybe a web service.

See also

To take your search to the internet, see internet queries in chapter 13, Telephony, Networks,
and the Web.

Showing your app full-screen

Android 4.4 (API 19) introduced a UI feature called Immersive Mode. Unlike the previous
full-screen flag, your app receives all touch events while in Immersive Mode. This mode is
ideal for certain activities, such as reading books and news, full-screen drawing, gaming, or
watching a video. There are several different approaches to full-screen, and each has a best
use case:

¢ Reading books/articles, and so on: Immersive Mode with easy access to the
System Ul

¢ Game/drawing app: Immersive Mode for full-screen use but minimal System UI
e Watching video: Full-screen and normal System Ul

The key difference between the modes is how the System Ul responds. In the first two
scenarios, your app is expecting user interaction, so the System Ul is hidden to make it
easier for your user (such as not hitting the back button while playing a game). While using
full-screen with a normal System UI, such as watching a video, you wouldn't expect your
user to use the screen at all, so when they do the System Ul should respond normally. In all
modes, the user can bring back the System UI with a swipe inward across the hidden
System Bar.

[154]

Home Screen Widgets, Search, and the System Ul Chapter 6

Since watching a video doesn't require the new Immersive Mode, full-screen mode can be
achieved using two

flags, SYSTEM_UI_FLAG_FULLSCREEN and SYSTEM_UI_FLAG_HIDE_NAVIGATION,
available since Android 4.0 (API 14).

Our recipe will demonstrate setting up Immersive Mode. We're also going to add the ability
to toggle the System UI with a tap on the screen.

Getting ready

Create a new project in Android Studio and call it ImmersiveMode. Use the default Phone
& Tablet options and select Empty Activity when prompted for the Activity Type. When
selecting the Minimum API Level, choose API 19 or higher.

How to do it...

We'll create two functions for handling the System Ul visibility, then we'll create a gesture
listener to detect when the user taps on the screen. All the steps for this recipe are adding
code to MainActivity.java, so open the file and let's begin:

1. Add the following method to hide the System UI:

private void hideSystemUi () {
getWindow () .getDecorView () .setSystemUiVisibility (View.SYSTEM_UI_FLA
G_IMMERSIVE |
View.SYSTEM_UI_FLAG_FULLSCREEN |
View.SYSTEM_UI_FLAG_LAYOUT_STABLE |
View.SYSTEM _UI_FLAG_LAYOUT_HIDE_NAVIGATION |
View.SYSTEM UI_FLAG_LAYOUT_FULLSCREEN |
View.SYSTEM _UI_FLAG_HIDE_NAVIGATION) ;
}

2. Add the following method to show the System UI:

private void showSystemUI () {
getWindow () .getDecorView () .setSystemUiVisibility (
View.SYSTEM _UI_FLAG_LAYOUT_STABLE |
View.SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION |
View.SYSTEM UI_FLAG_LAYOUT_FULLSCREEN) ;

[155]

Home Screen Widgets, Search, and the System Ul Chapter 6

3. Add the following class variable:

private GestureDetectorCompat mGestureDetector;

4. Add the following GestureListener class at the class level, below the previous
class variable:

private class Gesturelistener extends
GestureDetector.SimpleOnGesturelListener {
@Override
public boolean onDown (MotionEvent event) {
return true;
}
@Override
public boolean onFling (MotionEvent eventl, MotionEvent event2,
float velocityX, float velocityY) {
return true;
}
@Override
public boolean onSingleTapUp (MotionEvent e) {
if (getSupportActionBar () != null &é&
getSupportActionBar () .isShowing()) A
hideSystemUi () ;
} else {
showSystemUI () ;
}

return true;

}

5. Override the onTouchEvent () callback with the following;:

@Override

public boolean onTouchEvent (MotionEvent event) {
mGestureDetector.onTouchEvent (event) ;
return super.onTouchEvent (event) ;

}

6. Add the following code to the onCreate () method to set
the GestureListener and hide the System UI:

mGestureDetector = new GestureDetectorCompat (this, new
GesturelListener());
hideSystemUi () ;

[156]

Home Screen Widgets, Search, and the System Ul Chapter 6

7. Run the application on a device or emulator. Tapping the screen will toggle the
System Ul Depending on your version of the Android OS, you can either swipe
up from the bottom or swipe down from the top to reveal the System UI.

How it works...

We call setSystemUiVisibility () with the appropriate flags in

the showSystemUI () and hideSystemUI () methods to set the application window state.
The flags we set (and don't set) control what is visible and what is hidden. When we set the
visibility without the SYSTEM_UI_FLAG_IMMERSIVE flag, we in effect disable Immersive
Mode.

If all we wanted to do was hide the System UI, we could just

add hideSystemUI () to onCreate () and we'd be done. The problem is it wouldn't stay
hidden. Once the user left Inmersive Mode, it would stay in the regular display mode.
That's why we created the GestureListener. (We'll discuss gestures again in Chapter
9, Using the Touchscreen and Sensors.) Since we only want to respond to

the onSingleTapUp () gesture, we don't implement the full range of gestures.

When onsingleTapUp is detected, we toggle the System UL

There's more...

Let's look at some other important tasks that can be performed.

Sticky Immersion

There's another option we can use if we want the System UI to stay hidden automatically.
Instead of using SYSTEM_UI_FLAG_IMMERSIVE to hide the Ul, we can
use SYSTEM_UI_FLAG_IMMERSIVE_STICKY.

Dimming the System Ul

If all you need is to reduce the visibility of the Navigation bar, there's
also SYSTEM_UI_FLAG_LOW_PROFILE to dim the UL

[157]

Home Screen Widgets, Search, and the System Ul Chapter 6

Use this flag with the same setSystemUivVisibility () call as the Immersive Mode flag:

getWindow () .getDecorView () .setSystemUiVisibility (View.SYSTEM_UI_FLAG_LOW_PR
OFILE) ;

Call setsystemUivisibility () with O to clear all flags:

getWindow () .getDecorView () .setSystemUiVisibility (0);

Setting the Action Bar as an overlay

If you just need to hide or show the Action Bar, use these methods:

getActionBar () .hide();
getActionBar () .show();

One problem with this approach is that the system resizes the layout each time either
method is called. Instead, you might want to consider using a theme option to make the
System Ul behave as an overlay. To enable overlay mode, add the following to the theme:

<item name="android:windowActionBarOverlay">true</item>

Translucent system bars

The following two themes enable translucent settings:

Theme.Holo.NoActionBar.TranslucentDecor
Theme.Holo.Light .NoActionBar.TranslucentDecor

If you are creating your own theme, use the following theme settings:

<item name="android:windowTranslucentNavigation">true</item>

<item name="android:windowTranslucentStatus">true</item>

See also

For more on handling gestures, refer to chapter 9, Using the Touchscreen and Sensors.

[158]

Data Storage

In this chapter, we will cover the following topics:

e Storing simple data

Read and writing a text file to internal storage

Read and writing a text file to external storage

Including resource files in your project

Creating and using an SQLite database

Accessing data in the background using a Loader
* Accessing external storage with scoped directories

Introduction

Since most applications, big or small, require saving data — from default user selections to
user accounts — Android offers many options. From saving a simple value to creating full
databases using SQLite, storage options include the following;:

e Shared preferences: Simple name/value pairs

Internal storage: Data files in private storage

External storage: Data files in private or public storage
SQLite database: Private data (can be made public through a Content Provider)

Cloud storage: Private server or service provider

Data Storage Chapter 7

There are benefits and trade-offs to using internal and external storage. We will list some of
the differences here to help you decide which option best fits your needs:

Internal storage:

¢ Unlike external storage, internal storage is always available but generally has less
free space

o Files are not accessible to the user (unless the device has root access)

e Files are automatically deleted when your app is uninstalled (or with the Clear
Cache/Cleanup File option in the App Manager)

External storage:

¢ The device may not have external storage or it may be inaccessible (such as when
it's connected to a computer)
» Files are accessible to the user (and other apps) without requiring root access

e Files are not deleted when your app is uninstalled (unless you use
getExternalFilesDir () to get app-specific public storage)

In this chapter, we will demonstrate working with shared preferences, internal and external
storage, and SQLite databases. For cloud storage, take a look at the internet recipes in
Chapter 12, Telephony, Networks.

Storing simple data

It's a common requirement to store simple data, and Android makes it simple using the
Preferences APL. It's not limited to just user preferences either; you can store any of the
primitive data types using a name/value pair.

[160]

Data Storage Chapter 7

We'll demonstrate saving a name from an EditText and displaying it when the application
starts. The following screenshots shows how the application looks the first time with no
saved name:

1242 & @

Preferences

Hello

SAVE

[161]

Data Storage Chapter 7

This is an example of how it looks after saving a name:

1252 & @

Preferences

Welcome back Rick!

SAVE

Getting ready

Create a new project in Android Studio and call it Preferences. Use the default Phone &
Tablet options and select Empty Activity in the Add an Activity to Mobile dialog.

[162]

Data Storage

Chapter 7

How to do it...

We'll use the existing TextView to display a Welcome back message and create a new
EditText button to save the name. Start by opening activity_main.xml:

1. Replace the existing TextView with the following new views:

<TextView
android:id="@+id/textView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintTop_toTopOf="parent" />

<EditText
android:id="Q@+id/editTextName"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:ems="10"
android:hint="Enter your name"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent"/>

<Button
android:id="Q@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Save"
app:layout_constraintTop_toBottomOf="@+id/editTextName"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
android:onClick="saveName" />

2. Open ActivityMain. java and add the following global declarations:

private final String NAME="NAME";
private EditText mEditTextName;

3. Add the following code to onCreate () to save a reference to EditText and to
load any saved name:

TextView textView = (TextView)findViewById(R.id.textView);
SharedPreferences sharedPreferences = getPreferences (MODE_PRIVATE) ;
String name = sharedPreferences.getString (NAME,null);

if (name==null) {

[163]

Data Storage Chapter 7

textView.setText ("Hello");
} else {
textView.setText ("Welcome back " + name + "!");

}
mEditTextName = findViewById(R.id.editTextName) ;

4. Add the following saveName () method:

public void saveName (View view) {
SharedPreferences.Editor editor =

getPreferences (MODE_PRIVATE) .edit () ;
editor.putString (NAME, mEditTextName.getText () .toString());
editor.commit () ;

}

5. Run the program on a device or emulator. Since we are demonstrating persisting
data, it loads the name during onCreate (), so save a name and restart the
program to see it load.

How it works...

To load the name, we first get a reference to SharedPreference and call the getString ()
method. We pass in the key for our name/value pair (we created a constant called NAME)
and the default value to return if the key is not found.

To save the preference, we first need to get a reference to the Preference Editor. We use
putString () with our NAME constant and follow it with commit () . Without commit (),
the change will not be saved.

There's more...

Our example stores all the preferences in a single file. We can also store preferences in
different files using get SharedPreferences () and passing in the name. One example
where this option could be useful is you wanted to have separate profiles in a multi-user

app.

[164]

Data Storage Chapter 7

Read and write a text file to internal storage

When simple name/value pairs are not sufficient, Android also supports regular file
operations, including working with text and binary data.

The following recipe demonstrates how to read and write a file to internal or private
storage.

Getting ready

Create a new project in Android Studio and call it InternalStorageFile. Use the
default Phone & Tablet options and select Empty Activity in the Add an Activity to
Mobile dialog.

How to do it...

To demonstrate both reading and writing text, we'll need a layout with an EditText
and two buttons. Start by opening main_activity.xml and follow these steps:

1. Replace the existing <TextView> element with the following views:

<EditText
android:id="@+id/editText"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:inputType="textMultiLine"
android:ems="10"
app:layout_constraintTop_toTopOf="parent"
app:layout_constraintBottom_toTopOf="@+id/buttonRead"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent" />

<Button
android:id="@+id/buttonRead"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Read"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintBottom_toTopOf="@+id/buttonWrite"
android:onClick="readFile"/>

<Button
android:id="@+id/buttonWrite"
android:layout_width="wrap_content"

[165]

Data Storage Chapter 7

android:layout_height="wrap_content"
android:text="Write"
app:layout_constraintLeft_tolLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintBottom_toBottomOf="parent"
android:onClick="writeFile"/>

2. Now, open ActivityMain. java and add the following global variables:

private final String FILENAME="testfile.txt";
EditText mEditText;

3. Add the following to the onCreate () method, after setContentview ():
mEditText = (EditText)findViewById(R.id.editText) ;
4. Add the following writeFile () method:

public void writeFile (View view) {
try |
FileOutputStream fileOutputStream =
openFileOutput (FILENAME, Context.MODE_PRIVATE);
fileOutputStream.write (mEditText.getText () .toString () .getBytes());
fileOutputStream.close();
} catch (java.io.IOException e) {
e.printStackTrace();

I
5. Now, add the readFile () method:

public void readFile (View view)
StringBuilder stringBuilder = new StringBuilder();

-~

try {
InputStream inputStream = openFileInput (FILENAME) ;
if (inputStream != null) {

InputStreamReader inputStreamReader = new
InputStreamReader (inputStream) ;

BufferedReader bufferedReader = new
BufferedReader (inputStreamReader) ;

String newLine = null;

while ((newLine = bufferedReader.readLine()) != null)

stringBuilder.append (newLine+"\n") ;
}
inputStream.close () ;
}

} catch (java.io.IOException e) {

[166]

Data Storage Chapter 7

e.printStackTrace();

}
mEditText.setText (stringBuilder) ;

}

6. Run the program on a device or emulator.

How it works...

We use the InputStreamand FileOutputStream classes to read and write, respectively.
Writing to the file is as simple as getting the text from EditText and calling the write ()
method.

Reading back the contents is a little more involved. We could use the FileInputStream
class for reading, but when working with text, the helper classes make it easier. In our
example, we open the file with openFileInput (), which returns an InputStream object.
We then use InputStream to get a Buf feredReader, which offers the ReadLine ()
method. We loop through each line in the file and append it to our StringBuilder. When
we're finished reading the file, we assign the text to Edit Text.

There's more...

The previous example used the private storage to save the file. Here's how you can use the
cache folder.

Caching files

If all you need is to temporarily store data, you can also use the cache folder. The following
method returns the cache folder as a File object (the next recipe demonstrates working
with the File object):

getCacheDir ()

[167]

Data Storage Chapter 7

The main benefit of the cache folder is that the system can clear the cache if running low on
storage space. (The user can also clear the cache folder from Apps Management in
Settings.)

For example, if your app downloads news articles, you could store those in the cache.
When your app starts, you can display the news already downloaded. These are files that
are not required to make your app work. If the system is low on resources, the cache can be
cleared without adversely affecting your app. (Even though the system may clear the cache,
it's still a good idea for your app to remove old files as well.)

See also

¢ The next recipe, Read and write a text file to external storage.

Read and write a text file to external storage

The process of reading and writing files to external storage is basically the same as using
internal storage. The difference is in obtaining a reference to the storage location. Also, as
mentioned in the Introduction, external storage may not be available, so it's best to check
availability before attempting to access it.

This recipe will read and write a text file, as we did in the previous recipe. We'll also
demonstrate how to check the external storage state before we access it.

Getting ready

Create a new project in Android Studio and call it ExternalStorageFile. Use the

default Phone & Tablet options and select Empty Activity on the Add an Activity to
Mobile dialog. We will use the same layout as the previous recipe, so you can just copy and
paste if you typed it in already. Otherwise, use the layout from step 1 in the previous
recipe, Read and write a text file to internal storage.

[168]

Data Storage Chapter 7

How to do it...

As mentioned previously in the Getting ready section, we'll use the layout from the previous
recipe. With the layout file done, the first step will be to add permission to access the write
to external storage. Here are the steps:

1. Open the Android Manifest and add the following permission:

<uses-permission
android:name="android.permission.READ_EXTERNAL_STORAGE" />

<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

2. Next, open ActivityMain. java and add the following global variables:

private final String FILENAME="testfile.txt";

private final String[] PERMISSIONS_STORAGE = {
Manifest.permission.READ_EXTERNAL_STORAGE,
Manifest.permission.WRITE_EXTERNAL_STORAGE

bi

EditText mEditText;

3. Add the following to the onCreate () method, after setContentView ():

mEditText = (EditText) findViewById(R.id.editText) ;

4. Add the following two methods to check the storage state:

public boolean isExternalStorageWritable() {

if
(Environment .MEDIA_MOUNTED.equals (Environment.getExternalStorageSta
te())) A

return true;

}

return false;

public boolean isExternalStorageReadable () {

if
(Environment .MEDIA_MOUNTED.equals (Environment.getExternalStorageSta
te()) I
Environment .MEDIA_MOUNTED_READ_ONLY.equals (Environment.getExternalS
torageState())) {

return true;

}

return false;

[169]

Data Storage Chapter 7

5. Add the following method to verify the app has permission to access the external
storage:

public void checkStoragePermission () {
int permission = ActivityCompat.checkSelfPermission (this,
Manifest.permission.WRITE_EXTERNAL_STORAGE) ;

if (permission != PackageManager.PERMISSION_GRANTED) {
ActivityCompat.requestPermissions (this,
PERMISSIONS_STORAGE, 101);
}
}

6. Add the following writeFile () method:

public void writeFile (View view) {
if (isExternalStorageWritable()) {
checkStoragePermission () ;
try {
File textFile = new
File (Environment.getExternalStorageDirectory (), FILENAME);
FileOutputStream fileOutputStream = new
FileOutputStream(textFile);
fileOutputStream.write (mEditText.getText () .toString () .getBytes());
fileOutputStream.close();
} catch (java.io.IOException e) {
e.printStackTrace();
Toast .makeText (this, "Error writing file",
Toast .LENGTH_LONG) .show () ;
}
} else {
Toast .makeText (this, "Cannot write to External Storage",
Toast .LENGTH_LONG) .show () ;
}
}

7. Add the following readFile () method:

public void readFile (View view) {
if (isExternalStorageReadable()) {
checkStoragePermission();
StringBuilder stringBuilder = new StringBuilder();

try {
File textFile = new
File (Environment.getExternalStorageDirectory (), FILENAME);

FileInputStream fileInputStream = new
FileInputStream(textFile);
if (fileInputStream != null) {

[170]

Data Storage Chapter 7

InputStreamReader inputStreamReader = new

InputStreamReader (fileInputStream) ;
BufferedReader bufferedReader = new

BufferedReader (inputStreamReader) ;
String newlLine = null;
while ((newLine = bufferedReader.readLine()) !=

null)
stringBuilder.append (newLine+"\n") ;

}

fileInputStream.close();

}
mEditText.setText (stringBuilder) ;

} catch (java.io.IOException e) {
e.printStackTrace();
Toast .makeText (this, "Error reading file",

Toast.LENGTH_LONG) .show () ;

}
} else {
Toast .makeText (this, "Cannot read External Storage",

Toast .LENGTH_LONG) . show () ;
}

8. Run the program on a device or emulator with external storage.

How it works...

Reading and writing files are basically the same for both internal and external storage. The
main difference is that we should check for the availability of the external storage before
attempting to access it, which we do with the i sExternalStorageWritable () and
isExternalStorageReadable () methods. When checking the storage state,
MEDIA_MOUNTED means we can read and write to it.

Unlike the internal storage example, we request the working path, which we do in this line
of code:

File textFile = new File(Environment.getExternalStorageDirectory(),
FILENAME) ;

[171]

Data Storage Chapter 7

The actual reading and writing is done with the same classes, as it is just the location that is
different.

It is not safe to hard code an external folder path. The path can vary
between versions of the OS and especially between hardware
manufacturers. It is always best to call
getExternalStorageDirectory () as shown.

There's more...

You probably noticed the checkStoragePermission () function from step 5 wasn't
mentioned. This is because permissions aren't specific to storage but are required for the
app to access various device features. Unlike the previous recipe, which used local app
storage, "external" storage is considered risky for the user. (It wouldn't be good if just any
app could go through a user's private files.) For that reason, the app must make additional
effort to check if it has the required permission to access storage. If it does not, the user will
be prompted. Note that this additional dialog is coming from the OS, not the app itself.

When you first run the app, if you are prompted for permission but still get an error
writing, exit the app and restart. For a more in-depth explanation and handling of the new
Android permission model, see the See also... section.

Getting public folders

The getExternalStorageDirectory () method returns the root folder of the external
storage. If you want to obtain specific public folders, such as the Music or Ringtone folder,
use getExternalStoragePublicDirectory () and pass in the desired folder type, for
example:

getExternalStoragePublicDirectory (Environment .DIRECTORY_MUSIC)

[172]

Data Storage Chapter 7

Checking available space

One issue consistent between internal and external storage is limited space. If you know
how much space you will need ahead of time, you can call the getFreeSpace () method
on the File object. (getTotalSpace () will return the total space.) Here is a simple
example, using the call to getFreeSpace ():

if (Environment.getExternalStorageDirectory () .getFreeSpace() <
RQUIRED_FILE_SPACE) {

//Not enough space
} else {

//We have enough space

}

Deleting a file

There are many helper methods available through the File object, including deleting a file.
If we wanted to delete the text file we created in the example, we could call delete () as
follows:

textFile.delete()

Working with directories

Although it's called a File object, it supports directory commands as well, such as making
and removing directories. If you want to make or remove a directory, build the File object,
then call the respective methods: mkdir () and delete (). (There's also a method called
mkdirs () (plural) that will create parent folders as well.)

Refer to the link in the See also section for a complete list.

Preventing files from being included in galleries

Android employs a media scanner that automatically includes sound, video, and image
files in system collections, such as the Image Gallery. To exclude your directory, create an
empty file called . nomedia (note the preceding period) in the same directory as the files
you wish to exclude.

[173]

Data Storage Chapter 7

See also

¢ For more information on the Android 6.0 permission model, see the
corresponding recipe in Chapter 15, Getting Your App Ready for the Play Store

¢ For a complete list of methods available in the File class, visit
http://developer.android.com/reference/java/io/File.html

Including resource files in your project

Android provides two options for including files in your project: the raw folder and the
assets folder. Which option you use depends on your requirements. To start, we'll give a
brief overview of each option to help you decide the best use:

e Raw files
¢ Included in the resource directory: /res/raw

e As aresource, accessed through the raw identifier:
R.raw.<resource>

¢ A good place for storing media files such as MP3, MP4, and OGG
files

e Asset files

e Creates a file compiled in your APK (does not provide a resource
D)

e Access files using their filenames, generally making them easier to
use with dynamically created names

e Some APIs do not support a Resource Identifier and therefore
require including as an Asset

Generally, raw files are easier to work with since they are accessed through the resource
identifier. As we'll demonstrate in this recipe, the main difference is how you access the file.
In this example, we will load both a raw text file and an asset text file and display the
contents.

[174]

http://developer.android.com/reference/java/io/File.html

Data Storage Chapter 7

Getting ready

Create a new project in Android Studio and call it ReadingResourceFiles. Use the
default Phone & Tablet options and select Empty Activity in the Add an Activity to
Mobile dialog.

How to do it...

To demonstrate reading content from both resource locations, we'll create a split layout. We
also need to create both resource folders as they are not included in the default Android
project. Here are the steps:

1. Open activity_main.xml and replace the contents with the following layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">
<TextView
android:id="@+id/textViewRaw"
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="1"
android:gravity="center_horizontal |center_vertical"/>
<TextView
android:id="Q@+id/textViewAsset"
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="1"
android:gravity="center_horizontal |center_vertical"/>
</LinearLayout>

[175]

Data Storage Chapter 7

2. Create the raw resource folder in the res folder. It will read as follows: res/raw.
You can easily create it manually or let Android Studio do it for you by right-
clicking on the res folder and selecting New | Android Resource Directory.
When the Select Resource Directory dialog opens, select raw as the Resource
type, as shown in this screenshot:

[NON) New Resource Directory

Directory name: raw
Resource type: raw

Source set: main

Available qualifiers: Chosen qualifiers:
) Country Code
@ Network Code
O Locale
B Layout Direction
B Smallest Screen Width

B screen width

[l Screen Height

B size

B Ratio

[} Orientation

il Ul Mode
Night Mode

IG Density

3. Create a new text file by right-clicking on the raw folder and select New | File.
Name the file raw_text .txt and type some text in the file. (This text will be
displayed when you run the application.)

4. Create the asset folder. The asset folder is trickier to create manually as it
needs to be at the correct folder level. Fortunately, Android Studio provides a
menu option that makes creating it very easy. Go to the File menu (or right-click

on the app node) and select New | Folder | Assets Folder, as shown in this
screenshot:

[176]

Data Storage

Chapter 7

Android ~
Y s apz
New

Link C++ Project with Gradle

Copy Path
Paste

Find in Path...
Replace in Path...
Analyze

<
G
CEQYVYYYVE

Refactor

Add to Favorites
Show Image Thumbnails

(oF-

Reformat Code
Optimize Imports

Reveal in Finder
Open in terminal

Local History
Synchronize 'app’

Compare With...

Open Module Settings
Load/Unload Modules...

Create Gist...

Convert Java File to Kotlin File

Build Sync
v @ Build: completed successfully
¥ @ Run build
» @ Load build

activity_main.xml

NEVENSEES

Module

Kotlin File/Class

Android Resource File
Android Resource Directory
Sample Data Directory

File

Scratch File

Package

C++ Class
C/C++ Source File
C/C++ Header File

Image Asset
Vector Asset

Kotlin Script

Singleton

Gradle Kotlin DSL Build Script
Gradle Kotlin DSL Settings

Edit File Templates...

AIDL

Activity
Android Auto
Folder
Fragment
Google

Other

Service

Ul Component
Wear

Widget

XML
Resource Bundle

Icon Pack Drawable Importer
Vector Drawable Importer
Batch Drawable Import

VY VYVYYVYYYVYVYyVYYY

MainActivity.java

AIDL Folder

Assets Folder

Font Resources Folder
JNI Folder

Java Folder

Java Resources Folder
Raw Resources Folder
RenderScript Folder
Res Folder

XML Resources Folder

[177]

Data Storage Chapter 7

5. Create a text file in the asset folder called asset_text.txt. Again, whatever

text you type here will be shown when you run the app. Here's how the final
result should look after both text files are created:

Android ~

v % app
manifests
java
% generatedJava
= assets

asset_text.txt

drawable
layout
mipmap
raw
raw_text.txt
»> values
» (s Gradle Scripts

6. Now, it's time for the code. Open MainActivity.java and add the following
method to read the text file (which is passed into the method):

private String getText (InputStream inputStream) {
StringBuilder stringBuilder = new StringBuilder () ;
try {;
if (inputStream != null) {
InputStreamReader inputStreamReader = new
InputStreamReader (inputStream) ;
BufferedReader bufferedReader = new
BufferedReader (inputStreamReader) ;
String newLine = null;
while ((newLine = bufferedReader.readLine()) != null)
stringBuilder.append (newLine+"\n");
3
inputStream.close();
3
} catch (java.io.IOException e) {
e.printStackTrace();
3

return stringBuilder.toString();

[178]

Data Storage Chapter 7

7. Finally, add the following code to the onCreate () method:

TextView textViewRaw = findViewById(R.id.textViewRaw) ;
textViewRaw.setText (getText (this.getResources () .openRawResource (R.r
aw.raw_text)));
TextView textViewAsset = findViewById(R.id.textViewAsset);
try |
textViewAsset.setText (getText (this.getAssets () .open ("asset_text.txt
"))
} catch (IOException e) {

e.printStackTrace();

}

8. Run the program on a device or emulator.

How it works...

To summarize, the only difference is in how we get a reference to each file. This line of code
reads the raw resource:

this.getResources () .openRawResource (R.raw.raw_text)

And this code reads the asset file:

this.getAssets () .open("asset_text.txt")

Both calls return an InputStream, which the get Text () method uses to read the file
contents. It is worth noting, though, that the call to open the asset text file requires an
additional try/catch.

As noted in the recipe introduction, resources are indexed so we have compile-time
verification, which the asset folder does not have.

There's more...

A common approach is to include resources in your APK, but download new resources as
they become available. (See the network communication in Chapter 13, Telephony,
Networks, and the Web.) If new resources aren't available, you can always fall back on the
resources in your APK.

[179]

Data Storage Chapter 7

See also

e Network communication recipes in Chapter 13, Telephony, Networks, and the Web.

Creating and using an SQL.ite database

In this recipe, we're going to demonstrate working with an SQLite database. If you are
already familiar with SQL databases from other platforms, then much of what you know
will apply. If you are new to SQLite, take a look at the reference links in the See also section
as this recipe assumes a basic understanding of database concepts, including schemas,
tables, cursors, and raw SQL.

To get you up and running with an SQLite database quickly, our example implements the
basic CRUD operations. Generally, when creating a database in Android, you create a class
that extends SQLiteOpenHelper, which is where your database functionality is
implemented. Here is a list of the CRUD (create, read, update, and delete) functions:

e Create: insert ()

e Read: query () and rawQuery ()
e Update: update ()

e Delete: delete ()

To demonstrate a fully working database, we will create a simple Dictionary database
where we'll store words and their definitions. We'll demonstrate the CRUD operations by
adding new words (with their definitions) and updating existing word definitions. We'll
show words in a ListView using a cursor. Pressing a word in the ListView will read the
definition from the database and display it in a Toast message. A long press will delete the
word.

Getting ready

Create a new project in Android Studio and call it SQLiteDatabase. Use the default Phone
& Tablet options and select Empty Activity on the Add an Activity to Mobile dialog.

[180]

Data Storage Chapter 7

How to do it...

First, we'll create the Ul, which will consist of two EditText fields, a button, and a
ListView. As we add words to the database, they will populate the ListVview. Start
by opening activity_main.xml and follow these steps:

1. Replace the default XML with the following:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res—auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">
<EditText
android:id="@+id/editTextWord"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:layout_alignParentLeft="true"
android:layout_alignParentStart="true"
android:hint="Word"/>
<EditText
android:id="Q@+id/editTextDefinition"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_below="@+id/editTextWord"
android:layout_alignParentLeft="true"
android:layout_alignParentStart="true"
android:hint="Definition"/>
<Button
android:id="@+id/buttonAddUpdate"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Save"
android:layout_alignParentRight="true"
android:layout_alignParentTop="true" />
<ListView
android:id="@+id/listView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@+id/et_definition"
android:layout_alignParentLeft="true"
android:layout_alignParentBottom="true" />
</LinearLayout>

[181]

Data Storage Chapter 7

2. Add anew Java class to the project named DictionaryDatabase. This class
extends from SQLiteOpenHelper and handles all the SQLite functions. Here is
the class declaration:

public class DictionaryDatabase extends SQLiteOpenHelper {

3. Below the declaration, add the following constants:

private static final String DATABASE_NAME = "dictionary.db";
private static final String TABLE_DICTIONARY = "dictionary";

private static final String FIELD_WORD = "word";
private static final String FIELD_DEFINITION = "definition";
private static final int DATABASE_VERSION = 1;

4. Add the following constructor, OnCreate (), and onUpgrade () methods:

DictionaryDatabase (Context context) {
super (context, DATABASE_NAME, null, DATABASE_VERSION) ;

@Override
public void onCreate (SQLiteDatabase db) {
db.execSQL ("CREATE TABLE " + TABLE_DICTIONARY +
"(_id integer PRIMARY KEY," +
FIELD_WORD + " TEXT, " +
FIELD_DEFINITION + " TEXT);");

@Override
public void onUpgrade (SQLiteDatabase db, int oldVersion, int
newVersion) |
//Handle database upgrade as needed
}

5. The following methods are responsible for creating, updating, and deleting the
records:

public void saveRecord(String word, String definition) {
long id = findWordID (word);
if (id>0) |
updateRecord(id, word,definition);
} else {
addRecord (word,definition);

public long addRecord(String word, String definition) {

[182]

Data Storage Chapter 7

SQLiteDatabase db = getWritableDatabase();

ContentValues values = new ContentValues();
values.put (FIELD_WORD, word);

values.put (FIELD_DEFINITION, definition);

return db.insert (TABLE_DICTIONARY, null, wvalues);

public int updateRecord(long id, String word, String definition) {
SQLiteDatabase db = getWritableDatabase();
ContentValues values = new ContentValues();
values.put ("_id", id);
values.put (FIELD_WORD, word);
values.put (FIELD_DEFINITION, definition);
return db.update (TABLE_DICTIONARY, values, "_id = ?", new
String[]{String.valueOf (id) });
}
public int deleteRecord(long id) {
SQLiteDatabase db = getWritableDatabase();
return db.delete (TABLE_DICTIONARY, "_id = ?", new
String[]{String.valueOf (id) });
}

6. And these methods handle reading the information from the database:

public long findWordID (String word) {
long returnval = -1;
SQLiteDatabase db = getReadableDatabase();
Cursor cursor = db.rawQuery (
"SELECT _id FROM " + TABLE_DICTIONARY + " WHERE " +

FIELD_WORD + " = 2",
new String[]{word});
if (cursor.getCount() == 1) {
cursor.moveToFirst () ;
returnval = cursor.getInt (0);

}

return returnval;

public String getDefinition(long id) {
String returnval = "";
SQLiteDatabase db = getReadableDatabase();
Cursor cursor = db.rawQuery (
"SELECT definition FROM " + TABLE_DICTIONARY + " WHERE
_id = 2",
new String[]{String.valueOf (id) });
if (cursor.getCount() == 1) {
cursor.moveToFirst () ;

[183]

Data Storage Chapter 7

returnVal = cursor.getString(0);
}

return returnval;

public Cursor getWordList () {
SQLiteDatabase db = getReadableDatabase();
String query = "SELECT _id, " + FIELD_WORD +
" FROM " + TABLE_DICTIONARY + " ORDER BY " + FIELD_WORD

A\l ASCII;
return db.rawQuery (query, null);

}

7. With the database, class finished, open MainActivity. java. Add the following
global variables below the class declaration:

EditText mEditTextWord;
EditText mEditTextDefinition;
DictionaryDatabase mDB;
ListView mListView;

8. Add the following method to save the fields when the button is clicked:

private void saveRecord() {
mDB.saveRecord (mEditTextWord.getText () .toString(),
mEditTextDefinition.getText () .toString());

mEditTextWord.setText ("");
mEditTextDefinition.setText ("");
updateWordList () ;

}
9. Add this method to populate the ListView:

private void updateWordList () {
SimpleCursorAdapter simpleCursorAdapter = new
SimpleCursorAdapter (
this,
android.R.layout.simple_list_item_1,
mDB.getWordList (),
new String[]{"word"},
new int[]{android.R.id.textl},
0);
mListView.setAdapter (simpleCursorAdapter) ;

[184]

Data Storage Chapter 7

10. Finally, add the following code to onCreate ():

mDB = new DictionaryDatabase (this);
mEditTextWord = findViewById(R.id.editTextWord) ;
mEditTextDefinition = findViewById(R.id.editTextDefinition)
Button buttonAddUpdate = findViewById(R.id.buttonAddUpdate)
buttonAddUpdate.setOnClickListener (new View.OnClickListener

@Override

public void onClick (View v) {

saveRecord() ;

’

0 A

)i

mListView = findViewById(R.id.listView);
mListView.setOnItemClickListener (new
AdapterView.OnItemClickListener () {
@Override
public void onItemClick (AdapterView<?> parent, View view, int
position, long id) {
Toast.makeText (MainActivity.this, mDB.getDefinition(id),
Toast .LENGTH_SHORT) .show () ;
3
b
mListView.setOnItemLongClickListener (new
AdapterView.OnItemLongClickListener () {
@Override
public boolean onItemLongClick (AdapterView<?> parent, View
view, int position, long id) {
Toast.makeText (MainActivity.this,
"Records deleted = " + mDB.deleteRecord(id),
Toast .LENGTH_SHORT) .show () ;
updateWordList () ;
return true;

P
updateWordList () ;

11. Run the program on a device or emulator and try it out.

[185]

Data Storage Chapter 7

How it works...

We'll start by explaining the DictionaryDatabase class as that's the heart of an SQLite
database. The first item to note is the constructor:

DictionaryDatabase (Context context) {
super (context, DATABASE_NAME, null, DATABASE_VERSION) ;

}

Notice DATABASE_VERSION? Only when you make changes to your database schema do
you need to increment this value.

Next is onCreate (), where the database is actually created. This is only called the first
time the database is created, not each time the class is created. It's also worth noting the _id
field. Android does not require tables to have a primary field, but some classes, such as

the SimpleCursorAdapter, may require an _id.

We're required to implement the onUpgrade () callback, but as this is a new database,
there's nothing to do. This method will only be called when the database version is
incremented.

The saveRecord () method handles calling addRecord () or updateRecord(), as
appropriate. Since we are going to modify the database, both methods use
getWritableDatabase () to get an updatable database reference. A writable database
requires more resources so if you don't need to make changes, get a read-only database
instead.

The last method to note is getWordList (), which returns all the words in the database
using a cursor object. We use this cursor to populate the ListView, which brings us to
ActivityMain.java. The onCreate () method does the standard initialization we've seen
before and also creates an instance of the database with the following line of code:

mDB = new DictionaryDatabase (this);

The onCreate () method is also where we set up the events to show the word definition
(with a Toast) when an item is pressed and to delete the word on a long press. Probably the
most complicated code is in updateWordList ().

[186]

Data Storage Chapter 7

This isn't the first time we've used an adapter, but this is the first cursor adapter, so we'll
explain. We use the SimpleCursorAdapter to create a mapping between our field in the
cursor and the ListView item. We use the layout.simple_list_item_1 layout, which
only includes a single text field with the ID android.R.id.text1. In areal application,
we'd probably create a custom layout and include the definition in the ListView item, but
we wanted to demonstrate a method to read the definition from the database.

We call updateWordList () in three places: during onCreate () to create the initial list,
then again after we add/update an item, and lastly when deleting an item.

There's more...

Although this is a fully functioning example of SQLite, it is still just the basics. There are
many books dedicated to SQLite for Android and they are worth checking out.

Upgrading a database

As we mentioned previously, when we increment the database version, the onUpgrade ()
method will be called. What you do here is dependent on the changes made to the
database. If you changed an existing table, ideally you'll want to migrate the user data to
the new format by querying the existing data and inserting it into the new format. Keep in
mind that there is no guarantee the user will upgrade in consecutive order, so they could
jump from version 1 to version 4, for example.

See also

e SQLite homepage: https://www.sqlite.org/

e SQLite database Android reference:
http://developer.android.com/reference/android/database/sqlite/SQLiteD

atabase.html

[187]

https://www.sqlite.org/
http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html

Data Storage Chapter 7

Accessing data in the background using a
Loader

Any potentially long-running operations should not be done on the Ul thread, as this can
cause your application to be slow or become unresponsive. The Android OS will bring up
the Application Not Responding (ANR) dialog when apps become unresponsive.

Since querying databases can be time-consuming, Android introduced the Loader API in
Android 3.0. A Loader processes the query on a background thread and notifies the Ul
thread when it finishes.

The two primary benefits to Loaders are the following:

¢ Querying the database is (automatically) handled on a background thread
e The query auto-updates (when using a Content Provider data source)

To demonstrate a Loader, we will modify the previous SQLite database example to use a
CursorLoader to populate ListView.

Getting ready

We will use the project from the previous example, Creating and using an SQLite database, as
the base for this recipe. Create a new project in Android Studio and call it Loader. Use the
default Phone & Tablet options and select Empty Activity on the Add an Activity to

Mobile dialog. Copy the DictionaryDatabase class and the layout from the previous
recipe. Although we will use parts of the previous ActivityMain. java code, we will start
at the beginning in this recipe to make it easier to follow.

How to do it...

With the project set up as described in Getting ready, we'll continue by creating two new
Java classes, and then tie it all together in ActivityMain. java. Here are the steps:

1. Create a new Java class called DictionaryAdapter that extends
CursorAdapter. This class replaces the SimpleCursorAdapater used in the
previous recipe. Here is the full code:

public class DictionaryAdapter extends CursorAdapter {
public DictionaryAdapter (Context context, Cursor c, int flags)

{

[188]

Data Storage Chapter 7

super (context, c, flags);

@Override
public View newView (Context context, Cursor cursor, ViewGroup
parent) {
return LayoutInflater.from(context)
.inflate(android.R.layout.simple_list_item_1,parent, false);

}

@Override
public void bindView (View view, Context context, Cursor cursor)

TextView textView = view.findViewById(android.R.id.textl);
textView.setText (cursor.getString(getCursor () .getColumnIndex ("word"
))) i

}
}

2. Next, create another new Java class and call this one DictionaryLoader.
Although this is the class that handles the data loading on the background
thread, it's actually very simple:

public class DictionarylLoader extends CursorLoader {
Context mContext;
public DictionaryLoader (Context context) {
super (context) ;

mContext = context;
}
@Override
public Cursor loadInBackground() {

DictionaryDatabase db = new DictionaryDatabase (mContext);
return db.getWordList ();

}

3. Next, open ActivityMain. java. We need to change the declaration to
implement the LoaderManager.LoaderCallbacks<Cursor> interface as
follows:

public class MainActivity extends AppCompatActivity
implements LoaderManager.LoaderCallbacks<Cursor> {

[189]

Data Storage Chapter 7

4. Add the adapter to the global declarations. The complete list is as follows:

EditText mEditTextWord;
EditText mEditTextDefinition;
DictionaryDatabase mDB;
ListView mListView;
DictionaryAdapter mAdapter;

5. Change onCreate () to use the new adapter and add a call to update the Loader
after deleting a record. The final onCreate () method should look as follows:

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity_main);

mDB = new DictionaryDatabase (this);

mEditTextWord = findViewById(R.id.editTextWord) ;
mEditTextDefinition = findViewById(R.id.editTextDefinition)
Button buttonAddUpdate = findViewById(R.id.buttonAddUpdate)
buttonAddUpdate.setOnClickListener (new View.OnClickListener
@Override
public void onClick (View v) {
saveRecord() ;

’

0 A

)i

mListView = findViewById(R.id.listView);
mListView.setOnItemClickListener (new
AdapterView.OnItemClickListener () {
@Override
public void onItemClick (AdapterView<?> parent, View view,
int position, long id) {
Toast .makeText (MainActivity.this,
mDB.getDefinition (id),
Toast .LENGTH_SHORT) .show () ;

1)
mListView.setOnItemLongClickListener (new
AdapterView.OnItemLongClickListener () {
@Override
public boolean onItemLongClick (AdapterView<?> parent, View
view, int position, long id) {
Toast.makeText (MainActivity.this, "Records deleted = "
+ mDB.deleteRecord(id),
Toast .LENGTH_SHORT) .show () ;
getSupportLoaderManager () .restartLoader (0, null,

[190]

Data Storage Chapter 7

MainActivity.this);
return true;

P
getSupportLoaderManager () .initLoader (0, null, this);
mAdapter = new DictionaryAdapter (this,mDB.getWordList (),0);
mListView.setAdapter (mAdapter);

}

6. We no longer have the updateWordList () method, so change saveRecord ()
as follows:

private void saveRecord() {
mDB.saveRecord (mEditTextWord.getText () .toString(),
mEditTextDefinition.getText () .toString());
mEditTextWord.setText ("");
mEditTextDefinition.setText ("");
getSupportLoaderManager () .restartLoader (0, null,
MainActivity.this);
3

7. Finally, implement these three methods for the Loader interface:

@Override
public Loader<Cursor> onCreateloader (int id, Bundle args) {
return new DictionaryLoader (this);

@Override
public void onLoadFinished (Loader<Cursor> loader, Cursor data) {

mAdapter.swapCursor (data) ;

@Override
public void onLoaderReset (Loader<Cursor> loader) {
mAdapter.swapCursor (null) ;

}

8. Run the program on a device or emulator.

[191]

Data Storage Chapter 7

How it works...

The default CursorAdapter requires a Content Provider URI Since we are accessing the
SQLite database directly (and not through a Content Provider), we don't have a URI to
pass, so instead, we created a custom adapter by extending the CursorAdapter class.
DictionaryAdapter still performs the same functionality as SimpleCursorAdapter
from the previous recipe, namely mapping the data from the cursor to the item layout.

The next class we added was DictionaryLoader, which handles populating the adapter.
As you can see, it's actually very simple. All it does is return the cursor from
getWordList (). The key here is that this query is being handled in a background thread
and will call the onLoadFinished () callback (in MainActivity.java) when it finishes.
Fortunately, most of the heavy lifting is handled in the base class.

This takes us to ActivityMain. java, where we implemented the following three
callbacks from the LoaderManager.LoaderCallbacks interface:

e onCreateLoader (): It's initially called in onCreate () with the initLoader ()
call. It's called again with the restartLoader () call after we make changes to
the database.

e onLoadFinished ():It's called when the Loader 1oadInBackground () finishes.

e onLoaderReset ():It's called when the Loader is being recreated (such as with
the restart () method). We set the old cursor to null because it will be
invalidated and we don't want a reference kept around.

There's more...

As you saw in the previous example, we need to manually notify the Loader to re-query the
database using restartLoader (). One of the benefits of using a Loader is that it can auto-
update, but it requires a Content Provider as the data source. A Content Provider supports
using an SQLite database as the data source and is recommended for a serious application.
(See the following Content Provider link to get started.)

See also

o The AsyncTask recipe in Chapter 14, Location and Using Geofencing.

¢ Creating a Content Provider:
http://developer.android.com/guide/topics/providers/content-provider-c

reating.html.

[192]

http://developer.android.com/guide/topics/providers/content-provider-creating.html
http://developer.android.com/guide/topics/providers/content-provider-creating.html

Data Storage Chapter 7

e It's also worth checking out Paging and LiveData in the Android Jetpack
Conlponerﬁszhttps://developer.android.com/jetpackﬁ

¢ The Loader (and AsyncTask) are both included in the Android SDK. A non-SDK
option (and highly recommended) is RXJava for Android: https://github.com/
ReactiveX/RxAndroid. RXJava is gaining popularity on Android and we're
seeing more and more support for RXJava observables.

Accessing external storage with scoped
directories in Android N

With security awareness on the rise, users are becoming more skeptical about allowing
apps to have unnecessary permissions. Android N introduces a new option called Scoped
Directory Access, allowing your application to request access to only the required
permissions, instead of general access to all folders.

If your application requests READ_EXTERNAL_STORAGE and/or WRITE_EXTERNAL_STORAGE
permission, but only needs access to a specific directory, you can use Scoped Directory
access instead. This recipe will demonstrate how to request access to a specific directory,
the Music folder in this case.

Getting ready

Create a new project in Android Studio and call it ScopedDirectoryAccess. In the Target
Android Device dialog, be sure to select API 24: Android 7.0 (Nougat) or higher for

the Phone & Tablet option. Select Empty Activity on the Add an Activity to

Mobile dialog.

How to do it...

To initiate the user access request, we'll add a button to the layout. Start by opening
activity _main.xml and follow these steps:

1. Replace the existing TextView with this button XML:

<Button
android:id="Q@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"

[193]

https://developer.android.com/jetpack/
https://developer.android.com/jetpack/
https://developer.android.com/jetpack/
https://developer.android.com/jetpack/
https://developer.android.com/jetpack/
https://developer.android.com/jetpack/
https://developer.android.com/jetpack/
https://developer.android.com/jetpack/
https://developer.android.com/jetpack/
https://developer.android.com/jetpack/
https://developer.android.com/jetpack/
https://developer.android.com/jetpack/
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid

Data Storage Chapter 7

android:text="Request Access"
android:onClick="onAccessClick"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_tolLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

2. Now, open MainActivity. java and add the following line of code to the class:
private final int REQUEST_FOLDER_MUSIC=101;

3. Add the method to handle the button click:

public void onAccessClick (View view) {
StorageManager storageManager =
(StorageManager) getSystemService (Context .STORAGE_SERVICE) ;
StorageVolume storageVolume =
storageManager.getPrimaryStorageVolume () ;

Intent intent =
storageVolume.createAccessIntent (Environment .DIRECTORY_MUSIC) ;
startActivityForResult (intent, REQUEST_FOLDER_MUSIC) ;

}

4. Override the onActivityResult () method as follows:

@Override
protected void onActivityResult (int requestCode, int resultCode,
Intent data) {
super.onActivityResult (requestCode, resultCode, data);
switch (requestCode) {
case REQUEST_FOLDER_MUSIC:

if (resultCode == Activity.RESULT_OK) {
getContentResolver () .takePersistableUriPermission (data.getDatal(),
0);

}

break;

}

5. You're ready to run the application on a device or emulator.

[194]

Data Storage Chapter 7

How it works...

The access request is handled by the OS, not by the app. To request access, we need to call
createAccessIntent (), which we do with this line of code:

Intent intent =
storageVolume.createAccessIntent (Environment .DIRECTORY_MUSIC) ;

We call the Intent using the startActivityForResult () method, which we've used
before. Since we are looking for a result to come back, we need to pass a unique identifier to
know when the returned result callback is from our request. (The onActivityResult ()
callback method can receive callbacks for multiple requests.) If the request code matches
our request, we then check whether the result code equals Activity.RESULT_OK, which
means the user granted the permission request. We pass the result to
takePersistableUriPermission () so we will not need to prompt the user the next time
we need to access the same directory.

Access to a directory also includes access to all sub-directories.

There's more...

For the best user experience, observe the following best practices:

1. Make sure to persist the URI after the user grants permission to avoid repeatedly
requesting the same permission (as we do with
takePersistableUriPermission())

2. If the user denies the permission request, don't annoy your users by continuously
asking

See also

¢ See the following link for more information on the Storage Access
Framework: http://developer.android.com/qguide/topics/providers/
document-provider.html

[195]

http://developer.android.com/guide/topics/providers/document-provider.html
http://developer.android.com/guide/topics/providers/document-provider.html
http://developer.android.com/guide/topics/providers/document-provider.html
http://developer.android.com/guide/topics/providers/document-provider.html
http://developer.android.com/guide/topics/providers/document-provider.html
http://developer.android.com/guide/topics/providers/document-provider.html
http://developer.android.com/guide/topics/providers/document-provider.html
http://developer.android.com/guide/topics/providers/document-provider.html
http://developer.android.com/guide/topics/providers/document-provider.html
http://developer.android.com/guide/topics/providers/document-provider.html
http://developer.android.com/guide/topics/providers/document-provider.html
http://developer.android.com/guide/topics/providers/document-provider.html
http://developer.android.com/guide/topics/providers/document-provider.html
http://developer.android.com/guide/topics/providers/document-provider.html
http://developer.android.com/guide/topics/providers/document-provider.html
http://developer.android.com/guide/topics/providers/document-provider.html
http://developer.android.com/guide/topics/providers/document-provider.html
http://developer.android.com/guide/topics/providers/document-provider.html
http://developer.android.com/guide/topics/providers/document-provider.html
http://developer.android.com/guide/topics/providers/document-provider.html

Alerts and Notifications

In this chapter, we will cover the following topics:

e Lights, Action, and Sound - getting the user's attention!
e Creating a Toast with a custom layout

e Displaying a message box with AlertDialog

¢ Displaying a progress dialog

e Lights, Action, and Sound Redux using Notifications

¢ Creating a Media Player Notification

e Making a Flashlight with a Heads-Up Notification

¢ Notifications with Direct Reply

Introduction

Android provides many ways to notify your user, including both visual and non-visual
methods. Keep in mind, notifications distract your user, so it's a good idea to be very
judicious when using any notification. Users like to be in control of their device (it is theirs,
after all), so give them the option to enable and disable notifications as they desire.
Otherwise, your user might get annoyed and uninstall your app altogether.

We'll start by reviewing the following non-Ul-based notification options:

e Flash LED
¢ Vibrate phone
e Play ringtone

Alerts and Notifications Chapter 8

Then, we'll move on to visual notifications, including the following;:

e Toasts

e AlertDialog

e ProgressDialog

o Status Bar Notifications

The recipes that follow will show you how to implement each of these notifications in your
own applications. It's worth reading the following link to understand best practices when
using notifications:

Refer to Android Notification Design Guidelines at
http://developer.android.com/design/patterns/notifications.html.

Lights, Action, and Sound - getting the
user's attention!

Most of the recipes in this chapter use the Notification object to alert your users, so this
recipe will show an alternative approach for when you don't actually need a notification.

As the recipe title implies, we're going to use lights, action, and sound:

e Lights: Normally, you'd use the LED device, but that is only available through
the Notification object, which we'll demonstrate later in the chapter. Instead,
we'll take this opportunity to use setTorchMode () (added in API 23-Android
6.0), to use the camera flash as a flashlight. (Note: as you'll see in the code, this
feature will only work on an Android 6.0 device with a camera flash.)

e Action: We'll vibrate the phone.

e Sound: We'll use the RingtoneManager to play the default notification sound.

As you'll see, the code for each of these is quite simple.

[197]

http://developer.android.com/design/patterns/notifications.html

Alerts and Notifications Chapter 8

As demonstrated in the following Lights, Action, and Sound Redux using Notifications recipe,
all three options, LED, vibrate, and sounds, are available through the Notification
object. The Notification object would certainly be the most appropriate method to
provide alerts and reminders when the user is not actively engaged in your app. But for
those times when you want to provide feedback while they are using your app, these
options are available. The vibrate option is a good example; if you want to provide haptic
feedback to a button press (common with keyboard apps), call the vibrate method directly.

Getting ready

Create a new project in Android Studio and call it Light sActionSound. When prompted
for the API level, we need API 21 or above to compile the project. Select Empty Activity
when prompted for the Activity Type.

How to do it...

We'll use three buttons to initiate each action, so start by opening activity_main.xml
and perform the following steps:

1. Replace the existing layout XML with the following layout:

&1lt; ?xml version="1.0" encoding="utf-8"?>

<Relativelayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res—-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">

&1t; ToggleButton
android:id="@+id/buttonLights"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Lights"
android:layout_centerHorizontal="true"
android:layout_above="@+id/buttonAction"
android:onClick="clickLights" />

&1t;Button
android:id="@+id/buttonAction"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Action"
android:layout_centerVertical="true"

[198]

Alerts and Notifications Chapter 8

android:layout_centerHorizontal="true"
android:onClick="clickVibrate"/>
&1lt;Button

android:id="@+id/buttonSound"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Sound"
android:layout_below="@+id/buttonAction"
android:layout_centerHorizontal="true"
android:onClick="clickSound"/>

&1t; /Relativelayouté>

2. Add the following permission to the Android Manifest:

<uses-permission android:name="android.permission.VIBRATE" />
3. Open ActivityMain. java and add the following global variables:

private CameraManager mCameraManager;
private String mCameralId=null;
private ToggleButton mButtonLights;

4. Add the following method to get the Camera ID:

private String getCamerald() {
try {
String[] ids = mCameraManager.getCameraldList ();
for (String id : ids) |
CameraCharacteristics c =
mCameraManager.getCameraCharacteristics (id);
Boolean flashAvailable =
c.get (CameraCharacteristics.FLASH_INFO_AVAILABLE) ;
Integer facingDirection =
c.get (CameraCharacteristics.LENS_FACING) ;
if (flashAvailable != null
&& flashAvailable
&& facingDirection != null
&& facingDirection ==
CameraCharacteristics.LENS_FACING_BACK) {
return id;

}

} catch (CameraAccessException e) {
e.printStackTrace () ;

}

return null;

[199]

Alerts and Notifications Chapter 8

5. Add the following code to the onCreate () method:

mButtonLights = findViewById(R.id.buttonLights) ;
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {
mCameraManager = (CameraManager)
this.getSystemService (Context.CAMERA_SERVICE) ;
mCamerald = getCamerald();
if (mCameraId==null) { mButtonLights.setEnabled(false);
} else {
mButtonLights.setEnabled (true);
}
} else {
mButtonLights.setEnabled(false);
}

6. Now, add the code to handle each of the button clicks:

public void clickLights (View view) {
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {
try |
mCameraManager.setTorchMode (mCamerald,
mButtonLights.isChecked());
} catch (CameraAccessException e) {
e.printStackTrace();

3
public void clickVibrate (View view) {
((Vibrator) getSystemService (VIBRATOR_SERVICE)) .vibrate (1000);

public void clickSound (View view) {
Uri notificationSoundUri =

RingtoneManager.getDefaultUri (RingtoneManager.TYPE_NOTIFICATION) ;
Ringtone ringtone =

RingtoneManager.getRingtone (getApplicationContext (),

notificationSoundUri) ;

ringtone.play () ;

}

7. You're ready to run the application on a physical device. The code presented here
will need Android 6.0 (or higher) to use the flashlight option.

[200]

Alerts and Notifications Chapter 8

How it works...

As you can see from the previous paragraphs, most of the code is related to finding and
opening the camera to use the flash feature. set TorchMode () was introduced in API 23,
which is why we have the API version check:

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {}

This app demonstrates using the new camera?2 libraries, which were introduced in
Lollipop (API 21). Both the vibrate and ringtone methods have been available since API
1.

The getCameralId () method is where we check for the camera. We want an outward-
facing camera with a flash. If one is found, the ID is returned; otherwise, it is null. If the
camera id is null, we disable the button.

To play the sound, we use the Ringtone object from the RingtoneManager. Besides being
relatively easy to implement, another benefit to this method is that we can use the default
notification sound, which we get with this code:

Uri notificationSoundUri =
RingtoneManager.getDefaultUri (RingtoneManager.TYPE_NOTIFICATION) ;

This way, if the user changes their preferred notification sound, we use it automatically.

Last is the call to vibrate the phone. This was the simplest code to use, but it does require
permission, which we added to the Manifest:

&1lt;uses-permission android:name="android.permission.VIBRATE" />

There's more...

In a production-level application, you wouldn't want to simply disable the button if you
didn't have to. In this case, there are other means to use the camera flash as a flashlight. For
additional examples on using the camera, see chapter 12, Multimedia, where we'll see
getCamerald () used again.

[201]

Alerts and Notifications Chapter 8

See also

¢ Refer to the Lights, Action, and Sound Redux using Notifications recipe later in this
chapter to see the equivalent features using the Notification object

e Refer to chapter 12, Multimedia, for examples using the new camera API and
other sound options

Creating a Toast with a custom layout

We've used Toasts quite a bit already in previous chapters as they provide a quick and easy
way to display information, both for user notification and for ourselves when debugging.

The previous examples have all used the simple one-line syntax, but Toasts aren't limited to
this. Toasts, like most components in Android, can be customized, as we'll demonstrate in
this recipe.

Android Studio offers a shortcut for making a simple Toast statement. As you start to type
the Toast command, you'll see the following:

tod|

show st

Press Enter to auto-complete. Then, press Ctrl + spacebar and you'll see the following;:

android.widget.Toast.makeText($context$, "$text$", Toast.LE
Create a new Toast @

showToast (View view) void
Did you know t Quick Definition View (_Space) works in completion lookups as well?

When you press Enter again, it will auto-complete with the following;:

Toast .makeText (this, "", Toast.LENGTH_SHORT) .show () ;

[202]

Alerts and Notifications Chapter 8

In this recipe, we'll use the Toast Builder to change the default layout, and gravity to create
a custom Toast, as shown in the following screenshot:

704 & @

CustomToast

SHOW TOAST

[203]

Alerts and Notifications Chapter 8

Getting ready

Create a new project in Android Studio and call it CustomToast. Use the default Phone &
Tablet options and select Empty Activity when prompted for the Activity Type.

How to do it...

We're going to change the shape of the Toast to a square and create a custom layout to
display an image and text message. Start by opening activity_main.xml and
follow these steps:

1. Replace the existing &1t ; TextView> element with a &1t;Button> as
follows:

&1lt;Button
android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Show Toast"
android:onClick="showToast"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

2. Create a new drawable resource file in the res/drawable folder
named border_square.xml using the following code:

< ?xml version="1.0" encoding="utf-8"?>
<layer-list
xmlns:android="http://schemas.android.com/apk/res/android">
<item
android:left="4px"
android:top="4px"
android:right="4px"
android:bottom="4px">
&1t;shape android:shape="rectangle" >
&1lt;solid android:color="@android:color/black" />
<stroke android:width="5px"
android:color="@android:color/white"/>
&1t; /shapeé>
< /itemé>
&1lt; /layer—-listé>

[204]

Alerts and Notifications Chapter 8

3. Create a new layout resource file in the res/layout folder
named toast_custom.xml with the following code:

&1lt; ?xml version="1.0" encoding="utf-8"?>
&1lt;LinearlLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/toast_layout_root"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="horizontal"
android:background="Q@drawable/border_square">
&1t; ImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/imagevView"
android:layout_weight="1"
android:src="@mipmap/ic_launcher" />
&1t; TextView
android:id="Q@android:id/message"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_weight="1"
android:textColor="@android:color/white"
android:padding="10dp" />
&1t; /LinearLayouté>

4. Now, open ActivityMain. java and add the following method:

public void showToast (View view) {

LayoutInflater inflater = (LayoutInflater)this
.getSystemService (Context .LAYOUT_INFLATER_SERVICE) ;
View layout = inflater.inflate (R.layout.toast_custom, null);

((TextView) layout.findViewById (android.R.id.message)) .setText ("Cust
om Toast");

Toast toast = new Toast (this);

toast.setGravity (Gravity.CENTER, 0, 0);

toast.setDuration (Toast.LENGTH_LONG) ;

toast.setView (layout) ;

toast.show () ;

}

5. Run the program on a device or emulator.

[205]

Alerts and Notifications Chapter 8

How it works...

This custom Toast changes the default gravity and shape, and adds an image just to show
that "it can be done."

The first step is to create a new Toast layout, which we do by inflating our custom_toast
layout. Once we have the new layout, we need to get the TextView so we can set our
message, which we do with the standard setText () method. With this done, we create a
Toast object and set the individual properties. We set the Toast gravity with the
setGravity () method. The gravity determines where on the screen our Toast will display.
We specify our custom layout with the setview () method call. And just like in the single-
line variation, we display the Toast with the show () method.

See also

e For a Kotlin version, see the Creating a Toast in Kotlin recipe in Chapter 16,
Getting Started with Kotlin

Displaying a message box with AlertDialog

In chapter 4, Menus, we created a theme to make an Activity look like a dialog. In this
recipe, we'll demonstrate how to create a dialog using the AlertDialog class.
AlertDialog offers a Title, up to three buttons, and a list or custom layout area, as shown
in the following example:

Title

Message

NEUTRAL CANCEL (013¢

The button arrangement can vary depending on the OS version.

[206]

Alerts and Notifications Chapter 8

Getting ready

Create a new project in Android Studio and call it AlertDialog. Use the default Phone &
Tablet options and select the Empty Activity option when prompted for the Activity Type.

How to do it...

To demonstrate, we'll create a Confirm Delete dialog to prompt the user for confirmation
after pressing the Delete button. Start by opening the main_activity.xml layout file and
follow these steps:

1. Add the following &1t; Button>:

&1lt;Button
android:id="@+id/buttonDelete"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Delete"
android:onClick="confirmDelete"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

2. Add the confirmbelete () method to ActivityMain. java; this is called by
the button:

public void confirmDelete (View view) {
AlertDialog.Builder builder = new AlertDialog.Builder (this);
builder.setTitle ("Delete")
.setMessage ("Are you sure you?")
.setPositiveButton (android.R.string.ok, new
DialogInterface.OnClickListener () {
public void onClick (DialogInterface dialog, int id)

Toast .makeText (MainActivity.this, "OK Pressed",
Toast .LENGTH_SHORT) .show () ;

})
.setNegativeButton (android.R.string.cancel, new
DialogInterface.OnClickListener () {
public void onClick (DialogInterface dialog, int id)

Toast .makeText (MainActivity.this, "Cancel
Pressed",

[207]

Alerts and Notifications Chapter 8

Toast . LENGTH_SHORT) . show () ;
}
)i

builder.create () .show();

}

3. Run the application on a device or emulator.

How it works...

This dialog is meant to serve as a simple confirmation dialog, such as confirming a delete
action. Basically, just create an AlertDialog.Builder object and set the properties as
needed. We use a Toast message to indicate the user selection. We don't even have to close
the dialog; it's taken care of by the base class.

There's more...

As shown in the recipe introduction screenshot, the AlertDialog also has a third button,
called the Neutral button, which can be set using the following method:

builder.setNeutralButton ()

Add an icon

To add an icon to the dialog, use the setIcon () method. The following is an example:
.setIcon(R.mipmap.ic_launcher)

Introduced in Android 4.3, the mipmap folder is a drawable folder for
storing bitmaps that should not be modified/converted during APK
optimization. This is the recommended location for storing app icons so
the launcher can have the best available image when displaying the app
icon.

Using a list
We can also create a list of items to select from with various list setting methods, including
the following:

.setItems ()
.setAdapter ()

[208]

Alerts and Notifications Chapter 8

.setSingleChoiceItems ()
.setMultiChoiceItems ()

As you can see, there are also methods for single-choice (using a radio button) and multi-
choice lists (using a checkbox).

You can't use both the Message and the Lists, as setMessage () will take
priority.

Custom layout

Finally, we can also create a custom layout, and set it using the following:

.setView ()

If you use a custom layout and replace the standard buttons, you are also responsible for
closing the dialog. Use hide () if you plan to reuse the dialog and dismiss () when
finished to release the resources.

Displaying a progress dialog
ProgressDialog has been available since API 1 and is widely used. As we'll demonstrate
in this recipe, it's simple to use, but keep this message in mind (posted on the Android

Dialog Guidelines site at http://developer.android.com/guide/topics/ui/dialogs.
html):

Android includes another dialog class called ProgressDialog that shows a
dialog with a progress bar. However, if you need to indicate loading or
indeterminate progress, you should instead follow the design guidelines
for Progress & Activity and use a ProgressBar in your layout.

This message doesn't mean ProgressDialog is deprecated or is bad code. It's suggesting
that the use of ProgressDialog should be avoided since the user cannot interact with
your app while the dialog is displayed. If possible, use a layout that includes a progress bar
(so other views are still usable), instead of stopping everything with Progressbialog.

[209]

http://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/guide/topics/ui/dialogs.html

Alerts and Notifications Chapter 8

The Google Play app provides a good example. When adding items to download, Google
Play shows a progress bar, but it's not a dialog so the user can continue interacting with the
app, even adding more items to download. If possible, use that approach instead.

There are times when you may not have that luxury; for example, after placing an order,
the user is going to expect an order confirmation. (Even with Google Play, you still see a
confirmation dialog when actually purchasing apps.) So, remember to avoid the progress
dialog if possible. But, for those times when something must complete before continuing,
this recipe provides an example of how to use ProgressDialog. The following screenshot
shows ProgressDialog from the recipe:

‘ > Doing something...

[210]

Alerts and Notifications Chapter 8

Getting ready

Create a new project in Android Studio and call it ProgressDialog. Use the default Phone
& Tablet options and select Empty Activity when prompted for the Activity Type.

How to do it...

1. Since this is just a demonstration of using the ProgressDialog, we will create a
button to show the dialog. To simulate waiting for a server response, we will use
a delayed message to dismiss the dialog. To start, open activity_main.xml
and follow these steps:

2. Replace &1t; TextViewsgt; with the following &1t; Button>:

&1t;Button
android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Show Dialog"
android:onClick="startProgress"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

3. OpenMainActivity. java and add the following two global variables:

private ProgressDialog mDialog; final int THIRTY_SECONDS=30%*1000;
4. Add the showDialog () method referenced by the button click:

public void startProgress (View view) {

mDialog = new ProgressDialog(this);
mDialog.setMessage ("Doing something...");
mDialog.setCancelable (false);
mDialog.show () ;
new Handler () .postDelayed(new Runnable() {

public void run() {

mDialog.dismiss () ;

}

}, THIRTY_SECONDS) ;

}

5. Run the program on a device or emulator. When you press the Show Dialog
button, you'll see the dialog shown in the screen from the Introduction.

[211]

Alerts and Notifications Chapter 8

How it works...

We use the ProgressDialog class to display our dialog. The options should be self-
explanatory, but this setting is worth nothing;:

mDialog.setCancelable (false);

Normally, a dialog can be canceled using the back key, but when this is set to false, the user
is stuck on the dialog until it is hidden/dismissed from the code. To simulate a delayed
response from a server, we use a Handler and the postDelayed () method. After the
specified milliseconds (30,000 in this case, to represent 30 seconds), the run () method will
be called, which will dismiss our dialog.

There's more...

We used the default Progressbialog settings for this recipe, which creates an
indeterminate dialog indicator, for example, the continuously spinning circle. If you can
measure the task at hand, such as loading files, you can use a determinate style instead.
Add and run this line of code:

mDialog.setProgressStyle (ProgressDialog.STYLE_HORIZONTAL) ;

With STYLE_HORIZONTAL, you'll see the percentage dialog shown here:

Doing something...

0% 0/100

Lights, Action, and Sound Redux using
Notifications

You're probably already familiar with Notifications as they've become a prominent feature

(even making their way to the desktop environment) and for good reason. They provide an
excellent way to raise information for your user. They provide the least intrusive option of

all the alerts and notification options available.

[212]

Alerts and Notifications Chapter 8

As we saw in the first recipe, Lights, Action, and Sound - getting the user’s attention! Lights,
vibration, and sound are all very useful means of getting the user's attention. That's why
the Notification object includes support for all three options, as we'll demonstrate in this
recipe. Given this ability to get your user's attention, care should still be taken not to abuse
your user. Otherwise, they'll likely uninstall your app. It's generally a good idea to give
your users the option to enable/disable notifications and even how to present the
notification: with sound or without, and so on.

Getting ready

Create a new project in Android Studio and call it Light sActionSoundRedux. Use the
default Phone & Tablet options and select Empty Activity when prompted for the Activity

Type.

How to do it...

We'll need permission to use the vibrate option, so start by opening the Android Manifest
file, and follow the remaining steps:

1. Add the following permission:

<uses-permission android:name="android.permission.VIBRATE"/>

2. Open activity_main.xml and replace the existing &1t ; TextView> with
the following button:

&1t;Button
android:id="@+id/buttonSound"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Lights, Action, and Sound"
android:onClick="clickLightsActionSound"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

3. Now, open MainActivity.java and add the following declaration to the class:

final String CHANNEL_ID="notifications";

[213]

Alerts and Notifications Chapter 8

4. Next, add the method to handle the button click:

public void clickLightsActionSound (View view) {
Uri notificationSoundUri =
RingtoneManager.getDefaultUri (RingtoneManager.TYPE_NOTIFICATION) ;

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
AudioAttributes audioAttributes = new
AudioAttributes.Builder ()
.setContentType (AudioAttributes.CONTENT_TYPE_SONIFICATION)
.setUsage (AudioAttributes.USAGE_NOTIFICATION_RINGTONE)
Jbuild() ;
NotificationChannel channel = new
NotificationChannel (CHANNEL_ID,
"Notifications",
NotificationManager.IMPORTANCE_HIGH) ;
channel.setDescription("All app notifications");
channel.setSound(notificationSoundUri, audioAttributes);
channel.setLightColor (Color.BLUE) ;
channel.enablelLights (true);
channel.enableVibration (true);
NotificationManager notificationManager =
getSystemService (NotificationManager.class);
notificationManager.createNotificationChannel (channel);

NotificationCompat.Builder notificationBuilder = new
NotificationCompat.Builder (this, CHANNEL_ID)
.setSmallIcon (R.mipmap.ic_launcher)
.setContentTitle (getString(R.string.app_name))
.setContentText ("Lights, Action & Sound")
.setSound (notificationSoundUri)

.setLights (Color.BLUE, 500, 500)
.setVibrate (new long[]{250,500,250,500,250,500})
.setDefaults (Notification.DEFAULT_LIGHTS |
Notification.DEFAULT_VIBRATE) ;
NotificationManagerCompat notificationManager =
NotificationManagerCompat.from(this);
notificationManager.notify (0, notificationBuilder.build());

}

5. Run the program on a physical device to experience all the notification effects.

[214]

Alerts and Notifications Chapter 8

How it works...

We combined all three actions into a single notification, simply because we could. You
don't have to use all three extra notification options or even any. Only the following are
required:

.setSmalllIcon ()
.setContentText ()

If you don't set both the icon and text, the notification will not show.

We used NotificationCompat to build our notification. This comes from the support
library and makes it easier to be backward-compatible with older OS versions. If we request
a notification feature that is not available on the user's version of OS, it will simply be
ignored.

These three lines of code produce our extra notification options:

.setSound (notificationSoundUri)
.setLights (Color.BLUE, 500, 500)
.setVibrate (new long[]{250,500,250,500,250,500});

It's worth noting that we use the same sound URI with the notification as we did with the
RingtoneManager from the earlier Lights, Action, and Sound recipe. The vibrate feature also
required the same vibrate permission as the previous recipe, but notice the value we send is
different. Instead of sending just a duration for the vibration, we are sending a vibrate
pattern. The first value represents the of £ duration (in milliseconds); the next value
represents the vibration on duration and repeats.

As you can see in the following line of code:

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O)

If the app is running on Android 8 Oreo (API 26) or greater, there are two parts to creating
a notification: the notification itself along with the notification channel (or "category" as the
user will see in the settings). The notification "category" feature was added to Android 8 to
make it easier for the user to manage the many notifications being displayed by apps. Prior
to this feature being added, notifications were either on or off for an app. The user had no
way to allow only certain notification types.

[215]

Alerts and Notifications Chapter 8

If the user is running on Android 8 or greater, we need to create the channel and channel
characteristics. Keep in mind, once the channel is created, the properties cannot be changed.
For example, if you don't have sound enabled when you first create the channel, changing it
later will have no effect. (This applies across app restarts as well.)

On devices with LED notification, you won't see the LED notification
while the screen is active.

There's more...

This recipe shows the basics of a notification, but like many features on Android, options
have expanded with later OS releases. (Keep in mind the following Toasts can vary in
appearance based on the OS version and manufacturer.)

Adding a button to the notification using addAction()

There are several design considerations you should keep in mind when adding action
buttons, as listed in the Notification Guidelines link in the chapter introduction. You can
add a button (up to three) using the addAction () method on the notification builder. The
following is an example of a notification with one action button:

) LightsActionSoundRedux 8:02 PM
- Lights, Action & Sound

R EMAIL

Here's the code to create this notification:

NotificationCompat.Builder notificationBuilder = new
NotificationCompat.Builder (this, CHANNEL_ID)
.setSmalllIcon (R.mipmap.ic_launcher)
.setContentTitle ("LightsActionSoundRedux")
.setContentText ("Lights, Action & Sound");
Intent activityIntent = new Intent (this, MainActivity.class);
PendingIntent pendingIntent = PendinglIntent.getActivity(
this, 0,activityIntent, 0);
notificationBuilder.addAction (android.R.drawable.ic_dialog_email, "Email",
pendingIntent);

[216]

Alerts and Notifications Chapter 8

An Action requires three parameters: the image, the text, and PendingIntent. The first
two items are for the visual display, while the third item, PendingIntent, is called when
the user presses the button.

The previous code creates a very simple PendingIntent; it justlaunches the app. This is
probably the most common intent for notifications and is often used when the user presses
the notification. To set the notification intent, use the following code:

.setContentIntent (pendingIntent)

A button action would probably require more information as it should take the user to the
specific item in your app. You should also create an application back-stack for the best user
experience.

Expanded notifications

Expanded notifications were introduced in Android 4.1 (API 16) and are available by using
the setstyle () method on the Notification Builder. If the user's OS does not support
expanded notifications, the notification will appear as a normal notification.

The three expanded styles currently available in the NotificationCompat library include
the following:

¢ InboxStyle: Large-format notifications that include a list of strings
e BigPictureStyle: Large-format notification that includes a large image attachment
¢ BigTextStyle: Large-format notifications that include a lot of text

Here's an example of each notification style, and the code used to create the example:

1. InboxStyle: Large-format notifications that include a list of strings

InboxStyle - Big Content Title 7:51pm
Line 1
Line 2

[217]

Alerts and Notifications Chapter 8

Here's the code for this style:

NotificationCompat.Builder notificationBuilder =
new NotificationCompat.Builder (this, CHANNEL_ID)
.setSmallIcon (R.mipmap.ic_launcher);
NotificationCompat.InboxStyle inboxStyle = new
NotificationCompat.InboxStyle();
inboxStyle.setBigContentTitle ("InboxStyle - Big Content Title")
.addLine ("Line 1")
.addLine ("Line 2");
notificationBuilder.setStyle (inboxStyle);

2. BigPictureStyle: Large-format notification that includes a large image
attachment

‘ LightsActionSoundRedux 7:57 PM

Check out the code for this style:

NotificationCompat.Builder notificationBuilder = new
NotificationCompat.Builder (this, CHANNEL_ID)

.setSmallIcon (R.mipmap.ic_launcher)

.setContentTitle ("LightsActionSoundRedux")

.setContentText ("BigPictureStyle");
NotificationCompat.BigPictureStyle bigPictureStyle = new
NotificationCompat.BigPictureStyle () ;
bigPictureStyle.bigPicture (BitmapFactory.decodeResource (getResource
s(), R.mipmap.ic_launcher));
notificationBuilder.setStyle (bigPictureStyle);

[218]

Alerts and Notifications Chapter 8

3. BigTextStyle : Large-format notifications that include a lot of text

LightsActionSoundRedux 7:58 PM

This is an example of the BigTextStyle
expanded notification.

Here's how the code for this style would look.

NotificationCompat.Builder notificationBuilder =
new NotificationCompat.Builder (this, CHANNEL_ID)
.setSmallIcon (R.mipmap.ic_launcher)
.setContentTitle ("LightsActionSoundRedux") ;

NotificationCompat.BigTextStyle BigTextStyle = new
NotificationCompat.BigTextStyle();
BigTextStyle.bigText ("This is an example of the BigTextStyle

expanded notification.");
notificationBuilder.setStyle (BigTextStyle);

Lock screen notifications

Android 5.0 (API 21) and above can show notifications on the lock screen, based on the
user's lock screen visibility. Use setVisibility () to specify the notification visibility

using the following values:

e VISIBILITY_PUBLIC: All content can be displayed.

e VISIBILITY_SECRET: No content should be displayed.

e VISIBILITY_PRIVATE: Display the basic content (title and icon) but the rest is
hidden.

See also

o See the Creating a Media Player Notification and Making a Flashlight with a
Heads-Up Notification recipes for additional notification options with Android 5.0

(API 21) and greater.

[219]

Alerts and Notifications Chapter 8

Creating a Media Player Notification

This recipe is going to take a look at the new Media Player style introduced in Android 5.0
(API 21). Unlike the previous recipe, Lights, Action, and Sound Redux using
Notifications, which used NotificationCompat, this recipe does not, as this style is not

available in the support library.

Here's a screenshot showing how the notification will appear:

Music 10:39 PM
Now playing...

This screenshot shows an example of the Media Player Notification on a lock screen:

Music 10:45 PM

= Now playing... ll

Getting ready

Create a new project in Android Studio and call it MediaPlayerNotification. In the
Target Android Devices dialog, select API 21: Android 5.0 (Lollipop), or higher, for this
project. Select Empty Activity on the Add an Activity to Mobile dialog.

How to do it...
We just need a single button to call our code to send the notification. Open
activity_main.xml and follow these steps:

1. Replace the existing &1t ; TextView> with the following button code:

&1lt;Button
android:id="@+id/button"
android:layout_width="wrap_content"

[220]

Alerts and Notifications Chapter 8

android:layout_height="wrap_content"
android:text="Show Notification"
android:onClick="showNotification"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_tolLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

2. OpenMainActivity. java and add the showNotification () method:

@SuppressWarnings ("deprecated")
public void showNotification (View view) {
Intent activityIntent = new Intent (this,MainActivity.class);
PendingIntent pendingIntent = PendingIntent.getActivity (this,
0, activityIntent, 0);

Log.i(this.getClass () .getSimpleName (), "showNotification()");
Notification.Builder notificationBuilder;
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {
notificationBuilder = new Notification.Builder (this)
.setVisibility (Notification.VISIBILITY_ PUBLIC)
.setSmalllIcon(Icon.createWithResource (this,
R.mipmap.ic_launcher))
.addAction (new Notification.Action.Builder (
Icon.createWithResource (this,
android.R.drawable.ic_media_previous),
"Previous", pendingIntent) .build())
.addAction (new Notification.Action.Builder (
Icon.createWithResource (this,
android.R.drawable.ic_media_pause),
"Pause", pendingIntent) .build())
.addAction (new Notification.Action.Builder (
Icon.createWithResource (this,
android.R.drawable.ic_media_next),
"Next", pendingIntent) .build())
.setContentTitle ("Music")
.setContentText ("Now playing...")
.setLargelIcon (Icon.createWithResource (this,
R.mipmap.ic_launcher))
.setStyle (new
Notification.MediaStyle () .setShowActionsInCompactView(1l));
} else {
notificationBuilder = new Notification.Builder (this)
.setVisibility (Notification.VISIBILITY_ PUBLIC)
.setSmallIcon (R.mipmap.ic_launcher)
.addAction (new
Notification.Action.Builder (android.R.drawable.ic_media_previous,
"Previous", pendingIntent) .build())

[221]

Alerts and Notifications Chapter 8

.addAction (new
Notification.Action.Builder (android.R.drawable.ic_media_pause,
"Pause", pendingIntent) .build())
.addAction (new
Notification.Action.Builder (android.R.drawable.ic_media_next,
"Next", pendingIntent) .build())
.setContentTitle ("Music")
.setContentText ("Now playing...")
.setLargelcon (BitmapFactory.decodeResource (getResources (),
R.mipmap.ic_launcher))
.setStyle (new
Notification.MediaStyle () .setShowActionsInCompactView (1)) ;
}
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
notificationBuilder.setChannellId (createChannel ());
}
NotificationManager notificationManager =
(NotificationManager)
this.getSystemService (Context .NOTIFICATION_SERVICE) ;
notificationManager.notify (0, notificationBuilder.build());

}
3. Add the following method to create the channel for Android O and later:

private String createChannel () {
final String channelId = "mediaplayer";
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
NotificationChannel channel = new
NotificationChannel (channelId, "Notifications",
NotificationManager.IMPORTANCE_HIGH) ;
channel.setDescription("All app notifications");
channel.enableVibration (true);
NotificationManager notificationManager =
getSystemService (NotificationManager.class);
notificationManager.createNotificationChannel (channel);
}

return channelId;

}

4. Run the program on a device or emulator.

[222]

Alerts and Notifications Chapter 8

How it works...

The first detail to note is that we decorate our showNotification () method with the
following:

@SuppressWarnings ("deprecated")

This tells the compiler we know we are using deprecated calls. (Without this, the compiler
will flag the code.) We follow this with an API check, using this call:

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M)

The icon resource was changed in API 23, but we want this application to run on API 21
(Android 5.0) and later, so we still need to call the old methods when running on API 21
and API 22.

If the user is running on Android 6.0 (or higher), we use the new Icon class to create our
icons; otherwise, we use the old constructor. (You'll notice the IDE shows deprecated calls
with a strikethrough.) Checking the current OS version during runtime is a common
strategy for remaining backward-compatible.

We create three actions using addAction () to handle the media player functionality. Since
we don't really have a media player going, we use the same intent for all the actions, but
you'll want to create separate intents in your application.

To make the notification visible on the lock screen, we need to set the visibility level to
VISIBILITY_PUBLIC, which we do with the following call:

.setVisibility (Notification.VISIBILITY_PUBLIC)
This call is worth noting;:
.setShowActionsInCompactView (1)

Just as the method name implies, this sets the actions to show when the notification is
shown with a reduced layout. (See the lock screen image in the recipe introduction.)

[223]

Alerts and Notifications Chapter 8

There's more...

We only created the visual notification in this recipe. If we were creating an actual media
player, we could instantiate a MediaSession class and pass in the session token with this
call:

.setMediaSession (mMediaSession.getSessionToken ())

This will allow the system to recognize the media content and react accordingly, such as
updating the lock screen with the current album artwork.

See also

e MediaSession developer

documents: https://developer.android.com/reference/android/media/sessi
on/MediaSession.html

e The Lock Screen Visibility section in the Lights, Action, and Sound Redux using
Notifications recipe discusses visibility options

Making a Flashlight with a Heads-Up

Notification

Android 5.0-Lollipop (API 21) introduced a new type of notification called the Heads-Up
Notification. Many people do not care for this new notification as it can be extremely
intrusive, as it forces its way on top of other apps. (See the following screenshot.) Keep this
in mind when using this type of notification. We're going to demonstrate the Heads-Up
Notification with a Flashlight as this demonstrates a good use case scenario.

Here's a screenshot showing the Heads-Up Notification we'll create further on:

Flashlight

FIashIightWithHe Press to turn off the flashlight

If you have a device running Android 6.0, you may have noticed the new Flashlight
settings option. As a demonstration, we're going to create something similar in this recipe.

[224]

https://developer.android.com/reference/android/media/session/MediaSession.html
https://developer.android.com/reference/android/media/session/MediaSession.html

Alerts and Notifications Chapter 8

Getting ready

Create a new project in Android Studio and call it FlashlightWithHeadsUp. When
prompted for the API level, we need API 23 (or higher) for this project. Select Empty
Activity when prompted for the Activity Type.

How to do it...

Our activity layout will consist of just a ToggleButton to control the flashlight mode. We'll
be using the same set TorchMode () code as the Lights, Action, and Sound - getting the user’s
attention! recipe presented earlier, and will add a Heads-Up Notification. We'll need
permission to use the vibrate option, so start by opening the Android Manifest and
following these steps:

1. Add the following permission:

<uses-permission android:name="android.permission.VIBRATE"/>

2. Specify that we only want a single instance of MainActivity by adding
android:launchMode="singleInstance" tothe &1t;MainActivity>
element. It will look as follows:

<activity android:name=".MainActivity"
android:launchMode="singleInstance">

3. With the changes to AndroidManifest done, open the activity_main.xml
layout and replace the existing &1t ; TextViewsgt; element with this
&1t; ToggleButtonsgt; code:

&1t; ToggleButton
android:id="Q@+id/buttonLight™"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Flashlight"
android:onClick="clickLight"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

[225]

Alerts and Notifications Chapter 8

4. Now, open ActivityMain. java and add the following global variables:

private static final String ACTION_STOP="STOP";
private CameraManager mCameraManager;

private String mCamerald=null;

private ToggleButton mButtonLight;

5. Add the following code to onCreate () to set up the camera:

mButtonLight = findViewById(R.id.buttonLight) ;
mCameraManager = (CameraManager)
this.getSystemService (Context.CAMERA_SERVICE) ;
mCamerald = getCamerald();
if (mCameralId==null) {
mButtonLight.setEnabled(false);
} else {
mButtonLight.setEnabled (true);
}

6. Add the following method to handle the response when the user presses the
notification:

@Override
protected void onNewIntent (Intent intent) {
super.onNewIntent (intent) ;
if (ACTION_STOP.equals (intent.getAction())) {
setFlashlight (false);

}

7. Add the method to get the camera ID:

private String getCameralId() {
try {
String[] ids = mCameraManager.getCameraldList ();
for (String id : ids) |
CameraCharacteristics c =
mCameraManager.getCameraCharacteristics (id);
Boolean flashAvailable =
c.get (CameraCharacteristics.FLASH_INFO_AVAILABLE) ;
Integer facingDirection =
c.get (CameraCharacteristics.LENS_FACING) ;
if (flashAvailable != null
&& flashAvailable
&& facingDirection != null
&& facingDirection ==
CameraCharacteristics.LENS_FACING_BACK) {
return id;

[226]

Alerts and Notifications Chapter 8

}

} catch (CameraAccessException e) {
e.printStackTrace();

}

return null;

}
8. Add these two methods to handle the flashlight mode:

public void clickLight (View view) {
setFlashlight (mButtonLight.isChecked());
if (mButtonLight.isChecked()) {
showNotification();

private void setFlashlight (boolean enabled) {
mButtonLight.setChecked (enabled);

try {
mCameraManager.setTorchMode (mCamerald,

} catch (CameraAccessException e) {
e.printStackTrace();

enabled) ;

}

9. Finally, add this method to create the notification:

private void showNotification() {

final String CHANNEL_ID = "flashlight";

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O)
= new

{

NotificationChannel channel
NotificationChannel (CHANNEL_ID,
"Notifications",
NotificationManager.IMPORTANCE_HIGH) ;
channel.setDescription("All app notifications");
channel.enableVibration (true);
NotificationManager notificationManager

getSystemService (NotificationManager.class);
notificationManager.createNotificationChannel (channel);

new Intent (this, MainActivity.class);

Intent activityIntent =

activityIntent.setAction (ACTION_STOP) ;

PendingIntent pendingIntent =
PendingIntent.getActivity(this, O,

final NotificationCompat.Builder notificationBuilder
new NotificationCompat.Builder (this, CHANNEL_ID)

activityIntent, 0);

[227]

Alerts and Notifications Chapter 8

.setContentTitle ("Flashlight")
.setContentText ("Press to turn off the flashlight")
.setSmallIcon (R.mipmap.ic_launcher)
.setLargelcon (BitmapFactory.decodeResource (getResources (),
R.mipmap.ic_launcher))
.setContentIntent (pendingIntent)
.setVibrate (new long[]{DEFAULT_VIBRATE})
.setPriority (PRIORITY_MAX)
.setAutoCancel (true);

NotificationManager notificationManager = (NotificationManager)
this.getSystemService (Context .NOTIFICATION_SERVICE) ;
notificationManager.notify (0, notificationBuilder.build());

}

10. You're ready to run the application on a physical device. As noted previously,
you'll need an Android 6.0 (or higher) device, with an outward-facing camera
flash.

How it works...

Since this recipe uses the same flashlight code as Lights, Action, and Sound - getting the user's
attention!, we'll jump to the showNotification () method. Most notification builder calls

are the same as in previous examples, but there are two significant differences:

.setVibrate ()
.setPriority (PRIORITY_MAX)

Notifications will not be escalated to Heads-Up Notifications unless the
priority is set to HIGH (or above) and uses either vibrate or sound.

Note this from the Developer documentation
at http://developer.android.com/reference/android/app/Notificatio
n.html#headsUpContentView:

"At its discretion, the system UI may choose to show this as a heads-up
notification."

We create a PendingIntent as we've done previously, but here we set the action with the
following;:

activityIntent.setAction (ACTION_STOP) ;

[228]

http://developer.android.com/reference/android/app/Notification.html#headsUpContentView
http://developer.android.com/reference/android/app/Notification.html#headsUpContentView

Alerts and Notifications Chapter 8

We set the app to only allow a single instance in the AndroidManifest file, as we don't
want to start a new instance of the app when the user presses the notification. The
PendingIntent we created sets the action, which we check in the onNewIntent ()
callback. If the user opens the app without pressing the notification, they can still disable
the flashlight with the ToggleButton.

There's more...

You may have noticed the following line of code:

.setAutoCancel (true) ;

.setAutoCancel () tells the OS to automatically remove the notification when the user
clicks on it. This is great if the user presses the notification to turn off the light, but what
happens if they use the toggle button? The light will turn off as it should, but they are left
with a useless notification. To fix that, we can add a new method to cancel the notification:

private void cancelNotification() {
NotificationManager notificationManager = (NotificationManager)
this.getSystemService (Context .NOTIFICATION_SERVICE) ;
notificationManager.cancelAll ();

}

Then we call it when they press the button. Here's how clickLight () will look:

public void clickLight (View view) {
setFlashlight (mButtonLight.isChecked());

if (mButtonLight.isChecked()) {
showNotification () ;
} else {

cancelNotification();

}

See also

e Refer to the earlier Lights, Action, and Sound - getting the user’s attention! recipe for
more information on the torch API

¢ Refer to the earlier Lights, Action, and Sound Redux using Notifications recipe for
more Notification examples

[229]

Alerts and Notifications Chapter 8

Notifications with Direct Reply

One of the most exciting new features introduced in Android N was inline reply, called
Direct Reply. With Direct Reply, users can respond without leaving the Notification Bar!

In this recipe, we’ll add the ability to create an inline reply by passing a Remotelnput to the
addRemoteInput () method.

Getting ready

Create a new project in Android Studio and call it DirectReply. In the Target Android
Devices dialog, select the Phone & Tablet option and choose API 24: Android Nougat 7.0
(or later) for the Minimum SDK. Select Empty Activity when prompted for the Activity

Type.

How to do it...

Our app will consist of a single button on the main screen to initiate the initial notification.
Start by opening activity_main.xml and follow these steps:

1. Replace the existing TextView with the button XML:

&1t;Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Send Notification"
android:id="@+id/buttonSend"
android:onClick="onClickSend"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

2. Now, open MainActivity.java and add the following code to the class:

private final String KEY_REPLY_TEXT "KEY_REPLY_TEXT";

private final int NOTIFICATION_ID = 1;

[230]

Alerts and Notifications Chapter 8

3. Add the following code to the existing onCreate () method:

if (getIntent () !=null) {

Toast.makeText (MainActivity.this, getReplyText (getIntent()),
Toast .LENGTH_SHORT) .show () ;
3

4. Override the onNewIntent () method as follows:

@Override
protected void onNewIntent (Intent intent) |
super.onNewIntent (intent);
Toast .makeText (MainActivity.this, getReplyText (intent),
Toast .LENGTH_SHORT) .show () ;
}

5. Add the following method to handle the button click:

public void onClickSend (View view) {
Intent activityIntent = new Intent (this,MainActivity.class);
PendingIntent pendingIntent =
PendingIntent.getActivity (this, 0,activityIntent, 0);

RemoteInput remoteInput = new
RemoteInput.Builder (KEY_REPLY_TEXT)
.setLabel ("Reply")
Jbuild() ;

NotificationCompat.Action action =
new
NotificationCompat.Action.Builder (android.R.drawable.ic_menu_revert
14
"Reply", pendingIntent)
.addRemoteInput (remoteInput)
Lbuild() ;

NotificationCompat.Builder notificationBuilder =
new NotificationCompat.Builder (this,getChannelId())
.setSmallIcon (android.R.drawable.ic_dialog_email)
.setContentTitle ("Reply")
.setContentText ("Content")
.addAction (action);

NotificationManagerCompat notificationManager =
NotificationManagerCompat.from(this);
notificationManager.notify (0, notificationBuilder.build());

[231]

Alerts and Notifications Chapter 8

private String getChannelId() {

final String channellId = "directreply";
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
NotificationChannel channel = new

NotificationChannel (channelId,
"Notifications",
NotificationManager.IMPORTANCE_DEFAULT) ;
channel.setDescription("All app notifications");
channel.enableVibration (true);
NotificationManager notificationManager =
getSystemService (NotificationManager.class);
notificationManager.createNotificationChannel (channel);
}
return channelld;

}
6. Add the getReplyText () method:

private CharSequence getReplyText (Intent intent) {
Bundle notificationReply =
RemoteInput.getResultsFromIntent (intent);
if (notificationReply !'= null) {
return notificationReply.getCharSequence (KEY_REPLY_TEXT);
}

return null;

}

7. You're ready to run the application on a device or emulator.

How it works...

Adding the Inline Reply option to a notification is actually very simple. We start with a
Notification object as we've done in the previous recipes. (We're using NotifcationCompat
from the support library to provide greater backward compatibility.) When creating the
Action, call the addRemoteInput () method, passing in a Remotelnput. Remotelnput is
where you define they key to retrieve the user input text. After the user enters a reply, the
OS calls the PendingIntent, passing the data back to your app in an Intent.

Use RemoteInput.getResultsFromIntent () to retrieve the user text as we did in the
getReplyText () method.

[232]

Alerts and Notifications Chapter 8

See also

e The Notifications Overview guide at https://developer.android.com/guide/
topics/ui/notifiers/notifications

[233]

https://developer.android.com/guide/topics/ui/notifiers/notifications
https://developer.android.com/guide/topics/ui/notifiers/notifications
https://developer.android.com/guide/topics/ui/notifiers/notifications
https://developer.android.com/guide/topics/ui/notifiers/notifications
https://developer.android.com/guide/topics/ui/notifiers/notifications
https://developer.android.com/guide/topics/ui/notifiers/notifications
https://developer.android.com/guide/topics/ui/notifiers/notifications
https://developer.android.com/guide/topics/ui/notifiers/notifications
https://developer.android.com/guide/topics/ui/notifiers/notifications
https://developer.android.com/guide/topics/ui/notifiers/notifications
https://developer.android.com/guide/topics/ui/notifiers/notifications
https://developer.android.com/guide/topics/ui/notifiers/notifications
https://developer.android.com/guide/topics/ui/notifiers/notifications
https://developer.android.com/guide/topics/ui/notifiers/notifications
https://developer.android.com/guide/topics/ui/notifiers/notifications
https://developer.android.com/guide/topics/ui/notifiers/notifications
https://developer.android.com/guide/topics/ui/notifiers/notifications
https://developer.android.com/guide/topics/ui/notifiers/notifications

Using the Touchscreen and
Sensors

In this chapter, we will cover the following topics:

e Listening for click and long-press events
e Recognizing tap and other common gestures

Pinch-to-zoom with multi-touch gestures

Swipe-to-refresh

Listing available sensors—an introduction to the Android Sensor Framework

Reading sensor data—using Android Sensor Framework events

Reading device orientation

Introduction

These days, mobile devices are packed with sensors, often including a gyroscope, magnetic,
gravity, pressure, and/or temperature sensors, not to mention the touchscreen. This
provides many new and exciting options to interact with your user. Through the sensors,
you can determine three-dimensional device location and how the device is being used,
such as shaking, rotation, tilt, and so on. Even the touchscreen offers many new input
methods from just the simple click to gestures and multi-touch.

We'll start this chapter by exploring touchscreen interactions, starting with a simple click
and long-press, then move on to detecting common gestures using the
SimpleOnGestureListener class. Next, we'll look at multi-touch using the
pinch-to-zoom gesture with ScaleGestureDetector.

This book is meant to offer a quick guide to adding features and functionality to your own
applications. As such, the focus is on the code required but it's highly recommended that
you become familiar with the design guidelines as well.

Using the Touchscreen and Sensors Chapter 9

Check out the Google Gesture Design Guidelines at
https://www.google.com/design/spec/patterns/gestures.html.

In the latter part of this chapter, we'll look at sensor abilities in Android, using the Android
Sensor Framework. We'll demonstrate how to obtain a list of all available sensors, plus how
to check for a specific sensor. Once we identify a sensor, we'll demonstrate setting up a
listener to read the sensor data. Finally, we'll end the chapter with a demonstration of how
to determine the device orientation.

Listening for click and long-press events

Almost every application needs to recognize and respond to basic events such as clicks and
long-presses. It's so basic, in most recipes we use the XML onClick attribute, but more
advanced listeners require to be set up through code.

Android provides an Event Listener interface for receiving a single notification when
certain actions occur, as shown in the following list:

e onClick ():It's called when a View is pressed
e onLongClick (): It's called when the View is long-pressed
e onFocusChange (): It's called when the user navigates to or from the View

e onKey ():It's called when a hardware key is pressed or released
e onTouch (): It's called when a touch event occurs

This recipe will demonstrate responding to a click event, as well as a long-press event.

Getting ready

Create a new project in Android Studio and call it PressEvents. Use the default Phone &
Tablet options and select Empty Activity on the Add an Activity to Mobile dialog.

[235]

https://www.google.com/design/spec/patterns/gestures.html
https://www.google.com/design/spec/patterns/gestures.html

Using the Touchscreen and Sensors Chapter 9

How to do it...

Setting up to receive basic View events is very simple. First, we will create a View; we'll use
a button for our example, then set the Event Listener in the Activity's onCreate () method.

Following are the steps:

1. Open activity_main.xml and replace the existing Textview with the
following Button:

<Button
android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Button"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

2. Now open MainActivy. java and add the following code to the existing
onCreate () method:

Button button = findvViewById(R.id.button);
button.setOnClickListener (new View.OnClickListener () {

@Override

public void onClick (View v) {

Toast.makeText (MainActivity.this, "Click",

Toast .LENGTH_SHORT) .show () ;

}
b i

button.setOnLongClickListener (new View.OnLongClickListener () {
@Override
public boolean onLongClick (View v) {
Toast .makeText (MainActivity.this, "Long Press",

Toast .LENGTH_SHORT) .show () ;
return true;

)i

3. Run the application on a device or emulator and try a regular click and long-
press.

[236]

Using the Touchscreen and Sensors Chapter 9

How it works...

In most examples used in this book, we set up the onC1lick listener in XML using the
following attribute:

android:onClick=""

You may notice the XML onClick () method callback requires the same method signature
as the setOnClickListener .onClick () callback:

public void onClick (View v) {}

That's because Android automatically sets up the callback for us when we use the XML
onClick attribute. This example also demonstrates that we can have multiple listeners on a
single View.

The last point to note is that the onLongClick () method returns a Boolean, as do most of
the other event listeners. t rue is returned to indicate the event has been handled.

There's more...

Although a button is typically used to indicate where a user should press, we could have
used both setOnClickListener () and setOnLongClickListener () with any View, or
even a TextView.

As mentioned in the introduction, there are other Event Listeners. You can use Android
Studio's auto-complete feature to bring up a list of available listeners by typing the
following;:

button.setOn

As you start typing, you'll see a list of available choices with Android Studio's auto-
complete list.

Recognizing tap and other common
gestures

Unlike the Event Listeners described in the previous recipe, gestures require a two-step
process:

1. Gather movement data

[237]

Using the Touchscreen and Sensors Chapter 9

2. Analyze the data to determine whether it matches a known gesture

Step 1 begins when the user touches the screen, which fires the onTouchEvent () callback
with the movement data sent in a Mot ionEvent object. Fortunately, Android makes step 2,
analyzing the data, easier with the GestureDetector class, which detects the following
gestures:

e onTouchEvent ()

e onDown ()

e onFling ()

e onLongPress ()

® onScroll ()

® onShowPress ()

e onDoubleTap ()

e onDoubleTapEvent ()

e onSingleTapConfirmed()

This recipe will demonstrate using GestureDetector.SimpleOnGestureListener to
recognize the touch and double tap gestures.

Getting ready

Create a new project in Android Studio and call it CommonGestureDetector. Use the
default Phone & Tablet options and select Empty Activity when prompted for the Activity

Type.

How to do it...

We will be using the activity itself to detect gestures, so we don't need to add any Views to
the layout. Open MainActivity. java and perform the following steps:

1. Add the following global variable:
private GestureDetectorCompat mGestureDetector;
2. Add the following GestureListener class within the MainActivity class:

private class Gesturelistener extends
GestureDetector.SimpleOnGesturelListener {

[238]

Using the Touchscreen and Sensors Chapter 9

@Override
public boolean onSingleTapConfirmed (MotionEvent e) {
Toast.makeText (MainActivity.this, "onSingleTapConfirmed",

Toast .LENGTH_SHORT) .show () ;
return super.onSingleTapConfirmed(e);
}
@Override
public boolean onDoubleTap (MotionEvent e) {
Toast.makeText (MainActivity.this, "onDoubleTap",
Toast .LENGTH_SHORT) .show () ;
return super.onDoubleTap (e);

}

3. Add the following onTouchEvent () method to the MainActivity class to
handle touch event notifications:

public boolean onTouchEvent (MotionEvent event) {
mGestureDetector.onTouchEvent (event) ;
return super.onTouchEvent (event) ;

}

4. Lastly, add the following line of code to onCreate ():

mGestureDetector = new GestureDetectorCompat (this, new
GesturelListener());

5. Run this application on a device or emulator.

How it works...

We're using GestureDetectorCompat, which is from the support library that allows
gesture support on devices running Android 1.6 and later.

As mentioned in the recipe introduction, detecting gestures is a two-step process. To gather
movement or gesture data, we start tracking movement with the touch event. Every time
the onTouchEvent () is called, we send that data to the GestureDetector. The
GestureDetector handles the second step, analyzing the data. Once a gesture has been
detected, the appropriate callback is made. Our example handles both single and double
tap gestures.

[239]

Using the Touchscreen and Sensors Chapter 9

There's more...

Your application can easily add support for the remaining gestures detected by the
GestureDetector simply by overriding the appropriate callback.

See also

e See the next recipe, Pinch-to-zoom with multi-touch gestures, for multi-touch
gestures

Pinch-to-zoom with multi-touch gestures

The previous recipe used SimpleOnGestureListener to provide detection of simple, one-
finger gestures. In this recipe, we'll use the SimpleOnScaleGestureListener class to
detect the common multi-touch gesture "pinch to zoom".

Here are two screenshots from the application we'll create in this recipe. The first shows the
icon zoomed out:

.l 100% M 11:10 PM

MultiTouchZoom

[240]

Using the Touchscreen and Sensors Chapter 9

This second screenshot shows the icon zoomed in:

.l 100% M 11:16 PM

MultiTouchZoom

Getting ready

Create a new project in Android Studio and call it MultiTouchZoom. Use the default Phone
& Tablet options and select Empty Activity when prompted for the Activity Type.

How to do it...

To provide a visual indication of pinch-to-zoom, we'll use an Imageview with the
application icon. Open activity_main.xml and follow these steps:

1. Replace the existing TextView with the following Imageview:

<android.support.v7.widget.AppCompatImageView
android:id="@+id/imageView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@mipmap/ic_launcher"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

[241]

Using the Touchscreen and Sensors Chapter 9

2. Now, open MainActivity. java and add the following global variables to the
class:

private ScaleGestureDetector mScaleGestureDetector;
private float mScaleFactor = 1.0f;
private AppCompatImageView mImageView;

3. Add the following onTouchEvent () implementation to the MainActivity
class:

public boolean onTouchEvent (MotionEvent motionEvent) {
mScaleGestureDetector.onTouchEvent (motionEvent) ;
return true;

3
4. Add the following ScaleListener class to the MainActivity class:

private class Scalelistener extends
ScaleGestureDetector.SimpleOnScaleGesturelListener {
@Override
public boolean onScale (ScaleGestureDetector
scaleGestureDetector) {
mScaleFactor *= scaleGestureDetector.getScaleFactor();
mScaleFactor = Math.max(0.1f, Math.min(mScaleFactor,
10.0f));
mImageView.setScaleX (mScaleFactor);
mImageView.setScaleY (mScaleFactor);
return true;

}
5. Add the following code to the existing onCreate () method:

mImageView=findViewById(R.id.imageView) ;
mScaleGestureDetector = new ScaleGestureDetector (this, new
ScalelListener());

6. To experiment with the pinch-to-zoom functionality, run the application on a
device with a touchscreen.

How it works...

The scaleGestureDetector does all the work by analyzing gesture data and reporting
the final scale factor through the onScale () callback. We get the actual scale factor by
calling getScaleFactor () on ScaleGestureDetector.

[242]

Using the Touchscreen and Sensors Chapter 9

We use an ImageView with the application icon to provide a visual representation of the
scaling by setting the ImageView scale, using the scale factor returned from
ScaleGestureDetector. We use the following code to prevent the scaling from becoming
too large or too small:

mScaleFactor = Math.max(0.1f, Math.min (mScaleFactor, 10.0f));

Swipe-to-Refresh

Pulling down a list to indicate a manual refresh is known as the Swipe-to-Refresh gesture.
It's such a common feature that this functionality has been encapsulated in a single widget
called swipeRefreshLayout.

This recipe will add Swipe-to-Refresh functionality with a ListView. The following
screenshot shows the refresh in action:

SwipeToRefresh

China

France

Germany

India

Russia

United Kingdom

United States

[243]

Using the Touchscreen and Sensors Chapter 9

Getting ready

Create a new project in Android Studio and call it SwipeToRefresh. Use the default Phone
& Tablet options and select Empty Activity on the Add an Activity to Mobile dialog.

How to do it...

First, we need to add the swipeRefreshLayout widget and ListView to the activity
layout, then we will implement the refresh listener in the Java code. Here are the detailed
steps:

1. Open activity_main.xml and replace the existing constraint layout with the
following;:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res—auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">
<android.support.v4.widget.SwipeRefreshLayout
android:id="Q@+id/swipeRefresh"
android:layout_width="match_parent"
android:layout_height="match_parent">
<ListView
android:id="Qandroid:id/list"
android:layout_width="match_parent"
android:layout_height="match_parent" />
</android.support.v4.widget.SwipeRefreshLayout>
</Relativelayout>

2. Now open MainActivity.java and add the following global variables to the
class:
SwipeRefreshlLayout mSwipeRefreshLayout;
ListView mListView;

List mArraylList = new ArrayList<>();
private int mRefreshCount=0;

3. Add the following method to the MainActivity class to handle the refresh:

private void refreshList () {
mRefreshCount++;

[244]

Using the Touchscreen and Sensors Chapter 9

mArrayList.add("Refresh: " + mRefreshCount);
ListAdapter countryAdapter = new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1, mArrayList);
mListView.setAdapter (countryAdapter);
mSwipeRefreshlLayout.setRefreshing(false);
}

4. Add the following code to the existing onCreate () method:

mSwipeRefreshLayout = findViewById(R.id.swipeRefresh);
mSwipeRefreshLayout.setOnRefreshlListener (new
SwipeRefreshLayout.OnRefreshListener () {
@Override
public void onRefresh () {
refreshList ();

b i

mListView = findViewById (android.R.id.list);

final String[] countries = new String[]{"China", "France",
"Germany", "India",

"Russia", "United Kingdom", "United States"};
mArrayList = new ArrayList<>(Arrays.asList (countries));
ListAdapter countryAdapter = new ArrayAdapter<String>(this,

android.R.layout.simple_list_item_1, mArrayList);
mListView.setAdapter (countryAdapter);

5. Run the application on a device or an emulator.

How it works...

Most of the code for this recipe simulates a refresh by adding items to the ListView each
time the refresh method is called. The main steps for implementing Swipe-to-Refresh
include:

1. Add the swipeRefreshLayout widget

2. Include the ListView within the SwipeRefreshLayout

3. Add the OnRefreshListener to call your refresh method
4. Call setRefreshing (false) after completing your update

That's it. The widget makes adding Swipe-to-Refresh very easy!

[245]

Using the Touchscreen and Sensors Chapter 9

There's more...

Although the Swipe-to-Refresh gesture is a common feature these days, it's still good
practice to include a menu item (especially for accessibility reasons). Following is a snippet
of XML for the menu layout:

<menu xmlns:android="http://schemas.android.com/apk/res/android" >
<item
android:id="@+id/menu_refresh"

android:showAsAction="never"
android:title="Q@string/menu_refresh"/>
</menu>

Call your refresh method in the onOptionsItemSelected () callback. When performing a
refresh from code, such as from the menu item event, you want to notify
SwipeRefreshLayout of the refresh so it can update the UL Do this with the following
code:

SwipeRefreshlLayout.setRefreshing (true);

This tells the SwipeRefreshLayout that a refresh is starting so it can display the in-
progress indicator.

Listing available sensors — an introduction
to the Android Sensor Framework

Android includes support for hardware sensors using the Android Sensor Framework. The
framework includes the following classes and interfaces:

® SensorManager
® Sensor
e SensorEventListener

® SensorkEvent

Most Android devices include hardware sensors, but they vary greatly between different
manufacturers and models. If your application utilizes sensors, you have two choices:

e Specify the sensor in the Android Manifest
e Check for the sensor at runtime

[246]

Using the Touchscreen and Sensors Chapter 9

To specify your application uses a sensor, include the <uses-feature> declaration in the
Android Manifest. Here is an example requiring a compass to be available:

<uses-feature android:name="android.hardware.sensor.compass"
android:required="true"/>

If your application utilizes the compass, but does not require it to function, you should set
android:required="false" instead; otherwise your application will not be available to

install from Google Play.

Sensors are grouped into the following three categories:

e Motion sensors: Measure acceleration and rotational forces along three axes

e Environmental sensors: Measure the local environment, such as ambient air
temperature and pressure, humidity, and illumination

¢ Position sensors: Measure the physical position of the device using position and a

magnometer

The Android SDK provides support for the following sensor types:

Sensor

Detects

Use

TYPE_ACCELEROMETER

Motion detection including
gravity

Used to determine shake, tilt,
and so on

TYPE_AMBIENT_TEMPERATURE

Measures ambient room
temperature

Used for determining local
temperature

TYPE_GRAVITY

Measures the force of
gravity on all three axes

Used for motion detection

TYPE_GYROSCOPE

Measures rotation on all
three axes

Used to determine turn, spin,
and so on

TYPE_LIGHT

Measures light level

Used for setting screen
brightness

TYPE_LINEAR_ACCELERATION

Motion detection excluding
gravity

Used to determine acceleration

TYPE_MAGNETIC_FIELD

Measures geomagnetic
field

Used to create a compass or
determine bearing

TYPE_PRESSURE

Measures air pressure

Used for barometer

TYPE_PROXIMITY

Measures objects relative to
the screen

Used to determine whether the
device is being held against

the ear during a phone call

[247]

Using the Touchscreen and Sensors

Chapter 9

Sensor Detects Use
. . 1:... |Used to determine dew point
TYPE_RELATIVE_HUMIDITY |Measures relative humidity -1 P
and humidity

TYPE_ROTATION_VECTOR

Measures device
orientation

Used to detect motion and
rotation

There are two additional sensors, TYPE_ ORIENTATION and TYPE_TEMPERATURE, which
have been deprecated as they have been replaced by newer sensors.

This recipe will demonstrate retrieving a list of available sensors. Here is a screenshot from

the Pixel 2 emulator:

11:34 O X6

ListDeviceSensors

Goldfish 3-axis Accelerometer

Goldfish 3-axis Gyroscope

Goldfish 3-axis Magnetic field sensor

Goldfish Orientation sensor

Goldfish Ambient Temperature sensor

Goldfish Proximity sensor

Goldfish Light sensor

Goldfish Pressure sensor

Goldfish Humidity sensor

Goldfish 3-axis Magnetic field sensor (uncalibrated)

Game Rotation Vector Sensor

GeoMag Rotation Vector Sensor

Gravity Sensor

Linear Acceleration Sensor

[248]

Using the Touchscreen and Sensors Chapter 9

Getting ready

Create a new project in Android Studio and call it ListDeviceSensors. Use the default
Phone & Tablet options and select Empty Activity when prompted for the Activity Type.

How to do it...

First, we'll query the list of sensors available, then display the results in a ListVview. Here
are the detailed steps:

1. Open activity_main.xml and replace the existing TextView with the
following;:

<ListView
android:id="@+id/list"
android:layout_width="match_parent"
android:layout_height="match_parent"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

2. Next, open ActivityMain. java and add the following code to the existing
onCreate () method:

ListView listView = findViewById(R.id.list);
List sensorList = new ArrayList<String>();

List<Sensor> sensors = ((SensorManager)

getSystemService (Context.SENSOR_SERVICE))
.getSensorList (Sensor.TYPE_ALL) ;

for (Sensor sensor : sensors) |

sensorList.add(sensor.getName ());

}

ListAdapter sensorAdapter = new ArrayAdapter<String> (this,
android.R.layout.simple_list_item_1, sensorList);

listView.setAdapter (sensorAdapter);

3. Run the program on a device or emulator.

[249]

Using the Touchscreen and Sensors Chapter 9

How it works...

The following line of code is responsible for getting the list of available sensors; the rest of
the code populates the ListView:

List<Sensor> sensors = ((SensorManager) getSystemService (
Context .SENSOR_SERVICE)) .getSensorList (Sensor.TYPE_ALL) ;

Notice that we get back a list of Sensor objects. We only get the sensor name to display in
the ListView, but there are other properties available as well. See the link provided in the
See also section for a complete list.

There's more...

It's important to note a device can have multiple sensors of the same type. If you are
looking for a specific sensor, you can pass in one of the constants from the table shown in
the introduction. In this case, if you wanted to see all the accelerometer sensors available,
you could use this call:

List<Sensor> sensors =
sensorManager.getSensorList (Sensor.TYPE_ACCELEROMETER) ;

If you're not looking for a list of sensors, but need to work with a specific sensor, you can
check for a default sensor using this code:

SensorManager sensorManager = ((SensorManager)

getSystemService (Context .SENSOR_SERVICE)) ;

if (sensorManager.getDefaultSensor (Sensor.TYPE_ACCELEROMETER) != null) {
//Sensor is available - do something here

See also

¢ The Android Developer Sensor website at
http://developer.android.com/reference/android/hardware/Sensor.html

[250]

http://developer.android.com/reference/android/hardware/Sensor.html

Using the Touchscreen and Sensors Chapter 9

Reading sensor data - using Android
Sensor Framework events

The previous recipe, Listing available sensors —an introduction to the Android Sensor Framework,
provided an introduction to the Android Sensor Framework. Now, we'll look at reading
sensor data using SensorEventListener. The SensorEventListener interface only has
two callbacks:

® onSensorChanged()

® onAccuracyChanged ()

When the sensor has new data to report, it calls onSensorChanged () with a SensorEvent
object. This recipe will demonstrate reading a light sensor, but since all the sensors use the
same framework, it's very easy to adapt this example to any of the other sensors. (See the
list of sensor types available in the previous recipe's introduction.)

Getting ready

Create a new project in Android Studio and call it ReadingSensorData. Use the default
Phone & Tablet options and select Empty Activity when prompted for the Activity Type.

How to do it...

We'll add a TextView to the activity layout to display sensor data, then we'll add the
SensorEventListener to the Java code. We'll use the onResume () and onPause ()
events to start and stop our Event Listener. To get started, open activity_main.xml and
follow these steps:

1. Modify the existing TextView as follows:

<TextView
android:id="Q@+id/textView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="0"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

[251]

Using the Touchscreen and Sensors Chapter 9

2. Now, open MainActivity.java and add the following global variable
declarations:
private SensorManager mSensorManager;
private Sensor mSensor;

private TextView mTextView;

3. Implement the SensorListener class in the MainActivity class as follows:

private SensorEventListener mSensorListener = new
SensorEventListener () {
@Override
public void onSensorChanged (SensorEvent event) {
mTextView.setText (String.valueOf (event.values[0]));
}
@Override

public void onAccuracyChanged (Sensor sensor, int accuracy) A
//Nothing to do

bi

4. We'll register and unregister sensor events in onResume () and onPause () as
follows:

@Override
protected void onResume () {
super.onResume () ;
mSensorManager.registerListener (mSensorListener, mSensor,
SensorManager.SENSOR_DELAY_NORMAL) ;
}

@Override
protected void onPause () {
super.onPause () ;
mSensorManager.unregisterListener (mSensorListener);

}
5. Add the following code to onCreate ():

mTextView = (TextView)findViewById (R.id.textView);
mSensorManager = (SensorManager)

getSystemService (Context.SENSOR_SERVICE) ;

mSensor = mSensorManager.getDefaultSensor (Sensor.TYPE_LIGHT);

6. You can now run the application on a physical device to see the raw data from
the light sensor.

[252]

Using the Touchscreen and Sensors Chapter 9

How it works...

Using the Android Sensor Framework starts with obtaining the sensor, which we do in
onCreate (). Here, we call getDefaultSensor (), requesting TYPE_LIGHT. We register
the listener in onResume () and unregister it again in onPause () to reduce battery
consumption. We pass in our mSensorListener object when we call

registerListener().

In our case, we are only looking for sensor data, which is sent in the onSensorChanged ()
callback. When the sensor changes, we update the TextView with the sensor data.

There's more...

Now that you've worked with one sensor, you know how to work with all sensors, as they
all use the same framework. Of course, what you do with the data will vary greatly,
depending on the type of data you're reading. Environment sensors, as shown here, return
a single value, but position and motion sensors can also return additional elements,
indicated as follows.

Environment sensors

Android supports the following four environment sensors:

Humidity
Light
e Pressure

e Temperature

Environment sensors are generally easier to work with since the data returned is in a single
element and doesn't usually require calibration or filtering. We used a light sensor
(sensor.TYPE_LIGHT) for this recipe since most devices include a light sensor to control

screen brightness.

Position sensors

Position sensors include:

¢ Geomagnetic Field
e Proximity

[253]

Using the Touchscreen and Sensors Chapter 9

The following sensor types use the Geomagnetic field:

e TYPE_GAME_ROTATION_VECTOR

e TYPE_GEOMAGNETIC_ROTATION_VECTOR
e TYPE MAGNETIC_FIELD

e TYPE MAGNETIC_FIELD_UNCALIBRATED

These sensors return three values in the onSensorChanged () event, except for
TYPE_MAGNETIC_FIELD_UNCALIBRATED, which sends six values.

A third sensor, the Orientation sensor, has been deprecated, and you are now
recommended to use getRotation () and getRotationMatrix () to calculate orientation
changes. (For device orientation, such as Portrait and Landscape modes, see the next recipe:
Reading device orientation.)

Motion sensors

Motion sensors include the following;:

e Accelerometer
e Gyroscope

Gravity

Linear acceleration

Rotation vector

These include the following sensor types:

TYPE_ACCELEROMETE

e TYPE_GRAVITY

e TYPE_GYROSCOPE

e TYPE_GYROSCOPE_UNCALIBRATED
e TYPE_LINEAR ACCELERATION

e TYPE_ROTATION_VECTOR

e TYPE_SIGNIFICANT_MOTION

e TYPE_STEP_COUNTER

e TYPE_STEP_DETECTOR

[254]

Using the Touchscreen and Sensors Chapter 9

These sensors also include three data elements, with the exception of the last three.
TYPE_SIGNIFICANT MOTION and TYPE_STEP_DETECTOR indicate an event, while
TYPE_STEP_COUNTER returns the number of steps since last boot (while the sensor was
active).

See also

The Listing available sensors - an introduction to the Android Sensor Framework recipe

The Creating a Compass using sensor data and RotateAnimation recipe in Chapter 10,
Graphics and Animation

For device orientation, see the next recipe: Reading device orientation
See the GPS and Location recipe in Chapter 14, Location and Using Geofencing

Reading device orientation

Although the Android framework will automatically load new resources (such as the
layout) upon orientation changes, there are times when you may wish to disable this
behavior. If you wish to be notified of an orientation change instead of Android handling it
automatically, add the following attribute to the Activity in the Android Manifest:

android:configChanges="keyboardHidden|orientation|screenSize"

When any of the following configuration changes occur, the system will notify you through
the onConfigurationChanged () method instead of handling it automatically:

® keyboardHidden
e orientation

® screenSize
The onConfigurationChanged () signature is as follows:
onConfigurationChanged (Configuration newConfig)

You'll find the new orientation in newConfig.orientation.

[255]

Using the Touchscreen and Sensors Chapter 9

Disabling the automatic configuration change (which causes the layout to
be reloaded and state information to be reset) should not be used as a
replacement for properly saving state information. Your application can
still be interrupted or stopped altogether at any time and killed by the
system. (See Saving an activity’s state in Chapter 1, Activities, for how to
properly save a state.)

This recipe will demonstrate how to determine the current device orientation.

Getting ready

Create a new project in Android Studio and call it GetDeviceOrientation. Use the
default Phone & Tablet options and select Empty Activity when prompted for the Activity

Type.

How to do it...

We'll add a button to the layout to check the orientation on demand. Start by opening
activity _main.xml and follow these steps:

1. Replace the existing TextView with the following Button:

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Check Orientation"
android:id="@+id/button"
android:onClick="checkOrientation"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

2. Add the following method to handle the button click:

public void checkOrientation (View view) {
int orientation = getResources()
.getConfiguration() .orientation;
switch (orientation) {
case Configuration.ORIENTATION_LANDSCAPE:
Toast .makeText (MainActivity.this,
"ORIENTATION_LANDSCAPE",
Toast .LENGTH_SHORT) .show () ;

[256]

Using the Touchscreen and Sensors Chapter 9

break;
case Configuration.ORIENTATION_PORTRAIT:
Toast .makeText (MainActivity.this,
"ORIENTATION_PORTRAIT",
Toast .LENGTH_SHORT) .show () ;
break;
case Configuration.ORIENTATION_UNDEFINED:
Toast .makeText (MainActivity.this,
"ORIENTATION_UNDEFINED",
Toast .LENGTH_SHORT) .show () ;
break;

}

3. Run the application on a device or emulator.

Use Ctrl + F11 to rotate the emulator.

How it works...

All we need to do to get the current orientation is call this line of code:

getResources () .getConfiguration () .orientation

The orientation is returned as an int, which we compare to one of three possible values, as
demonstrated.

There's more...

Another scenario where you may need to know the current orientation is when working
with camera data, pictures, and/or videos. In this case, you need to get the device
orientation as and when required.

Getting current device rotation

Often, the image may be rotated according to the device orientation or to compensate for
the current orientation. In this scenario, there's another option available to get the rotation:

int rotation = getWindowManager ().getDefaultDisplay () .getRotation();

[257]

Using the Touchscreen and Sensors Chapter 9

In the preceding line of code, rotation will be one of the following values:

e Surface.ROTATION_O

e Surface.ROTATION_90
e Surface.ROTATION_180
e Surface.ROTATION_270

The rotation value will be from its normal orientation. For example, when
using a table with a normal orientation of landscape, if a picture is taken
in portrait orientation the value will be ROTATION_90 or ROTATION_270.

See also

e The Saving an activity’s state recipe in Chapter 1, Activities

¢ Refer to the following developer link for more information on the Configuration
class:
http://developer.android.com/reference/android/content/res/Configurati
on.html

e Refer to the following link for more information on the getRotation ()

method: http://developer.android.com/reference/android/view/Display.ht
ml#getRotation ()

[258]

http://developer.android.com/reference/android/content/res/Configuration.html
http://developer.android.com/reference/android/content/res/Configuration.html
http://developer.android.com/reference/android/view/Display.html#getRotation()
http://developer.android.com/reference/android/view/Display.html#getRotation()

10

Graphics and Animation

In this chapter, we will cover the following topics:

e Scaling down large images to avoid Out of Memory exceptions

A transition animation: Defining scenes and applying a transition

Creating a Compass using sensor data and RotateAnimation

Creating a slideshow with ViewPager

Creating a Card Flip Animation with Fragments

Creating a Zoom Animation with a Custom Transition

Displaying an animated image (GIF/WebP) with the new ImageDecoder library
Creating a circle image with the new ImageDecoder

Introduction

Animations can be both visually appealing and functional, as demonstrated with the simple
button press. The graphical representation of the button press brings the app alive, plus it
provides a functional value by giving the user a visual response to the event.

The Android Framework provides several animation systems to make it easier to include
animations in your own application. They include the following;:

¢ View Animation (the original animation system): It usually requires less code
but has limited animation options

e Property Animation: It's a more flexible system, allowing the animation of any
property of any object

e Drawable Animation: It uses drawable resources to create frame-by-frame
animations (like a movie)

Graphics and Animation Chapter 10

The Property Animation system was introduced in Android 3.0, and it is usually preferred
over the View Animation because of the flexibility. The main drawbacks to the View
Animation include the following;:

e Limited aspects of what can be animated, such as scale and rotation

¢ Can only animate the contents of the view; it cannot change where on the screen
the view is drawn (so it cannot animate moving a ball across the screen)

e Can only animate View objects

Here is a simple example demonstrating a View Animation to "blink" a view (a simple
simulation of a button press):

Animation blink =AnimationUtils.loadAnimation (this,R.anim.blink);
view.startAnimation (blink) ;

Here are the contents for the blink.xml resource file, located in the res/anim folder:

<?xml version="1.0" encoding="utf-8"7?>
<set xmlns:android="http://schemas.android.com/apk/res/android">
<alpha android:fromAlpha="1.0"

android:toAlpha="0.0"
android:background="#000000"
android:interpolator="@android:anim/linear_interpolator"
android:duration="100"
android:repeatMode="restart"
android:repeatCount="0"/>

</set>

As you can see, it's very simple to create this animation, so if the View Animation
accomplishes your goal, use it. When it doesn't meet your needs, turn to the Property
Animation system. We'll demonstrate Property Animation using the new objectAnimator
in the Creating a Card Flip Animation with Fragments and Creating a Zoom Animation with a
Custom Transition recipes.

The A transition animation — defining scenes and applying a transition recipe will provide
additional information on the Android Transition Framework, which we will use in many
of the recipes.

The Interpolator is a function that defines the rate of change for an
animation.

[260]

Graphics and Animation Chapter 10

Interpolators will be mentioned in several recipes in this chapter, as well as in the
previous blink example. The Interpolator defines how the transition is calculated. A Linear
Interpolator will calculate the change evenly over a set duration, whereas an
AccelerateInterpolator function would create faster movement for the duration. Here
is the full list of Interpolators available, along with the XML identifier:

¢ AccelerateDecelerateInterpolator
(@android:anim/accelerate_decelerate_interpolator)

¢ AccelerateInterpolator ((android:anim/accelerate_interpolator)
¢ Anticipatelnterpolator (@android:anim/anticipate_interpolator)

¢ AnticipateOvershootInterpolator
(@android: anim/anticipate_overshoot_interpolator)

¢ Bouncelnterpolator (@android:anim/bounce_interpolator)

¢ Cyclelnterpolator (2android:anim/cycle_interpolator)

¢ Deceleratelnterpolator (@android:anim/decelerate_interpolator)
¢ LinearInterpolator (@android:anim/linear_interpolator)

OvershootlInterpolator (@android:anim/overshoot_interpolator)

Although animations don't generally require much memory, the graphic resources often
do. Many of the images you may want to work with often exceed the available device
memory. In the first recipe of this chapter, Scaling down large images to avoid Out of Memory
exceptions, we'll discuss how to subsample (or scale down) images.

Scaling down large images to avoid Out of
Memory exceptions

Working with images can be very memory intensive, often resulting in your application
crashing with an Out of Memory exception. This is especially true with pictures taken with
the device camera, as they often have a much higher resolution than the device itself.

Loading a higher resolution image than the UI supports doesn't provide any visual benefit
to the user. In this example, we'll demonstrate how to take smaller samples of the image for
display. We'll use BitmapFactory to first check the image size, then load a scaled-down
image.

[261]

Graphics and Animation Chapter 10

Here's a screenshot from this recipe showing a thumbnail of a very large image:

142 & @ \ V'

LoadLargelmage

Getting ready

Create a new project in Android Studio and call it LoadLargeImage. Use the default Phone
& Tablet options and select Empty Activity when prompted for the Activity Type.

[262]

Graphics and Animation Chapter 10

We'll need a large image for this recipe. We turned to Unsplash.com to download a free
image, (https://unsplash.com), although any large (multi-megabyte) image will do.

How to do it...

As mentioned in Getting ready, we need a large image to demonstrate the scaling. Once you
have the image, follow these steps:

1. Copy the image to your res/drawable folder.

2. Open activity_main.xml and replace the existing TextVview with the
following ImageView:

<android.support.v7.widget.AppCompatImageView

android:id="@+id/imageViewThumbnail"
android:layout_width="100dp"
android:layout_height="100dp"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

3. Now, open MainActivity. java and add this method, which we'll explain

shortly:

public Bitmap loadSampledResource (int imageID, int targetHeight,
int targetwWidth) {

final BitmapFactory.Options options = new

BitmapFactory.Options () ;

options.inJustDecodeBounds = true;
BitmapFactory.decodeResource (getResources (), imageID, options);
final int originalHeight = options.outHeight;
final int originalWidth = options.outWidth;
int inSampleSize = 1;
while ((originalHeight / (inSampleSize *2)) > targetHeight
&& (originalWidth / (inSampleSize *2)) > targetWidth) {
inSampleSize *= 2;
}
options.inSampleSize = inSampleSize;
options.inJustDecodeBounds = false;
return BitmapFactory.decodeResource (getResources (), imagelD,

options);

}

[263]

https://unsplash.com
https://unsplash.com
https://unsplash.com
https://unsplash.com
https://unsplash.com
https://unsplash.com
https://unsplash.com

Graphics and Animation Chapter 10

4. Add the following code to the existing onCreate () method:

AppCompatImageView imageView =
findViewById (R.id.imageViewThumbnail) ;

imageView.setImageBitmap (

loadSampledResource (R.drawable.miguel_henriques_789508_unsplash,
100, 100));

5. Run the application on a device or emulator.

How it works...

The purpose of the 1oadSampledResource () method is to load a smaller image, to reduce
the memory consumption of the image. If we attempted to load the original full-size

image (see the previous Getting ready section), the app would require over 3 MB of RAM to
load. That's more memory than most devices can handle (at the moment anyway), and even
if it could be loaded completely, it would provide no visual benefit to our thumbnail view.

To avoid an Out of Memory situation, we use the inSampleSize property

of BitmapFactory.Options to reduce, or subsample, the image. (If we set the
inSampleSize=2, it will reduce the image by half. If we use inSamplesize=4, it will
reduce the image by one quarter) To calculate inSampleSize, first, we need to know the
image size. We can use the inJustDecodeBounds property as follows:

options.inJustDecodeBounds = true;

This tells BitmapFactory to get the image dimensions without actually storing the image
contents. Once we have the image size, we calculate the sample using this code:

while ((originalHeight / (inSampleSize *2)) > targetHeight
&& (originalWidth / (inSampleSize *2)) > targetWidth) {
inSampleSize *= 2;

}

The purpose of this code is to determine the largest sample size that does not reduce the
image below the target dimensions. To do that, we double the sample size and check
whether the size exceeds the target size dimensions. If it doesn't, we save the doubled
sample size and repeat. Once the reduced size falls below the target dimensions, we use the
last saved inSampleSize.

[264]

Graphics and Animation Chapter 10

From the inSamplesize documentation (link in the following See also
section), note that the decoder uses a final value based on powers of 2, so
any other value will be rounded down to the nearest power of 2.

Once we have the sample size, we set the inSampleSize property and set
inJustDecodeBounds to false, to load normally. Here is the code:

options.inSampleSize = inSampleSize;
options.inJustDecodeBounds = false;

It's important to note that this recipe illustrates the concept of applying the task to your
own application. Loading and processing images can be a long operation, which can cause
your application to stop responding. This is not a good thing and could cause Android to
show the Application Not Responding (ANR) dialog. It is recommended to perform long
tasks on a background thread to keep your UI thread responsive. The AsyncTask class is
available for doing background network processing, but there are many other libraries
available as well (links at the end of the recipe).

There's more...

It's important to note that the targetHeight and targetWidth parameters we pass to the
loadSampledResource () method do not actually set the image size. If you run the
application using the same size image we used (4,000 x 6,000), the sample size will be 32,
resulting in a loaded image size of 187 x 125.

If your layout needs a specific size of image, either set the size in the layout file, or you can
modify the image size directly using the Bitmap class.

See also

Developer Docs: BitmapFactory.inSampleSize() at
https://developer.android.com/reference/android/graphics/BitmapFactory
.Options.html#inSampleSize

Refer to Glide at https://github.com/bumptech/glide

Refer to Picasso from Square at https://square.github.io/picasso/

Refer to Fresco from Facebook at https://github.com/facebook/fresco

Check the AsyncTask task in chapter 15, Getting Your App Ready for the Play Store,
for processing long-running operations on a background thread.

[265]

https://developer.android.com/reference/android/graphics/BitmapFactory.Options.html#inSampleSize
https://developer.android.com/reference/android/graphics/BitmapFactory.Options.html#inSampleSize
https://github.com/bumptech/glide
https://github.com/bumptech/glide
https://github.com/bumptech/glide
https://github.com/bumptech/glide
https://github.com/bumptech/glide
https://github.com/bumptech/glide
https://github.com/bumptech/glide
https://github.com/bumptech/glide
https://github.com/bumptech/glide
https://github.com/bumptech/glide
https://github.com/bumptech/glide
https://square.github.io/picasso/
https://github.com/facebook/fresco
https://github.com/facebook/fresco
https://github.com/facebook/fresco
https://github.com/facebook/fresco
https://github.com/facebook/fresco
https://github.com/facebook/fresco
https://github.com/facebook/fresco
https://github.com/facebook/fresco
https://github.com/facebook/fresco
https://github.com/facebook/fresco
https://github.com/facebook/fresco

Graphics and Animation Chapter 10

A transition animation - defining scenes and
applying a transition

The Android Transition Framework offers the following:

¢ Group-level animations: Animation applies to all views in a hierarchy

¢ Transition-based animation: Animation based on starting and ending property
change

e Built-in animations: Some common transition effects, such as fade-in/out
and movement

¢ Resource file support: Save animation values to a resource (XML) file to load
during runtime

e Lifecycle callbacks: Receive callback notifications during the animation

A transition animation consists of the following:

Starting Scene: The view (or ViewGroup) at the start of the animation

Transition: The change type (see later on)

Ending Scene: The ending view (or ViewGroup)

Transitions: Android provides built-in support for the following three
transitions:
e AutoTransition (default transition): Fade out, move, resize, then
fade in (in that order)
¢ Fade: Fade in, fade out (default), or both (specify order)

¢ ChangeBounds: Move and resize

The Transition Framework will automatically create the frames needed to animate from the
start to end scenes.

The following are some known limitations of the Transition Framework when working
with the following classes:

¢ SurfaceView: Animations may not appear correct since the Surfaceview
animations are performed on a non-UI thread, so they may be out of sync with
the application

o TextView: Animating text-size changes may not work correctly resulting in the
text jumping to the final state

[266]

Graphics and Animation Chapter 10

e AdapterView: Classes that extend AdapterView, such as ListView and
GridView, may hang
¢ TextureView: Some transitions may not work

This recipe provides a quick tutorial on using the transition animation system. We'll start
by defining the scenes and transition resources, then applying the transition, which creates
the animation. The following steps will walk you through creating the resources in XML, as
they are generally recommended. Resources can also be created through code, which we'll
discuss in the There’s more section.

Getting ready

Create a new project in Android Studio and call it TransitionAnimation. In the Target
Android Devices dialog, select the Phone & Tablet option and choose API 19 (or above)
for the Minimum SDK. Select Empty Activity when prompted for the Activity Type.

How to do it...

Here are the steps to create the resource files and apply the transition animation:
1. Replace the existing activity.main.xml layout with the following XML:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/layout"
android:layout_width="match_parent"
android:layout_height="match_parent">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Top"
android:id="Q@+id/textViewTop"
android:layout_alignParentTop="true"
android:layout_centerHorizontal="true" />
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Bottom"
android:id="@+id/textViewBottom"
android:layout_alignParentBottom="true"
android:layout_centerHorizontal="true" />

[267]

Graphics and Animation

Chapter 10

<Button

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Go"

android:id="Q@+id/button"

android:layout_centerInParent="true"

android:onClick="goAnimate"/>
</Relativelayout>

2. Create a new layout file called activity_main_end.xml using the following

XML:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"

android:id="@+id/layout"
android:layout_width="match_parent"
android:layout_height="match_parent">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Bottom"
android:id="@+id/textViewBottom"
android:layout_alignParentTop="true"
android:layout_centerHorizontal="true"
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Top"
android:id="Q@+id/textViewTop"
android:layout_alignParentBottom="true"
android:layout_centerHorizontal="true"
<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Go"
android:id="@+id/button"
android:layout_centerInParent="true"/>
</RelativeLayout>

/>

/>

3. Make a new transition resource directory (File | New | Android resource

directory and choose Transition as the Resource type).

[268]

Graphics and Animation Chapter 10

4. Create anew file in the res/transition folder called transition_move.xml
using the following XML:

<?xml version="1.0" encoding="utf-8"?>

<changeBounds xmlns:android=
"http://schemas.android.com/apk/res/android" />

5. Add the goAnimate () method using the following code:

public void goAnimate (View view) {
ViewGroup root = findViewById(R.id.layout);

Scene scene = Scene.getSceneForLayout (root,
R.layout.activity_main_end, this);
Transition transition = TransitionInflater.from(this)

.inflateTransition (R.transition.transition_move) ;
TransitionManager.go (scene, transition);

}

6. You're ready to run the application on a device or emulator.

How it works...

You probably find the code itself rather simple. As outlined in the recipe introduction, we
just need to create the starting and ending scenes and set the transition type. Here's a
detailed breakdown of the code:

¢ Creating the start Scene: The following line of code will load the Start Scene:
ViewGroup root = findViewById(R.id.layout);
¢ Creating the transition: The following line of code will create the transition:

Transition transition = TransitionInflater.from(this)
.inflateTransition (R.transition.transition_move) ;

¢ Defining the ending scene: The following line of code will define the ending
scene:

Scene scene = Scene.getSceneForLayout (root,
R.layout.activity_main_end, this);

e Starting the transition: The following line of code will start the transition:

TransitionManager.go (scene, transition);

[269]

Graphics and Animation Chapter 10

Although simple, most of the work for this recipe was in creating the necessary resource
files.

There's more...

Now, we'll take a look at creating this same transition animation with a code-only solution
(although we'll still use the initial activity_main.xml layout file):

ViewGroup root = findViewById(R.id.layout);
Scene scene = new Scene (root);

Transition transition = new ChangeBounds();
TransitionManager.beginDelayedTransition (root,transition);

TextView textViewTop = findViewById(R.id.textViewTop);
Relativelayout.LayoutParams params =
(RelativeLayout.LayoutParams) textViewTop.getLayoutParams () ;
params.addRule (RelativelLayout .ALIGN_PARENT_BOTTOM, 1) ;
params.addRule (RelativeLayout .ALIGN_PARENT_TOP, O0);
textViewTop.setLayoutParams (params) ;

TextView textViewBottom = findViewById(R.id.textViewBottom) ;

params = (Relativelayout.LayoutParams) textViewBottom.getLayoutParams();
params.addRule (RelativelLayout .ALIGN_PARENT_BOTTOM, 0) ;

params.addRule (RelativeLayout .ALIGN_PARENT_TOP, 1);

textViewBottom. setLayoutParams (params) ;

TransitionManager.go (scene) ;

We still need the starting and ending scene along with the transition; the only difference is
how we create the resources. In the previous code, we created the Start Scene using the
current layout.

Before we start modifying the layout through code, we call the
beginDelayedTransition () method of TransitionManager with the transition type
TransitionManager will track the changes for the ending scene. When we call the go ()
method, TransitionManager automatically animates the change.

See also

¢ Refer to the Animation resources web page at
https://developer.android.com/guide/topics/resources/animation-resourc
e.html

[270]

https://developer.android.com/guide/topics/resources/animation-resource.html
https://developer.android.com/guide/topics/resources/animation-resource.html

Graphics and Animation Chapter 10

Creating a Compass using sensor data and
RotateAnimation

In the previous chapter, we demonstrated reading sensor data from the physical device
sensors. In that recipe, we used the Light Sensor since the data from Environment Sensors
generally doesn't require any extra processing. Although it's easy to get the magnetic field
strength data, the numbers themselves don't have much meaning and certainly don't
create an appealing display.

In this recipe, we'll demonstrate getting the magnetic field data along with the
accelerometer data to calculate magnetic north. We'll

use SensorManager.getRotationMatrix to animate the compass while responding to
the device movement. Here's a screenshot of our compass application on a physical device:

N 7.4 100%HE 11:.01 PM

Compass

[271]

Graphics and Animation Chapter 10

Getting ready

Create a new project in Android Studio and call it Compass. Use the default Phone &
Tablet options and select Empty Activity when prompted for the Activity Type.

We will need an image for the compass indicator. There's an image on www.Pixabay.Com
that will work for us at this link:

https://pixabay.com/en/geography-map—compass-rose-plot-42608/

Although not required, this image has a transparent background, which looks better when
rotating the image.

How to do it...

As mentioned in the previous Getting ready section, we'll need an image for the compass.
You can download the one previously linked, or use any image you prefer, then follow
these steps:

1. Copy your image to the res/drawable folder and name it compass.png.

2. Open activity_main.xml and replace the existing TextView with the
following ImageView:

<android.support.v7.widget.AppCompatImageView
android:id="Q@+id/imageViewCompass"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerInParent="true"
android:src="Q@drawable/compass"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_tolLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

[272]

https://pixabay.com/en/geography-map-compass-rose-plot-42608/

Graphics and Animation Chapter 10

3. Now, open MainActivity.java and add the following global variable
declarations:

private SensorManager mSensorManager;

private Sensor mMagnetometer;

private Sensor mAccelerometer;

private AppCompatImageView mImageViewCompass;
private float[] mGravityValues=new float[3];
private float[] mAccelerationValues=new float[3];
private float[] mRotationMatrix=new float[9];
private float mLastDirectionInDegrees = 0f;

4. Add the following sensorEventListener class to the MainActivity class:

private SensorEventListener mSensorListener = new
SensorEventListener () {
@Override

public void onSensorChanged (SensorEvent event) {
calculateCompassDirection (event) ;

@Override
public void onAccuracyChanged (Sensor sensor, int
accuracy) {
//Nothing to do

bi
5. Override onResume () and onPause () as follows:

@Override
protected void onResume () {
super.onResume () ;
mSensorManager.registerListener (mSensorlListener, mMagnetometer,
SensorManager.SENSOR_DELAY_FASTEST) ;
mSensorManager.registerListener (mSensorListener,
mAccelerometer,
SensorManager.SENSOR_DELAY_FASTEST) ;

@Override
protected void onPause () {
super.onPause () ;
mSensorManager.unregisterListener (mSensorListener) ;

[273]

Graphics and Animation Chapter 10

6. Add the following code to the existing onCreate () method:

mImageViewCompass = findViewById(R.id.imageViewCompass) ;
mSensorManager = (SensorManager)
getSystemService (Context .SENSOR_SERVICE) ;

mMagnetometer =

mSensorManager.getDefaultSensor (Sensor.TYPE_MAGNETIC_FIELD) ;
mAccelerometer =

mSensorManager.getDefaultSensor (Sensor.TYPE_ACCELEROMETER) ;

7. The final code does the actual calculations and animation:

private void calculateCompassDirection (SensorEvent event) {

switch (event.sensor.getType()) {
case Sensor.TYPE_ACCELEROMETER:
mAccelerationValues = event.values.clone();
break;
case Sensor.TYPE_MAGNETIC_FIELD:
mGravityValues = event.values.clone();
break;

3
boolean success =
SensorManager.getRotationMatrix (mRotationMatrix, null,
mAccelerationValues, mGravityValues);
if (success) {
float[] orientationValues = new float[3];
SensorManager.getOrientation (mRotationMatrix,
orientationValues);
float azimuth = (float) Math.toDegrees (-
orientationValues[0]);
RotateAnimation rotateAnimation = new
RotateAnimation (mLastDirectionInDegrees, azimuth,
Animation.RELATIVE_TO_SELF, 0.5f,
Animation.RELATIVE_TO_SELF, 0.5f);
rotateAnimation.setDuration (50) ;
rotateAnimation.setFillAfter (true);
mImageViewCompass.startAnimation (rotateAnimation) ;
mLastDirectionInDegrees = azimuth;

}

8. You're ready to run the application. Although you can run this application on an
emulator, without an accelerometer and magnetometer, you won't see the
compass move.

[274]

Graphics and Animation Chapter 10

How it works...

Since we've already covered reading sensor data in the Reading sensor data — using the
Android Sensor Framework section (in the previous chapter), we won't repeat explaining the
sensor framework, and, instead, jump right to the calculateCompassDirection ()
method.

We call this method directly from the onSensorChanged () callback. Since we used the
same class to handle the sensor callbacks for both the Magnetometer and Accelerometer, we
first check which sensor is being reported in SensorEvent. Then, we call
SensorManager.getRotationMatrix (), passing in the last sensor data. If the calculation
is successful, it returns RotationMatrix, which we use to call the
SensorManager.getOrientation () method. Note that getOrientation () will return
the following data in the orientationValues array:

e Azimuth: value [0]
e Pitch: value [1]
e Roll: value [2]

The azimuth is reported in radians, in the opposite direction, so we reverse the sign and
convert it to degrees using Math.toDegrees (). The azimuth represents the direction of
North, so we use it in our RotateAnimation.

With the math already done by sensorManager, the actual compass animation is very
simple. We create RotateAnimation using the previous direction and the new direction.
We use the Animation.RELATIVE_TO_SELF flag and 0.5f (or 50%) to set the center of the
image as the rotation point. Before calling startAnimation () to update the compass, we
set the animation duration using setDuration () and setFillAfter (true). (Using true
indicates we want the image to be left "as is" after the animation completes; otherwise, the
image would reset back to the original image.) Finally, we save the azimuth for the next
sensor update.

There's more...

It's worth taking some time to experiment with the RotationAnimation settings and the
sensor update timing. In our call to register the sensor listener, we use
SensorManager.SENSOR_DELAY_FASTEST along with 50 milliseconds for

setDuration () to create a fast animation. You could also try using a slower sensor update
and a slower animation, and compare the results.

[275]

Graphics and Animation Chapter 10

See also

* Reading sensor data - using the Android Sensor Framework in the previous chapter
for details on reading sensor data
o Refer to the getRotationMatrix() Developer Document at

http://developer.android.com/reference/android/hardware/SensorManager.
html#getRotationMatrix (float[], float[], float[], floatl[])

e Refer to the getOrientation() Developer Document at
http://developer.android.com/reference/android/hardware/SensorManager.
html#getOrientation (float[], floatl])

¢ Refer to the RotateAnimation Developer Document at
http://developer.android.com/reference/android/view/animation/RotateAn
imation.html

Creating a slideshow with ViewPager

This recipe will show you how to create a slideshow using the ViewPager class. Here is a
screenshot showing a transition from one picture to another:

[276]

http://developer.android.com/reference/android/hardware/SensorManager.html#getRotationMatrix(float%5B%5D,%20float%5B%5D,%20float%5B%5D,%20float%5B%5D)
http://developer.android.com/reference/android/hardware/SensorManager.html#getRotationMatrix(float%5B%5D,%20float%5B%5D,%20float%5B%5D,%20float%5B%5D)
http://developer.android.com/reference/android/hardware/SensorManager.html#getOrientation(float%5B%5D,%20float%5B%5D)
http://developer.android.com/reference/android/hardware/SensorManager.html#getOrientation(float%5B%5D,%20float%5B%5D)
http://developer.android.com/reference/android/view/animation/RotateAnimation.html
http://developer.android.com/reference/android/view/animation/RotateAnimation.html

Graphics and Animation Chapter 10

Getting ready

Create a new project in Android Studio and call it S1ideShow. Use the default Phone &
Tablet options and select Empty Activity when prompted for the Activity Type.

We need four images for the slideshow.

How to do it...

We'll create a Fragment to display each image for our slideshow, then set up ViewPager in
the Main Activity. Here are the steps:

1. Copy four images to the /res/drawable folder and name them slide_0
through slide_3, keeping the original file extensions.

2. Create a new layout file called fragment_slide.xml using the following XML:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent">
<android.support.v7.widget.AppCompatImageView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="Q@+id/imageView"
android:layout_gravity="center_horizontal" />
</LinearLayout>

3. Now, create a new Java class called S1ideFragment . java. It will extend
Fragment as follows:

public class SlideFragment extends Fragment {
e Import from the support library, resulting in the following import:
import android.support.v4.app.Fragment;
4. Add the following global declaration:
private int mImageResourcelD;
5. Add the following empty, default fragment constructor:

public SlideFragment () {}

[277]

Graphics and Animation Chapter 10

6. Add the following method to save the image resource ID:

public void setImage (int resourcelID) {
mImageResourcelID=resourcelD;

}
7. Override onCreatevView () as follows:

@Override
public View onCreateView (LayoutInflater inflater, ViewGroup
container, Bundle savedInstanceState) {
ViewGroup rootView = (ViewGroup)
inflater.inflate (R.layout.fragment_slide, container, false);
AppCompatImageView imageView =
rootView.findViewById (R.id.imageView) ;
imageView.setImageResource (mImageResourcelD) ;
return rootView;

}

8. Our main activity will display just a ViewPager. Open activity_main.xml
and replace the file contents with the following:

<android.support.véd.view.ViewPager
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="Q@+id/viewPager"
android:layout_width="match_parent"
android:layout_height="match_parent" />

9. Now, open MainActivity. java and add the following global declarations:
private final int PAGE_COUNT=4;
private ViewPager mViewPager;

private PagerAdapter mPagerAdapter;

e Use the following imports:

import android.support.véd.view.PagerAdapter;
import android.support.véd.view.ViewPager;

10. Create the following subclass within the MainActivity class:

private class SlideAdapter extends FragmentStatePagerAdapter {
public SlideAdapter (FragmentManager fm) {

super (fm) ;
}
@Override
public Fragment getItem(int position) {
SlideFragment slideFragment = new SlideFragment () ;

[278]

Graphics and Animation

Chapter 10

switch (position) {
case 0O:
slideFragment.
break;
case 1:
slideFragment.
break;
case 2:
slideFragment.
break;
case 3:
slideFragment.
break;
}
return slideFragment;
}
@Override
public int getCount () {
return PAGE_COUNT;

¢ Use the following imports:

setImage (R.drawable.

setImage (R.drawable.

setImage (R.drawable.

setImage (R.drawable.

import android.support.vé4.app.Fragment;
import android.support.vé4.app.FragmentManager;
import android.support.vé.app.FragmentStatePagerAdapter;

slide_0);

slide_1);

slide_2);

slide_3);

11. Override onBackPressed () in the MainActivity class as follows:

@Override
public void onBackPressed() {
if (mViewPager.getCurrentItem()

super.onBackPressed() ;
} else {

mViewPager.setCurrentItem (mViewPager.getCurrentItem() -

}

== 0) {

12. Add the following code to the onCreate () method:

mViewPager =
mPagerAdapter =

findvViewById(R.id.viewPager) ;
new SlideAdapter (getSupportFragmentManager());

mViewPager.setAdapter (mPagerAdapter) ;

13. Run the application on a device or emulator.

[279

]

Graphics and Animation Chapter 10

How it works...

The first step is to create a fragment. Since we're doing a slideshow, all we need
is ImageViewer. We also change MainActivity to extend FragmentActivity to load the
fragments into ViewPager.

ViewPager uses FragmentStatePagerAdapter as the source for the fragments to
transition. We create S1ideAdapter to handle the two callbacks from the
FragmentStatePagerAdapter class:

e getCount ()
e getItem()

Furthermore, getCount () simply returns the number of pages we have in our slideshow,
and getItem () returns the actual fragment to display. This is where we specify the image
we want to display. As you can see, it would be very easy to add to or change the
slideshow.

Handling the Backspace key isn't a requirement for ViewPager, but it does provide a better
user experience. However, onBackPressed () decrements the current page until it reaches
the first page, then it sends the Back key to the superclass, which exits the application.

There's more...

As you can see from the example, ViewPager takes care of most of the work, including
handling the transition animations. We can customize the transition if we want, by
implementing the transformPage () callback on the ViewPager.PageTransformer
interface. (See the next recipe for a custom animation.)

Creating a Setup Wizard

The ViewPager can also be used to create a Setup Wizard. Instead of creating a single
fragment to display an image, create a fragment for each step of your wizard and return the
appropriate fragment in the get Item () callback.

[280]

Graphics and Animation Chapter 10

See also

e Refer to the Android ViewPager Documentation at
http://developer.android.com/reference/android/support/vd/view/ViewPag
er.html

e Refer to the Creating a custom Zoom Animation recipe for an example of creating a
custom animation

Creating a Card Flip Animation with
Fragments

The card flip is a common animation that we will demonstrate using fragment transitions.
We'll use two different images, one for the front and one for the back, to create the card flip
effect. We'll need four animation resources, two for the front and two for the back
transitions, which we will define in XML using objectAnimator.

Here's a screenshot of the application we'll build showing the Card Flip Animation in
action:

CardFlip

[281]

http://developer.android.com/reference/android/support/v4/view/ViewPager.html
http://developer.android.com/reference/android/support/v4/view/ViewPager.html

Graphics and Animation Chapter 10

Getting ready

Create a new project in Android Studio and call it CardF1ip. Use the default Phone &
Tablet options and select Empty Activity when prompted for the Activity Type.

For the front and back images of the playing card, we found the following images on

www.pixabay.com:

® https://pixabay.com/en/ace-hearts-playing-cards-poker-28357/
® https://pixabay.com/en/card-game-deck-of-cards-card-game-48978/

How to do it...

We'll need two fragments: one for the front of the card and the other for the back. Each
fragment will define the image for the card. Then, we'll need four animation files for the full
card flip effect. Here are the steps to set up the project structure correctly and to create the
resources needed:

1. Once you have front and back images for the cards, copy them to the
res/drawable folder as card_front.jpg and card_back. jpg (keep the
original file extension of your images if different).

2. Create an animator resource directory: res/animator. (In Android Studio, go to
File | New | Android resource directory. When the New Android Resource
dialog displays, choose animator in the Resource Type drop-down list.)

3. Create card_flip_left_enter.xml in res/animator using the following
XML:

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android">
<objectAnimator
android:valueFrom="1.0"
android:valueTo="0.0"
android:propertyName="alpha"
android:duration="0" />
<objectAnimator
android:valueFrom="-180"
android:valueTo="0"
android:propertyName="rotation¥Y"
android:interpolator="Q@android:interpolator/accelerate_decelerate"
android:duration="@integer/card_flip_duration_full"/>
<objectAnimator
android:valueFrom="0.0"
android:valueTo="1.0"

[282]

http://www.pixabay.com
https://pixabay.com/en/ace-hearts-playing-cards-poker-28357/
https://pixabay.com/en/card-game-deck-of-cards-card-game-48978/

Graphics and Animation Chapter 10

android:propertyName="alpha"
android:startOffset="Q@integer/card_flip_duration_half"
android:duration="1" />

</set>

4. Create card_flip_left_exit.xml in res/animator using the following
XML:

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android">
<objectAnimator
android:valueFrom="0"
android:valueTo="180"
android:propertyName="rotationY"
android:interpolator="@android:interpolator/accelerate_decelerate"
android:duration="@integer/card_flip_duration_full"/>
<objectAnimator
android:valueFrom="1.0"
android:valueTo="0.0"
android:propertyName="alpha"
android:startOffset="@integer/card_flip_duration_half"
android:duration="1" />
</set>

5. Create card_flip_right_enter.xml in res/animator using the following
XML:

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android">
<objectAnimator
android:valueFrom="1.0"
android:valueTo="0.0"
android:propertyName="alpha"
android:duration="0" />
<objectAnimator
android:valueFrom="180"
android:valueTo="0"
android:propertyName="rotationY"
android:interpolator="Qandroid:interpolator/accelerate_decelerate"
android:duration="@integer/card_flip_duration_full" />
<objectAnimator
android:valueFrom="0.0"
android:valueTo="1.0"
android:propertyName="alpha"
android:startOffset="Q@integer/card_flip_duration_half"
android:duration="1" />
</set>

[283]

Graphics and Animation Chapter 10

6. Create card_flip_right_exit.xml inres/animator using the following
XML:

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android">
<objectAnimator
android:valueFrom="0"
android:valueTo="-180"
android:propertyName="rotation¥Y"
android:interpolator="Q@android:interpolator/accelerate_decelerate"
android:duration="@integer/card_flip_duration_full" />
<objectAnimator
android:valueFrom="1.0"
android:valueTo="0.0"
android:propertyName="alpha"
android:startOffset="Q@integer/card_flip_duration_half"
android:duration="1" />
</set>

7. Create a new resource file in res/values called timing.xml using the
following XML:

<?xml version="1.0" encoding="utf-8"7?>
<resources>
<integer name="card_flip_duration_full">1000</integer>
<integer name="card_flip_duration_half">500</integer>
</resources>

8. Create a new file in res/layout called fragment_card_front.xml using the
following XML:

<?xml version="1.0" encoding="utf-8"?>

<android.support.v7.widget.AppCompatImageView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:src="@drawable/card_front"
android:scaleType="centerCrop" />

[284]

Graphics and Animation Chapter 10

9. Create a new file in res/layout called fragment_card_back.xml using the
following XML:

<?xml version="1.0" encoding="utf-8"?>

<android.support.v7.widget .AppCompatImageView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:src="Q@drawable/card_back"
android:scaleType="centerCrop" />

10. Create a new Java class called CardFrontFragment using the following code:

public class CardFrontFragment extends Fragment {

@Override

public View onCreateView (LayoutInflater inflater, ViewGroup
container,

Bundle savedInstanceState) {
return inflater.inflate(R.layout.fragment_card_front,

container, false);

}
}

11. Create a new Java class called CardBackFragment using the following code:

public class CardBackFragment extends Fragment {

@Override

public View onCreateView (LayoutInflater inflater, ViewGroup
container,

Bundle savedInstanceState) {
return inflater.inflate(R.layout.fragment_card_back,

container, false);

}
}

12. Replace the existing activity_main.xml file with the following XML:

<?xml version="1.0" encoding="utf-8"?>

<FrameLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/container"
android:layout_width="match_parent"
android:layout_height="match_parent" />

[285]

Graphics and Animation Chapter 10

13. Open MainActivity.java and add the following global declaration:

boolean mShowingBack = false;

14. Add the following code to the existing onCreate () method:

FrameLayout frameLayout = findViewById(R.id.container);
frameLayout.setOnClickListener (new View.OnClickListener () {
@Override
public void onClick (View v) {
flipCard();
3
b
if (savedInstanceState == null) {

)

getSupportFragmentManager ()
.beginTransaction ()
.add (R.id.container,
.commit () ;

new CardFrontFragment ())
}

15. Add the following method, which handles the actual fragment transition:

void flipCard() {
if (mShowingBack) {

mShowingBack = false;
getSupportFragmentManager () .popBackStack () ;
} else {

mShowingBack = true;
getSupportFragmentManager ()

.beginTransaction ()

.setCustomAnimations (
R.animator.card_flip_right_enter,
R.animator.card_flip_right_exit,
R.animator.card_flip_left_enter,
R.animator.card_flip_left_exit)

.replace (R.id.container, new CardBackFragment ())

.addToBackStack (null)

.commit () ;

}

16. You're ready to run the application on a device or emulator.

[286]

Graphics and Animation Chapter 10

How it works...

Most of the effort to create the card flip is in setting up the resources. Since we want a front
and back view of the card, we create two fragments with the appropriate images. We call
the flipCard () method when the card is pressed. The actual animation is handled by
setCustomAnimations (). This is where we pass in the four animation resources we
defined in the XML. As you can see, Android makes it very easy.

It's important to note that we did not use the Support Library Fragment Manager, as the
support library does not support objectAnimator. If you want support pre-Android 3.0,
you'll need to include the old anim resources and check the OS version at runtime, or create
the animation resources in code. (See the next recipe.)

See also

e See the next recipe, Creating a Zoom Animation with a Custom Transition, for an
example of animation resources created in code

¢ Refer to the Integer Resource Type web page at

https://developer.android.com/guide/topics/resources/more-resources.ht

ml#Integer

Creating a Zoom Animation with a Custom
Transition

The previous recipe, Creating a Card Flip Animation with Fragments, demonstrated a
transition animation using animation resource files. In this recipe, we will create a zoom
effect using animation resources created in code. The application shows a thumbnail image,
then expands to an enlarged image when pressed.

[287]

https://developer.android.com/guide/topics/resources/more-resources.html#Integer
https://developer.android.com/guide/topics/resources/more-resources.html#Integer

Graphics and Animation Chapter 10

The following image contains three screenshots showing the zoom animation in action:

Tl 43%4G 12:49 AM 7 ufl 42% 14 12:43 AM Tl 42%4G 12:43 AM

ZoomAnimation ZoomAnimation ZoomAnimation

Getting ready

Create a new project in Android Studio and call it ZoomAnimation. Use the default Phone
& Tablet options and select Empty Activity when prompted for the Activity Type.

For the image needed for this recipe, we downloaded a picture from www.pixabay.com to
include in the project source files, but you can use any image.

How to do it...

Once you have your image ready, follow these steps:

1. Copy your image to the res/drawable folder and name it image . jpg (if not a
JPEG image, keep the original file extension).

[288]

http://www.pixabay.com

Graphics and Animation Chapter 10

2. Now, open activity_main.xml and replace the existing XML with the
following;:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="Q@+id/frameLayout"
android:layout_width="match_parent"
android:layout_height="match_parent">
<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical"
android:padding="16dp">
<android.support.v7.widget .AppCompat ImageButton
android:id="Q@+id/imageViewThumbnail"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:scaleType="centerCrop"
android:background="Q@android:color/transparent"/>
</LinearLayout>
<android.support.v7.widget .AppCompatImageView
android:id="Q@+id/imageViewExpanded"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:visibility="invisible" />
</FrameLayout>

3. Now, open MainActivity. java and declare the following global variables:

private Animator mCurrentAnimator;
private AppCompatImageView mImageViewExpanded;

4. Add the loadSampledResource () method we created in the Scaling down large
images to avoid Out of Memory exceptions recipe to scale the image:

private Bitmap loadSampledResource (int imageID, int targetHeight,
int targetWidth) {

final BitmapFactory.Options options = new
BitmapFactory.Options () ;
options.inJustDecodeBounds = true;

BitmapFactory.decodeResource (getResources (), imageID, options);
final int originalHeight = options.outHeight;
final int originalWidth = options.outWidth;
int inSampleSize = 1;
while ((originalHeight / (inSampleSize *2)) > targetHeight
&& (originalWidth / (inSampleSize *2))
> targetWidth) {

[289]

Graphics and Animation Chapter 10

inSampleSize *= 2;
}
options.inSampleSize =inSampleSize;
options.inJustDecodeBounds = false;
return (BitmapFactory.decodeResource (getResources (), imagelD,
options));

}

5. Add the following code to the onCreate () method:

final AppCompatImageButton imageViewThumbnail =
findViewById(R.1id.imageViewThumbnail) ;
imageViewThumbnail.setImageBitmap (loadSampledResource (R.drawable.im
age, 100, 100));
imageViewThumbnail.setOnClickListener (new View.OnClickListener () {

@Override

public void onClick (View view) {

zoomFromThumbnail (imageViewThumbnail) ;

i
mImageViewExpanded = findViewById(R.id.imageViewExpanded) ;

mImageViewExpanded.setOnClickListener (new View.OnClickListener () {
@Override
public void onClick (View v) {
mImageViewExpanded.setVisibility (View.GONE) ;
mImageViewExpanded.setImageBitmap (null);
imageViewThumbnail.setVisibility (View.VISIBLE) ;

)i

6. Add the following zoomFromThumbnail () method, which handles the actual
animation and is explained later:

private void zoomFromThumbnail (final AppCompatImageButton
imageViewThumb) {
if (mCurrentAnimator != null) {
mCurrentAnimator.cancel () ;

final Rect startBounds = new Rect ();
final Rect finalBounds = new Rect ();
final Point globalOffset = new Point();

imageViewThumb.getGlobalVisibleRect (startBounds) ;
findvViewById (R.id.framelLayout) .getGlobalVisibleRect (finalBounds,
globalOffset);
mImageViewExpanded.setImageBitmap (
loadSampledResource (R.drawable.image,

[290]

Graphics and Animation Chapter 10

finalBounds.height (), finalBounds.width()));

startBounds.offset (-globalOffset.x, —-globalOffset.y);
finalBounds.offset (-globalOffset.x, -globalOffset.y);

float startScale;
if ((float) finalBounds.width() / finalBounds.height () >

(float) startBounds.width() / startBounds.height ()) {
startScale = (float) startBounds.height () /

finalBounds.height () ;
float startWidth = startScale * finalBounds.width () ;

float deltaWidth = (startWidth - startBounds.width()) / 2;
startBounds.left —-= deltaWidth;
startBounds.right += deltaWidth;
} else {
startScale = (float) startBounds.width() /

finalBounds.width () ;
float startHeight = startScale * finalBounds.height ();

float deltaHeight = (startHeight - startBounds.height()) /
2;
startBounds.top —-= deltaHeight;
startBounds.bottom += deltaHeight;
}
imageViewThumb.setVisibility (View.GONE) ;
mImageViewExpanded.setVisibility (View.VISIBLE) ;
mImageViewExpanded.setPivotX (0f);
mImageViewExpanded.setPivotY (0f);
AnimatorSet animatorSet = new AnimatorSet ();
animatorSet.play (ObjectAnimator.ofFloat (mImageViewExpanded,
View.X,
startBounds.left, finalBounds.left))
.with (ObjectAnimator.ofFloat (mImageViewExpanded,
View.Y,

startBounds.top, finalBounds.top))
.with (ObjectAnimator.ofFloat (mImageViewExpanded,
View.SCALE_X, startScale, 1f))
.with (ObjectAnimator.ofFloat (mImageViewExpanded,
View.SCALE_Y, startScale, 1f));
animatorSet.setDuration (1000);
animatorSet.setInterpolator (new DecelerateInterpolator());
animatorSet.addListener (new AnimatorListenerAdapter () |
@Override
public void onAnimationEnd (Animator animation) {
mCurrentAnimator = null;

[291]

Graphics and Animation Chapter 10

@Override
public void onAnimationCancel (Animator animation) {
mCurrentAnimator = null;

}
)i
animatorSet.start ();
mCurrentAnimator = animatorSet;

}

7. Run the application on a device or emulator.

How it works...

First, take a look at the layout file we used. There are two parts: the LinearLayout with
the ImageView thumbnail, and the expanded Imageview. We control the visibility of both
views as the images are clicked. We set the starting thumbnail image using the same
loadSampledResource () as discussed in the Scaling down large images to avoid Out of
Memory exceptions recipe.

However, zoomFromThumbnail () is where the real work is being done for this
demonstration. There's a lot of code, which breaks down as follows.

First, we store the current animation in mCurrentAnimator, so we can cancel if the
animation is currently running.

Next, we get the starting position of the image using the getGlobalVisibleRect ()
method. This returns the screen position of the view. When we get the visible bounds of
expanded ImageView, we also get GlobalOffset of the view to offset the coordinates
from app coordinates to screen coordinates.

With the starting bounds set, the next step is to calculate the ending bounds. We want to
keep the same aspect ratio for the final image to prevent it from being skewed. We need to
calculate how the bounds need to be adjusted to keep the aspect ratio within the expanded
ImageView. The screenshot shown in the introduction shows how this image was sized,
but this will vary by image and device.

With the starting and ending bounds calculated, we can now create the animation.
Actually, four animations, in this case, one animation for each point of the rectangle, as
shown in this code:

animatorSet.play (ObjectAnimator.ofFloat (mImageViewExpanded, View.X,
startBounds.left, finalBounds.left))
.with (ObjectAnimator.ofFloat (mImageViewExpanded, View.Y,

[292]

Graphics and Animation Chapter 10

startBounds.top, finalBounds.top))
.with (ObjectAnimator.ofFloat (mImageViewExpanded, View.SCALE_X,
startScale, 1f))
.with (ObjectAnimator.ofFloat (mImageViewExpanded, View.SCALE_Y,
startScale, 1f));

These two lines of code control the animation timing:

animatorSet.setDuration (1000);
animatorSet.setInterpolator (new AccelerateInterpolator());

The setDuration () method tells the animator object how long it should take to animate
the translations set previously. However, setInterpolator () governs how the
translation is made. (The Interpolator was mentioned in the Introduction, and a link is
provided in the See also section of this recipe.) After starting the animation with the
start () method, we save the current animation to the mCurrentAnimator variable, so
the animation can be canceled, if needed. We create an AnimatorListenerAdapter to
respond to the animation events and clear the mCurrentAnimator variable upon
completion.

There's more...

When the user presses the expanded image, the application just hides the expanded
ImageView and sets the thumbnail as visible. We could create a reverse zoom animation
in the mImageViewExpanded click event using the expanded bounds as the starting point,
then returning to the thumbnail bounds. (It would probably be easier to create the
mImageViewExpanded eventin zoomFromThumbnail () to avoid having to duplicate
calculating the start and stop bounds again.)

Getting the default animation duration

Our code used 1,000 milliseconds when setting the duration with setDuration (). We
purposely used a long duration to make it easier to view the animation. We can get the
default Android animation duration using the following code:

getResources () .getInteger (android.R.integer.config_shortAnimTime)

[293]

Graphics and Animation Chapter 10

See also

e See the first recipe, Scaling down large images to avoid Out of Memory exceptions, for
a detailed explanation of the 1oadSampledResource () method
e Refer to the Interpolator Developer Document at

http://developer.android.com/reference/android/view/animation/Interpol
ator.html

Displaying animated image (GIF/WebP) with
the new ImageDecoder library

Android P (API 28) introduces a new library called ImageDecoder, which will be
deprecating the BitmapFactory class. This new image library promises to make it easier to
work with not just bitmaps, but several other file formats not supported in the old
BitmapFactory class, such as GIF and WebP animated images.

At the time of writing, it is only available on devices running Android P (or later) and is not
available in the support library, but according to this issue on the Google issue tracker,
there are plans to add ImageDecoder to the support library: https://issuetracker.
google.com/issues/78041382.

When, or if, that happens, the previous examples will be updated to use this new library
instead. For now, we'll take a look at new functionality, and that is native support for
displaying GIF images.

Getting ready

Create a new project in Android Studio and call it AnimatedImage. In the Target Android
Devices dialog, make sure to select API 28 (or greater) for the Phone & Tablet option.
Select Empty Activity when prompted for the Activity Type. In the Configure

Activity dialog (shown next), deselect the Backwards Compatibility option since this
feature is not yet available in the support library:

[294]

http://developer.android.com/reference/android/view/animation/Interpolator.html
http://developer.android.com/reference/android/view/animation/Interpolator.html
https://issuetracker.google.com/issues/78041382
https://issuetracker.google.com/issues/78041382
https://issuetracker.google.com/issues/78041382
https://issuetracker.google.com/issues/78041382
https://issuetracker.google.com/issues/78041382
https://issuetracker.google.com/issues/78041382
https://issuetracker.google.com/issues/78041382
https://issuetracker.google.com/issues/78041382
https://issuetracker.google.com/issues/78041382
https://issuetracker.google.com/issues/78041382
https://issuetracker.google.com/issues/78041382
https://issuetracker.google.com/issues/78041382

Graphics and Animation Chapter 10

[BON) Create New Project

Configure Activity

Creates a new empty activity

Activity Name: MainActivity
v| Generate Layout File
Layout Name: activity_main

Backwards Compatibility (AppCompat)

If false, this activity base class will be Activity instead of AppCompatActivity

Cancel Previous Finish

We'll also need a GIF image. We turned to Giphy.com for a royalty-free image, which you
can see in the downloadable project files.

How to do it...

Once you have your GIF image, follow these steps:

1. Copy your image to the res/drawable folder. Our file is named giphy.gif but
you can use your own filename instead.

2. Open activity_main.xml and replace the existing TextView with the
following ImageView:

<ImageView
android:id="Q@+id/imageView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
app:layout_constraintBottom_toBottomOf="parent"

[295]

Graphics and Animation Chapter 10

app:layout_constraintLeft_tolLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

3. OpenMainActivity. java and add the following line of code to the existing
onCreate () method:

loadGif ();
4. Finally, add the loadGif method as follows:

private void loadGif () {

try |
ImageDecoder.Source source =
ImageDecoder.createSource (getResources(),
R.drawable.giphy) ;
Drawable decodedAnimation =
ImageDecoder.decodeDrawable (source) ;

ImageView imageView = findViewById(R.id.imageView) ;
imageView.setImageDrawable (decodedAnimation);

if (decodedAnimation instanceof AnimatedImageDrawable) {
((AnimatedImageDrawable) decodedAnimation) .start();

3
} catch (IOException e) {

e.printStackTrace () ;

}

5. Run your app on a device or emulator running at least Android P.

If you do not see the animated image when running this code, try
disabling hardware acceleration in the Android Manifest. Add the
following to either the <application>node or the <activity> node:

android:hardwareAccelerated="false".

How it works...

As you can see in the preceding code, the ImageDecoder library has made it very simple to
display a GIF. First, you have to define your source image. Currently, the createSource ()
method can read an image from the following sources:

e Resources (drawable) folder
o Assets folder

[296]

Graphics and Animation Chapter 10

¢ ContentResolver (URI)
¢ Byte buffer
¢ File

(This could change in the final Android P release.)

In our code, we copied the image to the drawable folder. If we had copied it to the assets
folder instead, the code would have been as follows:

ImageDecoder.Source source = ImageDecoder.createSource (getAssets(),
"giphy.gif");

With the image source defined, we just have to call decodeDrawable () to decode the
image and set the drawable for the ImageView. Once the drawable is set, the final key to
the animated image is to call the start () method. If the decoded image is of type
AnimatedDrawable (which it will be if we loaded a valid GIF), we then call the start
method to activate the animation.

See also

e The ImageDecoder documentation: https://developer.android.com/
reference/android/graphics/ImageDecoder

e See the next recipe for more examples of using the ImageDecoder library

Creating a circle image with the new
ImageDecoder

As mentioned in the previous recipe, the ImageDecoder library is a new library introduced
in Android P and promises many new and exciting features not available before with the
BitmapFactory class. One of those features is the ability to apply effects to the image with a
post processor. A post processor is a new helper class allowing you to add custom
processing (or manipulation) to an image after it is loaded. Custom processing might
include adding a tint to the image, drawing (such as stamps) on top of the image, adding a
frame, or in our example making the image round.

[297]

https://developer.android.com/reference/android/graphics/ImageDecoder
https://developer.android.com/reference/android/graphics/ImageDecoder
https://developer.android.com/reference/android/graphics/ImageDecoder
https://developer.android.com/reference/android/graphics/ImageDecoder
https://developer.android.com/reference/android/graphics/ImageDecoder
https://developer.android.com/reference/android/graphics/ImageDecoder
https://developer.android.com/reference/android/graphics/ImageDecoder
https://developer.android.com/reference/android/graphics/ImageDecoder
https://developer.android.com/reference/android/graphics/ImageDecoder
https://developer.android.com/reference/android/graphics/ImageDecoder
https://developer.android.com/reference/android/graphics/ImageDecoder
https://developer.android.com/reference/android/graphics/ImageDecoder
https://developer.android.com/reference/android/graphics/ImageDecoder
https://developer.android.com/reference/android/graphics/ImageDecoder
https://developer.android.com/reference/android/graphics/ImageDecoder
https://developer.android.com/reference/android/graphics/ImageDecoder

Graphics and Animation

Chapter 10

In our example, we start with a rectangle image (downloaded from Pixabay.com, which
you can see here: nttps://pixabay.com/en/wallpaper-background-eclipse-149281 8/.)

We then apply a post processor to create a rounded image, as you can see in this

screenshot:

12:08 & @

Circlelmage

This is another exciting new feature available in the ImageDecoder library because until
now, developers usually turned to third-party libraries. Although many of these libraries

are still going to be very useful, especially for handling image loading in lists; for

something as simple as creating a rounded image, say, for a profile picture, there is now an

easy native solution.

[298]

https://pixabay.com/en/wallpaper-background-eclipse-1492818/
https://pixabay.com/en/wallpaper-background-eclipse-1492818/
https://pixabay.com/en/wallpaper-background-eclipse-1492818/
https://pixabay.com/en/wallpaper-background-eclipse-1492818/
https://pixabay.com/en/wallpaper-background-eclipse-1492818/
https://pixabay.com/en/wallpaper-background-eclipse-1492818/
https://pixabay.com/en/wallpaper-background-eclipse-1492818/
https://pixabay.com/en/wallpaper-background-eclipse-1492818/
https://pixabay.com/en/wallpaper-background-eclipse-1492818/
https://pixabay.com/en/wallpaper-background-eclipse-1492818/
https://pixabay.com/en/wallpaper-background-eclipse-1492818/
https://pixabay.com/en/wallpaper-background-eclipse-1492818/
https://pixabay.com/en/wallpaper-background-eclipse-1492818/
https://pixabay.com/en/wallpaper-background-eclipse-1492818/
https://pixabay.com/en/wallpaper-background-eclipse-1492818/
https://pixabay.com/en/wallpaper-background-eclipse-1492818/
https://pixabay.com/en/wallpaper-background-eclipse-1492818/
https://pixabay.com/en/wallpaper-background-eclipse-1492818/

Graphics and Animation Chapter 10

Getting ready

Create a new project in Android Studio and call it CircleImage. In the Target Android
Devices dialog, make sure to select API 28 (or greater) for the Phone & Tablet option.
Select Empty Activity when prompted for the Activity Type. In the Configure

Activity dialog (shown next), deselect the Backwards Compatibility option since this
feature is not yet available in the support library.

How to do it...

Once you have your GIF image, follow these steps:

1. Copy an image to the res/drawable folder. (This example uses an image named
stars.jpg. Use your image name instead.) If it's smaller than the size of our circle
created here, you'll need to use a smaller radius.

2. Open activity_main.xml and replace the existing TextVview with the
following ImageView:

<ImageView
android:id="Q@+id/imageView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

3.Open MainActivity. java and add the following code to the class
declaration:

PostProcessor mCirclePostProcessor = new PostProcessor () A
@Override
public int onPostProcess (Canvas canvas) {
Path path = new Path();
path.setFillType (Path.FillType.INVERSE_EVEN_ODD) ;
int width = canvas.getWidth();
int height = canvas.getHeight ();
path.addCircle (width/2, height/2, 600, Path.Direction.CW);
Paint paint = new Paint ();
paint.setAntiAlias (true);
paint.setColor (Color.TRANSPARENT) ;
paint.setXfermode (new
PorterDuffXfermode (PorterDuff.Mode.SRC)) ;
canvas.drawPath (path, paint);

[299]

Graphics and Animation Chapter 10

return PixelFormat.TRANSLUCENT;

bi

4. Add the following line of code to the existing onCreate () method:

loadImage () ;
5. The last code to add is the following 1oadImage () method:

private void loadImage () {
ImageDecoder.Source source =
ImageDecoder.createSource (getResources (),
R.drawable.stars);

ImageDecoder.OnHeaderDecodedListener listener
new ImageDecoder.OnHeaderDecodedListener () {

public void onHeaderDecoded (ImageDecoder decoder,

ImageDecoder.ImageInfo info,
ImageDecoder.Source source) {

decoder.setPostProcessor (mCirclePostProcessor) ;

bi
try {
Drawable drawable =

listener);
ImageView imageView = findViewById(R.id.imageView) ;

imageView.setImageDrawable (drawable) ;
} catch (IOException e) {
e.printStackTrace();

ImageDecoder.decodeDrawable (source,

}

6. Run the app on a device or emulator running at least Android P.

How it works...

We start off with the same XML layout as the previous recipe. And if we omitted adding
the post processor, we'd get a standard rectangle image. To see for yourself, comment the
following line of code in OnHeaderDecodedListener:

decoder.setPostProcessor (mCirclePostProcessor) ;

[300]

Graphics and Animation Chapter 10

The core of the work being done here is in PostProcessor created in step 3. Although
there are a several lines of code, what's being done is pretty simple. It just creates a circle
(using the dimensions we specified) and clears everything out (by setting the color to
TRANSPARENT) not in our circle.

The key is setting the post processor, which can only be done in the onHeaderDecoded ()
callback. This is why we first create the OnHeaderDecodedListener so we can get a
reference to the decoder.

There's more...

What if you wanted rounded corners instead of a circle image? With one simple change in
the Path created for the post processor, you could have that effect instead. Instead of the
addCircle () call when creating the Path, use this line of code instead:

path.addRoundRect (0, 0, width, height, 250, 250, Path.Direction.CW);

The value of 250 used creates a very rounded corner, so experiment to get the amount of
rounding desired. Take a look at the reference links in See also for more information on the
post processor and Path.

See also

e The PostProcessor reference documentation: https://developer.android.
com/reference/android/graphics/PostProcessor

e The Path reference documentation: https://developer.android. com/
reference/android/graphics/Path

[301]

https://developer.android.com/reference/android/graphics/PostProcessor
https://developer.android.com/reference/android/graphics/PostProcessor
https://developer.android.com/reference/android/graphics/PostProcessor
https://developer.android.com/reference/android/graphics/PostProcessor
https://developer.android.com/reference/android/graphics/PostProcessor
https://developer.android.com/reference/android/graphics/PostProcessor
https://developer.android.com/reference/android/graphics/PostProcessor
https://developer.android.com/reference/android/graphics/PostProcessor
https://developer.android.com/reference/android/graphics/PostProcessor
https://developer.android.com/reference/android/graphics/PostProcessor
https://developer.android.com/reference/android/graphics/PostProcessor
https://developer.android.com/reference/android/graphics/PostProcessor
https://developer.android.com/reference/android/graphics/PostProcessor
https://developer.android.com/reference/android/graphics/PostProcessor
https://developer.android.com/reference/android/graphics/PostProcessor
https://developer.android.com/reference/android/graphics/PostProcessor
https://developer.android.com/reference/android/graphics/Path
https://developer.android.com/reference/android/graphics/Path
https://developer.android.com/reference/android/graphics/Path
https://developer.android.com/reference/android/graphics/Path
https://developer.android.com/reference/android/graphics/Path
https://developer.android.com/reference/android/graphics/Path
https://developer.android.com/reference/android/graphics/Path
https://developer.android.com/reference/android/graphics/Path
https://developer.android.com/reference/android/graphics/Path
https://developer.android.com/reference/android/graphics/Path
https://developer.android.com/reference/android/graphics/Path
https://developer.android.com/reference/android/graphics/Path
https://developer.android.com/reference/android/graphics/Path
https://developer.android.com/reference/android/graphics/Path
https://developer.android.com/reference/android/graphics/Path
https://developer.android.com/reference/android/graphics/Path

11

A First Look at OpenGL ES

In this chapter, we will cover the following topics:

e Setting up the OpenGL ES environment
¢ Drawing shapes on GLSurfaceView

Applying the projection and camera view while drawing

Moving the triangle with rotation

Rotating the triangle with user input

Introduction

As we saw in the previous chapter, Android offers many tools for handling graphics and
animations. Although the canvas and drawable objects are designed for custom drawing,
when you need high-performance graphics, especially 3D gaming graphics, Android also
supports OpenGL ES. Open Graphics Library for Embedded Systems (OpenGL ES), is
targeted at embedded systems. (Embedded systems include consoles and phones.)

This chapter is meant to serve as an introduction to using OpenGL ES on Android. As
usual, we'll provide the steps and explain how things work, but we aren't going to be
digging into the math or technical details of OpenGL. If you are already familiar with
OpenGL ES from other platforms, such as iOS, this chapter should get you up and running
quickly. If you are new to OpenGL, hopefully these recipes will help you decide whether
this is an area you want to pursue.

Android supports the following versions of OpenGL:

¢ OpenGL ES 1.0: Android 1.0

e OpenGL ES 2.0: Introduced in Android 2.2 (API 8)
¢ OpenGL ES 3.0: Introduced in Android 4.3 (API 18)
¢ OpenGL ES 3.1: Introduced in Android 5.0 (API 21)

A First Look at OpenGL ES Chapter 11

The recipes in this chapter are introductory and target OpenGL ES 2.0 and higher. OpenGL
ES 2.0 is available for nearly all devices currently available. Unlike OpenGL ES 2.0 and
lower, OpenGL 3.0 and higher require driver implementation from the hardware
manufacturer. This means that, even if your application is running on Android 5.0,
OpenGL 3.0 and higher may not be available. Therefore, it's a good programming practice
to check the available OpenGL versions at runtime. Alternatively, if your application
requires 3.0 and higher features, you can add a <uses-feature/> element to your
Android manifest. (We'll discuss this in the first recipe that follows.)

Unlike the other chapters in this book, this chapter is written more as a tutorial, with each
recipe building on lessons learned from the previous recipe. The Getting ready section of
each recipe will clarify the prerequisites.

Setting up the OpenGL ES environment

Our first recipe will start by showing the steps to set up an activity to use an OpenGL
GLSurfaceView. Similar to the canvas, the GLSurfaceView is where you will do your
OpenGL drawing. As this is the starting point, the other recipes will refer to this recipe as
the base step when they need a GLSurfaceView created.

Getting ready

Create a new project in Android Studio and call it SetupOpenGL. Use the default Phone &
Tablet options and select Empty Activity when prompted for Activity Type.

How to do it...

We'll start by indicating the application's use of OpenGL in the Android Manifest, and then
we'll add the OpenGL classes to the activity. Here are the steps:

1. Open the Android Manifest and add the following XML:

<uses-feature android:glEsVersion="0x00020000"
android:required="true" />

2. Open MainActivity.java and add the following global variables:

private GLSurfaceView mGLSurfaceView;

[303]

A First Look at OpenGL ES Chapter 11

3. Add the following inner class to the MainActivity class:

class GLRenderer implements GLSurfaceView.Renderer {
public void onSurfaceCreated(GL10 unused, EGLConfig config) {
GLES20.glClearColor(0.5f, 0.5f, 0.5f, 1.0f);
3
public void onDrawFrame (GL10 unused) {
GLES20.glClear (GLES20.GL_COLOR_BUFFER_BIT) ;
3
public void onSurfaceChanged (GL10 unused, int width, int
height) {
GLES20.glViewport (0, 0, width, height);

}
4. Add another inner class to the MainActivity class:
class CustomGLSurfaceView extends GLSurfaceView {
private final GLRenderer mGLRenderer;

public CustomGLSurfaceView (Context context) {
super (context) ;
setEGLContextClientVersion (2);
mGLRenderer = new GLRenderer();
setRenderer (mGLRenderer) ;

}

5. Modify the existing onCreate () method as follows:

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
mGLSurfaceView = new CustomGLSurfaceView (this);
setContentView (mGLSurfaceView) ;

}

6. You're ready to run the application on a device or emulator.

How it works...

If you ran the preceding application, you saw the activity created and the background set to
gray. Since these are the basic steps for setting up OpenGL, you'll be reusing this code for
the other recipes in this chapter as well. The following explains the process detail.

[304]

A First Look at OpenGL ES Chapter 11

Declaring OpenGL in the Android Manifest

We start by declaring our requirement to use OpenGL ES version 2.0 in the Android
Manifest with the following line:

<uses-feature android:glEsVersion="0x00020000" android:required="true" />

If we were using version 3.0, we would use this:

<uses-feature android:glEsVersion="0x00030000" android:required="true" />

For version 3.1, use this:

<uses-feature android:glEsVersion="0x00030001" android:required="true" />

Extending the GLSurfaceView class

Create a custom OpenGL SurfaceView class by extending GLSurfaceview, as we do in
this code:

class CustomGLSurfaceView extends GLSurfaceView {
private final GLRenderer mGLRenderer;

public CustomGLSurfaceView (Context context) {
super (context) ;
setEGLContextClientVersion (2);
mGLRenderer = new GLRenderer();
setRenderer (mGLRenderer) ;

}

Here, we instantiate an OpenGL rendered class and pass it to the GLSurfaceView class
with the setRenderer () method. The OpenGL SurfaceView provides a surface for our
OpenGL drawing, similar to the Canvas and SurfaceView objects. The actual drawing is
done in the Renderer, which we'll create next.

Creating an OpenGL rendered class

The last step is to create the GLSurfaceView.Renderer class and implement the following
three callbacks:

e onSurfaceCreated()

e onDrawFrame ()

[305]

A First Look at OpenGL ES Chapter 11

® onSurfaceChanged()

Following is the code:

class GLRenderer implements GLSurfaceView.Renderer {
public void onSurfaceCreated(GL10 unused, EGLConfig config) {
GLES20.glClearColor (0.5f, 0.5f, 0.5f, 1.0f);
}
public void onDrawFrame (GL10 unused) {
GLES20.glClear (GLES20.GL_COLOR_BUFFER_BIT) ;
}
public void onSurfaceChanged (GL10 unused, int width, int height) {
GLES20.glViewport (0, 0, width, height);
}
}

Right now, all we're doing with this class is setting up the callbacks and clearing the screen
using the color we specify with glClearColor () (gray in this case).

There's more...

With the OpenGL environment set up, we'll continue to the next recipe where we'll actually
draw on the view.

Drawing shapes on GLSurfaceView

The previous recipe set up the activity to use OpenGL. This recipe will continue by
showing how to draw on OpenGLSurfaceView.

First, we need to define the shape. With OpenGL, it is important to realize that the order in
which the vertices of a shape are defined is very important, as they determine the front
(face) and back of the shape. It's customary (and the default behavior) to define vertices
counterclockwise. (Although this behavior can be changed, it requires additional code and
is not standard practice.)

It's also important to understand the OpenGL screen coordinate system, as it differs from
the Android canvas. The default coordinate system defines (0, 0, 0) as the center of the
screen. The four edge points are as follows:

e Top left: (-1.0, 1.0, 0)
e Topright: (1.0, 1.0, 0)

[306]

A First Look at OpenGL ES Chapter 11

e Bottom left: (-1.0, -1.0, 0)
e Bottom right: (1.0, -1.0, 0)

The Z axis comes straight out of the screen or straight behind.

We're going to create a Triangle class since it is the base shape. In OpenGL, you generally
use a collection of triangles to create objects. To draw a shape with OpenGL, we need to
define the following;:

¢ Vertex shader: This is to draw the shape
e Fragment shader: This is to color the shape
e Program: This is an OpenGL ES object for the preceding shaders

The shaders are defined using OpenGL Shading Language (GLSL), and then compiled
and added to the OpenGL program object.

Following are two screenshots showing the triangle in portrait orientation:

ShapesWithOpenGL

[307]

A First Look at OpenGL ES Chapter 11

Here is the same image when the orientation is rotated to landscape:

ShapesWithOpenGL

Getting ready

Create a new project in Android Studio and call it ShapesWithOpenGL. Use the default
Phone & Tablet options and select Empty Activity when prompted for Activity Type.

This recipe uses the OpenGL environment created in the previous recipe, Setting up the
Open GL environment. Refer to the previous recipe if you have not already completed those
steps.

How to do it...

As indicated previously, we'll be using the OpenGL environment created in the previous
recipe. The steps that follow will walk you through creating a class for the triangle shape
and drawing it on the GLSurfaceView:

1. Create a new Java class called Triangle.

2. Add the following global declarations to the Triangle class:

private final String vertexShaderCode = "attribute vec4 vPosition;"
+

[308]

A First Look at OpenGL ES Chapter 11

"void main () {" +
" gl_Position = vPosition;" +
"}"’.
private final String fragmentShaderCode = "precision mediump

float;" +
"uniform vec4 vColor;" +
"void main () {" +
" gl_FragColor = vColor;" +

"}"’.

final int COORDS_PER_VERTEX = 3;

float triangleCoords|[] = {
0.0£, 0.66f, 0.0f,
-0.5f, -0.33f, 0.0f,
0.5f, -0.33f, 0.0f

bi

float color[] = { 0.63f, 0.76f, 0.22f, 1.0f };

private final int mProgram;

private FloatBuffer vertexBuffer;

private int mPositionHandle;

private int mColorHandle;

private final int vertexCount = triangleCoords.length /
COORDS_PER_VERTEX;

private final int vertexStride = COORDS_PER_VERTEX * 4;

3. Add the following loadshader () method to the Triangle class:

public int loadShader (int type, String shaderCode) {
int shader = GLES20.glCreateShader (type);
GLES20.glShaderSource (shader, shaderCode);
GLES20.glCompileShader (shader) ;
return shader;

}
4. Add the Triangle constructor, as shown here:

public Triangle() {

int vertexShader = loadShader (
GLES20.GL_VERTEX_SHADER,
vertexShaderCode) ;

int fragmentShader = loadShader (
GLES20.GL_FRAGMENT_SHADER,
fragmentShaderCode) ;

mProgram = GLES20.glCreateProgram() ;

GLES20.glAttachShader (mProgram, vertexShader);

[309]

A First Look at OpenGL ES Chapter 11

GLES20.glAttachShader (mProgram, fragmentShader);
GLES20.glLinkProgram (mProgram) ;

ByteBuffer bb = ByteBuffer.allocateDirect (
triangleCoords.length * 4);
bb.order (ByteOrder.nativeOrder());

vertexBuffer = bb.asFloatBuffer();
vertexBuffer.put (triangleCoords) ;
vertexBuffer.position (0);

}
5. Add the draw () method as follows:

public void draw() {
GLES20.glUseProgram (mProgram) ;
mPositionHandle = GLES20.glGetAttribLocation (mProgram,
"vPosition");
GLES20.glEnableVertexAttribArray (mPositionHandle) ;
GLES20.glVertexAttribPointer (mPositionHandle,
COORDS_PER_VERTEX,
GLES20.GL_FLOAT, false,
vertexStride, vertexBuffer);
mColorHandle = GLES20.glGetUniformLocation (mProgram,
"vColor");
GLES20.glUniform4fv (mColorHandle, 1, color, 0);
GLES20.glDrawArrays (GLES20.GL_TRIANGLES, 0, vertexCount);
GLES20.glDisableVertexAttribArray (mPositionHandle) ;
}

6. Now, open MainActivity.java and add a Triangle variable to the
GLRenderer class as follows:

private Triangle mTriangle;

7. Initialize the Triangle variable in the onSurfaceCreated () callback as
follows:

mTriangle = new Triangle();

8. In the onDrawFrame () callback, call the Triangle draw () method after glClear
is called:

mTriangle.draw();

9. You're ready to run the application on a device or emulator.

[310]

A First Look at OpenGL ES Chapter 11

How it works...

As mentioned in the introduction, to draw with OpenGL we first have to define the
shaders, which we do with the following code:

private final String vertexShaderCode = "attribute vec4 vPosition;" +
"void main () {" +
" gl_Position = vPosition;" +

"}",.

private final String fragmentShaderCode = "precision mediump float;" +
"uniform vec4 vColor;" +
"void main () {" +

" gl_FragColor = vColor;" +

"}",.

Since this is uncompiled OpenGL Shading Language (OpenGLSL), the next step is to
compile and attach it to our OpenGL object, which we do with the following two OpenGL
ES methods:

e glAttachShader ()
e glLinkProgram()

After setting up the shaders, we create ByteBuf fer to store the triangle vertices, which are
defined in triangleCoords. The draw () method is where the actual drawing occurs
using the GLES20 library calls, which is called from the onDrawFrame () callback.

There's more...

From the screenshots in the introduction, you may have noticed that the triangles in the
portrait and landscape do not look identical to each other. As you can see from the code, we
make no distinction in terms of orientation when drawing. We'll explain why this is
happening and show how to correct this issue in the next recipe.

See also

For more information on the OpenGL Shading Language, refer to the following
link: https://www.opengl.org/documentation/glsl/.

[311]

https://www.opengl.org/documentation/glsl/

A First Look at OpenGL ES Chapter 11

Applying the projection and camera view
while drawing

As we saw in the previous recipe, when we draw our shape on the screen, the shape is
skewed by the screen orientation. The reason for this is because, by default, OpenGL
assumes a perfectly square screen. As we mentioned before, the default screen coordinates
for the top right are (1, 1, 0) and (-1, -1, 0) for the bottom left.

Since most device screens are not perfectly square, we need to map the display coordinates
to match our physical device. In OpenGL, we do this with projection. This recipe will show
how to use projection to match the GLSurfaceView coordinates with the device coordinates.
Along with the projection, we'll also show how to set the Camera View. Following is a
screenshot showing the final result:

ProjectionAndCamera

[312]

A First Look at OpenGL ES Chapter 11

Getting ready

Create a new project in Android Studio and call it ProjectionAndCamera. Use the default
Phone & Tablet options and select Empty Activity when prompted for Activity Type.

This recipe builds on the previous recipe, Drawing shapes on GLSurfaceView. If you don't
already have the previous recipe, start there before starting these steps.

How to do it...

As stated previously, this recipe will build on the previous recipe, so complete those steps
before starting. We will be modifying the previous code to add the projection and camera
view to the drawing calculations. Here are the steps:

1. Open the Triangle class and add the following global declaration to the existing
declarations:

private int mMVPMatrixHandle;

2. Add a matrix variable to vertexShaderCode and use it in the position
calculation. Here is the final result:

private final String vertexShaderCode = "attribute vec4 vPosition;"
+

"uniform mat4 uMVPMatrix;" +

"void main () {" +

" gl_Position = uMVPMatrix * vPosition;" +

" } " ,.
3. Change the draw () method to pass in a matrix parameter as follows:

public void draw(float[] mvpMatrix) {

[313]

A First Look at OpenGL ES Chapter 11

4. To use the transformation matrix, add the following code to the draw () method
just before the GLES20.glDrawArrays () method:

mMVPMatrixHandle = GLES20.glGetUniformLocation (mProgram,
"uMVPMatrix") ;

GLES20.glUniformMatrix4fv (mMVPMatrixHandle, 1, false, mvpMatrix,
0);

5. Open MainActivity. java and add the following class variables to the
GLRenderer class:

private final float[] mMVPMatrix = new float[1l6];
private final float[] mProjectionMatrix = new float[1l6];
private final float[] mViewMatrix = new float[16];

6. Modify the onSurfaceChanged () callback to calculate the position matrix as
follows:

public void onSurfaceChanged (GL10 unused, int width, int height) {
GLES20.glViewport (0, 0, width, height);
float ratio = (float) width / height;
Matrix.frustumM (mProjectionMatrix, 0, -ratio, ratio, -1, 1, 3,
7);
3

7. Modify the onDrawFrame () callback to calculate the Camera View as follows:

public void onDrawFrame (GL10 unused) {
Matrix.setLookAtM (mViewMatrix, 0, 0, 0, -3, 0f, 0f, 0f, Of,
1.0f£, 0.0f); Matrix.multiplyMM (mMVPMatrix, O,
mProjectionMatrix, O,
mViewMatrix, 0);
GLES20.glClear (GLES20.GL_COLOR_BUFFER_BIT) ;
mTriangle.draw (mMVPMatrix) ;

}

8. You're ready to run the application on a device or emulator.

[314]

A First Look at OpenGL ES Chapter 11

How it works...

First, we modify the vertexShaderCode to include a matrix variable. We calculate the
matrix in the onSurfaceChanged () callback using the height and width, which are passed
in as parameters. We pass the transformation matrix to the draw () method to use it when
calculating the position to draw.

Before we call the draw () method, we calculate the camera view. These two lines of code
calculate the camera view:

Matrix.setLookAtM (mViewMatrix, 0, 0, 0, -3, 0f, 0f, 0f, 0f, 1.0f, 0.0f)
Matrix.multiplyMM (mMVPMatrix, 0, mProjectionMatrix, 0, mViewMatrix, O0)

’
’

Without this code, there would actually be no triangle drawn as the camera perspective
would not "see" our vertices. (This goes back to our discussion on how the order of the
vertices dictates the front and back of the image.)

When you run the program now, you'll see the output shown in the Introduction. Notice
that we now have an equilateral triangle (all sides equal), even when the display is rotated.

There's more...

In the next recipe, we will start showing the power of OpenGL by rotating the triangle.

Moving the triangle with rotation

What we've demonstrated so far with OpenGL would probably be easier using the
traditional canvas or drawable objects. This recipe will show a bit of the power of OpenGL
by rotating the triangle. Not that we can't create movement with the other drawing
methods, but how easily can we do this with OpenGL?

[315]

A First Look at OpenGL ES Chapter 11

This recipe will demonstrate how to rotate the triangle, as the following screenshot shows:

CreatingMovement

[316]

A First Look at OpenGL ES Chapter 11

Getting ready

Create a new project in Android Studio and call it CreatingMovement. Use the default
Phone & Tablet options and select Empty Activity when prompted for Activity Type.

This recipe builds on the previous recipe, Applying the projection and camera view while
drawing. Refer to the previous recipe if you have not already completed those steps.

How to do it...

Since we are continuing from the previous recipe, we have very little work to do. Open
MainActivity. java and follow these steps:

1. Add a Matrix to the GLRendered class:

private float[] mRotationMatrix = new float[16];

2. In the onDrawFrame () callback, replace the existing
mTriangle.draw (mMVPMatrix) ; statement with the following code:

float[] tempMatrix = new float([16];

long time = SystemClock.uptimeMillis() % 4000L;

float angle = 0.090f * ((int) time);

Matrix.setRotateM (mRotationMatrix, 0, angle, 0, 0, -1.0f);
Matrix.multiplyMM (tempMatrix, 0, mMVPMatrix, 0, mRotationMatrix,

0);
mTriangle.draw (tempMatrix);

3. You're ready to run the application on a device or emulator.

How it works...

We're using the Matrix.setRotateM () method to calculate a new rotation matrix based
on the angle we pass in. For this example, we're using the system uptime to calculate an
angle. We can use whatever method we want to derive an angle, such as a sensor reading
or touch events.

[317]

A First Look at OpenGL ES Chapter 11

There's more...

Using the system clock provides the added benefit of creating continuous movement,
which certainly looks better for demonstration purposes. The next recipe will demonstrate
how to use user input to derive an angle for rotating the triangle.

The render mode

OpenGL offers a setRenderMode () option to draw only when the view is dirty. This can
be enabled by adding the following code to the CustomGLSurfaceview () constructor just
below the setRenderer () call:

setRenderMode (GLSurfaceView.RENDERMODE_WHEN_DIRTY) ;

This will cause the display to update just once, then wait until we request an update with
requestRender ().

Rotating the triangle with user input

The previous example demonstrated rotating the triangle based on the system clock. This
created a continuously rotating triangle, depending on the render mode we used. But what
if you wanted to respond to the input from the user?

In this recipe, we'll show how to respond to user input by overriding the onTouchEvent ()
callback from GLsurfaceview. We'll still rotate the triangle using the
Matrix.setRotateM () method, but instead of deriving an angle from the system time,
we'll calculate an angle based on the touch location.

[318]

A First Look at OpenGL ES Chapter 11

Here's a screenshot showing this recipe running on a physical device (to highlight the
touch, the Show touches developer option is enabled):

$ Tl 1

RotateWithUserlnput

Getting ready

Create a new project in Android Studio and call it RotateWithUserInput. Use the default
Phone & Tablet options and select Empty Activity when prompted for Activity Type.

This recipe demonstrates an alternative approach to the previous recipe and therefore will
be based on the Applying the projection and camera view while drawing (the same starting point

as the previous recipe.)

[319]

A First Look at OpenGL ES Chapter 11

How to do it...

As stated previously, we will continue, not from the previous recipe, but from the Applying
the projection and camera view while drawing recipe. Open MainActivity.java and follow

these steps:
1. Add the following global variables to the MainActivity class:

private float mCenterX=0;
private float mCenter¥Y=0;

2. Add the following code to the GLRendered class:

private float[] mRotationMatrix = new float[1l6];
public volatile float mAngle;
public void setAngle (float angle) {
mAngle = angle;
3

3. In the same class, modify the onDrawFrame () method by replacing the
existing mTriangle.draw (mMVPMatrix) ; statement with the following code:

float[] tempMatrix = new float[16];

Matrix.setRotateM (mRotationMatrix, 0, mAngle, 0, 0, -1.0f);
Matrix.multiplyMM (tempMatrix, 0, mMVPMatrix, 0, mRotationMatrix,
0);

mTriangle.draw (tempMatrix) ;

4. Add the following code to the onSurfaceChanged () callback:

mCenterX=width/2;
mCenterY=height/2;

5. Add the following code to the CustomGLSurfaceView constructor, which is
below setRenderer ():

setRenderMode (GLSurfaceView.RENDERMODE_WHEN_DIRTY) ;
6. Add the following onTouchEvent () to the CustomGLSurfaceView class:

@Override
public boolean onTouchEvent (MotionEvent e) {
float x = e.getX();
float y = e.get¥Y();
switch (e.getAction()) A
case MotionEvent .ACTION_MOVE:
double angleRadians = Math.atan2 (y-mCenterY, x—

[320]

A First Look at OpenGL ES Chapter 11

mCenterX) ;
mGLRenderer.setAngle ((float)Math.toDegrees
(-angleRadians)) ;
requestRender () ;

}

return true;

}

7. You're ready to run the application on a device or emulator.

How it works...

The obvious difference between this example and the previous recipe lies in how we derive
the angle to pass to the Matrix.setRotateM () call. We also changed the GLSurfaceView
render mode using setRenderMode () to only draw on request. We made the request using
requestRender () after calculating a new angle in the onTouchEvent () callback.

We also demonstrated the importance of deriving our own GLSurfaceView class. Without
our CustomGLSurfaceView class, we would not have a way to override the
onTouchEvent callback or any other callbacks from GLSurfaceView.

There's more...

This concludes the OpenGL ES recipes, but we've only just touched upon the power of
OpenGL. If you're serious about learning OpenGL, see the links in the next section and
check out one of the many books written on OpenGL. There are also many frameworks
available, both 2D and 3D, for graphics and game development.

See also

OpenGL: The Industry Standard for High-Performance
Graphics: https://www.opengl.org/

OpenGL ES: The Standard for Embedded Accelerated 3D
Graphics: https://www.khronos.org/opengles/

Unreal Engine: Android Quick Start: https://docs.unrealengine.com/latest/
INT/Platforms/Android/GettingStarted/index.html

libGDX: Cross-platform Java game development framework based on
OpenGL: https://github.com/1libgdx/1libgdx

[321]

https://www.opengl.org/
https://www.khronos.org/opengles/
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html
https://docs.unrealengine.com/latest/INT/Platforms/Android/GettingStarted/index.html
https://github.com/libgdx/libgdx
https://github.com/libgdx/libgdx
https://github.com/libgdx/libgdx
https://github.com/libgdx/libgdx
https://github.com/libgdx/libgdx
https://github.com/libgdx/libgdx
https://github.com/libgdx/libgdx
https://github.com/libgdx/libgdx
https://github.com/libgdx/libgdx
https://github.com/libgdx/libgdx
https://github.com/libgdx/libgdx

12

Multimedia

In this chapter, we will cover the following topics:

e Playing sound effects with Soundpool

Playing audio with MediaPlayer

Responding to hardware media controls in your app

Taking a photo with the default camera app

Taking a picture using the Camera2 API

Introduction

Now that we've explored graphics and animations in the previous chapters, it's time to look
at the sound options available in Android. The two most popular options to play sound are
the following:

e soundPool: This is for short sound clips

e MediaPlayer: This is designed for larger sound files (such as music) and video
files

The first two recipes will look at using these libraries. We'll also look at how to use
hardware related to sound, such as the volume controls and media playback controls (play,
pause, next and previous, often available on headphones).

The rest of the chapter will focus on using the camera, both indirectly through Intents (to
pass the camera request to the default camera application) and directly using the camera
APIs. We'll show a complete example using the Camera2 APIs released with Android 5.0
Lollipop (API 21).

Multimedia Chapter 12

Playing sound effects with SoundPool

When you need sound effects in your application, SoundpPool is usually a good starting
point.

SoundPool is interesting in that it allows us to create special effects with our sounds by
changing the play rate and by allowing multiple sounds to play simultaneously.

Popular audio file types supported include:

e 3GPP (.3gp)

3GPP (.3gp)

FLAC (.flac)

MP3 (. mp3)

MIDI Type 0 and 1 (.mid, .xmf, and .mxmf)

Ogg (. 099)
WAVE (.wav)

See the Supported Media Formats link for a complete list, including network protocols.

As is common in Android, new releases to the OS bring changes to the APIs. SoundPool is
no exception and the original SoundPool constructor was deprecated in Lollipop (API 21).
Rather than setting our minimum API to 21 or relying on deprecated code (which may stop
working at some point), we'll implement both the old and the new approach and check the
OS version at runtime to use the appropriate method.

This recipe will demonstrate how to play sound effects using the Android Soundpool
library. To demonstrate playing sounds simultaneously, we'll create two buttons, and each
will play a sound when pressed.

Getting ready

Create a new project in Android Studio and call it SoundPool. Use the default Phone &
Tablet options, and select Empty Activity when prompted for Activity Type.

[323]

Multimedia Chapter 12

To demonstrate playing sounds simultaneously, we need at least two audio files in the
project. We went to SoundBible.com (http://soundbible.com/royalty-free-sounds-5.
html) and found two royalty-free, public-domain sounds to include in the downloaded
project files.

The first sound is a longer playing sound: http://soundbible.com/2032-Water.html

The second sound is shorter: http://soundbible.com/1615-Metal-Drop.html

How to do it...

As explained before, we'll need two audio files to include in the project. Once you have
your sound files ready, follow these steps:

1. Create a new raw folder (File | New | Android resource directory) and choose
raw in the Resource type drop-down.

2. Copy your sound files to res/raw as sound_1 and sound_2. (Keep their original
extensions.)

3. Open activity_main.xml and replace the existing TextVview with the
following buttons:

<Button
android:id="Q@+id/buttonl"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Button"
android:onClick="playSoundl"/>

<Button
android:id="Q@+id/button2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Button"
android:onClick="playSound2"
app:layout_constraintTop_toBottomOf="@+id/buttonl"/>

4. Now, open ActivityMain. java and add the following global variables:

HashMap<Integer, Integer> mHashMap= null;
SoundPool mSoundPool;

[324]

http://soundbible.com/royalty-free-sounds-5.html
http://soundbible.com/royalty-free-sounds-5.html
http://soundbible.com/royalty-free-sounds-5.html
http://soundbible.com/royalty-free-sounds-5.html
http://soundbible.com/royalty-free-sounds-5.html
http://soundbible.com/royalty-free-sounds-5.html
http://soundbible.com/royalty-free-sounds-5.html
http://soundbible.com/royalty-free-sounds-5.html
http://soundbible.com/royalty-free-sounds-5.html
http://soundbible.com/royalty-free-sounds-5.html
http://soundbible.com/royalty-free-sounds-5.html
http://soundbible.com/royalty-free-sounds-5.html
http://soundbible.com/royalty-free-sounds-5.html
http://soundbible.com/royalty-free-sounds-5.html
http://soundbible.com/royalty-free-sounds-5.html
http://soundbible.com/royalty-free-sounds-5.html
http://soundbible.com/2032-Water.html
http://soundbible.com/2032-Water.html
http://soundbible.com/2032-Water.html
http://soundbible.com/1615-Metal-Drop.html

Multimedia Chapter 12

5. Modify the existing onCreate () method as follows:

final Button buttonl = findViewById(R.id.buttonl);
buttonl.setEnabled(false);
final Button button2 = findViewById(R.id.button2);
button2.setEnabled (false);

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
createSoundPoolNew () ;
} else {
createSoundPoolOld() ;
}
mSoundPool.setOnLoadCompletelListener (new
SoundPool.OnLoadCompletelListener () {
@Override
public void onLoadComplete (SoundPool soundPool, int sampleld,
int status) {
buttonl.setEnabled (true);
button2.setEnabled (true);

b

mHashMap = new HashMap<>();

mHashMap.put (1, mSoundPool.load(this, R.raw.sound_1, 1));
mHashMap.put (2, mSoundPool.load(this, R.raw.sound_2, 1));

6. Add the createSoundPoolNew () method:

@TargetApi (Build.VERSION_CODES.LOLLIPOP)
private void createSoundPoolNew () {
AudioAttributes audioAttributes = new AudioAttributes.Builder ()
.setUsage (AudioAttributes.USAGE_MEDIA)
.setContentType (AudioAttributes.CONTENT_TYPE_SONIFICATION)
Jbuild() ;
mSoundPool = new SoundPool.Builder ()
.setAudioAttributes (audioAttributes)
.setMaxStreams (2)
Jbuild() ;
3

7. Add the createSoundPool01d () method:
@SuppressWarnings ("deprecation")

private void createSoundPoolOld() {
mSoundPool = new SoundPool (2, AudioManager.STREAM_MUSIC, O0);

[325]

Multimedia Chapter 12

8. Add the button onClick () methods:

public void playSoundl (View view) {

mSoundPool.play (mHashMap.get (1), 0.1f, 0.1f, 1, 0, 1.0f);
3
public void playSound2 (View view) {

mSoundPool.play (mHashMap.get (2), 0.9f, 0.9f, 1, 1, 1.0f);
3

9. Override the onStop () callback as follows:

@Override

protected void onStop () A
mSoundPool.release () ;
super.onStop () ;

}

10. Run the application on a device or emulator.

How it works...

The first detail to notice is how we construct the object itself. As we mentioned in the
introduction, the SoundPool constructor was changed in Lollipop (API 21). The old
constructor was deprecated in favor of using SoundPool.Builder (). With a constantly
changing environment such as Android, changes in the API are very common, so it's a good
idea to learn how to work with the changes. As you can see, it's not difficult in this case. We
just check the current OS version and call the appropriate method. It is worth noting the
two method annotations. The first specifies the target API:

@TargetApi (Build.VERSION_CODES.LOLLIPOP)
And the second suppresses the deprecation warning:

@SuppressWarnings ("deprecation")

After creating SoundPool, we set a setOnLoadCompleteListener () listener. Enabling
the buttons is mostly for demonstration purposes to illustrate that SoundPool needs to
load sound resources before they are available.

[326]

Multimedia Chapter 12

The final point to make on using SoundPool is the call to play (). We need to pass in the
soundID, which was returned when we loaded the sound using 1oad (). play () givesusa
few options, including sound volume (left and right), loop count, and playback rate. To
demonstrate its flexibility, we play the first sound (which is longer) at a lower volume to
create more of a background effect with the running water. The second sound plays at a
higher volume and we play it twice.

There's more...

If you only need a basic sound effect, such as a click, you can use the AudioManager
playSoundEffect () method. Here's an example:

AudioManager audioManager = (AudioManager)
this.getSystemService (Context .AUDIO_SERVICE) ;
audioManager.playSoundEffect (SoundEffectConstants.CLICK) ;

You can only specify a sound from the SoundEffectConstants; you cannot use your own
sound files.

See also

¢ soundPool Developer

Docs: https://developer.android.com/reference/android/media/SoundPool.
html

e AudioManager Developer

Docs: https://developer.android.com/reference/android/media/AudioManag
er.html

Playing audio with MediaPlayer

MediaPlayer is probably one of the most important classes for adding multimedia
capability to your applications. It supports the following media sources:

¢ Project resources
e Local files
¢ External resources (such as URLs, including streaming)

[327]

https://developer.android.com/reference/android/media/SoundPool.html
https://developer.android.com/reference/android/media/SoundPool.html
https://developer.android.com/reference/android/media/AudioManager.html
https://developer.android.com/reference/android/media/AudioManager.html
https://developer.android.com/reference/android/media/AudioManager.html

Multimedia Chapter 12

MediaPlayer supports the following popular audio files:

e 3GPP (.3gp)

3GPP (.3gp)

FLAC (.flac)

MP3 (.mp3)

MIDI Type O and 1 (.mid, .xmf, and .mxmf)

Ogg (. 099)
WAVE (.wav)

And it supports these popular file types:

e 3GPP (.39gp)

e Matroska (.mkv)

e WebM (.webm)

¢ MPEG-4 (.mp4, .m4a)

See the Supported Media Formats link for a complete list, including network protocols.

This recipe will demonstrate how to set up MediaPlayer in your app to play a sound
included with your project. (For a complete review of the full capability offered by
MediaPlayer, see the Developer Docs link at the end of this recipe.)

Getting ready

Create a new project in Android Studio and call it MediaPlayer. Use the default Phone &
Tablet options and select Empty Activity when prompted for Activity Type.

We will also need a sound for this recipe and will use the same longer playing "water"
sound used in the previous recipe:

http://soundbible.com/2032-Water.html

[328]

http://soundbible.com/2032-Water.html
http://soundbible.com/2032-Water.html
http://soundbible.com/2032-Water.html
http://soundbible.com/2032-Water.html
http://soundbible.com/2032-Water.html
http://soundbible.com/2032-Water.html
http://soundbible.com/2032-Water.html
http://soundbible.com/2032-Water.html
http://soundbible.com/2032-Water.html
http://soundbible.com/2032-Water.html
http://soundbible.com/2032-Water.html
http://soundbible.com/2032-Water.html
http://soundbible.com/2032-Water.html

Multimedia Chapter 12

How to do it...

As explained previously, we'll need a sound file to include in the project. Once you have
your sound file ready, follow these steps:

1. Create a new raw folder (File | New | Android resource directory) and chose
raw in the Resource type dropdown.

2. Copy your sound file to res/raw as sound_1. (Keep the original extension.)

3. Open activity_main.xml and replace the existing TextVview with the
following buttons:

<Button
android:id="Q@+id/buttonPlay"
android:layout_width="100dp"
android:layout_height="wrap_content"
android:text="Play"
android:onClick="buttonPlay" />

<Button
android:text="Pause"
android:layout_width="100dp"
android:layout_height="wrap_content"
android:id="Q@+id/buttonPause"
android:onClick="buttonPause"
app:layout_constraintTop_toBottomOf="@+id/buttonPlay"/>

<Button
android:text="Stop"
android:layout_width="100dp"
android:layout_height="wrap_content"
android:id="Q@+id/buttonStop"
android:onClick="buttonStop"
app:layout_constraintTop_toBottomOf="@+id/buttonPause"/>

4. Now, open ActivityMain. java and add the following global variable:

MediaPlayer mMediaPlayer;

[329]

Multimedia Chapter 12

5. Add the buttonPlay () method:

public void buttonPlay (View view) {
if (mMediaPlayer==null) {
mMediaPlayer = MediaPlayer.create(this, R.raw.sound_1);
mMediaPlayer.setLooping (true);
mMediaPlayer.start ();
} else
mMediaPlayer.start ();

I3
6. Add the buttonPause () method:

public void buttonPause (View view) {
if (mMediaPlayer!=null && mMediaPlayer.isPlaying()) {
mMediaPlayer.pause () ;

}
7. Add the buttonStop () method:

public void buttonStop (View view) {
if (mMediaPlayer!=null) {
mMediaPlayer.stop();
mMediaPlayer.release();
mMediaPlayer = null;

}

8. Finally, override the onStop () callback with the following code:

@Override
protected void onStop () A
super.onStop () ;
if (mMediaPlayer!=null) {
mMediaPlayer.release();
mMediaPlayer = null;

}

9. You're ready to run the application on a device or emulator.

[330]

Multimedia Chapter 12

How it works...

The code here is pretty straightforward. We create MediaPlayer with our sound and start
playing the sound. The buttons will replay, pause, and stop accordingly.

Even this basic example illustrates one very important concept regarding MediaPlayer, and
that is the state. If you're making serious use of MediaPlayer, review the link provided later
for detailed information.

There's more...

To make our demonstration easier to follow, we use the Ul thread for all our operations.
For this example, using a short audio file included with the project, we aren't likely to
experience any Ul delays. In general, it's a good idea to use a background thread when
preparing MediaPlayer. To make this common task easier, MediaPlayer already includes
an asynchronous prepare method called prepareasync (). The following code will create
an OnPreparedListener () listener and use the prepareAsync () method:

mMediaPlayer = new MediaPlayer();
mMediaPlayer.setOnPreparedListener (new MediaPlayer.OnPreparedListener () {
@Override
public void onPrepared(MediaPlayer mp) {
mMediaPlayer.start ();
}
1)
try A
mMediaPlayer.setDataSource (/*URI, URL or path here*/));

} catch (IOException e) {
e.printStackTrace();

}

mMediaPlayer.prepareAsync () ;

Playing music in the background

Our example is meant to play audio when the application is in the foreground, and will
release the MediaPlayer resources in the onStop () callback. What if you are creating a
music player and want to play music in the background, even when the user is using
another application? In that scenario, you'll want to use MediaPlayer in a service, instead
of an activity. You'll use the MediaPlayer library the same way; you'll just need to pass
information (such as sound selection) from the Ul to your service.

[331]

Multimedia Chapter 12

Note that since a service runs in the same UI thread as the activities, you
still do not want to perform potentially blocking operations in a service.
MediaPlayer does handle background threads to prevent blocking your
Ul thread; otherwise, you would want to perform threading yourself. (See
Chapter 15, Getting Your App Ready for the Play Store for more information
on threading and options.)

Using hardware volume keys to control your app's
audio volume

If you want the volume controls to control the volume in your app, use the
setVolumeControlStream() method to specify your application's audio stream, as
follows:

setVolumeControlStream (AudioManager.STREAM _MUSIC) ;

See the AudioManager link below for other streaming options.

See also

¢ Supported media formats:
https://developer.android.com/guide/appendix/media-formats.html

e MediaPlayer
developer(iocsthttp://developer.android.com/reference/android/media/Med
iaPlayer.html

e AudioManager

devehﬂ)erdocs:https://developer.android.com/reference/android/media/Au
dioManager.html

Responding to hardware media controls in
your app

Having your app respond to media controls (like on headphones), such as Play, Pause,
Skip, and so on, is a nice touch your users will appreciate. Android makes this possible
through the media library. As with the Playing sound effects with SoundPool recipe earlier, the
Lollipop release changed how this is done. Unlike the SoundPool example, this recipe is
able to take advantage of another approach, the compatibility library.

[332]

https://developer.android.com/guide/appendix/media-formats.html
https://developer.android.com/guide/appendix/media-formats.html
http://developer.android.com/reference/android/media/MediaPlayer.html
http://developer.android.com/reference/android/media/MediaPlayer.html
https://developer.android.com/reference/android/media/AudioManager.html
https://developer.android.com/reference/android/media/AudioManager.html

Multimedia Chapter 12

This recipe will show you how to set up MediaSession to respond to the hardware
buttons, which will work on Lollipop and later, as well as previous Lollipop versions using
the MediaSessionCompat library. (The compatibility library will take care of checking the
OS version and using the correct API calls automatically.)

Getting ready

Create a new project in Android Studio and call it HardwareMediaControls. Use the
default Phone & Tablet options and select Empty Activity on the Add an Activity to
Mobile dialog.

How to do it...

We'll just be using Toast messages to respond to the hardware events and therefore will not
need to make any changes to the activity layout. The first step is to add the V13 support
library to the project. Start by opening build.gradle (Module: app) and perform the
following steps:

1. Add the following library to the dependency section:

implementation 'com.android.support:support-v13:28.0.0-rc02"

2. Next, open ActivityMain. java and add the following
mMediaSessionCallback to the class declaration:

MediaSessionCompat.Callback mMediaSessionCallback = new
MediaSessionCompat.Callback () {
@Override
public void onPlay () A
super.onPlay () ;
Toast.makeText (MainActivity.this, "onPlay ()",
Toast .LENGTH_SHORT) .show () ;
3

@Override
public void onPause () {
super.onPause () ;
Toast.makeText (MainActivity.this, "onPause()",

Toast .LENGTH_SHORT) .show () ;
3
@Override
public void onSkipToNext () {
super.onSkipToNext () ;
Toast.makeText (MainActivity.this, "onSkipToNext ()",
Toast .LENGTH_SHORT) .show () ;

[333]

Multimedia Chapter 12

}
@Override
public void onSkipToPrevious () {
super.onSkipToPrevious () ;
Toast .makeText (MainActivity.this, "onSkipToPrevious()",
Toast .LENGTH_SHORT) .show () ;
}
bi

3. Add the following code to the existing onCreate () callback:

MediaSessionCompat mediaSession =
new MediaSessionCompat (this,
getApplication () .getPackageName ()) ;
mediaSession.setCallback (mMediaSessionCallback) ;
mediaSession.setFlags (MediaSessionCompat .FLAG_HANDLES_MEDIA_BUTTONS
)i
mediaSession.setActive (true);
PlaybackStateCompat state = new PlaybackStateCompat.Builder ()
.setActions (PlaybackStateCompat .ACTION_PLAY |
PlaybackStateCompat .ACTION_PLAY_PAUSE |
PlaybackStateCompat .ACTION_PAUSE |
PlaybackStateCompat .ACTION_SKIP_TO_NEXT |
PlaybackStateCompat .ACTION_SKIP_TO_PREVIOUS) .build();
mediaSession.setPlaybackState (state);

4. Run the application on a device or emulator with media controls (such as
headphones) to see the Toast messages.

How it works...

There are four steps to setting this up:

1. Create aMediaSession.Callback and attach it to MediaSession
2. Set the MediaSession flags to indicate we want media buttons

3. Set SessionState to active

4. Set PlayBackState with the actions we're going to handle

Steps 4 and 1 work together as the callback will only get the events set in the
PlayBackState

Since we're not actually controlling any playback in this recipe, we just demonstrate how to
respond to the hardware events. You'll want to implement actual functionality in
PlayBackState and include a call to setState () after the setActions () call.

[334]

Multimedia Chapter 12

This is a very nice example of how the changes to the API can make things easier. And
since the new MediaSession and PlaybackState were rolled into the Compatibility
library, we can take advantage of these new APIs on older versions of the OS.

There's more...

With all the variety of hardware available on the market, how can your app check what is
being used?

Checking the hardware type

If you want your app to respond differently based on the current output hardware, you can
use AudioManager to check. The following is an example:

AudioManager audioManager = (AudioManager)
this.getSystemService (Context .AUDIO_SERVICE) ;

if (audioManager.isBluetoothA2dpOn()) A
// Adjust output for Bluetooth.

} else if (audioManager.isSpeakerphoneOn()) {
// Adjust output for Speakerphone.

} else if (audioManager.isWiredHeadsetOn()) {

//0Only checks if a wired headset is plugged in
//May not be the audio output

} else {
// Regular speakers?

See also

e MediaSession developer docs:
https://developer.android.com/reference/android/media/session/MediaSes
sion.html

® MediaSessionCompat developer docs:
https://developer.android.com/reference/android/support/v4/media/sessi
on/MediaSessionCompat.html

e PlaybackState developer docs:
https://developer.android.com/reference/android/support/v4d/media/sessi
on/PlaybackStateCompat.html

[335]

https://developer.android.com/reference/android/media/session/MediaSession.html
https://developer.android.com/reference/android/media/session/MediaSession.html
https://developer.android.com/reference/android/support/v4/media/session/MediaSessionCompat.html
https://developer.android.com/reference/android/support/v4/media/session/MediaSessionCompat.html
https://developer.android.com/reference/android/support/v4/media/session/PlaybackStateCompat.html
https://developer.android.com/reference/android/support/v4/media/session/PlaybackStateCompat.html

Multimedia Chapter 12

e PlaybackStateCompat developer docs:
https://developer.android.com/reference/android/support/v4/media/sessi
on/PlaybackStateCompat.html

Taking a photo with the default camera app

If your application needs an image from the camera, but is not a camera replacement app, it
may be better to allow the default camera app to take the picture. This also respects your
user's preferred camera application.

When you take a photo, unless it is specific to your application, it's considered good
practice to make the photo publicly available. (This allows it to be included in the user's
photo gallery.) This recipe will demonstrate using the default photo application to click a
picture, save it to the public folder, and display the image.

Getting ready

Create a new project in Android Studio and call it UsingTheDefaultCameraApp. Use the
default Phone & Tablet options and select Empty Activity on the Add an Activity to
Mobile dialog.

How to do it...

We're going to create a layout with an ImageView and button. The button will create an
Intent to launch the default Camera app. When the camera app is done, our app will get a
callback. We'll check the result and display the picture if available. Start by opening the
Android Manifest and follow these steps:

1. Add the following permission:

<uses-permission
android:name="android.permission.READ_EXTERNAL_STORAGE" />

2. Open activity_main.xml and replace the existing TextView with the
following views:

<android.support.v7.widget.AppCompatImageView
android:id="@+id/imageView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@mipmap/ic_launcher"
app:layout_constraintTop_toTopOf="parent"

[336]

https://developer.android.com/reference/android/support/v4/media/session/PlaybackStateCompat.html
https://developer.android.com/reference/android/support/v4/media/session/PlaybackStateCompat.html

Multimedia Chapter 12

app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent" />
<android.support.v7.widget .AppCompatButton
android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Take Picture"
android:onClick="takePicture"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"/>

3. OpenMainActivity. java and add the following global variables to the
MainActivity class:

final int PHOTO_RESULT=1;
private Uri mLastPhotoURI=null;

4. Add the following method to create the URI for the photo:

private Uri createFileURI () {
String timeStamp = new SimpleDateFormat ("yyyyMMdd_HHmmss")
.format (System.currentTimeMillis ());
String fileName = "PHOTO_" + timeStamp + ".Jjpg";

return Uri.fromFile (new File (Environment
.getExternalStoragePublicDirectory (Environment .DIRECTORY_PICTURES),
fileName)) ;

}
5. Add the following method to handle the button click:

public void takePicture (View view) {
Intent takePicturelIntent = new
Intent (MediaStore.ACTION_IMAGE_CAPTURE) ;
if (takePicturelIntent.resolveActivity (getPackageManager()) !=
null) A
mLastPhotoURI = createFileURI();
takePicturelIntent.putExtra (MediaStore.EXTRA_OUTPUT,
mLastPhotoURI) ;
startActivityForResult (takePictureIntent, PHOTO_RESULT) ;

}
6. Add a new method to override onActivityResult () as follows:
@Override

protected void onActivityResult (int requestCode, int resultCode,
Intent data) {

[337]

Multimedia Chapter 12

if (requestCode == PHOTO_RESULT && resultCode == RESULT_OK) {
AppCompatImageView imageView =
findViewById (R.id.imageView) ;
imageView.setImageBitmap (BitmapFactory.decodeFile (mLastPhotoURI.get
Path()));
}
}

7. Add the following code to the end of the existing onCreate () method:

StrictMode.VmPolicy.Builder builder = new
StrictMode.VmPolicy.Builder () ;
StrictMode.setVmPolicy (builder.build());

if (ContextCompat.checkSelfPermission (this,
Manifest.permission.READ_EXTERNAL_STORAGE)
!'= PackageManager .PERMISSION_GRANTED) {
ActivityCompat.requestPermissions (this,
new String|]
{Manifest.permission.READ_EXTERNAL_STORAGE}, 0);
3

8. You're ready to run the application on a device or emulator.

How it works...

There are two parts to working with the default camera app. The first is to set up the Intent
to launch the app. We create the Intent using MediaStore .ACTION_IMAGE_CAPTURE to
indicate we want a photo app. We verify a default app exists by checking the results from
resolveActivity (). Aslong as it's not null, we know an application is available to
handle the Intent. (Otherwise, our app will crash.) We create a filename and add it to the
Intent with putExtra (MediaStore.EXTRA_OUTPUT, mLastPhotoURI).

When we get the callback in onActivityResult (), we first make sure it's PHOTO_RESULT
and RESULT_OK (the user could have cancelled), then we load the photo in ImageView.
You might be wondering what the st rictMode calls are for in onCreate (). Basically,
those lines of code disable an additional security check made by the OS. If we don't disable
StrictMode, the app will crash when creating the file URI with
aFileUriExposedException exception. For a production app, one solution would be to
create a FileProvider as we did in the Accessing External Storage with Scoped Directories recipe
from chapter 7, Data Storage. Refer to the See also section for other options.

[338]

Multimedia Chapter 12

There's more...

If you don't care where the picture is stored, you can call the Intent without using the
MediaStore.EXTRA_OUTPUT extra. If you don't specify the output file,
onActivityResult () will include a thumbnail of the image in the data Intent. The
following is how you can display the thumbnail:
if (data != null) {
imageView.setImageBitmap ((Bitmap) data.getExtras () .get (“data”));
}

Here's the code to load the full resolution image, using the URI returned in the data Intent:

if (data != null) {

try {
imageView.setImageBitmap (
MediaStore.Images.Media. getBitmap (getContentResolver (),

Uri.parse (data.toUri (Intent.URI_ALLOW_UNSAFE))));

} catch (IOException e) {
e.printStackTrace();

}

Calling the default video app

It's the same process if you want to call the default video capture application. Just change
the Intent in step 5, as follows:

Intent takeVideoIntent = new Intent (MediaStore.ACTION_VIDEO_CAPTURE) ;

You can get the URI to the video in onActivityResult (), as follows:

Uri videoUri = intent.getData();

See also

e The Scaling down large images to avoid Out of Memory exceptions recipe in Chapter

10, Graphics and Animation
e The Accessing External Storage with Scoped Directories recipe in Chapter 7, Data

Storage

[339]

Multimedia Chapter 12

Taking a picture using the Camera2 API

The previous recipe demonstrated how to use an Intent to call the default photo
application. If you only need a quick photo, the Intent is probably the ideal solution. If not,
and you need more control over the camera, this recipe will show you how to use the
camera directly with the Camera2 APIL.

Now that 85% of devices are using Android 5.0 or later, this recipe focuses only on the
Camera2 APIL. (Google has already deprecated the original Camera API.)

Getting ready

Create a new project in Android Studio and call it Camera2API. In the Target Android
Devices dialog, select the Phone & Tablet option and choose API 21: Android 5.0
(Lollipop), or later, for the minimum SDK. Select Empty Activity on the Add an Activity to
Mobile dialog.

How to do it...

As you'll see, there's a lot of code for this recipe. Start by opening the Android Manifest and
following these steps:

1. Add the following two permissions:

<uses-permission android:name="android.permission.CAMERA" />
<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

2. Now, open activity_main.xml and replace the existing TextView with the
following views:

<TextureView
android:id="Q@+id/texturevView"
android:layout_width="match_parent"
android:layout_height="match_parent"
app:layout_constraintTop_toTopOf="parent"
app:layout_constraintBottom_toTopOf="@+id/button"
app:layout_constraintLeft_tolLeftOf="parent"
app:layout_constraintRight_toRightOf="parent" />

<android.support.v7.widget .AppCompatButton
android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"

[340]

Multimedia Chapter 12

android:text="Take Picture"
android:onClick="takePictureClick"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_tolLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"/>

3. Now, open MainActivity.java and add the following global variables to the
MainActivity class:

private CameraDevice mCameraDevice = null;

private CaptureRequest.Builder mCaptureRequestBuilder = null;
private CameraCaptureSession mCameraCaptureSession = null;
private TextureView mTextureView = null;

private Size mPreviewSize = null;

4. Add the following Comparator class to the MainActivity class:

static class CompareSizesByArea implements Comparator<Size> {
@Override
public int compare(Size lhs, Size rhs) {
return Long.signum((long) lhs.getWidth() * lhs.getHeight ()
- (long) rhs.getWidth() * rhs.getHeight());

}
5. Add the following CameraCaptureSession.StateCallback:

private CameraCaptureSession.StateCallback mPreviewStateCallback =
new CameraCaptureSession.StateCallback() {

@Override

public void onConfigured (CameraCaptureSession session) {

startPreview (session);

}

@Override

public void onConfigureFailed (CameraCaptureSession session) {}
bi

6. Add the following SurfaceTextureListener:

private TextureView.SurfaceTexturelListener mSurfaceTexturelistener

new TextureView.SurfaceTexturelListener () {
@Override
public void onSurfaceTextureUpdated (SurfaceTexture
surface)
{
}
@Override

[341]

Multimedia

Chapter 12

public void onSurfaceTextureSizeChanged (
SurfaceTexture surface, int width, int height)

}
@Override
public boolean onSurfaceTextureDestroyed (SurfaceTexture
surface) {

return false;
}
@Override
public void onSurfaceTextureAvailable (

SurfaceTexture surface, int width, int height)

openCamera () ;

bi

7. Add CameraDevice.StateCallback as follows:

private CameraDevice.StateCallback mStateCallback = new
CameraDevice.StateCallback () {

@Override

public void onOpened (CameraDevice camera) {

mCameraDevice = camera;
SurfaceTexture texture = mTextureView.getSurfaceTexture();
if (texture == null) {
return;
}

texture.setDefaultBufferSize (mPreviewSize.getWidth (),

mPreviewSize.getHeight ());
Surface surface = new Surface (texture);
try {

mCaptureRequestBuilder = mCameraDevice
.createCaptureRequest (CameraDevice.TEMPLATE_PREVIEW) ;
} catch (CameraAccessException e) {
e.printStackTrace();
}
mCaptureRequestBuilder.addTarget (surface) ;
try {
mCameraDevice.createCaptureSession (Arrays
.aslList (surface), mPreviewStateCallback, null);
} catch (CameraAccessException e) {
e.printStackTrace () ;

@Override
public void onError (CameraDevice camera, int error) {}
@Override

[342]

Multimedia Chapter 12

public void onDisconnected (CameraDevice camera) {}

bi

8. Add the following CaptureCallback class to receive the capture completed
event:

final CameraCaptureSession.CaptureCallback mCaptureCallback =
new CameraCaptureSession.CaptureCallback () {
@Override
public void onCaptureCompleted (CameraCaptureSession session,
CaptureRequest request,
TotalCaptureResult result) {
super.onCaptureCompleted (session, request, result);
Toast.makeText (MainActivity.this, "Picture Saved",
Toast .LENGTH_SHORT) .show () ;
startPreview (session);

bi

9. Add the following code to the existing onCreate () callback:

mTextureView = findViewById(R.id.textureView);
mTextureView.setSurfaceTexturelListener (mSurfaceTextureListener) ;

if (ActivityCompat.checkSelfPermission (this,
Manifest.permission.CAMERA)
!= PackageManager .PERMISSION_GRANTED) {
ActivityCompat.requestPermissions (this, new
String[]{Manifest.permission.CAMERA}, 1);

}

10. Add the following methods to override onPause () and onResume ():

@Override
protected void onPause () {
super.onPause () ;
if (mCameraDevice != null) {
mCameraDevice.close () ;
mCameraDevice = null;

}
@Override
public void onResume () {
super.onResume () ;
if (mTextureView.isAvailable()) {
openCamera () ;
} else {

[343]

Multimedia Chapter 12

mTextureView.setSurfaceTexturelListener (
mSurfaceTexturelListener) ;

}
11. Add the openCamera () method:

private void openCamera () {
CameraManager manager = (CameraManager)
getSystemService (CAMERA_SERVICE) ;
try{
String camerald = manager.getCameralIdList () [0];
CameraCharacteristics characteristics =
manager.getCameraCharacteristics (camerald);
StreamConfigurationMap map = characteristics
.get (CameraCharacteristics.SCALER_STREAM_CONFIGURATION_MAP) ;
mPreviewSize = map.getOutputSizes (SurfaceTexture.class)
[0l;
manager.openCamera (camerald, mStateCallback, null);
} catch (CameraAccessException e) {
e.printStackTrace () ;
} catch (SecurityException e) {
e.printStackTrace () ;

}
12. Add the startPreview () method:

private void startPreview (CameraCaptureSession session) {
mCameraCaptureSession = session;
mCaptureRequestBuilder.set (CaptureRequest .CONTROL_MODE,
CameraMetadata.CONTROL_MODE_AUTO) ;
HandlerThread backgroundThread = new
HandlerThread ("CameraPreview") ;
backgroundThread.start () ;
Handler backgroundHandler = new Handler (backgroundThread.
getLooper());
try {
mCameraCaptureSession
.setRepeatingRequest (mCaptureRequestBuilder.build(),
null, backgroundHandler);
} catch (CameraAccessException e) {
e.printStackTrace () ;

[344]

Multimedia Chapter 12

13. Add the getPictureFile () method:

private File getPictureFile() {
String timeStamp = new SimpleDateFormat ("yyyyMMdd_HHmmss")
.format (System.currentTimeMillis());
String fileName = "PHOTO_" + timeStamp + ".Jjpg";

return new File (Environment
.getExternalStoragePublicDirectory (Environment .DIRECTORY_PICTURES),

fileName) ;
3

14. Add the following method to save the image file:

private void savelImage (ImageReader reader) {

Image image = null;
try A
image = reader.acquirelLatestImage () ;

ByteBuffer buffer = image.getPlanes () [0].getBuffer();
byte[] bytes = new byte[buffer.capacity()];
buffer.get (bytes);
OutputStream output = new
FileOutputStream(getPictureFile());
output.write (bytes);
output.close();
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
} finally A
if (image != null) {
image.close();

}
15. Add the following method to handle the button click:

public void takePictureClick (View view) {
if (null == mCameraDevice) {
return;

}

takePicture () ;

[345]

Multimedia Chapter 12

16. Add the final code to actually set up the camera and take the picture:

private void takePicture() {
CameraManager manager = (CameraManager)
getSystemService (Context .CAMERA_SERVICE) ;
try A

CameraCharacteristics characteristics = manager
.getCameraCharacteristics (mCameraDevice.getId());

StreamConfigurationMap configurationMap = characteristics
.get (CameraCharacteristics.SCALER_STREAM_ CONFIGURATION_MAP) ;
if (configurationMap == null) return;

Size largest =
Collections.max (Arrays.aslList (configurationMap

.getOutputSizes (ImageFormat.JPEG)), new
CompareSizesByArea());
ImageReader reader = ImageReader

.newInstance (largest.getWidth (),
largest.getHeight (),
ImageFormat.JPEG, 1);
List<Surface> outputSurfaces = new ArrayList<>(2);
outputSurfaces.add(reader.getSurface());
outputSurfaces.add (new
Surface (mTextureView.getSurfaceTexture()));
final CaptureRequest.Builder captureBuilder = mCameraDevice
.createCaptureRequest (CameraDevice.TEMPLATE_STILL_CAPTURE) ;
captureBuilder.addTarget (reader.getSurface());
captureBuilder.set (CaptureRequest .CONTROL_MODE,
CameraMetadata.CONTROL_MODE_AUTO) ;
ImageReader.OnImageAvailablelListener readerListener =
new ImageReader.OnImageAvailablelistener () {
@Override
public void onImageAvailable (ImageReader reader) {
savelmage (reader) ;

bi

HandlerThread thread = new HandlerThread ("CameraPicture");
thread.start ();

final Handler backgroundHandler = new

Handler (thread.getLooper());
reader.setOnImageAvailablelListener (readerlListener,

backgroundHandler) ;
mCameraDevice.createCaptureSession (outputSurfaces,
new CameraCaptureSession.StateCallback () {
@Override

public void onConfigured (CameraCaptureSession
session) {
try A
session.capture (captureBuilder.build(),

[346]

Multimedia Chapter 12

mCaptureCallback,
backgroundHandler) ;
} catch (CameraAccessException e) {
e.printStackTrace();

}

}

@Override

public void

onConfigureFailed (CameraCaptureSession
session) { }
}, backgroundHandler);
} catch (CameraAccessException e) {
e.printStackTrace();

}

17. Run the application on a device or emulator with a camera.

How it works...

As you can see, there are a lot of steps for this recipe, but at a high level, it's pretty simple:

¢ Set up the camera preview
e Capture the image

Now, we'll look at each in detail.

Setting up the camera preview

Here's a rundown on how the code sets up the preview:

1. First, we set up the TextureView.SurfaceTextureListener with the
setSurfaceTexturelistener () method in onCreate ()

2. When we get the onSurfaceTextureAvailable () callback, we open the
camera

3. We pass our CameraDevice.StateCallback class to the openCamera ()
method, which eventually calls the onOpened () callback

4. onOpened () gets the surface for the preview by calling get SurfaceTexture ()
and passes it to the CameraDevice by calling createCaptureSession ()

5. Finally, when CameraCaptureSession.StateCallback onConfigured() is
called, we start the preview with the setRepeatingRequest () method

[347]

Multimedia Chapter 12

Capturing the image
Even though the takePicture () method may appear to be procedural, capturing an

image also involves several classes and relies on callbacks. Here's a breakdown of how the
code works:

The process starts when the Take Picture button is clicked.
Then the code queries the camera to find the largest available image size
Then an ImageReader is created.

L e

Next, the code sets up OnImageAvailableListener, and saves the image in the
onImageAvailable () callback.

5. Then it creates CaptureRequest .Builder and includes the ImageReader
surface.

6. Next it creates CameraCaptureSession.CaptureCallback, which defines
the onCaptureCompleted () callback. When the capture is complete, it restarts
the preview.

7. Finally, the createCaptureSession () method is called, creating a
CameraCaptureSession.StateCallback. This is where the capture ()
method is called, passing in the CameraCaptureSession.CaptureCallback
created earlier.

There's more...

We've just created the base code to demonstrate a working Camera application. There are
many areas for improvement. First, you should handle the device orientation, for both the
preview and when saving the images. (See the following links.) Also, with Android 6.0
(API 23) having over 60% of the market share, your apps should already be using the new
permission model. Instead of just checking for an exception as we do in the openCamera ()
method, it would be better to check for the required permission.

[348]

Multimedia Chapter 12

See also

e Camera2 API Developer Docs
https://developer.android.com/reference/android/hardware/camera?2/packa
ge—summary.html

¢ For examples on detecting the current device orientation, refer to Chapter
9, Using the Touchscreen and Sensors

o The The Android 6.0 Runtime Permission Model recipe in Chapter 15, Getting your
app ready for the Play Store

[349]

https://developer.android.com/reference/android/hardware/camera2/package-summary.html
https://developer.android.com/reference/android/hardware/camera2/package-summary.html
https://developer.android.com/reference/android/hardware/camera2/package-summary.html

13

Telephony, Networks, and the
Web

In this chapter, we will cover the following topics:

e How to make a phone call

¢ Monitoring phone call events

¢ How to send SMS (text) messages

o Receiving SMS messages

¢ Displaying a web page in your application

Checking online status and connection type
Phone number blocking API

Introduction

We'll start this chapter by looking at telephony functionality with How to make a phone call.
After exploring how to make a call, we'll look at how to monitor a phone call with
monitoring phone call events. We'll move on to SMS messaging in the How to send SMS
messages section, and then we'll cover receiving SMS messages in the Receiving SMS
messages section.

We'll then explore WwebView for adding browser functionality to your app. At its basic level,
WebView is a basic HTML viewer. We'll show how you can extend a WebViewClient class
and modify the settings through websettings to create full browser functionality,
including JavaScript and Zoom features.

The last recipe of this chapter will explore a new API (added in Android 7.0 Nougat) for
blocking phone numbers at the OS level.

Telephony, Networks, and the Web Chapter 13

How to make a phone call

As we've seen in previous recipes, we can call the default applications simply by using an
Intent. There are two Intents for phone calls:

e ACTION_DIAL: Uses the default phone application to make the phone call (no
permission required)
e CALL_PHONE: Bypasses the Ul to directly dial the number (requires permission)

Here's the code to set and call the Intent for using the default Phone app:

Intent intent = new Intent (Intent.ACTION_DIAL);
intent.setData (Uri.parse("tel:" + number));
startActivity (intent);

Since your application is not doing the dialing and the user must press the Dial button,
your app does not need any dialing permissions. The recipe that follows will show you
how to place a call directly, bypassing the Dialer app.

Getting ready

Create a new project in Android Studio and call it DialPhone. Use the default Phone &
Tablet option and select Empty Activity when prompted for Activity Type.

How to do it...

First, we need to add the appropriate permission to make the call. Then, we need to add a
button to call our Dial method. Start by opening the Android Manifest and follow these
steps:

1. Add the following permission:

<uses-permission android:name="android.permission.CALL_PHONE"/>

2. Open activity_main.xml and replace the existing TextVview with the
following button:

<Button
android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Dial"

[351]

Telephony, Networks, and the Web Chapter 13

android:onClick="dialPhone"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_tolLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

3. Add this method, which will check whether your app has been granted
the CALL_PHONE permission:

private boolean checkPermission(String permission) {

int permissionCheck = ContextCompat.checkSelfPermission (this,
permission);

return (permissionCheck == PackageManager.PERMISSION_GRANTED) ;
3

4. Add the code to dial the number:

public void dialPhone (View view) {
if (checkPermission (Manifest.permission.CALL_PHONE)) {
Intent intent = new Intent (Intent.ACTION_CALL);
intent.setData (Uri.parse("tel:0123456789"));
startActivity (intent);
} else {
ActivityCompat.requestPermissions (this, new Stringl]
{Manifest.permission.CALL_PHONE}, 1) ;
3
3

5. Before running this on your device, be sure to replace 0123456789 with a valid
number.

How it works...

As we discussed in the introduction, using the CALL_PHONE Intent requires the appropriate
permission. We add the required permission to the manifest in step 1 and use the method
in step 3 to verify the permission before actually calling the Intent in step 4. Starting with
Android 6.0 Marshmallow (API 23), permissions are no longer granted during installation.
Therefore, we check whether the application has permission before attempting to dial.

[352]

Telephony, Networks, and the Web Chapter 13

See also

o Refer to The Android 6.0 Runtime Permission Model recipe in Chapter 15, Getting
Your App Ready for the Play Store, for more information on the new runtime
permissions

Monitoring phone call events

In the previous recipe, we demonstrated how to make a phone call, both with an Intent to
call the default application, as well as by directly dialing the number with no UL

What if you want to be notified when the calls ends? This is where it gets a bit more
complicated, as you'll need to monitor the Telephony events and track the phone state. In
this recipe, we'll demonstrate how to create a PhoneStateListener to read phone state
events.

Getting ready

Create a new project in Android Studio and call it PhoneStateListener. Use the
default Phone & Tablet options and select Empty Activity in the Add an Activity to
Mobile dialog.

Although it's not required, you can use the previous recipe to initiate a phone call.
Otherwise, use the default dialer and/or watch the events from an incoming call.

How to do it...

We only need a single TextView on the layout to display the event information. Open the
activity_main.xml file and follow these steps:

1. Add or modify the TextView as follows:

<TextView
android:id="@+id/textView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintTop_toTopOf="parent" />

[353]

Telephony, Networks, and the Web Chapter 13

2. Add the following permission to the Android Manifest:

<uses-permission
android:name="android.permission.READ_PHONE_STATE" />

3. Open MainActivity.java and add the following PhoneStateListener class
to the MainActivity class:

PhoneStatelListener mPhoneStatelListener = new PhoneStatelListener () {

@Override
public void onCallStateChanged(int state, String number) {

String phoneState = number;
switch (state) {
case TelephonyManager.CALL_STATE_IDLE:
phoneState += "CALL_STATE_IDLE\n";
break;
case TelephonyManager.CALL_STATE_RINGING:
phoneState += "CALL_STATE_RINGING\n";
break;
case TelephonyManager.CALL_STATE_OFFHOOK:
phoneState += "CALL_STATE_OFFHOOK\n";
break;

}
TextView textView = findViewById(R.id.textView);

textView.append (phoneState) ;

bi

4. Modify onCreate () to set up the listener:

final TelephonyManager telephonyManager
(TelephonyManager)
getSystemService (Context .TELEPHONY_SERVICE) ;
telephonyManager.listen (mPhoneStateListener,
PhoneStatelListener.LISTEN_CALL_STATE) ;

5. Run the application on a device and initiate and/or receive phone calls. Upon
returning to this app, you'll see the list of events.

How it works...
To demonstrate using the listener, we create the Telephony listener in the onCreate ()
method with this code:

final TelephonyManager telephonyManager =
(TelephonyManager) getSystemService (Context.TELEPHONY_SERVICE) ;

[354]

Telephony, Networks, and the Web Chapter 13

telephonyManager.listen (mPhoneStatelListener,
PhoneStatelListener.LISTEN_CALL_STATE) ;

When a PhoneState event occurs, it is sent to our PhoneStateListener class.

There's more...

In this recipe, we are monitoring the Call State events, as indicated with this constant:
LISTEN_CALL_STATE. The other interesting options include the following:

e LISTEN_CALL_FORWARDING_INDICATOR
e LISTEN_DATA_ CONNECTION_STATE
e LISTEN_SIGNAL_STRENGTHS

Take a look at the PhoneStateListener link in See also for a complete list.

When we're done listening for events, call the 1isten () method and pass LISTEN_NONE,
as shown here:

telephonyManager.listen (mPhoneStateListener,PhoneStatelListener.LISTEN_NONE)

’

See also

¢ Developer Docs: PhoneStateListener at
https://developer.android.com/reference/android/telephony/PhoneStatelLi
stener.html

How to send SMS (text) messages

Since you're probably already familiar with SMS (or text) messages, we won't spend time
explaining what they are or why they are important. (If you're not familiar with SMS or
want more information, see the link provided in the See also section of this recipe.) This
recipe will demonstrate how to send an SMS message. (The next recipe will demonstrate
how to receive notifications of new messages and how to read existing messages.)

[355]

https://developer.android.com/reference/android/telephony/PhoneStateListener.html
https://developer.android.com/reference/android/telephony/PhoneStateListener.html

Telephony, Networks, and the Web

Chapter 13

Getting ready

Create a new project in Android Studio and call it SendsMs. Use the default Phone &
Tablet options and select Empty Activity in the Add an Activity to Mobile dialog.

How to do it...

First, we need to add the necessary permissions for sending an SMS. Then, we'll create a
layout with phone number and message fields and a Send button. When the Send button is
clicked, we'll create and send the SMS. Here are the steps:

1. Open the Android Manifest and add the following permission:

<uses-permission android:name="android.permission.SEND_SMS"/>

2. Open activity_main.xml and replace the existing layout with the following

XML:

<?xml version="1.0" encoding="utf-8"?>

<Relativelayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent" >

<EditText
android:
android:
android:
android:
android:
android:
android:
android:

<EditText
android:
android:
android:
android:
android:
android:

<Button
android:
android:
android:
android:
android:

id="@+id/editTextNumber"
layout_width="match_parent"
layout_height="wrap_content"
inputType="number"

ems="10"
layout_alignParentTop="true"
layout_centerHorizontal="true"
hint="Number" />

id="@+id/editTextMsg"
layout_width="match_parent"
layout_height="wrap_content"
layout_below="@+id/editTextNumber"
layout_centerHorizontal="true"
hint="Message"/>

id="@+id/buttonSend"
layout_width="wrap_content"
layout_height="wrap_content"
text="Send"
layout_below="@+id/editTextMsg"

[356]

Telephony, Networks, and the Web Chapter 13

android:layout_centerHorizontal="true"
android:onClick="send"/>
</Relativelayout>

3. OpenMainActivity. java and add the following global variables:

final int SEND_SMS_PERMISSION_REQUEST_CODE=1;
Button mButtonSend;

4. Add the following code to the existing onCreate () callback:

mButtonSend =

findviewById (R.id.buttonSend) ;
mButtonSend.setEnabled (false);

if (checkPermission (Manifest.permission.SEND_SMS))

{
mButtonSend.setEnabled (true) ;
} else {

ActivityCompat.requestPermissions (this, new

String[]{Manifest.permission.SEND_SMS},

SEND_SMS_PERMISSION_REQUEST_CODE) ;
I

5. Add the following method to check the permissions:

private boolean checkPermission (String permission) {
int permissionCheck =

ContextCompat .checkSelfPermission (this,permission);
return (permissionCheck == PackageManager.PERMISSION_GRANTED) ;
}

6. Override onRequestPermissionsResult () to handle the permission
request response:

@Override

public void onRequestPermissionsResult (int requestCode,
permissions([], int[] grantResults) {
switch (requestCode) {
case SEND_SMS_PERMISSION_REQUEST_CODE:
if (grantResults.length > 0
&& grantResults[0] ==

String

{

PackageManager .PERMISSION_GRANTED) {

mButtonSend.setEnabled (true);
}

return;

[357]

Telephony, Networks, and the Web Chapter 13

7. And finally, add the method to actually send the SMS:

public void send(View view) {
String phoneNumber =

((EditText) findViewById (R.id.editTextNumber)) .getText () .toString();
String msg =

((EditText) findViewById (R.id.editTextMsqg)) .getText () .toString();

if (phoneNumber==null || phoneNumber.length()==0 || msg==null
|| msg.length()==0) {
return;
}
if (checkPermission (Manifest.permission.SEND_SMS)) A
SmsManager smsManager = SmsManager.getDefault ();
smsManager.sendTextMessage (phoneNumber, null, msg, null,
null);
} else {

Toast.makeText (MainActivity.this, "No Permission",
Toast .LENGTH_SHORT) .show () ;
3
3

8. You're ready to run the application on a device or emulator. (Use the emulator
device number when sending to another emulator. The first emulator is 5554; the
second is 5556, and it continues incrementing by two for each additional
emulator.)

How it works...

The code for sending an SMS is only two lines, as shown here:

SmsManager smsManager = SmsManager.getDefault ();
smsManager.sendTextMessage (phoneNumber, null, msg, null, null);

The sendTextMessage () method does the actual sending. Most of the code for this recipe
is for checking and obtaining the required permissions.

There's more...

As simple as it is to send SMS messages, we still have a few more options.

[358]

Telephony, Networks, and the Web Chapter 13

Multipart messages

Although it can vary depending on the carrier, 160 is typically the maximum characters
allowed per text message. You could modify the preceding code to check whether the
message exceeds 160 characters, and if so, you can call the SMSManager divideMessage()
method. The method returns ArrayList, which you can send to
sendMultipartTextMessage (). Here's an example:

ArrayList<String> messages=smsManager.divideMessage (msqg) ;
smsManager.sendMultipartTextMessage (phoneNumber, null, messages, null,

null);

Note that messages sent with sendMultipartTextMessage () may not
work correctly when using an emulator, so be sure to test on a real device.

Delivery status notification

If you'd like to be notified of the status of the messages, there are two optional fields you
can use. Here's the sendTextMessage () method as defined in the SMSManager

documentation:

sendTextMessage (String destinationAddress, String scAddress, String text,
PendingIntent sentIntent, PendingIntent deliveryIntent)

You can include a pending Intent to be notified of the send status and/or delivery status.
Upon receipt of your pending Intent, it will include a result code with either
Activity. RESULT_OXK, if it sent successfully, or an error code as defined in the SMSManager

documentation (see the following links):

e RESULT_ERROR_GENERIC_FAILURE: Generic failure cause

e RESULT_ERROR_NO_SERVICE: Failed because service is currently unavailable
e RESULT_ERROR_NULL_PDU: Failed because no PDU was provided
RESULT_ERROR_RADIO_OFF: Failed because radio was explicitly turned off

[3591]

Telephony, Networks, and the Web Chapter 13

See also

e Short Message Service on Wikipedia at

https://en.wikipedia.org/wiki/Short_Message_Service

¢ Developer Docs: SMSManager at
https://developer.android.com/reference/android/telephony/SmsManager.h
tml

Receiving SMS messages

This recipe will demonstrate how to set up a broadcast receiver to notify you of new SMS
messages. It's useful to note that your app does not need to be running to receive the SMS
Intent. Android will start your service to process the SMS.

Getting ready

Create a new project in Android Studio and call it ReceiveSMs. Use the default Phone &
Tablet options and select Empty Activity in the Add an Activity to Mobile dialog.

How to do it...

We won't be using a layout in this demonstration as all the work will be in the Broadcast
Receiver. We'll use Toasts to display incoming SMS messages. Open the Android Manifest
and follow these steps:

1. Add the following permission:

<uses-permission android:name="android.permission.RECEIVE_SMS" />

2. Add the following declaration for the broadcast receiver to the
application element:

<receiver android:name=".SMSBroadcastReceiver">
<intent-filter>
<action
android:name="android.provider.Telephony.SMS_RECEIVED"/>
</intent-filter>
</receiver>

[360]

https://en.wikipedia.org/wiki/Short_Message_Service
https://developer.android.com/reference/android/telephony/SmsManager.html
https://developer.android.com/reference/android/telephony/SmsManager.html

Telephony, Networks, and the Web Chapter 13

3. OpenMainActivity. java and add the following method:

private boolean checkPermission(String permission) {
int permissionCheck = ContextCompat.checkSelfPermission (this,

permission);
return (permissionCheck == PackageManager.PERMISSION_GRANTED) ;

}
4. Modify the existing onCreate () callback to check the permission:

if (!checkPermission(Manifest.permission.RECEIVE_SMS)) {
ActivityCompat.requestPermissions (this, new

String[]{Manifest.permission.RECEIVE_SMS}, 0);

3

5. Add a new Java class to the project, called SMSBroadcastReceiver, using the
following code:
public class SMSBroadcastReceiver extends BroadcastReceiver {

final String SMS_RECEIVED =
"android.provider.Telephony.SMS_RECEIVED";

@Override
public void onReceive (Context context, Intent intent) {
if (SMS_RECEIVED.equals (intent.getAction())) {
Bundle bundle = intent.getExtras();
if (bundle !'= null) |
Object[] pdus = (Object[]) bundle.get ("pdus");
String format = bundle.getString("format");
final SmsMessage[] messages = new

SmsMessage [pdus.length];
for (int 1 = 0; i < pdus.length; i++) {
if (Build.VERSION.SDK_INT >=
Build.VERSION_CODES.M) {
messages[i] =

SmsMessage.createFromPdu ((byte[]) pdus[i], format);
} else {
messages[i] =
SmsMessage.createFromPdu ((byte[]) pdus[i]);

}

Toast .makeText (context,
messages[0] .getMessageBody (), Toast.LENGTH_SHORT)
.show () ;

[361]

Telephony, Networks, and the Web Chapter 13

6. You're ready to run the application on a device or emulator.

How it works...

Just like in the previous recipe on sending SMS messages, we first need to check whether
the app has permission. (On pre-Android 6.0 devices, the manifest declaration will
automatically provide the permission, but for Marshmallow and later, we'll need to prompt
the user as we do here.)

As you can see, the Broadcast receiver receives the notification of new SMS messages. We
tell the system we want to receive the new SMS Received Broadcasts using this code in the
Android Manifest:

<receiver android:name=".SMSBroadcastReceiver">
<intent-filter>
<action android:name="android.provider.Telephony.SMS_RECEIVED"/>
</intent-filter>
</receiver>

The notification comes in through the standard onRecieve () callback so we check the
action using this code:

if (SMS_RECEIVED.equals (intent.getAction())) {}

This is probably the most complicated line of code in this recipe:

messages[i] = SmsMessage.createFromPdu ((byte[]) pdus[i]);

Basically, it calls the SmsMessage library to create an SMSMessage object from the PDU.
(The PDU, short for Protocol Data Unit, is the binary data format for SMS messages.) If
you're not familiar with the PDU formation, you don't need to be. The SmsMessage library
will take care of it for you and return an SMSMessage object.

If your app is not receiving SMS broadcast messages, an existing
application may be blocking your app. You can try increasing the priority
value in intent-filter as shown here, or disabling/uninstalling the other

app(s):

<intent-filter android:priority="100">
<action android:name=
"android.provider.Telephony.SMS_RECEIVED" />
</intent-filter>

[362]

Telephony, Networks, and the Web Chapter 13

There's more...

This recipe demonstrates displaying SMS messages as they are received, but what about
reading existing messages?

Reading existing SMS messages

First, to read existing messages, you'll need the following permission:

<uses-permission android:name="android.permission.READ_SMS" />

Here's an example of getting a cursor using the SMS content provider:

Cursor cursor = getContentResolver () .query (
Uri.parse ("content://sms/"), null, null, null, null);
while (cursor.moveToNext ()) |
textView.append ("From :" + cursor.getString(l) + " : " +

cursor.getString (11)+"\n");
}

At the time of writing, the SMS content provider has over 30 columns. Here are the first 12,
which are the most useful (remember, the column count starts at zero):

_id
thread_id
address
person
date
protocol
read

status

O X N

type
reply_path_present

[—
= O

. subject
. body

—_
N

[363 1]

Telephony, Networks, and the Web Chapter 13

See also

¢ Developer Docs: SmsManager at
https://developer.android.com/reference/android/telephony/SmsManager.h
tml

¢ Protocol Data Unit (PDU) at
https://en.wikipedia.org/wiki/Protocol_data_unit

e Developer Docs: Telephony.Sms.Intents at
https://developer.android.com/reference/android/provider/Telephony.Sms
.Intents.html

Displaying a web page in your application

When you want to show a web page, you have two choices: call the default browser or
display the content in your app. If you just want to call the default browser, use an Intent as
follows:

Uri uri = Uri.parse ("https://www.packtpub.com/");
Intent intent = new Intent (Intent.ACTION_VIEW, uri);
startActivity (intent);

[364]

https://developer.android.com/reference/android/telephony/SmsManager.html
https://developer.android.com/reference/android/telephony/SmsManager.html
https://en.wikipedia.org/wiki/Protocol_data_unit
https://developer.android.com/reference/android/provider/Telephony.Sms.Intents.html
https://developer.android.com/reference/android/provider/Telephony.Sms.Intents.html

Telephony, Networks, and the Web Chapter 13

If you need to display the content in your own application, you can use WebView. This
recipe will show how to display a web page in your application, as can be seen in this
screenshot:

240 3 E D@

WebView

= Packt> =

Al
NOW

EVERY EBOOK - EVERY VIDEO
$10 FOR A LIMITED TIME

Explore Latest Releases >

Getting ready

Create a new project in Android Studio and call it webView. Use the default Phone &
Tablet options and select Empty Activity in the Add an Activity to Mobile dialog.

How to do it...

We're going to create the WebView through code so we won't be modifying the layout.
We'll start by opening the Android Manifest and following these steps:

1. Add the following permission:

<uses-permission android:name="android.permission.INTERNET"/>

[365]

Telephony, Networks, and the Web Chapter 13

2. Modify the existing onCreate () to include the following code:
WebView webview = new WebView (this);

setContentView (webview) ;
webview.loadUrl ("https://www.packtpub.com/") ;

3. You're ready to run the application on a device or emulator.

How it works...

We create a WebView to use as our layout and load our webpage with 1oadurl (). The
preceding code works, but, at this level, it is very basic and only displays the first page. If
you click on any links, the default browser will handle the request.

There's more...

What if you want full web browsing functionality so any link the user clicks on still loads in
your WebView? Create WebViewClient as shown in this code:

webview.setWebViewClient (new WebViewClient ());

Controlling page navigation

If you want more control over the page navigation, you can create your own
WebViewClient class. If you want to only allow links within your own website, override
the shouldOverrideUrlLoading () callback as shown here:

private class mWebViewClient extends WebViewClient {

@Override
public boolean shouldOverrideUrlLoading (WebView view, String url) {
if (Uri.parse(url) .getHost () .equals ("www.packtpub.com")) {
return false; //Don't override since it's the same host
} else {
return true; //Stop the navigation since it's a different
//site

}

Then, use the following code to set the client:

webview.setWebViewClient (new mWebViewClient ());

[366]

Telephony, Networks, and the Web Chapter 13

How to enable JavaScript

There are many other WebView options we can customize through WebSetting. If you want
to enable JavaScript, get webSettings from the WebView and call
setJavaScriptEnabled (), as shown here:

WebSettings webSettings = webview.getSettings();
webSettings.setJavaScriptEnabled (true);

Enable built-in zoom

Another webSettings option is setBuiltInZoomControls (). Continuing from the
preceding code, just add this:

webSettings.setBuiltInZoomControls (true);

Check the webSettings link in the next section for a large list of additional options.

See also

¢ Developer Docs: WebView at
https://developer.android.com/reference/android/webkit/WebView.html

¢ Developer Docs: webSettings at
https://developer.android.com/reference/android/webkit/WebSettings.htm
1

e Developer Docs: android.webkit at
https://developer.android.com/reference/android/webkit/package—summary
.html

Checking online status and connection type

This is a simple recipe, but one that is very common and will probably be included in every
internet application you build: checking online status. While checking online status, we can
also check the connection type: WIFI or MOBILE.

Getting ready

Create a new project in Android Studio and call it i sOnline. Use the default Phone &
Tablet options and select Empty Activity in the Add an Activity to Mobile dialog.

[367]

https://developer.android.com/reference/android/webkit/WebView.html
https://developer.android.com/reference/android/webkit/WebSettings.html
https://developer.android.com/reference/android/webkit/WebSettings.html
https://developer.android.com/reference/android/webkit/package-summary.html
https://developer.android.com/reference/android/webkit/package-summary.html

Telephony, Networks, and the Web Chapter 13

How to do it...

First, we need to add the necessary permissions to access the network. Then, we'll create a
simple layout with Button and TextView. To get started, open the Android Manifest and
follow these steps:

1. Add the following permissions:

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission
android:name="android.permission.ACCESS_NETWORK_STATE" />

2. Open the activity_main.xml file and replace the existing layout with the
following;:

<?xml version="1.0" encoding="utf-8"?>
<RelativelLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent" >
<TextView
android:id="@+id/textView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="" />
<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Check"
android:layout_centerInParent="true"
android:onClick="getStatus"/>
</Relativelayout>

3. Add this method to check the connection status:

private boolean isOnline () {
ConnectivityManager connectivityManager = (ConnectivityManager)
getSystemService (Context .CONNECTIVITY_SERVICE) ;
NetworkInfo networkInfo =
connectivityManager.getActiveNetworkInfo () ;
return (networkInfo != null && networkInfo.isConnected());

[368]

Telephony, Networks, and the Web Chapter 13

4. Add the following method to handle the button click:

public void getStatus (View view) {
TextView textView = findViewById(R.id.textView);
if (isOnline()) {
ConnectivityManager connectivityManager =
(ConnectivityManager)
getSystemService (Context .CONNECTIVITY_SERVICE) ;
NetworkInfo networkInfo =
connectivityManager.getActiveNetworkInfo () ;
textView.setText (networkInfo.getTypeName ()) ;
} else {
textView.setText ("Offline");
3
3

5. You're ready to run the application on a device or emulator.

How it works...

We created the isonline () method to make it easy to reuse this code.

To check the status, we get an instance of ConnectivityManager to read the
NetworkInfo state. If it reports we are connected, we get the name of the active network
by calling get Type (), which returns one of the following constants:

e TYPE MOBILE

e TYPE_WIFI

e TYPE_ WIMAX

e TYPE_ETHERNET
e TYPE BLUETOOTH

Also, see the ConnectivityManager link later for additional constants. For display
purposes, we call get TypeName (). We could call getType () to get a numeric constant
instead.

There's more...

We can also set it up so our app will be notified when the network status changes.

[369 1]

Telephony, Networks, and the Web Chapter 13

Monitoring network state changes

If your application needs to respond to changes in the network status, take a look
at CONNECTIVITY_ACTION in ConnectivityManager. There are two ways to set up the
filters to be notified of connectivity change events:

e Through the Android Manifest
e Through code

Here's an example of how to include the action in the receiver's intent filter through the
Android Manifest:

<receiver android:name=".MyBroadcastReceiver">
<intent-filter>
<action android:name="android.net.conn.CONNECTIVITY_CHANGE" />
</intent-filter>
</receiver>

Be careful using the Android Manifest as it will notify your app every time the network
state changes, even if your app isn't being used. This can cause unnecessary drain on the
battery.

Apps targeting Android 7.0 and later will no longer

receive CONNECTIVITY_CHANGE when declared in the Manifest. (This is to
prevent unnecessary battery drain). Instead, register the Intent Filter
through code as shown next.

The better solution (and required for Android 7.0 and later) is to register your intent filter
through code. Here is an example:

registerReceiver (mReceiver, new
IntentFilter (ConnectivityManager.CONNECTIVITY_ACTION)) ;

Take a look at the recipe in the file downloads for an example of logging
CONNECTIVITY_CHANGE events.

See also

¢ Developer Docs: ConnectivityManager at
https://developer.android.com/reference/android/net/ConnectivityManage
r.html

e Developer Docs: NetworkInfo at
https://developer.android.com/reference/android/net/NetworkInfo.html

[370]

https://developer.android.com/reference/android/net/ConnectivityManager.html
https://developer.android.com/reference/android/net/ConnectivityManager.html
https://developer.android.com/reference/android/net/NetworkInfo.html

Telephony, Networks, and the Web Chapter 13

Phone number blocking API

A new feature introduced in Android Nougat (API 24) is the ability to handle blocking
phone numbers at the OS level. This provides a consistent experience for the user across
multiple devices with the following:

¢ Blocked Numbers block both incoming calls and text messages
¢ Blocked Numbers can be backed up using the Backup & Restore feature
e All apps on the device share the same Blocked Numbers list

In this recipe, we will look at the code to add a number to block, remove the number, and
how to check whether the number is already blocked.

Getting ready

Create a new project in Android Studio and call it BlockedCallList. In the Target
Android Devices dialog, select the Phone & Tablet option and choose API 24: Android 7.0
Nougat (or higher) for the Minimum SDK. Select Empty Activity in the Add an Activity to
Mobile dialog.

How to do it...

We will start by creating a Ul with an EditText to enter a phone number and three
buttons: Block, Unblock, and isBlocked. To start, open activity_main.xml and follow
these steps:

1. Replace the existing layout with the following XML code:

<?xml version="1.0" encoding="utf-8"7?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res—auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">
<EditText
android:id="Q@+id/editTextNumber"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:inputType="phone"
android:ems="10"

[371]

Telephony, Networks, and the Web

Chapter 13

android:
android:
android:
<Button
android:
android:
android:
android:
android:
android:
android:
<Button
android:
android:
android:
android:
android:
android:
android:
<Button
android:
android:
android:
android:
android:
android:
android:

layout_alignParentTop="true"
layout_centerHorizontal="true"
layout_marginTop="36dp" />

id="@+id/buttonblock"
layout_width="wrap_content"
layout_height="wrap_content"
text="Block"
layout_above="@+id/buttonUnblock"
layout_centerHorizontal="true"
onClick="onClickBlock"/>

id="@+id/buttonUnblock"
layout_width="wrap_content"
layout_height="wrap_content"
text="Block"
layout_centerVertical="true"
layout_centerHorizontal="true"
onClick="onClickUnblock"/>

id="@+id/buttonIsBlocked"
layout_width="wrap_content"
layout_height="wrap_content"
text="isBlocked"
layout_below="@+id/buttonUnblock"
layout_centerHorizontal="true"
onClick="onClickIsBlocked"/>

</Relativelayout>

2. OpenMainActivity.java and add the following code to the class declaration:

private EditText mEditTextNumber;

3. Add the following line of code to the end of the onCreate () method:

mEditTextNumber=findvViewById (R.id.editTextNumber) ;

4. Add the three methods to handle the button clicks:

public void onClickBlock (View view) {

String number = mEditTextNumber.getText ().toString();
if (number!=

null && number.length()>0) {

blockNumber (number) ;

}

public void onClickUnblock (View view) {

String number = mEditTextNumber.getText ().toString();
if (number!=

null && number.length()>0) {

[372]

Telephony, Networks, and the Web Chapter 13

unblockNumber (number) ;

}
public void onClickIsBlocked (View view) {
String number = mEditTextNumber.getText ().toString();
if (number!=null && number.length()>0) A
isBlocked (number) ;

}

5. Add the following function to block the number:

private void blockNumber (String number) {

if (BlockedNumberContract.canCurrentUserBlockNumbers (this)) |

ContentValues values = new ContentValues();

values.put (BlockedNumberContract.BlockedNumbers.COLUMN_ORIGINAL_NUM
BER, number) ;
getContentResolver () .insert (BlockedNumberContract.BlockedNumbers.CO
NTENT_URI, values);

}
}

6. Add the following function to unblock the number:

private void unblockNumber (String number) |
if (BlockedNumberContract.canCurrentUserBlockNumbers (this)) |
ContentValues values = new ContentValues/();
values.put (BlockedNumberContract.BlockedNumbers.COLUMN_ORIGINAL_NUM
BER, number);
Uri uri = getContentResolver ()
.insert (BlockedNumberContract.BlockedNumbers.CONTENT_URI, values);
getContentResolver () .delete(uri, null, null);

}
7. Add the following function to check whether the number is blocked:

public void isBlocked (String number) {
if (BlockedNumberContract.canCurrentUserBlockNumbers (this)) |
boolean blocked =
BlockedNumberContract.isBlocked (this, number) ;

Toast .makeText (MainActivity.this, number + "blocked: " +
blocked,
Toast .LENGTH_SHORT) .show () ;
} else {
Toast .makeText (MainActivity.this, "User cannot perform this
operation",

Toast .LENGTH_SHORT) .show () ;

[373]

Telephony, Networks, and the Web Chapter 13

}
}

8. You're ready to run the application on a device or emulator running at least
Android 7.0.

How it works...

Before we call the BlockedNumberContract APIs, we check to make sure we have
permission by calling canCurrentUserBlockNumbers (), as shown in this code:

if (BlockedNumberContract.canCurrentUserBlockNumbers (this)) {
If true, we make the actual API call.

Important: Only the following apps can read and write to the
BlockedNumber provider: the default SMS application, the default phone
app, and carrier apps. The user can choose their default SMS and Phone

app.
Adding and deleting numbers from the BlockedNumber list uses the standard Service
Provider format.

The Update method is not supported; use the Add and Delete methods instead.

To check whether a number is already in the block list, call the i sBlocked () method,
passing in the current context and the number to check, as we do in this code:

boolean blocked = BlockedNumberContract.isBlocked(this, number);

There's more...

To get the list of all currently blocked numbers, use the following code to create a cursor
with the list:

Cursor cursor = getContentResolver () .query (
BlockedNumberContract .BlockedNumbers.CONTENT_URTI,
new String[]{BlockedNumberContract.BlockedNumbers.COLUMN_ID,
BlockedNumberContract .BlockedNumbers.COLUMN_ORIGINAL_NUMBER,
BlockedNumberContract .BlockedNumbers.COLUMN_E164_NUMBER},
null, null, null);

[374]

Telephony, Networks, and the Web Chapter 13

See also

For more information, see the BlockedNumberContract reference

documentation: https://developer.android.com/reference/android/provider/
BlockedNumberContract

[375]

https://developer.android.com/reference/android/provider/BlockedNumberContract
https://developer.android.com/reference/android/provider/BlockedNumberContract
https://developer.android.com/reference/android/provider/BlockedNumberContract
https://developer.android.com/reference/android/provider/BlockedNumberContract
https://developer.android.com/reference/android/provider/BlockedNumberContract
https://developer.android.com/reference/android/provider/BlockedNumberContract
https://developer.android.com/reference/android/provider/BlockedNumberContract
https://developer.android.com/reference/android/provider/BlockedNumberContract
https://developer.android.com/reference/android/provider/BlockedNumberContract
https://developer.android.com/reference/android/provider/BlockedNumberContract
https://developer.android.com/reference/android/provider/BlockedNumberContract
https://developer.android.com/reference/android/provider/BlockedNumberContract
https://developer.android.com/reference/android/provider/BlockedNumberContract
https://developer.android.com/reference/android/provider/BlockedNumberContract
https://developer.android.com/reference/android/provider/BlockedNumberContract
https://developer.android.com/reference/android/provider/BlockedNumberContract

14

Location and Using Geofencing

In this chapter, we will cover the following topics:

e How to get the device location

¢ Resolving problems reported with the GoogleApiClient
OnConnectionFailedListener

¢ Creating and monitoring a Geofence

Introduction

Location awareness offers many benefits to an app, so many in fact that even desktop apps
now attempt to get the user's location. Location uses ranges from turn-by-turn directions,
"find the nearest" applications, alerts based on location, and there are now even location-
based games that get you out exploring with your device.

The Google APIs offer many rich features for creating location-aware applications and
mapping features. Our first recipe will look at obtaining the last known location on the
device along with receiving updates as the location changes. If you are requesting location
updates for a proximity location, take a look at using the Geofence option instead in the
Create and monitor a Geofence recipe.

All the recipes in this chapter use the Google Libraries. If you have not already downloaded
the SDK Packages, follow the instructions from Google.

Add SDK Packages from
http://developer.android.com/sdk/installing/adding—-

packages.html.

http://developer.android.com/sdk/installing/adding-packages.html
http://developer.android.com/sdk/installing/adding-packages.html

Location and Using Geofencing Chapter 14

Now that you have the location, there's a good chance you'll want to map it as well. This is
another area where Google makes this very easy on Android using the Google Maps APL.
When working with Google Maps, take a look at the Google Maps Activity option when
creating a new project in Android Studio. Instead of selecting Empty Activity, as we
normally do for these recipes, choose Google Maps Activity, as shown in this screenshot:

® Create Mew Project >

A Add an activity to Mobile

Google AdMob Ads Activity Google Maps Activity

Login Activity Master/Detail Flow

I Cancel ‘ | Finish ‘

[377]

Location and Using Geofencing Chapter 14

How to get the device location

This first recipe will show you how to get the last known location. If you've worked with
the Google Location APlIs in the past, then you may notice things have changed. This recipe
shows you the latest API for getting both the last location and updates as the location

changes.

Getting ready

Create a new project in Android Studio and call it GetLocation. Use the default Phone &
Tablet options, and select Empty Activity when prompted for Activity Type.

How to do it...

First, we'll add the necessary permissions to the Android Manifest, then we'll modify
the TextView element to include an ID. Finally, we'll add a method to receive the last
known location callback. Open the Android Manifest and follow these steps:

1. Add the following permission:

<uses-permission
android:name="android.permission.ACCESS_COARSE_LOCATION"/>

[378]

Location and Using Geofencing Chapter 14

2. Under the Gradle Scripts section, open the build.gradle (Module: app) file, as
shown in this screenshot:

GetLastLocation 2 app =~ (& build.gradle
Android ~
¥ B app
> manifests
> java
» % generatedJava
> Izres
¥ (2, Gradle Scripts
(=; build.gradle
(e; build.gradle (Module: app)
|| gradle-wrapper.properties
proguard-rules.pro
ligradle.properties
(e, settings.gradle
jilocal.properties

B 1: Project

0
[

=

=
=

(=}
(0
(&)

@)

3. Add the following statement to the dependencies section:
implementation 'com.google.android.gms:play-services:12.0.1"

4. Open activity_main.xml and update the existing TextView with the
following XML:

<TextView
android:id="@+id/textView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />

5. Add the following code to the existing onCreate () method:

if (ActivityCompat.checkSelfPermission (this,
ACCESS_COARSE_LOCATION)
== PackageManager .PERMISSION_GRANTED) {
getLocation () ;
} else {
ActivityCompat.requestPermissions (this, new String[]

[379]

Location and Using Geofencing Chapter 14

{ACCESS_COARSE_LOCATION}, 1) ;
}

6. Create the getLocation () method as follows:

private void getLocation() throws SecurityException {
LocationServices.getFusedLocationProviderClient (this) .getLastLocati
on ()
.addOnSuccessListener (this, new

OnSuccessListener<Location> () {

@Override

public void onSuccess (Location location) {

final TextView textView =

findvViewById(R.id.textView);

if (location != null) {
textView.setText (DateFormat.getTimeInstance ()
.format (location.getTime()) + "\n"

+ "Latitude=" +
location.getLatitude () + "\n"

+ "Longitude=" +
location.getLongitude());

} else {
Toast .makeText (MainActivity.this, "Location

null", Toast.LENGTH_LONG)

.show () ;

)i
}

7. You're ready to run the application on a device or emulator.

How it works...

This code example uses the latest version (12.0.1, as of this writing) of the Google Play
service's getLastLocation () method. If you've ever used it in the past, you may notice
significant changes in how this API works. It's actually much simpler now as all we have to
do is call the getFusedLocationProviderClient () and pass our listener. Make sure we
check the location in the callback to make sure it's not null. (There are several scenarios that
can result in a null location, such as the device not having a location yet, the user disabled
the location feature, and factory reset.)

[380]

Location and Using Geofencing Chapter 14

The accuracy of the location object we receive is based on our permission setting. We used
ACCESS_COARSE_LOCATION, but if we want higher accuracy, we can
request ACCESS_FINE_LOCATION instead, with the following permission:

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
Make sure to check for the appropriate permission in the checkSelfPermission () call.

Lastly, to keep the code focused on the Location feature, we just do a simple permission
check. In a production application, you should check and request permission as shown

in The Android 6.0 Runtime Permission Model recipe in Chapter 15, Getting Your App Ready for
the Play Store.

There's more...

Testing the location can be a challenge since it's difficult to actually move the device when
testing and debugging. Fortunately, we have the ability to simulate GPS data with the
emulator. (It is possible to create mock locations on a physical device as well, but that's not
as easy.)

Mock locations

There are several ways to simulate locations with the emulator:

¢ Location setting through the emulator
e The Geo command through the ADB shell

To set a mock location in the emulator, follow these steps:

1. Click the more options button (the one with ... at the bottom of the emulator
control options)

2. Select the Location tab in the device window
3. Enter the GPS coordinates in the Longitude and Latitude boxes

[381]

Location and Using Geofencing Chapter 14

Here's a screenshot showing the Location tab:

[JON) I Extended controls - Pixel_2_XL_API_28:5554
9 GPS data point
Coordinate system Decimal Longitude
4 122.3321]
a Currently reported location Latitude
Longitude: 122.3321 47.6062
L Latitude: 47.6062
Altitude: 0.0
Altitude (meters)

© 0.0

U

hd SEND

. GPS data playback
a

(@
G/ Delay (sec) Latitude Longitude Elevation Name Description
[
> Speed 1X LOAD GPX/KML

Note that simulating the location works by sending GPS data. Therefore,
for your app to receive the mock location, it will need to be receiving GPS
data. Testing lastLocation () may not send the mock GPS data since it
doesn't rely solely on the GPS for determining the device location. Try the
mock location with the How to get the device location recipe where we can
request the priority. (We can't force the system to use any specific location
sensor, we can only make a request. The system will choose the optimum
solution to deliver the results.)

[382]

Location and Using Geofencing Chapter 14

See also

o The new Android 6.0 run-time permission model recipe in Chapter 15, Getting Your
App Ready for the Play Store

e Setting up Google Play Services:
https://developers.google.com/android/guides/setup

e The FusedLocationProviderClient interface: https://developers.google.com/
android/reference/com/google/android/gms/location/
FusedLocationProviderClient

Resolving problems reported with the
GoogleApiClient
OnConnectionFailedListener

With the constantly changing nature of Google APIs, your users are likely to attempt to use
your application, but not be able to because their files are out of date. We can use the
GoogleApiAvailability library to display a dialog to help the user resolve the problem.

We'll continue with the previous recipe and add code to the onConnectionFailed()
callback. We'll use the error result to display additional information to the user to resolve
their problem.

Getting ready

Create a new project in Android Studio and call it HandleGoogleAPIError. Use the
default Phone & Tablet options, and select Empty Activity when prompted for Activity
Type. Once you've created the project, add the Google Play library reference to the project
dependencies. (See the previous recipe steps.)

[383]

https://developers.google.com/android/guides/setup
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient

Location and Using Geofencing Chapter 14

How to do it...

The first step for this recipe is to add the Google Play Services library to the project. From
there, we'll create the classes to handle the Google Client callbacks and use toasts to give
feedback. To start, open the build.gradle (Module: app) file and follow these steps (if
you're not sure which file to open, see the screenshot in the previous recipe steps):

1. Add the following statement to the dependencies section:

implementation 'com.google.android.gms:play-services:12.0.1"

2. Open ActivityMain. java and add the following lines to the global class
variables:
private final int REQUEST_RESOLVE_GOOGLE_CLIENT_ERROR=1;

boolean mResolvingError;
GoogleApiClient mGoogleApiClient;

3. Add the following two classes to handle the callbacks:

GoogleApiClient.ConnectionCallbacks mConnectionCallbacks =

new GoogleApiClient.ConnectionCallbacks () {
@Override
public void onConnected (Bundle bundle) {

Toast .makeText (MainActivity.this, "onConnected()",

Toast .LENGTH_LONG) .show () ;
}
@Override
public void onConnectionSuspended(int i) {}

bi

GoogleApiClient.OnConnectionFailedListener
mOnConnectionFailedListener =
new GoogleApiClient.OnConnectionFailedListener () {
@Override
public void onConnectionFailed (ConnectionResult
connectionResult) {
Toast .makeText (MainActivity.this,
connectionResult.toString (), Toast.LENGTH_LONG) .show();
if (mResolvingError) {

return;

} else if (connectionResult.hasResolution()) |
mResolvingError = true;
try {

connectionResult.startResolutionForResult (MainActivity.this,
REQUEST_RESOLVE_GOOGLE_CLIENT_ERROR) ;

[384]

Location and Using Geofencing Chapter 14

} catch (IntentSender.SendIntentException e) {
mGoogleApiClient.connect () ;
}
} else {
showGoogleAPIErrorDialog (connectionResult.getErrorCode());

}
bi

4. Add the following method to the MainActivity class to show the Google API
error dialog:

private void showGoogleAPIErrorDialog(int errorCode) {
GoogleApiAvailability googleApiAvailability =
GoogleApiAvailability.getInstance();
Dialog errorDialog = googleApiAvailability.getErrorDialog(
this, errorCode, REQUEST_RESOLVE_GOOGLE_CLIENT_ERROR) ;
errorDialog.show () ;

}
5. Add the following code to override onActivityResult ():

@Override
protected void onActivityResult (int requestCode, int resultCode,
Intent data) {
if (requestCode == REQUEST_RESOLVE_GOOGLE_CLIENT_ERROR) {
mResolvingError = false;
if (resultCode == RESULT_OK
&& !mGoogleApiClient.isConnecting()
&& !mGoogleApiClient.isConnected()) {
mGoogleApiClient.connect () ;

}
6. Add the following method to set up the GoogleApiClient:

protected void setupGoogleApiClient () {
mGoogleApiClient = new GoogleApiClient.Builder (this)
.addConnectionCallbacks (mConnectionCallbacks)
.addOnConnectionFailedListener (mOnConnectionFailedListener)
.addApi (LocationServices.APTI)
Lbuild() ;
mGoogleApiClient.connect () ;

[385]

Location and Using Geofencing Chapter 14

7. Finally, add this line of code to the end of the existing onCreate () method:
setupGoogleApiClient () ;

8. You're ready to run the application on a device or emulator.

How it works...

Most of the code here is standard setup for the GoogleApiClient with the main addition
of setting up the OnConnectionFailedListener callback. This is where the app goes
from simply failing, to actually helping the end user get it working. Fortunately for us,
Google does most of the work for us by checking the conditions that are causing it to fail, as
well as presenting the Ul to the user. We just have to make sure to check the status Google
reports back to us.

The GoogleAPIClient uses the connectionResult to indicate possible courses of action.
We can call the hasResolution () method, as follows:

connectionResult.hasResolution ()

If the response is t rue, then it's something the user can resolve, such as enabling the
location service. If the response is false, we get an instance of the
GoogleApiAvailability and call the getErrorDialog () method. When finished, our
onActivityResult () callback is called, where we reset mResolvingError and, if
successful, attempt to reconnect.

If you do not have a device with an older Google API for testing, you can
try testing on an emulator with an older Google API version.

[386 1]

Location and Using Geofencing Chapter 14

There's more...

If your application is using fragments, you can get a dialog fragment instead, using this
code:

ErrorDialogFragment errorFragment = new ErrorDialogFragment ();
Bundle args = new Bundle();

args.putInt ("dialog_error", errorCode);
errorFragment.setArguments (args) ;

errorFragment.show (getSupportFragmentManager (), "errordialog");

See also

e Accessing Google APIs:
https://developers.google.com/android/guides/api-client

Creating and monitoring a Geofence

If your application needs to know when the user enters or exits a certain location, there's an
alternative to continuously checking the user location: Geofencing. A Geofence is a location
(latitude and longitude) along with a radius. You can create a Geofence and let the system
notify you when the user enters the location proximity you specified. (Android currently
allows up to 100 Geofences per user.)

Geofence properties include:

Location: The longitude and latitude

Radius: The size of the circle (in meters)

Loitering delay: How long the user may remain within the radius before sending
notifications

Expiration: How long until the Geofence automatically expires

Transition type:
® GEOFENCE_TRANSITION_ENTER

® GEOFENCE_TRANSITION_EXIT
e INITIAL_ _TRIGGER_DWELL

This recipe will show you how to create a Geofence object and use it to create an instance of
GeofencingRequest.

[387]

https://developers.google.com/android/guides/api-client

Location and Using Geofencing Chapter 14

Getting ready

Create a new project in Android Studio and call it Geofence. Use the default Phone &
Tablet options and select Empty Activity when prompted for Activity Type.

How to do it...

We won't need a layout for this recipe as we'll use Toasts and Notifications for the user
interaction. We will need to create an additional Java class for IntentService, which
handles the Geofence alerts. Open the Android Manifest and follow these steps:

1. Add the following permission:

<uses—-permission
android:name="android.permission.ACCESS_FINE_LOCATION"/>

2. Openthebuild.gradle (Module: app) file and add the following statement
to the dependencies section:

implementation 'com.google.android.gms:play-services:12.0.1"

3. Create a new Java class called GeofenceIntentService and extend the
IntentService class. The declaration will look as follows:

public class GeofencelIntentService extends IntentService {

4. Add the following constructor:

public GeofencelntentService () {
super ("GeofencelntentService");

}
5. Add onHandleIntent () to receive the Geofence alert:

@Override
protected void onHandleIntent (Intent intent) {
GeofencingEvent geofencingEvent =
GeofencingEvent.fromIntent (intent);
if (geofencingEvent.hasError()) {
Toast .makeText (getApplicationContext (), "Geofence error
code= "
+ geofencingEvent.getErrorCode (),
Toast .LENGTH_SHORT) .show () ;
return;

[388]

Location and Using Geofencing Chapter 14

int geofenceTransition =
geofencingEvent.getGeofenceTransition();
if (geofenceTransition == Geofence.GEOFENCE_TRANSITION_DWELL) {
Toast .makeText (getApplicationContext (),
"GEOFENCE_TRANSITION_DWELL",
Toast .LENGTH_SHORT) .show () ;

}

6. Open the Android manifest and add the following within the <application>
element, at the same level as the <activity> element:

<service android:name=".GeofenceIntentService"/>
7. OpenMainActivity.java and add the following global variable:
private final int MINIMUM_RECOMENDED_RADIUS=100;

8. Create a PendingIntent with the following method:

private PendingIntent createGeofencePendingIntent () {
Intent intent = new Intent (this, GeofencelntentService.class);
return PendingIntent.getService(this, 0, intent,

PendingIntent .FLAG_UPDATE_CURRENT) ;

3

9. Create the Geofence item with the following method:

private List createGeofencelist () {
List<Geofence> geofencelist = new ArrayList<>();
geofencelist.add (new Geofence.Builder ()
.setRequestId("GeofencelLocation")
.setCircularRegion (
47.6062, //Latitude
122.3321, //Longitude
MINIMUM_RECOMENDED_RADIUS)
.setLoiteringDelay (30000)
.setExpirationDuration (Geofence.NEVER_EXPIRE)
.setTransitionTypes (Geofence.GEOFENCE_TRANSITION_DWELL)
Jbuild());
return geofencelist;

[389]

Location and Using Geofencing Chapter 14

10. Create the Geofence Request with the following method:

private GeofencingRequest createGeofencingRequest () {
GeofencingRequest.Builder builder = new

GeofencingRequest.Builder () ;

builder.setInitialTrigger (GeofencingRequest.INITIAL_TRIGGER_DWELL) ;
builder.addGeofences (createGeofencelList ());
return builder.build();

}
11. Add the following code to the existing onCreate () callback:

if (ActivityCompat.checkSelfPermission (this,
android.Manifest.permission.ACCESS_FINE_LOCATION) ==
PackageManager .PERMISSION_GRANTED) {
GeofencingClient geofencingClient =
LocationServices.getGeofencingClient (this);
geofencingClient.addGeofences (createGeofencingRequest (),
createGeofencePendingIntent ())
.addOnSuccessListener (this, new
OnSuccessListener<vVoid> () {
@Override
public void onSuccess (Void aVoid) {
Toast.makeText (MainActivity.this,
"onSuccess ()", Toast.LENGTH_SHORT) .show () ;
3
H)
.addOnFailurelListener (this, new OnFailureListener () |
@Override
public void onFailure (@NonNull Exception e) {
Toast.makeText (MainActivity.this,
"onFailure(): " + e.getMessage(),
Toast .LENGTH_SHORT) .show () ;
3
)i
} else {
ActivityCompat.requestPermissions (this,
new Stringl]
{android.Manifest.permission.ACCESS_FINE_LOCATION},1);
3

12. You're ready to run the application on a device or emulator.

[390]

Location and Using Geofencing Chapter 14

How it works...

First, we add ACCESS_FINE_LOCATION permission as this is required for Geofencing.

Before we can call the GeofencingApi.addGeofences () method, we have to prepare two
objects:

¢ Geofence Request
¢ Geofence Pending Intent

To create the Geofence Request, we use the GeofencingRequest.Builder. The builder
requires the list of Geofence objects, which are created in the createGeofenceList ()
method. (Even though we are only creating a single Geofence object, the builder requires a
list, so we just add our single Geofence to an ArrayList.) Here is where we set the
Geofence properties:

.setRequestId("GeofenceLocation")
.setCircularRegion (
47.6062, //Latitude
122.3321, //Longitude
MINIMUM_RECOMENDED_RADIUS)
.setLoiteringDelay (30000)
.setExpirationDuration (Geofence.NEVER_EXPIRE)
.setTransitionTypes (Geofence.GEOFENCE_TRANSITION_DWELL)

Only the Loitering delay is optional, but we need it since we are using the DWELL transition.
When calling setTransitionTypes (), we can combine multiple transition types using
the OR operator (using the pipe character). Here's an example using ENTER and EXIT
instead:

.setTransitionTypes (Geofence.GEOFENCE_TRANSITION_ENTER |
Geofence.GEOFENCE_TRANSITION_EXIT)

For this example, we used the same default latitude and longitude as the emulator. Change
these values as needed.

Our call to Geofence.Builder () creates the Geofence object. With the Geofence list
ready, we call the GeofencingRequest .Builder and set our initial trigger to
INITIAL_TRIGGER_DWELL. (If you change the preceding transition types, you may want to
change the initial trigger as well or the creation of our Geofence may fail.)

[391]

Location and Using Geofencing Chapter 14

The second object we need is a Pending Intent, which is how the system will notify our app
when the Geofence criteria are met. (Strictly speaking, the Intent service is not required and
if your app will only be monitoring Geofence responses while in the foreground, you may
not even need it.) Our example displays a toast in response to the Geofence trigger, but this
is where you would customize the response for your app.

With both objects created, we get a reference to GeofencingClient after checking for the
proper permission. Our example only checks for the necessary permission so you need to
manually enable location permission through the app settings. A production app should
prompt the user as needed. (See The Android 6.0 Runtime Permission Model recipe in Chapter
15, Getting Your App Ready for the Play Store for a complete example.)

There's more...

To stop receiving Geofence notifications, you can call the removeGeofences () method
with either the Request ID parameter or PendingIntent. The following example uses the
same PendingIntent method we used for the notification:

geofencingClient.removeGeofences (createGeofencePendingIntent ())
.addOnSuccessListener (this, new OnSuccessListener<vVoid> () {
@Override
public void onSuccess (Void aVoid) {
//Success
}
)
.addOnFailurelListener (this, new OnFailureListener () {
@Override
public void onFailure (@NonNull Exception e) {
//Failuare
}
)i

[392]

Location and Using Geofencing Chapter 14

See also

e The GeofencingClient class at: https://developers.google.com/android/
reference/com/google/android/gms/location/GeofencingClient

e The Geofence.Builder class at:
https://developers.google.com/android/reference/com/google/android/gms
/location/Geofence.Builder.html

e The GeofencingRequest .Builder class at:

https://developers.google.com/android/reference/com/google/android/gms
/location/GeofencingRequest.Builder

[393]

https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingClient
https://developers.google.com/android/reference/com/google/android/gms/location/Geofence.Builder.html
https://developers.google.com/android/reference/com/google/android/gms/location/Geofence.Builder.html
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingRequest.Builder
https://developers.google.com/android/reference/com/google/android/gms/location/GeofencingRequest.Builder

15

Getting Your App Ready for the
Play Store

In this chapter, we will cover the following topics:

e The Android 6.0 Runtime Permission Model
How to schedule an alarm

¢ Receiving notification of device boot

Using AsyncTask for background work

Adding speech recognition to your app

How to add Google sign-in to your app

Introduction

As we approach the end of this book, it's time to add the finishing touches to your
application before releasing it to the Play Store. The recipes in this chapter cover the topics
that can make a difference between users keeping your app or removing it.

Our first recipe, The Android 6.0 Runtime permission model, is certainly an important topic,
possibly being the primary reason Android went from version 5.x to version 6! Changes to
the Android permission model have been requested for some time, so this new model is a
welcome change, at least for users.

Next, we'll take a look at alarms in How to schedule an alarm. One of the primary benefits of
alarms is that the OS is responsible for maintaining the alarm, even when your application
is not running. Since alarms do not persist after rebooting the device, we'll also look at how
to detect a device reboot so you can recreate your alarms in Receiving notification of device
boot.

Getting Your App Ready for the Play Store Chapter 15

Almost any serious Android application will need a way to perform potentially blocking
tasks off the main thread. Otherwise, your app runs the risk of being perceived as sluggish,
or worse, completely unresponsive. AsyncTask was designed to make it easier to create a
background worker task, as we'll demonstrate in the Using AsyncTask for background work
recipe.

If you want your app to benefit from hands-free typing or voice recognition, take a look at
the Adding speech recognition to your app recipe, in which we'll explore the Google Speech
APIL.

Finally, we'll end the chapter with a recipe showing how to make your app more
comfortable and encourage users to log in with the How to add Google sign-in to your app
recipe.

The Android 6.0 Runtime Permission Model

The old security model was a sore point for many in Android. It's common to see reviews
commenting on the permissions an app requires. Sometimes, permissions were unrealistic
(such as a Flashlight app requiring internet permission), but other times, the developer had
good reasons to request certain permissions. The main problem was that it was an all-or-
nothing prospect.

This finally changed with the Android 6 Marshmallow (API 23) release. The new
permission model still declares permissions in the manifest as before, but users have the
option of selectively accepting or denying each permission. Users can even revoke a
previously granted permission.

Although this is a welcome change for many, for a developer, it has the potential to break
the code that was working before. We've talked about this permission change in the
previous recipes, as it has far-reaching implications. This recipe will put it all together to
serve as a single point of reference when implementing this change in your own apps.

Google now requires apps to target Android 6.0 (API 23) and above to be included on the
Play Store. If you haven't already updated your app, apps not updated will be removed by
the end of the year (2018).

Getting ready

Create a new project in Android Studio and call it Runt imePermission. Use the default
Phone & Tablet option and select Empty Activity when prompted for Activity Type.

[395]

Getting Your App Ready for the Play Store Chapter 15

The sample source code sets the minimum API to 23, but this is not required. If your
compileSdkVersion is API 23 or above, the compiler will flag your code for the new

security model.

How to do it...

We need to start by adding our required permission to the manifest, then we'll add a
button to call our check permission code. Open the Android Manifest and follow these

steps:

1. Add the following permission:

<uses-permission android:name="android.permission.SEND_SMS"/>
2. Open activity_main.xml and replace the existing TextView with this button:

<Button
android:id="Q@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Do Something"
android:onClick="doSomething"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

3. OpenMainActivity. java and add the following constant to the class:

private final int REQUEST_PERMISSION_SEND_SMS=1;

4. Add this method for a permission check:

private boolean checkPermission(String permission) {
int permissionCheck =
ContextCompat.checkSelfPermission (
this, permission);
return (permissionCheck ==
PackageManager .PERMISSION_GRANTED) ;
3

5. Add this method to request permission:

private void requestPermission (String permissionName, int
permissionRequestCode) {
ActivityCompat.requestPermissions (this, new

[396]

Getting Your App Ready for the Play Store Chapter 15

String[]{permissionName},
permissionRequestCode) ;

}
6. Add this method to show the explanation dialog:

private void showExplanation (String title, String message,
final String permission,
final int permissionRequestCode) {
AlertDialog.Builder builder = new AlertDialog.Builder (this);
builder.setTitle (title)
.setMessage (message)
.setPositiveButton (android.R.string.ok,
new DialogInterface.OnClickListener () {
public void onClick (DialogInterface
dialog, int id)

requestPermission (permission,
permissionRequestCode);

)i

builder.create () .show();

}
7. Add this method to handle the button click:

public void doSomething (View view) {
if (!checkPermission (Manifest.permission.SEND_SMS)) {
if
(ActivityCompat.shouldShowRequestPermissionRationale (this,
Manifest.permission.SEND_SMS)) {
showExplanation ("Permission Needed", "Rationale",
Manifest.permission.SEND_SMS,
REQUEST_PERMISSION_SEND_SMS) ;
} else {
requestPermission (Manifest.permission.SEND_SMS,
REQUEST_PERMISSION_SEND_SMS) ;
}
} else {
Toast .makeText (MainActivity.this, "Permission (already)
Granted!", Toast.LENGTH_SHORT)
.show () ;

[397]

Getting Your App Ready for the Play Store Chapter 15

8. Override onRequestPermissionsResult () as follows:

@Override
public void onRequestPermissionsResult (int requestCode, String

permissions(],
int[] grantResults) {

switch (requestCode) {
case REQUEST_PERMISSION_SEND_SMS: {
if (grantResults.length > 0 && grantResults[0] ==
PackageManager .PERMISSION_GRANTED) {
Toast.makeText (MainActivity.this, "Granted!",
Toast .LENGTH_SHORT)
.show () ;

} else {

Toast.makeText (MainActivity.this, "Denied!",

Toast . LENGTH_SHORT)
.show () ;

}

return;

}

9. Now, you're ready to run the application on a device or emulator.

How it works...

Using the new Runtime Permission model involves the following;:

1. Check to see whether you have the desired permissions

2. If not, check whether we should display the rationale (meaning that the request
was previously denied)

3. Request the permission; only the OS can display the permission request

4. Handle the request response

Here are the corresponding methods:

® ContextCompat.checkSelfPermission
e ActivityCompat.requestPermissions
e ActivityCompat.shouldShowRequestPermissionRationale

® onRequestPermissionsResult

[398]

Getting Your App Ready for the Play Store Chapter 15

Even though you are requesting permissions at runtime, the desired
permission must be listed in the Android Manifest. If the permission is not
specified, the OS will automatically deny the request.

There's more...

You can grant/revoke permissions through the ADB with the following:

adb shell pm [grant|revoke] <package> <permission-name>

Here's an example to grant the SEND_SMS permission for our test app:

adb shell pm grant com.packtpub.androidcookbook.runtimepermissions
android.permission.SEND_SMS

See also

¢ System Permissions Developer

Docs: https://developer.android.com/guide/topics/security/permissions.
html

e See the following link on how Android 8 (API 26) modified the behavior of how

permissions are granted: https://developer.android.com/about/versions/
oreo/android-8.0-changes#rmp

e For a Kotlin version of this recipe, see Runtime Permission in Kotlin in Chapter
16, Getting Started with Kotlin

How to schedule an alarm

Android provides AlarmManager to create and schedule alarms. Alarms offer the
following features:

e Schedule alarms for a set time or interval

e Maintained by the OS, not your application, so alarms are triggered even if your
application is not running or the device is asleep

[399]

https://developer.android.com/guide/topics/security/permissions.html
https://developer.android.com/guide/topics/security/permissions.html
https://developer.android.com/about/versions/oreo/android-8.0-changes#rmp
https://developer.android.com/about/versions/oreo/android-8.0-changes#rmp
https://developer.android.com/about/versions/oreo/android-8.0-changes#rmp
https://developer.android.com/about/versions/oreo/android-8.0-changes#rmp
https://developer.android.com/about/versions/oreo/android-8.0-changes#rmp
https://developer.android.com/about/versions/oreo/android-8.0-changes#rmp
https://developer.android.com/about/versions/oreo/android-8.0-changes#rmp
https://developer.android.com/about/versions/oreo/android-8.0-changes#rmp
https://developer.android.com/about/versions/oreo/android-8.0-changes#rmp
https://developer.android.com/about/versions/oreo/android-8.0-changes#rmp
https://developer.android.com/about/versions/oreo/android-8.0-changes#rmp
https://developer.android.com/about/versions/oreo/android-8.0-changes#rmp
https://developer.android.com/about/versions/oreo/android-8.0-changes#rmp
https://developer.android.com/about/versions/oreo/android-8.0-changes#rmp
https://developer.android.com/about/versions/oreo/android-8.0-changes#rmp
https://developer.android.com/about/versions/oreo/android-8.0-changes#rmp
https://developer.android.com/about/versions/oreo/android-8.0-changes#rmp
https://developer.android.com/about/versions/oreo/android-8.0-changes#rmp
https://developer.android.com/about/versions/oreo/android-8.0-changes#rmp
https://developer.android.com/about/versions/oreo/android-8.0-changes#rmp
https://developer.android.com/about/versions/oreo/android-8.0-changes#rmp
https://developer.android.com/about/versions/oreo/android-8.0-changes#rmp

Getting Your App Ready for the Play Store Chapter 15

e Can be used to trigger periodic tasks (such as an hourly news update), even if
your application is not running

e Your app does not use resources (such as timers or background services), since
the OS manages the scheduling

Alarms are not the best solution if you need a simple delay while your application is
running (such as a short delay for a Ul event.) For short delays, it's easier and more efficient
to use a Handler, as we've done in several previous recipes.

When using alarms, keep these best practices in mind:

¢ Use as infrequent an alarm timing as possible
¢ Avoid waking up the device

¢ Use as imprecise timing as possible; the more precise the timing, the more
resources required

¢ Avoid setting alarm times based on clock time (such as 12:00); add random
adjustments if possible to avoid congestion on servers (especially important
when checking for new content, such as weather or news)

Alarms have three properties, as follows:

e Alarm type (see in the following list)
e Trigger time (if the time has already passed, the alarm is triggered immediately)
¢ Pending Intent

A repeating alarm has the same three properties, plus an Interval:

e Alarm type (see the following list)

e Trigger time (if the time has already passed, it triggers immediately)
e Interval

¢ Pending Intent

There are four alarm types:

¢ RTC (Real Time Clock): This is based on the wall clock time. This does not wake
the device.

e RTC_WAKEUP: This is based on the wall clock time. This wakes the device if it
is sleeping.

[400]

Getting Your App Ready for the Play Store Chapter 15

e ELAPSED_REALTIME: This is based on the time elapsed since the device boot.
This does not wake the device.

e ELAPSED_REALTIME_WAKEUP: This is based on the time elapsed since the
device boot. This wakes the device if it is sleeping.

Elapsed Real Time is better for time interval alarms, such as every 30 minutes.

Alarms do not persist after device reboots. All alarms are canceled when a
device shuts down, so it is your app's responsibility to reset the alarms on
device boot. (See the Receive notification of device boot recipe for more
information.)

The following recipe will demonstrate how to create alarms with AlarmManager.

Getting ready

Create a new project in Android Studio and call it Alarms. Use the default Phone & Tablet
option and select Empty Activity when prompted for Activity Type.

How to do it...

Setting an alarm requires a Pending Intent, which Android sends when the alarm is
triggered. Therefore, we need to set up a Broadcast Receiving to capture the alarm intent.
Our UI will consist of just a simple button to set the alarm. To start, open the Android
Manifest and follow these steps:

1. Add the following <receiver> to the <application> element at the same level
as the existing <activity> element:

<receiver android:name=".AlarmBroadcastReceiver">
<intent-filter>
<action android:name="com.packtpub.alarms.ACTION_ALARM" />
</intent-filter>
</receiver>

2. Open activity_main.xml and replace the existing TextView with the
following button:

<Button
android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"

[401]

Getting Your App Ready for the Play Store Chapter 15

android:text="Set Alarm"
android:onClick="setAlarm"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_tolLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

3. Create a new Java class called AlarmBroadcastReceiver using the following
code:

public class AlarmBroadcastReceiver extends BroadcastReceiver {
public static final String ACTION_ALARM=
"com.packtpub.alarms.ACTION_ALARM";

@Override
public void onReceive (Context context, Intent intent) {
if (ACTION_ALARM.equals (intent.getAction())) {

Toast .makeText (context, ACTION_ALARM,
Toast .LENGTH_SHORT) .show () ;
}

3
4. Open ActivityMain. java and add the method for the button click:

public void setAlarm(View view) A
Intent intentToFire = new Intent (getApplicationContext (),
AlarmBroadcastReceiver.class);
intentToFire.setAction (AlarmBroadcastReceiver .ACTION_ALARM) ;
PendingIntent alarmIntent =
PendingIntent.getBroadcast (getApplicationContext (), O,
intentToFire, 0);
AlarmManager alarmManager =
(AlarmManager) getSystemService (Context .ALARM_SERVICE) ;
long thirtyMinutes=SystemClock.elapsedRealtime() + 30 * 1000;
alarmManager.set (AlarmManager .ELAPSED_REALTIME, thirtyMinutes,
alarmIntent);

}

5. You're ready to run the application on a device or emulator.

[402]

Getting Your App Ready for the Play Store Chapter 15

How it works...
Creating the alarm is done with this line of code:

alarmManager.set (AlarmManager .ELAPSED_REALTIME, thirtyMinutes,
alarmIntent);

Here's the method signature:

set (AlarmType, Time, PendinglIntent);

Prior to Android 4.4 KitKat (API 19), this was the method to request an
exact time. Android 4.4 and later will consider this as an inexact time for
efficiency, but will not deliver the intent prior to the requested time. (See
setExact () as follows if you need an exact time.)

To set the alarm, we create a Pending Intent with our previously defined alarm action:

public static final String ACTION_ALARM=
"com.packtpub.alarms.ACTION_ALARM";

This is an arbitrary string and could be anything we want, but it needs to be unique, so we
prepend our package name. We check for this action in the Broadcast Receiver's
onReceive () callback.

There's more...

If you click the Set Alarm button and wait for thirty minutes, you will see the Toast when
the alarm triggers. If you are too impatient to wait and click the Set Alarm button again
before the first alarm is triggered, you won't get two alarms. Instead, the OS will replace the
first alarm with the new alarm, since they both use the same Pending Intent. (If you need
multiple alarms, you need to create different Pending Intents, such as using different
Actions.)

Cancel the alarm

If you want to cancel the alarm, call the cancel () method by passing the same Pending
Intent you have used to create the alarm. If we continue with our recipe, this is how it
would look:

alarmManager.cancel (alarmIntent);

[403]

Getting Your App Ready for the Play Store Chapter 15

Repeating alarm
If you want to create a repeating alarm, use the setRepeating () method. The Signature is

similar to the set () method, but with an interval. This is shown as follows:

setRepeating (AlarmType, Time (in milliseconds), Interval, PendingIntent);

For the Interval, you can specify the interval time in milliseconds or use one of the
predefined AlarmManager constants:

e INTERVAL_DAY

e INTERVAL_FIFTEEN_MINUTES
e INTERVAL_HALF_DAY

e INTERVAL_HALF_HOUR

e INTERVAL_HOUR

See also

¢ AlarmManager Developer
Docs: https://developer.android.com/reference/android/app/AlarmManager
.html

Receiving notification of device boot

Android sends out many intents during its lifetime. One of the first intents sent is
ACTION_BOOT_COMPLETED. If your application needs to know when the device boots, you
need to capture this intent.

This recipe will walk you through the steps required to be notified when the device boots.

Getting ready

Create a new project in Android Studio and call it DeviceBoot. Use the default Phone &
Tablet option and select Empty Activity when prompted for Activity Type.

[404]

https://developer.android.com/reference/android/app/AlarmManager.html
https://developer.android.com/reference/android/app/AlarmManager.html

Getting Your App Ready for the Play Store Chapter 15

How to do it...

To start, open the Android Manifest and follow these steps:

1. Add the following permission:

<uses-permission
android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>

2. Add the following <receiver> to the <application> element, at the same
level as the existing <activity> element:

<receiver android:name=".BootBroadcastReceiver">
<intent-filter>

<action
android:name="android.intent.action.BOOT_COMPLETED"/>
<category android:name="android.intent.category.DEFAULT" />

</intent-filter>
</receiver>

3. Create a new Java class called BootBroadcastReceiver using the following
code:

public class BootBroadcastReceiver extends BroadcastReceiver {
@Override
public void onReceive (Context context,

if (intent.getAction () .equals(
"android.intent.action.BOOT_COMPLETED")) <

Toast .makeText (context, "BOOT_COMPLETED",
Toast .LENGTH_SHORT) .show () ;
}

Intent intent) {

}

4. Reboot the device to see the Toast.

How it works...

When the device boots, Android will send the BOOT_COMPLETED intent. As long as our
application has the permission to receive the intent, we will receive notifications in our

Broadcast Receiver.

[405]

Getting Your App Ready for the Play Store Chapter 15

There are three aspects to make this work:

¢ A permission for RECEIVE_BOOT_COMPLETED
¢ Adding both BOOT_COMPLETED and DEFAULT to the receiver intent filter
¢ Checking for the BOOT_COMPLETED action in the Broadcast Receiver

Obviously, you'll want to replace the Toast message with your own code, such as for
recreating any alarms you might need.

There's more...

If you followed the previous recipe, then you already have a Broadcast Receiver. You don't
need a separate BroadcastReceiver for each action, just check for each action as needed.
Here's an example if we need to handle another action:

@Override
public void onReceive (Context context, Intent intent) {
if (intent.getAction() .equals ("android.intent.action.BOOT_COMPLETED"))
{
Toast .makeText (context, "BOOT_COMPLETED",
Toast .LENGTH_SHORT) .show () ;
} else if (intent.getAction() .equals ("<another_action>")) {
//handle another action

See also

e Intent Developer

Docs: https://developer.android.com/reference/android/content/Intent.h
tml

[406]

https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html

Getting Your App Ready for the Play Store Chapter 15

Using the AsyncTask for background work

Throughout this book, we have mentioned the importance of not blocking the main thread.
Performing long running operations on the main thread can cause your application to
appear sluggish, or worse, hang. If your application doesn't respond within about 5
seconds, the system will likely display the Application Not Responding (ANR) dialog with
the option to terminate your app. (This is something you will want to avoid as it's a good
way to get your app uninstalled.)

Android applications use a single thread model with two simple rules, as follows:

e Don't block the main thread
e Perform all UI operations on the main thread

When Android starts your application, it automatically creates the main (or UI) thread. This
is the thread from which all UI operations must be called. The first rule is "don't block the
main thread." This means that you need to create a background, or a worker, thread for any
long-running or potentially-blocking task. This is why all network-based tasks should be
performed off the main thread.

Android offers the following options when working with background threads:

e Activity.runOnUiThread()
® View.post ()

e View.postDelayed()

e Handler

e AsyncTask

This recipe will explore the AsyncTask class; since it was created previously, you won't
have to use the Handler or post methods directly.

Getting ready

Create a new project in Android Studio and call it AsyncTask. Use the default Phone &
Tablet option and select Empty Activity when prompted for Activity Type.

[407]

Getting Your App Ready for the Play Store Chapter 15

How to do it...

We only need a single button for this example. Open activity_main.xml and follow
these steps:

1. Replace the existing TextView with the following button:

<Button
android:id="Q@+id/buttonStart"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Start"
android:onClick="start"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

2. OpenMainActivity. java and add the following global variable:
Button mButtonStart;

3. Add the AsyncTask class:

private class CountingTask extends AsyncTask<Integer, Integer,
Integer> {
@Override
protected Integer doInBackground(Integer... params) {
int count = params[0];
for (int x=0;x<count; x++) {
try {
Thread.sleep (1000);
} catch (InterruptedException e) {
e.printStackTrace();

}

return count;

}

@Override

protected void onPostExecute (Integer returnvVal) {
super.onPostExecute (returnval) ;
mButtonStart.setEnabled (true);

I
4. Add the following code to onCreate () to initialize the button:

mButtonStart=findviewById(R.id.buttonStart);

[408]

Getting Your App Ready for the Play Store Chapter 15

5. Add the method for the button click:

public void start (View view) {
mButtonStart.setEnabled (false);
new CountingTask () .execute (10);

}

6. You're ready to run the application on a device or emulator.

How it works...

This is a very simple example of an AsyncTask just to show it working. Technically, only
doInBackground () is required, but usually, you want to receive notifications when it
finishes, which is done via onPostExecute () .

An AsyncTask works by creating a worker thread for the doInBackground () method,
then responds on the Ul thread in the onPostExecute () callback. Our example uses the
Thread.Sleep() method to put the thread to sleep for the specified time (1000 milliseconds in
our example). Since we call CountingTask with the value 10, the background task is going
to take 10 seconds. This example illustrates that in fact the task is executing in the
background since otherwise, Android would display the ANR dialog after 5 seconds.

It's also important to note how we waited until onPostExecute () is called before we do
any Ul actions (such as enabling the button in our example.) If we attempt to modify the Ul
in the worker thread, the code would either not compile or throw a runtime exception. You
should also note how we instantiated a new CountingTask object on each button click.
This is because an AsyncTask can only execute once. Attempting to call execute again will
also throw an exception.

There's more...

At its minimum, the AsyncTask can be very simple but it is still very flexible with more
options available if you need them. When using an AsyncTask with an Activity, it's
important to understand when the Activity is destroyed and recreated (such as during an
orientation change), the AsyncTask continues to run. This can leave your AsyncTask
orphaned and it might respond to the now destroyed activity (causing a Nul1lPointer
exception). For this reason, it's common to use the AysncTask with a Fragment (which is
not destroyed on screen rotation).

[409]

Getting Your App Ready for the Play Store Chapter 15

Parameter types

For many people, the most confusing aspect of the AsyncTask is the parameters when
creating their own class. If you look at our class declaration, there are three parameters for
the AsyncTask; they are defined as follows:

AsyncTask<Params, Progress, Result >
The parameters are generic types and are used as follows:

e Params: This is the parameter type to call doInBackground ()
¢ Progress: This is the parameter type to post updates
¢ Result: This is the parameter type to post results

When you declare your own class, substitute the parameters with the variable type you
need.

Here's the process flow for the AsyncTask and how the preceding parameters are used:

e onPreExecute (): This is called before doInBackground () begins

e doInBackground (Params): This executes in a background thread

e onProgressUpdate (Progress): This is called (on the Ul thread) in response
to the calling of publishProgress (Progress) in the worker thread

® onPostExecute (Result): This is called (on the Ul thread) when the worker
thread finishes

Canceling the task

To cancel the task, call the cancel method on the object as follows:
< AsyncTask>.cancel (true);

You will need to have the object instance to access the cancel () method. (We did not save
the object in our previous example.) After setting cancel (true), calling isCancelled ()
in doInBackground () will return t rue, allowing you to exit a loop. If cancelled,
onCancelled () will be called instead of onPostExecute ().

[410]

Getting Your App Ready for the Play Store Chapter 15

See also

¢ AsyncTask Developer
Docs: http://developer.android.com/reference/android/os/AsyncTask.html

¢ RXJava for Android is another option and gaining much traction in Android
deveknnnent:https://github.com/ReactiveX/RxAndroid

e Definitely take a look at the Android Architecture Components included with the

Android JetPack: nttps://developer.android.com/topic/libraries/
architecture/

Adding speech recognition to your app

Android 2.2 (API 8) introduced speech recognition in Android, and it continues to improve
with almost every new major Android release. This recipe will demonstrate how to add
speech recognition to your app using the Google Speech service.

Getting ready

Create a new project in Android Studio and call it SpeechRecognition. Use the default
Phone & Tablet option and select Empty Activity when prompted for Activity Type.

How to do it...

We'll start by adding a Speak Now (or microphone) button to the layout, then we'll add the
necessary code to call the speech recognizer. Open activity_main.xml and follow these
steps:

1. Replace the existing TextView with the following XML:

<TextView
android:id="@+id/textView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Hello World!"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

<ImageButton

[411]

https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://github.com/ReactiveX/RxAndroid
https://developer.android.com/topic/libraries/architecture/
https://developer.android.com/topic/libraries/architecture/
https://developer.android.com/topic/libraries/architecture/
https://developer.android.com/topic/libraries/architecture/
https://developer.android.com/topic/libraries/architecture/
https://developer.android.com/topic/libraries/architecture/
https://developer.android.com/topic/libraries/architecture/
https://developer.android.com/topic/libraries/architecture/
https://developer.android.com/topic/libraries/architecture/
https://developer.android.com/topic/libraries/architecture/
https://developer.android.com/topic/libraries/architecture/
https://developer.android.com/topic/libraries/architecture/
https://developer.android.com/topic/libraries/architecture/
https://developer.android.com/topic/libraries/architecture/
https://developer.android.com/topic/libraries/architecture/

Getting Your App Ready for the Play Store Chapter 15

android:id="Q@+id/imageButton"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@android:drawable/ic_btn_speak_now"
android:onClick="speakNow"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_tolLeftOf="parent"
app:layout_constraintRight_toRightOf="parent" />

2. Define the REQUEST_SPEECH constant:
private final int REQUEST_SPEECH=1;
3. Add the following code to the existing onCreate () callback:

PackageManager pm = getPackageManager ();
List<ResolveInfo> activities = pm
.queryIntentActivities (new

Intent (RecognizerIntent .ACTION_RECOGNIZE_SPEECH), 0);
if (activities.isEmpty()) {

findViewById (R.id.imageButton) .setEnabled (false);

Toast .makeText (this, "Speech Recognition Not Supported",
Toast .LENGTH_LONG) .show () ;
}

4. Add the button click method:

public void speakNow (View view) {
Intent intent = new
Intent (RecognizerIntent .ACTION_RECOGNIZE_SPEECH) ;
intent .putExtra (RecognizerIntent .EXTRA_LANGUAGE_MODEL,
RecognizerIntent .LANGUAGE_MODEL_FREE_FORM) ;
startActivityForResult (intent, REQUEST_SPEECH) ;
}

5. Add the following code to override the onActivityResult () callback:

@Override
protected void onActivityResult (int requestCode, int resultCode,
Intent data) {
super.onActivityResult (requestCode, resultCode, data);
if (requestCode==REQUEST_SPEECH && resultCode == RESULT_OK &&
data!=null) {
ArraylList<String> result =
data.getStringArraylListExtra (RecognizerIntent .EXTRA_RESULTS) ;
TextView textView = findViewById (R.id.textView);
if (!'result.isEmpty()) {
textView.setText ("");

[412]

Getting Your App Ready for the Play Store Chapter 15

for (String item : result) {
textView.append (item+"\n") ;

}

}

6. You're ready to run the application on a device or emulator.

How it works...

The work here is done by the Google Speech Recognizer included in Android. To make
sure the service is available on the device, we call PackageManager in onCreate (). If at
least one activity is registered to handle

the RecognizerIntent .ACTION_RECOGNIZE_SPEECH intent, then we know it's available.
If no activities are available, we display a Toast indicating speech recognition is not
available and disable the mic button.

The button click starts the recognition process by calling an intent created with
RecognizerIntent .ACTION_RECOGNIZE_SPEECH. The EXTRA_LANGUAGE_MODEL
parameter is required and has the following two choices:

e LANGUAGE_MODEL_FREE_FORM
e LANGUAGE_MODEL_WEB_SEARCH

We get the result back in the onActivityResult () callback. If the result

equals RESULT_OK, then we should have a list of words recognized, which we can retrieve
using getStringArrayListExtra (). The array list will be ordered starting with the
highest recognition confidence.

If you want to retrieve the confidence rating, retrieve the float array using
EXTRA_CONFIDENCE_SCORES. Here's an example:

float[] confidence =
data.getFloatArrayExtra (RecognizerIntent .EXTRA_CONFIDENCE_SCORES) ;

The confidence rating is optional and may not be present. A score of 1.0 indicates highest
confidence, while 0.0 indicates lowest confidence.

[413]

Getting Your App Ready for the Play Store Chapter 15

There's more...

Using the intent is a quick and easy way to get speech recognition; however, if you would
prefer not to use the default Google activity, you can call the SpeechRecognizer class
directly. Here's an example of how to instantiate the class:

SpeechRecognizer speechRecognizer =
SpeechRecognizer.createSpeechRecognizer (this);

You will need to add the RECORD_AUDIO permission and implement the
RecognitionListener class to handle the speech events. (See the following links for more
information.)

See also

¢ RecognizerIntent Developer
Docs: http://developer.android.com/reference/android/speech/Recognizer
Intent.html

e SpeechRecognizer Developer
Docs: http://developer.android.com/reference/android/speech/SpeechReco
gnizer.html

¢ RecognitionListener Developer
Docs: http://developer.android.com/reference/android/speech/Recognitio
nListener.html

How to add Google sign-in to your app

Google sign in allows your users to sign in to your application using their Google
credentials. This option offers several advantages to your user, including the following:

¢ Confidence because they're using Google
¢ Convenience since they can use their existing account

There are also several advantages for you, the developer:

¢ Convenience of not having to write your own authentication server
e More users logging in to your app

[414]

http://developer.android.com/reference/android/speech/RecognizerIntent.html
http://developer.android.com/reference/android/speech/RecognizerIntent.html
http://developer.android.com/reference/android/speech/SpeechRecognizer.html
http://developer.android.com/reference/android/speech/SpeechRecognizer.html
http://developer.android.com/reference/android/speech/RecognitionListener.html
http://developer.android.com/reference/android/speech/RecognitionListener.html

Getting Your App Ready for the Play Store

Chapter 15

This recipe will walk you through the process of adding Google sign-in to your application.
Here's a screenshot showing the "GoogleSignin" button in the application that we'll create

in the recipe:

6:41 & @

GoogleSignin

G Signin

[415]

Getting Your App Ready for the Play Store Chapter 15

Getting ready

Create a new project in Android Studio and call it GoogleSignIn. Use the default Phone &
Tablet option and select Empty Activity when prompted for Activity Type.

Google sign-in uses the Google Services plugin, which requires a Google Services
Configuration file, which is available from the Google Developer Console. To create the
configuration file, you will need the following information:

¢ Your application package name

* Your signing certificate's SHA-1 hash code (see the Authenticating Your Client link
at the end of the recipe for more information)

When you have the information, log in to this Google link and follow the wizard to enable
sign-in:

https://developers.google.com/identity/sign—-in/android/start-integrating?
refresh=1#configure_a_console_name_project

If you are downloading the source files, you will need to create a new
package name when following the preceding steps, as the existing
package name has already been registered.

How to do it...
After completing the preceding Getting ready section, follow these steps:

1. Copy the google-services. json file you downloaded in the Getting ready
section to your app folder (<project folder>\GoogleSignIn\app)

2. Open the app module Gradle build file, build.gradle (Module: app),and
add the following statement to the dependencies section:

implementation 'com.google.android.gms:play-services-auth:16.0.0"

3. Open activity_main.xml and replace the existing TextVview with the
following XML:

<com.google.android.gms.common.SignInButton
android:id="Q@+id/signInButton"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
app:layout_constraintBottom_toBottomOf="parent"

[416]

https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project
https://developers.google.com/identity/sign-in/android/start-integrating?refresh=1#configure_a_console_name_project

Getting Your App Ready for the Play Store Chapter 15

app:layout_constraintLeft_tolLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

4. OpenMainActivity.java and add the following global declarations:

private final int REQUEST_SIGN_IN=1;
GoogleSignInClient mGoogleSignInClient;

5. Add the following code to the existing onCreate ():

findviewById (R.id.signInButton) .setOnClickListener (new
View.OnClickListener () {
@Override
public void onClick (View view) {
signIn () ;

)i

GoogleSignInOptions googleSignInOptions = new GoogleSignInOptions
.Builder (GoogleSignInOptions.DEFAULT_SIGN_IN)
.requestEmail ()
.build();

mGoogleSignInClient = GoogleSignIn.getClient (this,

googleSignInOptions);

6. Add the signIn () method:

private void signIn() {
Intent signInIntent = mGoogleSignInClient.getSignInIntent ();
startActivityForResult (signInIntent, REQUEST_SIGN_IN) ;

I
7. Create an override for the onActivityResult () callback as follows:

@Override
public void onActivityResult (int requestCode, int resultCode,
Intent data) {

super.onActivityResult (requestCode, resultCode, data);

if (requestCode == REQUEST_SIGN_IN) {
Task<GoogleSignInAccount> task =
GoogleSignIn.getSignedInAccountFromIntent (data);
try {
GoogleSignInAccount account =
task.getResult (ApiException.class);
findViewById (R.id.signInButton) .setVisibility (View.GONE) ;
Toast .makeText (this, "Logged
in:"+account.getDisplayName (), Toast.LENGTH_SHORT)

[417]

Getting Your App Ready for the Play Store Chapter 15

.show () ;
} catch (ApiException e) {
e.printStackTrace();
Toast .makeText (this, "Sign in
failed:"+te.getLocalizedMessage (), Toast.LENGTH_SHORT)
.show () ;

}
}

8. You're ready to run the application on a device or emulator.

How it works...

Google has made it relatively easy to add Google sign-in with their

GoogleSignInClient and GoogleSignInOptions APIs. First, we create a
GoogleSignInOptions object with the builder. This is where we specify the sign-in
options we want, such as requesting email ID. Then, call the GoogleSignIn.getClient ()
method to get the GooglesignInClient.

When the user clicks on the Google sign-in button (created with the
com.google.android.gms.common.SignInButton Class), we send an Intent for
GoogleSignInApi to the handle. We process the result in onActivityResult (). If the
sign-in was successful, we can get the account details. In our example, we just get the email,
but additional information is available such as the following;:

® getDisplayName (): This is the display name
e getEmail (): The email address

getId(): The unique ID for the Google account

getPhotoUrl (): The display photo
e getIdToken (): This is for backend authentication

Refer to the GoogleSignInAccount link in the See also section for a complete list.

[418]

Getting Your App Ready for the Play Store Chapter 15

There's more...

What if you want to check whether the user has already signed in?

GoogleSignInAccount account = GoogleSignIn.getLastSignedInAccount (this);

If the account is not null, then you have the details for the last sign-in.

See also

¢ Google link for authenticating your
client: https://developers.google.com/android/guides/client—auth

¢ GoogleSignInAccount Developer

Docs: https://developers.google.com/android/reference/com/google/andro
id/gms/auth/api/signin/GoogleSignInAccount

[419]

https://developers.google.com/android/guides/client-auth
https://developers.google.com/android/reference/com/google/android/gms/auth/api/signin/GoogleSignInAccount
https://developers.google.com/android/reference/com/google/android/gms/auth/api/signin/GoogleSignInAccount

16

Getting Started with Kotlin

This chapter covers the following recipes:

e How to create an Android project with Kotlin
¢ Creating a Toast in Kotlin

¢ Runtime permission in Kotlin

Introduction

Kotlin is probably the biggest change to come to Android development in the last few
years, since the change from Eclipse to Android Studio anyway. Kotlin was announced by
JetBrains in July 2011 and released as open source in February 2012. Version 1.0 was
released in February 2016, with Google announcing first-class support for the language at
Google I/O 2017. Android Studio 3.0 came with full support for Kotlin already included
(and is the minimum requirement for the following recipes.)

Why Kotlin?

With so many existing languages already available, why did JetBrains create another?
According to their own announcements, they were looking for an alternative to Java. Since
over 70% of their existing code was already in Java, starting from scratch wasn't an option.
They wanted a modern language that was compatible with Java. After comparing the many
options and finding nothing that met all their needs, they decided to create Kotlin. One
interesting aspect of Kotlin is that it was created by developers using the language, and not
academics. Here are some of the features Kotlin brings to Android development:

e Simpler, more concise code
e Full JVM support and can be used anywhere Java is used

e Full support included in the IDE, especially since JetBrains is the creator of both
the Kotlin language and Android Studio

Getting Started with Kotlin Chapter 16

Safer code: Nullability built in to the language
¢ Rising popularity: Many big companies are adopting Kotlin

Modern language: Offers many features found in the latest language offerings

¢ More enjoyable: Many surveys are finding Kotlin to have the highest satisfaction
rating

Hopefully, these reasons are enough to at least take a look at Kotlin, especially since Java
developers can usually follow the code without too much difficulty. As you'll see with the
first recipe in this chapter, it's very easy to add Kotlin support to an Android project.

How to create an Android project with Kotlin

Developing in Kotlin couldn't be easier! As you'll see from the simple step here, full Kotlin
support is already built into the Android Studio IDE.

Getting ready

Kotlin support requires Android Studio 3.0 or later, so there are no additional requirements
needed for this recipe or any of the recipes in this chapter.

How to do it...

It's actually very simple to add Kotlin support to an Android project and you may have
noticed the checkbox already. When creating a new project, Android Studio gives you an
option. In fact, it's so obvious, you may not even notice it anymore so we'll start at the
beginning and show a screenshot. To begin, launch Android Studio and click Start a new
Android project:

1. In the Create Android Project dialog, click the Include Kotlin support checkbox,
as shown here:

[421]

Getting Started with Kotlin Chapter 16

Create Android Project

Application name

MyKotlinProject

Company domain

packtpub.com

Project location

/Users/rick/Repository/com.packtpub/Chapter16/MyKotlinProject

Package name

Include C++ support

v| Include Kotlin support

Cancel

2. That's it! Click through the remaining dialogs and you'll have your first Kotlin
project for Android.

How it works...

The IDE already handles everything you need to do to start developing in Kotlin. Even the
first Activity is now created using Kotlin code, as you can see when you open the
MainActivity.kt file:

class MainActivity : AppCompatActivity () {
override fun onCreate (savedInstanceState: Bundle?) {

super.onCreate (savedInstanceState)
setContentView (R.layout.activity_main)

[422]

Getting Started with Kotlin Chapter 16

As you can see, this is very similar to the Java code. Java developers will likely be able to
read and at least understand Kotlin code. A few items worth mentioning if this is your first
look at Kotlin include that semicolons are not needed for line termination. Another point
worth noting is that variable types comes after the variable name, separated with a colon.
What about that question mark after Bundle? That signifies the variable may be null.

There's more...

If you already have an existing project and want to add Kotlin code, this can be done with
the File | New | Kotlin File/Class menu option, as shown here:

New Java Class

Module

Kotlin File/Class

Android Resource File
Android Resource Directory

Link C++ Project with Gradle

Copy Path f8c Sample Data Directory

Paste RV File
o Scratch File

Find in Path... - 8F Package

Android Studio (3.0 and above) give two options to easily convert Java code to Kotlin:

1. Open a Java file and select the Code | Convert to Kotlin menu item.

2. In Android Studio, copy your Java code to the clipboard, then paste the code into
your Kotlin file. Select Yes when you see the following dialog asking if you want
to convert the code:

[NON) Convert Code From Java
Clipboard content copied from Java file. Do you want to convert it to Kotlin code?

Don't show this dialog next time

See also

Here are some resources to get you started on Kotlin development:

e The Kotlin website: https://kotlinlang.org
¢ The Kotlin GitHub repository: https://github.com/jetbrains/kotlin

[423]

https://kotlinlang.org
https://kotlinlang.org
https://kotlinlang.org
https://kotlinlang.org
https://kotlinlang.org
https://kotlinlang.org
https://kotlinlang.org
https://github.com/jetbrains/kotlin
https://github.com/jetbrains/kotlin
https://github.com/jetbrains/kotlin
https://github.com/jetbrains/kotlin
https://github.com/jetbrains/kotlin
https://github.com/jetbrains/kotlin
https://github.com/jetbrains/kotlin
https://github.com/jetbrains/kotlin
https://github.com/jetbrains/kotlin
https://github.com/jetbrains/kotlin
https://github.com/jetbrains/kotlin

Getting Started with Kotlin Chapter 16

Creating a Toast in Kotlin

Toasts are such a useful tool when developing an application, especially when learning a
new language, that we're going to revisit the Toast. This recipe will show you the Kotlin

way of displaying the very familiar Toast, as shown here:

920 & @ A OV

KotlinToast

SHOW TOAST

First Toast in Kotlin

[424]

Getting Started with Kotlin Chapter 16

Getting ready

Create a new project in Android Studio and call it Kot 1inToast. Use the default Phone &
Tablet options and select Empty Activity when prompted for the Activity

Type. Remember to check the Include Kotlin support checkbox in the Create Android
Project dialog.

How to do it...

We'll keep this simple by using the default Toast layout and focus on the Kotlin code. Start
by opening activity_main.xml and follow these steps:

1. Replace the existing <TextView> element with a <Button> as follows:

<Button

android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Show Toast"
android:onClick="showToast"
app:layout_constraintLeft_tolLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

2. Now, open ActivityMain.kt and add the following code to the existing
onCreate () method:

val button = findViewById<Button> (R.id.button)
button.setOnClickListener {

Toast .makeText (this, "First Toast in Kotlin",
Toast .LENGTH_LONG) .show ()
3

3. Run the program on a device or emulator.

[425]

Getting Started with Kotlin Chapter 16

How it works...

There's really only two parts to showing the Toast: creating the event listener and calling
the Toast itself. We create the event listener using setOnClickListener. It's the same
concept as in Java, just much cleaner code syntax. In the braces, we have code that will be
called. In our example, it's the Toast. This basically looks the same because it's calling the
exact same library, as you'll see if you check the import statement:

import android.widget.Toast

If you've used a Toast in Java, or gone through the Creating a Toast using a custom layout
recipe in chapter 8, Alerts and Notifications, then you'll notice this looks very similar. It is.
But you'll also notice it's much simpler and cleaner code. This is one of the big appeals of
Kotlin. What if you want to create a custom layout, like the earlier Java example? Basically,
it's the same since the resources (the layout XML and drawables) are not Kotlin or Java
specific; they are Android specific. So, use the same resources as the previous example.

See also

e Creating a Toast using a custom layout recipe in Chapter 8, Alerts and
Notifications

Runtime permission in Kotlin

Even though the Runtime permission model was released back in Android 6.0 (API 23), this
topic still receives many queries. Since it's basically a requirement for all future apps, you'll

likely need to implement this in Kotlin as well. Take a look at the previous recipe (see links

below) for information on the APIs and this recipe for the Kotlin code.

Getting ready

Create a new project in Android Studio and call it Kot 1inRuntimePermission. Use the
default Phone & Tablet option, select Empty Activity when prompted for Activity Type,
and remember to check the Include Kotlin support checkbox.

The sample source code sets the minimum API to 23, but this is not required. If
your compileSdkVersion is API 23 or above, the compiler will flag your code for the new
security model.

[426]

Getting Started with Kotlin Chapter 16

How to do it...

We need to start by adding our required permission to the manifest, then we'll add a
button to call our check permission code. Open the Android Manifest and follow these

steps:

1. Add the following permission:

<uses-permission android:name="android.permission.SEND_SMS"/>
2. Open activity_main.xml and replace the existing TextVview with this button:

<Button
android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Do Something"
android:onClick="doSomething"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />

3. Open MainActivity.kt and add the following constant above (outside) the
MainActivity class:

private const val REQUEST_PERMISSION = 1

4. Add this method for a permission check:

private fun checkPermission(permission: String): Boolean {

val permissionCheck = ContextCompat.checkSelfPermission(this,
permission)

return permissionCheck == PackageManager.PERMISSION_GRANTED
}

5. Add this method to request the permission:

private fun requestPermission(permissionName: String,
permissionRequestCode: Int) {
ActivityCompat.requestPermissions (this,
arrayOf (permissionName) ,
permissionRequestCode)

[427]

Getting Started with Kotlin Chapter 16

6. Add this method to show the explanation dialog:

private fun showExplanation(title: String, message: String,
permission: String,
permissionRequestCode: Int) {
val builder = AlertDialog.Builder (this)
builder.setTitle(title)
.setMessage (message)
.setPositiveButton (android.R.string.ok
) { dialog, id -> requestPermission (permission,
permissionRequestCode) }
builder.create () .show ()

}
7. Add this method to handle the button click:

fun doSomething (view: View) {
if (!checkPermission(Manifest.permission.SEND_SMS)) {
if
(ActivityCompat.shouldShowRequestPermissionRationale (this,
Manifest.permission.SEND_SMS)) {
showExplanation ("Permission Needed", "Rationale",
Manifest.permission.SEND_SMS,
REQUEST_PERMISSION)
} else {
requestPermission (Manifest.permission.SEND_SMS,
REQUEST_PERMISSION)
;
} else {
Toast .makeText (this@MainActivity, "Permission (already)
Granted!", Toast.LENGTH_SHORT)
.show ()

}
8. Override onRequestPermissionsResult () as follows:

override fun onRequestPermissionsResult (requestCode: Int,
permissions: Array<String>,
grantResults: IntArray) {
when (requestCode) {
REQUEST_PERMISSION -> {
if (grantResults.isNotEmpty () && grantResults[0] ==
PackageManager .PERMISSION_GRANTED) {
Toast .makeText (this@MainActivity, "Granted!",
Toast .LENGTH_SHORT)
.show ()
} else {

[428]

Getting Started with Kotlin Chapter 16

Toast .makeText (this@MainActivity, "Denied!",
Toast .LENGTH_SHORT)
.show ()

}

return

}

9. Now, you're ready to run the application on a device or emulator.

How it works...

Using the new runtime permission model involves the following:

1. Check to see whether you have the desired permissions

2. If not, check whether we should display the rationale (meaning the request was
previously denied)

3. Request the permission; only the OS can display the permission request
4. Handle the request response

Here are the corresponding methods:

® ContextCompat.checkSelfPermission
e ActivityCompat.requestPermissions
e ActivityCompat.shouldShowRequestPermissionRationale

® onRequestPermissionsResult

Even though you are requesting permissions at runtime, the desired
permission must be listed in the Android Manifest. If the permission is not
specified, the OS will automatically deny the request.

See also

e For the Java version, see the The Android 6.0 Runtime Permission Model recipe in
Chapter 15, Getting Your App Ready for the Play Store

[429]

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Android
Development
with Kotlin

Dowp dive nto the workd of Androld to cret robust
appiications with Kotlin

Mastering Android Development with Kotlin
Milos Vasi¢

ISBN: 9781788473699

¢ Understand the basics of Android development with Kotlin

¢ Get to know the key concepts in Android development

¢ See how to create modern mobile applications for the Android platform
¢ Adjust your application’s look and feel

e Know how to persist and share application database

e Work with Services and other concurrency mechanisms

e Write effective tests

e Migrate an existing Java-based project to Kotlin

https://www.packtpub.com/application-development/mastering-android-development-kotlin

Other Books You May Enjoy

Java
by Building
Android Gan]eg

Learning Java by Building Android Games - Second Edition
John Horton

ISBN: 9781788839150

Set up a game development environment in Android Studio

Implement screen locking, screen rotation, pixel graphics, and play sound effects
Respond to a player’s touch, and program intelligent enemies who challenge the
player in different ways

Learn game development concepts, such as collision detection, animating sprite
sheets, simple tracking and following, Al, parallax backgrounds, and particle
explosions

Animate objects at 60 frames per second (FPS) and manage multiple independent
objects using Object-Oriented Programming (OOP)

Understand the essentials of game programming, such as design patterns, object-
oriented programming, Singleton, strategy, and entity-component patterns
Learn how to use the Android API, including Activity lifecycle, detecting version
number, SoundPool AP, Paint, Canvas, and Bitmap classes

Build a side-scrolling shooter and an open world 2D platformer using advanced
OOP concepts and programming patterns

[431]

https://www.packtpub.com/game-development/learning-java-building-android-games-second-edition

Other Books You May Enjoy

Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

[432]

A

Action Bar
Search icon, addingto 149, 151, 152, 153
setting, as overlay 158
activity
data, passing 23, 24
declaring 8, 11,13, 14
life cycle 33, 34, 36
result, returning 25, 27
starting, with intent object 14, 17, 18
state, saving 27, 29, 30, 31
switching between 18, 20, 22
alarms
canceling 403
repeating 404
scheduling 399, 403
AlertDialog
custom layout 209
icon, adding 208
list, using 208
message box, displaying 206, 207, 208
Android 6.0 Runtime Permission Model 395, 396,
399
Android Manifest
about 14
OpenGL ES, declaring 305
Android N
external storage, accessing with scoped
directories 193, 195
Android project
creating, with Kotlin 421, 423
Android Sensor Framework
about 247
events, using 251, 253
reference link 250
animated image (GIF/WebP)

Index

displaying, with ImageDecoder library 294, 295,
296
animation resources
reference link 270
app full-screen
displaying 154, 155, 157
App Widget Design Guidelines
reference link 148
Application Not Responding (ANR) 188, 265, 407
AsyncTask
canceling 410
parameter types 410
using, for background work 407, 409
audio
playing, with MediaPlayer 327, 329, 331
AudioManager
used, for checking hardware type 335

B

background work
AsyncTask, using 407
button state
showing, with graphics 66, 67, 69

C

cache folder

using 167
camera View

applying, while drawing 312, 315
Camera2 API

camera preview, setting up 347

image, capturing 348

used, for taking picture 340, 343, 346, 347, 348
card flip animation

creating, with Fragment 281, 282, 285, 287
circle image

creating, with ImageDecoder 297, 299, 301

click events
listening for 235, 237
compass
creating, with RotateAnimation 271, 274, 275
creating, with sensor data 271, 274, 275
connection type
checking 367, 369
contextual action bar (CAB) 97
contextual action mode
enabling, for view 97, 100, 101
contextual batch mode
using, with RecyclerView 101, 103, 106
custom component
creating 71, 74
custom layout
used, for creating Toast 202, 204, 206

D

data
accessing, in background with Loader 188, 192
passing, between Fragment 120, 123, 127, 129,
131
passing, to activity 23, 24
storing 160, 162, 163, 164
default camera app
used, for taking photo 336, 338
default video app
calling 339
designated folders
using, for screen-specific resources 69
device boot
notification, receiving 404, 406
device location
obtaining 378, 379, 381, 383
device orientation
current device rotation, obtaining 257
reading 255, 257
drawable animation 259

E

emulator

used, for setting mock location 381
environment sensors 253
existing SMS messages

reading 363

[434]

external storage

accessing, with scoped directories in Android N
193, 195

available space, checking 173

directories, working with 173

file, deleting 173

files, preventing from being included in galleries
173

public folders, obtaining 172

text file, readingto 168, 171

text file, writingto 168, 171

F

Flashlight
creating, with Heads-Up Notification 224, 225,
227,228
floating context menu
creating 97
Fragment back stack
handling 131, 135, 136
Fragment
adding, during runtime 115, 116, 119
callbacks 113
creating 112, 115
data, passing between 120, 123,127, 130, 131
used, for creating card flip animation 281, 282,
285,287
using 112, 115

G

Geofence
creating 387, 389, 392
monitoring 387, 389, 392
gestures
recognizing 237,239
GLSurfaceView.Renderer class
creating 305
GLSurfaceView
shapes, drawing 306, 308, 311
Google sign-in
adding 414,416,419
GoogleApiClient OnConnectionFailedListener
reported problems, resolving 383, 385, 387
graphics
using, to show button state 66, 67, 69

GridLayout 46, 48, 51

H

hardware media controls

responding to 332, 334
Heads-Up Natification

Flashlight, creating 224, 225,227, 228
Home screen widget

creating 140, 141, 142, 144, 146, 147, 148
Home screen

shortcut, creatingon 138, 139, 140

ImageDecoder library
used, for creating circle image 297,299, 301
used, for displaying animated image (GIF/WebP)
294,295,296
images
scaling down 261, 263, 265
Immersive Mode 154
inheritance 77
intent object
used, for starting activity 14, 17, 18
internal storage
text file, readingto 165, 167
text file, writing to 165, 167

K

Kotlin
need for 420
runtime permission 426, 429
Toast, creating 424, 426
used, for creating Android project 421, 423

L

layout
about 37
defining 38, 40
inflating 38, 40
properties, changing during runtime 56, 58
widget, inserting 61, 63, 66
limitations, Android Transition Framework
AdapterView 267
SurfaceView 266

[435]

TextureView 267
TextView 266
LinearLayout
using 44, 45, 46
Loader
used, for accessing data in background 188,
192
long-press events
listening for 235, 237

Media Player Notification

creating 220, 223, 224
MediaPlayer

hardware volume keys, used for controlling app's

audio volume 332

used, for playing audio 327, 329, 331

used, for playing music in background 331
menu items

grouping 92

modifying, during runtime 93, 96

using, to launch an activity 91
menus

modifying, during runtime 93, 96
message box

displaying, with AlertDialog 206, 207, 208
mock locations

setting 381
motion sensors 254
multi-touch gestures

used, for pinch-to-zoom 240, 241, 242
multipart messages

sending 359

N

network state changes
monitoring 370

Notifications
button, adding with addAction() 216
expanded notifications 217, 219
lock screen notifications 219
using, for actions 212,213, 215, 216
using, for lights 212, 213, 215, 216
using, for Sound Redux 212, 213,215, 216
with Direct Reply 230, 232

(o)

online status
checking 367, 369
Open Graphics Library for Embedded Systems
(OpenGL ES)
about 302
declaring, in Android Manifest 305
setRenderMode() option 318
OpenGL ES environment
settingup 303, 304
OpenGL Shading Language (GLSL) 307
OpenGL SurfaceView class
creating, by extending GLSurfaceView 305
options menu
creating 86, 89, 91
submenus, creating 92

P

persistent activity data

preference file, using 32

storing 31, 32
phone call

events, monitoring 353, 355

making 351, 352
phone number blocking API 371, 372, 374
photo

taking, with default camera app 336, 338
picture

taking, with Camera2 API 340, 343, 346, 347,

348

pinch-to-zoom

with multi-touch gestures 240, 241, 242
pop-up menu

creating 108, 110
position sensors 254
progress dialog

displaying 209, 211, 212
projection

applying, while drawing 312, 315
property animation 259
Protocol Data Unit (PDU)

reference link 364

R

RecyclerView
contextual batch mode, using 101, 103, 106
replacing, with ListView 51, 53, 56
RelativeLayout
using 41, 43
RemoteViews
reference 148
Request Code 27
resource files
including, in project 174, 176, 179
RotateAnimation
used, for creating compass 271, 274, 275

S

scenes
defining 266, 268, 270
scoped directories
used, for accessing external storage in Android
N 193,195
screen-specific resources
designated folders, using 69
Search icon
adding, to Action Bar 149, 151, 152, 153
sensor data
reading 251, 253
used, for creating compass 271, 274, 275
sensors
environment sensors 253
listing 246,249
motion sensors 254
position sensors 254
setRenderMode() option 318
shapes
drawing, on GLSurfaceView 306, 308, 311
shortcut
creating, on Home screen 138, 139, 140
removing 140
slideshow
creating, with ViewPager 276, 278, 280
SMS messages
delivery status notification 359
receiving 360, 361, 363
sending 355, 357, 358

[436]

sound effects
playing, with SoundPool 323, 324, 327
SoundBible.com
references 324
SoundPool
used, for playing sound effects 323, 324, 327
speech recognition
adding 411, 414
SQLite database
creating 180, 182, 186
upgrading 187
using 180, 182, 186
Sticky Immersion 157
Storage Access Framework (SAF)
reference link 195
style
applying, to View 75, 77
turning, into theme 78, 79, 80
Swipe-to-Refresh gesture 243, 244, 246
System Ul
dimming 157

T

TableLayout 46, 48, 51

tables

creating 46, 48, 51
tap

recognizing 237, 239
text file

reading, to external storage 168, 171

reading, to internal storage 165, 167

writing, to external storage 168, 171

writing, to internal storage 165, 167
theme

selecting, based on Android version 80, 82, 83
Toast

creating, with custom layout 202, 204, 206
transition animation

applying 266, 268,270

used, for creating zoom animation 287, 289,

292

translucent system bars 158
triangle

moving, with rotation 315, 317
rotating, with user input 318, 320, 321

types, Menu API

action bar 85
ContextualMode 85
options menu 85
pop-up menu 85

U

user input

used, for rotating triangle 318, 320, 321

users

alerting, action used 197, 199, 201
alerting, lights used 197, 199, 201
alerting, Sound Redux used 197, 199, 201

\"

view animation 259
View

style, applying 75, 77

ViewPager

used, for creating setup wizard 280
used, for creating slideshow 276, 278, 280

w

web page

built-in zoom, enabling 367
displaying 364, 366
JavaScript, enabling 367
navigation, controlling 366

widget

creating, at runtime 70, 71
inserting, into layout 61, 63, 66

y4

zoom animation

creating, with transition animation 287, 289, 292
default duration, obtaining 293

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Activities
	Introduction
	Declaring an activity
	Getting ready
	How to do it...
	How it works...

	Starting a new activity with an intent object
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Switching between activities
	Getting ready
	How to do it...
	How it works...
	See also

	Passing data to another activity
	Getting ready
	How to do it...
	How it works...
	There's more...

	Returning a result from an activity
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Saving an activity's state
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Storing persistent activity data
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using more than one preference file

	See also

	Understanding the activity life cycle
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 2: Layouts
	Introduction
	Defining and inflating a layout
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using RelativeLayout
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using LinearLayout
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating tables – TableLayout and GridLayout
	Getting ready
	How to do it...
	How it works...
	There's more...

	RecyclerView replaces ListView
	Getting ready
	How to do it...
	How it works…
	There’s more…

	Changing layout properties during runtime
	Getting ready
	How to do it...
	How it works...

	Chapter 3: Views, Widgets, and Styles
	Introduction
	Inserting a widget into a layout
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using graphics to show button state
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using designated folders for screen-specific resources

	See also

	Creating a widget at runtime
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a custom component
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Applying a style to a View
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Turning a style into a theme
	Getting ready
	How to do it...
	How it works...
	There's more...

	Selecting a theme based on the Android version
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 4: Menus and Action Mode
	Introduction
	Creating an options menu
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using a menu item to launch an activity
	Creating submenus
	Grouping menu items

	See also

	Modifying menus and menu items during runtime
	Getting ready
	How to do it...
	How it works...
	There's more...

	Enabling Contextual Action Mode for a view
	Creating a floating context menu
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using Contextual Batch Mode with RecyclerView
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a pop-up menu
	Getting ready
	How to do it...
	How it works...

	Chapter 5: Fragments
	Introduction
	Creating and using a Fragment
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Adding and removing Fragments during runtime
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Passing data between Fragments
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Handling the Fragment back stack
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 6: Home Screen Widgets, Search, and the System UI
	Introduction
	Creating a shortcut on the Home screen
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a Home screen widget
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Adding Search to the Action Bar
	Getting ready
	How to do it...
	How it works...
	See also

	Showing your app full-screen
	Getting ready
	How to do it...
	How it works...
	There's more...
	Sticky Immersion
	Dimming the System UI
	Setting the Action Bar as an overlay
	Translucent system bars

	See also

	Chapter 7: Data Storage
	Introduction
	Storing simple data
	Getting ready
	How to do it...
	How it works...
	There's more...

	Read and write a text file to internal storage
	Getting ready
	How to do it...
	How it works...
	There's more...
	Caching files

	See also

	Read and write a text file to external storage
	Getting ready
	How to do it...
	How it works...
	There's more...
	Getting public folders
	Checking available space
	Deleting a file
	Working with directories
	Preventing files from being included in galleries

	See also

	Including resource files in your project
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating and using an SQLite database
	Getting ready
	How to do it...
	How it works...
	There's more...
	Upgrading a database

	See also

	Accessing data in the background using a Loader
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Accessing external storage with scoped directories in Android N
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 8: Alerts and Notifications
	Introduction
	Lights, Action, and Sound – getting the user's attention!
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a Toast with a custom layout
	Getting ready
	How to do it...
	How it works...
	See also

	Displaying a message box with AlertDialog
	Getting ready
	How to do it...
	How it works...
	There's more...
	Add an icon
	Using a list
	Custom layout

	Displaying a progress dialog
	Getting ready
	How to do it...
	How it works...
	There's more...

	Lights, Action, and Sound Redux using Notifications
	Getting ready
	How to do it...
	How it works...
	There's more...
	Adding a button to the notification using addAction()
	Expanded notifications
	Lock screen notifications

	See also

	Creating a Media Player Notification
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Making a Flashlight with a Heads-Up Notification
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Notifications with Direct Reply
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 9: Using the Touchscreen and Sensors
	Introduction
	Listening for click and long-press events
	Getting ready
	How to do it...
	How it works...
	There's more...

	Recognizing tap and other common gestures
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Pinch-to-zoom with multi-touch gestures
	Getting ready
	How to do it...
	How it works...

	Swipe-to-Refresh
	Getting ready
	How to do it...
	How it works...
	There's more...

	Listing available sensors – an introduction to the Android Sensor Framework
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Reading sensor data – using Android Sensor Framework events
	Getting ready
	How to do it...
	How it works...
	There's more...
	Environment sensors
	Position sensors
	Motion sensors

	See also

	Reading device orientation
	Getting ready
	How to do it...
	How it works...
	There's more...
	Getting current device rotation

	See also

	Chapter 10: Graphics and Animation
	Introduction
	Scaling down large images to avoid Out of Memory exceptions
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	A transition animation – defining scenes and applying a transition
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a Compass using sensor data and RotateAnimation
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a slideshow with ViewPager
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating a Setup Wizard

	See also

	Creating a Card Flip Animation with Fragments
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a Zoom Animation with a Custom Transition
	Getting ready
	How to do it...
	How it works...
	There's more...
	Getting the default animation duration

	See also

	Displaying animated image (GIF/WebP) with the new ImageDecoder library
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a circle image with the new ImageDecoder
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 11: A First Look at OpenGL ES
	Introduction
	Setting up the OpenGL ES environment
	Getting ready
	How to do it...
	How it works...
	Declaring OpenGL in the Android Manifest
	Extending the GLSurfaceView class
	Creating an OpenGL rendered class

	There's more...

	Drawing shapes on GLSurfaceView
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Applying the projection and camera view while drawing
	Getting ready
	How to do it...
	How it works...
	There's more...

	Moving the triangle with rotation
	Getting ready
	How to do it...
	How it works...
	There's more...
	The render mode

	Rotating the triangle with user input
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 12: Multimedia
	Introduction
	Playing sound effects with SoundPool
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Playing audio with MediaPlayer
	Getting ready
	How to do it...
	How it works...
	There's more...
	Playing music in the background
	Using hardware volume keys to control your app's audio volume

	See also

	Responding to hardware media controls in your app
	Getting ready
	How to do it...
	How it works...
	There's more...
	Checking the hardware type

	See also

	Taking a photo with the default camera app
	Getting ready
	How to do it...
	How it works...
	There's more...
	Calling the default video app

	See also

	Taking a picture using the Camera2 API
	Getting ready
	How to do it...
	How it works...
	Setting up the camera preview
	Capturing the image

	There's more...
	See also

	Chapter 13: Telephony, Networks, and the Web
	Introduction
	How to make a phone call
	Getting ready
	How to do it...
	How it works...
	See also

	Monitoring phone call events
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	How to send SMS (text) messages
	Getting ready
	How to do it...
	How it works...
	There's more...
	Multipart messages
	Delivery status notification

	See also

	Receiving SMS messages
	Getting ready
	How to do it...
	How it works...
	There's more...
	Reading existing SMS messages

	See also

	Displaying a web page in your application
	Getting ready
	How to do it...
	How it works...
	There's more...
	Controlling page navigation
	How to enable JavaScript
	Enable built-in zoom

	See also

	Checking online status and connection type
	Getting ready
	How to do it...
	How it works...
	There's more...
	Monitoring network state changes

	See also

	Phone number blocking API
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 14: Location and Using Geofencing
	Introduction
	How to get the device location
	Getting ready
	How to do it...
	How it works...
	There's more...
	Mock locations

	See also

	Resolving problems reported with the GoogleApiClient OnConnectionFailedListener
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating and monitoring a Geofence
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 15: Getting Your App Ready for the Play Store
	Introduction
	The Android 6.0 Runtime Permission Model
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	How to schedule an alarm
	Getting ready
	How to do it...
	How it works...
	There's more...
	Cancel the alarm
	Repeating alarm

	See also

	Receiving notification of device boot
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using the AsyncTask for background work
	Getting ready
	How to do it...
	How it works...
	There's more...
	Parameter types
	Canceling the task

	See also

	Adding speech recognition to your app
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	How to add Google sign-in to your app
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 16: Getting Started with Kotlin
	Introduction
	How to create an Android project with Kotlin
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a Toast in Kotlin
	Getting ready
	How to do it...
	How it works...
	See also

	Runtime permission in Kotlin
	Getting ready
	How to do it...
	How it works...
	See also

	Other Books You May Enjoy
	Index

