

Continuous Delivery and
DevOps – A Quickstart Guide
Third Edition

Start your journey to successful adoption of CD and DevOps

Paul Swartout

BIRMINGHAM - MUMBAI

Continuous Delivery and DevOps –
A Quickstart Guide
Third Edition
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Gebin George
Acquisition Editor: Rahul Nair
Content Development Editor: Deepti Thore
Technical Editor: Varsha Shivhare
Copy Editor: Safis
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Tom Scaria
Production Coordinator: Deepika Naik

First published: November 2012
Second edition: December 2014
Third edition: October 2018

Production reference: 2191118

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78899-547-4

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Paul Swartout has spent over 2 decades working in the IT industry. He has worked across
several different industries and sectors and within organizations of various sizes, from
start-ups to multinational corporates. He is and always has been passionate about quality
software and how it is delivered. Since first encountering Agile he has been committed to
the adoption and implementation of Agile techniques and approaches to improve the
efficiency, output, and lives of everyone involved in software development. He strongly
believes that CD and DevOps add massive value to the way software is delivered, and he
wants to ensure as many people realize this as possible. Paul lives in a small seaside town
in the southwest of the UK.

Firstly, I would like to say a massive thank you to my darling wife Jane who has yet again
had to put up with a husband who for the past few months has done little more than spend
every spare moment staring at a laptop screen typing things, frowning then typing more
things—things which eventually turned into this book.

A big thank you to John Fisher for allowing me to again include his transition curve
within the book.

Thank you to everyone who purchased and read the first two editions—without you the
opportunity for this third edition would never have come to be.

Lastly I want to thank the global CD and DevOps community for their never ending
commitment, passion, enthusiasm and evangelism to bring this amazing way of working
to the masses. Keep up the good work.

About the reviewers
Mitesh Soni is an avid learner with 10 years of experience in the IT industry. He is an SCJP,
SCWCD, VCP, IBM Urbancode, as well as IBM Bluemix-certified, and a certified Jenkins
Engineer. He loves DevOps and cloud computing, and he also has an interest in
programming in Java. He finds design patterns fascinating and believes that a picture is
worth a thousand words. He occasionally contributes to the clean-clouds and eTutorials
World websites.

He believes in the KISS principle. Yes, you read it right. The KISS (Keep It Simple Stupid)
principle states that simplicity should be a key goal in design and unnecessary complexity
should be avoided. Hence, he follows the KISS principle in life.

Max Manders is a recovering PHP developer and former sysadmin who currently works as
Principal Engineer (DevOps) at FanDuel, the leader in online Daily Fantasy Sports. Max
enjoys discussing distributed systems, availability and scalability, infrastructure as code,
continuous delivery, and automation. With experience of managing large-scale distributed
system configuration with Puppet and Chef, Max has started exploring containerization
with Docker and Kubernetes.

Max was a co-founder and organizer of Whisky Web, a Scottish conference for the web
development and ops community. When he's not writing code or tinkering with the latest
monitoring and operations tools, Max enjoys playing jazz and funk trombone. Max lives in
Edinburgh with his wife Jo, their cats Ziggy and Maggie, and their hedgehog, Pickle.

Sami Rönkä has a background in software business and has been a keen advocate of
DevOps for years. After years of hands-on specialist work, he has moved more into the
business and management side and is currently transforming an MSP business into a more
agile and development-oriented company using DevOps practices. He has also been
reviewing other DevOps-guides for Packt.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: The Evolution of Software Delivery 5
ACME systems – evolution phase 1.0 7

Software-delivery process flow Version 1.0 9
ACME systems evolution phase 2.0 9

Software-delivery process flow Version 2.0 12
An outsider's perspective from the inside 15

ACME systems evolution phase 3.0 16
Software-delivery process flow version 3.0 18

ACME systems beyond Version 3.0 19
The evolution in a nutshell 20
Where am I on the evolutionary scale? 21
Summary 23

Chapter 2: Understanding Your Current Pain Points 24
Elephant in the room 27
Defining the rules 28
Including (almost) everyone 30

Identifying key people 31
Too many cooks 32

Openness, transparency, and honesty 33
Secrets hiding the truth 34
Location, location, location 35
It's all happy-clappy management waffle – isn't it? 36

The great elephant disclosure 38
Tools and techniques to expose the obvious 40

Timeline 41
Value stream mapping 43

Summary 46

Chapter 3: Culture and Behaviors are the Cornerstones to Success 47
All roads lead to culture 48

Defining culture 50
Processes 55
Communications 57
Tools and techniques 58

An open, honest, and safe environment 59
Openness and honesty 60
Courageous dialogue 63

Table of Contents

[ii]

The physical environment 65
Encouraging and embracing collaboration 67
Fostering innovation and accountability at a grass-roots level 70
The blame game 73

Blame slowly, learn quickly 73
Building trust-based relationships across organizational boundaries 76
Rewarding good behaviors and success 78

The odd few 78
Recognizing how Dev and Ops teams are incentivized can have an
impact 79
Embracing change and reducing risk 80

Changing people's perceptions with pudding 81
Being transparent 82
Summary 84

Chapter 4: Planning for Success 85
Some common problems 86
Setting and communicating goals and vision 87
Standardizing vocabulary and language 91
A business change project in its own right 94

Dev + Ops + Org 96
The pros and cons of a dedicated team 98

The importance of evangelism 102
The courage and determination required throughout the organization 104
Understanding the cost 105

Seeking advice from others 106
Summary 107

Chapter 5: Approaches, Tools, and Techniques 108
Engineering best practices 109

Source-control 112
The binary repository 114
Small, frequent, and simple changes 114
Automated builds 116
Test-automation 118

Continuous integration 122
Fail fast and often 124
Architectural approaches 125

Component-based architecture 127
Layers of abstraction 129
Never break your consumer 130
Open and honest peer-working practices 131

Incremental delivery of features 133
Using the same binary across all environments 134
How many environments is enough? 136

Table of Contents

[iii]

Developing against a like-live environment 138
CD and DevOps tooling 140

Automated provisioning 142
No-downtime deployments 144

Monitor, monitor, monitor 146
When a simple manual process is also an effective tool 148

Summary 150

Chapter 6: Avoiding Hurdles 151
What are the potential issues you need to look out for? 152

Dissenters in the ranks 152
No news is no news 155
The change curve 156
The outsiders 159

Corporate guidelines, red tape, and standards 161
Geographically diverse teams 162
Failure during the evolution 164
Processes that are not repeatable 168
Bridging the skills gap 170
Changes in leadership 171
Summary 172

Chapter 7: Vital Measurements 173
Measuring effective engineering best practices 174

Code complexity 178
Unit-test coverage 179
Commit and merge rates 180
Adherence to coding rules and standards 181
Quality metrics 182
Cycle and lead times 184
Quality gates 185
Where to start and why bother? 185

Measuring the real world 186
Measuring the stability of the environments 186

Incorporating automated tests 188
Combining automated tests and system monitoring 189
Real-time monitoring of the software itself 190
Monitoring utopia 191

Effectiveness of CD and DevOps 192
Impact of CD and DevOps 194
Measuring your culture 194

Summary 196

Chapter 8: You Are Not Finished Just Yet 197
Reflecting on where you are now 198
Streaming 199
A victim of your own success 201
[P]lan, [D]o, [C]heck, [A]djust 204

Table of Contents

[iv]

Exit, stage left 206
Resting on your laurels (not) 208
Summary 209

Chapter 9: Expanding Your Opportunity Horizon 210
What about me? 211
Performance and load-testing 212
Reducing feature-flag complexity 214
A/B testing 216
Blue-green deployments 219
Security-patching and bacon-saving 220
Order-out-of-chaos monkey 222
End user self-service 223
Thing as a service 225
Summary 226

Chapter 10: CD and DevOps Beyond Traditional Software Delivery 227
CD, DevOps, and the mobile world 227

Expanding beyond software delivery 229
UX and design 230
Business process improvements 230
Business growth 232
Optimized feedback loops 232

What about me? 233
What have you learned? 234
Summary 235

Appendix A: Some Useful Information 236
Tools 236
People 238
Recommended reading 239
Retrospective games 240

StoStaKee 241
Vital measurements expanded 242

Code complexity – some science 242
Code versus comments 242
Embedding monitoring into your software 243

Other Books You May Enjoy 246

Index 249

Preface
Continuous Delivery (CD) and DevOps have been in the spotlight over the last decade or
so. Much has been written about the technical aspects and tooling of CD and DevOps, yet a
vast number of so-called IT experts don't really understand what they actually are. More
worryingly, they don't seem to know what they are definitely not. Over the pages that
make up this book I will be unpicking both CD and DevOps so that you will gain an
understanding of what they are, how they came to be, and how they can bring true
business value to your business. Strictly speaking, we should consider CD and DevOps as
two complementary yet separate approaches:

Continuous Delivery, as the name suggests, is a way of working whereby quality
products, normally software assets, can be built, tested and shipped in quick
succession—thus delivering value much sooner than traditional approaches.
DevOps is a way of working whereby developers and IT system operators work
closely, collaboratively, and in harmony towards a common goal with little or no
organizational barriers or boundaries between them.

This book will provide you with some insight into how these approaches can help you
optimize, streamline, and improve the way you work and, ultimately, how you ship quality
software. Included in this book are some tricks and tips based on real-world experiences
and observations; they can help you reduce the time and effort needed to implement and
adopt CD and DevOps, which, in turn, can help you reduce the time and effort required to
consistently ship quality software.

In this revised edition, you'll be introduced to the tools, techniques, and approaches that
will assist you in the successful adoption of CD and DevOps. Included within are real-
world examples to help you to understand what adoption of CD and DevOps entails from
the early stage of preparation, through implementation and scaling, to extending beyond
traditional uses, along with some real-world examples and tricks and tips that will help
facilitate adoption. You will be provided with clear and concise insights into what CD and
DevOps are all about and what quantifiable value they can bring to your business and
everyone working within it.

Preface

[2]

Who this book is for
Everyone involved in traditional software delivery, whether they are IT professionals, C-
level executives, product owners, developers, testers, project managers, or the ever
inquisitive tech press, perceive a common problem at some point; delivering quality
software can be very hard, very painful, and very expensive. It needn't be and it shouldn't
be. This book has been written for everyone and anyone who wants to understand how to
overcome these hardships and how CD and DevOps adoption can provide much-needed
pain relief.

What this book covers
Chapter 1, The Evolution of Software Delivery, introduces you to a typical software-based
business and details their evolution from a fledgling start-up, through the growing pains
following acquisition, to the best of both worlds.

Chapter 2, Understanding Your Current Pain Points, introduces you to the tools and
techniques that can be used to determine the current pain points within your software
delivery process and where they stem from.

Chapter 3, Culture and Behaviors are the Cornerstones to Success, highlights the importance of
the "human" factors that must be taken into account if you want CD and DevOps to
succeed.

Chapter 4, Planning for Success, gives you some pointers on how a successful adoption of
CD and DevOps can be defined and how this success can be measured.

Chapter 5, Approaches, Tools, and Techniques, introduces you to the various tools and
techniques (some technical, some not so) that can help with the adoption of CD and
DevOps.

Chapter 6, Avoiding Hurdles, gives you useful insights, tips, and tricks to help you
overcome or avoid the bumps in the road during adoption of CD and DevOps.

Chapter 7, Vital Measurements, focuses on the various metrics and measures that can be
used to monitor and communicate the relative success of CD and DevOps adoption.

Preface

[3]

Chapter 8, You Are Not Finished Just Yet, covers the less-than-obvious tasks that are
important if you want to cement CD and DevOps into your day-to-day work.

Chapter 9, Expanding Your Opportunity Horizon, looks into how to evolve CD and DevOps
once the adoption has taken hold.

Chapter 10, CD and DevOps Beyond Traditional Software Delivery, provides some insight into
how you can reuse CD and DevOps tools, techniques, and approaches beyond software
delivery.

To get the most out of this book
This book is not focused on a specific demographic or specific type of person. If you've
never heard of CD or DevOps, this book will give you an insight into what all the fuss is
about. If you have already set out to adopt CD and/or DevOps, then this book can help by
providing some useful tips and tricks. If you know everything there is to know about
both/either subject, then this book will help reaffirm your choices and might provide some
additional things to chew over. All in all, the target audience is quite broad: anyone who
wants to understand how to painlessly and regularly ship quality software.

Previous knowledge of DevOps practices, CD, or using DevOps tools is not necessary.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it
here: http://www.packtpub.com/sites/default/files/downloads/9781788995474_ColorI
mages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

http://www.packtpub.com/sites/default/files/downloads/9781788995474_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788995474_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788995474_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788995474_ColorImages.pdf

Preface

[4]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
The Evolution of Software

Delivery
As described in the preface, Continuous Delivery (CD) and DevOps are complementary
ways of working. The former gives anyone who delivers customer value via software the
ability to do so rapidly, consistently, and—as the name implies—continuously. The latter
helps harmonize the teams that deliver and support said software. Both approaches can
help you to optimize, streamline, and improve the way you work, and ultimately how you
deliver value by shipping quality software.

It should be pointed out that the true meaning of these approaches have been blurred over
the past decade—be that by tech press misunderstanding or recruitment businesses
wanting to add 10% on salary rates, or software vendors and consultancies wanting to
make their fortune by jumping on the bandwagon.

I have summarized what CD and DevOps are, but before we proceed, it may help if I
highlight what they are not:

Continuous delivery and continuous deployment are not the same—the former
focuses on business value and the latter is the mechanism of shipping software
A DevOps engineer is not a magical wizard. Software engineers and DevOps
engineers are basically the same—the former creates text files that are used to
create software assets and the latter creates text files that create environments
and configuration to run said software
DevOps does not replace traditional system operations activities and
approaches—it extends, complements, and enhances them
DevOps does not remove the need for ensuring your software, and the
environments in which they run are highly secure—although this can ease the
adoption and implementation of SecOps
CD and DevOps are not the silver bullet to remove all of your process and
business issues, although they can help reduce the overall number

The Evolution of Software Delivery Chapter 1

[6]

One thing you need to take into account is that almost all successful software businesses go
through a number of phases of evolution. They normally start life as a small highly-focused
team with good ideas, plenty of ambition, and some investment. As they build their market
share, reach, and revenue, a period of rapid growth normally follows both in terms of
workforce and spend. As the business matures and becomes established, they transition to
the next phase of either continued and substantial growth to keep ahead of the competition,
or make themselves a target for acquisition—this usually depends on how quickly investors
want to see a return.

It's also inevitable that as a business goes through this evolution, the day-to-day business
processes will become more complex, which in turn leads to complexity and pain in terms
of how software is delivered.

The adoption of CD and DevOps can assist in reducing this complexity and pain; however,
the effectiveness and benefits a business can reap are very much dependent on where the
business sits on the evolutionary scale. If you are off the mark, then adoption can be more
trouble than it is worth, and you may end up making things worse for the overall business.
Not only that, but business, are strange and unique creatures—especially those
whose raison d'etre is delivering software solutions—and no two are the same; therefore,
the adoption needs to be uniquely tailored to fit.

The topics we will cover in this chapter are as follows:

A more detailed explanation of the various phases of the evolution of software
delivery
The positives and negatives of each phase
How you can ascertain which phase you are in
The advantages—some unforeseen—that can come from a CD and DevOps way
of working

To make it a little easier to understand what all of this actually means, we'll now dig a little
deeper into these phases by following the evolution of a typical software-based business,
called ACME systems.

The Evolution of Software Delivery Chapter 1

[7]

ACME systems – evolution phase 1.0
ACME started out with a couple of things in common with the many thousands of small
software businesses scattered around the globe: it had some good ideas and a saw gap in
the market that it could exploit to make its fortune. It had a relatively small amount of cash
so it needed to move fast to be able to survive and it needed to quickly entice, enlist, and
retain customers at all costs. It did this by delivering what the customer wants just before
the customer needs it. Deliver too soon, and it may have wasted money on building
solutions that the customer decides they no longer want. Deliver too late, and someone else
may well have taken the company's market share—and the revenue—away. The keyword
here is deliver.

As a small start-up, in the early days, the going is slow and the work is hard: lots of R&D,
frantically-built pre-sales prototypes, quick and dirty deliveries, and unrealistic deadlines.
After many long days, nights, weeks, months, and weekends, things actually start to come
together. The customer base starts to grow and the orders—and revenue—start rolling in.
After a while, the number of employees are in double figures and the founders have
become directors.

So, what has this got to do with CD or DevOps? Well, everything really. The culture,
default behaviors, and engineering practices of a small software house are what would be
classed as pretty good in terms of CD and DevOps. For example:

There are next to no barriers between developers and the operations teams—in
fact, they are generally one and the same
Developers have full access to the production environment and can closely
monitor their software
All areas of the business are focused on the same thing, that being to get software
into the production environment a quickly as possible, thus delighting customers
Speed of delivery is crucial
If things break, everyone swarms around to help fix the problem—even out of
hours
The software evolves quickly and features are added in incremental chunks
The ways of working are normally very agile
Communication and collaboration across the business is efficient and, for the
most part, effective

The Evolution of Software Delivery Chapter 1

[8]

There is a reason for stating that the culture, default behaviors, and engineering practices of
a small software house would be classed as pretty good rather than ideal. This is because
there are many flaws in the way a small software business typically has to operate to stay
alive:

Corners will be cut to hit deadlines, which compromises software design, quality,
and elegance
Application security best practices are given short shrift or even ignored
Engineering best practices are compromised to hit deadlines
The concept of technical debt is pretty much ignored
Testing won't be in the forefront of the developer's mind (even if it were, there
may not be enough time to work in a test-first way)
Source-and version-control systems are not used religiously
With unrestricted access to the production environment, ad hoc and
uncontrolled tweaks and changes can be made to the infrastructure and
environmental setup
Software releasing will be mainly manual and most of the time an afterthought of
the overall system design
At times, a rough and ready prototype may become production code without the
opportunity for refactoring
Documentation is scant or non-existent—any that does exist is probably out of
date
The work-life balance for an engineer working within a small software house
is not sustainable and burn out does happen

Let's have a look at the software-delivery process for ACME systems Version 1.0, which, to
be honest, shouldn't take too long.

The Evolution of Software Delivery Chapter 1

[9]

Software-delivery process flow Version 1.0
The following diagram gives an overview of the simple process used by ACME systems to
deliver software. It's simple, elegant (in a rough-and-ready kind of way), and easy to
communicate and understand:

Overview of ACME Version 1.0 software-delivery process

This very simple process is something that many small software
businesses and start-ups will recognize. From a CD and DevOps
perspective, there are next to no barriers between those building and
delivering the software and those supporting it (we'll cover this later in
this chapter).

Let's move forward a few years and see how ACME systems is doing, and gain some
insight into the benefits and pitfalls of being the leader of the field.

ACME systems evolution phase 2.0
The business has grown in both size and turnover. The customer base is now global and the
ACME software platform is being used by millions of customers on a daily basis. ACME
systems as a business is well-established, well-renowned, and recognized as being at the
forefront in their area of expertise. However, the level of growth and investment has had an
impact on profits—which are still pretty much non-existent.

The Evolution of Software Delivery Chapter 1

[10]

The board of ACME systems are approached by a larger competitor with an acquisition
offer. The board and investors feel this makes good commercial sense and that this will
help stabilize the business for the future so the sale is agreed. On the whole, everyone is
happy with the deal and most see this as positive recognition that they have at last reached
the big time.

At first everything is good—everything is great, in fact. The ACME systems team now has
the backing it needs to invest in the business and be able to scale out and obtain a truly
global reach. It can also focus on the important things, such as building quality software,
scaling out the software platform, investing in new technologies, tools, and R&D. The drier
side of business—administration, program and project management, sales, marketing, and
so on—can be passed to the new parent company that has all of this in place already.

The ACME engineering team moves forward in excited anticipation. The level of
investment is such that the software engineering team doubles in size in a number of
months. The R&D team—as it's now called—introduces new development tools and
processes to enable the speedy delivery of quality software. Agile is adopted across the
R&D team, and the opportunity to fully exploit engineering best practices is realized. The
original ACME platform starts to creak and is showing its age, so further investment is
provided to re-architect and rewrite the software platform using the latest architectural
approaches and technologies. In short, the R&D team feels that it's all starting to come
together and it has the opportunity to do things right.

In parallel to this, the ACME engineering team members who looked after the production
environments are absorbed into the parent's global operations organization. On the face of
it, this seems a very good idea; there are datacenters filled with cutting-edge kit, cloud
capabilities, global network capabilities, and scalable infrastructure. Everything that is
needed to host and run the ACME platform is there. Like the R&D team, the operations
team has more than they could have dreamed of. In addition to the tin and string, the
operations team also has resources available to help maintain quality, control change to the
platform, and ensure the platform is stable and available 24 x 7.

Sitting above all of this, the parent company also has well-established governance, and
program—and project-management functions to control and coordinate the overall end-to-
end product delivery schedule and process.

The Evolution of Software Delivery Chapter 1

[11]

On the face of it, everything seems rosy and the teams are working more effectively than
ever. At first, this is true, but very soon things start to take a downward turn. Under the
surface, things are not all that rosy:

It is getting increasingly difficult to deliver software—what took days now takes
weeks or even months
Releases are getting overly complex and larger as the new ACME platform
rapidly grows and more features are added and changes are made
Despite the advances in re-architecting the ACME platform, there still remain
large sections of buggy legacy code deep within the bowels of the system, which
refuses to die
The R&D team members are now so far removed from the production
environment that they are ignorant as to how the software they are writing
functions or performs, once it eventually goes live
The operations team members are now so far removed from the development
process that they are ignorant to what's being delivered and how it's being
developed
There are many corporate hoops to jump through and process hurdles to
overcome before software changes can go anywhere near the production servers
Quality is starting to suffer as last-minute changes and frantic bug fixes are being
applied to fit into release cycles
Technical debt amassed during the fast and loose days is starting to cause major
issues
More and more R&D resources are being applied to assist in releases, which is
impacting the development of new features
Deployments are causing prolonged production downtime—both planned and
unplanned
Deadlines are being missed, stakeholders are being let down, and trust is being
eroded
The once-glowing reputation is being tarnished

The main problem here, however, is that this attrition has been happening very slowly over
a number of months and not everyone has noticed—they're all too busy trying to deliver.

Let's now revisit the process flow for delivering software and see what's changed since last
we looked—it's not a pretty picture.

The Evolution of Software Delivery Chapter 1

[12]

Software-delivery process flow Version 2.0
As you can see from the following diagram, things have become very complicated for the
ACME team. What was simple and elegant has become complex, convoluted, and highly
inefficient. The number of steps and barriers has increased, making it extremely difficult to
get software delivered. In fact, it's increasingly difficult to get anything done. The following
figure gives you an overview of the ACME Version 2.0 software-delivery process:

Overview of ACME Version 2.0 software-delivery process

The Evolution of Software Delivery Chapter 1

[13]

This far-from-simple process is something that large software businesses
will recognize. Looking again from a CD and DevOps perspective, this
process is far from ideal as there are now many barriers between those
delivering software and those supporting it.

If I'm honest, the process as depicted is actually missing some additional detail in relation
to the change-management hoops that can add more complexity, effort, and pain. Let's add
this detail and look again:

 More realistic overview of ACME Version 2.0 software-delivery process

The Evolution of Software Delivery Chapter 1

[14]

As you can see, things are far from ideal. What was efficient and effective is now the exact
opposite. More importantly, the dialogue, quality of the communication, and trust between
all of those involved in delivering changes is at best fragmented and pretty much non-
existent at worst. What used to be a five-minute chat over a coffee is now a 20-page email
thread, meetings, and Skype chats. The ex-ACME engineering team members are less like
colleagues and more like entrenched combatants.

Not only is the process long-winded, but the chances of a single change getting all the way
through the process without issue is very slim—most of the time, changes have to go
around the loop a number of times before they can be classed as shippable; for example, a
defect found within any part of the process may push the change all the way back to the
beginning of the process.

I mention dialogue, quality of the communication, and trust for a very specific
reason—most of the things you read about and hear in relation to CD and DevOps seem to
imply that some new tooling and best-of-breed architectural approaches will give you what
you need. While this can help, it can also massively hinder—especially when trying to
bring these changes on board whilst a business is going through organizational changes
and/or growth. In the ACME example, too much was changing too quickly for everyone to
understand what was going on and where the journey would end. This inevitably lead to
human nature kicking in and people building up barriers and silos to add some stability
within the chaos.

If you were to take all of this into account, from an outsider's perspective, the process(es)
ACME systems uses to deliver software is now, for all intents and purposes, broken.

OK, so this may be a little over the top, but it just goes to highlight how having a relative
chasm between those involved in the delivery of changes—especially the R&D team
members (who are tasked with delivering much-needed changes and features) and the
operations team members (who are tasked with supporting the live environment into
which the changes will be applied)—can completely derail things.

The Evolution of Software Delivery Chapter 1

[15]

An outsider's perspective from the inside
As was previously stated, not everyone noticed the attrition within the
organization—luckily, a few observant souls did. A small number of the ACME team's
members were aware things are not great and decided to step back and look at things from
an outsider's perspective. They then started to see the issues within the overall process as
clear as day and became determined to expose these issues for all to see. In addition, they
decided to sort the issues out—there was just the small problem of how to do this while
everyone was going at full pelt to get software delivered at all costs in their own silos with
their own problems.

At first, they invested a vast amount of personal time into investigating and building rough
and ready tools, including build and test automation, Continuous Integration (CI), a
continuous-deployment pipeline, and system-monitoring solutions. The intention was to
automate as many parts of the broken process as possible to reduce the pain. They also
applied energies evangelizing within their technically-focused peer groups. Although their
ideas and suggestions were welcomed by the majority, there was not the appetite to adopt
these new-fangled tools—everyone was far too busy trying to ship software within the
broken process. They needed another way.

They decided that they needed some assistance, so they sought out a like-minded manager
with influence within the wider business who could help them get some much-needed
traction. After much cajoling, discussions, and pleading, the manager agreed to help them
to obtain budget to form a small team focusing on advancing the CD and DevOps tooling.
The newly-formed team's members spent a few months identifying and breaking down the
immediate and most painful issues, and built, installed, and implemented tooling to
remove some of the pain—to ease the adoption, many of the tools are bespoke to fit into the
existing processes.

This went some way to address the broken process but the reality is that the tools did not
have the impact they envisaged. In fact, the tools themselves needed to be altered so much
to fit the existing process that they started to become unreliable and too complex, so much
so that those who were originally behind the approach started to question the validity of
their decisions.

Ultimately, there is a much bigger issue that tooling cannot address—the culture of the
organization itself, the behaviors of those within it, and the many disjointed methods of
communication between the disconnected silos that had formed over the years. It became
obvious that all the tools and tea in China will not bring pain relief; something more drastic
was needed.

The Evolution of Software Delivery Chapter 1

[16]

The team's members refocused and soon realized that it's not the tools that need to change
to fit the process, but the process and ways of working that needs to change. If this was
addressed, the tools could simply be taken off the shelf—so to speak—and used without
extensive modification. The team's members have to drastically change their direction,
become less technology-focused, and act more like agents for business change. They then
highlighted this now-obvious fact to as many people as they can up and down the
organization while the influential manager worked to obtain backing from the senior
leadership to implement far-reaching business change. Luckily, their reputation and
standing within the organization was such that getting backing was easy.

We're now going on to the third stage of the evolution, where things start to come back
together and the ACME team regains their ability to deliver quality software when it is
needed.

ACME systems evolution phase 3.0
Now that the CD and DevOps team has official backing from high up, its members start to
address the broken culture and behaviors, and develop ways to overcome and/or remove
the barriers. They are no longer simply a technical team; they are a catalyst for business
change.

The remit is clear—do whatever is needed to streamline the process of software delivery
and make it seamless and repeatable. In essence, implement what we now commonly refer
to as CD and DevOps.

The first thing they do is to go out and talk with as many people across the business as
possible to ensure they are also aware of the broken process and its root causes. Simply put,
if someone is actively involved in the decision-making process of getting software from
conception to consumer, or involved in supporting it when it's live, they are a chat target.
This not only gathers useful information, but also gives the team the opportunity to
evangelize and form a wider network of like-minded individuals.

The team has a vision, a purpose, that its members passionately believe in what needs to be
done, and they have the energy and drive to do it.

The Evolution of Software Delivery Chapter 1

[17]

Over the next few months, they embark on (among other things):

Running various in-depth sessions to understand and map out the end-to-end
product-delivery process
Refining and simplifying the tooling based upon continuous feedback from those
using it—where applicable, replacing in-house built solutions with off-the-shelf
ones
Addressing the complexity of managing dependencies and the order of
deployment
Engaging experts in the field of CD and DevOps to independently assess the
progress being made (or not, as the case may be)
Arranging offsite CD and DevOps training and encouraging both R&D and Ops
team members to attend the training together (it's amazing how much DevOps
collaboration stems from a chat in the hotel bar)
Reducing the many handover and decision-making points throughout the
software-release process
Removing the barriers to allow developers to safely deploy their own software to
the production platform
Working with other business functions to gain trust and help them to refine and
streamline their processes
Removing the us-and-them attitudes and behaviors, and reinforcing trust-based
relationships
Working with R&D and operations teams to experiment with different agile
methodologies, such as Kanban, scrum, and lean
Openly and transparently sharing information and data around deliveries and
progress being made across all areas of the business
Replacing the need for complex performance-testing with the ability for
developers to closely monitor their own software running in the production
environment
Removing the need for downtime to release changes
Evangelizing across all areas of the business to share and sell the overall vision
and value of CD and DevOps

The Evolution of Software Delivery Chapter 1

[18]

This is by no means a walk in the park and it takes determination, steadfast focus, patience,
and, above all, time to produce quantifiable, positive results, however after some months,
the vision and benefits start to be realized. Now the process of building and delivering
software has transformed to the extent that a code change can be built, fully tested, and
deployed to the production platform in minutes many times per day—all at the press of a
button and initiated and monitored by the developer who made the change, all with no
downtime and little/no impact on the customers. The stakeholders have a trusted and
reliable way of delivering value to their customers, the R&D team has the tooling and
empowerment to deliver value as and when it is needed, and the Ops team has a stable and
reliable platform that it can support and optimize.

Let's look again at the software-delivery process flow to see what results have been
realized.

Software-delivery process flow version 3.0
As you can see from the diagram, the process looks much healthier. It's not as simple as
Version 1.0, but it is efficient, reliable, and repeatable. Some much-needed checks and
balances have been retained from Version 2.0 and optimized to enhance rather than impede
the overall process:

Overview of ACME 3.0 software-delivery process

The Evolution of Software Delivery Chapter 1

[19]

This more elegant and well-oiled process is something that a mature yet
modern software business will recognize. The barriers between those
delivering the software and those that support it are there to ensure there
is a degree of control and quality assurance, but both sides benefit from
and embrace them.

This highly efficient process has freed up valuable R&D and operations resources so that
they can focus on what they are best at—developing and delivering new high-quality
features, and ensuring that the production platform is healthy and customers are delighted.

The ACME systems team has got back its mojo and is moving forward with a newfound
confidence and drive. It now has the best of both worlds, and there's nothing stopping it.

ACME systems beyond Version 3.0
The ACME systems team's members have come through their challenges stronger and
leaner but their story doesn't end there. As with any successful business, they don't rest on
their laurels but decide to expand into new markets and opportunities—namely, to build
and deliver mobile-optimized clients to work with and complement their core web-based
propositions.

With all they have learned throughout their evolution, they know they have an optimal
way of working to allow them to deliver quality products that customers want, when they
want them, and they know how to deliver quickly, reliably, and incrementally. However,
the complexities of delivering features to a hosted web-based platform are not the same as
the complexities of delivering features to an end consumer's mobile device—they are
comparable but not the same. For example, the process of delivering code to production
servers many times per day is under the control of the ACME team, whereas they have
little or no control over how their mobile clients are delivered to end customers, nor if and
when the end customer will install the latest and greatest version from the various app
stores onto which the mobile client is published. In addition to this, the production
platform onto which the mobile client will be installed is pretty much an unknown in terms
of spec, performance, and storage.

All is not lost, though—far from it. The members of the ACME systems team have learned a
vast amount throughout their evolutionary journey, and decide to approach this new
challenge as they had done previously. They know they can build, test, and deliver
software with consistent quality. They know how to deliver change incrementally with
little or no impact. They know how to support customers and monitor and react quickly to
change. They know their culture is mature and that the wider organization can work as one
to overcome shared challenges.

The Evolution of Software Delivery Chapter 1

[20]

As the new venture progresses, they also discover another side-effect of their newly
rekindled success: the amount of traffic and transactions start to grow very quickly. They
therefore need to scale out their platform and they need to do it as soon as possible. Rather
than rely on their own datacenters, they decide to move their entire platform to a globally-
distributed cloud-based solution. This brings with it new challenges: the infrastructure is
completely different, the provisioning tools are new, the tools used to build and deliver
software are incompatible with the existing ACME tools. Again, the ACME systems team
take this in stride and forge ahead with confidence using the highly collaborative ways of
working, techniques, and approaches that are now part of their DNA.

Would ACME systems Version 1.0 business have been able to take on
these new challenges and succeeded? It's possible, but the results would
have been mixed, the risks that much greater, and the quality that much
lower. It's pretty obvious that ACME systems Version 2.0 business would
have had major struggles, and by the time the products had hit the
market, they would have been out of date and fighting for market share
with the quicker and leaner competition.

Let's look at what this all means from a holistic point of view.

The evolution in a nutshell
Throughout this chapter, we have been following the evolution of ACME systems: where
they started, the growing pains that came from success, how they discovered that rapid
growth brings with it negatives as well as positives, how they overcame their near
extinction by adopting CD and DevOps, and how they regained their mojo and confidence
to move forward. All of this can be represented by the following simple diagram:

Overview of ACME systems evolution

The Evolution of Software Delivery Chapter 1

[21]

What they also learned—somewhat late in the evolution—was that CD, and DevOps-
adoption has little to do with technical tools and everything to do with how people work
together. Without the changes to the culture and behaviors of everyone involved in the
end-to-end delivery process, it is almost impossible to realize and maximize the benefits
that a successful adoption of CD and DevOps brings. It could be said that if they knew this
simple, yet mostly overlooked, fact from day one, then the adoption would have happened
sooner and the business would have been far stronger far sooner. Hopefully, this will
provide some food for thought for you as you move through the rest of the book.

Where am I on the evolutionary scale?
At the beginning of this chapter, I stated that the effectiveness of adopting CD and DevOps
is very much dependent on where a business sits on the evolutionary scale. We've been
through ACME's evolution and the phases it went through. Please take into account that
ACME is fictional and its story is pretty simplistic. A real-world business is not simple—far
from it—and it is pretty difficult to ascertain where a given business sits on the CD and
DevOps evolutionary scale. Without this information, it's hard to understand how
receptive, responsive, and open to adoption a business actually is.

With that said, there are some simple ways of getting a clearer idea. For example,
the following list of questions can help you get a rough idea. Looking at your business, ask
yourself the following:

Option #1 Option #2 Option #3

Does your business
favor process over
people?

Process People

We don't have
any processes
worth
mentioning.

Do immovable
deadlines in project
plans take precedence
over delivering
quality solutions
incrementally?

Yes, meeting deadlines
is the only thing that
matters.

We have the flexibility
to make small
changes, and re-plan
to ensure quality
doesn't suffer.

We do whatever is
needed to keep
the customer
happy.

Are your projects run
with fixed timescales,
fixed resource, and
fixed scope, or is there
flexibility?

Yes, and this is all
agreed up front, signed
off, and intricately
planned.

No, we have flexibility
in at least one of these
areas.

We do whatever is
needed to keep
the customer
happy.

The Evolution of Software Delivery Chapter 1

[22]

Option #1 Option #2 Option #3

Do your developers
have access to the
production
environment?

No, why would we trust
developers to not screw
things up?

All developers have
secure read-only
access to the live
environments and all
configuration via
specific tools.

Yes, they have full
access to do
whatever is
needed.

Is failure scorned
upon or used as
something to learn
from?

Failure is failure and
there are no
excuses—heads will roll.

We ensure failure will
have a small impact
and learn from our
mistakes.

Failure means no
more business
and we're all out
of a job.

Who is on-call for out-
of-hours production
issues?

The T1 help desk, with
the T2 operations
support and T3
applications support
teams backing them up.

We normally have a
point of contact on call
who can reach out to
anyone they need.

Everyone within
software
engineering

Are you able to ship
code when it is ready
or do you have to wait
for a scheduled
release?

The release team
schedule and agree on
the delivery into
production via the CAB
and transition team
based upon the agreed
program plan.

We trust our
engineers to ship code
using our deployment
tools when they are
confident it is ready
and doesn't
compromise overall
quality.

Our engineers
normally FTP
code to the
production
servers when it's
finished
compiling.

Does your senior
leadership understand
the complexities and
challenges of
delivering software?

They don't know in
detail, but there are
many reports compiled
and generated by the
PMO which are
regularly reviewed
during project-review
meetings.

They all have access to
tools which give
visibility of the
various projects and
metrics representing
progress.

They don't have
the time or
inclination to
understand
this—they expect
stuff gets done.

Do the engineering
teams have an
understanding of how
the business is doing
from a commercial
perspective?

All of the top-level
financial information is
compiled and published
by the CFO to the
company intranet every
6-12 months.

They all have access to
the tools that give
visibility of the
current KPIs and
metrics representing
progress.

They don't, but as
long as they get
paid, that should
be enough.

The Evolution of Software Delivery Chapter 1

[23]

Does the engineering
team have access to
customer feedback?

This is normally
collected and vetted by
the customer service
team and raised as
defect or enhancement
requests.

Customer feedback is
captured via specialist
tools and available to
all.

Yes, this normally
relates to defects
and bugs that
need fixing.

If you were to apply these to the ACME business at certain points through
their evolution, you would find that the Version 1.0 business would
mostly answer 3, the version 2.0 business would mostly answer 1, and the
highly-evolved version of the business would mostly answer 2.

The preceding is simply an example that gives you and insight into how you can—at a very
holistic viewpoint—ascertain how mature the business is and where it sits within the CD
and DevOps evolutionary scale. You will no doubt have some additional, complimentary,
or more relevant questions you could use. However, if you follow a similar format, you will
be able to get a feel for where things sit, and more importantly, what areas need the most
focus. You should widen the net as much as possible to get a view from as many parts of
your business as possible—that way, you won't come across surprises when you decide to
take the plunge.

Summary
The ACME systems evolution story is not atypical of the many software businesses out
there today. No doubt, you will recognize and relate to some of the traits and challenges
detailed in the ACME journey, and you should now be able to plot where your business (or
your client's/partner's business) currently sits within the CD and DevOps evolutionary
scale. You also got a holistic view of what CD and DevOps is and what it isn't.

We'll now move from storytelling mode and start to look in more detail at some of the
practical aspects of adopting CD and DevOps, starting with how you identify the
underlying problems that can (and do) stifle the delivery of quality software.

In Chapter 2, Understanding Your Current Pain Points, we'll be looking into how you go
about identifying the problems and issues within their Software Delivery Life Cycle
(SDLC) and highlight some tools, techniques, and approaches to surface said problems and
issues so that they can be fixed.

2
Understanding Your Current

Pain Points
In Chapter 1, The Evolution of Software Delivery, you were introduced to ACME systems and
given an insight into how it realized that there were problems with its software delivery
process (severely impacting its ability to meet the expectations of its customers and deliver
value to them), how it identified and addressed these problems, evolved, and after some
hard work, determination, and time, adopted CD and DevOps ways of working to
overcome them.

The story based upon a fictional business is pretty simplistic and linear to make it easier for
you the reader to follow. Real life is never that simple, but there are a number of key points
that were raised during the storytelling that do apply to real-life businesses. The most
important of these for any business considering—or actively pursuing—the adoption of CD
and/or DevOps is that there has to be a reason for said adoption. CD and DevOps, like any
solution, can help you solve a problem—or set of problems—but you need to truly
understand and quantify the problem(s) beforehand; otherwise, you'll never know for sure
whether the solution has helped.

Understanding Your Current Pain Points Chapter 2

[25]

Just as ACME systems did, you need to take the time and make the effort to, as the well-
used agile term states, inspect before you can adapt.

Your first reaction to this may be that you don't have any problems and that everything is
working well and everyone involved with your software delivery process is highly
effective, engaged, and motivated. If that is indeed true, then one of the following has
happened:

You have achieved software delivery utopia and as such don't need to read any
further beyond this point
You are in denial
You do not fully understand how efficient and streamlined software delivery can
(should) actually be

It's more likely that you have a workable process for delivering software but there are
certain areas within the overall process—maybe certain teams or individuals—that slow
things down. This is most probably not intentional; maybe there are certain rules and
regulations that need to be adhered to, maybe there are certain quality gates that are
needed, maybe no one has ever questioned why certain things have to be done in a certain
way and everyone carries on regardless, or maybe no one has highlighted how important
releasing software actually is.

Understanding Your Current Pain Points Chapter 2

[26]

Something else to take into account is the fact that different people within your
organization will see (or not see) a given problem in different ways. Let's go back to ACME
for a moment and examine the views of three personas (Stan the manager, Devina the
developer, and Oscar the ops guy) in relation to having the software releases wholly
controlled by the operations team:

Understanding Your Current Pain Points Chapter 2

[27]

As you can see, different people will have wildly different views depending on what part
they play in the overall process. Again, for ease of understanding, this example only
features three personas—in reality there will be many more people who will all have their
own slightly different viewpoint; consider how a project manager, release manager, tech
writer, SecOps, or even a CEO would see this specific scenario.

For the sake of argument, let's assume that you do indeed have some problems releasing
your software with ease and want to understand what the root cause is—or most likely the
root causes are—so that you can make the overall process more efficient, effective, and
streamlined. As stated, before you can adapt you need to inspect—this is the fundamental
premise of most agile methodologies. The following chapter will surface some of the
approaches and techniques that will help in this.

Throughout this chapter we will explore the following topics:

How to identify potential issues and problems within your software delivery
process
How to surface them without resorting to the blame-game
How it can sometimes be tough to be honest and open, but that doing so
provides the best results
How different people within your organization will see the same problem(s) in
different ways

Before we start looking into how to inspect, I would like to go off on a slight tangent and
talk about a large (normally) gray mammal.

Elephant in the room
Some of us have a very real and worrying ailment that blights our working lives, elephant
in the room blindness—or to give it its medical name, Pachyderm in situ vision
impairedness. Those inflicted are aware of a big problem or issue that is in their way,
impeding their progress, efficiency, and willingness to engage and draining their morale.
What do these poor souls normally do? They normally choose to either simply accept it or
worse still, ignore it—depending on the size of the problem. Those that don't bury their
heads in the sand, so to speak, then find ingenious ways to work around, circumvent, or
avoid said problem by making very localized changes to how they work. Sometimes, at the
detriment to others. In fact, they normally invest a lot of effort, time, and money in building
these ingenious solutions and then convince themselves and their leadership that this is the
best thing to do.

Understanding Your Current Pain Points Chapter 2

[28]

To stretch this metaphor a little more—please bear with me, there is a point to this—I
would like to turn to the world of art. The artist Banksy exhibited a piece of living artwork
as part of his 2006 Barely Legal exhibition in Los Angeles. This living artwork was in the
form of an adult Indian elephant standing in a makeshift living room with floral print on
the walls. The elephant was also painted head to toe with the same floral pattern. The piece
was entitled—as luck would have it—elephant in the room. It seems ludicrous at first and
you can clearly see that there is a massive 12,000 lb. elephant standing there; while it has
been painted to blend in with its surroundings, it is still a massive elephant stood there in
plain sight. This brings me to my point, the problems and issues within a software delivery
process are just like the elephant and it is just as ludicrous that we simply ignore—or accept
without question—their existence.

Just like real life, the software delivery process elephant in the room is not
hard to spot. It's normally sitting/standing/lurking where everyone can
see. You just need to be willing to look, know how to look, and what to
look for. Once you've mastered this, exposing it's existence is far easier.

Through the remainder of this chapter, we'll go through some ways to help highlight the
existence of the elephant in the room and, more importantly, how to ensure as many people
as possible can also see it and realize that it's not something to be avoided, worked around,
or ignored.

Before you start removing the figurative floral pattern from the figurative elephant, there's
still some legwork you need to do.

Defining the rules
With any examination, expose, investigation, or inspection there will be, to some degree,
dirt that will need to be dug up—figuratively speaking. This is inevitable and should not be
taken lightly or treated flippantly. The sort of questions that will be asked will include the
following:

Why are things done in certain ways?
Who came up with this process in the first place?
Who makes the priority decisions to do one thing over another and what right to
they have to make the decision?
When exactly are these decisions made?
Who owns the overall product delivery process?
Who owns the various steps within the process?
Has anyone previously questioned the process? If so, what happened?

Understanding Your Current Pain Points Chapter 2

[29]

Does anyone actually know how the process works end to end?
Why can't the management see the obvious issues and why don't they listen to
us?

These types of questions may well make some people very uncomfortable and may bring to
light facts that produce emotive responses or emotional reactions—especially from those
that may have originally had a hand in designing and/or implementing the very process
that you are putting under scrutiny. Even if they can see and understand that the process
they nurtured is broken, they still may have an emotional attachment to it—especially if
they have been involved for a long time. You need to be mindful that these self-same
people may be needed to help replace and/or refine the process, so tread carefully.

To keep things on a purely professional level, you should map out some ground rules that
clearly define what the investigation is for and what its goal is. These need to be clear,
concise, and easy for everyone involved to understand and worded in a positive way. The
sorts of things you should be looking at are as follows:

We're trying to understand how the end to end process as it stands came to be
We need to understand what business/legislative/legal constraints there are
We need to see how the many and varied process link together to form the end to
end process
We need to verify if our process(es) actually work for us and the wider business
We want to surface issues and problems so that everyone can see them and help
fix them
We want to make things better

To further ensure you minimize the emotional reactions, you should define some rules of
engagement so that everyone involved understands where the line is and when it is about
to be crossed. Again, keeping these rules simple, concise, and using positive language will
help everyone understand and remember them. Good examples would include the
following:

No naming and shaming
No personal attacks or witch hunting
This is not a post mortem
There are no right or wrong answers
No detail is too trivial
Stick to facts over fiction
Leave egos at the door

Understanding Your Current Pain Points Chapter 2

[30]

Retrospection can be a powerful tool to gain a greater understanding of
what can be improved, but if used incorrectly it can cause more trouble
than good—you can shoot yourself in the foot many, many times if you
approach this without some foresight. You need to make sure you know
what you are letting yourself in for, before you embark on this sort of
activity.

Let's now consider who you will need to be involved with and who will add the most
value. Hopefully, this will be one and the same, but it's not always that simple or obvious.

Including (almost) everyone
What you need is information and insight from individuals who can actively contribute, are
engaged, are ideally open to change (or at least would like to see things change for the
better) and understand and agree to the aforementioned rules. These engaged contributors
should come from all parts of the business—if they are involved in product creation and
delivery, they should be considered. You will need a broad set of information and data to
move forward, therefore you need to get a broad set of engaged contributors involved.

To ensure you can identify as many people as possible, you will need to establish a good
network across the organization or at the very least access to those who already have
one—especially if your organization is sizable as it's not practical to identify and be on
speaking terms with everyone. You will normally find that individuals who have been
around for a good while normally have a well-formed and mature internal network you
can tap into.

Individuals who work in product support, business analysis, product
management, sales and marketing, or project management are good
people to seek out as they will spend most of their working lives forming
relationships and networks with various people around the organization.

You should proactively engage with these individuals and explain what you're trying to
do—remember the aforementioned positively worded goals and rules of engagement—and
ask them to help build up your list. If you can also add them to the engaged
contributors list then that will speed things up as they can do some of the evangelizing and
leg work for you.

Understanding Your Current Pain Points Chapter 2

[31]

As the title of this section implies, although you will have the best
intentions to include everyone involved in or affected by the software
delivery process, this is not be realistic nor practical—especially in large
organizations—so if you can get almost everyone involved, that should
suffice.

As you start compiling the list of participants—which for a large organization can be quite
daunting, demanding and not without effort on your part—you will no doubt find that
there will be some degree of natural selection as you start to ask people to contribute; some
may say they're too busy, some won't want to be involved for reasons they don't want to
disclose, some may simply not care enough either way.

Identifying key people
While compiling the list of engaged contributors, you should also identify the key
people within the overall process. These key people may not be obvious at first; however,
asking the same simple questions of a number of different people from different parts of the
business during your network building will give you some strong indications as to how key
the individuals are. Examples of these simple questions would be as follows:

Who do you feel should I ensure I invite to this?
Who do you normally talk to if there's a problem?
Who knows how this all works?
Who normally makes changes to the process?

There is also a very strong possibility that many of this key people will be the ones who say
they are too busy. The fact that they are too busy may be directly attributed to the fact that
the process they are working in is broken, but they don't have time to stop and realize this.
I would highly recommend that you take a little more time to ensure that those key
people who fit into this category are encouraged, cajoled, and convinced to take part. For
example, you'll need be very flexible in terms of aligning to their availability—this may
mean changing your plans at short notice just to get 15 minutes with them; however, I
would encourage you to do this as disengaged contributors can easily become active
detractors later down the line.

If certain individuals are key, it sometimes helps to let them know this, as
an ego boost can sometimes help win them over. Also, playing the "If you
don't take this opportunity to sort things out for the better, someone else
might and it might be worse" card sometimes works.

Understanding Your Current Pain Points Chapter 2

[32]

You will no doubt also come across individuals who are very (sometimes overly) eager to
be involved simply because they have an axe to grind or need a soapbox to proclaim their
personal opinion. These individuals aren't that obvious to spot, however with a few well-
placed questions their intentions become more obvious—especially when their responses
seem biased and include words and/or phrases such as blame, fault, them, or not my
problem. If these individuals want to be involved then that's fine, but you need to be
mindful of the fact that such people can potentially derail the process—which again may be
why they want to be involved. One word of warning; do not simply dismiss these
individuals out of hand as they may have valuable observations to bring forward and
dismissing them may foster further negativity and make them very vocal active detractors.
You should however ensure these individuals agree to be engaged contributors and
understand the ground rules you have set. During the next stage, you will no doubt need to
keep an eye on them—much like the naughty children of the class—so that disruption and
negativity are kept in check. That said, you may be surprised at how much value they bring
to the process.

Too many cooks
As you build your list of engaged contributors you may well encounter a positive
problem—you simply have too many people who want to be involved. In some respects,
this is a good thing—over-subscription is a nice problem to have as you will be able to
capture more valuable data—however this can cause problems—but things can get
disorganized and noisy very quickly if you don't manage this part of the process.

If you do have over-subscription, rather than dropping people from the list, you should
consider running multiple sessions. We'll cover the format of the session(s) in more detail
later but suffice to say they can turn out to be very interactive with a high degree of active
participation. As such, I would advise you try and keep the numbers for each session down
to a manageable level, otherwise you will end up with too many voices and opinions
generating too much noise and too many discussions going off at tangents to each other.
You should also ensure that each session has an even mix of individuals from different
parts of the business (for example, don't just run a developers session followed by an
operations session followed by a project managers session—mix things up) as you want
input from a broad spectrum.

A rule of thumb would be that 20-30 participants as more than enough for
each session—unless you're a very experienced facilitator, you will
struggle to keep things orderly and focused.

Understanding Your Current Pain Points Chapter 2

[33]

You will also encounter a physical challenge whereby you need to be in two or three places
at once—unless you have mastered the art of cloning or astral projection, that's simply not
possible. You should therefore run the sessions sequentially rather than concurrently thus
giving yourself a gap to rest and compile the data captured. If this isn't possible, then you
should consider enlisting one or more co-facilitators you feel have the same goals, drives,
and passion you do in relation to revealing the elephant. A word of warning here: you all
need to be very aligned in your approach; otherwise, you may skew the data.

If you do end up running multiple sessions, ensure that each participant
only attends one of the sessions—especially those of an axe-grinding
persuasion. You want to ensure everyone has an equal voice.

To all intents and purposes the preceding equates to this: you need to engage and include
as many different people as possible who are actively involved in the process of defining,
building, testing, shipping, and supporting software within your organization. The wider
the net is cast the more relevant the information and data you will catch, so to speak.

Not only is the way in which the investigation is to be conducted and who is involved very
important, it is also vitally important that you ensure the environment is set up correctly to
allow for those attending to be open, transparent, and more importantly honest—this will
also encourage appropriate behaviors to surface. We'll be looking into behaviors in more
detail later, but for now let's concentrate on the aforementioned three key areas.

Openness, transparency, and honesty
To truly get to the bottom of a given problem, you need to gather as much information and
data about it as possible, so that you can collectively analyze and agree the best way to
overcome or address it—you need to know how big the elephant truly is before you can
expose it and remove it. The natural reaction of most senior management types—especially
those in the higher MBA educated echelons—will be to then enlist a costly business change
consultancy agency to run a closed-session top-level investigation with a handpicked select
few from middle management to take part to produce a management report.

Understanding Your Current Pain Points Chapter 2

[34]

Although this well-trodden approach may provide some information and data, I would
argue that it will not give you or the business what you need. In addition, during these
types of investigations the environment is normally such that attendees will feel watched
and intimidated therefore will not feel free to be honest and disclose pertinent pieces of
information—just in case this adds a black mark to their record and/or career. Because of
this, basic human nature will kick in and things will be missed, individuals may simply
forget an important detail, or worse still some of the information may be misinterpreted or
simply taken it out of context. All in all, closed-session investigations are a hotbed for
distrust, non-disclosure, disengagement, blinkered points of view, and secrecy.

Secrets hiding the truth
As previously mentioned, to realistically get the level of information and engagement
required, you need to create an open and transparent environment in which positive
behaviors can flourish. An environment where trust, honesty, disclosure, and constructive
dialogue are encouraged and commonplace. This does not mean you have to work within a
glass house and have every conversation in public and every decision made by committee.
What is needed is a distinct lack of secrets.

Let me clarify what I mean by using an example: Bernie is the CEO of a small but successful
software business. Over the last few months, more and more customers have started to
complain about broken promises and obviously rushed and buggy releases. She is also
hearing that employees are not happy and productivity is down. She considers the
following:

Begrudgingly admit that there may be a few problems that need addressing and
instruct the VP of engineering to handpick a team of people he trusts to compile
a list of solutions to present back to the board within the week. The VP will
under orders to not disclose or discuss this with anyone outside of the closed
group.
Commission an external consultancy to run a top-level closes-session
investigation.
Invite every employee to an all day workshop and ask everybody to provide
open and honest feedback about the issues they face day to day. She will then get
her leadership team together and spend a few weeks openly working through all
of the feedback. A follow-up workshop will then be arranged to honestly discuss
and debate the various problems raised and options available.

Understanding Your Current Pain Points Chapter 2

[35]

I think it's plain to see the difference, and which of these approaches would bear fruit and
which would wither and die.

This all may sound unrealistically simple but without openness, honesty, and transparency,
people will remain guarded and you will not get all of the facts you need—the word "facts"
is used intentionally. You need an environment where anyone and everyone feels that they
can speak their minds and more importantly, contribute. One other thing you need to take
into account is collaboration.

Location, location, location
Ideally, you should plan to run your investigation(s) collocated (so that everyone is in the
same physical location) as this allows for greater human interaction, building of
rapport—which is essential for building trust—and the general ebb and flow of
conversation in what can be highly interactive exercises.

You may want to consider running these sessions on neutral ground (for
example, a conference room in a local hotel or a shared office complex)
which not only puts people at ease but provides some focus away from
the office and its day to day distractions.

Realistically, you may well have remote teams or individuals who you need to be involved.
Some may work from home or another office or in another country. If this is the case, you'll
need to be a little more creative in how you approach things as you'll need to make things
as seamless as possible. As stated previously, the ideal situation is to have everyone you
need in the same place. Depending on the numbers of individuals involved and where they
normally physically reside will determine the best approach to take—for example, as
follows:

If the majority of the engaged contributors are collocated in one office, then
consider bringing the remote team(s) or individuals to them—budget permitting
If the majority of the engaged contributors are based in a remote location, then
consider taking the the local team(s) or individuals to them—again, budget
permitting
If neither of these are viable, then consider using a reliable and high quality
video conferencing solution (voice conferencing just isn't good enough for what
you'll be doing) along with some real time collaboration software

Understanding Your Current Pain Points Chapter 2

[36]

If you are forced to run the session(s) across two or more locations, then you may also need
take into account challenges around time zones and come up with workable options (that
is, don't expect your Boston-based team to remotely attend a workshop at 5:00 EST just
because it's easier for the UK team). There will have to be some creative planning around
this.

As you can see, before you embark on the challenge of exposing the elephant in the room,
there is some pre-work preparation you need to do.

Throughout this chapter, you have been introduced to terms such as "investigation",
"elephant exposure", and "retrospection". In relation to your software delivery process,
these all mean pretty much the same thing: gathering information and data on how the
process works end to end so that you can highlight the issues, which can then be rectified.
We'll now move on to some of the ways you can gather this information and data, but
before we do, let's clear a few things up.

It's all happy-clappy management waffle – isn't it?
Some of you of a technical ilk may be reading this chapter wondering who it's targeted at
and thinking "Surely, this is all soft skill people management self-help waffle and doesn't
really apply to me". In some respects, this is very true; any good manager or leader worth
their salt should at least know how to approach this type of activity, but you have to take
into account the very real fact—an ineffectual process has a greater impact on those within
it than those who are perceived to be running it. Put simply, if as an engineer your
effectiveness, moral, and enjoyment of your role is impacted by a process that you feel is
broken and needs changing, then you have as much right and responsibility to help change
it for the better as anyone else. In my experience, the best engineers are those who can
examine, understand, and solve complex problems—be they technical in nature or not. In
addition, who better to have on board while trying to find out the problems with a process
than those directly involved in it and affected by it?

If you're a software engineer or an operations engineer, or a project manager or a build and
release engineer, or a QA engineer or anyone else involved in delivering software, and
you're stuck in a process that slows you down and impacts your ability to effectively do
your job, then I would strongly encourage you to get involved with investigating and help
to highlight the problems (there will be many and some may not be as obvious to you as
you first think). Yes is can be daunting and yes if you're employed to analyze requirements
or design systems or cut code or look after the infrastructure then you'll be asking yourself
why you should get involved in what equates to business analysis. It's simple really; if you
don't do anything then someone else might, and it may get worse.

Understanding Your Current Pain Points Chapter 2

[37]

If you're a manager or leader, then I encourage you to lead by example and get
involved. More importantly, you should proactively encourage all members of your team(s)
to get involved as well—even if it means taking them away from their day jobs for a
relatively short period of time. As stated previously, they are the individuals who are living
within the process day to day and by implication know the process very intimately—far
better than you I would wager. As a leader, some team members may need your help, some
may need encouragement, some may need training or coaching, some may need
empowerment, and some may need all of these. In the long run, it will be worth it.

Not only should you encourage the troops to be actively involved, you should also use
your influence and encourage your peer group to do the same. On the face of it, this may
seem easy to achieve but it can be quite a challenge, especially where other managers start
putting roadblocks in your way. The sorts of challenges you going to up against will
include the following:

Convincing them it is a good and worthwhile thing to do
Getting them to agree to allow many of their team to stop doing their day jobs for
a few hours so that they can participate
Getting them to agree to listen and to not drive the agenda
Getting them to be open and honest within a wider peer group
Ensuring that they allow subordinates to be open and honest without fear of
retribution
Getting them to trust you

As you can imagine, you may well be involved in many different kinds of delicate
conversations with many people, roles, and egos across the business. As I mentioned
previously, in relation to convincing the key people to get involved, you should again
consider using some simple human psychology to appeal to their better natures. It won't be
easy, but the perseverance will be worth it in the long run.

Now that that's cleared up, let's move on to the fun part—exposing the elephant.

Understanding Your Current Pain Points Chapter 2

[38]

The great elephant disclosure
Let's presume at this point that you have overcome all of the challenges of getting people in
the same location (physically and/or virtually), you have obtained buy-in from the various
management teams, have agreed some downtime, and have a safe environment set up in a
neutral venue. You're almost ready to embark on the elephant disclosure—almost. What
you now need to do is actually pull everyone together and run the workshop(s) to capture
the data you need.

To make things a little less daunting it may help to consider your overall end to end process
as four distinct stages:

Four distinct phases of a typical end to end software delivery process

Understanding Your Current Pain Points Chapter 2

[39]

Breaking the overall process into these smaller stages can assist in mapping out the flow
and structure of the workshop(s) you'll be facilitating. For example, if you decide to run an
all-day workshop you can break this down into multiple sessions, each focusing on a
specific stage, then bring everything together at the end. An example workshop agenda
would look something like this:

As you can see from this, these types of workshops can turn into a very long
day—especially with a large group of people—so it's vitally important you are very
organized and keep things on track throughout. Just trying to wing it will not give you the
results you need. Some may consider compressing the overall time taken by removing the
various breaks, however these breaks are very valuable as they allow for rapport building
and guard dropping and also allow for the participant's brain to inwardly digest the
information being disclosed and discussed.

Understanding Your Current Pain Points Chapter 2

[40]

Scheduling such workshops across multiple sites and/or time zones can be
extremely complex and challenging, which is why running collocated
workshops are preferable.

It is possible to run these types of workshops over two days, however I would recommend
that you don't leave too large a gap between them otherwise focus will be lost and
participants—especially those key people you identified—may get dragged into day to day
problems. If you need to split the workshop, I would recommend that you schedule the day
one workshop to finish late in the day and start day two first thing the following morning.

To ensure things go as smoothly as possible—considering the challenges you'll have
keeping everyone focused and on track—I would recommend you keep things as simple
and obvious as possible, not only for your sake but also for the participants. To this end,
you'll need to prepare two things:

You'll need the staple tool-set of any agile practitioner/facilitator: some big blank
walls covered in paper, some large whiteboards, some flip charts, some sticky
notes, various colored pens, and various colored stickers, some space, plenty of
snacks, and a little bit of patience
You'll need to pick a tried and tested agile technique that provides the format for
the workshop itself

With regards to point #2, this is where I would have loved to provide pages of detailed
explanation on the many varied and proven techniques and exercises with wonderful
names such as StoStaKee, the Starfish, and the Sailboat, however this would make a book in
itself.

Before you send out invites to the workshop(s), you should ensure all
concerned are aware of the format—as you'll be asking them to trawl back
through their memories they may want to bring some pre-prepared notes
along with them so plenty of notice will speed things up.

Let's move on from planning to doing.

Tools and techniques to expose the obvious
As stated, there are many agile tools and techniques available to you, however for the sake
of space I'll include reference to these within the Appendix A, Some Useful Information, and
we'll focus on two in particular that have proven to be highly effective over the years; those
being timeline and value stream mapping.

Understanding Your Current Pain Points Chapter 2

[41]

Timeline
The timeline retrospective technique is an agile tool to look back over a specific period of
time and capture key data points and information to help drive forward positive changes.
These data points normally relate to specific events/challenges (such as a project kick-off or
a budget cut after a quarterly review or a power cut that took all the production servers
offline) but also can surface regular patterns of behavior, communication break-down, bad
planning, and inefficient processes.

As you will be looking back over a period of time and surfacing details of things that
happened (or didn't as the case may be), it's always a good idea to narrow down what you
will be examining. From experience, you should consider a specific large and complex
project or a business initiative or a specific release—I'm sure you'll also have some other
ideas. As you are trying to expose problems and issues within your delivery process, I
would not recommend picking something that went swimmingly well at this stage as you
might not learn as much as you could—that can come later down the line to ensure any
changes made have had a positive impact. Whatever you pick should be the focus for the
workshop(s).

The format of a timeline retrospective is quite simple:

You define and agree the timeline (that is, start date—end date) and draw that
horizontally along a wide wall (or rather on the paper covering the wall).
You then break this down into smaller periods of time (that is, months or weeks)
and mark those points along the timeline.
Next, you get all participants to write out sticky notes related to notable events
that they remember during the period in question and ask them to add these to
the timeline on the wall (if you have remote members taking part ask someone
within the room to act as proxy for them). There is no limit to the number of
notes—encourage participants to keep going as long as possible.
As this goes on you will start to see groups of similar event notes forming—you
should encourage the participants to start grouping these together. Some of these
specific event notes may occur more than once throughout the timeline
indicating a pervasive problem.
If there are no more event notes to add you should then instruct the group to
mark the notes with colors (either stickers or with a marker) indicating how they
feel about the event—green for glad, blue for sad, or red for mad.

Understanding Your Current Pain Points Chapter 2

[42]

Throughout these, you should be actively encouraging open and honest discussion
throughout the participants—maybe picking on specific event notes and asking questions
such as "Is there any more detail to add?" or "Did anyone else notice this?" or "Did this
happen more than once?"

You will now have a highly visual representation of what events happened over the
timeline and how these events made people feel. You can then facilitate an open and
honest group discussion applying some focus on those events that provoked the most
emotions. During this discussion, some solutions may be put forward to resolve the
pains—these should be noted for later use but hold off agreeing on an action plan for the
moment.

The following depicts an example output from a timeline workshop representing a rather
painful project and should give you some ideas of what you should end up with:

An example timeline board

Another proven and well-documented technique is value stream mapping.

Understanding Your Current Pain Points Chapter 2

[43]

Value stream mapping
This lean technique derives from—as quite a few agile methodologies and tools
do—manufacturing and it has been around, in one guise or another, for many years. As
with any lean methodology/tool/technique, value stream mapping revolves around a value
versus waste model. In essence, a value stream map is a way to breakdown a product
delivery process into a series of steps and handover points; it can also be used to help
calculate efficiency rates if that's useful to you. The overall map can be laid out and
analyzed to see where bottlenecks or delays occur within the flow; in other words, which
steps are not adding value. The key metric used within value stream mapping is the lead
time (for example, how long before the original idea starts making hard cash for the
business).

There are lots of resources and reference materials available to detail how
to pull together a value stream map and there are a good number of
specialists in this area should you need some assistance.

kTo effectively create a value stream map, you will need a number of people across all
areas of the business who have a very clear and, preferably hands on, understanding of
each stage of the product delivery process—sometimes referred to as the product life cycle.
If you have done your legwork effectively, you should have those individuals in the
workshop. Ideally, a value stream map should represent a business process; however, this
may be too daunting and convoluted at first. To keep things simple, it may be more
beneficial to pick a recent example project and/or release and break that down.

Understanding Your Current Pain Points Chapter 2

[44]

As an example, let's go through the flow of a single feature request delivered by the ACME
systems Version 2.0 business (before they saw the light):

Understanding Your Current Pain Points Chapter 2

[45]

Each box represents a step within the overall process. The duration value within each box
represents the working time (that is, how long it takes to go through each step). The
duration value in each arrow represents the wait time between each step (that is, how long
it took between each step).

This is a very simplistic overview but it does highlight how much time it can take to get
even the most simplistic requirement out of the door. It also highlights how much waste
there is in the process. Every step has a cost, every delay has a cost, and every mistake has a
cost. The only real value you get is when the customer actually uses the software.

On the face of it, generating this type of map would be quite simple but it can also be quite
a challenge. This simplistic diagram is created in real-time with input from many different
areas of the business. There will be lots of open and honest dialogue and debate as facts are
verified, memories jogged, dates and times corroborated, examples clarified, and
agreements reached across the board as to what actually happens.

If you prefer to use the standard value stream mapping terminology and iconography, you
could take the sticky notes version and convert it into something like the following, which
again represents the flow of feature requests through the business:

This diagram also includes the efficiency (which is based upon the amount of time value is being added versus dead time within the flow)

Understanding Your Current Pain Points Chapter 2

[46]

The most valuable output from this particular technique is that you can spot the obvious
areas of waste. These are the parts of the overall process that are slowing down and
impeding your overall ability to deliver. With this information, you can now focus on these
problem areas and start to look at options that will make them less wasteful and more
valuable to the overall process.

As previously stated, there are many other techniques you can use to provide similar data,
some of which will be included in the Appendix A, Some Useful Information.

Summary
Throughout this chapter, you have been given an insight into the following aspects: how to
expose problems within your product delivery process (what we're calling the elephant in
the room), the challenges and benefits of using collaborative and engaging approaches to
identify these problems, and some effective tools and techniques to help you break down
the problems into easily identifiable chunks of work.

Now, you know how to obtain valuable information and data about your problem(s) and
have some much-needed actions to work with. You also now know how to inspect. Let's
presume these problems revolve around the waste created through long release cycles and
a siloed organization. That being the case, you have a very clear objective that will almost
certainly address the problems and deliver what the entire business needs. All you now
need to do is pull together a plan of attack to implement it. In other words, you now need
to adapt. Which is handy as that's what we'll be covering very soon.

Before we do that, I want to delve a little further into the human side of CD and DevOps
and highlight two areas that are pivotal to the success or failure of adoption; those being
culture and behaviors. In the next chapter, we'll take a deep dive into how culture and
behaviors can impact the CD and DevOps adoption—both positively and negatively, and
why ignoring this is not a good idea.

3
Culture and Behaviors are the

Cornerstones to Success
In Chapter 2, Understanding Your Current Pain Points, we learned that asking people to be
open and honest is not that easy, unless you take the time to set the environment up to
allow for it. The environment had to be such that a culture of honest disclosure could take
place. On top of this, you had to ensure that every participant agreed to behave according
to the flexible rules and processes set out.

We will now take this experience and expand upon it to ensure the environment, culture,
and behaviors throughout the organization are set up to allow for—what can
be—potentially massive change. The sorts of things we'll be covering throughout this
chapter are the following:

Why culture is so important
How your working environment can impact your culture
How culture and behaviors affect your progress and success
Encouraging innovation at a grass-roots level
Fostering a sense of accountability across all areas of your organization
Removing blame from the working environment
Embracing and learning from failure
Building trust
Rewarding success in the right way
Instilling a sense that change is good
How good PR can help

Culture and Behaviors are the Cornerstones to Success Chapter 3

[48]

Throughout this chapter, we'll also be looking at what this means to the three personas you
were previously introduced to:

In addition, we'll include a new persona who runs the show from an IT perspective:

Victoria the veep

It should be noted that I am by no means an expert in the human sciences
nor do I have a PhD in psychology. What follows is learning I have
gathered through observation, experience, and collaboration with experts
in this field.

Let's start by clarifying why culture is so important to the successful adoption of CD and
DevOps.

All roads lead to culture
There are many people in the tech industry—some very influential—who believe that the
adoption of CD and/or DevOps simply amounts to implementing some technical tools and
then making slight tweaks to existing heavyweight processes to potentially allow software
to be released every few weeks/months.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[49]

Worse still, some see this as a bona fide reason to set up a new DevOps team inside the
existing organization that—all things considered—spend their time building and
implementing tools and processes that make little or no difference to successful delivery of
quality software.

If you believe these views to be correct, then you are simply wrong at best and delusional at
worst. Just to reiterate, CD and DevOps are—put very simply—agile ways of working. The
DevOps tools are just that—tools. When we say ways of working, we're not simply talking
standard operation procedures or HR policies here, we're talking about the default way in
which people work, think, and behave.

Just like any other efficient and effective ways of working, CD and DevOps are only as
good as the culture and environment in which people work and the behaviors they exhibit.
All of which play a massive part in the success or failure of adoption of any change:

The convergence of many roads

When we talk about culture, this mainly refers to corporate and organizational culture
rather than geographical, geo-political, or social group culture. That said, these can also
have some bearing on how people behave, therefore you should be cognizant of this. For
example, if you were to consider a culture that values and respects social hierarchy over
individual views and opinions, then those self-same individuals may see openness and
honesty as an unnatural or alien concept—or at the very least, may feel uncomfortable with
the approach. This can also lead to individuals verbally accepting change simply because
someone above them has asked (or instructed) then to do so—not because they personally
believe in it.

Although you should be mindful of people's cultural values and motivations, you should
not let this dictate or define your approach—you should simply accommodate them along
the way.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[50]

The sorts of cultural and environmental aspects that are not conducive to successful
adoption of CD or DevOps include the following:

Barriers or power struggles between teams
Silos across your organization
Ineffective lines of communication
Rigid, old-school hierarchies
Strong embedded beliefs that how things have always been done is best
Dysfunctional leadership
The business is resistant to change
Avoidance of learning from failure
Command and control

Attempting to implement CD or DevOps in an environment where these are prevalent,
without addressing the underlying and overarching cultural issues that sustain them, will
ultimately lead to failure.

You may be reading this and thinking that you may have worked in (or work in) a business
that has adopted CD or DevOps and be thinking that some/all of the preceding points do
apply but on the whole things seem to be working well. The key phrase here is seem to be,
which, if you were to apply it to other everyday scenarios, you wouldn't accept as readily:

I checked the brakes on your car and things seem to be working
I pulled together a fix for the DDOS defect that could expose personal details of 3
million active users and things seem to be working
I investigated the reported payroll system issues and things seem to be working
We've constantly lost 10% of our customer base over the last three quarters, but
since the recent organizational changes and headcount reductions, things seem to
be working

As you can see, perception can be a powerfully misleading thing and can set a false sense of
security. If you were to change seem to be with are in the previous examples, you will notice
the way in which you perceive the statements would be very different.

If you then apply this rule to your thinking in relation to your organization's CD and
DevOps adoption, you may struggle to apply are within the statement as freely because the
culture and behaviors of people involved are not as they should be. To effectively change
seem to be to are, you need a positive and progressive culture to work in.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[51]

Defining culture
Culture is a very nebulous thing and can be difficult to visualize, understand, and define.
This becomes more difficult when applied to a positive and progressive culture; however,
the following diagram may go some way to visualizing what this means in relation to CD
and DevOps adoption—some of this we'll cover in more detail throughout this chapter:

The cultural interconnectedness of all things CD and DevOps

Culture and Behaviors are the Cornerstones to Success Chapter 3

[52]

In the previous diagram, you'll see that culture is central to enabling, encouraging,
influencing, reinforcing, and sustaining positive behaviors. These positive behaviors will
need to become the norm if you are to ensure your adoption succeeds. Some may believe
that the opposite is true; however, the reality is that culture is so central that all of the work,
effort, and best intentions in relation to establishing and sustaining positive behaviors can
be thwarted almost overnight by a dysfunctional and poisonous culture. That isn't to say
that you can't work from the outside in with enough sustained and consistent effort;
however, from experience, I know this can be very long-winded, difficult, and fragile—it
just takes one bad decision or event to undo months of work. Ultimately, you need to focus
on the culture.

To put it another way, try to imagine your organization as an apple tree that needs strong
and healthy roots to allow for the buds and blossom to form—if the roots (or culture) are
unhealthy, the tree seems to be surviving but it will never bear fruit (or positive behaviors):

The tree of culture

Culture and Behaviors are the Cornerstones to Success Chapter 3

[53]

What has this got to do with CD and DevOps adoption? To truly benefit from adopting CD
and DevOps, you need positive behaviors to be prevalent, encouraged, and embedded so
that they become the norm. For this to truly happen, you need the culture to be positive and
progressive. You may have witnessed some of these positive behaviors being exhibited
while exposing the elephant in the room, so this shouldn't be an alien concept.

But what about the environment? Again, going back to the horticultural analogy, for
healthy roots (culture) to grow and remain healthy, you need fertile and enriched soil
(environment).

The following diagram represents the relationship between the environment, the culture,
and the behaviors—all of which need to be aligned and healthy for the adoption of CD and
DevOps to truly work:

The Russian dolls of DevOps adoption

If this sounds familiar, then that's for a good reason. During the elephant exposure, you had
already planted the seeds by setting up the environment—albeit in safe greenhouse
conditions—to allow for positive behaviors to surface. The culture—even if it was for a
short time—was generally positive and progressive. Due to this, you managed to expose
the problems within your organization, thereby proving that with some effort and an
aligned approach, you can produce results that otherwise would not have been realized.
What you need to do is nurture this seedling and encourage it to grow, which can be harder
to do than you think.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[54]

For all intents and purposes, true and successful adoption of CD and DevOps can be a
pretty big change, and to some organizations it can be quite revolutionary. Throughout
history, when it comes to cultural revolution, the acceptance and adoption normally
resonates better with the general populace or those on the shop floor than the higher
echelons. In terms of the tech industry, it's normally the engineers, testers, and other team
members who are the ones to grasp and accept the concepts and benefits of CD and
DevOps and will ultimately benefit the most when it's adopted.

That's all well and good; however, the reality is that the power to make decisive change is
normally in the hands of those individuals higher up the corporate/social food chain. It is
therefore crucially important that your leadership has a clear understanding and
appreciation of the benefits CD and DevOps can bring, and more importantly, how the
environment, culture, and behaviors can massively help or hinder the successful adoption.
We'll cover this in more detail later in the chapter.

As mentioned, behaviors can have an influence on and be influenced by the environment
and culture. There are a few other factors that share this symbiotic relationship. The key
ones are processes, communications, and tools and techniques, as depicted in the following
diagram:

More Russian dolls of DevOps adoption

Culture and Behaviors are the Cornerstones to Success Chapter 3

[55]

Let's briefly look into each of these.

Processes
As you will have noticed during the elephant exposure, one of the many problems most
businesses suffer from are the processes that operate within them—many of which will be
complex, convoluted, and deeply rooted. Now consider having to retain these processes
while adopting CD and DevOps—as you can imagine, this would be far from an ideal
approach.

For the adoption to be successful, you will need processes that are streamlined, efficient,
and effective. They also need to complement and reinforce the positive culture,
environment, and behaviors. For example, let's consider a typical example of an existing
heavyweight process for getting a single-line code change through to a production
environment:

A typical heavyweight process

Culture and Behaviors are the Cornerstones to Success Chapter 3

[56]

OK, so this may be slightly over the top; however, it's not unusual—especially in large
organizations and/corporates that strictly follow frameworks such as ITIL or similar. If you
also consider that this represents the happy path version of the process, it's not hard to
imagine the loops and hoops you would have to go through should any problems or
defects be found during the various steps (normally, this will mean starting back at square
one). All in all, this kind of process would not be conducive to the adoption of CD and
DevOps nor would it be closely aligned to a positive culture, environment, and behaviors.

Now let's compare this to a typical CD and DevOps process for shipping a single-line code
change:

Simple CD equivalent process

Culture and Behaviors are the Cornerstones to Success Chapter 3

[57]

Again, this is an over-simplified representation; however, when compared to the previous
example, you can see the sort of process changes you'll need to implement. Not only is the
latter process streamlined and optimized when compared to the former, but it also helps to
encourage positive behaviors, such as collaboration and a sense of ownership.

As you can imagine, making radical and impactful changes such as these can be nigh on
impossible without having a culture and environment that would support it.

Communications
Communication is another key factor for the successful adoption of CD and DevOps. We'll
be covering communication in more detail later in the book; however, let's have a look at
why it is so key.

As is the case with any change, getting CD and DevOps accepted and adopted will need a
considerable amount of PR, conversation, evangelism, discussion, and information- and
knowledge-sharing. This will amount to lots of communication (by lots, I mean a vast
amount). As was the case during the elephant exposure, the culture and environment needs
to be such that communication between all involved can to be free-flowing, openly
encouraged, and, above all, consistent.

In terms of the messaging of CD and DevOps adoption, this needs to be
targeted to the audience to ensure it is understood. As such, you will need
to ensure that the communication is tailored to ensure that all concerned
have a clear idea of what CD and DevOps is about, in terms they
understand and can relate to.

As previously noted, there may be individuals whose social and cultural beliefs are not
truly aligned to the open and honest culture and behaviors that are required for a
successful adoption of CD and DevOps. You should therefore take time to ensure
communication is tailored to accommodate these individuals.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[58]

Tools and techniques
When we talk about tools and techniques, we're not referring exclusively to technical tools,
what I'm referring to here is agile tools and techniques that will help the adoption of CD
and DevOps—sometimes referred to as engineering best practices. As previously
mentioned, a vast number of the CD and DevOps specialist businesses that have come into
being in the last decade specialize in technical tools targeting CD and DevOps (mainly
DevOps, to be honest); however, there's not a vast amount of adoption of said tools outside
of the traditional (Dev)Ops realm. This could be attributed to the specialist knowledge
required to master the tools—something developers don't normally have the
time/inclination to understand. The opposite is also true of tools and techniques favored by
Dev teams but not prevalent within their Ops peers, such as the adoption of scrum, strict
version-control, and test-first development.

Some development tool vendors have realized this and built technical tooling to allow for
developers to seamlessly interact with so-called DevOps tools and Ops to seamlessly use
engineering best practices traditionally targeted at developers. It does have to be said that,
at the time of writing, this is still far from the norm.

Going back to environment and culture, consider this: even if developers did have access to
so - called DevOps tools, unless the environment and culture is such that they can freely
use them (for example, they are freely able to automatically ship code changes to a given
environment using a DevOps pipeline), there doesn't seem much point in them having
these tools as they can't actually do anything of value with them.

To allow CD and DevOps adoption to thrive, the culture and environment in which both
Devs and Ops work should allow for seamless collaboration and interaction. Along with
this, the tools and techniques used to deliver software changes should be chosen by and
used across both specialisms (for example, Devs should know how to use tools such as
Octopus deploy, and Ops should know how to use tool such as Visual Studio).

In relation to techniques, one massive win for CD and DevOps is the configuration-as-code
approach. We'll go into this in more detail later, but suffice it to say that without an
environment and culture that encourages collaboration, there's a strong possibility that
such a game-changing technique will not come to fruition.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[59]

Let's see what our personas can do to help:

Good approach Not-so-good approach
Victoria (the veep) and her peers can lead
by example; even simple things such as
being seen to take an interest in the
environment and culture, and exhibiting
positive behaviors will help. If changes are
required, they can be executive sponsors so
that everyone takes it seriously.

Victoria (the veep) ignores what is going on
below her (or takes no interest), ignores the
requests for help, and continues to exhibit a
command-and-control culture.

Stan (the manager) should been seen to
exhibit positive behaviors and encourage
his peer group to do the same. He can
research some best practice approaches and
mentor his team(s) to adopt those that are
relevant and make time for them to refine
how they work.

Stan (the manager) does nothing to help
improve and reinforce positive behaviors nor
shows any inclination toward adopting or
accepting modern agile techniques.

Devina (the developer) and Oscar (the Ops
guy) can work together, exhibit positive
behaviors, and encourage their peers to do
the same. They can also encourage their
peers to work with their managers and
highlight areas for improvement in terms of
environment and the culture.

Devina (the developer) and Oscar (the Ops
guy) insist on working apart, only
communicating when needed, and avoid
collaboration wherever possible.

Thus far, we've been looking at the various parts you'll need for a successful CD and
DevOps adoption. Let's now start digging into specific details, starting at the top with the
environment.

An open, honest, and safe environment
Apart from sounding like something taken directly out of a management training manual,
what does having an open, honest, and safe environment actually mean? In relation to CD
and DevOps adoption, this means that anyone and everyone involved in your product-
delivery process is willing, encouraged, and able to openly comment on and discuss ideas,
issues, concerns, and problems, without the fear of ridicule or retribution—especially from
those in leadership positions.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[60]

As you found during the elephant exposure stage, allowing for open discussions and
honest appraisals of how things are done within the organization and the product-delivery
process brings to the surface details and facts that otherwise would have been missed or
stayed hidden. You need to persist the environment where the distinct lack of secrets
culture and behavior is prevalent and maintained.

If there is a time delay between the elephant exposure and adoption, then
you will have more work to do to rekindle the initial euphoria, as most
will have fallen back into their day jobs and ways of working. Therefore,
you should seriously consider keeping the time delay to a minimum.

On the face of it, this all sounds like common sense, but unfortunately, this way of working
is not encouraged, or worse still, is actively discouraged in some working
environments—especially in corporate business. If you find yourself in this situation, then
you have some additional challenges to overcome simply due to the fact that these edicts
are normally defined and enforced through the HR and management guidelines, which in
turn define the policies under which the business operates. You therefore can't simply
break or bend these rules at will. We'll cover this in more detail later in the book, but suffice
it to say that you need to tread very carefully and ensure you lead by example in terms of
your behaviors.

Let's break down these concepts in more detail.

Openness and honesty
Openness and honesty are key factors to ensure that the implementation of CD and
DevOps is successful. Without these behaviors in place, it's going to be very difficult to
break down barriers and implement the much-needed changes throughout your
organization. You already engaged the majority of the business during the elephant
disclosure to obtain honest feedback about the current situation. You now need to ensure
that you continue this dialogue with all concerned. Everyone involved in the product-
delivery process, from developers and testers through change and release controllers to
product owners and senior managers, must have a forum they can use to share their
thoughts, suggestions, observations, worries, and news.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[61]

The most effective way to do this, as was the case previously, is via face-to-face human
interaction, be this in person or virtually via video-conference systems (remember that
video is preferable to voice as this allows for greater human interaction). There is one
potential drawback to this approach—getting everyone in the same place at the same time
can be difficult. We'll look at some ways to overcome physical environment challenges
later; if face-to-face is not wholly viable most/all of the time, there is a rich and mature
market in collaboration tools such as Slack, Flowdock, Yammer, or MsTeams (to name but a
few), all of which provide you with real-time interpersonal interaction.

One thing to be mindful of when considering such collaboration tools—as most tools are
public-internet-hosted Platform as a Service (PaaS) or Software as a Service (SaaS)
offerings—is how their usage adheres to the IT security policy within your business. You
should engage with your SecOps team and, if possible, get them on board with the
implementation—thereby extending the CD and DevOps approach and community.

Despite the long-held belief, email is not an effective collaboration tool
and should not be considered as such.

Whatever approach you choose, it is advisable that you set up some form of etiquette or
guidelines so that everyone knows what is acceptable and what is not. Normally, common
sense will prevail; however, with openness and honesty come responsibility and
maturity—some may forget this, so a gentle reminder can always help. On the flip side,
what should not prevail is a heavy-handed policing or moderation of the content as this
will actively discourage openness and honesty and ultimately make the solution(s)
redundant. You should review existing policies and engage with your HR team to see
whether they can help.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[62]

Going back to the main theme of openness and honesty, let's look at what this means in
terms of the previously introduced personas:

Good approach Not-so-good approach
Victoria (the veep) should openly share
plans and information (within reason) with
her department (ideally in person or via
webinar) and openly ask for feedback.

Victoria (the veep) doesn't make the effort to
communicate with her department and keeps
all plans and information held back until the
eleventh-hour faceless email is sent out.

Stan (the manager) should opening and
regularly share plans and information
(within reason) with his team(s) and ask
for feedback. If collaborative tools are
implemented, Stan and his peers should be
actively using them and encourage their
team(s) to do so as well.

Stan (the manager) emulates Victoria's
behaviors and keep things secret and hidden
from his team(s). Information is normally
shared via email. Collaborative tools are seen
as something only the teams use.

Devina (the developer) and Oscar (the Ops
guy) proactively communicate in
person—physically or via video
conference — as much as possible and not
just when problems occur. Use of
collaboration tools over email should be
the norm and they should encourage their
peer group to do the same.

Devina (the developer) and Oscar (the Ops
guy) continue to work in silos and only
communicate when issues occur—normally
via email. Information is shared on a need-to-
know basis.

As you can see, it's far easier to fall into the not-so-good approach; however, the extra effort
required to stay on the good approach path is far more beneficial as it will encourage open
and honest dialogue.

It's all well and good to ask and encourage others to be open and honest, but you should
also practice what you preach. As you go through the adoption of CD and DevOps, it is
extremely important that you have regular open, honest, and truthful feedback from all
concerned in terms of what is working with the implementation and, more importantly,
what is not. Again, the simplest and most effective way is face-to-face human interaction;
simply walk around and ask people. If this is not wholly viable, you should consider sort of
lightweight survey solutions (such as Survey Monkey or similar) to capture feedback. The
word lightweight is important here as no one will provide feedback on a regular basis if they
have a 10-page questionnaire to fill out every few weeks.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[63]

If you follow or use an agile methodology and run regular retrospectives,
ask those running these sessions to forward any feedback related to your
implementation or, better still, join the session yourself and observe.

You're hopefully getting an idea of what open and honest dialogue is all about, but there is
another very important thing you will need to cater for: courageous dialogue. Let's now
review what it is, why it's important, and how it comes into the equation.

Courageous dialogue
There will be times when someone lower down the food chain will have an opinion or a
view on how those above them help or hinder the product-delivery process.

You may also have individuals whose views are at odds with specific parts of the business,
or indeed certain teams or individuals. It takes guts and courage for an individual to speak
up about something like this, especially within a corporate environment. If we're honest,
most would shy away from this approach for fear of retribution in one form or another.

For these people to speak up, they need to be sure that what they say (within reason, of
course) is not taken as a black mark on their record or held against them in other ways. To
this end, you should consider setting up a dialogue de-militarized zone (or DDMZ for
short), where they can freely share their ideas, views, and opinions—where they can point
out the emperor's new clothes.

You should work with the leadership team and HR department to ensure that there is a
forum for this type of very important and valuable dialogue. The content might not be
enlightening, but if you have a good number of people saying the same thing, then there is
a good chance that something needs to be addressed.

If setting up a DDMZ is not applicable, at the very least, you should look to implement
some sort of amnesty or a way for anonymous feedback to be collected—something as
simple as a suggestion box or an online survey may suffice. It should be noted that as the
culture and environment mature, the need for such measures should abate.

One important thing to also consider in terms of courageous dialogue is the quiet ones. Let
me elaborate: generally speaking, there are two distinct types of personality traits:
individuals who are introverted and those who are extroverted.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[64]

This is a very generalist and overly simplistic statement—in reality, there
are many personality traits—however, for simplicity's sake, let's stick with
the two.

The extroverts are the ones who are not afraid to interact, talk, and discuss their views and
feelings in public. For extroverts, open, honest, and courageous dialogue isn't something
they would normally shy away from. Introverts, on the other hand, when faced with
conflict (potential or otherwise), will more often than not simply close down or just go with
the flow. You, therefore, need to be very mindful of this fact and ensure everyone has the
opportunity to contribute and voice their opinions. It might seem like additional work, but
from experience, it will be worth it as the contributions from the introverts are normally
well-considered and enlightening.

If you have difficulty spotting the different types, then here's one easy tip:
extroverts talk to make their brains work, whereas introverts use their
brains to make their mouths work.

Let's be very open, honest, and courageous about how easy it will be to implement and
embed these sorts of behaviors into normal ways of working: it is not. It will be challenging,
complex, time-consuming, and, at times, extremely frustrating. However, if you persevere,
and things start to work (and they will), you'll find it's a very effective way to work. You
will find that once openness and honesty are embedded into the normal ways of working,
things really start coming together.

Let's summarize what we've covered so far:

Do Don't
• Allow freedom of expression
• Encourage anyone and everyone to have their say (within
reason)
• Be patient with the quiet ones as it will take a bit longer
for them to open up
• Ensure management and HR understand why openness
and honesty are essential
• Get management to actively contribute and lead by
example
• Have a distinct lack of secrets

• Have a closed and secretive environment and culture
• Ignore or dismiss people's opinions and views
• Use open and honest feedback in a negative or nefarious
way
• Be impatient
• Ignore do as I say not as I do attitudes

Culture and Behaviors are the Cornerstones to Success Chapter 3

[65]

Let's look at what our personas can do to help:

Good approach Not-so-good approach
Victoria (the veep) officially sponsors the
creation of a DDMZ and encourages her
department to communicate openly (within
reason) on areas that matter to them. She also
works with her HR peers to ensure actions
are taken based upon feedback given.

Victoria (the veep) sees open and honest
communication and dialogue as a way to
spot and target the troublemakers who
should be removed from the organization.

Stan (the manager) should reinforce
Victoria's message and actions, and lead by
example. When feedback from his team(s) is
given in confidence, it should remain so.

Stan (the manager) plays lip service to any
feedback provided and continues to act in
such a way as to improve his career
progression.

Devina (the developer) and Oscar (the Ops
guy) take the opportunities given to be open
and honest with each other, their peers, and
managers. When surveys are sent out to
allow for open and honest feedback, they
take the time to complete them and provide
truthful information.

Devina (the developer) and Oscar (the Ops
guy) are afraid to say what they really feel
for fear of repercussions to their career
prospects.

What might not be obvious is the fact that the physical environment is something that can
and does cause further complications when looking at encouraging open and honest
dialogue and behaviors. We'll now look at this.

The physical environment
Some of you might be lucky enough to work in nice, airy, open-plan offices with plenty of
opportunities to wander around for a chat and line-of-sight visibility of people you
collaborate with. The reality is that most of us are not so lucky and have teams physically
separated by office walls, flights of stairs, the dreaded cubicles of doom, or even time zones.
At this point, let's hypothesize that the office space is not open-plan and there are some
physical barriers.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[66]

There are a few things you can look at to remove some of these barriers:

Keep the office doors open or, if possible, remove them altogether.
Set aside an area for communal gatherings (normally in the vicinity of the coffee
machine) with comfortable seating, such as sofas or bean bags, where people can
chill out and chat.
Have regular (at least weekly) sessions where everyone gathers (normally in the
vicinity of coffee and free doughnuts, cakes, cookies, pastries, or whatever would
entice people away from their desks) to chat and chill out.
Get a foosball or table-tennis table; it's amazing how much ice is broken by
having a friendly bit of competition within the office.
If you use scrum methodology (or similar) and have separate teams locked away
in offices, each holding their daily stand-up in private, hold a daily scrum of
scrums (or stand-up of stand-ups) and have one person from each team attend it.
Better still, mix things up and have members of each scrum team attend other
team's stand-ups.
Have teams hold their daily stand-ups away from the normal team area.
See whether some of the partition walls can be removed.
If you have cubicles, remove them, all of them. I personally think that they are
the work of the devil and produce more of a negative environment than having
physical walls separating teams.
See whether an office move-around is possible to get people working closer
together, or at the very least, mix things up.
Where possible, replace desktop PCs with laptops—it's easier to be able to sit
next to someone you are working with if you can take your workstation with you
without needing a trolley to shift it.
Stop relying on email for communications and encourage people to talk—have
discussions, mutually agree, and follow up with an email, if need be.

These are, of course, merely suggestions based upon a very broad assumption of your
environment and my experience in different organizations. You will no doubt have better
ideas. The end game here is to remove the barriers, be they virtual or physical, which could
stifle the successful adoption of CD and DevOps.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[67]

Let's see what our personas can do to help:

Good approach Not-so-good approach
Victoria (the veep) listens to what those
below her are saying and works with her
fellow senior leaders to help facilitate any
changes required to the physical
environment—securing budget if needed.

Victoria (the veep) looks out from her plush
office and suggests people stop moaning and
just get on with their work as she orders new
cubes for the additional developers she's
budgeted for.

Stan (the manager) works within his peer
group to convince those above of the
importance of changes to the physical
environment. Trying this alone, especially
when money needs to be spent, might be
challenging, so having many management
voices saying the same thing will add
weight. He also considers spending time
working in the office space with his
team(s)—a few hours per week may
suffice.

Stan (the manager) looks out from his slightly-
less-plush office and orders some blinds so
that he doesn't have to look at the teams that
are all crammed into the office space.

Devina (the developer) and Oscar (the Ops
guy) work together to make small changes
and run experiments, for example, to be
seen to have face-to-face discussions,
rather than via email, or take over an area
of the office and sit together.

Devina (the developer) and Oscar (the Ops
guy) insist on continuing to work in separate
parts of the office, communicate via email, and
don't mention anything to their leadership
team about the working conditions.

We'll now move on from the seemingly simple subject of openness and honesty to the
seemingly simple area of collaboration.

Encouraging and embracing collaboration
As you set out on your journey to adopt CD and DevOps, you will no doubt be working
with the assumption that everyone involved wants to play ball and collaborate.

A large part of the business actively contributed to the elephant exposure exercise to
capture and highlight the shortcomings of the incumbent business processes and ways of
working, and did so in a very collaborative way. Surely, they would want to continue in
this vein?

Culture and Behaviors are the Cornerstones to Success Chapter 3

[68]

At first, this might be true—assuming there has not been an aforementioned delay;
however, as time goes on, people will start to fall back into their natural siloed positions.
This is especially true if there is a lull in the CD and DevOps adoption activity—you might
be busy building/implementing technical tools or applying focus to certain areas of an
existing process that are most painful. Either way, old habits will sneak back in if you're not
careful.

It is, therefore, important that you keep collaborative ways of working at the forefront of
people's minds and encourage everyone to work in these ways as the default mode of
operation. The challenge is to make this an easy decision for all concerned. In essence, what
you need is for people to believe and feel that working collaboratively is easier to do than
not. When people believe and feel this, it becomes habitual and commonplace.

Luckily, there are many proven ways to encourage collaboration, but whatever you choose,
you need to keep things lightweight and ensure that those you are encouraging don't feel
that this way of working is being forced upon them; some reverse-psychology to make
them feel it's their idea would help here. Here are some simple examples:

Encourage everyone to use your online collaborative forum/messaging/chat
solution as the first port of call instead of email when face-to-face communication
isn't viable—even incentivize its use with leader boards and prizes at first to get
some buy-in.
If the norm is for problems to be discussed at a weekly departmental meeting,
rather than having a five-minute discussion at someone's desk, then cancel the
departmental meeting, instead encourage people to get up and walk and talk (or
use the aforementioned collaboration tools).
If the norm within the office is headphones on and heads down (which
encourages isolation and stifles good, old-fashioned human-to-human
discussion), look for ways to change this behavior so it isn't the norm. If people
like to listen to music while working, you can consider something radical, such
as a jukebox or some networked speakers. You could also consider agreements of
when headphones on and heads down is viable (for example, only in the
afternoon). In addition, if people need quiet time/space, see whether you can
change the physical environment to allow for it.
Even if you don't follow a scrum methodology, use the daily stand-up technique
across the board—you can even mix it up across teams and encourage people to
move around the stand-ups and listen in.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[69]

Install some magnetic whiteboards around the office space, which will encourage
people to get up, mix, and be creative while explaining problems, showing
progress, or simply having fun and doodling. If you have set up a communal
chill-out area, have a whiteboard installed there as well—this will encourage
collaboration.
Ensure you mingle and keep open discussions with all teams—you never know,
you might hear something that another person has also been discussing, and you
can act as the CD and DevOps matchmaker.

Once collaboration starts to take hold, you must continue to keep your eyes and ears open
to ensure you get an early indication of when things slip back. If you have built up a
network of like-minded individuals, make sure you utilize it to find out what's happening
on the ground and take early action if you hear a siloed approach sneaking back in.

You should also be mindful of the fact that collaboration can also be impacted—both
positively and negatively—by the physical environment. For example, if teams are spread
out across different buildings or even floors in the same building, collaboration can be
severely hampered. Some of the previous techniques may not be wholly
possible/viable—especially when close physical proximity is required—however, being
creative with technical collaboration tools should be encouraged to fill the gaps.

Let's again see what our personas can do to help:

Collaboration is not the exclusive realm of engineers. Managers and senior
leaders can and should collaborate and—more importantly—be seen to do so.
Stan (the manager) can use some of the previous techniques and the technical
collaboration tools.
To be honest, most senior leaders would not normally consider using the
aforementioned collaborative techniques and tools on a day-to-day basis;
however, Victoria (the veep) should at least have an appreciation for them and
evangelize throughout her peer group. Budgeting for the cost of technical tools
would also help.
Devina (the developer) and Oscar (the Ops guy) should practice what they
preach, evangelize, and be highly visible when collaborating (ideally within the
team/office area rather than hidden in meeting rooms). Even simple things, such
as encouraging developers and operations engineers to go to the same pub at
lunchtime on a Friday, can make a difference.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[70]

As collaboration becomes embedded within the organization, you will see many changes
come to life. At first, these will be quite subtle, but if you look closely, you'll soon start to
see them: more general conversations at people's desks, more "I'm trying to solve a problem
but not sure of the best way to approach it, anyone fancy a chat over coffee to look at the
options?" in the online chat room, and more background noise as people talk or share the
joke of the day.

Some subtle (or sometimes not-so-subtle) PR might help, for example, posters around the
office, coffee mugs, or even prizes for the most collaborative team; anything to keep
collaboration in sight and mind.

Let's leave collaboration for now and together move on to innovation and accountability.

Fostering innovation and accountability at a
grass-roots level
If you're lucky enough to work (or have worked) within a modern technology-based
business, you should be used to having innovation as an important and valued input for
your product backlog and overall roadmap. Innovation is something that can be very
powerful when it comes to implementing CD and DevOps, especially when this innovation
comes from the grass-roots level.

Many of the world's most successful and most-used products have come from innovation,
so you should help build a culture throughout the business where innovation is recognized
as a good and worthwhile thing rather than a risky way of advancing a product. Most
engineers thrive, or at least enjoy, innovation, and truth be told, this was most probably one
of the major drives for them choosing to become engineers—this and the fine wine, fast
cars, and international jet-setter lifestyle (OK, this might be stretching things a bit too far).

Culture and Behaviors are the Cornerstones to Success Chapter 3

[71]

This isn't to say that they can all go off and do what they want; there are still products to
deliver and support. What you need to do is allow some room for investigation and
experimentation—rekindle the R in R&D. Innovation is not just in the realm of software;
there might be different ways of working, or product-delivery methodologies that come to
light, that you can and should be considering.

Innovation is not restricted to products and tools; agile techniques, such as
Test-Driven Development (TDD), scrum, XP, and Kanban, all started out
as innovative ideas before gaining wider adoption.

Despite normal convention, innovation is not the exclusive right of solutions and systems
architects; anyone and everyone should be given the opportunity to innovate and
contribute new ideas and concepts. There are many ways to encourage this kind of activity
(competitions, workshops, and so on), but you need to keep it simple so that you get a good
coverage across the business. One simple idea is to have a regular innovation forum or get-
together, which allows anyone and everyone to put forward, and, if possible, prototype, an
idea or concept.

Innovation can increase risk, new things always do; therefore, the engineering teams must
understand that with the freedom they are given to make decisions and choices comes
responsibility, ownership, and accountability for the new stuff they come up with, produce,
and/or implement. They cannot simply implement shiny new toys, tools, processes, and
software and hand them off to someone else to support. The Somebody Else's Problem
(SEP) or throw-it-over-the-wall approaches will no longer work.

A good example of this is the ACME systems plan to allow developers to deploy code
directly to production. On the face of it, this is very much what CD and DevOps is all
about, but one simple question caused the plan to falter. The question was, who is going to
hold the pager? Or, to bring this into the 21st century, are the developers going to be on-call
when things go wrong out of hours? Ultimately, you need everyone involved in the process
of delivering and supporting software to have the same strong sense of accountability so
that the question need not be asked.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[72]

So, how can these values and behaviors be instilled in your organization? Let's see what our
personas can do to help:

Good approach Not-so-good approach
Victoria (the veep) should invest some time
investigating and reviewing how innovation
has transformed the way successful
businesses operate and increased revenue
and profits.

Victoria (the veep) ignores the importance of
innovation in modern business and sticks to
the old approach of delivering to the spec
and nothing more.

Stan (the manager) should actively allow
time for his team members to try things out
or experiment, be this by setting aside some
notional 10% time or simply encouraging
them to put forward their ideas and
suggestions for product or productivity
advancement.

Stan (the manager) ignores the importance of
innovation and forces his team(s) to focus on
the delivery of product features over
everything else.

Devina (the developer) and Oscar (the Ops
guy) should actively pursue this agenda as
part of discussions with their managers
during one-to-ones or team meetings. To
help things along, using some spare time on
an idea, and then presenting it back, might
be a good thing as it shows commitment and
that you're serious. Working together
collaboratively will also add credence.

Devina (the developer) and Oscar (the Ops
guy) should simply keep their heads down
and do what they are told, even if it goes
against modern engineering best practices.

As your adoption of CD and DevOps matures, you will find that innovation and
accountability become commonplace as the engineering teams (both software and
operations) will have more capacity to focus on new ways of doing things and improving
the solutions they provide to the business. This isn't just related to new and shiny things;
you'll find that there is renewed energy to revisit the technical debt of old to refine and
advance the overall platform.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[73]

Believe it or not, sometimes things will go wrong. We'll now look at how things that don't
go so well should be dealt with, and why a culture of blame is not a good thing to have.

The blame game
Encouraging a fail-fast way of working is a critical element to good agile engineering
practice; it is all well and good to say this, but this has to become a real part of the way your
business works—as they say, actions speak louder than words. If, for example, we have a
manager who thinks that pointing the finger and singling people out when things go
wrong is a good motivational technique, it's going to be very difficult to create an
environment where people are willing to put themselves out there and try new things. A
culture of blame can quickly erode all of the good work done to foster a culture of
openness, honesty, collaboration, innovation, and accountability.

Ideally, you should have a working environment where when mistakes happen (we're only
human and mistakes will happen), instead of the individual(s) being jumped upon from on
high, they are encouraged to learn from the mistake, take measures to make sure it doesn't
happen again, and move on. No big song and dance. Not only this, but they should also be
actively encouraged to share their experiences and findings with others, which enforces all
the other positive ways of working we covered so far.

Blame slowly, learn quickly
In a commercial business, it might sound strange and be seen as giving out the wrong
message (for example, you might seem to be ignoring or encouraging failure), but if lessons
are being learned, and mistakes are being addressed quickly out in the open, then a culture
of diligence and quality will be encouraged. Blaming individuals for a problem that they
quickly rectify is not conducive to a good way of working. Praising them for spotting and
fixing the issue might seem wrong to some, but it does reinforce good behaviors.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[74]

The following illustration shows the possible impact of a blame slowly, learn quickly
culture:

As blame diminishes, learning will grow as people will no longer feel that they have to
keep looking over their shoulders and only stick to what they know or are told to do.

If managers are no longer preoccupied with the small issues, they can
focus on the individuals who create issues but don't fix them or take
accountability.

As you can understand, this culture change is not going to be easy for some, especially for
the managers who have built up the reputation of being Mr. or Mrs. Shouty. Sometimes
they will adapt, and other times they might simply step out of the way of progress—as the
groundswell gains momentum. They will have little choice but to do one or the other.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[75]

Let's again summarize this:

Dos Don'ts
Accepting accidents will happen Pointing fingers
Encouraging a fail fast, learn quickly culture Calling out an individual's failings
Encouraging accountability Blaming before all of the facts are known
Encouraging the open and honest sharing of lessons learned Halting progress
Not making a big deal out of issues
Focusing on individuals who don't exhibit good behaviors

Removing the threat and culture of blame from the engineers' working life will mean that
they are more engaged, willing to be more open and honest about mistakes, and more
likely to want to fix a given problem quickly.

Let's see what our personas can do to help:

Good approach Not-so-good approach
Victoria (the veep) actively pursues a blame-free
culture where mistakes are seen as just that, as
long as people proactively learn from them. Her
language and communication style reflect this as
well.

Victoria (the veep) sees a mistake as a
disciplinary offence and instills a sense
of fear within her department that
whenever a problem occurs, the person
at fault will be found.

Stan (the manager) ensures that time is given to
learning and training—especially when mistakes
occur due to knowledge/skills gaps. His
language and approach to understanding the
root cause of problems is open and avoids use of
the term blame.

Stan (the manager) mirrors and agrees
with Victoria's approach. To emphasize
this, he will pick out faults and ensure
those responsible are identified and
called out.

Devina (the developer) and Oscar (the Ops guy)
are not afraid to admit when there is a gap in
their collective knowledge/skillset and highlight
this to their manager(s). When a mistake is
made, they freely admit their part in it and are
proactively involved in learning how to stop it
happening again.

Devina (the developer) and Oscar (the
Ops guy) work hard to distance
themselves from any issues found and
stick to doing what they are told rather
than use their skills and experience to
find creative was to solve
problems—which can carry risk.

Of course, there is a large element of trust required on all sides to make this work
effectively.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[76]

Building trust-based relationships across
organizational boundaries
Now, I will freely admit that this does sound like something that has been taken directly
from an HR or management training manual; however, trust is something that is very
powerful. We all understand what it is and how it can benefit us. We also understand how
difficult things can be with a complete lack of it. If you have a personal relationship with
someone, and you trust them, the relationship is likely to be open, honest, and a long and
fruitful one. Building trust is extremely difficult; you don't simply trust a colleague because
you have been told to do so—life doesn't work this way. Trust is earned over time through
peoples' actions. Trust within a working environment is also a very hard thing to build.
There are many different reasons for this (insecurity, ambition, reputation, personalities,
and so on), so you need to tread carefully. You also need to be patient as it's not going to
happen overnight.

Building trust between traditional development and operations teams can be even harder.
There is normally a level or an undercurrent of distrust between these two areas of the
business:

The developers don't trust that the operations team know how the platform
actually works or how to effectively investigate issues when they occur
The operations team don't trust that the developers won't bring the entire
platform down by implementing dodgy code

This level of distrust can be deeply ingrained and is evident up and down the two sides of
the business. These types of attitudes, behaviors, and the culture they create are all too
negative. It's hard enough to get software developed, shipped, and stable without playing
silly games with who does what and who doesn't. If you have an environment like this, the
business needs to grow up and act its age. There is no silver bullet to forge a good trust-
based relationship between two or more factions; however, the following techniques have
proven to be effective:

If you arrange for some off-site CD or DevOps training, ensure that you get a mix
of software and operations engineers to attend and ensure they are in the same
hotel. You will be amazed by how many collaborative working relationships start
in the hotel bar.
If there are workshops or conferences you are looking at attending (for example,
DevOpsDays), make sure there's a mix of Devs and Ops in attendance and a
hotel bar.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[77]

If you are a manager, be very mindful of what promises and/or commitments
you make and ensure you either deliver against them or you are very open and
honest as to why you didn't/couldn't. If you are an engineer, act in exactly the
same way.
If you have set up an innovation forum (as mentioned previously), encourage all
sides to attend and contribute.
Discourage us and them discussions and behaviors.
If it's viable, try to organize job swaps or secondments across the software and
operational engineering teams (for example, get a software engineer to work in
operations for a month, and vice versa). This can also include management roles.

Let's see what our personas can do to help:

Good approach Not-so-good approach

Victoria (the veep) encourages her
management team (Stan and his counterpart
within the Ops team) to work closely
together and, more importantly, to be seen
to work closely together. She also approves
a budget for cross-team events, training, and
team-building activities.

Victoria (the veep) ignores the fissure
between the Dev and Ops team (and their
management) and maintains the strict
separation between Dev and Ops in terms of
ways of working and priorities. She also
refuses to fund joint events, training, and
team-building activities, and encourages
open conflict.

Stan (the manager) is seen to be
collaborating with his counterparts within
Ops team and encourages his team(s) to
ignore organizational boundaries to get the
job done. He also encourages his team to
mix with the Ops teams in social settings.

Stan (the manager) actively ignores or is seen
to avoid collaborating with his counterparts
within Ops and insists his team(s) are
constrained to stay within the organizational
boundaries. Fraternizing with the Ops
team(s) is something he frowns upon and
hostility is seen as the norm.

Devina (the developer) and Oscar (the Ops
guy) ignore the organizational and
hierarchical boundaries at work and simply
work together to solve problems, mirroring
the actions of their leadership.

Devina (the developer) and Oscar (the Ops
guy) mirror the actions of their leadership
and avoid every opportunity for cross-team
collaboration.

We'll now move from trust to rewards and incentives.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[78]

Rewarding good behaviors and success
How many of us have worked with or been part of a business that throws a big post-release
party to celebrate the fact that, against all odds, you managed to get the release out of the
door? On the face of it, this is good business practice and Management 101; after all, most
project managers are trained to include an end-of-project party task and budget in their
project plans. This is not a bad thing if everything that was asked for has been delivered on
time to the highest quality. Let's try rewording the question.

How many of us have worked with or in a business that throws a big post-release party to
celebrate the fact that, against all odds, you managed to deliver most of what was asked for
and only took the live platform offline for three hours while they tried to sort out some
bugs that had not been found in testing?

If the answer to the question is quite a few, but it was a hard slog, and we earned it, then
you are a fool to yourself. Rewarding this type of behavior is 100% the wrong thing to do.
The businesses that deliver what customers want, and do it quickly, are the ones that
succeed.

If you want to be a business that succeeds, you need to stop giving out the wrong message.
We did say that it was OK to fail as long as you learn from it quickly; we didn't, however,
mention rewarding failure to deliver. You should be rewarding everyone when they deliver
what is needed when (or before) it is needed. The word everyone is quite important here as a
reward should not be targeted at an individual as this can cause more trouble than it's
worth. You want to instill a sense of collaboration and DevOps ways of working, so make
the reward a group reward, such as a party or a day out.

The odd few
OK, so there might be the odd few who will put in extra effort when times get sticky, and
rewarding those individuals is not a bad thing; however, this should not be the norm. If
engineering teams (software and operational) are consistently being told to work long days,
long nights, and weekends, then there is something wrong with the priority of the work. If,
however, they decide to apply some extra effort to overcome some long-outstanding
technical debt or implement some labor-saving tools to speed things up, then this is
completely different, and you should be looking at specific rewards for these specific good
behaviors.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[79]

At the end of the day, you want to reward individuals or teams for doing something
amazing that is above and beyond the call of duty, rather than simply successfully releasing
software. As CD and DevOps ways of working become embedded, you will notice that you
don't actually have what you would previously have called releases anymore (they are
happening too quickly to notice each one), and therefore, you need to look at other ways to
give rewards. For example, you can look at throwing a party when a business milestone is
hit (such as when you reach the next millionth customer), when a new product successfully
launches, or simply because it's sunny outside and the bosses want to say thank you.

CD and DevOps will change the way the business operates, and this fact needs to be
recognized across all areas. As such, the way you reward people needs to change to instill
the good behaviors previously mentioned (openness and honesty, innovation,
accountability, and so on). This can be quite a shift for some businesses, and some might
even need to implement new reward systems, solutions, or processes to cater for this.

One of the standard ways of rewarding people is via some kind of bonus or incentive
scheme. This will also need to change, but first you need to recognize how the current
system might foster the wrong behaviors and can stifle your implementation of CD and
DevOps.

Recognizing how Dev and Ops teams are
incentivized can have an impact
There is a simple and obvious fact that some people might not instantly realize, but it is
something that is very real and very widespread throughout the entire IT industry. This
fact is that development teams are incentivized to deliver change, whereas operations
teams are incentivized to ensure stability and system uptime, thus discouraging change.
The following diagram highlights this:

Culture and Behaviors are the Cornerstones to Success Chapter 3

[80]

There's no simple answer, but there are some examples you can look at to ease the pain:

Incentive Pros Cons

Having the same
incentives across
both Dev and Ops.

If you are incentivizing to allow for
continuous change, you will increase the
potential for having CD and DevOps
becoming the norm as everyone involved
will focus on the same goal.

There is more risk as
people might think that
changing things quickly is
more important than
quality and system uptime.

Including each
side of the DevOps
partnership in each
other's incentive
schemes.

If some of the bonus of the software-
engineering team is dependent on live
platform stability, then they'll think twice
before taking a risk. If some of the
operations-engineering team's bonus is
dependent on enabling CD, they will think
twice before blocking changes just for the
sake of it.

If the percentage of the
swap is small, it might be
ignored as the focus will
remain on getting the
majority of the bonus,
which will still encourage
the old behaviors.

Replacing the
current incentive
scheme with one
that focuses on
good behaviors
and encourages a
DevOps culture.

This has the potential to remove conflict
between the engineering teams (Dev and
Ops) and would encourage them to focus
on what is important: delivering products
customers want and need.

The reality is that it will be
quite difficult to get a full
agreement, and get it in
place quickly, especially in
a corporate environment.
This doesn't mean it's not
something worth pursuing.

Whatever you do with regard to incentivizing and rewarding people, you need to instill a
sense of positivity around change, while at the same time ensuring risk is reduced.

Embracing change and reducing risk
In the same vein as fostering innovation and accountability at a grass-roots level, you need
to work across the wider organization to ensure they accept the fact that change is a good
thing and not something to be feared.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[81]

It is true to say that changing anything on the production platform—be it a new piece of
technology, a bug fix to a 15-year old code base, an upgrade to an operating system, or a
replacement storage array—can increase the risk of the platform, or parts thereof, failing.
The only way to truly eliminate this risk is to change nothing, or simply switch everything
off and lock it away, which is neither practical nor realistic. What is needed is a way to
manage, reduce, and accept the risk.

Implementing CD and DevOps will do just that. You have small incremental changes,
transparency of what's going on, the team that built the change and the team that will
support it working hand in hand, a sense of ownership and accountability from the
individual(s) who actually wrote the code, and a focused willingness to succeed.

The major challenge here is getting everyone in the business to understand and embrace
this as the day-to-day way of working. The most effective way to do this is to prove it.

Changing people's perceptions with pudding
Getting the grass roots to understand this concept should be quite simple when compared
to other parts of the business that are, by their very nature, risk-averse.

I'm thinking here of the QA teams, senior managers, project and program managers, and so
on. There are a few ways to convince them that risks are being controlled, but the best way
is via using the proof of the pudding methodology:

Pick a small change and ensure that it is well-publicized around the business1.
Engage the wider business, focusing on the risk-averse, and ensure they are2.
aware; also invite them to observe and contribute (team stand-ups, planning
meetings, and so on)
Ensure that the engineers working on the change are also aware that there is a3.
heightened sense of observation for the change
As the change is progressing, get the engineering teams involved to post regular4.
blog entries detailing what they are doing, including stats and figures (code
coverage, test-pass rate, and so on)
As the release goes through the various environments to production, capture as5.
many stats and measurements as possible and publish them
When all is done, pull all this into a blog post and a post-release report, then6.
present them

Culture and Behaviors are the Cornerstones to Success Chapter 3

[82]

You might be thinking that this is a vast amount of work, and to be honest, it is if you
follow the preceding steps for each and every change you make. What it does do is serve a
purpose: it proves to the business that change is good, and risks can be controlled and
managed. I recommend you follow these steps a few times to build trust and
confidence—you can always refine later down the line. Another positive you will find is
that it will foster a culture of diligence at a grass-roots level; if they are very aware that the
business is keeping an eye on things, especially when things go wrong, then they will think
twice before doing something silly.

It should be noted that even though these steps will generate additional
work, this is nothing compared to how some organizations currently
function; changes are fully documented, and risks assessed, progress
meetings are held, the project progress is publicized, and every
meticulous detail is captured and documented. Is it any wonder that
delivering software can be painful?

As with anything in life, if you make a small change, the risk is vastly reduced. If you
repeat the process many times, the risk is all but removed and habits are formed. To follow
this thread, if infrequent releases contain a large amount of change, the risk is large. Make it
small and frequent, and the risk goes away. It's quite simple when you look at it this way.

As part of the proof of the pudding example, there was a lot of publicizing and blog-
posting going on. This should not be seen as an overhead, but a necessary part of CD and
DevOps adoption. Being highly visible is key to breaking down barriers and ensuring
anyone and everyone is aware of what is going on.

Being transparent
As we previously covered, being secretive about what you do and how you do it is not
conducive to building an open, honest, and trust-based working environment or culture. If
anyone and everyone can see what is going on, there should be no surprises. What we're
looking for is a culture, and ways of working where change is good and frequent,
individuals work together on common goals, the wider business trusts the product-delivery
teams to deliver what is needed when it is needed, and the operations teams know what is
coming. If there is a high degree of visibility across the entire process, anyone and everyone
can see this happening, and more importantly, how effective it is.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[83]

You should look at the option of installing large screens around the office to display stats,
facts, and figures. You might well have something like this set up already, but I suspect
these screens display very technical information-system stats, CPU graphs, alerts, and so
on. I also suspect that most of these reside in the technical team areas (development,
operations, and so on). This is not a bad thing, it's just very specialized, and those of a
nontechnical nature might ignore them or most likely don't even know that they exist. See
whether you can move some of the screens to communal areas of the office or try to find
some budget to buy new ones.

You should also complement this highly technical information with very simple, easy-to-
read-and-understand data related to your CD and DevOps process. You should be looking
at displaying the following kinds of information:

Number of releases this day, week, month, and year against the number
yesterday, last week, last month, and last year
The release queue and progress of the current release going through the process
and who initiated it
Production system availability (current and historical)
If you use an online scrum/Kanban board (such as Jira, Rally, or Trello), consider
having this data displayed to show your backlog, work in progress, and work
completed, along with related stats such as velocity and burndown
The latest business information, such as share price, active user numbers, and the
number of outstanding customer care tickets

The last point is very important. You should publish, display, and advertise
complementary information and data that is business-relevant, rather than simply focusing
on technical facts and figures. This will help to heighten engagement and awareness
outside of the technical teams. Having this information visible as you progress through
your adoption and implementation of CD and DevOps will also provide proof that things
are improving.

Culture and Behaviors are the Cornerstones to Success Chapter 3

[84]

Summary
We covered quite a lot of ground in terms of the human side of implementing CD and
DevOps throughout this chapter. Hopefully, it has been impressed upon you that the
culture in which you operate dictates the success of CD and DevOps. When it comes to
collaboration, you will find that trust, honesty, and openness are powerful tools that allow
individuals to take responsibility for their actions. Rewarding good behaviors and
removing blame will also help drive adoption.

At this point, you should have a plan and some insight into the importance of culture and
behaviors when implementing CD and DevOps. In Chapter 4, Planning for Success, we'll
look at some practical things that will help as you drive forward.

4
Planning for Success

Throughout Chapter 2, Understanding Your Current Pain Points, you were introduced to the
tools and techniques to identify the problems you may well have with your overall product
delivery process. We referred to this as the elephant in the room as it is something that is
not hard to spot, just very easy to ignore.

We then drilled down a little further during Chapter 3, Culture and Behaviors are the
Cornerstones to Success, to highlight (and in some ways reinforce) the fact that the culture
and environment within which the teams working on and delivering changes operate has a
massive impact on behaviors. This in turn impacts how they work and the quality of what
they deliver.

We will now take these learnings and apply some focus on the various methods,
approaches, techniques, and tools you can use to turn this into something that you can
implement to overcome the challenges—a plan of attack to implement CD and DevOps, if
you will.

Throughout this chapter you will be introduced to the following:

Why defining a goal and vision for your CD and DevOps adoption is very
important
Why it's important to ensure that everyone understands what it is all about and
is au fait with the language and terminology used
How to improve engagement and communication through the use of online
collaborative solutions
Making sure the business understands the breadth of the implementation of CD
and DevOps
Why effective PR, evangelism, courage, and determination are so important to
the success of the project
The costs, some obvious and some not so, that must be taken into account before
you embark on your adventure

Planning for Success Chapter 4

[86]

This plan of attack should not be taken lightly; just like the elephant exposure stage, there is
quite a bit of groundwork you need to do to ensure the scope of the implementation is
understood, accepted, and communicated.

Before we dive into the planning, let's have a look at the types of problems that you will no
doubt be dealing with.

Some common problems
During your elephant exposure, you will have surfaced some problems with how you are
currently delivering software. You will also start to consider the problems within your
culture, environment, and the behaviors being exhibited.

The presumption here is that the problems identified are the commonplace issues related to
most software delivery processes within most businesses around the globe. These will
include some of the following:

Waste from having too many handover and decision points in the process
Waste due to unnecessary wait time between steps
Many software changes are packaged up into large, complex big bang releases
Large and infrequent releases breed an environment for escaped defects and
bugs and mistrust between those delivering change and those supporting it
Releases are seen as something to dread rather than a positive opportunity for
change
Most of the team(s) are disengaged or there is low morale (or both)
Communication between key teams is fragmented, stilted, and sometimes non-
existent
Software changes are not trusted until they have been tested many, many times.
Even then, go-live is not without issue
Over-complex dependencies within the software design, which makes testing
and releasing very challenging
There is duplication of tasks and activity throughout the process

It would be ludicrous to say that simply creating a plan will solve all of the problems and
issues—after all, some of the problems and issues may actually be due misaligned
plans—however, without a plan it's going to be very hard to at least make a dent.
Successful adoption of CD and DevOps can be hard enough as it is, so having a unified and
understood approach will drastically improve your chances.

Planning for Success Chapter 4

[87]

As with any plan or project, there needs to be an end goal and a vision of how to get there.

Setting and communicating goals and vision
A goal and vision for any project is important as it ensures all concerned know what is
expected and for those working on the project understand where it, and they, are heading.
It may sound quite simple, but it is not always obvious. In addition to setting the goal and
vision, it is just as important what you communicate and how you do it. Do either
incorrectly, and you are in danger of losing buy-in, support and engagement from the
business. As pointed out in Chapter 3, Culture and Behaviors are the Cornerstones to Success,
the environment, culture, and default behaviors exhibited throughout the organization can
help or hinder CD and DevOps adoption, so you need to be mindful of this when
formulating the goal, vision, and communication approach.

These challenges can become very polarized when dealing with senior management. For
example, they may believe that simply fixing a few of the issues highlighted during the
elephant exposure will be enough to overcome every problem that the business has taken
the time and effort to lay bare for all to see—as soon as you start to hear terms such as low-
hanging fruit you should start to worry. A simple rule of thumb that has helped many
business changes over the years is that you have to be crystal clear what you plan to
achieve, and crystal clear who you are communicating this to.

When it comes to adopting CD and DevOps, this can be quite challenging as the
deliverables and benefits are not always easy or obvious for the un-initiated to understand
or envision. It may also be difficult to fully quantify as some of the benefits you obtain from
the adoption are not wholly tangible—it can be quite hard to measure increases in team
collaboration and happiness. Some leaders may align their decisions to Return On
Investment (ROI) models and only consider applying budget to such things where the
return is very obvious and quantifiable. Again, this can be very hard to directly convert the
advantages adopting CD and DevOps will give into a pure monetary value.

The best advice is to follow the keep it simple stupid (KISS) approach. You have a list of
issues, which the wider business has provided for you, and what they want is something
(anything) that will make their lives easier and allow them to do the jobs they were hired
and are paid to do. I would also suggest that the majority would also like to have the
opportunity to add value to the business, the customers and their self-worth. Regarding the
list of issues, if truth be told, you most probably have more things on the list than you can
effectively deliver. This should be seen as a good thing as you have some wriggle room
when it comes to prioritization of the work.

Planning for Success Chapter 4

[88]

Your challenge is to pull together a goal and vision, that will resonate with all of the
stakeholders, employees and the wider business and ensure it is something that can add
business value. More importantly, you need to ensure that the goal and vision can be
delivered. This will need quite a bit of effort, thought, and planning, but it is doable. To
give you some ideas, let's go back to ACME systems to see how they approached this.

When ACME systems were planning the adoption of CD and DevOps, it pooled together its
ideas and came up with a goal for the project. This was pretty simple and self
explanatory; to be able to release working code to production 10 times per day. It further
simplified this to deliver value 10 times per day, which formed a nice simple tag line that
everyone could understand (almost everyone, but we'll come to that soon) and formed the
basis of its vision and communication strategy.

Yes, this was an ambitious goal but the company knew with some hard work, courage,
determination, and the right people involved, it was possible to achieve.

Setting your goal may be just as easy. You have a good understanding of the business
problems that need to be overcome, you know which teams are involved, and you have a
good idea of what will resonate with the stakeholders. This may sound nice and simple, but
it's true to say that with a blank whiteboard and a pen you will be able to fill most of the
space up with example goals. Canvas opinion from people whose judgment you trust; if
they think your proposed goal is way off the mark, it might just be so. If you're lucky
enough to have PR or marketing people available, canvas their opinions; this is after all
something they are pretty good at. Pulling together a top-level communication plan may
also help to focus the message for the target audience(s).

Let's go back to the ACME systems again and see how it approached communication. They
had a goal (deliver value 10 times per day) and needed to set out the vision. This vision
included a wide variety of deliverables that it believed would solve a majority of the
problems highlighted during their elephant exposure. These deliverables were both
technical and non-technical in nature but above all were easy to understand, explain, and
could all be clearly communicated. These deliverables were listed out, broken down and
ranked to give an indication as to what would be addressed in what order. Those of you
who are au fait with agile ways of working will recognize this as a prioritized feature
backlog.

Planning for Success Chapter 4

[89]

To reinforce this, it then worked on the business justification that would resonate with the
stakeholders and business leadership. They did this by reviewing the list of problems and
identifying those that directly related to cost—or more importantly wastage. The examples
it focused on related to excessive repetitive manual test runs, repeated meetings attended
by (expensive) senior leadership and cost of downtime for releases. To complement this, it
also pulled together facts and figures relating to escaped defects and number of hotfixes
required to address them.

The next step was to document and present the goal and vision to the decision makers in
the business and the influential stakeholders to gain agreement that what was being
proposed would address the problems and issues captured during the elephant exposure.
This presentation was directed to as wide an audience as possible—not just the
leadership—with many sessions booked over many days to allow as many people to be
involved as possible. The preferred outcome was to gain agreement from those that had
been involved in the original exercise to expose the elephant in the room to fully
understand, get behind, and accept the proposed approach.

After much discussion, presenting, cajoling, and some time the goal and vision were agreed
across the organization. With the vision agreed, it then went about breaking down the
highest priority items of the vision (read, highest priority features) into requirements (read
stories), which could be worked on and more importantly delivered.

The next step was to bring together a team of like-minded individuals to assist in the
delivery—be that from a technical tooling perspective or education, coaching, and advisory
capacity to help the wider team succeed in its goal.

To ensure transparency and ease of access to the goal and vision, the ACME systems team's
members needed to ensure that all data, information, and plans were made available for all
to see. To this end, they fully utilized all internal communication and project repository and
reporting tools available to them: internal wikis, blogs, websites, intranets, and forums.

If you don't have tools such as these available to you, it shouldn't be a vast
amount of effort to get one set up using open source solutions. There are
even online solutions that are secure enough to keep company secrets
safe. Having this level of transparency and openness will help as you
move forward with the execution of the plan. This is especially true of
social solutions such as blogs and forums, where feedback can be given,
and virtual discussions can take place.

Planning for Success Chapter 4

[90]

Let's see what our personas can do to help:

Good approach Not-so-good approach
Victoria (the veep) can continue her active
involvement in the project and help her team
to quantify the business case, socialize the
goal, vision and business benefits within her
peer group. Ideally, becoming project sponsor
will add weight to the activity.

Victoria (the veep) distances herself from
the activity as she's expended enough time
and effort already. She also starts to openly
question the validity of the goal, vision, and
project as there is no obvious ROI.

Stan (the manager) continues his active
involvement to ensure that the goal and
vision are realistic, achievable and messaged
correctly. He could also call upon peers
within marketing to help with targeting the
message. As Victoria has done, he can help
socialize the goal and vision throughout his
peer group. If he has scrum masters or agile
coaches available, he should get them
assigned to assist in formulating the backlog.

Stan (the manager) mirrors the behaviors of
his boss (Victoria) and openly questions the
need for a goal and/or vision. He also
encourages his team(s) to ignore this and
simply get on with it.

Devina (the developer) and Oscar (the Ops
guy) can and should remain actively engaged
in the project and pull together as much
background data as possible to.

Devina (the developer) and Oscar (the Ops
guy) keep their heads down and simply do
as they are told.

It all sounds pretty simple when it's put down into a few paragraphs and to be honest it
could be with the right environment and the right people involved. It's just a case of
ensuring you and they have a good grasp of what the business and stakeholders want, how
to summarize this into an easily understandable goal that people can relate to and get
behind. It's the case of aligning the vision to drive things in the right direction. The key here
is "easily understandable", which can sometimes be a challenge, especially when you
consider how complex it can become communicating across many business areas (and
possibly many time zones and cultures) who each have their own take on the terminology
and vocabulary that may be used. This brings us nicely on to how you should communicate
and ensure everyone involved understands what is happening.

Planning for Success Chapter 4

[91]

Standardizing vocabulary and language
One small and wholly avoidable thing that can scupper any project is the misinterpretation
or confusion of what the deliverables are. This may sound a little alarming, but projects can
fail simply because one person expects something, but another person misunderstands or
misinterprets and delivers something else. It's not normally down to ignorance; it's
normally due to both sides interpreting the same thing in different ways.

For example, let's look at something relatively innocuous; the word release. To a project
manager or a release manager, this could represent a bundle of software changes, which
need to be tested and put live within a schedule or program of work. This will normally
entail detailed project plans, close coordination with all departments inside and outside of
the product delivery function and lots of meetings, paperwork, and late nights. To a
developer working in an agile way, a release could be a one-line code change, which could
go live soon after they have completed coding and ran the automate tests. As you can see,
one simple word can be perceived as something that will take a considerable amount of
work by one member of a product delivery team member and perceived as something
simple that just happens on a daily basis. These perceptions can cause lots of unforeseen
and wasteful problems.

There can also be a bit of a problem when you start to examine all of the different words,
terminology, and TLAs (three-letter acronyms) that we all use within product delivery and
IT as a whole. We therefore need to be mindful of the target audiences we are
communicating to and with to ensure they easily understand the message they are given.
Again, the KISS method works well here. You don't necessarily have to go down to the
lowest common denominator; that may be very hard to do (you could end up writing an
entire book) and could make matters worse. Try to strike a balance. If some of the target
audience don't easily understand, then get someone who does understand to talk with
them and explain; this will help bridge the gaps and also form good working relationships.

Planning for Success Chapter 4

[92]

Another suggestion to help bridge the gap is to pull together a glossary of terms that
everyone can refer to. The following is a simple example:

Term What it is What it is not

Continuous delivery

A method of delivering fully working
and tested software in small increments
to the production platform, thus
providing customer value quickly

A very complex method
of delivering huge chunks
of code every few weeks
or months

DevOps

A way of working that encourages the
development and operations teams to
work together in a highly collaborative
way towards the same goal

A way to get developers
to take on operational
tasks and vice versa

CD See continuous delivery

Continuous integration

A method of finding software issues as
early as possible within the
development cycle and ensuring all
parts of the overall platform talk to each
other correctly

Something to be ignored
or bypassed because it
takes effort

CI See continuous integration

Definition done
A change to the platform (software,
hardware, infrastructure, and so on) is
live and being used by customers

Something that has been
notionally signed off as
something that should
work when it eventually
goes live

DOD See definition done

Release
A single code drop to a given
environment (testing, staging,
production, and so on)

A huge bundle of changes
that are handed over to
someone else to sort out

Deploy The act of pushing a release into a given
environment

Something the operations
team does

If you have an internal communication/collaboration tool such as a wiki or
intranet or blog or forum, then that would be a good place to share this as
others can update it over time as more buzzwords and TLAs are
introduced.

Planning for Success Chapter 4

[93]

The rule of thumb here is to ensure whatever vocabulary, language, or terminology you
standardize on, you must stick to it and be consistent—chopping and changing at a whim
can should be avoided. For example, if you choose to use the term CD and DevOps you
should stick with it through all forms of communication, written and verbal. It then
becomes ingrained and others will use it day to day, which means conversations will be
consistent and there is much less risk of misinterpretation and confusion—failure to do this
can and will lead to bad decisions being made.

One other thing to take into account is industry standard terms vs those that your business
are used to. For example, if everyone throughout your business feels a shudder of dread
when the word release is mentioned then don't try and change the meaning to match an
industry standard as some will still associate the negative connotation. Instead, try using
alternative terms—such as delivery—which will not have the historical baggage. All in all,
chose your words carefully as they'll be with you for a while.

Let's see what our personas can do to help:

Good approach Not-so-good approach
Victoria (the veep) takes an active involvement in
the language and vocabulary used within her
organization and uses the agreed terms within all
communication (written and verbal). She is also
seen to be correcting her peers and members of the
wider org when they revert to the what we used to
use terms and language.

Victoria (the veep) ignores the
relative importance of language and
vocabulary used throughout her
organization and lets incorrect terms
and language slip with no challenge.
In fact she still uses incorrect terms,
language, and vocabulary herself.

Stan (the manager) mirrors the behavior of his boss
(Victoria) and at times corrects her which she slips
up. Stan should also actively encourage his team(s)
to compile, refine, and utilize the standard notation
in all communications.

Stan (the manager) mirrors the
behavior of his boss (Victoria).

Devina (the developer) and Oscar (the Ops guy) also
mirror the behaviors of their bosses and encourage
their peers to do the same.

Devina (the developer) and Oscar
(the Ops guy) simply ignore
whatever is going on and carry on
using the terms, language, and
vocabulary they have always used.

Planning for Success Chapter 4

[94]

Let's move forward with the presumption that you now have a goal, a vision, a high-level
backlog, a standard way of communicating, and you're ready to roll. Almost. The execution
of the vision is not something to be taken lightly. Whether you are a small software shop or
a large corporate, you should treat the adoption and implementation of CD and DevOps
with as much gravitas as you would any other project, which touches and impacts many
parts of the business. For example, you wouldn't implement a new finance and payroll
system into the business as if it were a small-scale skunkworks project. Any change that
impacts the wider business takes collaboration, close coordination, and planning. The
adoption of CD and DevOps is not trivial and therefore should be seen in the same light.

A business change project in its own right
Classing the implementation and adoption of CD and DevOps as a business change project
may seem a bit dry but that's exactly what it is; you are changing the way business
operates, for the better. Not something to be taken lightly at all. If you have ever been
involved in business change projects, you will understand how far-reaching they can be.

There's a high probability that the wider business may not understand this as well as you
do. They have been involved in the investigation and have verified the findings and seen
what you intend to do to address the issues raised. What they may not understand fully is
the implication of implementing and adopting CD and DevOps—in terms of the business, it
can be a life changing event. A little later in the book, we'll go through some of the hurdles
you will face during the implementation, but if you have a heads-up from the start you're
in a much better position to leap over the hurdles.

Suffice to say that you should ensure you get the business to recognize that the project will
be something that will impact quite a few people, albeit in a positive way. The way certain
parts of the business currently operate, the processes they have in place, the ways of
working, and skillsets required will need to change. We not just talking about product
development here either; adopting CD and DevOps will change the way the business
thinks, plans, decides, and the speed at which it operates.

Planning for Success Chapter 4

[95]

For example, let's assume that sales, marketing, product and program management teams
are currently working on a three- to six-month cycle to take features to the market. If the
CD and DevOps adoption goes to plan, the cycle will become much shorter, whereby a
feature may be available in days or weeks:

A typical multi-month software delivery cycle:

A typical agile software delivery cycle

The aforementioned teams will need to work at a different cadence and will have to speed
up and streamline their processes, planning, and communication. They will also need to
refine their go to market approach to ensure clients don't get shocked by getting features
before they are ready to take them on.

From experience, the adoption of CD and DevOps and the consistent increased speed of
delivery also brings some unexpected and very positive benefits—that being a renewed
level of trust throughout the business that when the product delivery and operations team
commit to deliver something they actually deliver it—time and time again. On the face of it,
that's a good thing, however if downstream teams such as sales and marketing are used to
feature deliveries being consistently delayed, they will have no doubt been factored into
their plans, therefore having features delivered on time may actually take them by surprise.

Planning for Success Chapter 4

[96]

It also means the whole end to end process can be streamlined as the traditional plan B, C
and D—normally put into place if (when) things go wrong—is no longer required. The way
features are delivered will drastically change, and the rest of the business needs to accept
this and be ready for it.

When you start to consider the (positive) impacts adoption of CD and DevOps can and will
have on the wider business, you can start to appreciate how careful you should approach it.
If you have access to a program management team specializing in business change, then
you would be wise to engage them so that they can help provide the overarching plan.

It should be noted that changes will not happen overnight, but history shows that
businesses that truly adopt CD and DevOps are normally transformed in a matter of
months (depending on size of the organization of course), so it's always best to have a plan
to get ahead of the curve as things will creep up on you pretty fast.

Going back to the skunkworks example, you should be mindful that the adoption of CD
and DevOps will initially be seen by the wider business as just that—some skunkworks
project that the development and operations team need to implement to overcome their
inefficiencies. What the business needs to appreciate is that the adoption of CD and
DevOps is far bigger than that. The sooner they realize, the better. We'll now focus on that
subject.

Dev + Ops + Org
In the early stages of the adoption, the wider business will most probably believe that the
impact of CD and DevOps—as the name suggests—will be localized to the development
and operations teams. The following pretty standard diagram depicts the size of this bubble
as the wider business will see it:

What the business sees at the early stages

Planning for Success Chapter 4

[97]

At first, this may not be too far from the truth and you will no doubt start small so that you
can get to grips with the subtleties and to find your feet, as it were. This is fine; however,
once you get some momentum—which will not take long—things will start to change very
quickly and if people aren't ready, or at least aware, you may hit some barriers, obstacles,
and pain points that could slow things down or even stop the adoption in its tracks.

As previously stated, the adoption of CD and DevOps is a business change project
which—as the name implies—will impact the business itself, not just the techies. The
business must therefore accept that the impact will be far reaching as depicted in this wider
and more realistic bubble:

What the business should be seeing as representative of the areas that will be impacted and involved

If you think back to when the elephant in the room was exposed in Chapter 2,
Understanding Your Current Pain Points, you'll recall that the wider, the wider business
functions were involved in the activity of investigating, understanding, and highlighting
the issues within the end to end business process. That being the case, they should not
simply walk away from the hard bit and should stay engaged and actively involved in
addressing and changing the ways of working to realize the benefits and eradicate the
problems surfaced.

I don't want to sound like a stuck record, but adoption of CD and DevOps is not simply
related the product delivery teams—the impacts and changes will be wide-reaching,
therefore you need to ensure the wider business keep involved.

I think I've labored the point enough, so let's move forward with the presumption that the
business is in agreement regarding the wide-reaching nature of the implementation and
(almost) everyone is fully behind the project. The next challenge is deciding to form a
dedicated team to drive forward the implementation of the goal and vision, and eventual
CD and DevOps adoption.

Planning for Success Chapter 4

[98]

The pros and cons of a dedicated team
There are several schools of thought in relation to whether or not to have a dedicated and
committed team overseeing the adoption of CD and DevOps. One school sees this as a
necessary and logical move as only those with an interest in or experience/knowledge of
CD and DevOps will actually understand the value of both/either and know (or at least
have a pretty good idea) how it should be adopted. This is very true, however there are
drawbacks—which we'll cover shortly. The other school suggests that this is a bad idea as
it's not really that far removed from any other business change project, therefore can be
managed through close collaboration and coordination without specialist knowledge. In
truth, both schools are correct and also incorrect at the same time.

What it boils down to is this: if a dedicated team can get the adoption moving quickly,
efficiently, and effectively then go for it, as long as they don't end up doing everything
themselves in isolation and are therefore seen as the CD and DevOps team who just
implement technical things and don't need/work with anyone else. As I've stated
previously, just having a CD and/or DevOps team in your organization does not mean you
have adopted CD and DevOps, it's far more complex than that. Like any successful
business change project, a dedicated team should be there to help steer, guide, mentor, and
coach the like-minded individuals (not just Dev and Ops) involved to collaborate and
contribute while at the same time actively contributing themselves and focused on moving
the adoption along. The sometimes overused business bingo term here is enablers or agents
for change.

If you prefer to forgo a dedicated team and simply run the adoption as a business change
project bringing in skills and individuals as when required, then you should at least need
have someone(s) heavily involved who has a knowledge and/or experience of what CD and
DevOps adoption actually means and can ensure the goal and vision are realized—without
that, things may go off the rails somewhat. Something to also consider is whether or not the
same sense of ownership and close collaboration will come out of a collection of individuals
who occasionally work together vs a dedicated team who share a common goal and vision.

It really is your call, however my recommendation is to join the form a dedicated CD and
DevOps adoption team school. You will need to ensure that the team is not wholly
technical in experience/background, are willing and able and capable of working across the
wider business, and more importantly have the ultimate goal of making themselves
redundant. I don't mean they will lose their jobs, what I mean is that the dedicated team
should be transient and once the CD and DevOps adoption has taken hold the team can be
disbanded with little/no fuss and go back to their day jobs.

Planning for Success Chapter 4

[99]

From past experience, the simplest way to decide on an approach is to go back to basics and
list out the pros and cons as they apply to you and your business. Let's presume for ease of
reading and page count that at this point you have decided to form a dedicated
team—what's next?

As with any highly collaborative project, collocation of the team members is always
preferable, however, not always possible. If you have geographically diverse (or dispersed)
teams, then you need to ensure the you have members of the dedicated CD and DevOps
adoption team in each location as they will need to be close to hand and in the same time
zone as the people they are steering, guiding, mentoring, and coaching. They also need to
work very closely together on a day to day basis—I would suggest you follow the tips and
suggestions highlighted within Chapter 3, Culture and Behaviors are the Cornerstones to
Success, in relation to collaboration and the physical environment.

When we say dedicated, it means just that. The main day to day role of the team members
will be to focus on doing whatever is needed to successfully implement the previously
agreed goal. Now, it's not unusual to recruit or buy in a dedicated team from outside of the
business but this isn't always a wise move as these individuals won't have the business
domain knowledge or have an established connection to the wider business. That said,
bringing in outside experts and/or individuals with experience in CD and DevOps
adoption can help as long as they complement the core dedicated team. Again, this is really
something you need to consider based upon your business needs, resource constraints, and
budget.

Whatever you decide, you need to be mindful that you will be taking a number of key
people out of the business and away from their day jobs for a considerable amount of time
to focus solely on the implementation and adoption of CD and DevOps.

As soon as this is highlighted, I can pretty much guarantee that you will get some areas of
the business take a big step back in terms of engagement—especially those areas which
manage the very people you want to second onto your dedicated team. This is
understandable as they will most probably be the subject matter experts in their area and
are therefore pivotal to their existing team/functional area.

Planning for Success Chapter 4

[100]

It is down to you to cajole, beg, bargain, and barter to get the people you need. To be
honest, it shouldn't be too difficult as you have quite a large amount of ammunition to
use—the same information and data you worked so hard to compile and which the
business itself agreed was causing pain. If you used the value stream mapping exercise you
should also be able to pinpoint the pain areas with accuracy. Let's take a typical discussion
between you and the head of testing and QA—let's call him Chucky:

Planning for Success Chapter 4

[101]

I admit it might not go exactly along those lines but hopefully you can see the point. You
have been given a clear insight into what pains the business and have been asked to remove
said pains. The business needs to realize that this will not come without some cost and that
they need to provide you with what you need to get the job done.

In relation to the setup of the dedicated CD and DevOps adoption team, that really
depends on the way in which your business is set up. A typical business would normally
have something like development, QA, operations, and change management teams
involved in the software release process; therefore, you should include someone from each
area. To make things as agile as possible, add a Scrum Master and a product owner and top
it all off with a Senior Manager (someone who can act as the project sponsor and represent
the team at a higher level), and you'll end up with something as shown in the following
diagram:

An example team setup

Now, that's all well and good but doesn't this simply look like a typical IT project team? In
a word, yes. However, this is mainly due to the skills and experience within this area. CD
and DevOps are historically derived from IT folks, and as such you don't tend to get many
sales executives or accountants having a working understanding of CD and/or DevOps
(unless they have read this book of course).

Planning for Success Chapter 4

[102]

As previously mentioned, you should be proactively engaging with areas of the business
that will be impacted, however you need to decide on who should be actively involved and
who should be classed as stakeholders. The rule of thumb here should be if someone is
actively involved and contributing on a day to day basis, they should be included in the
dedicated team. If they have an interest or need to be consulted regularly, they should be
stakeholders.

One tool that would really help you here is RACI which allows you to
define who is Responsible, Accountable, Consulted, and
Informed—there's plenty of information available on RACI so I suggest
you do some homework.

Just to reiterate, a dedicated team must be made up of more than just Devs and Ops if they
are to have credibility across the wider business.

Now that you have the art of persuasion and positive influencing under your belt, you and
your newly formed team need to learn the art of evangelism.

The importance of evangelism
To evangelize across an entire business all of the time is going to take some effort and some
determination. It will also take some energy. Actually, that's wrong; it will take a lot of
energy. Your target audience is wide and far-reaching, from senior management to the
shop floor, so it will take up quite an amount of time for you and your team to get the
message across. Before we go into the details of what to say to who, when, and how, let's
get the ground rules sorted:

If you are to be convincing when evangelizing to others the virtues of CD and
DevOps adoption, you and your newly formed team need to truly believe in
it—if you don't, then how can you expect others to?
You, the team, and whoever is involved in the project, must practice what you
preach and set a good example for others to follow. For instance, if you
build/implement some tools as part of the project, make sure you build and
deploy them using the exact same techniques and tools you are evangelizing
about.
Many (most) people will not get it at first, so you and the team will have to be
very, very patient. You may have to explain the same thing to the same person
more than once. Use these kinds of individuals as a yard stick; if they start to
understand what CD and DevOps adoption is then there's a pretty good chance
your message is hitting home.

Planning for Success Chapter 4

[103]

Remember your target audience and tailor your message accordingly.
Developers would want to hear technical stuff, which is new and shiny; system
operators would want to hear words such as stability and predictability; and
management types would want to hear about efficiencies, optimized processes,
and risk reduction. Do not use one message for all.
As you evangelize and sing the praises of CD and DevOps adoption, ensure you
are measuring the impact of your message—the rule of thumb is if you see their
eyes glaze over, your message is not hitting home, so change it.
Some people will simply not want to know or listen, and it may not be worth
focusing your efforts to make them (we'll be covering some of this in a Chapter
3, Culture and Behaviors are the Cornerstones to Success). If you can win them
around, then kudos to you and the team but don't feel dejected by one or two
laggards.
Keep it relevant and consistent. You have a standardized language, a goal, and a
vision so use them.
Don't simply make stuff up. Just stick to what can be delivered as part of your
goal and vision; no more, no less. If there are new ideas and suggestions get them
added to the backlog for prioritization.
Don't, on any account, give up.

What it boils down to is you and the team will need to talk the talk and walk the walk.
There will be quite a bit of networking going on so be prepared for lots and lots of
discussion. As your network grows so will your opportunities to evangelize. Do not shy
away from these opportunities, and make sure you are using them to build good working
relationships across the business as you're going to need these later on. Evangelizing is
rewarding and if you really believe that CD and DevOps is the best thing since sliced bread
you will find that having opportunities to simply talk about it with others is like a busman's
holiday.

Evangelism is basically PR so if you have PR people available (or better still as part of the
team) you should also investigate getting simple things together like a logo or some
freebies (such as badges, mugs, mouse mats, and so on) to hand out. This may seem a little
superfluous, but as with any PR you want to ensure you get the message across and have it
embedded into the environment and people's psyches.

Up until this point, I may have painted things in a somewhat rosy glow. Adopting CD and
Dev Ops is no picnic in the park. There's quite a big hill to climb for all concerned. As long
as everyone involved is aware of this and has the courage and determination to succeed,
things should go well.

Planning for Success Chapter 4

[104]

The courage and determination required
throughout the organization
Courage and determination may seem like strong words to use, but they are the correct
words. There will be many challenges, some you are aware of some you are not, that will
try to impede the progress, so determination is required to ensure this keeps moving in the
right direction. Courage is needed as some of these challenges will require you, the team,
and the wider business to make difficult decisions, which could result in actions being
taken from which there is no going back. I'll refer to ACME systems Version 2.0 for a good
example of this.

In the early days of their adoption of CD and DevOps, they started with a small subset of
their platform as the candidates for releasing using the new deployment toolset and ways
of working. Unfortunately, at the same time there was a lot of noise being generated
around the business as another release (using the old package everything up and push out as
one huge deployment method) was not going well. The business asked everyone to focus on
getting the release out at all costs, including halting the CD trials. This didn't go down too
well with the team. However, after a rather courageous discussion between the senior
manager of the ACME CD and DevOps adoption team and his peers, it was agreed that
resource could be allocated if there was universal agreement that this would be the last of
the big bang releases, and that all future releases would use the new CD pipeline process
going forward. The agreement was forthcoming, and so ended the era of the big bang
release and the new era of CD and DevOps dawned. After the last of the big bang releases
was eventually completed, the entire development and operations teams were determined
to get CD up and running as soon as possible.

They had been through enough pain and needed another way or rather a better way. They
persevered for a few months until the first release, using the new tooling and ways of
working, went to the production environment, then the next, and so on. At this point, there
was no turning back as too much had changed.

As you can no doubt appreciate, it took courage from all parts of the business to make this
decision. There was no plan B and if it hadn't worked they had no way to release their
software. Knowing this fact, the business was determined to get the new CD and DevOps
ways of working embedded and established.

This could be classed as an extreme case, but nonetheless it goes to show that courage and
determination are sometimes very much needed; if there's a will there's a way.

Planning for Success Chapter 4

[105]

Before we move away from the planning stage, there are still a couple of things you should
be aware of as you prepare to embark on your new adventure: where to seek help and
ensuring you and the wider business are aware of the costs involved with implementing
and adopting CD and DevOps. We'll cover costs first.

Understanding the cost
Implementing CD and DevOps will ultimately save the business quite a lot of money; that
is a very simple and obvious fact. The effort required to release software will be
dramatically reduced, the resources required will be miniscule when compared to large big
bang releases, the time to market will be vastly reduced, the quality will be vastly increased,
and the cost of doing business (that is, volume of bug fixes required, support for system
downtime, fines for not meeting SLAs, and so on) will be negligible. That said,
implementing CD and DevOps does not come for free. There are costs involved and the
business needs to be aware.

Let's break these down:

A dedicated team assigned to the CD and DevOps project
Changes to business process documentation and/or business process maps
Changes to standard operating procedures
Changes to hosting (on the assumption there is a move to virtual/cloud
infrastructure)
Tweaks to change management systems to allow for quicker and more
lightweight operations
Internal PR and marketing materials
Enlisting the help from external specialists
Things may slow down at the start as new ways of working become the norm

These costs should not be extortionate; however, they are costs that need to be taken into
account and planned for. As with any project—especially one as far reaching as CD and
DevOps adoption—there will always be certain costs. If the business is aware of this from
the outset, then the chance of it scuppering the project later down the line can be
minimized.

There may be some costs that are indirectly caused by the project. You may have some
people who cannot accept the changes and simply decide to move on; there will be costs to
replace them (or not, as the case may be). As previously stated at the beginning of the
transition from big bang releases, you may well slow down to get quicker. If you have
contractual deadlines to meet during this period, it may be prudent to renegotiate them.

Planning for Success Chapter 4

[106]

Those actively involved in the CD and DevOps adoption will know your business better
than anyone—especially after the elephant exposure—so you may have better ideas related
to costs. Just make sure you do not ignore them.

Let's now focus on where you can get help and advice should you need it.

Seeking advice from others
Before you take the plunge and change the entire way your business operates, it may be a
good idea to do some research and/or reach out to others who meet one of the following
descriptions:

Have been through this transition a few times and have the battle scars to prove
it
Are in the same boat as you
Specialize in wide-reaching agile business change
Are recognized as experts in the field of both CD and DevOps

There is an ever-growing number of people around the globe who have experience in
implementing (and even defining) CD and DevOps. Some are experts in the field and focus
on this as their full-time jobs; some are simply members of the growing community who
have seen the light and selflessly want to help others realize the benefits they have
witnessed and experienced.

To reiterate, implementing CD and DevOps is no picnic and sometimes being at the
forefront can be a lonely place. Do not feel like you should struggle alone. There are some
valuable reference materials available (this book being one of those I would hope) and more
importantly there are a good number of communities—online and face to face meet-
ups—that you can join to help you. You never know, your story and input may be an
inspiration for others, so in true CD and DevOps style, break down the barriers and enjoy
open and honest dialogue. I'll include a list of some of the reference materials and contacts
in Appendix A, Some Useful Info.

Planning for Success Chapter 4

[107]

Summary
So, what have we covered in this chapter? We have learned that without defining our goal
and vision, it's pretty difficult to clarify and communicate what CD and DevOps adoption
will mean, and what business value they will bring. Staying with communication, we have
learned that without having a common standard in relation to terms, language, and
vocabulary, it will be difficult to collaborate across the organization. In terms of who is
impacted by CD and DevOps, we have covered the fact that this is a wide-reaching
business change and not localized to the traditional IT organization. Just like any business
change, CD and DevOps adoption will not be free; there will be cost (some obvious, some
not so obvious) and you need to take that into account. Lastly, you are not alone; there are a
large number of people, teams, and businesses around the globe who have already been
through this adoption and came out the other side in a much better position.

Let's assume at this point that you have followed this advice and now have a team, a plan,
executive backing and sponsorship, defined ways to communicate, some budget, and some
support from battle-weary experts. You're now ready to move to the next
stage—implementing the goal and vision, which is what we'll be covering in the next
couple of chapters. We'll start by looking at some of the proven approaches, tools, and
techniques that will help you move forward.

5
Approaches, Tools, and

Techniques
The last chapter focused on getting a goal, vision, and dedicated team together (or not, as
the case may be) to help with the implementation and adoption of CD and DevOps within
your business. Over the next couple of chapters, we will go through the steps of executing
the plan to ultimately deliver the goal you have defined.

Throughout Chapter 3, Culture and Behaviors are the Cornerstones to Success, we focused on
the human side of what needs to be in place for CD and DevOps adoption. Chapter 4,
Planning for Success, then looked at how to build the plan and some of the building blocks
that need to be put into place to make the adoption successful. We will now apply focus on
the technical side of the execution—the tools, techniques, approaches, and processes you
and the team should be looking to implement and/or refine as part of the plan.

There will be quite a lot of things to cover and take in, some of which you will need, some
of which you may already have in place, and some of which you may want to consider
implementing later down the line. I would recommend you read through everything, just
in case there are some small chunks of wisdom or information that you can adapt or adopt
to better fit your requirements.

Quite a bit of this chapter is focused on software engineering (that is, the Dev side of the
DevOps partnership), and more CD than DevOps, but bear with me as some of the points
covered are as relevant to system operations as they are to software engineering—this is,
after all, what DevOps is really all about.

It is worth pointing out that the tools and processes mentioned are not mutually
exclusive—it is not a case of all or nothing; you just need to pick what works for you. That
said, there is a logical order and dependency to some of the things covered over the next
chapter or two, but it's down to you to decide what is viable.

Approaches, Tools, and Techniques Chapter 5

[109]

One other very important thing to take into account is that there are a plethora of other
books, websites, blogs, and such that go into far more detail than I will. I will endeavor to
provide a flavor and overview of what you'll need to drive the CD and DevOps adoption
forward. It's down to you and the team to dig a little deeper.

Throughout this chapter, I'll be referring to tools and/or software solutions that you should
consider to reduce the burden and ease the CD and DevOps adoption. As with any
investment, I would recommend that you don't just chose the first one that appears in your
favorite search engine or the one that an existing vendor is pushing. The CD and DevOps
tooling market is very competitive; therefore, you should have more than one or two
options. Understand what problem you need to solve based upon your specific needs and
apply due diligence to the selection. If you need to trial a few different tools, you should do
so. The effectiveness of your CD and DevOps adoption may rely upon these tools, so
choose carefully.

Now that's out of the way, let's start with some engineering best practices.

Engineering best practices
For those of you who are not software engineers, nor from a software engineering
background, your knowledge and/or interest in how software is developed may be
extremely minimal. Why, I hear you ask, do I need to know how a developer does their job?
Surely, developers know this stuff better than I do? I doubt I even understand 10 percent of
it anyway!

To some extent, this is very true; developers do (and should) know their stuff, and having
you stick your nose in might not be welcome. However, it does help if you at least have an
understanding or appreciation of how software is created, as it can help to identify where
potential issues could reside.

Let's put it another way: I have an understanding and appreciation of how an internal
combustion engine is put together and how it works, but I am no mechanic—far from it, in
fact. However, I do know enough to be able to question why a mechanic has replaced my
entire exhaust system and rear axle when I took my car in for a fuel-injector problem—in
fact, I think I would vigorously question why.

Approaches, Tools, and Techniques Chapter 5

[110]

It is the same with software development and the process that surrounds it. If you're not
technical in the slightest and haven't done your homework to understand how software
should be written, you leave yourself open to decisions being made by (or at the very least,
noise emitting from) individuals who prefer to deflect by using technobabble rather than be
open, honest, and willing and able to work with you. You will no doubt have come across
such individuals during the elephant exposure, and I would wager that they have avoided
getting involved with this pipe dream of shipping software quickly without everything
going to pot—at least that's what they think. You and the team will need try to and work on
the same level as them, so having some idea of what you're talking about will help with
those discussions.

Let's start with the basics: CD is based upon a premise that quality software can be
developed, built, tested, and shipped many times in quick succession (that's the continuous
bit)—ideally, we're talking hours or days at the most. When you consider this list and apply
it to a traditional waterfall-style development project, you'll no doubt have found that
every step takes time and effort, and contains waste. You would also no doubt have found
that it's the shipping part that is the most painful, costly, and risky. When applied to a
modern agile development project, you'll normally find that the first three items on the list
are more honed, efficient, and effective (although not without some waste and time
lag—depending on the maturity of the team), whereas the shipping part is still painful and
takes a vast amount of time and effort. We will focus on the shipping (or to be more
accurate, the delivery) section later.

From this point forward, I'm going to assume you know what the differences between
waterfall and agile development are (if not, I suggest you stop here and do some
homework) and move swiftly on.

Let's go back to basics and cover some fundamentals in terms of modern agile software
engineering:

All code, config, and related metadata are stored in a modern source/version-
control solution
Small and complete code changes are committed to the source-control repository
frequently
Unit tests are included by default and sit with the source-code repository
Refactoring code happens on a regular basis
Code should not be overly complex and documented
Branches are short-lived, and merges are frequent

Approaches, Tools, and Techniques Chapter 5

[111]

Automated tests sit alongside the code within the source-control repository and
are run very frequently
Pair programming, code reviews, or pull requests are used consistently
Build and automated tests are orchestrated and controlled by a Continuous
Integration (CI) solution
Failing tests are not the end of the world; nor is having others find fault in your
code

I may have lost some of you, but before you skip this chapter, please read
on a little more as I'll be going through some of these concepts soon.

The preceding list is pretty simplistic and, as stated previously, most software engineers
who work on modern agile software development projects will see this as common sense
and common practice.

The reference to modern agile software development is purposeful as there are still some
(in some industries, that should read many) old-school code cutters who believe that they
are exempt from this due to the fact that they have been delivering code without of all of
this newfangled hipster stuff for many years without any issues. That may be true;
however, there's next to no chance of successfully adopting CD and DevOps without
changing the way that software is written and delivered. No doubt these individuals would
have been in the disengaged contributors group during the elephant exposure.

What is more worrying is when these individuals are actively discouraging the software
engineers who do wish to follow modern agile software engineering best practice from
doing so. Whatever the situation, these old dogs will have to learn new tricks.

Ultimately, modern agile software engineering is based on the simple premise of finding
software problems as early as possible. Without this approach, these software problems
will be found later down the line, they will slow everything down, and they will
negatively impact the adoption and the perception of how successful the adoption is.

To put it another way, if you are continuously developing small incremental changes,
which are being built, integrated, and tested, the ease of continuous delivery will be vastly
increased.

Approaches, Tools, and Techniques Chapter 5

[112]

Let's see what our personas can do to help:

Good approach Not-so-good approach
Victoria (the Veep) should not ignore this as
simply "what developers do" and ensure she is
aware of the effort needed to successfully
embed best practice within the engineering
teams and be willing to supply budget and
executive sponsorship.

Victoria (the Veep) sees this as more
expense which may well slow things down
and / or a low priority skunkworks project
off of the side of the main product delivery
process

Stan (the manager) should ensure that relative
importance is front and center with leadership,
peer group and team(s) alike. He should also
ensure the correct resources are assigned and
aligned across the organization

Stan (the manager) ignores the benefits that
engineering best practice will bring and
sees adoption as additional workload that
will distract the team(s)

Devina (the developer) and Oscar (the Ops
guy) should spend time understanding and
fully embrace engineering best practice and
lead by example throughout their peer groups.

Devina (the developer) and Oscar (the Ops
guy) keep their heads down and leave the
leadership to argue about the merits of
engineering best practice which they
continue to struggle to deliver

For those of you whose eyes may have glazed over, or those of you who need a refresher,
let's break these down a little further, starting with source-control.

Source-control
There are many different flavors, versions, and solutions available for source-control
(sometimes referred to as SCM or version-control systems), both commercial (not free) and
open source (free). Most of these tools can be self-hosted (if that's something you need to
do), or offered as a PaaS model (which isn't free but still relatively cheap). Taking this into
account, there are no excuses not to use source-control. None!

If all of your code is in source-control, it is versioned (that is, there is a history of every
change that has been made from the year dot), it is available to anyone and everyone who
has access to the source-control system, it is secure, and it is (should be) backed up so you
won't lose any of it.

Approaches, Tools, and Techniques Chapter 5

[113]

Some of the more modern solutions can actually help you control the full life cycle of
software delivery via inbuilt tools, workflows, and triggers. This can save you a lot of time,
complexity, and cost. However, you should not be swayed by this too much. What you
need is a solution that best suits your organization and the ways of working (now and in
the future), and helps you to deliver quality software continuously.

Some of you may have heard the urban myth that a source-control solution is only useful
for software source code. Just like all urban myths, this had some truth way back in the
mists of time, but is now bunk. Source-control should not be restricted to software source
code. Anything that can, could, and will be changed should be versioned and stored in
source-control. I've already mentioned a few examples, so let's expand on this:

Unit tests
Test cases
Automated test scripts
Software configuration/metadata
SQL scripts/SPROCS
Documentation
Environmental configurations
Server configuration
Anything and everything than can be changed, edited, or saved

The normal bone of contention is environmental/server configurations and other collections
of artifacts such as start-up scripts and network routing config, which some may see as
exempt from source-control as this is in the land of Ops rather than Dev. However, as
you're moving to DevOps, this no longer makes any sense and is not applicable. The rule of
thumb should be: if it can be changed, it should be in source-control and versioned.

The DevOps community refers to the approach of representing a given environment via
configuration files that can (should) be stored in source-control as configuration as code. It
should be pointed out that this approach has grown from the open source community, and
therefore some areas of this approach may not be wholly applicable initially—for example,
administering Windows servers is more point-and-click than a set of configuration files that
would be used to administer a Linux cluster. However, you can also administer Windows
via PowerShell scripts, so there is an option. The bottom line is that you should strive
toward having every element of a given environment/server/switch/router/firewall
represented as configuration files that can (and should) be stored and versioned within
your source-control system. That way, you can create an exact clone of a given environment
at a given point in time with relative ease (something we'll come to soon).

Approaches, Tools, and Techniques Chapter 5

[114]

One thing that may become a blocker is security and access to the contents of the source
within the source-control solution. For example, if you're storing environmental
configuration as code, you ideally don't want the development team having access to the
production database connection strings or API tokens. There are proven and well-
documented ways and means to do this (masking, encryption, restricting access to certain
repositories, and so on), so it shouldn't be a blocker if you plan for it upfront.

There are books and reference materials aplenty regarding source-control
that cover this subject in much more depth and detail, so I will not dwell
on it here. Suffice it to say, if you do not have a source-control solution,
implement one. Now!

As you'll no doubt gather, a source-control solution is a very valuable tool for CD and
DevOps adoption. Along with having a central place to securely store your source code, it's
also important to apply the same approach to your binary objects and artifacts.

The binary repository
As the name implies, a binary repository is somewhere to store your binary objects and
artifacts. Binary objects/artifacts are, in software engineering terms, the runnable software
that is created when the source code is successfully compiled.

Binary repositories function in much the same way as a source-control solution, but, as you
would expect, are better suited to storing binary objects. Some solutions also provide
mechanisms to version, and even package up the binaries for later installation on a target
environment.

We'll cover the importance of binary repositories later in the chapter. For now, let's move
on to the valuable practice of keeping changes small and frequent.

Small, frequent, and simple changes
Keeping changes small means the impact of the change—sometimes referred to as the blast
radius—should also be small, the risks reduced, and the opportunities for change increased.
It sounds overly simplistic, but it is also very true. If you consider how many changes to
software a typical software engineering team makes in a day and then extrapolate that out
to the number of teams you have making said changes, you'll soon find that this adds up. If
you then take this number and multiply it by the number of days between releases, you'll
find the volume of changes is not insignificant— and nor is the risk of those changes.

Approaches, Tools, and Techniques Chapter 5

[115]

In terms of risk, let's assume we have a team of five software engineers who, on average,
make 10 code changes each per day—that's 50 changes. Let's assume we have 10 teams all
doing the same—that's 500 code changes per day. Let's now assume we're releasing every
12 weeks (or 60 working days); we're now talking 30,000 changes that need to go live. Even
if we have industry-leading test coverage—let's say 99.9% coverage—there's still a chance
something nasty could slip through. In this case, that's 30 changes not covered. In simple
terms, there's a risk that 30 defects may be created every 12 weeks. OK, this is a very
simplistic approach, but hopefully it illustrates the point that clumping together a large
number of code changes is far from ideal.

One thing that may not be obvious is what happens if a simple defect is spotted the day
after a release that can be fixed by a single-line code change. If we follow the preceding
example, that defect will stay in production for another 11 weeks and 6 days (assuming we
don't have emergency patch releases available to us). The same is true of any change made
on day one of the 12-week release cycle—including customer feature requests.

If we were to break this down into smaller more frequent releases—say, every two
weeks—and apply the same numbers, we would be looking at something like the
following:

500 changes * 10 days = 5,000 changes released with a risk of five defects slipping through.

Now, let's again assume that if one escaped defect is spotted and fixed the day after the
release, then that change will be live in nine days. Again, if a customer feature request
change was made on day one of the release cycle, it could be live in 10 days. I think you'll
agree that sounds slightly better than the first example.

The following diagram goes some way to illustrate what this could look like:

Large changes versus small incremental changes

Approaches, Tools, and Techniques Chapter 5

[116]

Now, I will admit that the preceding example is very simplistic and may not reflect reality,
and you might not currently have the luxury of shipping your code very frequently due to
external factors (maybe your customers don't want—or can't accept—frequent releases, or
your existing ops processes need time to allow for this); however, that is no excuse for not
adopting the concepts now. If your software engineering teams become used to releasing in
small and potentially shippable chunks, they form the habit of delivering continuously.

Another way of putting this is that once you have fully adopted CD and DevOps, they will
have to work in this mode, so why not start getting used to it?

Continuously delivering small and frequent changes can also help in other areas; namely,
reducing complexity, increasing code maintainability, and increasing quality. If an engineer
only has to change a small amount of code then they have a far greater chance of
refactoring the surrounding code to reduce complexity and overall maintainability of the
codebase, including adding in additional unit tests. Another less obvious benefit of small
and frequent changes is reducing the overhead of code reviews, pull requests, and merging,
which can happen more frequently and become more of an everyday thing than a chore.

This practice should not be restricted to software engineering; it is just as
relevant to changes in the system operations area. For example, making a
small, isolated tweak to the server configuration (such as memory
allocation to a virtual server) is much safer and easier to control and
monitor than making sweeping changes all at once. If you make small
changes, you have a much better chance of seeing whether the change had
an impact (positive or negative) on the overall operation of the platform.

Working with small, incremental changes is a very beneficial practice to follow. However,
this is going to be pretty difficult to manage unless you have some tools to help automate
the building of your software.

Automated builds
One of the common themes with CD and DevOps adoption is how automation is used. As
mentioned previously, without some sort of automated tooling or solution, it will be very
difficult to deliver on a frequent basis. You may be reading this and thinking, "Well, that's
pretty obvious." However, even in this modern technological age there are software
engineering teams who do everything manually using manual steps and/or handcrafted
scripts—some of which may be older than the engineer running them. Luckily, this is very
much a minority nowadays, although I'll cover some aspects of what automation is and
why it's key to CD and DevOps adoption, just in case you're in the minority.

Approaches, Tools, and Techniques Chapter 5

[117]

Every engineer that makes a change—be they a software or ops engineer—needs feedback
as to whether a change they have made works (or not, as the case may be). The sooner they
get this feedback, the sooner they can rectify any issues or move on to the next change.
From a software engineering perspective, it is also very helpful to know whether the code
they have written actually builds and/or compiles cleanly and consistently so that it can be
tested.

This validation could be done via a manual process (or processes or scripts), but this can be
cumbersome, inconsistent, prone to error, slow, and not always fully repeatable. Without
consistency and repeatability, there's additional risk.

Implementing automation will help speed things up and keep things consistent, reliable,
and repeatable, and, above, all provide confidence. If you are running the same steps over
and over again and getting the same results, it's a strong bet that the process works and that
you can trust it. It is therefore plausible that if you change one thing within your software,
configuration, or environment, and the previously working process fails, there is a very
good chance that the change has broken something.

There are plenty of tools available for building/compiling code—depending on the
development language you are using—and all of them do pretty much the same thing:
ensure the code is written correctly, the language syntax is as expected, ensure all external
references are available, and—if all is as it should be—create a binary that can be run. This
is overly simplistic, but hopefully conveys the point. There are a number of different ways
to trigger this process: manually from the command line, manually via a script, or from
within the developer's IDE itself. Whichever process you use, you should seriously consider
automating the process so that you gain consistency and repeatability.

Another tool to consider including within the automation scripts/process is linting. Linting
tools are there to help scan and check your source code for syntax issues. This can be a very
useful addition as, if used before you build/compile code, it can vastly reduce the time
taken to find issues—especially when you have quite a convoluted codebase, which means
the build time is minutes rather than seconds. Again, there are plenty of options to
consider, depending on the code language you're using.

Hopefully, you now have some insight into why automating the building of your software
components is important. Let's now focus on test-automation.

Approaches, Tools, and Techniques Chapter 5

[118]

Test-automation
A traditional software-delivery process will normally include an element of testing.
However, depending on the organization and age of the software, running the test cases
themselves is normally a manual process. That being said, test-automation has been around
for a while—for as long as agile software development. However, it's not as prevalent as
one would hope. I should point out that testing approaches and the automation of such is a
massive subject, and I will not be covering everything here. If you need more information, I
suggest you do some research and pick up some good books on the subject. What we'll
cover here is pretty basic, but should give you enough information to understand how test-
automation fits into CD and DevOps adoption.

There are principally three types of tests:

Unit tests are normally written in the coding language of the software and are
used to exercise code and logic paths within the code base itself. They do not
normally align to any particular use case or area of functionality.
Integration tests traditionally exercise the way in which one part of the software
system/platform interacts with another (for example, to ensure the login page
calls the authentication service correctly).
End-to-end tests are normally focused on the real-world use cases that an end
user would initiate (for example, when logged in successfully, the welcome page
is presented and the text displayed is in the correct language).

This is an overly simplistic view, but hopefully elucidates the different types of tests.

In terms of tooling and technologies you can use to create, maintain, and run automated
tests, there are a vast number of different flavors and solutions available, and the selection
that best fits your needs can be hard to make. At a basic level, these tools pretty much do
the same thing: they orchestrate the running of test scripts and capture the results. The
choice of test-automation tooling is something you should not rush into, and my
recommendation would be to give this as much thought as you did selecting the
development language you use.

You will at times hear the word framework being used—especially when
researching how to include unit tests. These are basically predefined
approaches that are (mostly) industry standards. This means that the tools
themselves may be different, but the standards they adhere to are similar.

Approaches, Tools, and Techniques Chapter 5

[119]

When choosing a tool, try to consider future-proofing in terms of the testing language used
for creating and maintaining the tests themselves. Standardizing on something such as
Cucumber would be a good start, and this is something quite a few tools all use. It helps
should you wish to adopt a TDD and/or BDD approach for your integration and end-to-
end testing.

Ultimately, what you need is to work toward what is widely referred to as "inverting the
testing triangle." In essence, traditional testing approaches mostly rely on manually-
executed tests, with automated and unit tests being less prevalent. For your CD and
DevOps adoption to be successful, you need to change the ratio and vastly reduce the
reliance on manual testing and increase automation. There are many documented reasons
for this, but in relation to CD and DevOps, the main advantages are speed, reliability,
repeatability, and consistency:

Inverted testing triangle

Approaches, Tools, and Techniques Chapter 5

[120]

One thing you may notice in relation to the Agile triangle compared to the Traditional
triangle is the relative size of the Unit Tests layer. This is the ideal situation to be in, as the
more unit tests you have checking the code and logic flows within the code, the greater
confidence you will have in the underlying code. This in turn should build greater
confidence in higher-level tests. One less obvious advantage is cost—it's far cheaper to
write unit tests than it is to write integration and/or full end-to-end tests.

Agile software engineering approaches, such as TDD and eXtreme
Programming (XP), follow the premise that unit tests are always written
and must pass before you progress to the next level of testing.

Staying with automated testing, there is one thing that does add confusion and can put
people off: the fact that adopting test-automation can be very daunting— and that's putting
it lightly. There are quite a few things to consider when you go down this route: How much
of the codebase do you cover with tests? How do you replicate actual users and usage in
the real world? Where do you start?

Unfortunately, there are no straightforward or generic answers. This becomes more
challenging when you start to look at the reams of online materials, books, and information
regarding this very subject. To make matters worse, some of it will be contradictory to
others. The only advice I can give is to follow the keep-it-simple (KISS) approach. For
example, you may want to start by mapping out some of the primary and most-executed
use cases (for example, login/authentication, users navigating from a list to an item detail in
a shopping cart, or users making a purchase), and trial a couple of tools by creating
automated tests to cover those. As long as you gain the ability to run the tests and the
results are consistent, reliable, and repeatable, you should be on the right path.

To use the KISS approach, even one automated test that validates some
small part of the code base is better than nothing.

Once you have gained some confidence and trust in the overarching automated testing
process, you can move onto the next use cases—or try another tool until you're happy.

I would also recommend the KISS approach for coverage—if you can cover 100% of the
code base and use cases, then that's the figure you should chose. If you can't, then find the
figure that is viable and increase it as you go along. What I mean by this is do not let the %
decrease as new code and features are added. It may help to set a milestone date and
realistic percentage goal so that a sense of urgency/focus isn't lost along the way.

Approaches, Tools, and Techniques Chapter 5

[121]

There is another set of tools that can help with ascertaining your test coverage by
inspecting/analyzing your codebase and source repository (which will, of course, include
all of your automated tests) and providing useful information and dashboards for you to
review. These can also give you a historical view so that you can measure increases (or
decreases) in your coverage.

Another place to apply the KISS approach in is something that normally trips people up
when adopting test-automation: the gnarly subject of test data. Test data can be a massive
issue, and it can cause more problems than it solves—and quite a few arguments to boot. A
good rule of thumb here would be to have the test data you need to run your test(s) created
as part of the automated process and—more importantly—removed as a final step. I've
seen far too many examples of this KISS approach not being followed, which means you
will end up with stale data that may well become out of date quite quickly. This stale data
can cause tests that previously ran without issue to start failing or, worse still, other people
come along and base their tests on this very same data (which means you can't get rid of it
even if you wanted to). It also compromises your ability to ensure your tests are consistent
and repeatable.

Let's see what our personas can do to help:

Good approach Not-so-good approach
Victoria (the Veep) should take an active
interest in how test automation can vastly
reduce overall cost and effectiveness of quality
assurance and be willing to supply budget and
executive sponsorship.

Victoria (the Veep) sees this as a head
count / cost reduction solution and skimps
on the budget to get the best deal rather
than the best solutions which the team(s)
need

Stan (the manager) should ensure that relative
importance is front and center with leadership,
peer group and team(s) alike. He should also
ensure the most relevant resources are assigned
and aligned across the organization.

Stan (the manager) doesn't bother to
understand the advantages test
automation brings - he sees this as post-
development QA stuff and has no interest
in it

Devina (the developer) and Oscar (the Ops
guy) should spend time understanding,
investigating and embracing test automation as
a day to day activity that sits side by side with
software development.

Devina (the developer) and Oscar (the
Ops guy) ignore test automation as there's
already a team testing software once it's
built so what's the point?

Approaches, Tools, and Techniques Chapter 5

[122]

One thing we have not covered thus far is the tooling that can run, manage, and control this
automation. That is where continuous integration solutions come into play.

Continuous integration
Continuous integration, or CI as it's more commonly known, is a tried-and-tested method
of ensuring the software asset that is being developed builds correctly and plays nicely with
the rest of the codebase. The keyword here is continuous, which, as the name implies, is as
frequent as possible (ideally on each commit and/or merge to the source-control system).
The simplest way to look at a CI solution is to think of it as a tool to orchestrate your build
and test-automation tools—the two things we've just covered.

Yet again there are, as you may have guessed, a vast number of mature CI solutions
available, both commercial and open source, so there are no excuses for not selecting one
and using CI.

As mentioned, CI solutions are a very basic-level, software solution that orchestrates the
execution of your build and test-automation. The execution is controlled by what many
refer to as CI jobs, which are invoked when certain events occur; for example, when code is
committed to and/or merged to the source-control repository, or on a timed schedule, or
when another automation tool triggers the CI, and so on. These jobs contain a list of
activities (commonly referred to as steps) that need to be run in quick succession; for
example, get the latest version of source from source-control, compile to an executable,
deploy the binary to a test environment, get the automated tests from source-control, and
run them.

Approaches, Tools, and Techniques Chapter 5

[123]

If all is well, the CI job completes and reports a success. If it fails, it reports this fact and
provides detailed feedback as to why it failed. Most tools also let you drill down into the
failing step and see what went wrong. Each time you run a given CI job, a complete audit
trail is written for you to go back and compare results and/or trends over time, as shown:

A typical CI process

CI tools can be quite powerful, and you can build in simple logic to control the process. For
example, if all of the automated tests pass, you can then automatically move the executable
(which could have the build version number baked in) to your binary repository, or if
something fails, you could email the results to the engineering team. You can even build
dashboards or information radiators so provide an instant and easy-to-understand visual
representation of what's happening, and the results.

CI solutions are a must for CD. If you are building and testing your
software changes on a frequent basis, you can ship frequently.

Approaches, Tools, and Techniques Chapter 5

[124]

The advantages of CI for traditional systems-operations changes are not as obvious, but
they can help a great deal in terms of trying out changes without impacting the production
platform. For example, let's presume that you have a CI solution that is running many
overnight automated tests against an isolated test environment. The tests have been
successfully passing (more commonly referred to as green) for a few days, so you are
confident that everything is as it should be. You then make a server configuration change
and re-run the CI suite, which then fails. The only change has been the server configuration;
therefore, it must have had an adverse impact. This is a good example of the DevOps
approach being applied.

Implementing CI is no small feat—especially if you have nothing in terms of automation to
start with. However, CI is a very powerful tool and vastly reduces that overhead and risk of
using manual methods for building and testing system changes. For all intents and
purposes, trying to implement CD without CI is going to be a very hard slog, and therefore
my recommendation would be to bite the bullet and implement CI.

Throughout this section, we have been talking about how to automate builds and tests to
ensure the software can be validated and delivered. We also refer to results that, overall,
should be positive—the automated build has to have completed and the automated tests
need to have passed before they can progress to the next stage. In other words, if tests fail,
that's a bad thing. On the whole, that is correct. However, failure can be a good thing, as
long as the failures are found early in the process.

Fail fast and often
Failing fast and often may seem counter-intuitive, but it's a very good ethos to work to. If a
defect is created but it is not spotted until it has gone live, the cost of rectifying said defect
is high (it could be a completely new release), not to mention the impact it could have on
your customers, reputation, and possibly your revenue. Finding defects early on is a must.

Agile engineering approaches such as TDD or BDD are based upon the principle of finding
and catering for faults within software very early on in the process, the simple premise
being that before code-development begins, tests are written to cover some/all of the use
cases the software has to cater to—the proportion is normally referred to as coverage. As
the code is being written, these tests can be run again and again as part of the CI process to
spot gaps. If the test cases fail at this point, this is a good thing, as the only person impacted
is the software engineer writing the code, rather than your customers.

Approaches, Tools, and Techniques Chapter 5

[125]

This may sound strange—especially for the managers out there—but if
defects are found early on, you should not make a big thing of it and you
should not chastise people. Think back to what we learned about blame
versus learning behaviors. What you want is to find the problem, figure
out why it happened, fix it, learn from it, and move on.

One of the things that can sometimes scupper implementing engineering practices such as
TDD is the size and complexity of the software platform itself. It may be a very daunting
task to retrospectively implement a test suite for a software system that was not built
around these principles. If this is the case, it may be wise to start small and build up.

We'll now move away from software building and test-automation and onto the challenges
you will face when adopting CD and DevOps in relation to how your software
system/platform is designed and architected.

Architectural approaches
The majority of businesses—despite what the tech press and jeans-and-t-shirt conference
speakers would have you believe—are not running modern software architecture. The
reality is that a vast number of software platforms and systems in the world on which we
are reliant have evolved over many years, and some (most) are rather complex and
cumbersome to maintain or advance. Even the young and hipster tech sector companies are
running and maintaining what would be classed as legacy solutions and platforms that
comprise a small number of large executables all built and tested together before getting
delivered. That isn't to say CD and DevOps principles aren't being used or can't be
adopted; it just means that it takes a little more work.

The immediate reaction may well be to spend vast amounts of time, effort, and money
transforming your entire software platform to a new reference architecture model that will
allow for seamless adoption of CD and DevOps. If you're lucky enough to have senior
leadership who have fully bought into this and have deep pockets, then good luck. Most of
us are not that lucky, and therefore need to be creative in our approach.

Approaches, Tools, and Techniques Chapter 5

[126]

Something that is also a little daunting, if you were to research the best breed of reference
architecture, is that you will find that there are many views (often differing) on what's the
best approach. Not to mention the many and varied ways one would go about adopting
and implementing said architecture. If you're lucky enough to have a high-flying visionary
who knows instinctively what to do, you are off to a great start. In reality, what you will
end up with is a target architecture and a plan to get there through what's referred to as
legacy strangulation—that being an approach to systematically replace parts of the legacy
platform with software components designed and built using a more modern approach and
focused on particular functional (and non-functional) areas.

Although legacy solutions are a pain, they are not the end of the world when it comes to
CD and DevOps adoption. Take into account the limitations that come from having to
build, test, and ship the entire platform each time changes are made, and also the overall
duration for this to complete, which can be many minutes (sometime hours) depending on
the size and complexity of the platform itself.

This is where creativity comes into play. Let's assume that your legacy platform takes 30
minutes to build and another 90 mins for the automated test suite to complete. That's two
hours to wait for each change you make and want to test. Scale that out to the number of
engineers making changes. And that's what can only be described as unworkable. Most will
overcome this by only triggering the CI job at certain times—for example, at the end of the
working day—so that the time taken doesn't leach into the working day. This does help in
some ways, but also adds the risk that an entire build could fail due to one simple mistake,
defect, or typo, and then hold up all the other changes and engineers who want to move
onto their next task.

You could overcome this by looking at some small tweaks to the process to make things (a
little more) workable. For example:

Split the testing suite into smaller, discrete test packs; for example, use a subset of
the tests to run when the build completes (sometimes referred to as a smoke test)
and a full set overnight
Add more horsepower to your build and/or automated test servers
Implement a clustered CI solution

Approaches, Tools, and Techniques Chapter 5

[127]

Parallelize the CI jobs (you'll need the additional horsepower/clustering)
Alter the way the software is built so that only changes that have changed since
the last build are built again (that is, only build deltas rather the entire platform
every time)

Ultimately, you want to reduce the time taken to build, test, and ship your legacy software.
The more you can achieve in this area, the more time you can buy yourself while you look
at breaking down the legacy platform into smaller independent software components that
can be independently built, tested, and shipped. Even the most integrated and closely-
coupled software platform is made up of many small components all talking to each other.

If you take a step back and look at your legacy platform, you'll probably find you could
actually split it (or at least most of it) into small, manageable chunks (shared libraries,
different layers of technology, packaging solutions, and so on) that can be built and tested
independently and quickly, and, more importantly, can be delivered frequently.

Component-based architecture
As previously mentioned, if you are lucky enough to have the opportunity to re-engineer
your legacy platform—as did ACME systems—then you should take time to consider the
best approach for your needs. Ideally, you should look at a technology or an architectural
approach that allows the platform to be broken down into small, discrete modules or
components that are loosely coupled. By this I mean that each component can be
developed, built, tested, and shipped independently of all other components.

Approaches, Tools, and Techniques Chapter 5

[128]

This approach has had many names over the years—web services architecture, Service
Orientated Architecture (SOA), or micro services architecture—but at a basic level they are
pretty much the same thing: an architectural approach that allows loosely-coupled software
components that are self-contained and coexist to provide functionality that would
normally have been delivered as a complete monolithic platform shown as follows:

A typical architectural comparison

By going down this route, you have the advantage of small, discreet software components
that can be developed and tested, and, more importantly, released independently. This goes
a long way to realizing the benefits of CD.

Approaches, Tools, and Techniques Chapter 5

[129]

Another advantage of this approach not directly attributable to CD or DevOps is cost
saving. Not only does a component-based architecture allow for small and frequent
changes to be released, it can also remove the need for large and costly IT infrastructure.
For example, if you currently have one or two huge bits of code, you will have to have one
or two hulking servers to run them. You then have one or two hulking DB servers and—to
allow for Disaster Recovery—you'll have another set sitting and waiting. Just think how
much that costs to acquire and keep running. With many small components, you can
consider more cost-effective hosting approaches—something we'll look at later on.

There is a mountain of options and information available to determine the best approach
for your current and future needs. Suffice to say, if you can move toward a component-
based architecture, the pain and overhead of releasing will be a thing of the past.

One important thing to note here, should you adopt a component-based architecture
(which you should do, by the way, just in case it wasn't clear), is how you release the
components. There may be a temptation to use the same clump it all into one big release
approach as used for the legacy platform, but that will simply lead to a world of pain and
give you no advantage whatsoever. We'll be looking at CD tooling later, so please keep
reading.

Let's have a look at another possible solution that may help with legacy strangulation and
ease you toward the component-based architecture utopia.

Layers of abstraction
If you have quite complex dependencies throughout your platform, it may help to try and
separate your software assets by using some form of abstraction. This technique should
assist in removing, or at least reducing, hard dependencies within your platform, and will
help move you toward a component-based architecture which, in turn, will give you the
opportunity to adopt CD.

Let's say, for example, you have two software components that have to be deployed
together, as they have been hardwired in such a way that deploying one without the other
would cause a platform outage. Then you're going to struggle to follow the small incremental
changes method—not to mention the fact that you will be hard-pressed to release without
downtime.

There are plenty of mature and proven design patterns available that can give some good
ways of achieving this, but at the very least, it is a good practice to remove close
dependencies wherever possible so that you don't end up with clumps of assets that need
to be deployed together.

Approaches, Tools, and Techniques Chapter 5

[130]

One common area for close coupling is between software and databases. This means that a
change to one may mean both need to be tested and shipped. Adding abstraction here
could be as complex as adding a data-access layer proxy between the two, or as simple as
using SQL views. Another problem area is UI and business logic code being bundled
together, which again can be separated out by following a standard design pattern.
Whatever the approach, the goal is the same: to be able to build, test, and ship software
components independently.

Just to add to your homework, you should spend some time looking at and analyzing areas
of the existing platform to find components that are closely coupled, and then see how you
can add an abstraction layer to allow each to be worked on without impacting the other.
You could also look at fast-moving versus slow-moving areas (for example, which software
components are updated on a regular basis and which very rarely), as this may help you to
pinpoint which components to separate first.

Never break your consumer
Your software platform will probably be complex and have quite a few dependencies—this
is nothing to be ashamed of, and is quite normal. These dependencies can be classified as
relationships between consumers and providers. The providers can be anything from
shared libraries or core code modules to a database. The consumers will call/execute/send
requests to the providers in a specific way as per some predefined interface spec
(sometimes called a service contract).

A simple example would be a web page that utilizes a shared library to return content to
render and display a user's address details. In this scenario, the web page is the consumer
and the shared library is the provider. If the shared library originally returned four pieces
of data but was changed to provide three, the consumer may not know how to handle this
and may throw an error or, worse still, simply crash. You could, of course, add some
defensive code, but in reality, this is just adding more complexity due to lazy change-
management.

Most software platforms have many dependencies, which means it is sometimes very
difficult to spot which provider has changed and is causing one of the many consumers to
fail—especially when you consider that a consumer may also be a provider to another
consumer higher up the stack (that is, a shared library, which consumes from a database
and then provides said data to a web page, which then consumes it and provides that data to
a JavaScript client, and so on).

Approaches, Tools, and Techniques Chapter 5

[131]

To understand how prevalent this situation is, you'll need to do some impact analysis that
will help you map this out. Be forewarned that unless you can map out your entire
platform into one easy-to-understand format that is consistently up to date, it's going to be
a difficult task. Luckily, there are many mature and established patterns that cover these
sorts of problems, as well as tools that will help with the analysis.

What can also help is to establish some rules around how changes are approached going
forward. In simple terms, if you are making a change to software, config, or a database
which will be consumed by another part of the platform, it's the responsibility of the person
making the change to validate that the change has not broken anything up/downstream. If
you have CI and test-automation in place, then that can help spot issues early. However,
simply adding some diligence to the code-review/pull-request process is cheap and easy,
and can help cement good behaviors.

Within the system operations area, the "never break your consumer" rule
should also apply. For example, the software platform could be classed as
a consumer of the server operating system (the provider); therefore, if you
change or upgrade the operating system, you must ensure that there are
no breaking changes that will cause the consumer to fail.

Sometimes breaking changes cannot be avoided (for example, the service contract between
components has to change to accommodate new functionality). However, this should be the
exception rather than the rule, and you should have a strategy planned to cater for this. An
example strategy would be to accommodate side-by-side versioning, which will allow you
to run more than one version of a software asset at the same time—something we'll cover
later.

There may be times when the consumer/provider relationship fails as the person or team
working on the provider is unaware of the relationship. This can be very true of providers
within the system operations area. To overcome this, or at least minimize the risk, use open
and honest peer-working practices.

Open and honest peer-working practices
There are many different agile software-delivery methodologies in use today, but all of
them revolve around some form of highly-collaborative ways of working and free-flowing
communication. Agile approaches such as XP, pairing, or a simple code-review process, all
depend on engineers working closely together.

Approaches, Tools, and Techniques Chapter 5

[132]

I cannot stress enough the importance of sharing your work with others. Even the best
software engineers (or system admins) on the planet are human and they will make
mistakes. If you think your code is precious and don't want to share it with anyone else,
you will create defects and it will take longer to overcome small mistakes, which can cause
hours of head-scratching, or worse, have an adverse impact on your customers.

If you are confident that your code is of the highest quality and can stand up to scrutiny,
then do not hide it away—put your money where your mouth is and share your work. If
you are not that confident, sharing with your peer group will help to build that confidence.
One thing to point out here—in terms of software engineers—is that the peer group should
not be exclusively made up of other software engineers; the operations team can (and
should) also be included in this process. It may seem strange, as they may not be able to
actually read your code (although you may be surprised how many system admins can
read code), but they know how the live platform operates and may be able to provide some
valuable input and/or ask some pertinent questions (for example, what the code will do if
there's a network blip, how long-lived threads will be, or why connection-polling isn't
being used). This also encourages the DevOps mindset and approach. The same rule should
apply to changes made by the Ops team.

All things considered, the majority of the world's highest-quality software is built in a
highly-collaborative way, so there are no excuses for you not to be doing the same. Some
purists may scoff at this approach, but consider this: most of these types will most probably
sing the praises of Linux-based operating systems, which, if they actually thought about
it, is, like most open source software, written using highly-collaborative approaches that
have been part of the development process from day one.

Having an open, honest, and transparent peer-review process is as
important within an Operations team as it is within a Development team.
Changes made to any part of the platform run a risk, and having more
than one pair of eyes to review will help reduce this risk. As with software
code, there is no reason not to share system configuration changes.

One normally unforeseen advantage of working in this way is the fact that if your code (or
configuration change) fails to get through peer review, the impact on the production system
is negated. It's all about failing fast rather than waiting to put out something live to find it
fails.

Let's assume you have seen the light and have decided to move to a loosely-coupled
component-based architecture that has been written using best practices and you're ready
to move to the next stage in your software engineering evolution.

Approaches, Tools, and Techniques Chapter 5

[133]

Now you have everyone working together and playing nicely, we'll move on to the next
challenge: how the expectations of the wider business need to be realigned in terms of
release and feature delivery.

Incremental delivery of features
Earlier, we looked at breaking work down into small incremental chunks so that you can
deliver and release quickly. You also need to consider how you deal with features. What
I'm referring to here is the business-driven deliverables that turn into revenue. Typically,
you'll have a year-long business plan that is represented by a number of key initiatives that
need to be delivered within that year, and these are further broken down into a selection of
features, which is what will be marketed and sold to customers. This is pretty normal in
terms of business process.

Please note that terms used within your business may differ and you may
use terms such as epics, or themes, or goals, or MVP. In essence, we'll
focus on the relationship between delivering a thing your business can
make money from and the point in time when that thing becomes
available to customers. To keep things simple, I'll refer to the thing as a
feature and the point in time as a release.

How the adoption of CD and DevOps can impact this does depend on the current release
cadence, but I would hazard a guess that you'll be looking at a cadence in months or
quarters. Once CD and DevOps are embedded, you'll be looking at weeks, days, or hours
between each release. This can only be a good thing, but let's take a moment to consider the
wider impact:

The wider business would currently be expecting a feature to be delivered in its
entirety within a release cycle
Business functions, such as sales, marketing, legal, and support, will have
processes in place to cater for this
You will be vastly reducing the release cycle and incrementally delivering
changes

How should the wider business cater for this? When will the feature be ready? When
should they start the wheels turning? What should they say to customers?

Approaches, Tools, and Techniques Chapter 5

[134]

What you need to do is work with these business areas and come to an agreement in terms
of how features can be incrementally delivered over a number of releases. There are a few
approaches you should consider and discuss:

Deliver the end-to-end experience in slices and build up the richness of the
functionality over a number of releases until the feature is complete
Focus on an area of functionality through to completion, then move onto to the
next, then the next, until the feature is complete
Incrementally build the feature over a number of releases but keep it hidden until
it's completed

Something to consider is approaches such as the first and second could open up avenues
such as alpha/beta releases, which means that you start to get customer feedback early on,
whereas approaches such as the last one mean you don't get early feedback but the go-live
is relatively painless (you've already shipped the code so go-live is really switch-it-on).
Whatever approach you choose—and you will need to choose one—you need to ensure
that those expecting "release equals feature delivery" are educated and their expectations
are realigned.

We'll now move back into a more technical area: ensuring you are deploying the same
software throughout your environments.

Using the same binary across all environments
Before a software asset can be used in a given environment, it has to have been
built/compiled into an executable or a binary. This binary is important, as it is the version of
the software that will be executed at runtime within your environments. Think of it as a
snapshot in time. Some would say that the source code is more important than the binary
object itself as the binary is simply a byproduct and can be recreated time and time again,
although that's not strictly true.

You will not be running functional, regression, performance, or load tests against the
source code. You will be doing so against the binary. It's therefore important that the
resulting binary is treated with as much reverence as the source code from which it was
created. This becomes more important if you're looking at side-by-side versioning and/or
baking in versions during the CI process. For example, if your CI solution creates version
1.2.0.1 of the binary, then it's version 1.2.0.1 you should be using and testing.

Approaches, Tools, and Techniques Chapter 5

[135]

The ideal, and recommended, approach is that the binary is only built once for a given
release/deployment and that the self-same unchanged binary is used in all
environments, including production. This may sound like common sense, but sometimes
this is overlooked or simply cannot be done due to software design and/or tooling, or, more
worryingly, it's not seen as important.

One example of tooling/software design limitations would come in the form of software
tokens or config related to the environment (sometimes referred to as secrets). Let's take the
credentials for a database server, for instance. Some would say that because this data is
very sensitive—especially in higher environments such as production—it should be hidden
away from all but a select few. One way around this is to bake this information into the
binary itself at compile-time, which makes it secure. This is all well and good, but we only
want to build it once, and therefore you would have to have the same credentials set up in
all environments, including the completely open development environment—far from
secure, I think you'll agree. Another drawback to this approach is the fact that someone
could reverse-engineer the binary and get hold of the credentials without you knowing.
Also, how would you change said credentials should they get leaked and need changing?

You could always build multiple copies of the binary (one for each environment); however,
you're back to testing different versions of the software.

There are many industry-standard approaches to this problem, but the simple approach
(which seems to work well for a vast amount of businesses) is to have this kind of data held
in a startup script or system configuration file (which, of course, is under version-control)
and have the software load it up at runtime. If you restrict access to these configs
files/scripts, you have a good chance of keeping them secret. Whatever approach you
choose, you should ensure that it allows you to use the same binary.

As previously mentioned, use of a binary repository will also allow you to store multiple
versions of a given binary, which means a rollback to the previous version is pretty
painless.

Now that we've looked at how to deliver the software to each environment, let's see how
many environments you need.

Approaches, Tools, and Techniques Chapter 5

[136]

How many environments is enough?
This question has been around since software development became a thing. Unfortunately,
there is no simple answer, although there are some common-sense and tried-tested-and-
trusted approaches that have worked over the years. When I talk about environments, I'm
not just referring to servers here; I'm referring to the servers, infrastructure, network,
firewalls, first- and third-party integration, and so on. In essence, everything you need to
run one copy of your software platform.

Going back to the question at hand, the (rather underwhelming) answer is: the number of
environments you need depends on your ways of working, your engineering setup, and, of
course, the architecture of your platform. There's also another factor to consider: the
overhead to manage and look after multiple environments along with the cost of keeping
them running and healthy. Suffice it to say that you should not go overboard; try to work to
a less-is-more approach where you can.

There may also be a temptation to have environments set up for different scenarios:
development, functional testing, regression testing, user acceptance testing, performance
testing, and load testing. If you are able to ensure all the environments can be kept up to
date (including the all-important test data), can easily deploy to them, and, more
importantly, need all of them, then this may be viable. The reality is that having too many
environments can actually be counterproductive and can cause far too much noise and
overhead.

The ideal number of environments is two:

One for development
One for production

This may sound like an accident waiting to happen, but if you think about it, many small
businesses and start-ups manage fine with such a setup. What you'll find is that as a
business grows, so does the need to be risk-averse, and hence the potential for multiple
environments.

When ACME systems started out, two environments were sufficient. As they grew, so did
the need for more environments, and they ended up with multiple development
environments (one for each engineering team), an integration environment, a performance-
testing environment, a load-testing environment, a pre-live deployment staging
environment, and, of course, production environments. They also ended up with an entire
team of people whose job was to keep these all running—actually, they ended up with two:
one to look after the engineering and testing environments, and one to look after the
production environments. Far from ideal or effective.

Approaches, Tools, and Techniques Chapter 5

[137]

You may think that with virtualization technologies (including cloud-based) now in a
highly-mature state and used by anyone and everyone, setting up and running hundreds of
servers, is not as much as an overhead as it once was. There is truth in that thinking, but it's
the challenge of keeping everything in line that is massive—versions of software, O/S patch
levels, network configuration, firewall configurations, and so on. Therefore, virtualization
can help in some ways, but the how many environments question still remains.

Whatever you decide, there may be a fly in the ointment: what if your production
environments are locked away in a highly-secure datacenter to which you have little or no
access, or, worse still, fully managed by a third party? This can have a massive impact on
your less-is-more approach. If this is the case, then you really need to get those managing
said environments closely looped into what you're trying to do—if you don't, it can derail
your DevOps adoption.

Let's move on to a real-world example and see how ACME systems approached this. When
they reviewed the environments needed for CD and DevOps, they settled on the following
as being sufficient for their needs:

Development environments: Cut-down versions of the platform with only a few
other platform components that were needed for local testing
CI environment: The place where the software is built and all automated tests
are run on a regular basis
Pre-production environment: Used for the occasional spot check/UAT
(occasional being the operative word)
Production environment: This is where all the action takes place

The following diagram depicts the environments used:

ACME systems 3.0 environment setup

As you can see, this follows the less-is-more approach and allows for enough quality gates
to ensure a given change was sufficient. When combined with all of the aforementioned
engineering best practices (high levels of test coverage, build automation, CI tooling, and so
on), the speed at which a given change could be delivered was minutes.

Approaches, Tools, and Techniques Chapter 5

[138]

OK, so this is a bit of a utopia and you may be quite some distance from this now, but
hopefully you can see how simple it can be, and hopefully you're slightly closer to
answering the how many environments question.

Let's now have a look at another possible environment-related solution that can help speed
up your delivery capabilities.

Developing against a like-live environment
There are many ways to ensure one version of a software binary works, or integrates, with
other parts of your platform, but by far the easiest is to actually develop against an
environment that contains live versions of your platform.

On paper, this may look like a strange statement, but if you think about it, you're making a
change to one part of your overall platform and—as is the CD way—you want to validate
and ship that change as soon as possible. What this also gives you is the ability to ensure
that the dependencies you expect to be available within the production environment are
actually there and function as you expect, along with the configuration and infrastructure.

This approach will give the most value when used in conjunction with component-based
architecture, but some aspects will apply to legacy platforms as well.

The simplest approach would be to develop against the production environment, but this is
very risky and the possibility that you could cause outage—albeit inadvertently—is quite
high. There's also the security/access issues. The next best thing is, therefore, to have
another like-live environment set up, which contains the versions of code that are running
in the production environment.

You may be thinking that developing against a like-live environment is somewhat overkill,
and you may be wondering why not simply develop against the versions of software that
reside in the CI environment. There is a simple answer: you have no firm idea which of the
changed binaries in the CI environment will be live before you. For example, if you are
developing and testing against version 1.2.0.3 of the authentication component (to pick a
name out of the air), and when your binary hits production and starts to talk to version
1.2.0.1, you may experience issues that you didn't see during the development/testing
phase.

Approaches, Tools, and Techniques Chapter 5

[139]

This is especially true if someone is testing out a breaking change where you need to ensure
that you have covered all scenarios before you release it to production.

This like-live environment only needs to be like-live in terms of software (and infrastructure)
versions. If you can populate it with live data, that would be good, but the reality is that
you would need something as big as production in terms of storage and so on, which is
costly. Saying nothing of the risk of exposing confidential data and breaching data
protection rules and regulation, such as GDPR—unless you have a way to redact
confidential data (which is a whole different challenge).

To give you a flavor of how this could work, the following diagram gives an overview of
how ACME systems implemented such a setup:

The like-live environment used by ACME systems 3.0

As you can see, the like-live environment is tagged onto the end of the deployment
pipeline. It is on the end for a reason: you only want to deploy to this environment once the
deployment to production is successful.

It should be noted that when we talk about a like-live environment, this need not be a
physical set of servers. You could look at virtualization (cloud or desktop-based), whereby
you can pretty much spin up a copy of your production environment on a developer's
workstation (on the presumption that there's enough horse power and storage available).

Approaches, Tools, and Techniques Chapter 5

[140]

Now that you are starting to get all of the building blocks in place to realize your goal of
adopting CD and DevOps, we have a few additional blocks you'll need, those being how
you actually take the fully-built and tested software component through the environments
in a controlled, reliable, and repeatable way. This is where CD tooling comes into play.

CD and DevOps tooling
There is another collection of tools that may not be as readily available to you as the
aforementioned tools (automated build and testing, CI, and so on). These are the tools that
you will use to control and orchestrate the entire software-delivery life cycle from building
the binaries (via CI), deploying said binaries to the various test environments, and if all
goes well, pushing the same binary to production. At a very simple level, these tools act as
workflow engines wherein each step is defined to do a specific action, and then the flow
moves on to the next tasks. They also have basic logic built in to catch exceptions during the
flow (for example, if tests fail, then don't go any further and send a notification). This
workflow analogy is normally referred to as the CD pipeline, delivery pipeline, or just
pipeline.

Over the past few years, the CD and DevOps tooling market has grown from almost
nothing to a full-blown multi-million-dollar global business. There are now a plethora of
tools and vendors wanting to sell tools to you, and it's become quite difficult to choose the
one (or two) that will fit your needs. Just like any tool or technology you use within your
software development life cycle, you need CD and DevOps tools that will be reliable, help
more than hinder, and will grow with you as your adoption matures. I would also hazard a
guess that you will already have some tooling that manages your software
delivery/deployment, so you may need to look at something that will either integrate with
the existing tooling or replace it completely.

The tooling you choose will be used day in and day out and will be heavily relied upon, so
you had better make sure it fits your needs and will be there when it's needed. To assist in
this, you could use something similar to the following, which could assist during your
tool/vendor selection and due diligence.

Approaches, Tools, and Techniques Chapter 5

[141]

The following are some example questions you should ask of your CD and DevOps
tooling/vendor:

Can it deploy the same binary to multiple environments?
Can it access the binary and source repositories we're using?
Can it remotely invoke and control the installation process on the server it's been
deployed to?
Is there functionality to allow it to orchestrate my current tooling?
Is it capable of deploying database changes?
Does it have functionality to allow for the queuing up of releases?
Can it run parallel pipelines?
Does it contain an audit of what has been deployed, when, and by whom?
Is it secure?
How is it hosted (SaaS, PaaS, on-premise, and so on)?
Can it interact with the infrastructure to allow for no-downtime deployments?
Can it/could it orchestrate automated infrastructure-provisioning?
Can it interact with other systems and solutions, such as email, collaboration
tools, change-management, issue-management, and project-management
solutions?
Does it have simple and easy-to-understand dashboards that can be displayed on
big screens around the office?
Can it interact with and/or orchestrate CI solutions (our current solution and
other industry leaders)?
Will it grow with our needs?
What skills/experience do we need to run this?
Is it simple enough for anyone and everyone to use?
What support/SLA do we get?
What set up/implementation support do we get included in the price?
What about HA/failover?
What is the process for upgrading the tooling itself?

At this point, it would be very helpful if I just listed most of the market-leading tools and
gave you an idea of their pros and cons. However, depending on when you read this, that
information could be very out of date. This is really something you need to be doing
yourself anyway—you know your needs, problems to solve, and budget better than I. It
should go without saying, but I'll mention it just in case: the tooling choice should be done
in true DevOps style, with both Dev and Ops heavily and equally involved.

Approaches, Tools, and Techniques Chapter 5

[142]

There are a few things you should take into account when selecting CD and DevOps
tooling: don't skimp on budget as the tooling will become the backbone of your delivery
pipeline; don't just stick with the big boys in the marketplace, as they may be too
constraining in the long run; and if there are gaps you can fill with bespoke solutions, you
should seriously consider that without creating another legacy to look after.

You may have noticed that one of the considerations noted here is automated provisioning.
Let's now look into what this means.

Automated provisioning
The norm over the past few years has been to move from traditional tin-and-string physical
servers and infrastructure to virtualized equivalents, be that on-premise, datacenter-hosted,
or cloud-based. I won't dwell too much on the advantages of one over the other—again,
there's plenty of rich information available should you wish to read up—but I will focus on
one element that is not always front and center when planning to move to a virtualized
environment solution: the ability to use automated provisioning as part of your CD and
DevOps pipeline.

Provisioning is nothing new; as long as cloud providers have been a thing, they have been
providing their customers with cloud-based virtualized servers that can be provisioned
pretty much as and when needed. One also has the freedom in defining the configuration
and setup of the servers in terms of horsepower, storage, networking, operating system,
and location/region. In addition to this, when the servers are no longer needed, they can
then be deleted (sometimes referred to as teared down).

Now consider how useful it would be to have automated provisioning as a step within
your CD pipeline. You would then have the ability to not only control and orchestrate the
software-delivery life cycle, but you can also create environments on the fly, install your
software, run your tests, and then tear it all down. The massive advantages this gives you
are predictability and repeatability. If you can guarantee that every time you initiate the
CD pipeline you will have exactly the same vanilla environment created from scratch, then
you can pretty much eliminate what some like to call environmental issues—something
we'll be looking at later—which continually cause noise and false negatives (or positives)
within the testing step.

Approaches, Tools, and Techniques Chapter 5

[143]

As you would expect, there are many industry buzzwords floating around to complicate
this sort of activity—the most common ones being Infrastructure-as-a-Service (IaaS) and
PaaS—but what it boils down to is being able to programmatically interface with a
provisioning system, tell it what you want in terms of spec, configuration, and so on, and
get it to spit one out the other end. When you're done, you programmatically interface
again and get the environment removed.

The list of requirements fed into a provisioning system that defines the server spec, CPUs,
GPUs, RAM, storage, and so on is normally referred to as the recipe—there are some
variations depending on the tools, but they are all pretty much the same thing.

Something to consider with automated provisioning is the time lag you may encounter
within the CD pipeline. For example, if you were to take a binary and deploy it to a prebuilt
server, then the time taken is simply the act of deploying. Add automated provisioning into
the mix and the CD pipeline will have to wait for the new virtual server(s) to be
provisioned before you can deploy your binaries. What you need to weigh up is the
importance of quality, repeatability, and predictability over speed and convenience. Just
because something is faster doesn't make it better. What you can do to overcome this is to
pre-bake some vanilla virtual server images that can be added to the environment via the
automated provisioning tooling as part of the CD pipeline. That way, you have a fresh
virtual server in a fraction of the time. In fact, this is how many leading cloud providers
operate. There is an overhead with this approach; someone needs to keep these vanilla
virtual server images fresh and updated, with operating-system patch levels being the pain
they are. Again, you need to weigh up the pros and cons.

One massive advantage of automated provisioning is blue/green deployments. Strictly
speaking, this approach was around before automated provisioning became mainstream,
but automated provisioning has made it far easier to realize. I won't go into too much
detail—again that's homework for you. However, in simple terms, blue/green deployments
allow you to provision a new server with the latest version of software or configuration
changes or database updates offline within the environment, then switch old for new via a
small network/routing change. Essentially, you do the hard work and prep upfront, and the
release simply becomes the switchover. It's very effective and quick, and allows for near-
instant rollback if problems are found (for example, switching back from new to old). I
would highly recommend adding this to your reading list.

Approaches, Tools, and Techniques Chapter 5

[144]

You may be thinking that the automated provisioning approach will only work for
environments that are used for development and testing, but this self-same approach can
(and should) be considered for your production environment. After all, if you have set up a
CD pipeline, what's the point (or value) of stopping short of the goal. I wouldn't
recommend doing this on day one; you need to build up your confidence in the tooling and
iron out any kinks before taking the plunge. Based upon experience, I can guarantee that
once you have automated provisioning in place, you will not look back.

Another massive but little-mentioned benefit of automated provisioning is the ability to
overcome the bane of most IT departments and software houses around the globe: having
to take your production system offline to upgrade it.

No-downtime deployments
One of the things that comes with large releases of software (legacy or otherwise) is the
unforgivable need to take the production platform offline to upgrade it. Yes, I did say
unforgivable, because that's exactly what it is. It is also wholly avoidable. It's the IT
equivalent to having an out-of-order sign on the elevator:

There are two simple reasons for taking a production system offline to upgrade it: there are
far too many unreleased changes that have been bundled up together, or you don't trust the
quality of the software being delivered. Both of these can be overcome through CD and
DevOps adoption.

Approaches, Tools, and Techniques Chapter 5

[145]

Let's consider you are operating a real-time online service and you inform your customers
that you have to take the system offline for an upgrade. You can bet a pretty penny that
your customers will not take kindly to not being able to access your system (or more
importantly, their data) for a few hours so that you can upgrade some parts of it. To
minimize the impact, you will no doubt schedule the upgrade out-of-hours, which means
you'll need to have people on-call to support the upgrade—but being out-of-hours, I doubt
you'll have all of the engineers that made the changes available on the night, so you already
have a risk.

One important thing in relation to out-of-hours is this: unless you are running a B2B
solution and have customers in the same time zone, you may struggle to find a suitable out-
of-hours time window. For example, if your solution and business is B2C, you're pretty
much offering a 24/7 solution, so unless you know for sure when your consumers sleep,
finding the time window is going to be tough. If your customers are global, you will find it
even harder to find a suitable window. You will no doubt have included something in your
terms of service and/or contracts to cater for taking the live platform offline, but this
amounts to admitting to your customers that your business processes are inadequate.

If you also consider how many news stories are reported on a regular basis regarding major
issues following a massive down-time IT upgrade, there is also a very strong possibility
that your customers will look upon this big-bang approach with distrust as they'll be pretty
sure something will go wrong once the service is up and running again. This distrust will
be amplified if you go beyond the time window. From experience, I can say with
confidence that something will go wrong, and depending on the severity, you will have to
quickly move into damage-limitation mode to keep customers happy, T&Cs and contracts
aside. It might even get to the stage where your customers may shop around to find a
competitor who does not need planned downtime.

OK, so this is a bit doom and gloom, but that is the stark reality. Customers and consumers
don't care about your process problems or complexities in your SDLC; they have become
accustomed to having the IT services they use on a daily basis being available when they
need them. Try to remember when one of the major search engines or social media
platforms was offline. When release issues happen, it's now extremely difficult to contain
the bad news, especially with the prevalence of social media, 24-hour news, and the like.
You have to remember that bad news travels faster than anything else known to man, so
the last thing you need is bad news generated because of a release.

The ultimate goal for CD and DevOps adoption is to repeatedly deliver value as quickly,
consistently, and reliably as possible. Removing the need for down-time deployments
completely is a massive bonus for you.

Approaches, Tools, and Techniques Chapter 5

[146]

One thing to point out which may not be obvious is that it's not just the production
environment that should have maximum uptime. Any environment that you are reliant on
for your development, testing, and CD should be treated the same. If the like-live
environment is down, how are you going to develop? If your CI environment is down, how
are you going to integrate and test? The same rules should apply across the board—without
exception.

Previously, we covered open and honest ways of working as part of engineering best
practices. Openness and honesty are just as important when it comes to CD. A good way of
providing this level of transparency is to monitor everything and have it available to all.

Monitor, monitor, monitor
One of the most important ways to ensure whether CD and DevOps is working is to
monitor, monitor, and then monitor some more. If all of the environments used within the
CD process are constantly being observed, then the impact of any change (big or small) is
easy to see—in other words, there should be no hidden surprises. A simple rule of thumb
here: if it moves, monitor it.

If you have good coverage in terms of monitoring, you have much more transparency
across the board. There is no reason why monitoring should be restricted to the operations
teams; everyone in the business should be able to see and understand how any
environment—especially the production platform—is performing and what it is doing.

There are plenty of mature and industry-standard monitoring tools available, but it can be
quite difficult to get a single view that is consistent and meaningful. For example, some
tools are geared up for monitoring infrastructure and servers, whereas others are geared up
for collecting application metrics, and still others for measuring application and/or database
performance. Unless you can tie this data together into a coherent view, things will look
disjointed. Ideally, you should try to aggregate the data from these tools—or at least try to
integrate them—and present a unified view of how any given environment and the
software/services running within are coping and functioning.

Approaches, Tools, and Techniques Chapter 5

[147]

You will be surprised how much very valuable data you can get and how it can direct your
engineering work, as the engineers can see exactly how their software or infrastructure is
behaving in real time with real users.

If it moves, monitor it. If it doesn't, monitor it just in case

Monitoring is a must for CD and DevOps to work correctly, as things will be continually
changing (software, services, infrastructure, and so on), and both halves of the Dev and Ops
relationship will need to see what is going on and assist when/if problems occur.

Another, less obvious, positive that monitoring can bring you is proof that CD is not having
an adverse impact on the production platform. If you're using some graph-over-time
solution, you can get your CD tools to add a spike or a marker to the graph when a
deployment takes place. You can then visually see the impact (or not) of the change.

So far, we have mainly focused on technical solutions and tools for the adoption of CD and
DevOps. These solutions and tools may help to provide you with much of what you need
in your toolbox. However, there is still room for simple manual processes.

Approaches, Tools, and Techniques Chapter 5

[148]

When a simple manual process is also an
effective tool
Even if you have enough tooling to shake a stick at, you will no doubt have some small and
niggling challenges that cannot be overcome with tooling and automation alone. To be
honest, tooling and automation can be overkill in some respects, and can actually create
barriers between certain parts of the organization you are trying so hard to bring
together—here, I am talking about the Dev and Ops partnership that forms DevOps.

If tooling and automation completely negate the need for human interaction and
discussion, you may well end up back where you started. You may also find that it is
almost impossible to automate your way out of a simple problem.

Let's take, for example, the thorny issue of dependency-management. As a software
platform matures, many interdependencies will form. If you are deploying your code using
a CD process, these many interdependencies become ever-moving targets wherein
components are being developed and deployed at different rates. You can try to capture
this within your CI process, but something somewhere might be missed and you could end
up inadvertently bringing down the entire platform because component B was deployed
before component A.

You can try to map this out and build into the tooling rules to restrict, or at least minimize,
these moving targets, but the rules may end up being more complex than the original
dependencies. Or you could simply agree on a process whereby only one change happens
at any given point in time. To feed into this, you can implement a simple queuing
mechanism written on a whiteboard and reviewed regularly by all of the engineering and
Operations teams.

This approach worked extremely well for ACME systems. The following is what they did:

They obtained a blanket agreement from everyone that only one change would
go through to production at any given point in time. They called this a
deployment transaction.
To highlight the fact that someone was making a change to production (either a
deployment or operational change), that person held the production
environment token, which was in the form of a plush toy animal and was given
the name the build badger. If you had the build badger, you were changing
production.

Approaches, Tools, and Techniques Chapter 5

[149]

They implemented a simple prioritized queue system using a whiteboard and a
pen. Each morning, whoever wanted to make a deployment would come along
to the deployment stand-up and agree with everyone there the order in which
deployments (or changes) would be made that day.
Screens were installed throughout the office (not just the Dev and Ops areas),
showing a real-time dashboard of what was going on.

All very simple, but what this gave ACME systems was a way to overcome dependency
hell (for example, if they could only change one thing at a time, there was an implied
logical order of which change went before another) and built a sense of collaboration
throughout all of the teams involved.

The following diagram should give you some idea of what the deployment transaction
covered, in terms of a deployment:

The deployment transaction

Eventually, ACME managed to engineer out the dependencies that plagued them in the
early days so this manual process could be decommissioned, although it helped them keep
moving with their CD and DevOps adoption.

Approaches, Tools, and Techniques Chapter 5

[150]

Other very simple manual solutions you can use could include the following:

Use collaborative tools for real-time communication between everyone and
integrate this into your CD tooling so that deployments are announced and can
be followed by all.
If your management is uneasy about having developers deploy to production
without involving the Operations team, make sure you have a DevOps team
doing the release.
If instant rollback is needed should a deployment fail, look into simple ways of
rolling back, such as simply deploying the previous version of the component
using the CD tooling.
Consistently inspect and adapt through regular retrospectives to see what is
working and what is not.

As you can tell, it's not all about technical solutions. If simple manual processes or tweaks
to the ways of working are sufficient, then why bother trying to automate them?

And so ends the lesson—for now. Let's recap what we have covered.

Summary
As stated at the beginning of this chapter was a lot to cover and a lot to take in. Some of it is
relevant to you now and some of it will be relevant for the future.

At this point you should have a greater understanding and appreciation for how agile
engineering best practices (including use of source control, CI, incremental delivery, test
automation, failing fast) along with modern architectural approaches, delivery methods
and in-depth monitoring will ease your CD and DevOps adoption. Above all you should
have learned that it's not all about technical tools and techniques, sometimes simple
processes can solve problems.

We'll now move on from ways to advance your CD and DevOps adoption to the kinds of
issues which will trip you up along the way, how to spot them and how to get passed them.

6
Avoiding Hurdles

Up until this point in the book, we have mainly been focusing on the core tools, techniques
and approaches you'll need in your toolbox to ensure that your adoption of CD and
DevOps starts well and continues smoothly. We've also covered a few of the potential
hurdles you'll come across along the way which you'll have somehow to get over.

We'll now apply a little more focus to these hurdles and looks at ways that they can be
overcome, or at least ways to minimize the impact they have on pushing forward towards
your goal and vision. Throughout this chapter we will be looking into:

The common hurdles you may (will) encounter along the way
Where to apply your energies and who should get the most attention
Change is scary and how people react and perceive it should not be taken lightly
Geography is problematic
Things will go wrong so you should prepare for that

Please take into account that what follows is by no means an exhaustive list, but there is a
high probability that you'll encounter a good number of these hurdles along the way.
As with any major change you will encounter the occasional storm throughout your
journey, so you need to understand how you can steer your way around or through them
and ensure that they don't run the adoption aground, scupper your progress or completely
run the adoption into the rocks—to use a nautical analogy for some reason.

Avoiding Hurdles Chapter 6

[152]

What are the potential issues you need to
look out for?
What you need to look for really does depend on your culture, environment, ways of
working, and business maturity. I know that's a bit of a cop-out, but it is, unfortunately,
true. We've already covered some of this, but it does need pointing out that if you have an
unhealthy culture, environment, or behaviors, there may be more potential hurdles than
you can shake a stick at. Which is why it's pretty important that you address those areas.

Hopefully, this will not be the case and you will have a nice, smooth adoption, but just in
case I'm being too optimistic, let's go through some of the more obvious potential hurdles.
The sorts of things you will encounter will include the likes of the following:

Individuals who just don't see why things have to change and/or simply don't
want to change how things are
Individuals who want things to go quicker and are impatient for change
The way people react to change at an emotional level can help and/or hinder
your progress
A lack of understanding or visibility of what you are trying to achieve may throw
a wrench in the works when business priorities change
Red tape and heavyweight corporate processes grinding the process to a halt
Geographically diverse teams and gaps/silos between then
Unforeseen issues with the tooling (technical and non-technical)
Skill gaps and resource constraints
Political upheaval due to leadership changes

The list could be (and is) much longer, but there's only so much space in this book, so we'll
focus on more obvious potential issues, which could, as previously mentioned, run the CD
and DevOps adoption into shallow waters or, worse still, onto the rocks. We'll start by
focusing on individuals and how they can have an impact, both negative and positive, on
your vision and goal.

Dissenters in the ranks
Although the word dissenters may seem like a rather powerful one to use, it is quite
representative of what can happen should individuals decide what you are proposing
and/or doing doesn't fit with their view of the world.

Avoiding Hurdles Chapter 6

[153]

As with any new concept, idea, or change, you will have some people who are
uncomfortable. Most will hopefully be rational, and, will try to understand and accept that
things change. However, you will have some individuals who decide, for no seemingly-
rational reason, that they are against what you are doing. The whys and wherefores can be
examined and analyzed to the nth degree, but what is important for you to realize is that
this will happen. It's also important to understand that if a relatively small number of
individuals are loud and disruptive enough, they can make a vast amount of unwanted
noise and can distract your attention from your vision and goal. This is exactly what they
want, so it's very important that you don't let them get their way.

As I say, you expend a vast amount of effort and time digging into the psychological
reasons for this, but simply knowing and expecting this will happen is a good place to be.
Forewarned is forearmed, and all that.

I should mention that this is nothing new, nor anything directly attributed to CD and/or
DevOps adoption. If you look back at the early days of agile adoption, there are plenty of
examples of this phenomenon. The individuals involved in the adoption of agile within an
organization broadly fall into three types: a small number of innovators trailblazing the
way, a larger number of followers who are either interested in this new way of doing things
or can see the benefits and have decided to move in the direction that the innovators are
going in, and the laggards who are undecided or not convinced it's the right direction to go
in. The following diagram illustrates these three types:

The three types of individuals identified during the early years of agile adoption

Avoiding Hurdles Chapter 6

[154]

The general consensus is that effort and attention should be focused on the innovators and
followers, as this makes up the majority of the individuals involved and are proactively
moving adoption forward. The followers who are moving up the curve may need some
help to get over the crest, so more attention should be given to them. To focus on the
laggards may take too much attention away from the majority, so the painful truth is that
they either shape up or ship out—even if they're senior managers or leaders. This may seem
rather brutal, but this approach has worked for a good number of years so there must be
something in it.

Let's consider our dissenters or laggards in terms of CD and DevOps adoption: what
should you do? As previously pointed out, if they are loud and disruptive enough, they can
make more than enough noise to derail things, but not for long. If the majority of the
organization has bought into what you are doing—don't forget that you are executing a
plan based upon their input and suggestions—they will not easily become distracted, and
therefore you should not become distracted. If you have managed to build up a good
network across the business, use this network to reduce the noise and if possible convert
the laggards into followers.

If these laggards are in managerial or leadership positions, this may make things more
difficult—especially if they are good at playing the political games that go on in any
business. However, as stated previously, they will ultimately be fighting a losing battle as
the majority will be behind the goal and vision. If you have an executive sponsor or
someone influential within leadership who is in the innovators or followers camp, ask them
to get involved. You just need to ignore the political games, be diligent, and stick to what
you need to do.

One of the things on you need to do list is keep your eyes peeled and your ear to the
ground so you will be able to tell when trouble is brewing. I would recommend that when
this happens, you divert some effort to nip it in the bud and stop it becoming a major issue.
The nip-it-in-the-bud part can be in the form of a simple, non-confrontational face-to-face
discussion with the potential troublemaker over a coffee—that way, the dissenter feels that
they are being listened to and you get an understanding of what the noise is all about. As a
last resort, a face-to-face discussion with their boss might do the trick. Don't resort to email
tennis, as this does not work!

All in all, you should try wherever possible to deal with dissenters as you would the
naughty child in the classroom; don't let them spoil things for everyone, don't give them all
of the attention, and use a calm, measured approach. After a while, people will stop
listening to them or get bored with what they are saying anyway (especially if it's not very
constructive).

Avoiding Hurdles Chapter 6

[155]

No news is no news
Something that may increase the risk of dissenters spoiling the party is a lack of visible or
demonstrable progress in terms of the CD and DevOps adoption, or, to be more concise, the
perceived lack of visible or demonstrable progress. It may be that you're busy with some
complex process change or implementing tooling or focusing on virtualizing the legacy
solution, and, as such, there is a perceived lull in visible activity.

If you have individuals within your organization who are very driven and delivery-
focused, they may take this lull as a sign of the adoption faltering or they may even think
that you're finished. As we covered previously, being highly visible, even if there's not a
vast amount going on, is very important. If people can see progress being made, they will
continue to follow. If there is a period of perceived inaction, then the followers may not
know what way you are heading and may start taking notice of the dissenting voices.

Any form of communication and/or progress update can help stop this from
happening—even if there's not a vast amount to report, the act of communication indicates
that you are still there and still progressing toward the goal. The no news is good news
analogy is wrong; no news is no news.

Let's see what our personas can do to help:

Good approach Not-so-good approach
Victoria (the Veep) should publicly be
seen and heard as a innovator (or
follower) and should openly encourage
her department to decide where they
stand without fear of retribution

Victoria (the Veep) opening accepts without
question the voices of the laggards and / or
announces she is one of them

Stan (the manager) should back up
Victoria's message and ensure he
understands who the laggards are within
his peer group and team(s) and ensure
their voices don't become too loud

Stan (the manager) ignores the noise generated
by the laggards and the impact that has on the
innovators and followers

Devina (the developer) and Oscar (the
Ops guy) should also understand where
they sit and be mindful of noise from
laggards that could easily sway the
innovators and followers in their peer
group

Devina (the developer) and Oscar (the Ops
guy) simply sit in their bubble of blissful
ignorance and leave it to the leadership to sort
out

Avoiding Hurdles Chapter 6

[156]

We briefly covered the fact that some people will be uncomfortable with change and they
may react in unexpected ways. We'll now look into how change can impact individuals in
different ways and what you need to be aware of.

The change curve
Let's get one thing out in the open, and this is important: you need to recognize and accept
that the identification of a problem and subsequent removal of it can be quite a big change.
You have been working with the business to identify a problem and you are now working
to remove it. This is change, pure and simple.

Earlier in the book, we stated that the brave men and women of ACME systems who
helped the business adopt DevOps and CD ways of working were a catalyst for change.
This wording was intentional, as change did come about for the ACME systems team—a
very big change as it turned out. The adoption of CD and DevOps should not be taken
lightly, and the impact on individuals should not be taken lightly; even if they originally
thought it was the best thing since sliced bread.

Those of you who have been in, or are currently in, management or leadership roles may
well understand that change can be seen as both a positive and negative thing, and
sometimes it can be taken very personally, especially where a change directly impacts
individuals and their current roles. How individuals perceive change is normally at an
emotional level rather than a logical, rational level.

Let's look at some fundamentals in relation to how humans deal with change.

Any change, large or small, work-related or not, can impact individuals in many different
ways and, as mentioned, at many different levels. Some people welcome and embrace
change, some are not fazed by it and accept it as something that happens, some are
concerned and worried by it but also open to see what happens, and some are downright
hostile and see change as something personal. More importantly, some people are all of
these—not necessarily all at the same time, of course. If one is mindful of these facts before
one implements change, there's a good chance that one will have a clearer idea of what
challenges to overcome during the implementation to ensure it is successful.

Avoiding Hurdles Chapter 6

[157]

There has been much research into the subject of how people respond to change, and many
papers have been published by learned men and women over the years. I don't suggest for
one minute that I know all there is to know on this subject, but there is some degree of
common sense required when it comes to change, or transition as it is sometimes called,
and there are some very obvious and understandable traits to take into account.

One of my preferred ways to visualize and understand the impact of change is something
called the change or transition curve. This depicts the stages an individual will go through
as a change/transition is being implemented.

The following diagram is a very good example of a change/transition curve:

John Fisher's personal transition curve diagram courtesy of John Fisher

Avoiding Hurdles Chapter 6

[158]

You can clearly see that as change is being planned, discussed, or implemented, people will
go through several stages. We will not go through each stage in detail (you can read
through this at your leisure at https:/ ​/ ​www. ​c2d.​co. ​uk/ ​techniques/ ​process- ​of-
transition/​); however, there are a few nuggets of information that are very pertinent
when looking at the adoption of CD and DevOps:

An individual may go through this curve many times, even at the very early
stages of change
Everyone is different and the speed at which they go through the curve is unique
You and those enlightened few around you will also go through this curve
Those that do not/cannot come out of the dip may need more help, guidance, and
leadership
Even if someone is quiet and doesn't seem fazed, they will inevitably be at some
stage in the curve, so they shouldn't be ignored—it's not just the vocal ones to
look out for

The long and short of it is that individuals are just that, they will be laggards or followers or
innovators, and they will also be somewhere along the change curve. The leaders and
managers within your organization need to be very mindful of this and ensure that people
are being looked after. You also need to be mindful of this, not least because this will also
apply to you.

You should also consider that individuals who started the project as followers or even
innovators may go through the change curve more than once as the initial euphoria gives
way to the realization that things are actually changing. This will explain why some
individuals act in one way at the beginning, yet they change their approach and outlook as
you go through the execution of the plan and vision.

At a personal and emotional level, change is both good and bad, exciting and scary,
challenging and daunting, welcomed and avoided. It all depends how an individual feels at
any given point in time. CD and DevOps is potentially a very big change; therefore,
emotions will play a large part. If you are aware of this and ensure you look for the signs
and react accordingly, you will have a much better time of it. Ignore this and you will have
one hell of a battle on your hands.

https://www.c2d.co.uk/techniques/process-of-transition/
https://www.c2d.co.uk/techniques/process-of-transition/
https://www.c2d.co.uk/techniques/process-of-transition/
https://www.c2d.co.uk/techniques/process-of-transition/
https://www.c2d.co.uk/techniques/process-of-transition/
https://www.c2d.co.uk/techniques/process-of-transition/
https://www.c2d.co.uk/techniques/process-of-transition/
https://www.c2d.co.uk/techniques/process-of-transition/
https://www.c2d.co.uk/techniques/process-of-transition/
https://www.c2d.co.uk/techniques/process-of-transition/
https://www.c2d.co.uk/techniques/process-of-transition/
https://www.c2d.co.uk/techniques/process-of-transition/
https://www.c2d.co.uk/techniques/process-of-transition/
https://www.c2d.co.uk/techniques/process-of-transition/
https://www.c2d.co.uk/techniques/process-of-transition/
https://www.c2d.co.uk/techniques/process-of-transition/
https://www.c2d.co.uk/techniques/process-of-transition/
https://www.c2d.co.uk/techniques/process-of-transition/
https://www.c2d.co.uk/techniques/process-of-transition/

Avoiding Hurdles Chapter 6

[159]

Let's see what our personas can do to help:

Good approach Not-so-good approach
Victoria (the Veep) should be very aware of the
impact of change upon her organization and ensure
she publicly acknowledges this. She should also
consider engaging with her HR team to assist where
needed

Victoria (the Veep) simply sees CD
and DevOps adoption as another
project that doesn't warrant any
special attention

Stan (the manager) should back up Victoria's
message and ensure he carves out time to help,
support and assist his team(s) throughout

Stan (the manager) mirrors Victoria's
view and ignores the impact the
adoption of CD and DevOps has on
his team(s)

Devina (the developer) and Oscar (the Ops guy)
should accept that things will be changing and that
their peers may struggle with this and may well
need support

Devina (the developer) and Oscar
(the Ops guy) simply sit in their
bubble of blissful ignorance and
leave it to the leadership to sort out

On that light note, we'll move onto the subject of what to do about those people within
your organization who are not involved in your journey or may not even be aware that it is
ongoing. We'll call them the outsiders.

The outsiders
The percentage of those involved with the adoption of CD and DevOps will largely depend
on the overall size of your organization. If you are a start-up, the chances are that pretty
much everyone within the organization will be involved. If you are an SME (small-to-
medium enterprise), there is a good chance that not everyone within your organization will
be involved. If you are working within a corporate business, the percentage of those
actively involved will be vastly smaller than those not.

Avoiding Hurdles Chapter 6

[160]

The following diagram illustrates how distance from the core team working on the CD and
DevOps adoption correlates directly to the knowledge of what's actually going on:

Individuals closer to the core team will have a greater knowledge of what is going on

Those whose involvement is further out from the day-to-day will have little or no idea of
what is going on. This may (and will) lead to people on the outskirts, through this lack of
knowledge, inadvertently putting hurdles in the way of progress. It should be pointed out
that this is nothing new and does not specifically apply to the adoption of CD and DevOps;
this is a reality for any far-reaching business change project. If individuals, especially those
in decision-making roles, don't know what is going on, then CD and DevOps will not be
one of the first things they consider.

To give you an example, let's take a look at ACME systems and see how this situation
impacted their implementation.

During phase 2.0 of their evolution, ACME systems became part of a large corporate. They
ended up as a satellite office, the corporate HQ being overseas and, on the whole, were left
to their own devices. They beavered away for a while and started to examine and
implement CD and DevOps. They were doing so, when viewed at a global corporate level,
in isolation. Yes, they were making far-reaching and dramatic changes to the ACME
systems organization, but they were a small cog in a very big wheel. No one outside of the
ACME systems offices had much visibility or in-depth knowledge of what was going on.
Consequently, when a new, far-reaching, corporate strategic plan related to the global
downsizing of the operations organization was announced, little or no consideration was
given to what ACME systems were up to, as, in all honesty, no one making the decisions
really knew. As a result, the progress of the CD and DevOps implementation very quickly
ground to a halt. As luck would have it, once the dust had settled, the need for DevOps
became even greater than it was originally, which lead to a greater focus and acceleration in
adoption.

Avoiding Hurdles Chapter 6

[161]

In the case of ACME systems, the impact turned out to be positive with respect to the CD
and DevOps adoption and actually provided an additional boost. If you experience wide-
reaching changes during your journey, and people are ignorant of what you're doing, your
story may not end so well. Bear that in mind.

The moral of the story is this: not only should you keep an eye on what is happening close
to home, but you should also keep an eye on what is happening in the wider organization.
We've already looked at how important it is to communicate what you are doing and to be
highly visible. This communication and visibility should not be restricted to those
immediately involved in the CD and DevOps adoption; you should try to make as many
people aware as possible. If you are working within a corporate environment, you will no
doubt have some sort of internal communications team who publish regular news articles
to your corporate intranet or newsletter. Get in touch with these people and get them to run
a story on what you are doing. A good bit of public relations will help your cause and
widen the circle of knowledge.

This may seem like quite a lot of work for little gain, but you may be surprised how much
benefit it can bring. Say, for example, you get the article written and published and it is
read by the CEO or an SVP who then decides to visit and see what all the fuss is about. That
is a major moral boost and good PR. Not only that, but it may help with your management
dissenters—if they see the high-ups recognizing what you are doing as a positive thing,
they may reconsider their position.

We're primarily considering outsiders as individuals outside of your immediate sphere of
influence who are ignorant of what you are doing and where you're heading. You may
have others who are well aware, but are either restricted by or hiding behind corporate red
tape and/or bureaucracy. Let's spend some time looking into this potential hurdle and what
can be done to overcome it.

Corporate guidelines, red tape, and
standards
The size and scale of this potential hurdle is dependent on the size and scale of your
organization and the market in which you operate. If you work within the service sector
and have commercial obligations to meet certain SLAs, or you work within a financial
institution and have regulatory guidelines to adhere to, you will be in some ways
hampered in how you implement and adopt CD and DevOps. This, as they say, comes with
the territory.

Avoiding Hurdles Chapter 6

[162]

What you need to do is work with those setting and/or policing the rules to see what wiggle
room you have. You may find that some of the rules and guidelines set in place for the
business are actually overkill and have only been implemented because it was easier to
stick to what it said in the book than it was to refine it to fit the business needs.

The need for such rules, guidelines, and policies mainly revolves around change-
management and auditability. In simple terms, they offer a safety gate and a way to
ascertain what has recently changed should problems occur. You may find that those
managing or policing these rules, guidelines, and policies will consider CD and DevOps to
be incompatible with their ways of working. This may be true, but that doesn't mean it's
correct.

During the investigation stage, their organization/department may have been highlighted
as an area of waste within the product-delivery process (I would put money on it), so they
may be defensive about change. It may even be the case that they simply don't know what
they can change without breaking a rule or corporate policy. Work with these people and
help them understand what CD and DevOps is about, and help them research what parts of
their process they can change to accommodate it. Do not simply ignore them and break the
rules, as this will catch up with you down the road and could completely derail the process.
Open, honest, and courageous dialogue is the key.

That said, open and honest dialogue may be hindered by geography, so let's look at how
we can address that.

Geographically diverse teams
We previously touched on the subject of setting up an open and honest physical
environment to help reinforce open, honest, and collaborative ways of work. This is all well
and good if the teams are collocated, however trying to recreate this with geographically
diverse teams can be a tricky problem to solve. It all depends on the time zone differences
and, to some extent, the differences in culture.

Avoiding Hurdles Chapter 6

[163]

I use the word culture again here on purpose. As previously stated, culture is very
important to the success of CD an DevOps adoption, and we focused on corporate and
organizational culture. When it comes to things that can and will trip you up, geographical,
geo-political, or social-group culture differences can be high on the list. When you have
teams or team members involved that don't necessarily share the same outlook or values as
you (or the majority of the organization) do, there is a risk that they could easily become
dissenters, or at the very least innovators or followers who truly believe they are
contributing but may have interpreted your intentions in their own way and may actually
end up hindering. You therefore need to pay attention and ensure they feel as if they are
treated the same as physically-present team members.

That segues quite nicely to physical presence. Not having a physical presence is always a
barrier. There have been many studies, and no doubt will be more, on the subject of remote
versus collocated teams, and none seem to point to which method produces the best results.
What these studies do sometimes omit is how some external factors also help (or hinder)
remote versus collated teams: organizational maturity, cultural synergies, shared
experience and knowledge, and common language. If some of these factors have a negative
impact on how collocated teams work together, there's a strong chance that these negatives
will be magnified when you add remote teams into the mix.

It should be noted that most research has focused on the Dev side of the DevOps
partnership. There is sometimes an acceptance that having Dev and Ops teams separated is
the norm, however if you consider that DevOps is most effective when both are working
closely together, then you should be applying the whole geographically-diverse teams
thing to both.

From experience, the most effective and efficient teams are collocated simply due to the fact
that humans are social creatures and therefore tend to prefer having other humans nearby
to work with, talk to, argue with, or simply share a joke with. Unless you have a budget
that allows for everyone to work in the same physical location, you need to look at ways to
replicate this for teams and team members who are not physically in the same location.
Here are a few things that you should consider to help remove the barrier:

Try to think of all team members as simply that—members of the same team who
should be treated equally.
Ensure both local and remote teams have regular (ideally daily) teleconference
(ideally video-conference) calls.
If you're using scrum (or a similar methodology) and decide to have a daily
scrum of scrums, get the remote teams(s) to join as well—even if you call them
on your cellphone and have them on speakerphone.

Avoiding Hurdles Chapter 6

[164]

Set up a Skype (or equivalent software) PC within both office spaces and use
them as a virtual wall/window between the offices. These should be left on
during norm office hours so team members on each side of the virtual
wall/window can simply walk up and have a face-to-face conversation as if they
were in the same room.
If budget allows, try to get people swapped across the offices via secondments,
placements, and so on for short periods of time.
Do not rely on email as a form of collaboration/communication, instead invest in
collaboration tools (we covered that previously).

Another potential barrier to be mindful of is time zones. This can (will) wreak havoc on
things such as team meetings and daily stand-ups (from experience, these normally happen
first thing in the morning, which may be problematic if the teams are on different sides of
the globe). With some creative thinking, you can overcome these small issues, for example
pick "first thing in the morning" based upon a time zone midway between the teams.

Coming back to culture again, there is another thing to take into account. In some parts of
the world, the culture may not be the fast and loose western culture where everyone has a
voice and isn't afraid to use it. Instilling openness, honesty, and transparency may be more
difficult for some and you should be mindful of this. I would suggest you work with the
local HR or management team, explain what you're trying to do, and see how they can with
this.

We'll now look at what you should do if you encounter failure during the execution of your
goal and vision.

Failure during the evolution
As you go along your journey, things will occasionally go wrong, this is inevitable and is
nothing to be afraid or ashamed of. There may be situations that you didn't foresee, or steps
in the existing process that were not picked up during the elephant exposure. It might be as
simple as a problem within the chosen toolset, which isn't doing what you had hoped it
would or is simply buggy.

Your natural reaction may be to hide such failures or at least not broadcast the fact that a
failure has occurred. This is not a wise thing to do. You and your team are working hard to
instill a sense of openness and honesty, so the worst thing you can do is the exact opposite.
Think back to what we covered previously in relation to failing fast in terms of finding
defects; the same approach works here as well.

Avoiding Hurdles Chapter 6

[165]

Admitting defeat, curling up in a fetal position, and lying in the corner whimpering is also
not an option. As with any change, things go wrong, so review the situation, review your
options, and move forward. Once you have a way to move around or through the problem,
communicate this. Ensure you're candid about what the problem is and what is being done
to overcome it. This will show others how to react and deal with change—a sort of lead-by-
example.

You might be concerned that admitting failures might give the laggards more ammunition
to derail the adoption; however, their win will be short-lived once the innovators and
followers have found a solution. Hold fast, stand your ground, and have faith.

If you're using agile techniques such as scrum or Kanban to drive the CD and DevOps
adoption, you should be able to change direction relatively quickly without impeding
progress.

Okay so this is all a very positive mental attitude (PMA) and may be seen by some of you
who are more cynical than the rest as management hot air and platitudes, so let's look at
another example.

ACME systems implemented a deployment transaction model (covered in a previous
chapter) to manage dependencies and ensure only one change went through to the
production system at any one point in time. This worked well for a while, but things started
to slow down. Automated integration tests that were previously working started to fail
intermittently, defects were being raised in areas of functionality that were previously seen
as bulletproof. This slowdown started to impact the wider R&D team's ability to deliver
and the noise level started to rise, especially from the vocal laggards. Open and honest
discussions between all concerned ensued and, after much debate, it transpired that the
main source of the problem was a very simple dependency, and change management was
not keeping up with the speed of delivery. In essence, there was no sure way of
determining which software asset change would be completed before another software
asset change and there was no simple way to try out different scenarios in terms of
integration. What it boiled down to was this: if changes within asset A had a dependency
on changes within asset B, then asset B needed to go live first to allow for full integration
testing. However, if asset A was ready first, it would have to sit and wait—sometimes for
days or weeks. The deployment transaction was starting to hinder CD.

Avoiding Hurdles Chapter 6

[166]

Here's a reminder of the simple process that ACME systems called the deployment
transaction:

You'll recall that everyone had agreed that the deployment transaction worked well and
provided a working alternative to dependency hell. When used in anger, however, it
exposed a flaw that started to cause real and painful problems. Even if features could be
switched off through feature flags, there was no way to fully test integration without
having everything deployed to production and the like live environment. This had not been
a problem previously, as the speed of releases had been very slow and assets had been
clumped together. ACME systems now had the ability to deploy to production very quickly
and now had a new problem: which order to deploy? Many discussions took place and
complicated options were looked at, but in the end the solution was quite simple: move the
boundary of the deployment transaction and allow for full integration testing before assets
went to production. It was then down to the various R&D teams to manually work out in
which order things should be deployed.

Avoiding Hurdles Chapter 6

[167]

The following diagram depicts the revised deployment transaction boundary:

So ACME had a potential showstopper, which could have completely derailed their CD
and DevOps adoption. The problem became very visible and many questions were asked.
The followers started to doubt the innovators, and the laggards became vocal. With some
good, old-fashioned collaboration, and open and honest discussions, the issue was quickly
and relatively easily overcome.

Again, open and honest communication and courageous dialogue is key. If you keep
reviewing and listening to what people are saying, you have a much better opportunity to
see potential hurdles before they completely block your progress.

Avoiding Hurdles Chapter 6

[168]

Let's see what our personas can do to help:

Good approach Not-so-good approach
Victoria (the Veep) publicly acknowledges
that things can and will go wrong at points
in the adoption and should encourage her
department to work together to iron out
any issues collaboratively without fear of
retribution

Victoria (the Veep) does not tolerate any form
of failure and is openly critical of problems
that occur

Stan (the manager) should back up
Victoria's message and ensure he carves
out time to help, support and assist his
team(s) when needs be

Stan (the manager) sees failure as a sign of
incompetence and stamps it out at every
opportunity. Anyone who raises problems or
issues are told to keep them quiet

Devina (the developer) and Oscar (the Ops
guy) should not be afraid of failure when
trying something new or risky. When
problems surface they should work
together to solve them and ensure their
leadership are fully aware

Devina (the developer) and Oscar (the Ops
guy) simply sit in their bubble of blissful
ignorance and leave it to the leadership to sort
out

Another thing that may scupper your implementation and erode trust is inconsistent
results.

Processes that are not repeatable
There is a tendency for those of a technical nature to automate everything they touch, such
as the automated building of an engineer's workstation, automated building of software,
and automated switching on of the coffee machine when the office lights come on. This is
nothing new and there is nothing wrong with this approach as long as the process is
repeatable and provides consistent results. If the results are not consistent, others will be
reluctant to use the automation you spent many hours, days, or weeks pulling together.

When it comes to CD and DevOps, the same approach should apply, especially when
you're looking at tooling. You need to trust the results that you are getting time and time
again.

Some believe that internal tooling and labor-saving solutions or processes that aren't out in
the hostile customer world don't have to be of production quality as they're only going to
be used by people within the business mostly by techies. This is 100 percent wrong.

Avoiding Hurdles Chapter 6

[169]

Let's look at a very simple example: if you're a software engineer, you will use an IDE to
write code and you will use a compiler to generate the binary to deploy, and if you're a
database administrator (DBA), you'll use a SQL admin program to manage your databases
and write SQL. You will expect these tools to work 100 percent of the time and produce
consistent and repeatable results; you open a source file and the IDE opens it for editing,
and you execute some SQL and the SQL admin tool runs it on the server. If your tools keep
crashing or produce unexpected results, you will be a bit upset (putting it politely) and will
no doubt refrain from using said tools again. It may drive you insane.

Insanity: doing the same thing over and over again and expecting different results.
 -
Albert Einstein

The same goes for the tools (technical and non-technical) you build and/or implement for
your CD and DevOps adoption. These tools have to be as good as (if not better) the
software your teams are creating. The users of the tool/processes implemented need to be
confident that when they do the same actions over and over again, they get the same
results. As that confidence grows, so does the trust in the tool/process. Ultimately, the
tool/process will start to be taken for granted and people will use it without a second
thought.

Consequently, people will also trust the fact that if the results differ from the last run,
something bad has been introduced (for example, a software bug has been created) that
needs immediate attention.

Consider how much confidence and trust will be eroded if the tool/process continually fails
or provides different and/or unexpected results. You therefore need to be very confident
that the tooling/processes are fit for purpose.

We have already covered the potential hurdles you'll encounter in terms of corporate
guidelines, red tape, and standards. Just think what fun you will have convincing the
gatekeepers that CD and DevOps is not risky when you can't provide consistent results for
repeatable tasks. Okay, maybe fun is not the correct word; maybe pain is a better one.

Another advantage of consistent, repeatable results comes into play when looking at
metrics. If you can trust the fact that to deploy the same asset to the same server takes the
same amount of time each time you deploy it, you can start to spot problems (for example,
if it starts taking longer to deploy, there may be an infrastructure issue or something
fundamental has changed in the configuration).

Avoiding Hurdles Chapter 6

[170]

All in all, it may sound boring and not very innovative, but with consistent and repeatable
results, you can stop worrying about the mundane and move your attention to the
problems that need solving, such as the very real requirement to recruit new people into a
transforming or transformed business.

Bridging the skills gap
This might not seem like a big problem, but as the organization's output increases, the
efficiency grows, and the organization starts to be recognized as one that can deliver
quality products quickly (and it will), then growth and expansion may well become a high
priority—this, I think you'll agree, is a good problem to have. You now need to find
individuals who will work in the new way and exhibit the behaviors that everyone has
worked so hard to instill and embed throughout the organization. This is not as easy as you
might think and it will take some time to find the people that not only have the skills,
experience, and potential but also the mindset you're looking for. Simply adding experience
in CD and DevOps to a job spec will not produce the results you want; even though CD and
DevOps have been a thing for some time, there aren't that many people out there with the
sort of experience you'll be looking for.

The other big problem you'll have is the level of knowledge throughout the recruitment
and talent-acquisition world in terms what CD and DevOps actually is. They may have a
rough idea based upon tech press and some conferences, but they won't know exactly what
you are looking for. It's therefore very important to embark on more knowledge-sharing
with those involved in your recruitment process to ensure that they understand what
you're looking for (or at least have a grasp of what you're not looking for). You may need to
do this number of times until it sinks in.

In terms of candidate-vetting, there are few things you can do to filter out those who get
CD and DevOps and those who don't. For example, if you have a candidate whose main
experience is in the Ops field, throw in some traditional development-focused questions, or
for a developer ask them some questions traditionally targeted at Ops candidates. Mixing
things up will give you a more rounded view of their grasp. One of my favorite interview
questions is very simple:

As a software engineer, how would you feel if your code were running in the production
environment being used by millions of customers 10 minutes after you commit it to source
control?

Avoiding Hurdles Chapter 6

[171]

The question is worded specifically to get an honest emotional response; the key word here
being feel. You will be surprised by the responses to this; for some, it simply stops them in
their tracks, some will be shocked at such a thing and think you're crazy to suggest it, and
some will think it through and realize that although they have never considered it, they
quite like the idea. If, however, the response is 10 minutes? That's far too slow, you may be
onto a winner.

Take your time and ensure you pick the right people. You need
innovators and followers more than you need laggards.

We'll end this section with something that most wouldn't see as a problem, but can stop CD
and DevOps adoption in its tracks, which is changes in leadership.

Changes in leadership
Each of us has, at some point in time, worked somewhere that has gone through a change
of leadership. Normally, the higher up the food chain the change is, the more potentially
disruptive that change will be. For example, a new CEO will, over a period of a few
months, change the leadership reporting to them via hiring and firing or via organizational
realignment (firing by moving chairs around). They will also have some new vision and
business drivers to increase some business metric, which is why they got the job.

Most of the time, those lower down the food chain don't see an impact, at least not for a
while, however, impact will come. You can guarantee it.

When you're looking at something that can be quite radical, such as the adoption of CD and
DevOps, there is a massive risk that a decision in a board room could completely ruin
things, especially in the early stages of adoption. As stated previously, CD and DevOps are
more about ways of working, behaviors, and culture than box-ticking and business metrics.
That said, there is a reason for the decision to adopt CD and DevOps—to improve the
ability to deliver quality software solution quickly and repeatedly. This will not go away
simply because an org chart has been updated.

Avoiding Hurdles Chapter 6

[172]

Your best approach is to keep doing what you're doing and keep being open, honest, and
transparent. If you have an executive sponsor who is still in situ, encourage them to go back
on the charm offensive. Don't be afraid to cover old ground and reiterate the reasoning and
history behind the decision. In addition, make sure you share good news stories and ensure
that the new leaders are included in your regular communications. In essence, do whatever
is needed to keep things rolling and ensure progress continues.

Summary
What new things have we learned throughout this chapter? The main message is that
change is not something to be afraid of, is something that does and will happen and that
there will be hurdles that you will experience along the way. As long as you plan for and
are aware of this fact and you're able help and guide those involved and impacted by
change get through it you should be in a relatively good place. When hidden boulders
become apparent, be that in terms of communications, red tape, bureaucracy, hiring or
geography, you will have some ideas how to overcome them. Another thing you have
learned is that people, be they within the inner circle or far removed, are key to your
success.

There will no doubt be other hurdles, hazards, and potential blockers along the way that
have not been included within these pages but as long as you're prepared you will be
successful. Talking of success, we'll now move onto the measurement of success and why it
is so important—something we'll cover within the next chapter.

7
Vital Measurements

Over the previous chapters, we have looked at what tools and techniques you should be
considering, the need to acknowledge how change will impact people in different ways,
why culture, behaviors, and environment are important, what potential hurdles you'll need
to overcome, and how all of this is needed to successfully adopt CD and DevOps. If you are
taking this into account, creating plans to cater for and/or address this, you should be in a
good shape to make wide strides forward.

We will now look at the important but sometimes overlooked—or simply dismissed—area
of monitoring and measuring progress. We did touch on this subject previously, but what
we considered was a small slice of the pie, figuratively speaking. What we're looking at
now is the capturing, compiling, and sharing of metrics related to the impact that CD and
DevOps has on the day-to-day ways of working and the business as a whole.

This, on the face of it, might be seen as something that is only useful to the management
types and won't add value to those who will be dealing with the CD and DevOps adoption
on a day-to-day basis. In some regards, that is true, but being able to analyze, understand,
and share demonstrable progress will definitely add value to you and everyone else who is
on the CD and DevOps journey. We're not just talking about simple project management
charts, graphs, and PowerPoint fodder here; what we are looking at is measuring as many
aspects of the overall process as possible. That way, anyone and everyone can plainly see
and understand how far you have collectively come and how far from the ultimate goal
you are.

To do this effectively, you'll need to ensure that you start this data capture very early into
the CD and DevOps adoption, as it will be very difficult to see a comparison between then
and now if you don't have data representing then. You will need to be vigilant and
consistent in ensuring that you are continuously capturing these measurements so that you
can compare the state of progress at different points in time. Some would consider this anal,
but this whole CD and DevOps journey started because the data captured in the elephant
exposure pointed to areas of waste—or, at the very least, ineffective processes.

Vital Measurements Chapter 7

[174]

In this chapter, you will learn the following topics:

How to measure the effectiveness of your engineering process(es)
How to measure the stability of the various environments you use and rely on
How to measure the impact your adoption of CD and DevOps is having

We'll start, as they say, at the beginning and focus initially on engineering metrics.

Measuring effective engineering best
practices
This is quite a weird concept to get your head around: How can you measure effective
engineering, and more than that, how can you measure best practices? There's another
often-asked question: what has this got to do with DevOps or CD? We'll look at the former
in a moment, but now let's focus on the latter.

Let's take two scenarios:

Your current software-engineering process is very waterfall and you have a vast
amount of manual testing to validate your code just before it gets
shipped—which happens every 3-6 months—and build in a buffer for bug fixing
Your current software-engineering process is pretty agile and follows (mostly)
industry best practices, however as there is plenty of time between releases you
can sometimes let technical debt slip (including test automation) as there will be
time to go back and mop up just before the next release—which happens every
3-6 months

OK, so this is pretty simplistic, but bear with me. As the CD and DevOps adoption starts to
gather momentum, the time between releases will decrease. Therefore, the we can do that
later window gets smaller and smaller. This can lead to engineers having to start cutting
corners simply because they have run out of time to mop up the pre-release tech-debt tasks.
The adoption of CD and DevOps ultimately allows you to deliver solutions
quickly—there's nothing that categorically states that engineers will be given more time to
write and test said solutions.

Vital Measurements Chapter 7

[175]

Let's consider what a large quarterly release looks like in terms of timeline and effort, as
shown:

Now let's compare that to a CD-type release, as follows:

These are both very simplistic examples, but they highlight the impact that reducing the
time between releases will have on the key players. The we can do that later window goes
from days/weeks to hours.

Vital Measurements Chapter 7

[176]

In Chapter 5, Approaches, Tools, and Techniques, we looked at how the wider business
perceives the relationship between features and releases. As your CD and DevOps
adoption matures, the time between releases will decrease, which means that engineers will
have less time to complete features. If the wider business has become accustomed to having
features delivered within a given release, they will continue to expect this until things bed
in.

Let's go back to the corners. These will normally be related to the non-cutting code, yet still
time-consuming activities—skipping the odd unit test here, leaving the odd gap in
integration tests there, forgoing documentation, reducing the tendency to refactor old code,
and so on. In simple terms, the engineers will be under pressure to deliver and they will no
longer have the time to address everything they did previously. This therefore becomes
technical debt—which is something every software-engineering team tries to avoid at all
costs, as it will come back to bite them later.

Going back to the main subject of measuring effective engineering best practices, it's not as
strange or uncommon as you might think. There are a great number of software-based
businesses around the globe regularly using tools to capture data and measurements for
things such as:

Overall code quality
Adherence to coding rules and standards
Code documentation
Code complexity
Code duplication
Redundant code
Unit-test coverage
Technical debt
Mean time between failures
Mean time to resolution
Bug-escape distance
Fix-bounce rate

Measuring each of these in isolation might not bring a vast amount of value; however,
when pooled together, you can get a very detailed picture of how things stand. In addition,
if you can continuously capture this level of detail over a period of time, you can then start
to measure and report on progress. Why this is important to the adoption of CD and
DevOps is quite simple: if the quality of your software decreases due to the fact that things
are being shipped faster, the laggards will have a field day. If those laggards are in
influential and/or decision-making positions, the whole adoption could be derailed.

Vital Measurements Chapter 7

[177]

As stated previously, if you can spot this as it starts to happen, you have a fighting chance
of stopping it. There is also another side to this; if your quality currently sucks and you can
prove that CD and DevOps adoption helps to increase quality, then that's a massive good
news story—we can ship quicker and the quality is vastly better. Take that, laggards!

It all sounds very simple, and to be honest, it can be, but you need to be mindful of the fact
that you will need to apply some time, effort, and rigor to ensure that you gain the most
value. There will also be a degree of trial and error and tweaking as you go, to ensure you
can capture the data in a reliable and repeatable way—more inspecting and adapting—so
you need to ensure that you factor this in. Not only will these sorts of measurements help
your engineering team(s), they will also help with building trust across the wider business.
For example, you'll be able to provide open, honest, and truthful metrics in relation to the
quality of your software, which, in turn, will reinforce the trust they have in the team(s)
building and looking after the platform.

One thing to seriously consider before you look at measuring things such as software code
metrics is how the engineers themselves will feel about this. What Devina is thinking might
be a typical reaction:

A typical reaction to this approach

Vital Measurements Chapter 7

[178]

Some engineers will become guarded or defensive, and may see it as questioning their skills
and craftsmanship in relation to creating quality code. You need to be careful that you don't
get barriers put up between you and the engineering teams or let them slip back into the
laggards camp. You should sell these tools as a positive benefit for the engineers. For
example, they have a way to definitively prove how good their code actually is; they can
use the tools to inspect areas of over-complexity or areas of code that are more at risk of
containing bugs; they can highlight redundant code and remove it from the codebase; and
they can visually see hard dependencies, which can help when looking at
componentization.

If you have vocal laggards, get them actively involved in the setup and configuration of the
tools (for example, they could take ownership of defining the threshold of acceptable code
coverage or choose the tools to be implemented)

If nothing else, you need to ensure that you have the innovators and followers from the
engineering community brought in. To add some clarity, let's look at a few items from the
preceding list—which, by the way, is not exhaustive—in a little more detail, and examine
why they are potentially important to your CD and DevOps adoption. Let's start with code
complexity.

Code complexity
Having complex code is sometimes necessary, especially when you're looking at extremely
optimized code where in resources are limited and/or there is a real-time UI—basically,
where every millisecond counts. When you have something such as an online store, login
page, or a finance module, having overly complex code can do more harm than good. Some
engineers believe they are special because they can write complex code; however,
complexity for complexity's sake is really just showing off.

Overly complex code can cause lots of general problems—especially when trying to debug
or when you're trying to extend it to cater for additional use cases—which can directly
impact the speed at which you can implement even the smallest change. The premise of CD
is to deliver small, incremental, quality changes. If your code is too complex to allow for
this, you are going to have issues down the line—normally referred to the maintainability,
testability, and readability of the code base.

I would recommend that you put some time aside to look into this complex (pun intended)
subject in more detail before you dive into implementing any process or tooling. You really
need to understand what the underlying principles are and the science behind them;
otherwise, this will become messy and confused. Some of the science is explained in the
Appendix A, Some Useful Information.

Vital Measurements Chapter 7

[179]

One suggestion would be to take one of the various code-analysis tools
available and run a trial to profile your code base, which will help
highlight some existing pain points. From this, you can start to formulate
a plan.

The next thing you could consider is code coverage.

Unit-test coverage
Incorporating unit tests within the software-development process is uniformly recognized
as best practice—Chapter 6, Avoiding Hurdles. There is a vast amount of information
available on this subject, so I won't spend too much time focusing on this here, but I would
recommend that you apply some time and effort into investigating this subject and how
you can adopt this approach within your SDLC.

So as not to short-change you, I will provide some insight and background into this subject
in relation to CD and DevOps.

At a simplistic level, unit tests allow software-engineering teams to exercise and validate
code paths and logic at a granular level during the development process; this, in turn, can
help spot and eradicate software defects very early on. Incorporating these tests within CI
(see the Chapter 6, Avoiding Hurdles, for information on CI) and having them stop the build
can help stop defects escaping into downstream phases of the CD pipeline. This can also be
used as an early warning for regression; for example, if the unit test that was previously
working starts to fail, there is a high probability that regression has been introduced.

The premise of CD is to be able to ship changes frequently. If you have good unit test
coverage across the codebase, you will have a greater level of confidence that you can ship
that code frequently with reduced risk.

Analyzing the coverage is a good indication as to how much you can rely upon unit tests to
spot problems. You can also use this data to map out the areas of risk when it comes to
shipping code quickly (for example, if your login page is frequently changed and has a high
level of coverage, the risk of shipping this frequently becomes lower).

Vital Measurements Chapter 7

[180]

There is one thing you do need to take into account regarding coverage
measurements—that being the mix of legacy versus new code. What you'll usually find is
that legacy code—especially that based on older technologies—may have little-to-no unit-
test coverage. If this type of code makes up the majority of your code base, the coverage
measure will be pretty low. If the wider business gets too hung up on this measure, they
may perceive a low score as a major risk. Although this is technically true, you can't really
expect to have older code fully covered from day one. You therefore need to ensure you set
the context of the data and have a plan for increasing the coverage over time. One approach
would be to set a rule that all new code or refactored code should have a high degree of
coverage (ideally 100% as long as this is attainable without slipping into the realm of.
diminishing returns), and that the overall coverage figure must grow as refactoring of
legacy code increases.

Let's now look at the effectiveness of measuring the frequency of commits.

Commit and merge rates
Regular commits to source control is something that should be widely encouraged and
deeply embedded within your ways of working. Having source code sitting on people's
workstations or laptops for prolonged periods of time is very risky and can sometimes lead
to duplication of effort or, worse still, might block the progress of other engineers.

There might be a fear that if engineers commit too frequently, the chance of defects being
created increases, especially when you think there's an outside risk that unfinished code
could be incorporated into the main code branch. This fear is a fallacy. No engineer worth
their salt would seriously consider doing such a thing—why would they? If you have
checks and balances in place, such as regular code reviews or a pull-request approval
process, the risk of buggy code being merged will be vastly reduced. Add in unit tests and
code analysis and you're looking at next-to-no risk.

Vital Measurements Chapter 7

[181]

Opposite to this is the very real risk of delays between commits and code merges. The more
code there is to be merged, the greater the risk and the higher the potential for code
conflicts, defects, and incomplete functionality to be introduced. The CD approach is based
on delivering working software often. This should not be restricted to software binaries;
delivering small incremental chunks of source code little and often is also a good practice.

Most source control systems will have tools and or logs that can be analyzed by third-party
tools. The sort of data you should be analyzing will include such things as number of
commits and merges per engineer per day, time between merges, and which areas of the
code base are changed most frequently.

From this data, you can start to see patterns, such as seeing who is playing ball and who
isn't, and what areas of the code base carry the most risk. A word of warning: don't use this
data to reward or punish engineers, as this can promote the wrong kinds of behaviors and
can be as damaging as ignoring engineering best practices.

Next, we'll look at the thorny issue of code violations and adherence to rules.

Adherence to coding rules and standards
You may already have coding standards within your software-development teams and/or
try to adhere to an externally-documented and recognized best practice. Being able to
analyze your code base to see which parts do and don't adhere to the standards is
extremely useful as it helps highlight areas of potential risk. If you continue to capture this
data over time, you can start to spot trends—especially when these figures start to fall.

There are a number of tools available to help you do this, some of which are listed in
Appendix A, Some Useful Information.

This type of analysis will take some setting up, as it is normally based on a
set of predefined rules and thresholds (for example, info, minor, major,
critical, and blocker), and you'll need to work with the engineering teams
to agree on and set these up within your tooling.

Measuring adherence to coding rules and standards goes some way to stopping defects in
your code leaking, but software is software and defects will sneak through. What you
therefore need to do is analyze what happens when they do.

Vital Measurements Chapter 7

[182]

Quality metrics
Quality is something that everyone involved in writing and delivering software should
want to uphold and build into their solutions. The preceding sections included some
elements of quality metrics, but you should also consider some specific measurements
targeted on time.

The ones that are pertinent to CD and DevOps are Mean time between failures (MTBF),
Mean time to resolution (MTTR), and defect-escape distance, which are explained as
follows:

MTBF: This will help you measure how often problems (or failures) are found by
end users—the longer the time between failures, the greater the stability and
quality of the overall platform
MTTR: This will help you measure the time taken between an issue being found
and being fixed
Defect escape distance: This will help you measure when an issue is found and
by whom—for example, defects found by the engineering team are close to the
source of the defect (for example, one of the team), whereas UAT spotting a
defect is farther out from the source

The first two give some good indication as to how CD and DevOps adoption is going as
they relate to the speed of delivery. For example, one would expect MTBF to go up and
MTTR to go down over time if CD and DevOps adoption is working well. If they don't,
there's something wrong that needs looking into.

The third of the trio—defect-escape distance—is a good indication of engineering best
practices and how well the CD pipeline is picking up issues early. If the engineering team is
spotting defects early on in the process—for example, a CI step fails due to a failing unit
test—then the distance and impact is small. If a defect escapes to a downstream
process—for example, the UAT team—then the distance and impact is larger. If a defect
gets all the way to the production environment then ... well, I think you get the gist.

Vital Measurements Chapter 7

[183]

One way to represent this is to add a $ value to a defect based upon the environment it is
found in and the time it took to find it. For example, let's assume we have four
environments used as part of the CD pipeline: Dev, QA, UAT, and Prod. We then apply a
sliding scale of cost for each environment based upon the distance from the source:

Env Cost
Dev 1
QA 2
UAT 8
Prod 16

Let's now consider the cost of each defect using a multiplier based upon the lead time
between the defect being created and it being spotted. You'll end up with something such
as this:

Defect# Env Env cost Lead time (days) Defect cost
DE1 Dev 1 2 2
DE2 Dev 1 5 5
DE3 QA 2 10 20
DE4 Dev 1 0.5 0.5
DE5 Prod 16 20 320
DE6 Prod 16 50 800
DE7 UAT 8 5 40
DE8 QA 2 7 14
DE9 Dev 1 15 15
DE10 UAT 8 12 96

This is a snapshot in time that gives you an indication of the cost of defects. This doesn't
mean you should totally eradicate defects—the only way to do that is to stop writing
software—but you should focus on eradicating the high-cost defects. After all, the cost of
defects found by customers in real life is far greater than a defect found during the SDLC.

We'll now take a look at the meaning of lead (and cycle) times.

Vital Measurements Chapter 7

[184]

Cycle and lead times
These are more time-based metrics that are very useful to measure the progress and
effectiveness of the changes you make during CD and DevOps adoption. These two metrics
are pretty simple to understand:

Lead time: The measurement of time between a requirement being identified and
it being delivered to a customer
Cycle time: The time between someone starting work on a given work
item/story/defect and it being delivered to a customer

The following diagram should give you a better idea of what this means:

The observant among you may notice that for defects, the lead time is pretty much the same
as for MTTR, which means that one simple data point can be used for two measurements.
Two for the price of one is good value.

Regularly taking snapshots of lead and cycle time gives a very good indication of whether
things are working well (or not, as the case may be). It should be noted that lead time can
be dependent on changes in business priorities and time-based commitments—for example,
a feature may be deprioritized when something more urgent comes into the backlog—so
there may be some fluctuation in the value over time. What you should be striving toward
is an overall reduction in lead time. Cycle time, on the other hand, is more within the
control of the engineering team, and therefore reducing that is within their hands. As CD
and DevOps adoption takes hold, the act of delivery should be much simpler, so the
average cycle time should decrease. If it doesn't, you should be looking at what is causing
the pain points. Some of that may be related to quality issues.

Vital Measurements Chapter 7

[185]

Quality gates
Not only does capturing data help build up a picture over time and spot trends, but you
can also use the data to stop quality issues from leaking. What I mean by this is that once
you have some data captured and analyzed regarding such things as code coverage,
adherence to coding standards, code complexity, or code documentation levels, you could
set some thresholds within the CD pipeline, which, if exceeded, will stop the pipeline in its
tracks. You can also implement quality gates based upon the results of automated
tests—again, if the tests fail, the CD pipeline stops.

For example, let's assume that you have decided that any new piece of software must have
100 percent unit-test code coverage and must not contain any documented security
vulnerabilities; then you can implement a code analysis/linting tool within the CD pipeline
to check each commit or merge. If the tools report that the code in question doesn't pass the
checks, the CD pipeline will stop and let the team know.

When referring to the CD pipeline, I would include the CI solution being
part of the whole pipeline—just in case you were thinking they are
separate things.

Implementation of such tools will not only ensure your code is up to scratch, it can also
help reduce things such as escaping defects and ensuring code that flows through the CD
pipeline with minimal interruption. Capturing this data will also give you some historical
insight in relation to when quality gates pass/fail, which may correlate with another
event—for example, failures may grow during the frantic period before a major release.

Some of you may be thinking that this all sounds like hard work—on top of all the other
hard work—so is it actually worth it? Yes, it is!

Where to start and why bother?
As stated earlier, there are many things that you can and should be measuring, analyzing,
and producing metrics for, and there are many tools that can help you do this. You just
need to work out what is most important and start from there. The work and effort needed
to set up the tools required should be seen as a great opportunity to bring into play some of
the good behaviors you want to embed: collaboration, open and honest dialogue, and trust.

Vital Measurements Chapter 7

[186]

I would advise implementing these types of tools early in your CD and DevOps adoption
so that you can start to track progress from the get-go. Needless to say, it is not going to be
a pretty sight to begin with, and there will no doubt be questions around the validity of
doing this when it doesn't directly drive the adoption forward—in fact, things might look
pretty awful, especially early on.

It might not directly affect the adoption, but it offers some worthwhile additions, which are
explained here:

Having additional data to prove the quality of the software will, in turn, build
trust that the code can be shipped quickly and safely
There is a good chance that having a very concise view of the overall code base
will help with the re-engineering to componentize the platform
If the engineers have more confidence in the code base, they can focus on new
feature development without concerns about opening a can of worms every time
they make a change

We'll now move our focus from measuring the act of creating software and look at the
importance of measuring what happens when it's built.

Measuring the real world
Analyzing and measuring your code and engineering expertise is one thing; however, for
CD and DevOps to really work, you also need to keep a close eye on the overall
environment, platform, the running software, and the progress of CD and DevOps
effectiveness. Let's start with environments.

Measuring the stability of the environments
You may have a number of different environments that are used for different purposes
throughout the product-delivery process: development, CI, QA, UAT, performance/load
testing, and so on. As your release cycle speeds up, your reliance on these various
environments will grow—if you're working in a 2-to-3-month release cycle, having an issue
within one of the environments for half a day or so will not have, in the grand scheme of
things, a vast impact on your release, whereas if you're releasing 10 times per day, a half-a-
day downtime is a major impact.

Vital Measurements Chapter 7

[187]

There seems to be a universal vocabulary throughout the IT industry related to this, and the
term environmental issue crops up time and time again, as we can see here:

The universal environmental issue discussion

We've all heard this, and some of us are just as guilty of saying these things ourselves. All
in all, it's far from helpful and can be counterproductive in the long run, especially where
building good working relationships across the Dev and Ops divide is concerned, as the
implication is that the infrastructure (which is looked after by the operations side) is at fault
even though there's no concrete proof.

Vital Measurements Chapter 7

[188]

To overcome this attitude and instill some good behaviors, we need to do one of two
things:

Prove beyond a shadow of a doubt that the software platform is working as
expected, and, therefore, any issues encountered must be based on problems
within the infrastructure
Prove beyond a shadow of a doubt that the infrastructure is working as expected,
and, therefore, any issues encountered must be based on problems within the
software

When I said quite simple, I actually meant not very simple. Let's look at the options we
have.

Incorporating automated tests
We've looked at the merits of using automated tests to help prove the quality of each
software component as it is being released, but what if you were to group these tests
together and run them continuously against a given environment? This way, you would
end up with a vast majority of the platform being tested over and over
again—continuously, in fact.

If you were to capture the results of these tests, you can quickly and easily see how healthy
the environment is, or, more precisely, you could see whether the software is behaving as
expected. If tests start failing, we can look at what has changed since that last successful run
and try to pinpoint the root cause.

There are, of course, many caveats to this:

You'll need a good coverage of tests to build a high level of confidence
You might have different tests written in different ways using different
technologies, which do not play well together
Some tests could conflict with each other, especially if they rely on certain
predetermined sets of test data being available
The tests themselves might not be bulletproof and might not show issues,
especially when they have mocking or stubbing included
Some of your tests might flap, which is to say they are inconsistent and for one
reason or another fail every now and again
It could take many hours to run all of the tests end-to-end (on the assumption
that you are running these sequentially)

Vital Measurements Chapter 7

[189]

Assuming that you are happy to live with the caveats or you have resources available to
bolster up the tests so that they can be run as a group continuously and consistently, you
will end up with a solution that will give you a higher level of confidence in the software
platform.

I would suggest you apply some focus to flapping and/or tests that do not
provide the same results after execution, as these will impact confidence.
The rule of thumb is that if you can't trust the test, either refactor it or
remove it from the suite.

If you extend this thinking, you could also use the same approach to build confidence in
your environment(s). For example, if you run the same test suite a number of times against
the same environment without changing anything in terms of software, configuration, or
environment, you should get the same results each time. Therefore, you should be able to
spot instability issues within a given environment with relative ease—sort of.

Combining automated tests and system monitoring
Realistically, just running tests will only give you half the story. To get a truer picture, you
could combine your automated test results with the output of your monitoring solution (as
covered in Chapter 5, Approaches, Tools, and Techniques). Combining the two will give you a
more holistic view of the stability—or not, as the case may be—of the environment as a
whole. More importantly, should problems occur, you will have a better chance of
pinpointing the root cause(s).

OK, so I've made this sound quite simple, and to be honest, the overall objective is simple;
the implementation might be somewhat more difficult. As ever, there are many tools
available that will allow you do to this, but again, time and effort is required to get them
implemented and set up correctly. You should see this as yet another DevOps collaboration
opportunity.

There is, however, another caveat that we should add to the previously mentioned list: you
might have major issues trying to run some of your automated tests in the production
environment

Unless your operations team is happy with test data being generated and torn down within
the production database many times per hour/day and they are happy with the extra load
that will generate and the possible security implications, this approach might be restricted
to non-production environments.

This might be enough to begin with, but if you want a well-rounded picture, you need to
look at another complementary approach to gain some more in-depth real-time metrics.

Vital Measurements Chapter 7

[190]

Real-time monitoring of the software itself
Combining automated tests and system monitoring will give you useful data, but will
realistically only prove two things: the platform is up, and the tests pass. It does not give
you an in-depth understanding of how your software platform is behaving or, more
importantly, how it is behaving in the production environment being used by many
millions of real-world users. To achieve this, you need to go to the next level.

Consider how a Formula One car is developed. We have a test driver sitting in the cockpit
who is generating input to make the car do something; their foot is on the accelerator,
making the car move forward, and they are steering the car to make it go around corners.
You have a fleet of technicians and engineers observing how fast the car goes, and they can
observe how the car functions (that is, the car goes faster when the accelerator is pressed
and goes around a corner when the steering wheel is turned). This is all well and good, but
what is more valuable to the technicians and the engineers is the in-depth metrics and data
generated by the myriad of sensors and electronic gubbins deep within the car itself.

This approach can be applied to a software platform as well. You need data and metrics
from deep within the bowels of the platform to fully understand what is going on; no
amount of testing and observation of the results will give you this. This is not a new
concept; it has been around for many years. Just look at any operating system; there are
many ways to delve into the depths and pull out useful and meaningful metrics and data.
Why not simply apply this concept to software components? In some respects, this is
already built in; look at the various log files that your software platform generates (for
example, HTTP logs and error logs), so you have a head start; if only you could harvest this
data and make use of it.

There are a number of tools available that allow you to trawl through such output and
compile them into useful and meaningful reports and graphs. There is a but here: it's very
difficult to generate this in real-time, especially when there's a vast amount of data being
produced, which will take time to fetch and process.

A cleaner approach would be to build something into the software itself that can produce
this kind of low-level data for you in a small, concise, and consistent format that is useful to
you—if truth be told, your average HTTP log contains a vast amount of data that is of no
value to you at all. I'll cover some examples in Appendix A, Some Useful Information, but
simply put, this approach falls into two categories:

Incorporate a health-check function within your software APIs; this will provide
low-level metrics data when called periodically by a central data-collection
solution
Extend your software platform to push low-level metrics data to a central data-
collection solution periodically

Vital Measurements Chapter 7

[191]

You will, of course, need something to act as the central data-collection solution, but there
are tools available if you shop around and work in a DevOps manner to choose and
implement what works best for you.

Monitoring utopia
Whatever approach (or combination of approaches) you adopt, you should end up with
some very rich and in-depth information. In essence, you'll much have as much data as
your average Formula One technician (that being lots and lots of data). You just need to
pull it all together into a coherent and easy-to-understand form. This challenge is another
one to encourage DevOps behaviors, as the sort of data you want to capture/present is best
fleshed out and agreed on between the engineers on both sides.

If you're unsure whether you should measure a specific part of the
platform or the infrastructure, but feel it might be useful, measure it
anyway. You never know whether this data will come in handy later. The
rule of thumb is: if it moves, monitor it; if it doesn't move, monitor it just
in case.

Ultimately, what you want to be able to do is ensure that the entire environment
(infrastructure, configuration, and software platform) is healthy. This way, if someone says
it must be an environmental issue, they might actually be correct.

If we pull all of this together, we can now expand up on the preceding list:

Prove beyond a shadow of a doubt that the software platform is working as
expected, and, therefore, any issues encountered must be based on problems
within the infrastructure
Prove beyond a shadow of a doubt that the infrastructure is working as expected,
and, therefore, any issues encountered must be based on problems within the
software
Agree that problems can occur for whatever reason and that the root cause(s)
should be identified and addressed in a collaborative DevOps way

We'll now move on from the technical side of measuring and look at the business-focused
view.

Vital Measurements Chapter 7

[192]

Effectiveness of CD and DevOps
Implementing CD and DevOps is not cheap. There's quite a lot of effort required, which
directly translates into cost. Every business likes to see a return on investment, so there is
no reason why you should not provide this sort of information and data. For the majority of
this chapter, we've been focusing on the more in-depth, technical side of measuring
progress and success. This is very valuable to technical-minded individuals, but your
average middle manager might not get the subtleties of what it means, and to be honest,
you can't really blame them. Seeing a huge amount of data and charts that contain
information, such as Transactions per second (TPS) counts, response times for a given
software component, or how many commits were made, is not awe-inspiring for your
average suit. What they like is top-level summary information and data, which represents
progress and success.

As far as CD and DevOps is concerned, the main factors that are important are
improvements in efficiency and throughput, as these translate directly into how quickly
products can be delivered to the market and how quickly the business can start realizing
the value. This is what it's all about. CD and DevOps is the catalyst to allow for this to be
realized, so why not show this?

With any luck, you will have (or plan to have) some tooling to facilitate and orchestrate the
CD process. What you should also have built into this tooling is metrics; the sort of metrics
that you should be capturing are:

A count of the number of deployments completed
The time taken to take a release candidate to production
The time taken from commit to the working software being in production
A count of the release candidates that have been built
A league table of software components that are released
A list of the unique software components going through the CD pipeline

Vital Measurements Chapter 7

[193]

You can then take this data and summarize it for all to see—it must be simple, and it must
be easy to understand. An example of the sort of information you could display on screens
around the office could be something such as the one shown in the following screenshot:

An example page summarizing the effectiveness of the CD process

This kind of information is extremely effective, and if it's visible and easily accessible, it also
opens up discussions around how well things are progressing and what areas still need
some work and optimization.

What would also be valuable, especially to management types, is financial data and
information, such as the cost of each release in terms of resources. If you have this data
available to you, including it will not only be useful for the management, but it could also
help provide focus for the engineering teams, as they will start to understand how much
these things cost.

Vital Measurements Chapter 7

[194]

Access to this data and information should not be restricted and should be highly visible so
that everyone can see the progress being made and, more importantly, see how far they are
from the original goal.

We've looked at the effectiveness; let's now look at the real-world impact.

Impact of CD and DevOps
Implementing CD and DevOps will have an impact on your ways of working and business
as a whole. This is a fact. What would be good is to understand what this impact actually is.
You might already be capturing and reporting against things such as business key
performance indicators (KPI) (number of active users, revenue, page visits, and so on), so
why not add these into the overarching metrics and measurements? If CD and DevOps is
having a positive impact on customer retention, wouldn't it be nice for everyone to see this?

At a basic level, you want to ensure that you are going in the right direction.

Before we move away from measuring and monitoring, let's look at something that, on the
face of it, does seem strange: measuring your DevOps culture.

Measuring your culture
I know what you're thinking: measuring software, environments, and processes is hard
enough, but how can you measure something as intangible as culture? To be honest, there
are no easy answers, and it really depends on what you feel is most valuable. For example,
you might feel having developers working with system operators 20 percent of their time is
a good indication that DevOps is working and is healthy, or the fact that live issues are
resolved by developers and the operations team is a good sign.

Capturing this information can also be tricky, but it doesn't need to be overly complex.
What you really need to know is how people feel things are progressing and whether they
think things are progressing in the correct way.

Vital Measurements Chapter 7

[195]

The simplest way to capture this is to ask as many people as you can. Of course, you'll want
to capture some meaningful data points—simply having a graph with the words it's going
OK doesn't really give you much. You could look at using periodical interviews or
questionnaires that capture data such as:

Do you feel there is an effective level of collaboration between engineers (Dev
and Ops)?
How willing are engineers (Dev and Ops) to collaborate to solve production
issues?
Do you feel blame is still predominant when issues occur?
Do you feel operations engineers are involved early enough in feature
development?
Are there enough opportunities for engineers (Dev and Ops) to improve their
ways of working?

Do you feel you have the tools, skills, and environment to effectively do your
job?
Do you feel that CD and DevOps is having a positive impact on our business?

There might be other example questions that you can think up; however, don't overdo it
and bombard people—KISS (see the Chapter 3, Culture and Behaviors are the Cornerstones to
Success). If you can use questions that allow for answers in a scale form (for example, 1
being strongly agree, 2 being agree, 3 being disagree, and 4 being strongly disagree), you'll
be able to get a clearer picture, which you can then compare over time.

Again, if you pool this data with your technical data, this might provide some insights you
were not expecting. For example, maybe you implemented a new process that has reduced
the escaped defects by 10 percent, but releases per day have dropped by 5 percent and the
majority of the engineering team is unhappy. In such a case, you might have a problem
with the process itself or the acceptance of it at a grass-roots level.

Vital Measurements Chapter 7

[196]

Summary
Throughout this chapter, you learned that capturing data and measurements is important,
as this gives you a clear indication of whether things are working and progressing in the
way you planned and hoped for. Whether you're interested in the gains in software quality
over time, reduction in bugs, performance of your software platform, or number of
environmental issues in the past quarter, you need data. Lots of data. Complementing this
with business-focused and real-world data will only add value and provide you with more
insight into how things are going.

You are striving to encourage openness and honesty throughout the organization (see
the Chapter 4, Culture and Behaviors); therefore, sharing all of the metrics and data you
collect during your CD and DevOps implementation will provide a high degree of
transparency. At the end of the day, every part of any business turns into data, metrics, and
graphs (financial figures, head count, public opinion of your product, and so on), so why
should the product-delivery process be any different?

The sooner you start to capture this data, the sooner you can inspect and adapt. You need
to extend your mantra from monitor, monitor, and then monitor some more, to monitor
and measure continuously and consistently.

Let's now move from measuring everything that can and should be measured to see how
things look once your CD and DevOps adoption has matured. In Chapter 8, You Are Not
Finished Just Yet, we'll be covering some of the things you should be considering when CD
and DevOps become the norm.

8
You Are Not Finished Just Yet

Up until this point we have been on a journey, from surfacing the issues that caused the
business pains through defining the goal and vision to remove them, addressing cultural,
environmental, and technical impediments, adopting much-needed tools and techniques,
overcoming hurdles, to measuring success.

Let's wind the clock forward and presume at this point that all of the advice in the
preceding chapters and pages has helped—along with some more specialist advice,
complimentary publications, and maybe some assistance—and that you have implemented
the necessary tools and process changes. Let's also presume that the adoption of CD and
DevOps is in full swing throughout your organization.

If you're reading this at the start of your journey, then I would ask you to continue reading
and use your imagination to visualize how things could be with CD and DevOps adoption
under your belt.

If all has gone to plan, the business has started to see the benefits and reap the rewards in
terms of the ability to deliver quality features to the market far sooner that they could
previously. On the face of it, you're almost done achieving your goal and realizing your
vision, but—and it's a very important but—this is not the end.

The journey you have all been on has been a long one, and just like the five-year-old who
has been sitting in the back of the car on the long road trip to grandma's house, you will
now have people within your organization repeatedly asking things such as are we there
yet? How much longer? When do we stop spending money on this DevOps thing? And I
need to pee! Okay, maybe not so much the last one, but I think you get the point. This is as
good a time as any to pause for a moment and take stock of where you are.

You Are Not Finished Just Yet Chapter 8

[198]

Reflecting on where you are now
Yes, you have come a long way; yes, things are going much more smoothly; yes, the
organization is working more closely together; yes, the Dev and Ops divide is less of a
chasm and more of a small crack in the ground; and yes you have almost completed what
you set out to do. What you have done is reduce the process of delivering software from
something complex, painful and cumbersome to something as simple as the following:

The problems you originally set out to address revolved around the waste within the
process of delivering software, the long-winded and pointless processes, the political
posturing, and more specifically, the waste that comes from large, infrequent releases.
Adopting CD and DevOps has helped you overcome (most of) these problems.

As a result, you will now start to hear comments such as we can deploy quickly, so we
must have implemented CD, or our developers and operations people are working closely
together, so we must have implemented DevOps.

Some would suggest that once you start to hear this, it must mean that you have indeed
completed what you set out to do. In some respects, this is true; however, in reality, this is
far from the truth.

You Are Not Finished Just Yet Chapter 8

[199]

What these comments do illustrate is the fact that the major issues highlighted at the
beginning of the journey have now started to become dim and distant memories. The
business has grown to accept CD and DevOps as the way we do things around here, and
has at last started to grasp their meaning, which is good. However, there's still work to be
done and problems to solve; albeit different work and different problems. As you did at the
beginning of the journey, it is again time to inspect and ascertain what problems are
important now and adapt to solve them. To explain this, we have to go off on a bit of a
tangent.

Streaming
Let's compare your software-release process to a flowing river (I did say it was a bit of a
tangent):

At the very beginning, many small streams flowed downhill and converged into
a river. This river flowed along, but the progress was impeded by a series of
locks and a massive manmade dam:

The river then backed up and started to form a reservoir.
Every few months, the sluice gates were opened and the water flowed freely, but
this was normally a short-lived and frantic rush.

You Are Not Finished Just Yet Chapter 8

[200]

As you identified and started to remove the manmade obstacles, the flow started
to become more even, but it was still hindered by some very large boulders
further downstream:

You then set about systematically removing these boulders one by one, which
again increased the flow; this, in turn, started to become consistent, predictable,
and manageable.
As a consequence of removing the obstacles to increase the flow, the water level
starts to drop and small pebbles start to appear and create eddies, which restrict
the flow to a small degree, but not enough to halt it:

You Are Not Finished Just Yet Chapter 8

[201]

The flow goes on increasing, the water level goes on decreasing, and it soon
becomes obvious that the pebbles were actually the tips of yet more boulders
hidden in the depths of the river.

So, what's this got to do with your adoption of CD and DevOps? Quite a lot if you stop to
think about it:

Before you started, you had many streams of work, all converging into one big
and complicated release—these were the streams into the river that backed up
into the reservoir.
At the beginning of your journey, you had a pretty good idea of what the major
issues and problems were. These were pretty obvious to all and were causing the
most pain—these were the locks and dams.
You removed these obstacles and the flow started to be more consistent, but it
was being hindered by the boulders—these are the lack of engineering best
practices, bad culture and behaviors, the lack of an open and honest
environment, and so on.
You systematically addressed and removed each of the boulders and started to
get a good, consistent flow, but new unforeseen issues start to pop up and
impede your progress—these are the pebbles that turn out to be more boulders
under the waterline.

If you cast your mind back, your original goal and vision was focused on the major issues
highlighted during the elephant exposure inspect stage (the manmade locks and
dams)—the things you knew were problems when you started out. As you systematically
worked to address these, your delivering-software river started to flow more freely and
you and the wider business started to see some positive and interesting results. Over time,
hurdles (the boulders) that were not as obvious or important became more visible and a
cause for concern. You then changed focus to remove these, which, in turn, improved the
overall flow once again.

Due to the nature of improvement, the more efficient and effective you
make a process, the more the small niggling issues (pebbles) become
hurdles (boulders). This is nothing specific to CD, DevOps, or IT; this is
just something that happens.

This is by no means all doom and gloom, nor something to be concerned about. You and
the business have faced bigger challenges, and you now have a level of organizational
maturity that means you can deal with these new boulders with ease. That's a sign of being
successful.

You Are Not Finished Just Yet Chapter 8

[202]

A victim of your own success
Humans are very fickle beings. As businesses are mostly staffed by humans, they are also
fickle. A moment of success soon passes and fades into the collective memory, and
problems that were not problems a few weeks/months ago start to become the talk of the
town, boardroom, water cooler, or washroom. Another problem with success is that this
becomes the baseline, which means that even the smallest of problems can start to become a
major issue relatively quickly. These problems can be relatively simple things, such as:

As adoption matures, relatively small issues can become the new problems

You Are Not Finished Just Yet Chapter 8

[203]

In the space of a few months, the vast majority of the team members originally working
within the constraints of big release cycles—which took many weeks or months to pull
together, test, and push into the production environment—have all but forgotten, dark old
days and are now finding new things to worry and grumble about. This is nothing unusual;
it happens within every project, be it a major business change project or a relatively simple
software-delivery project. It's nothing unusual, but if you think about it, it is a positive
problem to have.

Up until recently, the engineering teams were severely restricted and unable to truly
innovate, experiment, or flex their engineering muscles due to the bureaucracy, complexity,
and constraints of the big release process. They no longer have to worry about the process
of releasing software, as this has become an everyday background noise that just happens
over and over again without the need for much effort—mainly due to the excellent work
you have all done.

The seemingly small problems that are now being raised would have been, in the dark
days, simple annoyances that would have been dismissed or ignored as low priority. They
were pebbles deep under the waterline. Now, they are something real and boulder-shaped,
and they need to be addressed; otherwise, there is a risk that things will slow down and the
days will again become darker.

You and the wider business may at this point start asking the following types of question (I
have included my responses as well, if that helps):

Question Answer
Does the fact that new problems have
surfaced mean that your original goal has
not been met and you have failed?

No, it doesn't! It just means that the landscape
has changed.

Was it all a waste of time, as we seem to
have as many problems as we had to
begin with?

No. The problems you encountered
previously—and were exposed to, such as the
elephant way back when—were much larger,
far-reaching, and for all intents and purposes
ignored, or at least accepted. These new
problems are insignificant in direct
comparison—especially in terms of cost to the
business—and are out in the open for all to see.

You Are Not Finished Just Yet Chapter 8

[204]

How much more money do we need to
spend?

That depends on the size and relative priority of
the new problems. However, as CD and
DevOps are now simply part of the standard
SDLC, you should be investing as you would in
any other part of your business processes and
tools.

Did we miss something?
No, most of the new problems were unforeseen
and/or simple niggles at the beginning of the
journey.

Does this mean you need to change the
goal, create a new plan, and start all over
again?

Not necessarily. What you now need is some
PDCA.

So, what exactly is PDCA? Let's find out.

[P]lan, [D]o, [C]heck, [A]djust
There are a number of variations of this acronym; however, the most widely used one is
Plan, Do, Check, and Adjust. You might also find PDCA being referred to as the Deming
circle or the Shewhart cycle. Whatever definition you prefer, the idea behind the PDCA
approach is quite simple; it is a framework and approach that you can use for continuous
and iterative improvement. The following simple diagram should help explain this:

The iterative PDCA process

You Are Not Finished Just Yet Chapter 8

[205]

Simply put, this approach is an expansion of the inspect-and-adapt approaches that have
been mentioned many times previously—although, if truth be told, it's been around for
much longer. The concept is pretty easy to grasp and follow, and it can be applied to almost
every aspect of your CD and DevOps adoption. Let's look at an example:

Plan: You realize that your current process to deliver software is broken and
decide that you need to find out why by running workshops to map out the
entire process
Do: You run the workshops and capture input and data from across the business
Check: You analyze the output to ascertain whether the data provided gives you
an insight into where the pain points are within your process
Adjust: You highlight some areas of waste and agree on corrective actions
Plan: You set a goal and pull together a plan of attack to address the major pain
points
Do: You execute against this plan
Check: You review the progress against the goal
Adjust: You make tweaks to the approach as more information and unforeseen
hurdles are unearthed
Plan: You realign the plan to ensure that the goal is still achievable, given the
new information you have gathered
Do: I think you can fill the rest in yourself

As with most of the tools and techniques covered in this book, using the PDCA approach
over any other is your call; however, it is a well-proven and well-recognized framework to
use—especially when you're looking at implementing something that is as wide-reaching
and business-changing as CD and DevOps—so I would suggest you don't simply dismiss
it.

If you took heed of the importance of collecting data and metrics, as covered in Chapter 7,
Vital Measurements, you should now have a good collection of data to call upon for the
Check stage of PDCA, which will make the Adjust stage easier to define. You may even
spot issues that were not as obvious. For example, if you see cycle times spiking on regular
occasions (Check) that also correspond with unplanned downtime of the QA environment,
which in turn is caused by the storage filling up, then someone should look into why this is
from happening and stop it happening (adjust)—which might be as simple as (plan)ning to
add more storage (Do).

You Are Not Finished Just Yet Chapter 8

[206]

One major advantage of PDCA is that it has the luxury of being simple to understand at all
levels of the business, and it is also highly adaptable—for example, this book has been
developed using the self-same approach:

I planned out the overall structure and content of the book as whole
I then documented this as a proposal
I passed this to the publisher to check and provide feedback
I assessed the feedback and made adjustments to the overall plan
I started to plan out chapter one
I wrote chapter one
My editor reviewed it and provided feedback
I adjusted chapter one
I planned out chapter two—I think you get the rather labored point

If PDCA isn't your preferred framework or approach, I encourage you to do some research
before any action is taken. I specifically said any action is taken rather than you act, as you
should now take a step back and take stock of where you are and what you need to do next.

Exit, stage left
After many long hours, days, and months, the business has become used to the changes
you and those working alongside you have all spent many long hours, days, and months
implementing. The fickle business is now experiencing and reporting new issues that they
feel are important. The question is, who should address these newfound challenges? The
answer is quite simple—not you or those who have been working alongside you
spearheading the adoption of CD and DevOps.

You Are Not Finished Just Yet Chapter 8

[207]

You have helped embed the new collaborative ways of working, helped bridge the gap
between Dev and Ops, helped implement new tools and optimized processes, drank lots of
coffee, and had little sleep. You have done your bit, and it's now time for those you have
been helping to take off the training wheels, step up, and take the reins (to mix quite a few
metaphors):

The training wheels are no longer needed

Way back in Chapter 2, Understanding Your Current Pain Points, we looked at how to
identify the problems and issues the business faced. We called this the elephant in the
room. You helped the wider business understand and learn how to use retrospection and
other tools to look back and plan forward, and taught them how open, honest, and
courageous dialogue would help to find the correct path. As stated a few times, the new
issues and problems are just that: new.

These new issues and problems do need to be addressed, but if you compare where the
business was at the start of the journey to where it is now in terms of organization maturity,
there is one major and very important difference: the business now has the tools and
capabilities to identify the new elephant-shaped boulders very quickly, and now has the
tools, knowledge, confidence, experience, and expertise to remove them quickly and
painlessly on their own. If you don't believe me, re-run the CD and DevOps evolutionary
scale quiz from Chapter 1, The Evolution of Software Delivery, and see how the business
scores now compared to many months ago.

You Are Not Finished Just Yet Chapter 8

[208]

As discussed previously, you have pretty much reached the original goal (or as near as,
damn it), so your swan song is to help others help themselves. It was fun while it lasted, but
all good things must come to an end, so now is a good time to consider your exit strategy.
This isn't to say that you should run away, hide, and not be involved at all; it just means
that to fully encourage the fledgling ways of working, you need to be the responsible
parent and let the kids grow up and learn by themselves.

Your focus should now change from driving the adoption (doing) to coaching and guiding
the continuation (leading). Those who were the innovators of the adoption of CD and
DevOps—yourself included—should now start encouraging the innovators and followers
who benefited from the adoption to step into the light and take responsibility for their own
boulders. This will not happen overnight, but you need to be pretty clear on your intentions
so that people understand that you are handing over the baton. Simple things such as
handing over the organization of regular CD and DevOps meetings to someone else or
booking some time off when the next big tooling upgrade is scheduled to take place would
suffice. The old "out of sight, out of mind" adage can be a useful thing when you need it.

Just like a good parent, you have set up a safe environment for growth and self-discovery,
and therefore, you should only need a light touch, a bit of guiding here, some advice there,
and the odd prod in the right direction.

One major part of this newfound parental leadership role is to look again at the wider and
less tangible areas of CD and DevOps to ensure complacency doesn't set in.

Resting on your laurels (not)
So, you've done a lot and progressed further, and the business and those working within it
are all the better for it. This is a good thing—you and all those involved should be very
proud of what has been achieved. However, this is no reason for the business to rest on its
laurels; it might be tempting, but there are still things that need to be kept in check.

Previously, I highlighted that there would be new problems and issues that will surface
from below the waterline that will keep the new generation of innovators and followers
busy. With you and the previous generation coaching and guiding them, they'll be fine and
will solve these new challenges. Alongside this will come complacency as the new becomes
the normal. You have helped the business evolve, but you have to be very mindful of the
fact that the business can start to devolve just as easily and quickly if there seems to be a
vacuum and complacency seeps in to fill it.

Horror vacui (more commonly known as 'Nature abhors a vacuum') - Aristotle

You Are Not Finished Just Yet Chapter 8

[209]

As with any far-reaching project or business change, if the frantic rate of change starts to
peter off or be seen to stop, things will start to stagnate and old ingrained habits will start to
resurface. In this environment, the laggards might start to become vocal again, and the
followers might start to listen to them. You will have actively and notably shifted your
position from doer to facilitator and influencer; as such, your role will be to make sure
things are running smoothly and to keep your eyes and ears open for new threats. You
have built up a good network, so start using this to get some early warning.

When compared to what you have achieved, this might seem simple, but it can be much
harder at times; you're used to being actively involved in driving others and doing stuff
yourself, and now have to keep your distance and watch others doing stuff that you are still
passionate about. It's sometimes harder, but just as rewarding. Think of it as taking the next
step in your personal evolution. As such, you are in a good position to look beyond the
initial goal to see whether there are opportunities to assist in a wider capacity.

Summary
Adopting CD and DevOps is a long and hard journey. If you think it's not, you are
deluded. You'll circumvent elephant-filled rivers and other unforeseen challenges as you
near the journey's end. Parental guidance is needed to steer the business in the right
direction while you plan how to step out of the limelight and make room for those who
have benefited from the achievements you have collectively made. New problems will
emerge and threaten the adoption progress; however, the business is wiser and should now
have the tools, maturity, and experience to cope. Keeping an eye on things is worthwhile
and admirable however there's much bigger and better things to focus your attention on. In
Chapter 9, Expanding Your Opportunity Horizon, we'll be looking at some examples of these
bigger and better opportunities that come from a mature CD and DevOps culture.

9
Expanding Your Opportunity

Horizon
As you may have guessed by this point, we have largely been focused on traditional
software delivery within a traditional, established business that delivers traditional
web/server software-based solutions and products rather than the young, trendy, and
innovative start-up software businesses out there, the reason being that they normally have
the agility and opportunity to be creative in the way they deliver software built into their
DNA. Most tech startups—especially those formed in the last few years—normally build
CD and DevOps into their normal day-to-day ways of working.

It may be that you currently work within such a hipster business, but CD and DevOps
wasn't built into the ways of working from the start. That shouldn't be a problem, as this
book should have given you some good ideas and guidance with regards to addressing this
gap.

The vast majority of businesses that deliver software on a day-to-day basis are not so
lucky—the intention might be there, but the will to act might be lacking. Hence, the focus is
on the traditional. There's a strong possibility that you yourself work within one of these
traditional businesses.

Having followed the advice provided in this book and successfully adopted CD and
DevOps, there's a very good chance that you would have caught up with the
whippersnappers and your business is able to be just as agile and creative in how it delivers
software, and maybe even more so.

At the tail end of Chapter 8, You Are Not Finished Just Yet, we turned our focus onto you
and how you could take your newfound knowledge, skills, and experience forward, beyond
the initial goal of embedding the CD and DevOps ways of working within your
organization. Let's look at what this could actually mean.

Expanding Your Opportunity Horizon Chapter 9

[211]

What about me?
Let's presume at this point in the narrative that you have been instrumental in the
successful adoption of CD and DevOps and have delivered what you set out to do. Things
are working well, even better than you envisaged. The business is all grown up, can tie its
own shoe laces, and doesn't need you to hold its hand anymore—well, not quite.

As mentioned in Chapter 8, You Are Not Finished Just Yet, you should take a moment or two
to consider where most of the individuals within the business were at the beginning of the
journey and where they are now. Consider the changes in ways of working,
communication, collaboration, and behaviors. Think of the proportion of innovators,
followers, and laggards in the early stages of the evolution and what the proportion is now.
Taking all of this into account, you will most probably find that in reality, the majority are
now at the same point that you were when you started out—they are just starting to fully
realize that there is another way to do things and that it is a better way. Sure, there's still
work to be done to make things as effective and efficient as possible, and there are still a
few kinks to iron out, but things are, on the whole, good.

Now, look at how far you have personally come in comparison; as far as most of the people
you have been working with and coaching and teaching in the ways of the CD and DevOps
think, you are akin to a figure way off in the distance:

Others' perception of you

Regardless of your role at the beginning of the journey, be that a developer, a system
admin, a manager, or something else, your role has now changed. Like it or not, you have
become the holder of knowledge, expertise and experience. You are the CD and DevOps
subject-matter expert. You know your stuff.

Expanding Your Opportunity Horizon Chapter 9

[212]

You may feel that your fellow early-adopting innovators are also standing
shoulder to shoulder with you, but for the sake of simplicity, you are the
one reading this, and therefore you are the one standing in the distance.

You have traveled far, the landscape has changed quite dramatically from where you
started, and you have new hills to climb—these are the new opportunities that the business
is now ready to look at. Maybe these were challenges that the business could not overcome
earlier; maybe they simply didn't know these opportunities existed, but with newfound
knowledge, they are keen to try new things. Maybe your Chief Technology Officer (CTO)
has been chatting with his young and trendy counterparts at the golf club. Whatever the
reason, now is the time to apply your stuff to these new challenges and opportunities. What
follows are some examples of how you can bring to bear your skills, expertise, and
experience beyond traditional software delivery.

What follows are some examples of doors that can open following that successful adoption
of CD and DevOps. Some of these may be achievable without CD and/or DevOps, but from
experience, the results will not be as good without as they would with them. These are the
sorts of new challenges and opportunities that you—should you accept them—could apply
some focus, attention, and time to.

Performance and load-testing
The more observant among you might have noticed that there is little mention of
performance or load-testing throughout this book. This is intentional as, in my mind,
attempting this activity without the close collaboration, tooling, and techniques that come
from adopting CD and DevOps is a fool's errand. Yes, there are many established and
traditional approaches, but these normally amount to shoehorning something into the
process just before you want to ship your code—which might well result in the code not
shipping due to the fact that performance issues were found at the last minute. You may
have overcome this problem by implementing a process that periodically takes a build of
the software and runs some intensive automated tests against it within a controlled and
highly-monitored environment. This can help, but unless you have set up the automated
tests to exactly mirror real-world usage, you're basically giving everyone false hope that no
performance issues will be found once the code is live.

I would also hazard a guess and say performance/load-testing was seen as a burden, or
even an area of waste, during the elephant-exposing inspection stage. It needn't be, and
shouldn't be the case.

Expanding Your Opportunity Horizon Chapter 9

[213]

Once you have adopted CD and DevOps, the act of performance/load-
testing can become relatively simple and straightforward. You just need to
change the way you think about and approach it.

There's a very simple and understandable way to consider load- and performance-testing;
by far the best place to ascertain how your software is performing under real-world load
and usage is within your production environment. You may be reading this and thinking,
has the author lost his mind? This may be true, but I would ask you to bear with me and
decide for yourself.

Let's presume that you have implemented extensive monitoring of your overall production
environment and the software running within (as mentioned in Chapter 7, Vital
Measurements), from which you can observe in great detail what is going on under the
covers in terms of hardware, infrastructure, and software. From this, you can form a very
clear idea of how things should look during normal day-to-day operations.

With this data, you should then be able to safely run controlled experiments and observe
the results in terms of overall platform performance. For example, you could run an
experiment to incrementally apply additional load to the platform while it's being used,
either by routing more user activity to a specific node or server or by running some non-
intrusive automated test that will generate load in a controlled manner. As you turn up the
dials and the load increases, you will start to see where the pain points are—a heat map of
sorts—in near real-time. As both Dev and Ops are working closely together, observing the
platform as a whole, they should be able to work out where the problems are by comparing
normal day-to-day stats with those generated under load.

If and when issues are pinpointed, they could easily be overcome by applying patches in
real time using the CD tooling used on a daily basis while the load is still in place—giving
instant feedback. Alternatively, they might witness an overall slowdown of the platform,
but the monitoring solution doesn't highlight anything specific. This could mean that there
is a gap in the overall monitoring coverage, which again can be pinpointed and addressed
in a collaborative way. Either way, simply turning the dials back down will put things back
to the normal day-to-day load.

Expanding Your Opportunity Horizon Chapter 9

[214]

Some of you may be reading this and thinking that the production environment is
sacrosanct and should not be used for such activities as this could impact customers using
the platform at the same time. My view is that unless you are purposefully restricting the
number of people who can access the production environment, then this increase in load
will happen without your knowledge in an uncontrolled manner—especially if your CD
and DevOps adoption directly attributes to an increase in customer satisfaction and
growth. Why not make sure your production environment is ready for this growth before it
happens?

All in all, trying to run performance- or load-testing without extensive monitoring in place
and/or a high degree of collaboration between the Dev and Ops teams will not provide the
results you expect or need. Doing so anywhere other than the production environment will
give mixed results. This is not an obvious benefit of adopting CD and DevOps, but it is a
very powerful and compelling benefit, as is reducing complexity.

Reducing feature-flag complexity
There are many established approaches to allow for different use cases or user flows to be
switched on and off in real time, but most revolve around some sort of feature flag or
configuration setting within the platform. Although this is a viable approach, it does add
something to the code base, which can, over time, become a massive headache. That
something is complexity.

Not only does this add complexity to the code base, it also adds complexity to related
activities such as testing and the setup/support of the overall platform, especially if you
start to chain the feature flags together. For example, let's assume you have a new reporting
feature (let's call it feature C) that is automatically enabled if the reporting menu feature
(let's call it feature B) is manually enabled and the legacy-reporting feature (let's call that
feature A) is manually disabled. If feature A and B are manually enabled, then feature C is
automatically disabled. However, if feature A and B are manually disabled, then the third-
party reporting feature (feature D) becomes automatically enabled.

Expanding Your Opportunity Horizon Chapter 9

[215]

The following may make the example easier to understand:

It all seems simple enough and based upon simple logic gates, but consider what will
happen when you have a platform that has feature flags controlling dozens or hundreds of
features—some independent of each other, and some forming a weird, convoluted daisy-
chain feature tree. Testing of all of these combinations and trying to support a production
system that can be set up in hundreds (and sometimes thousands) of different states will be
a nightmare, saying nothing of the pretty pointless task of trying to debug a given problem
when it arises.

I worked on one product that had in excess of 50,000 feature flags—the
origins of and features being controlled by the majority had been lost in
the mists of time, and therefore new flags were continually being added to
control newly-added features. Complexity gone mad!

Having successfully adopted CD and DevOps, you will be regularly and consonantly
shipping code with ease, and you'll have the Dev and Ops team working as one. Therefore,
it would be far simpler to consider using the CD approach to enable and disable features or
functionality. In other words, to enable a given feature, you just ship the code with it in—no
messing around with flags, settings, or daisy-chaining. You'll of course test this first to
ensure there's no unforeseen negative impacts, but there is a very simple way back: ship the
previous version that didn't have the new feature/functionality (if you follow the "never
break your consumer" advice from Chapter 5, Approaches, Tools, and Techniques, rolling back
should not cause any issues). Nice and simple to comprehend, develop, and support, I
think you'll agree.

Expanding Your Opportunity Horizon Chapter 9

[216]

OK, so this is may actually be an overly simplistic view, but with CD and DevOps, you can
start looking at these sorts of problems in new and innovative ways. The advantages might
not be immediately obvious, but reducing complexity, if nothing else, will save you time,
money and effort, as well as reducing waste in the process.

One of reasons for using feature flagging within software is to enable A/B testing. Let's now
look at what A/B testing actually is and how CD and DevOps can help improve this
approach.

A/B testing
A/B testing has been around for a while and is an extremely effective way of trying out
changes to user journeys and/or logic flows within a software solution. The simple premise
being that you can—through configuration, feature-flagging, or clever traffic-routing—send
a predetermined number of users (or the transactions generated by use of the software
itself) down different paths. This can help try out new features and/or functionality under
controlled conditions normally within a production environment to prove or disprove
certain hypotheses.

I won't go into too much depth regarding this subject—there are plenty of
books and online resources focused on this subject that I encourage you to
read.

Let's, for example, say that your business wants to see what the impact would be if they
introduced a new design or subtle web page layout change. If you can, in some way,
redirect specific users or groups of users down path A and the rest down path B, you can
then monitor and compare the user behavior via analytics and metrics to see which worked
best.

Expanding Your Opportunity Horizon Chapter 9

[217]

The following diagram provides a simplistic overview of this approach:

A simplistic example of A/B testing

Expanding Your Opportunity Horizon Chapter 9

[218]

Another useful approach would be to run A/B experiments covertly. For example, if you
have a new recommendation service that you want to trial, you could force some user
traffic and transactions to this new service and see how it works compared to the
incumbent service. You could even use the same mechanism to route data to a specific
service as part of load-testing. The possibilities are endless.

You don't necessarily need CD or DevOps to implement A/B testing; however, both do give
you some major benefits:

The ability to ship code extremely quickly—for example, you want to implement
the code to split traffic to A or B across all servers in minutes so that all users
start using the same code at the same time.
You have Dev and Ops closely working together, monitoring everything that is
going on. If gaps are found in the data used to analyze the results, you have the
ability to address this with relative ease.
You have the option to roll everything back relatively quickly with little/no
impact if things take an unexpected turn or you have completed your
experiment.

Without CD and DevOps, you would need to plan this kind of activity very closely in
advance and hope nothing is missing or amiss when you implement it. Unless you have the
ability to make small patch releases, you will no doubt need to include any
changes—however small—within a full release cycle so the normal risk-averse process will
kick in. The same will apply for rolling the changes back when you're done.

Another variation (or at least a close relation) of A/B testing is alpha and beta testing
(sometimes referred to as closed or pre-release testing). This gives us the ability to try out
wide-reaching UI, UX, and functional changes alongside the existing solution. Normally,
this is narrowed down to specific users and/or via invitation only. Where A/B testing is
traditionally targeted as small and specific changes, this type of testing is normally more
far-reaching in nature. The basic premise still applies: the ability to try out new features and
functionality in a controlled manner. Again, this can be achieved without CD and DevOps,
but it will be far more complex, risky, and prone to failure as old-school processes will get
in the way, slow things down and—based on experience—ultimately be blamed for the
failure of the test. Consider what it would take to maintain two versions of the entire UI
and run them in parallel without a mechanism to react to issues in a timely manner.

Expanding Your Opportunity Horizon Chapter 9

[219]

As stated, A/B testing pretty much boils down to proving or disproving certain hypotheses,
whether due to changes in market conditions or as part of a strategic direction change.
Whatever the reason behind it, running an A/B test is normally time-critical. Without CD
and DevOps to help you deliver quality software frequently, the ability to successfully run
A/B tests will be hampered as the world may have moved on while you struggle to get
releases planned and executed, and the use case you originally wanted to test may no
longer be relevant. As they say, time waits for no man, women, or A/B tests.

We'll now move from testing to colors—blue and green, in fact.

Blue-green deployments
Some of you au fait with CD will no doubt have heard of blue-green deployments, which
are one of the cornerstones of the original CD approach. For those of you not in the know,
blue-green deployments allow you to deploy (as the name suggests) a new version of
software (or a new server with updated O/S, or new configuration or DB engine, and so on)
while the incumbent version/server is up and running, and then seamlessly switch new for
old. This is a very simplistic overview of the approach, but suffice it to say it's quite an easy
concept to get your head around.

This approach vastly improves your ability to not only reduce/remove the need for
downtime (see Chapter 5, Approaches, Tools, and Techniques), but also to try side-by-side
versioning (for example, running two different versions of the same thing within the same
environment)—which is something that can also help A/B testing:

Expanding Your Opportunity Horizon Chapter 9

[220]

Although this approach is very much tied to CD, the adoption of DevOps as well will make
this so much easier to manage, plan, and coordinate. Without close collaboration and trust
between the Dev and Ops team, there is potential for things to go badly wrong—especially
when dealing with the production environment. For example, what if a developer
inadvertently deploys a breaking change within an API alongside the existing API but the
consuming service (see Chapter 5, Approaches, Tools, and Techniques) starts to talk to both?
This will lead to very inconsistent results and some head-scratching. With DevOps, finding
the root cause will be relatively easy and fixing the potential data issues can be sorted
collaboratively.

Rather than going into too much detail, I highly recommend you do some research and
reading into CD—there's a list of reference materials in the Appendix A, Some Useful
Information—but, suffice it to say that blue-green deployments is a very powerful tool.

Something else that I would highly recommend is leveraging CD and DevOps to ease the
burden of security-patching.

Security-patching and bacon-saving
It seems that every day the news is full of reports about the latest business that has been
hacked in some way, or has suffered a distributed denial-of-service (DDOS) attack. These,
of course, are only the ones we know about—research suggests that there are a good
number of business that don't publicly admit to large-scale IT security issues (and why
would they?). In recent years, this has made businesses—especially at the executive
level—extremely wary of change and very focused on ensuring their IT systems are fully
(mostly) up to date in terms of security patches. Most times, this is at the expense of
software delivery.

When a business has adopted CD and DevOps, the implementation and validation of
security patches simply becomes another change to deliver. If the patch is at the operating-
system (O/S) level, then the configuration-as-code approach covered in Chapter
5, Approaches, Tools, and Techniques, will cater for this. The same would apply for
networking, infrastructure, and runtime frameworks (for example JAVA, .NET, and so on).
If the patch is at the software level (for example, found within some open source software
used), then there is a tried and tested method of shipping software changes via a CD
pipeline.

To keep the narrative simple, let's assume that a business has been hacked and customer
data has been stolen within the attach due to a security flaw within their network and
unpatched OS.

Expanding Your Opportunity Horizon Chapter 9

[221]

Let's now apply this scenario to a traditional listed business that has not adopted CD or
DevOps. Consider the following questions and think of the answers that would apply:

How quickly do you think they would apply a patch to overcome the problem?1.
How calm do you think their operations team feels with their CEO, VP of PR,2.
and SVP of operations all breathing down their necks wanting to know when the
IT system will be patched?
How confident are the Ops team that hastily applying an OS and network patch3.
that should have been applied months ago will not impact the software
platform?
How happy do you think the development team will be when the SVP of4.
engineering tells them that they can't go home until they have sorted out a fix to
overcome the issues introduced by hurriedly applying an OS patch?
How much market value do you think is wiped off a listed company when news5.
gets out that they have been hacked and customer data has been stolen?
How many heads will roll?6.

It doesn't take a PhD to guess the answers to these questions. Situations such as this are not
as isolated or uncommon as they used to be, and the fallout in recent years has been very
widespread, expensive, and career-limiting for those caught up in it all.

Now imagine the same situation for a business that has adopted CD and DevOps. The
answers to the preceding questions would be something like this:

As quickly as they can normally release—minutes or hours, at the most.1.
Perfectly calm, and, to be honest, the senior management wouldn't know2.
anything about it until they've been informed that an issue had been found
during routine monitoring and is in the process of being addressed.
Very confident, as they can collaborate with the development team to ensure that3.
there are no impacts and/or work on a plan to address the impacts in parallel.
They won't have to.4.
If the message delivered is, "We found an issue and have already applied a fix.5.
The impact was minimal and we can assure our customers that their data is
perfectly safe," the news isn't very newsworthy and the markets might not even
care. In fact, they might even see it as good news and want to invest more in the
business. (OK, I can't quantify this, but it is plausible.)
None.6.

Expanding Your Opportunity Horizon Chapter 9

[222]

If your CD and DevOps adoption has matured, the probability of a hack
due to outdated security-patching would be quite small as the monitoring
for and implementation of regular security patches will be incorporated
into the day-to-day ways of working, either via configuration-as-code or
as part of the software delivery pipeline. However, there will always be
unforeseen security holes, so it's good to know that there's a rapid way to
address these situations as and when they arise.

As you can see, adopting CD and DevOps can provide some major bacon-saving benefits.
That isn't to say that you couldn't achieve the same results without CD and DevOps, but
having the ability to deliver quickly and having a very close working relationship across
the Dev and Ops teams will make it much easier to spot and fix live issues before anything
breaks—or your business becomes the top story on the evening news.

As previously stated, there will always be unforeseen events that can impact the running
production system, and keeping ahead of this can be difficult. However, there is an
approach that can help to surface these problems before they manifest themselves. This
involves actively trying to break the live platform. On purpose.

Order-out-of-chaos monkey
It doesn't matter how much care and attention you apply to your platform; something can
and will inevitably go wrong when you least expect it. For example, a server will fail, a
process might start looping, a network switch will decide it doesn't want to be a network
switch anymore, the SAN will decide it likes to function in single-user mode, the latest
security patch will cause issues in the software platform, or someone will decide to hack
you because you're a nice big target. As the saying goes, you should always expect the
unexpected.

Most businesses will have some sort of business contingency plan in place to cater for the
unexpected, but there's a strong possibility that they don't try to purposely force the issue,
at least not to the extent that something bad actually happens—they just hope nothing bad
will ever happen, and if it does, they hope and pray that they'll be ready and the plan
works.

What if you had a set of tools that could safely initiate a failure at will in a controlled
manner with the goal of observing what happens and, more importantly, where the weak
spots in your platform are? This is exactly what some bright spark did a few years ago, and
this has been widely adopted as the chaos monkey approach. There are a few variations,
but what it boils down to is this: a set of tools that you can run within your closely-
monitored environment whose raison d'être is to try and break it.

Expanding Your Opportunity Horizon Chapter 9

[223]

If you do some research into this subject, you'll find that the majority of
the tools currently available are very much focused on cloud-based
installations. That isn't to say that such tools cannot be used within an on-
premise environment, but the effectiveness may be lower and the risk
higher, so you should bear that in mind.

If you attempted this approach without a strongly-embedded CD and DevOps culture, you
would end up in a complete mess—to be honest, I doubt if you would be even be allowed
to try it in the first place without getting someone very high up in the organization to
understand why this should be done, and be willing to take the risk. With close
collaboration, in-depth monitoring, and the trust-based relationships that come from CD
and DevOps, attempting to break the platform to observe what happens is relatively (but
not totally) risk-free.

There is one caveat to this approach: you need to be confident that your
platform has been designed and built to gracefully allow for failure. You
should avoid committing platformicide in public with core dumps and
HTTP 500 messages available for all to see. Again, this can be addressed in
a DevOps way by ensuring the environment and software that runs
within it fail gracefully.

One other advantage to the chaos monkey approach is that it's also a great way to share
knowledge of how the overall platform works across both the Dev and Ops teams. As any
creative and technically-minded person will tell you, the best way to understand how
something works is to push it to its breaking point to see what makes it tick. Going back to
our F1 racing car analogy in Chapter 7, Vital Measurements, the engineers and drivers
regularly push the cars and components to the limit during testing and practice laps to
ensure the car will work as designed when it needs to. The information gleaned from this
activity can mean the difference between a podium finish and being lapped.

We'll now move away from the potentially destructive power of CD and DevOps, and
consider how CD and DevOps can make the lives of your customers and other teams
within your organization so much better.

End user self-service
Over the course of this book, we have been focused on a unidirectional process of pushing
software out to given environments (including production). This in essence revolves
around a software-engineering team having confidence in their changes, and therefore
triggering the process to ship it or an Ops team who are confident to ship a config as code
change.

Expanding Your Opportunity Horizon Chapter 9

[224]

What if you were to turn this around and allow the users of your software platform to
initiate the pulling of your software at will? It might sound strange, but there are a few
legitimate scenarios in which this could be required.

Let's look at a few scenarios:

You have an implementation team that supports the on-boarding of new
customers, and they would like to test out different scenarios and use cases so
that they can ensure their manual test scripts, FAQs, and training documentation
are up to date.
The SecOps team needs to run a set of deep security scans and some DDOS
scenarios against a copy of the platform within their locked-down test lab.
The PR and marketing team needs to take screen grabs of the current beta
platform for a press release.
The sales team is about to demo to an important new client and wants a local
copy of the software platform running in a VM on their Mac as there is no
reliable Wi-Fi available in the conference center.
An internal auditor is investigating a data breach from six months ago and wants
an exact copy of the platform as it was then.

Using traditional techniques and approaches, each of the previous scenarios would involve
quite a large amount of mundane work (and that's putting it very mildly) to set up a
dedicated environment and get all of the software needed installed and working as it
should—saying nothing of the infrastructure setup. This mundane work would have to be
prioritized according to the workload the various teams already have, and therefore it may
take a very long time—most probably far beyond the date when the environments are
needed. I'm pretty sure that you will have experienced this frustration yourself—I know I
have many times.

Now consider how much mundane extra work it would entail if these teams/users could
press a button and have an entire environment automatically set up for them? What if they
could also specify the exact version they wanted (for example, production, beta, current
work in progress, a snapshot in time, and so on) via a self-service portal?

With CD and DevOps embedded into your ways of working, there's no obvious reason you
shouldn't be able to do this. It will take some work to set up, but you have the tooling that
can reliably provision environments, deploy software assets, and provide in-depth
monitoring. If the automation goes a little astray or doesn't cater for one of the scenarios,
you have a DevOps team who are used to collaborating and are, therefore, happy to help
solve the problems.

Expanding Your Opportunity Horizon Chapter 9

[225]

Extending the user self-service beyond your organizational boundary is also something CD
and DevOps can help you realize.

Thing as a service
As software solutions mature, the businesses that invested in them continually look for new
and interesting ways of leveraging said investment. In plain terms, they want to make more
money from the software they have already paid for.

There are a number of well-established ways of doing this, but PaaS (Platform as a Service)
or SaaS (Software as a Service) are the most popular and are very much in vogue in terms
of new and interesting ways of making more money out of an existing software platform.
You may recall that we briefly touched upon these in Chapter 3, Culture and Behaviors—The
Cornerstones to Success, in relation to third-party tools. The premise is pretty simple; you
expose via Application Programming Interfaces (APIs) certain parts of functionality to a
first or third party who that uses APIs to extend their software platform to include the
functionality you provide. For example, if your software platform specialized in car rental
bookings, you could expose APIs to a price comparison web site to allow their users to
seamlessly book a car via your software platform.

This type of approach has been around for many years, and sometimes referred to as B2B or
similar), but has always been seen as something that is painful to implement, maintain,
secure, monetize, and support—especially by businesses that deliver software in the
traditional way. There's also complexity in terms of making any changes that could impact
the APIs, which can lead to technical debt mounting up and/or upset customers/clients who
use said APIs (see "never break your consumer" in Chapter 5, Approaches, Tools, and
Techniques). Counter to this is the problem that any API changes required are slow to
deliver—more of a problem when the first/third party has adopted CD and DevOps and
can move far quicker than you. This can sometimes lead to them looking at the completion
for their next partner.

I wouldn't say that CD and DevOps adoption will enable this approach without some effort
and investment, but it will drastically simplify the ability to get it up and running and then
keep it running. This in turn should remove the perception that SaaS/PaaS is too painful to
implement and should be seen as something that legitimately is a new and interesting way
of leveraging your software platform. In addition, you'll tend to find that organizations that
have already adopted CD and DevOps are more likely to work with suppliers who work in
a similar way, as they know that new requirements can be implemented quickly and
reliably and that collaboration is something that just happens.

Expanding Your Opportunity Horizon Chapter 9

[226]

Summary
Throughout this chapter, we've focused on your evolution beyond leading the adoption of
CD and DevOps and how you can help the business evolve beyond simply delivering
quality software frequently. We've looked at some examples of how CD and DevOps can
further improve the ways of working for everyone involved in product delivery and how
either/both can help open up new opportunities for the business.

You can probably think of scenarios and interesting problems more pertinent to your
situation, organization, or business, but the point is that with CD and DevOps embedded
within your ways of working, you are able to take the load off the Ops and Dev team, help
them solve new problems, and improve the satisfaction of your customers both internally
and externally.

Thus far, we have been sticking to the kinds of web/server-based software delivery that the
founders of the CD and DevOps movements sought to optimize, streamline, and make far
less painful. In our closing chapter, we'll look at how CD and DevOps can be used outside
of their comfort zone, and how you could add yet more value to your organization and
business.

10
CD and DevOps Beyond

Traditional Software Delivery
CD and DevOps are normally associated with delivering web server-based
solutions—that's not to say it is exclusively the case, however; this is the norm. As you have
learned, CD and DevOps are not specifically associated with tools or techniques. A true
adoption of CD and DevOps is based on enhancing culture, behaviors, and ways of
working to smoothen the flow of changes so that value can be delivered continuously. This
means that they don't need to be constrained to the usual flavor of software delivery. Once
your business has adopted CD and DevOps as the way we do things around here, you
could, should, and can apply the same approaches to solve other business problems.

The most obvious would be to apply the CD and DevOps approach to something that is
normally painful for most businesses that delivery software solutions: mobile apps.

CD, DevOps, and the mobile world
CD and DevOps are based on culture, behaviors, and ways of working, and therefore
applying these approaches to delivering mobile applications—which is a large and ever-
growing industry—can work. That isn't to say that it's a cookie-cutter adoption; there are a
few caveats in terms of how delivering mobile-application software differs from web-
based/server-based software delivery, the main ones at the time of writing being as follows:

Delivering software to a web platform 10 times per day seamlessly without1.
impacting the end user is achievable—you are in full control of the infrastructure
and the mechanism for releasing it. Doing the same with a mobile application
will have a major impact on the end user—can you imagine what would happen
if you sent a mobile app to end users' smartphones 10 times per day?

CD and DevOps Beyond Traditional Software Delivery Chapter 10

[228]

There is no Ops team living within the end user's smartphone/tablet, speakers,2.
fridge, lights, door locks, dog cams, and so on; therefore, the Ops side of the
DevOps partnership doesn't strictly exist.
You cannot guarantee the spec, size, network capabilities, and so on, of the3.
device you'll be deploying to.
You are not, strictly speaking, in control of the final distribution of your software.4.

So, how do you square this circle? Let's go through each in turn.

In relation to the first point, you wouldn't realistically want to ship more frequently than
every few weeks—even if you do have the capability—as this would simply spam the end
user. You should therefore apply the release train approach. In essence, this amounts to
incrementally building up the changes (which are all independently built, tested, and
published via your CD pipeline) until such a point that you feel enough time has passed to
ship. There is one exception to this: you can (and should) be shipping very frequently to
internal beta test/dogfooding users so that they can try out the latest version whenever they
want.

In relation to the second point, unless you can miniaturize the Ops team and clone them
millions of times, there's not a vast amount you can do. However, if you have followed the
advice in Chapter 5, Approaches, Tools, and Techniques, and Chapter 7, Vital Measurements,
you will have embedded analytics and metrics within your software and have in-depth
monitoring in place, so you'll be able to spot issues out in the wild in exactly the same way
as you would with the software running on your servers. If something is spotted, the Dev
and Ops team can collaborate, work out what's wrong, and rectify it.

In relation to the third point, you could try to cater for this in your testing, but in all
honesty that's a thankless task. I would recommend focusing on the bestsellers, and based
upon analytics and metrics captured, ascertain which sizes, specs, and types of devices
your users prefer—if you see usage of a specific device type trending up, then you should
consider adding this to your list of supported devices and include it in your test-
automation suite. Either that or look at using external solutions/providers that specialize in
mobile-device testing—many can be driven via APIs, which means your testing solution
can orchestrate and control the test's execution.

CD and DevOps Beyond Traditional Software Delivery Chapter 10

[229]

As regards the last point, there's not much you can do about it. The leading app stores are
now very established and reliable, and have good global coverage. The advantage CD gives
you is that the app store is in reality a binary repository, which is something your CD
pipeline is already used to publishing to, so the mechanism of publishing your shippable
app is very similar to that of your server-based software. In addition, most app stores will
allow for automated updates, which means when you publish a new version of your app,
the end users should get it soon after. There are, however, no guarantees, so you need to
take into account that you'll have a few versions still out in the wild that need supporting.

This is realistically skimming the surface, but it goes some way to
highlight how similar traditional server-based apps and mobile apps are
in terms of the SDLC process.

Now, you may be reading this and thinking that there are a vast number of tech companies
that are building and shipping mobile apps without formally following the CD and
DevOps approach we've been going through within this book, so why should you bother?
Because you can, and it will add value. The work undertaken to embed collaboration, trust,
and honesty within your organization can easily be applied to your mobile apps. You have
implemented tools and techniques to automate the process of building, testing, shipping,
and monitoring your server platform, so extending these for your mobile apps should be
(relatively) straightforward.

Added to this is the fact that mobile apps can now be written in the same technologies as
you would use on a server-based website and built into native mobile apps. This, in turn,
means that the same code base could potentially be shipped to both server and mobile;
therefore, using the same techniques, tools, and approaches will make the process seamless
and save a hell of a lot of time, effort, and money.

Another non-traditional area to which you can apply CD and DevOps ways of working is
completely outside the world of software delivery.

Expanding beyond software delivery
So far, this book has been espousing the advantages of the adoption CD and DevOps to
vastly improve the capability to deliver software seamlessly, quickly, and continuously. CD
and DevOps need not be restricted to software/product delivery.

The tools, processes, and best practices that come with this way of working can be extended
to include other areas of the business. There will, of course, have to be some tweaks and
changes to some of the tools and techniques, but on the whole it's the behavioral, cultural,
and environmental elements that are important.

CD and DevOps Beyond Traditional Software Delivery Chapter 10

[230]

Let's look at some areas outside of software delivery that can benefit from the CD and
DevOps ways of working approach, starting with UX and design.

UX and design
Most business that deliver software—especially software that includes user interfaces (web
sites, desktop apps, and so on)—will have some form of UX and/or design team involved in
working on the UI and user experience assets (wireframes, and so on). Even the most agile
of organizations will—on the whole—work in a waterfall way when it comes to UX and
design. For example, most UX and design teams normally sit outside of software
engineering. The usual approach is to have the assets created up front—before
development starts—which are fed into the product backlog. Agile software-development
approaches go some way to overcoming this, but the thing that most don't focus on is the
need for close collaboration and the importance of culture, behaviors, ways of working, and
delivering continuously.

You can (and should) take your newfound experience and skills and apply them to
improving the way in which design and UX assets are built and delivered. If you
collaborate with the UX/design team and get them to consider how these assets can be
broken down into smaller logical chunks—as you did with your software platform—and
have them delivered incrementally, you may find that things become smoother, more
streamlined, and less wasteful. In terms of tools, there are plenty of well-established and
mature design/UX software solutions that incorporate collaboration features and agile
delivery.

Business process improvements
Let's presume that you have followed the advice within this book and have identified and
removed the waste from your product delivery process, which is now optimal and efficient
due to the adoption of CD and DevOps, but there are business functions and processes that
sit before and/or after the actual product delivery process that are starting to slow things
down.

For example, you may have a team managing the sales leads and business
portfolio/requirements-gathering, which feeds into product delivery or post-delivery
implementation/support teams, both/either of which are struggling to keep up with the
rapid volume of changes.

CD and DevOps Beyond Traditional Software Delivery Chapter 10

[231]

There is no reason why using the same techniques covered earlier in this book cannot be
used to address wider-reaching business problems. As an organization, you now have the
experience, confidence, and respect to take something that is unwieldy and cumbersome
and streamline it to work more effectively, so why not apply this further afield?

CD and DevOps Beyond Traditional Software Delivery Chapter 10

[232]

Going back to the previous example, you should be able to isolate business processes that
precede and follow your product delivery process and go through a similar process of
inspection (finding the elephant), address behavioral, cultural, and environmental issues,
and define and implement tools, techniques, and approaches to streamline and measure
outcomes.

Doing this could provide even greater business value and allow more parts of the business
to realize the huge benefits of the CD and DevOps ways of working. The more seamless
your overall business process is, the greater the overall impact. If you can capture customer
requirements in an effective and efficient way, you can deliver what they want and provide
the level of service they expect.

Business growth
Previously, we covered PaaS and Saas as models of delivering software solutions to your
customers, but what about looking at new business opportunities? If you have successfully
implemented automated provisioning, you may want to look into extending your business
to provide IaaS to your customers—after all, you have the expertise to do this for
yourselves, so why not your customers?

Other areas of business growth could come from leveraging the skills and experience now
embedded within your organization. Think back to when you needed the help of experts in
the field of CD and DevOps. On the presumption that you acquired some assistance, I
would wager that it was not cheap. What if your customers themselves delivered their own
software but needed assistance getting started with adopting CD and DevOps? You may be
able to offer such assistance as a value-add—maybe you should suggest they buy a few
copies of this book? Don't blame me for trying.

Optimized feedback loops
This phrase has been knocking around for a while in relation to agile software delivery
approaches. For those not in the know, this relates to reducing the time taken to get
feedback from users in terms of how the software you have supplied functions, works, and
operates. This can come in many forms—NPS (net promoter score) functionality, feedback
forms, rating score— but the main thing is to get this feedback as soon as possible. If you
have adopted CD and DevOps and have the ability to deliver changes rapidly, then you
really need feedback in a timely manner to ensure what has been delivered matches
expectations (and quality standards). There's pretty much no point in getting feedback two
or three months after the feature has been built as the world may have moved on and the
feedback is therefore worthless.

CD and DevOps Beyond Traditional Software Delivery Chapter 10

[233]

The simplest form of optimized feedback loops is to leverage the enhancing culture,
behaviors, and collaboration now embedded within the organization to get open and
honest views from internal team members (or anyone else within the organization) as the
features and functionality are incrementally being delivered through the CD pipeline. You
can utilize the self-service functionality mentioned in Chapter 9, Expanding Your
Opportunity Horizon. However, the greater value will come from getting feedback from the
target end users in a timely manner.

With CD and DevOps adoption giving you the ability to ship software quickly, repeatably,
and reliably, you should be able to incorporate tooling to capture feedback (such as those
mentioned previously) from end users, which, if combined with the metrics and analytics
you have embedded (see Chapter 7, Vital Measurements), will give you some very rich
feedback and associated data. Traditionally, this feedback would be collected and/or
collated by a team outside of software engineering, whereas with the CD and DevOps ways
of working, the software engineering team will be used to working with such data so they
can react relatively quickly.

As I say, CD and DevOps is not just about delivering software; the way things get done, the
collaboration, the open and honest environment, the trust-based relationships, and even the
language used, can and will help revitalize and enhance any business process.

What about me?
The preceding are simply examples, but none will have the chance of becoming a reality
without someone helping the business and steering it in the right direction. Like it or not,
you will have the experience, skills, and reputation as the go-to person for things related to
CD and DevOps.

You now have the opportunity to start a new journey and help the business help itself by
driving forward the sort of changes that can only be realized with a mature and strong CD
and DevOps culture.

If this doesn't float your boat, then maybe keeping up with the ever-changing and ever-
growing CD and DevOps landscape is your thing. Just trying to keep up with the new ways
to do things, new tools, new ideas, and new insights could take most of your time and
attention. More and more businesses are realizing the huge value of having evangelists in
their ranks— especially when it comes to software and product delivery.

CD and DevOps Beyond Traditional Software Delivery Chapter 10

[234]

You might have hooked yourself into the global CD and DevOps communities, which will
give you an opportunity to share or present your experiences with others and, more
importantly, bring others' experiences and knowledge back into your business. Maybe you
could even capture this and publish it on public blogs and forums, or even get it printed in
book form. Stranger things have happened.

Whatever you choose to do, you will not be bored, and nor will you be able to go back to
how things were. You have learned a very valuable lesson: there is a better way, and CD
and DevOps is it.

What have you learned?
I keep making references to your experience, knowledge, and expertise, but until you have
actually gone through the motions of adopting and implementing CD and DevOps, this
will amount to what you have read. Let's take a final chance to recap what we have
covered:

CD and DevOps are not just about technical choices and tools; a vast amount of
the success is built on the behaviors, culture, and environment.
Implementing and adopting CD and DevOps is a journey that might seem long
and daunting at first, but once you've taken the first step and then put one foot in
front of the other, you'll hardly notice the miles passing.
Teams who have successfully adopted CD and DevOps seldom regret it or are
tempted to go back to the bad old days when releases were synonymous with
working weekends and late nights—working late nights and weekends should
be synonymous with innovation and wanting to create some killer app or the
next world-changing technological breakthrough.
You don't have to adopt both CD and DevOps at the same time, but one
complements the other. You don't have to, but you should seriously consider it.
Where you do need to make technical choices, ensure that you implement
something that enhances and complements your ways of working—never change
your ways of working to fit the tooling.

It can be big and scary, but if you start with your eyes wide open, you should be
able to get through. CD and DevOps are now very well-established and there is a
global community available that can help and give advice, so don't be afraid to
reach out.

CD and DevOps Beyond Traditional Software Delivery Chapter 10

[235]

Don't start implementing CD or DevOps just because it's the next big thing that
everyone else is doing. You need to have a good reason to adopt both/either, or
you will not reap the benefits, and nor you will truly believe in what you are
doing.
Although we have covered a vast amount, you don't have to implement
everything you have read about; take the best parts that work for you and your
situation and go from there—just as you would with any good agile
methodology.
Just because you can ship software doesn't mean you are done. CD and DevOps
are ways of working, and the approaches within can be applied to other business
areas and problems.
Share failures and successes so that you learn and others have the opportunity to
learn from you.

Summary
This book, like all good things, has come to an end. As pointed out numerous times, we've
covered quite a lot in these pages. This book is by no means the definitive opus for
adopting CD and DevOps; it is a collection of suggestions laid out in a logical order based
on real-world experience and war stories. I recommend you put some effort into fleshing
out your knowledge with other reading materials and books, or even attending a
conference or two.

Even if you are simply window-shopping and looking at what is needed to implement and
adopt CD and DevOps ways of working, you should now have a clearer idea of what you
are getting yourself and your organization into. Forewarned is forearmed, as they say. It's
not an easy journey, but it is worth it.

So, go grab yourself a hot beverage, a notepad, and a pen; skip back to Chapter
2, Understanding Your Current Pain Points, and start mapping out why you need to adopt
CD and DevOps and how you are going to do it.

Go on then. Stop reading and go!

Good luck!

Some Useful Information
Although this book provides some (hopefully) useful information, there's only so much
space available. Therefore, I've compiled a list of additional sources of information that will
complement this book. I've also included a list of the many subject-matter experts out there
who might be able to provide further assistance and guidance as you progress along your
journey. Additional resources can be found on my website at http:/ ​/​www. ​swartout. ​co. ​uk.

What follows is by no means an exhaustive list, but it is a good start.

Tools
Some of the following tools are mentioned within this book, and some are considered the
best of breed for CD and DevOps:

Tool Description Where to find more
information

Jenkins https:/ ​/​jenkins. ​io/​

GIT A free and open source distributed
version-control system

https:/ ​/​git- ​scm. ​com/ ​

GitHub An online-hosted community solution
based on GIT

https:/ ​/​github. ​com/​

Graphite

A highly scalable real-time graphing
system that allows you to publish
metric data from within your
application

http:/ ​/​graphiteapp. ​org/ ​

Tasseo A simple-to-use Graphite dashboard https:/ ​/​github. ​com/
obfuscurity/ ​tasseo

SonarQube An open platform to manage code
quality

https:/ ​/​www. ​sonarqube. ​org/ ​

Ganglia
A scalable distributed monitoring
system for high-performance
computing systems

http:/ ​/​ganglia. ​sourceforge.
net/​

http://www.swartout.co.uk/
http://www.swartout.co.uk/
http://www.swartout.co.uk/
http://www.swartout.co.uk/
http://www.swartout.co.uk/
http://www.swartout.co.uk/
http://www.swartout.co.uk/
http://www.swartout.co.uk/
http://www.swartout.co.uk/
http://www.swartout.co.uk/
http://www.swartout.co.uk/
http://www.swartout.co.uk/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://jenkins.io/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
http://graphiteapp.org/
http://graphiteapp.org/
http://graphiteapp.org/
http://graphiteapp.org/
http://graphiteapp.org/
http://graphiteapp.org/
http://graphiteapp.org/
http://graphiteapp.org/
https://github.com/obfuscurity/tasseo
https://github.com/obfuscurity/tasseo
https://github.com/obfuscurity/tasseo
https://github.com/obfuscurity/tasseo
https://github.com/obfuscurity/tasseo
https://github.com/obfuscurity/tasseo
https://github.com/obfuscurity/tasseo
https://github.com/obfuscurity/tasseo
https://github.com/obfuscurity/tasseo
https://github.com/obfuscurity/tasseo
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/

Some Useful Information

[237]

Tool Description Where to find more
information

Nagios

A powerful monitoring system that
enables organizations to identify and
resolve IT-infrastructure problems
before they affect critical business
processes

https:/ ​/​www. ​nagios. ​org/ ​

Puppet Labs A tool to automate the creation and
maintenance of IT infrastructure

https:/ ​/​puppet. ​com/​

Chef Another tool to automate the creation
and maintenance of IT infrastructure

https:/ ​/​www. ​chef. ​io/ ​chef/ ​

Vagrant A tool to build complete development
environments using automation

https:/ ​/​www. ​vagrantup. ​com/ ​

Docker An open platform for distributed
applications

https:/ ​/​www. ​docker. ​com/ ​

Kubernetes
(https:/​/
kubernetes.​io/
docs/​concepts/
overview/​what-
is-​kubernetes/
)

An open source system for automating
deployment, scaling, and management
of containerized applications

https:/ ​/​kubernetes. ​io/ ​

Octopus deploy A rather good tool that can be used as a
CD pipeline

https://octopus.com/

Yammer An Enterprise private social network
(think of it as a corporate Facebook)

https:/ ​/​www. ​yammer. ​com

Slack A mature and widely used
collaboration tool and platform

https:/ ​/​slack. ​com/ ​

IRC The granddaddy of collaboration and
chat tools

http:/ ​/​www. ​irc. ​org/​

Hubot An automated bot that can be set up
within most chatroom systems

https:/ ​/​hubot. ​github. ​com/ ​

Trello An online scrum/Kanban board
solution

https:/ ​/​trello. ​com/​

https://www.nagios.org/
https://www.nagios.org/
https://www.nagios.org/
https://www.nagios.org/
https://www.nagios.org/
https://www.nagios.org/
https://www.nagios.org/
https://www.nagios.org/
https://www.nagios.org/
https://www.nagios.org/
https://puppet.com/
https://puppet.com/
https://puppet.com/
https://puppet.com/
https://puppet.com/
https://puppet.com/
https://puppet.com/
https://puppet.com/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.chef.io/chef/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://octopus.com/
https://www.yammer.com
https://www.yammer.com
https://www.yammer.com
https://www.yammer.com
https://www.yammer.com
https://www.yammer.com
https://www.yammer.com
https://www.yammer.com
https://www.yammer.com
https://slack.com/
https://slack.com/
https://slack.com/
https://slack.com/
https://slack.com/
https://slack.com/
https://slack.com/
https://slack.com/
http://www.irc.org/
http://www.irc.org/
http://www.irc.org/
http://www.irc.org/
http://www.irc.org/
http://www.irc.org/
http://www.irc.org/
http://www.irc.org/
http://www.irc.org/
http://www.irc.org/
https://hubot.github.com/
https://hubot.github.com/
https://hubot.github.com/
https://hubot.github.com/
https://hubot.github.com/
https://hubot.github.com/
https://hubot.github.com/
https://hubot.github.com/
https://hubot.github.com/
https://hubot.github.com/
https://trello.com/
https://trello.com/
https://trello.com/
https://trello.com/
https://trello.com/
https://trello.com/
https://trello.com/
https://trello.com/

Some Useful Information

[238]

People
What follows is a list of people who are actively involved in the agile and continuous
delivery and DevOps communities:

Patrick Debois is seen by many in the DevOps community as the daddy of
DevOps and the founder of the DevOpsDays movement (http:/ ​/​devopsdays.
org/​). This relatively small get-together of like-minded individuals in 2009 has
grown into a global gathering.
John Botchagalupe Willis is a regular and renowned contributor to the DevOps
community and has inspired many with his honest way of sharing his wisdom.
Jez Humble is the co-author of the Continuous Delivery book that is used by
many as the definitive reference material when investigating or implementing
continuous delivery. He also actively contributes to the continuous-delivery blog
at http:/ ​/​continuousdelivery. ​com/ ​.
John Allspaw is the SVP of Operations at https:/ ​/​www. ​etsy. ​com/ ​ and seems to
understand the value of DevOps-even though he's one of the senior management
types.
Gareth Rushgrove is a self-confessed web geek, who seems to somehow find
time to produce the DevOps weekly email newsletter (http:/ ​/​
devopsweekly.com/), which is full of useful and insightful information.
Gene Kim, co-author of The Phoenix Project, is the founder and former CTO of
Tripwire. He is passionate about IT operations, security, and compliance, and
how IT organizations successfully transform from good to great.
Mitchell Hashimoto is a self-confessed DevOps tools mad scientist and the
creator of Vagrant, Packer, Serf, Consul, and Terraform.
Rachel Davies is an internationally recognized expert in coaching teams on the
effective use of agile approaches and has a wealth of knowledge when it comes
to retrospective techniques and games.
Ken Schwaber and Mike Cohn are the godfathers of scrum and agile.
John Clapham is an all-round nice guy and agile/DevOps evangelist.
Karl Scotland is a renowned agile coach who specializes in lean and agile
techniques.
Keith Watson is well known throughout the UK DevOps community and I have
the privilege of working closely with him.

http://devopsdays.org/
http://devopsdays.org/
http://devopsdays.org/
http://devopsdays.org/
http://devopsdays.org/
http://devopsdays.org/
http://devopsdays.org/
http://devopsdays.org/
http://continuousdelivery.com/
http://continuousdelivery.com/
http://continuousdelivery.com/
http://continuousdelivery.com/
http://continuousdelivery.com/
http://continuousdelivery.com/
http://continuousdelivery.com/
http://continuousdelivery.com/
https://www.etsy.com/
https://www.etsy.com/
https://www.etsy.com/
https://www.etsy.com/
https://www.etsy.com/
https://www.etsy.com/
https://www.etsy.com/
https://www.etsy.com/
https://www.etsy.com/
https://www.etsy.com/
http://devopsweekly.com/
http://devopsweekly.com/
http://devopsweekly.com/
http://devopsweekly.com/
http://devopsweekly.com/

Some Useful Information

[239]

Recommended reading
The following books are well worth a read, even if you don't decide for some strange
reason to adopt CD and/or DevOps:

Resource Description Link

Agile Coaching
A nice introduction on
how to become a good
agile coach

https:/ ​/​pragprog. ​com/ ​book/ ​sdcoach/ ​agile-
coaching

Agile Retrospectives:
Making Good Teams
Great

An excellent book that
covers most of what
you need to know to
run effective
retrospectives

https:/ ​/​pragprog. ​com/ ​book/ ​dlret/ ​agile-
retrospectives

Continuous
Delivery: Reliable
Software Releases
Through Build, Test,
and Deployment
Automation

The CD bible http:/ ​/​www. ​amazon. ​com/ ​dp/ ​0321601912? ​tag=
contindelive- ​20

The Phoenix Project

A unique take on
DevOps adoption in
fiction form, well
worth a read

http:/ ​/​itrevolution. ​com/ ​books/ ​phoenix-
project- ​devops- ​book/ ​

Agile Product
Management with
Scrum

View scrum and agile
from the product
managers' point of
view

http:/ ​/​www. ​amazon. ​com/ ​exec/ ​obidos/ ​ASIN/
0321605780/ ​mountaingoats- ​20

The Enterprise and
Scrum

This book provides
some addition insight
into the challenges of
adopting an agile
approach and ways of
working

http:/ ​/​www. ​amazon. ​com/ ​exec/ ​obidos/ ​ASIN/
0735623376/ ​mountaingoats- ​20

The Lean Startup

Real-life experiences
and insights into how
to transform your
business, culture, and
ways of working

http:/ ​/​amzn. ​com/ ​0307887898

https://pragprog.com/book/sdcoach/agile-coaching
https://pragprog.com/book/sdcoach/agile-coaching
https://pragprog.com/book/sdcoach/agile-coaching
https://pragprog.com/book/sdcoach/agile-coaching
https://pragprog.com/book/sdcoach/agile-coaching
https://pragprog.com/book/sdcoach/agile-coaching
https://pragprog.com/book/sdcoach/agile-coaching
https://pragprog.com/book/sdcoach/agile-coaching
https://pragprog.com/book/sdcoach/agile-coaching
https://pragprog.com/book/sdcoach/agile-coaching
https://pragprog.com/book/sdcoach/agile-coaching
https://pragprog.com/book/sdcoach/agile-coaching
https://pragprog.com/book/sdcoach/agile-coaching
https://pragprog.com/book/sdcoach/agile-coaching
https://pragprog.com/book/dlret/agile-retrospectives
https://pragprog.com/book/dlret/agile-retrospectives
https://pragprog.com/book/dlret/agile-retrospectives
https://pragprog.com/book/dlret/agile-retrospectives
https://pragprog.com/book/dlret/agile-retrospectives
https://pragprog.com/book/dlret/agile-retrospectives
https://pragprog.com/book/dlret/agile-retrospectives
https://pragprog.com/book/dlret/agile-retrospectives
https://pragprog.com/book/dlret/agile-retrospectives
https://pragprog.com/book/dlret/agile-retrospectives
https://pragprog.com/book/dlret/agile-retrospectives
https://pragprog.com/book/dlret/agile-retrospectives
https://pragprog.com/book/dlret/agile-retrospectives
https://pragprog.com/book/dlret/agile-retrospectives
http://www.amazon.com/dp/0321601912?tag=contindelive-20
http://www.amazon.com/dp/0321601912?tag=contindelive-20
http://www.amazon.com/dp/0321601912?tag=contindelive-20
http://www.amazon.com/dp/0321601912?tag=contindelive-20
http://www.amazon.com/dp/0321601912?tag=contindelive-20
http://www.amazon.com/dp/0321601912?tag=contindelive-20
http://www.amazon.com/dp/0321601912?tag=contindelive-20
http://www.amazon.com/dp/0321601912?tag=contindelive-20
http://www.amazon.com/dp/0321601912?tag=contindelive-20
http://www.amazon.com/dp/0321601912?tag=contindelive-20
http://www.amazon.com/dp/0321601912?tag=contindelive-20
http://www.amazon.com/dp/0321601912?tag=contindelive-20
http://www.amazon.com/dp/0321601912?tag=contindelive-20
http://www.amazon.com/dp/0321601912?tag=contindelive-20
http://www.amazon.com/dp/0321601912?tag=contindelive-20
http://www.amazon.com/dp/0321601912?tag=contindelive-20
http://www.amazon.com/dp/0321601912?tag=contindelive-20
http://www.amazon.com/dp/0321601912?tag=contindelive-20
http://itrevolution.com/books/phoenix-project-devops-book/
http://itrevolution.com/books/phoenix-project-devops-book/
http://itrevolution.com/books/phoenix-project-devops-book/
http://itrevolution.com/books/phoenix-project-devops-book/
http://itrevolution.com/books/phoenix-project-devops-book/
http://itrevolution.com/books/phoenix-project-devops-book/
http://itrevolution.com/books/phoenix-project-devops-book/
http://itrevolution.com/books/phoenix-project-devops-book/
http://itrevolution.com/books/phoenix-project-devops-book/
http://itrevolution.com/books/phoenix-project-devops-book/
http://itrevolution.com/books/phoenix-project-devops-book/
http://itrevolution.com/books/phoenix-project-devops-book/
http://itrevolution.com/books/phoenix-project-devops-book/
http://itrevolution.com/books/phoenix-project-devops-book/
http://itrevolution.com/books/phoenix-project-devops-book/
http://itrevolution.com/books/phoenix-project-devops-book/
http://itrevolution.com/books/phoenix-project-devops-book/
http://www.amazon.com/exec/obidos/ASIN/0321605780/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0321605780/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0321605780/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0321605780/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0321605780/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0321605780/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0321605780/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0321605780/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0321605780/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0321605780/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0321605780/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0321605780/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0321605780/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0321605780/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0321605780/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0321605780/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0321605780/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0321605780/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0321605780/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0321605780/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0735623376/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0735623376/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0735623376/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0735623376/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0735623376/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0735623376/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0735623376/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0735623376/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0735623376/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0735623376/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0735623376/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0735623376/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0735623376/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0735623376/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0735623376/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0735623376/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0735623376/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0735623376/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0735623376/mountaingoats-20
http://www.amazon.com/exec/obidos/ASIN/0735623376/mountaingoats-20
http://amzn.com/0307887898
http://amzn.com/0307887898
http://amzn.com/0307887898
http://amzn.com/0307887898
http://amzn.com/0307887898
http://amzn.com/0307887898
http://amzn.com/0307887898
http://amzn.com/0307887898
http://amzn.com/0307887898

Some Useful Information

[240]

Getting Value out of
Agile Retrospectives

Gives a good
introduction on
retrospectives and
provides a good, long
list of games/exercises

https:/ ​/​leanpub. ​com/
gettingvalueoutofagileretrospectives

Retrospective games
Retrospectives are normally the inspect part of the agile inspect and adapt. If you are aware
of or are using scrum or some other agile methodology, then running retrospectives should
be nothing new. If you have never run a retrospective before, then you would have some
fun things to learn.

The remit of a retrospective is to look back over a specific period of time, project, release, or
simply a business change and highlight what worked well, what didn't work well, and
what improvements are needed. This process can traditionally be a bit dry, so
retrospectives tend to be based on games (some people refer to these as exercises, but I
prefer the word "games"), which encourages collaboration, engagement, and injects a bit of
fun.

As with any game, there are always rules to follow. Here are some example rules:

Each session should be strictly time-boxed
Everyone should be given a voice and a chance to actively contribute
Everyone should be able to voice their opinion but not at the expense of others
Whoever is facilitating the session is in charge and should control the session as
such
The session should result in tangible and realistic actions that can be taken
forward as improvements

As with the value-stream mapping technique mentioned in Chapter 2, Understanding Your
Current Pain Points, the only tools you really need are pens, paper, a whiteboard (or simply
a wall), some space, and some sticky notes.

I've already introduced you to timeline and value-stream mapping. Let me now introduce
you to one of my favorite games, StoStaKee.

https://leanpub.com/gettingvalueoutofagileretrospectives
https://leanpub.com/gettingvalueoutofagileretrospectives
https://leanpub.com/gettingvalueoutofagileretrospectives
https://leanpub.com/gettingvalueoutofagileretrospectives
https://leanpub.com/gettingvalueoutofagileretrospectives
https://leanpub.com/gettingvalueoutofagileretrospectives
https://leanpub.com/gettingvalueoutofagileretrospectives
https://leanpub.com/gettingvalueoutofagileretrospectives

Some Useful Information

[241]

StoStaKee
This stands for stop, start, and keep. Again, this is an interactive time-boxed exercise
focused on past events. This time, you ask everyone to fill in sticky notes related to things
they would like to stop doing, start doing, or keep doing, and add them to one of three
columns (stop, start, and keep). You then get everyone to vote—again, with sticky dots on
the ones they feel most strongly about. Again, you should encourage lots of open and
constructive discussions to ensure that everyone understands what each note means. The
end goal is a set of actions to take forward. The following diagram depicts a typical
StoStaKee board:

A typical StoStaKee board

The preceding examples are a mere subset of what is available, but both have proven time
and time again to be the most effective in investigating and, more importantly,
understanding the issues within a broken process.

Some Useful Information

[242]

Vital measurements expanded
Chapter 7, Vital Measurements, introduced you to a number of different ways of measuring
certain aspects of your processes. We will now expand on some of these and look in more
detail at what you could/should be measuring. We'll start by revisiting code complexity
and the science behind it.

Code complexity – some science
As mentioned in Chapter 7, Vital Measurements, having complex code in some
circumstances is fine and sometimes necessary; however, overly complex code can cause
you lots of problems, especially when trying to debug or when you're trying to extend it to
cater to additional use cases. Therefore, being able to analyze how complex a piece of code
is should help.

There are a few documented and recognized ways of measuring the complexity of source
code, but the one most referred to is the cyclomatic complexity metric (sometimes referred
to as MCC or McCabe Cyclomatic Complexity) introduced by Thomas McCabe in the 1970s.
This metric has some real-world science behind it, which can, with the correct tools,
provide quantifiable measurements based on your source code. The MCC formula is
calculated as follows:

M = E - N + X

In the preceding formula, M is the MCC metric, E is the number of edges (the code
executed as a result of a decision), N is the number of nodes or decision points (conditional
statements), and X is the number of exits (return statements) in the graph of the method.

Code versus comments
Including comments within your source will make it much more readable, especially in the
future when someone other than the original author has to refactor or bug fix the code.
Some tools will allow you to measure and analyze the ratio of code versus comments.

That said, some software engineers don't believe that comments are worthwhile and believe
that if another engineer cannot read the code, then they're not worth their salt. This is one
view; however, including comments within one's source should be encouraged as a good
engineering practice and good manners.

https://cdp.packtpub.com/continuous_delivery_and_devops__a_quickstart_guide__third_edition/wp-admin/post.php?post=6&action=edit#post_308
https://cdp.packtpub.com/continuous_delivery_and_devops__a_quickstart_guide__third_edition/wp-admin/post.php?post=6&action=edit#post_308

Some Useful Information

[243]

One thing to look out for should you implement a code-versus-comments analysis is those
individuals who get around the rules by simply including things such as the following code
snippet:

/**
* This is a comment because I've been told to include comments in my
* code
* Some sort of code analysis has been implemented and I need to
* include comments to ensure that my code is not highlighted as poor
* quality.
*
* I'm not too sure what the percentage of comments vs code is
* required but if I include lots of this kind of thing the tool will
* ignore my code and I can get on with my day job
*
* In fact this is pretty much a waste of time as whoever is reading
* this should be looking at the code rather than reading comments.
* If you don't understand the code then maybe you shouldn't be trying
* to change it?!?
*/

This might be a bit extreme, but I'm sure if you look close enough at your code base, you
might well find similar sorts of things hidden away.

One other good reason for comments—in my experience—is for those situations when you
have to take the lid off some very old code (by today's standards, very old could be a
couple of years) to investigate a possible bug or simply find out what it does. If the code is
based on outdated design patterns or even based on an old language standard (for
example, an older version of Java or C#), it might be quite time-consuming trying to
understand what the code is doing without, at least, some level of commenting.

Embedding monitoring into your software
As mentioned in Chapter 7, Vital Measurements, there are a few ways you can include and
embed the generation of metrics within the software itself.

Let's assume that your software components contain APIs that are used for component-to-
component communication. If you were able to extend these APIs to include some sort of a
health-check functionality, you could construct a tool that simply calls each component and
asks the component how it is. The component can then return various bits of data, which
indicates its health. This might seem a bit convoluted, but it's not that difficult.

Some Useful Information

[244]

The following diagram gives an overview of how this might look:

A health-checker solution harvesting health-status data form software components

In this example, we have a health-checker tool that calls each component via the APIs and
gets back data that can then be stored, reported, or displayed on a dashboard. The returned
data can be as simple or complex as you like. What you're after is to ascertain whether each
component is healthy. Let's say, for example, one element of the data returned indicated
whether or not the software component could connect to the database. If this comes back as
false and you notice that the system monitor looking at the free disk space on the database
server is showing next to zero, you can very quickly ascertain what the problem is and
rectify it.

This method of monitoring is good but relies on you having some tooling in place to call
each component in turn, harvest the data, and present it to you in some readable/usable
form. It's also restricted to what the APIs can return or rather how they are designed and
implemented. If, for example, you wanted to extend the data collection to include
something such as the number of open database connections, you will need to change the
APIs, redeploy all of the components, and then update the tooling to accept this new data
element. This is not a huge problem, but a problem all the same. What could be a huge
problem, though, is the single point of failure, which is the tooling itself. If this stops
working for whatever reason, you're again blind, as you don't have any data to look at, and,
more importantly, you're not harvesting it.

Some Useful Information

[245]

There is an alternative approach that can overcome these problems. In this approach, the
component itself generates the metrics you need and pushes the data to your tooling.
Something like Graphite does this very well. Instead of extending the APIs, you simply
implement a small amount of code; this allows you to fill up buckets of metrics data from
within the software component itself and push these buckets out to the Graphite platform.
Once in Graphite, you can interrogate the data and produce some very interesting real-time
graphs. Another advantage of Graphite is the plethora of tools now available to generate
and create very effective graphs, charts, and dashboards based on the Graphite data.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Security in DevOps
Tony Hsu

ISBN: 978-1-78899-5-504

Understand DevSecOps culture and organization
Learn security requirements, management, and metrics
Secure your architecture design by looking at threat modeling, coding tools and
practices
Handle most common security issues and explore black and white-box testing
tools and practices
Work with security monitoring toolkits and online fraud detection rules
Explore GDPR and PII handling case studies to understand the DevSecOps
lifecycle

https://www.packtpub.com/networking-and-servers/hands-security-devops

Other Books You May Enjoy

[247]

Effective DevOps with AWS - Second Edition
Yogesh Raheja, Giuseppe Borgese, Nathaniel Felsen

ISBN: 978-1-78953-9-974

Implement automatic AWS instance provisioning using CloudFormation
Deploy your application on a provisioned infrastructure with Ansible
Manage infrastructure using Terraform
Build and deploy a CI/CD pipeline with Automated Testing on AWS
Understand the container journey for a CI/CD pipeline using AWS ECS
Monitor and secure your AWS environment

https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition

Other Books You May Enjoy

[248]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
A/B testing 216
accountability
 fostering 70
ACME systems evolution phase 1.0
 about 7
 software-delivery process flow version 1.0 9
ACME systems evolution phase 2.0
 about 9
 outsider's perspective 15
 software-delivery process flow version 2.0 12,

13, 14
ACME systems evolution phase 3.0
 about 16
 software-delivery process flow version 3.0 18, 19
ACME systems
 beyond version 3.0 19
 evolution 20, 21
 evolutionary scale 21
Application Programming Interfaces (APIs) 225
architectural approaches
 about 125
 abstraction layers 129
 component-based architecture 127, 129
 consumers relationships, maintaining 130
 peer-working practices 131
automated building 168

B
bacon-saving 220
Behavior-Driven Development (BDD) 119
blame game 73
blame slowly, learn quickly culture 73, 75
blue-green deployments 219
business advice
 seeking 106

business change project
 about 94, 95
 dedicated team, pros and cons 98, 101
 DevOps org 96

C
CD and DevOps
 about 227
 automated provisioning 142, 144
 no-downtime deployments 144, 145
 tooling 140
Chief Technology Officer (CTO) 212
CI environment 137
code and engineering
 CD and DevOps, effectiveness 192
 CD and DevOps, impact 194
 culture, measuring 194
 environments stability, measuring 186
 measuring 186
code complexity
 coding standards 181
 commit and merge rates 180
 cycle and lead times 184
 initiating 185
 quality gates 185
 quality metrics 182
 unit-test coverage 179
collaboration
 embracing 68
 encouraging 67
component-based architecture 129
Continuous Delivery (CD) 5
Continuous Integration (CI)
 about 15, 111, 122, 124
 architectural approaches 125
 binary, using 134
 CD and DevOps, tooling 140

[250]

 environments 136
 failing 124
 incremental delivery, features 133
 like-live environment, developing 138
 manual process 148, 150
 monitor 146
corporate guidelines 161
culture
 about 48
 blame slowly, learn quickly culture 73
 change, embracing 80
 communications 57
 corporate and organizational culture 49
 courageous dialogue 63
 defining 51, 53, 54
 good behaviors and success, rewarding 78
 heavy-weight process 55
 honesty 60
 openness 59
 people's perceptions, changing with pudding 81
 physical environment 65
 processes 55
 risk reducing 81
 safe environment 60
 simple CD equivalent process 56
 team recognition 79
 tools and techniques 58
 transparency 82
 trust-based relationships, building across

organizational boundaries 76
cycle time 184

D
database administrator (DBA) 169
defect escape distance 182
development environments 137
distributed denial of service (DDOS) 220

E
effective engineering
 best practices, measuring 174, 176, 178
 code complexity 178
elephant disclosure
 about 38, 39
 timeline retrospective technique 41

 tools and techniques 40
 value stream mapping 43
elephant in the room 27
elephant in the room, investigation
 distinct lack of secrets 34
 location 35
 management waffle 36
end user self-service 223
engineering
 automated builds 116
 best practices 109, 111
 binary repository 114
 changes 114
 source-control 112
 test-automation 118, 120, 121
environments stability
 automated tests, combining 189
 automated tests, incorporating 188
 measuring 186
 real-time monitoring 190
 system monitoring 189
 utopia, monitoring 191
evangelism
 cost 105
 courage and determination, throughout

organization 104
 importance 102
evolution
 failure 164
eXtreme Programming (XP) 120, 132

F
feature-flag complexity
 reducing 214

G
geographically diverse teams 162
goals
 communicating 87, 89
 setting up 87, 89

H
honesty 60

[251]

I
individuals engaging, process delivery process
 about 30
 issues 32
 key people, identifying 31
Infrastructure-as-a-Service (IaaS) 143
innovation
 fostering 71
issues handling, product delivery process
 honesty 33, 34
 individuals, engaging 30
 openness 33
 rules, defining 28
 transparency 33

K
keep it simple stupid (KISS) 87
key performance indicators (KPI) 194

L
language
 standardizing 91, 93
laurels
 resting 208
lead time 184
leadership
 changes 171
load-testing 212

M
Mean time between failures (MTBF) 182
Mean time to resolution (MTTR) 182
mobile world 227

O
openness 60
order-out-of-chaos 222

P
performance 212
Plan, Do, Check, and Adjust (PDCA)
 about 204
 example 205

 exit, stage left 206
Platform as a Service (PaaS) 61
positive mental attitude (PMA) 165
potential issues
 about 152
 change curve 156, 158
 dissenters 153
 news, avoiding 155
 outsiders 159, 161
Pre-production environment 137
product delivery process
 issues 25
 problems 86
Production environment 137

R
red tape 161
Return On Investment (ROI) 87
rewarding
 good behaviors and success 78
 odd few 78

S
security-patching 220
Service Orientated Architecture (SOA) 128
skills gap
 bridging 170
Software as a Service (SaaS) 61
software delivery
 about 233
 business growth 232
 business process improvements 230
 expanding 229
 learning 234
 optimized feedback loops 232
 UX and design 230
software services 225
Somebody Else's Problem (SEP) 71
standards 161
streaming 199, 201

T
Test-Driven Development (TDD) 71, 119
timeline retrospective technique
 about 41

 format 41
transactions per second (TPS) 192
trust-based relationships
 building, across organizational boundaries 76

V

value stream mapping 43
 about 45
vision
 communicating 89
 setting up 87, 89
vocabulary
 standardizing 91, 93

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: The Evolution of Software Delivery
	ACME systems – evolution phase 1.0
	Software-delivery process flow Version 1.0

	ACME systems evolution phase 2.0
	Software-delivery process flow Version 2.0
	An outsider's perspective from the inside

	ACME systems evolution phase 3.0
	Software-delivery process flow version 3.0

	ACME systems beyond Version 3.0
	The evolution in a nutshell
	Where am I on the evolutionary scale?
	Summary

	Chapter 2: Understanding Your Current Pain Points
	Elephant in the room
	Defining the rules
	Including (almost) everyone
	Identifying key people
	Too many cooks

	Openness, transparency, and honesty
	Secrets hiding the truth
	Location, location, location
	It's all happy-clappy management waffle – isn't it?

	The great elephant disclosure
	Tools and techniques to expose the obvious
	Timeline
	Value stream mapping

	Summary

	Chapter 3: Culture and Behaviors are the Cornerstones to Success
	All roads lead to culture
	Defining culture
	Processes
	Communications
	Tools and techniques

	An open, honest, and safe environment
	Openness and honesty
	Courageous dialogue
	The physical environment

	Encouraging and embracing collaboration
	Fostering innovation and accountability at a grass-roots level
	The blame game
	Blame slowly, learn quickly

	Building trust-based relationships across organizational boundaries
	Rewarding good behaviors and success
	The odd few

	Recognizing how Dev and Ops teams are incentivized can have an impact
	Embracing change and reducing risk
	Changing people's perceptions with pudding

	Being transparent
	Summary

	Chapter 4: Planning for Success
	Some common problems
	Setting and communicating goals and vision
	Standardizing vocabulary and language
	A business change project in its own right
	Dev + Ops + Org
	The pros and cons of a dedicated team

	The importance of evangelism
	The courage and determination required throughout the organization
	Understanding the cost

	Seeking advice from others
	Summary

	Chapter 5: Approaches, Tools, and Techniques
	Engineering best practices
	Source-control
	The binary repository
	Small, frequent, and simple changes
	Automated builds
	Test-automation

	Continuous integration
	Fail fast and often
	Architectural approaches
	Component-based architecture
	Layers of abstraction
	Never break your consumer
	Open and honest peer-working practices

	Incremental delivery of features
	Using the same binary across all environments
	How many environments is enough?
	Developing against a like-live environment
	CD and DevOps tooling
	Automated provisioning
	No-downtime deployments

	Monitor, monitor, monitor
	When a simple manual process is also an effective tool

	Summary

	Chapter 6: Avoiding Hurdles
	What are the potential issues you need to look out for?
	Dissenters in the ranks
	No news is no news
	The change curve
	The outsiders

	Corporate guidelines, red tape, and standards
	Geographically diverse teams
	Failure during the evolution
	Processes that are not repeatable
	Bridging the skills gap
	Changes in leadership
	Summary

	Chapter 7: Vital Measurements
	Measuring effective engineering best practices
	Code complexity
	Unit-test coverage
	Commit and merge rates
	Adherence to coding rules and standards
	Quality metrics
	Cycle and lead times
	Quality gates
	Where to start and why bother?

	Measuring the real world
	Measuring the stability of the environments
	Incorporating automated tests
	Combining automated tests and system monitoring
	Real-time monitoring of the software itself
	Monitoring utopia

	Effectiveness of CD and DevOps
	Impact of CD and DevOps
	Measuring your culture

	Summary

	Chapter 8: You Are Not Finished Just Yet
	Reflecting on where you are now
	Streaming
	A victim of your own success
	[P]lan, [D]o, [C]heck, [A]djust
	Exit, stage left

	Resting on your laurels (not)
	Summary

	Chapter 9: Expanding Your Opportunity Horizon
	What about me?
	Performance and load-testing
	Reducing feature-flag complexity
	A/B testing
	Blue-green deployments
	Security-patching and bacon-saving
	Order-out-of-chaos monkey
	End user self-service
	Thing as a service
	Summary

	Chapter 10: CD and DevOps Beyond Traditional Software Delivery
	CD, DevOps, and the mobile world
	Expanding beyond software delivery
	UX and design
	Business process improvements
	Business growth
	Optimized feedback loops

	What about me?
	What have you learned?
	Summary

	Some Useful Information
	Tools
	People
	Recommended reading
	Retrospective games
	StoStaKee

	Vital measurements expanded
	Code complexity – some science
	Code versus comments
	Embedding monitoring into your software

	Other Books You May Enjoy
	Index

