Let's Build 2
Phaser Game

With TypeScript, Socket.|0,
and Phaser

Oscar Lodriguez

ApreSS®

Let’s Build a
Multiplayer Phaser
Game

With TypeScript, Socket.lO,
and Phaser

Oscar Lodriguez

Apress’

Let’s Build a Multiplayer Phaser Game: With TypeScript, Socket.IO, and
Phaser

Oscar Lodriguez
NIEUW-VENNEP, Noord-Holland, The Netherlands

ISBN-13 (pbk): 978-1-4842-4248-3 ISBN-13 (electronic): 978-1-4842-4249-0
https://doi.org/10.1007/978-1-4842-4249-0

Library of Congress Control Number: 2018965465

Copyright © Oscar Lodriguez 2019, corrected publication 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: Laura Berendson

Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484242483.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4249-0

Dedicated to the hard-working and amazing
developers who have contributed to JavaScript,
TypeScript, Phaser, and Socket.io. Thank you for

your time, dedication, and constant pursuit of perfection,
which have created jobs and presented the gift of
knowledge to the masses across the globe.

https://urldefense.proofpoint.com/v2/url?u=http-3A__Socket.io&d=DwMFAg&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=KBdAFnYmDxoFKGFv3o8nz0lug9UIhLBSHbiZ2JANXOo&m=w4aNXNff6THfiQUzHyKlIzb5VQeQ57BM_fyN2Fzx_Ds&s=d3ChwUKXhv_sOncMfk_vCDu_oF9LcaUhYUY_WTrx5tI&e=

Table of Contents

About the AUhOFcccmmmnmmmmsensssssss s ix
About the Technical ReVIEWErccuvcesssessssmssssnsssassssnsssssssssssssnsssassssass xi
Acknowledgments.......cccermssssssssnnnnsmmsssssssssssnnsssssssssssssnssnnsssssssssnnnnnns Xiii
Chapter 1: Introduction...........ccuinmmsssessnmnmmmmsssssss e ——————— 1
WhO ThiS BOOK IS FOF......ceeeeereecrrceree s 1
How to Approach ThiS BOOKccucreriinnnieneninsinsene s sese s sss s s ssssessessesnes 2
What the Heck Are We Building Together?coocovecernnennnesenesenssesenenens 3
Chapter 2: Setting Up Our Development Environment............ccucceenneians 5
Setting up Our Development ENVIronmMEeNt..........cccvvevevnrnrenrenssensensesesessesessens 5
L= S 6

7 OSSPSR 6

The Main Ingredient ... ———— 7

= 1 (0] 3 7
Running the Project ... 8
Running the Project in Dev Mode ..o 9

Our Front-End ArchiteCUre ..o 9
Our Folder STrUCTUTE ..o s 10
0] T 11T (0] o P 11

TABLE OF CONTENTS

Chapter 3: Orchestrating Our Domain Model.........ccoccemrrnssnnnnnesssnnnns 13
The BUilding BIOCKSccccovviririrernsinirern s 14
Creating Our First MOElccveeevnenensnirsse s s srse e 15
The Player MOGElccceveririirrienirierin e ss e s s s 16
The Keyboard MOdEl ... s 17
Creating Our DIr@CIOMIES. .. .coveeerresereseserese s s s sre s 21
Directory CONSIIUCTIONcccceveverierie st sr e e saennens 22
CONCIUSION ..t s 24

Chapter 4: Implementing Our Game Domain Models.........oosrmmmeennnnns 25
ADOUL PRASEN......coiiriiiinier s s 25
Talking ADOUL PRASETcc.ovceririe e s se e s n 27

Finally, SOMeE COUR!cccevrerrrierererrrrirere e ses e s s e se e sse e s e snesaesessesaesaes 27
The Player Model ... s 32
Phaser Arcade PRYSICS........ccouenrrenerrnserenessssssssssessssesssssssssssessssssssssssssesessssessnns 35
The Game MOdEl ... ————— 40
The Keyboard MOdEl ... s 43
0] T L1 (0] o 48

Chapter 5: Seeing It In ACiON........ccccnisemmmsssnsmsssnnmsssssssssnsssssnnssssnnsssns 49
Hooking it All Up TOGETNEXcovverirercie e 49
CONCIUSION ..viirrirrccie e s 56

Chapter 6: Projectiles!.......cc.cccummmmsmmmmmmssssnnnmssssssnnmsssssssnssssssssnsssssnnnnss 57
PICKUD 1ot s 28

Additional Folder StruCtUre..........cucucrrernsnsss e 58
Making it t0 the Big SCrEeN........ccccvvererrrrrere e se e sesnens 64

TABLE OF CONTENTS

0 - O 66
GIMME the GUN!......c e ————— 66
Updating the GAMEccccverinirnirere e s snea 68
Updating the Keyboard with @ Fire!ccocvveennnnnnnnesnse e 71
TRHE HUD ..o 74
CONCIUSION ..ot 81
Chapter 7: Hooking Up QUK SEIVer.......ocsssssmsssssmsmsssssssssasassssssssssssssnans 83
On to the Server Side of TRINGS! ..o 83
Models and EVENtS.........ccccunmiinnns s 84
MOGEIS ..o ———— 84
EVENTS...ooic s —————— 84
Setting up Our Static File SErver.........ovrnnsninn e 86
Socket CONNECHION ..o ——— 88
Back t0 the Client........c.coovn s 98
Marvelous EXpIOSIONS! ... s 106
CONCIUSION ..ot e 109
Chapter 8: The World Should Remember Your Name........ccueeussssnnnsas 111
LOGgIN et 111
Congratulations!............coeeerrerrrerree s 124
Chapter 9: Bonus! Refactoring & Asteroids........cccuumssnnnnmssssnnsnssssanns 125
Adding More FEAtUrES.........covvevrienerinernsessne s srs e 125
RefaCIONiNG.....ce i 125
ASEErOIdS! ...t ————————— 130
0] T 11T 0] 145

vii

TABLE OF CONTENTS

Chapter 10: Further Reading And DiSCOVErYcccurssssnnnssssssnnnnssssnnns 147

Other Phaser RESOUICEScuererermnmniiss s 147
Correction to: Let’s Build a Multiplayer Phaser Game.........ccccussseennas C1
IN@X..iiieisisrnms s s s s ————— 149

viii

About the Author

Oscar Lodriguez has been developing
software as a freelancer for close to 13 years.
During this time, he has worked with software
giants such as Adyen, BNP Paribas, ebay,
Bol.com, Schiphol, and Backbase. He has a
bachelor’s degree in computer science and

is a motivated and avid learner who stays up
to date with web industry standards. He has

written three books and speaks regularly at
Golang/JavaScript meet-ups in and around
Holland.

ix

About the Technical Reviewer

Sumit Jain is an MSc. CS postgraduate and a
PhD in Computer Vision, Computer Graphics
seeker. He is a founder of SummitGames
Digital Entertainment Pvt. Ltd. He is an

expert in technology domain and software
applications and leads the entire software
design and development process. He conducts
workshops as a Speaker/Trainer in game

architecture and programming.

“Game Development, is a process of writing
a book, making a film and developing a
software, all at once.” -Sumit Jain

Acknowledgments

I'would like to thank my partner, Debby Jong, for sticking it out with me
and having faith that all would turn out great in the end, as writing this
book was a challenging endeavor.

I'would like to thank Rocco, my dog, for keeping me warm and
providing company by sitting on my lap when I was hacking away at the
keyboard late at night. Even though you are not going to read this, you are
the best friend ever!

I would like to thank the great team at Apress for their pursuit of
perfection. They have really helped me write the best book I could write,
and I have gained so much knowledge based on their feedback.

The original version of this book was revised. A Correction to this book is
available at https://doi.org/10.1007/978-1-4842-4249-0_11

xiii

https://doi.org/10.1007/978-1-4842-4249-0_11

CHAPTER 1

Introduction

First of all, I would like to thank you for purchasing this book. Writing this
book has been a great experience for me, and I am excited to make this
avaluable resource upon release. Planning, effort, as well as time have
been injected into this project to make it as consumable as possible for
developers with various skill levels. The goal is to provide technical know-
how that instructs on what approaches may be taken when building a
multiplayer game using Phaser, without losing too much quality in the
process. The focus is currently on cleaning up the project and refactoring
where need be.

Who This Book Is For

Some knowledge of programming is required, as I won'’t cover all of the
language features that JavaScript offers. I will ultimately describe inputs
and outputs of functions and why we need to do things a certain way.
How the language and specifications work is something that is better left
to another book, perhaps on Apress. Covering the basics of programming
is something that has been done countless times by other books, schools,
and courses. So to keep things focused, I will do my best to explain things
as we move forward.

Topics regarding computer science will be touched upon briefly,
but moving forward, some fundamentals of computer science are
recommended. This course does require some knowledge of Git—more

© Oscar Lodriguez 2019
O. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0_1

CHAPTER 1 INTRODUCTION

specifically, Github. The knowledge you will need is how to clone or
checkout a project and switching to a specific branch. Let’s create a kickass
game and learn a lot in the process!

How to Approach This Book

The material used by the project is best followed as a story. Don’t skip
ahead, as the story builds upon previous code and knowledge to allow you
to have a successful working game in the end.

Skipping any chapter in between would mean you will lose valuable
pieces of code that will make the project functional. If a topic feels like it
does not suit you and you are considering copying and pasting the code in
place, I recommend you give that a second thought.

The best way to learn is to properly digest the material and give it
a meaning of your own. To help solidify your new learned skill, please
experiment with concepts from this book on another project where you are
stuck on a specific topic.

The sample code is found on the accompanied Github repo along with
issues and potential fixes that might arise. The game will have additional
changes outside of this book, this because, TypeScript, Socket.io and
Phaser are both active projects and will contain updates. To keep up with
these updates, use the accompanied online repository https://github.
com/codeOwl/Multiplayer-Phaser-game, ever improving and getting
better. It is important to know that the chapters hosted on github will be
one chapter behind yours. This means when you are on Chapter 3,
the branch you will checkout is from Chapter 2. This is because, in this
specific example, Chapter 2 is the last result of your actions and you can
continue with adding new features. I highly recommend checking out the
start branch on the online repository by first cloning https://github.
com/codeOwl/Multiplayer-Phaser-game and then checking out the start
branch and building the game from there.

https://github.com/code0wl/Multiplayer-Phaser-game
https://github.com/code0wl/Multiplayer-Phaser-game
https://github.com/code0wl/Multiplayer-Phaser-game
https://github.com/code0wl/Multiplayer-Phaser-game

CHAPTER 1 INTRODUCTION

The book is comprised of lots of code. The best way to learn how to
code is to be exposed to it as much and as often as possible. Simply put,
the more you see it, the better chance you have of grasping and solidifying

memory associations to implementation details.

What the Heck Are We Building Together?

Before starting on any journey or racing off to finish any goal, we must find
out why we are doing it, get motivated, and tackle the tasks that will reach
that outcome we so much desire.

We are set to take over the galaxy, or at least cause a mini-war in it,
with our friends. The game we are building is to incorporate a real-time
multiplayer game where you can race for the pickups and shoot your
friends! There are no game rules attached to this game.

At the end, you will know enough about the implemented logic
to apply your own game rules, such as first to five wins or Facebook
connectivity with real leaderboards. The possibilities here are endless.

The key giveaway is not to build these rules but to give you the
knowledge so can build them yourself. The whole point of learning is using
creativity! I strongly believe in this approach and will include a bonus
chapter of such a business rule to our game to give you a concrete idea.
Learn, build, and destroy! Let’s get started! A online preview version of
the game is found here http://codeowl.tech/game. Use this link to allow
another one of your friend to join so you can play together.

http://codeowl.tech/game

CHAPTER 2

Setting Up Our
Development
Environment

In this chapter we shall focus on getting set up and make sure we cover
all that is needed for developing our game smoothly. The following are
instructions to get you up and running with Node and Git.

Setting up Our Development Environment

Even though the game seems very simple and easy to code, there are a lot
of moving parts, and it’s good to digest them bit by bit instead of everything
at once. Let’s start with the tail of the dragon, which is the project setup.

If you already have node and git installed on your computer, skip the
installing Node and Git section.

Install a decent code editor that will assist you at developing your game
along the way. I recommend anything from JetBrains or Visual Studio Code
from Microsoft. The good part is that Visual Studio Code is completely
free and works really well out of the box with the technologies we shall be
wielding. Let’s dive into some explanation about Node.js and Git.

© Oscar Lodriguez 2019 5
O. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0_2

CHAPTER 2 SETTING UP OUR DEVELOPMENT ENVIRONMENT

Node.js

The authors describe Node as an asynchronous event-driven JavaScript
runtime, perfect for network applications that need to scale.

Git
The popularity of git has skyrocketed in the recent years as the de facto
distributed version control system, focusing on speed, ease of use, and

efficiency.
Prerequisites for starting this book:

o Install Node.js and Git.
e Mac, Linux, or Windows users:

o Install the latest for your system at https://
nodejs.org/en/download/. Oy, if you are tech
savvy, I suggest you download NVM, which is a
Node version manager. This makes it easier for
you to switch between Node versions if you have
a different project that will not allow you to install
another Node version on your system.

o To browse on the online repo, you can use Git
to manage your code versioning. This can be
downloaded at Git’s official website (https://git-
scm. com/downloads).

Note If you are blocked on the where to start section, it means that
you either need to upgrade your Node version or install Git. Installing
Node and Git are some manual steps you will need to perform to get
up and running with this project.

https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://git-scm.com/downloads
https://git-scm.com/downloads

CHAPTER 2 SETTING UP OUR DEVELOPMENT ENVIRONMENT

The Main Ingredient

For ease, I have created a getting started folder branch that includes the
much-needed package.json manifest with all of the dependencies inside.
This also includes an index.html file. When served via our server, this will
request the correct libraries and resources. You can access this branch if
you have checked out the project on Github by running git checkout start
in your terminal while in your project folder.

Editors

Code editors are also software created by other developers that help
developers to create software. You will need an editor to develop this game
as it allows you to be more efficient at refactoring and getting type hints on
your code. Ultimately, without going into too much detail, they will make
you more productive as a developer and less prone to errors because of
their features.

Feel free to use any common editors of your choosing. I recommend
any of these (Sublime Text, Visual Studio Code, WebStorm, Atom), as they
have good support for TypeScript. I like being a polyglot when it comes to
programming languages, so I am using Intelli] as my main IDE. It allows
me to jump from TypeScript to Android development. I love that. To
download an IDE or a code editor, just search for its name on your search
engine of choice.

You can clone or fork the starter of this repository on Github
(https://github.com/codeowl/Multiplayer-Phaser-game). Once
you have cloned the repo and assuming you have Git installed on your
computer, checkout the starter branch, as it eases you into the project
and you won'’t have to worry about dependency management.

https://github.com/code0wl/Multiplayer-Phaser-game

CHAPTER 2 SETTING UP OUR DEVELOPMENT ENVIRONMENT

Running the Project

Once all dependencies are installed, it is time to open up your package.
json file and see some handy scripts that are included that make your
development cycle life a tad bit easier. To run the development setup,
observe the following scripts and follow the instructions.

Listing 1-1. package.json

scripts": {

"precommit": "npm run lint",

"lint": "tslint -c tslint.json -p .",
"start:dev": "webpack -w --env=dev & tsc -w --noEmit
src/server/server & nodemon src/server/server",

"build:release": "webpack --env=prod --optimize-

minimize",

"prestart”: "npm i",

"start": "webpack --env=dev && node ./src/server/
server.js"

Having this insight means we now know a bit more of the process
installed behind the scenes of this game project. Running the command
“npm start” inside the root of the project will boot up the project and serve
it at your localhost port 3000.

Because you ran “npm start” the project installed itself and is running
successfully at the specified port above (port 3000). The project should
have started with a blank screen and the following text “Hi, I am being
served correctly” We shall be covering the nitty gritty details of sockets and
explore how they can help us realize this game.

CHAPTER 2 SETTING UP OUR DEVELOPMENT ENVIRONMENT

The following section will explain a bit more about the development
environment.

Running the Project in Dev Mode

Running the development is straightforward. Using concurrent jobs, we
can run multiple services at once without starting a new terminal or we
can spawn child processes. All of that is magically abstracted away!

$ npm run start:dev. This will set up the dev environment and a watch
script that would detect any changes made to the program and then would
rerender the application with your changes.

Our Front-End Architecture

Note we are not taking our massive node_modules directory with its
contents into account. Your folder structure should reflect the following
directory tree.

Note Directories only show directories, not files or subfiles inside of
those directories. The node_modules folder is most likely included in
your build, and that is ok since it is at the root directory. (This is the
same as the public and src directories.)

This illustrates the bare minimum we shall need in order to run code
on the screen.

Note If you have other files because of your current IDE, that is also
fine. That is your IDE’s way of saving the folder directory as a project
so0 it can reference the relationships between modules.

CHAPTER 2 SETTING UP OUR DEVELOPMENT ENVIRONMENT

Go ahead and run the project using the dev scripts explained here and
let’s see if your environment is working correctly without any error. Let’s
create a new file called “main.ts” and place it inside of the root folder. Later
this is the main file that will include your entire application as an entry point.
If you have a Java background, you can see it as your static main. If you do
not, it is just the entry file of your application—also known as the shell.

Listing 1-2. main.ts
document.body.textContent = 'Hi, I am being served correctly’;

Given you have your scripts running correctly in the background, you
will see this as a result on your screen.
[image of results on screen]

Our Folder Structure

Our front-end architecture will be fairly straightforward. Looking at the
directory image, we get a hint as to how everything will look at the end of
the project. This is a good thing. Having a structure with no files inside
makes you think like an architect and might save you a lot of time with
refactoring in the future, when you are trying to figure out what goes
where.

Diving a bit deeper than the surface area, here we have the listing:

e public » The bundled application served through our

server
o assets » Images and our css

e dist » Our bundled JavaScript files

10

CHAPTER 2 SETTING UP OUR DEVELOPMENT ENVIRONMENT

e src » Our project files

o client » Client-side logic for our game, including
commands that will update the game-world

o server » Code that will run the server and open up

aweb socket for us

o shared »Shared code for both our client and server

Conclusion

It might seem like a small step. On the contrary, this is a huge step in the
right direction! It means our server is also serving the static folder and
serving the static files correctly to the browser on request.

This wraps up the setting up part. Let’s just keep the momentum going
on through the next chapter. We shall be touching a lot of TypeScript and
general OOP topics in the following chapters.

11

CHAPTER 3

Orchestrating Our
Domain Model

In this chapter we will be creating class diagrams for the following actors in
our game: our game, the player, the phaser engine, and the controls. Code
for this chapter is found on GitHub. (Considering you have the project
running you can then checkout chapter/2 branch.)

The reason we need a domain model is that we want our fun little
game to build upon a healthy, scalable architecture that allows for quick
development iterations with as little to no noise as possible.

In this section we are solely focusing on the modules, models, and
components we shall be creating, as with any project, as time progresses.

We will then think of new features we might want to add to it. Usually,
it’s not us that come with new features; we are always refactoring our own
work and working away technical debt if we do not have a design pattern
or framework we are using. By sketching out our model, we will intimately
grasp our product and form a deeper understanding of its features.

After we have done this, we are going to utilize design patterns and
define our objects by setting up interfaces to work it. Personally, I think
this is the only approach to creating a project. Make sure you know exactly
what you are building by mapping out all the separate components first
and see if they all fit together before you even start coding.

© Oscar Lodriguez 2019 13
O. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0_3

CHAPTER 3 ORCHESTRATING OUR DOMAIN MODEL

In the end, you will make mistakes, but because you do not have to
refactor the lot, as a bonus it is a cheaper and faster mistake to make. In
the end because you have a working mental model on paper, it allows us to
iterate over the ideas both then and come implementation time. Our ideas
will have been reviewed multiple times, by ourselves and our peers. Always
remember, get it on paper.

The Building Blocks

The following sketch (Figure 3-1) is of a simplified version of a class
diagram. It represents classes alongside their methods and properties.
This gives us a better indication of our project as a whole. The goal is

to gain insight and clarity on what we are trying to achieve and if our
methods and properties appear correct. Here is an example of how our
class diagrams will look. Having a bit of background knowledge on UML or
UML-like diagrams will certainly give you more insight. Here is a link to a
good legend for UMLs: https://bellekens.com/2012/02/21/uml-best-
practice-5-rules-for-better-uml-diagrams/?.

Gavme.

- actors: Array <Pla yer> !
- actor: Pla yer
- projectile: Projectile /

it has — l - gawme: Phaser.game

- manageAssets(): void
' - properties(): void
(- gameupdate(): void - it doee

Figure 3-1. Simplified class diagram

14

https://bellekens.com/2012/02/21/uml-best-practice-5-rules-for-better-uml-diagrams/?
https://bellekens.com/2012/02/21/uml-best-practice-5-rules-for-better-uml-diagrams/?

CHAPTER 3 ORCHESTRATING OUR DOMAIN MODEL

In this example, we can observe the following:
The Game class will contain at least two properties.

e Actors
e Projectile
The Game class will be able to perform certain operations.
¢ Manage assets
e A game update

What these methods do can be mapped out as well. Using the
knowledge we have gained from our first example, we shall be creating our
first diagram, which will have these relational dependencies with each other.

Our approach will be to create all of the models and map them out
separately. After that lay them out like puzzle pieces and build existing
relationships between these models.

You may view it as assembling a piece of IKEA furniture. The first image
you see are the tools you will need (which we discussed in Chapter 1; all of
the pieces that you will need to assemble and the relationship mapping is
done as a pre-step of implementation).

After all, you can only assemble what you are making after you are sure
you have all the parts.

Creating Our First Model

Since we started with the Game class, let’s keep working with it.
Properties

e -actors: Array
e -actor: Player
» -projectile: Projectile

o -game: Phaser.Game

15

CHAPTER 3 ORCHESTRATING OUR DOMAIN MODEL

Methods
o -manageAssets(): void
o -properties(): void
o -gameUpdate(): void

One thing you will quickly notice is the Game class only has private
member variables and methods. Along with being private, the methods are
all void functions as well, which means they do not return any value. They
just perform a static operation once invoked.

The Player Model

With no player, you can have no game, but with no game, you will have not
players. Next, let’s look at the next most important class: the Player.

+ player: Phaser.Sprite !
+ projectile: Projectile

+ controls: KeyBoardControl

+ playerstate: Map<string, boolean | nwmber>
+ hud: Hud

+ angularvelocity: nunber

f

+ oreatePlayer (Game): voiLd

+ assignPickup(Game, Player): votd
+ view(): void

- ereatePlayer (Game): vold

- addcontrols(): void

. attaohPh{.jsios(): void

Figure 3-2. Player class diagram

16

CHAPTER 3 ORCHESTRATING OUR DOMAIN MODEL

Properties
e +player: Phaser.Sprite
e +projectile: Projectile
e +controls: KeyBoardControl
e +playerState: Map
o angularVelocity: number
e +hud: Hud
Methods
o +createPlayer(game): void
o +view(): void
e -addControls(): void

e -attachPhysics(game): void

The Keyboard Model

To control the player we are going to need some sort of peripheral. We

are only building this game to be used with a keyboard, but you can easily
extend or create more classes of your own that handle any other type of
input. The keyboard is important, as it allows the player to move around
the screen and interact with the gaming world.

17

CHAPTER 3 ORCHESTRATING OUR DOMAIN MODEL

+ gaMCCOVt,troLs: any
[- pla yertnstance: Pla yer

+ wpdate(): void

Figure 3-3. Keyboard class diagram

Properties
e +gameControls: Controls
o -playerInstance: Player
Methods
o +update(): void
e Putting it all together

To create the simplest working model of our game, we need to take
some more actions for integrating our game with existing libraries. We
shall be using the powerful Phaser library to advance our game into the
future with its extremely rich features. The reason I have chosen this

framework was based on simplicity, popularity, and flexibility.

18

CHAPTER 3 ORCHESTRATING OUR DOMAIN MODEL

The most important part I find is that it includes a whole package of
utilities that help you, as a game developer, to be productive really fast.
Some of these features include a sprite engine, physics to control the
game’s collision, gravity or repulsion actions, animations, particles, and a
handy camera that may or may not follow the player around the screen.

This will make it much easier for you as a developer to add an
awesome feature to an already feature-rich application. Let’s map out our
game engine class, which will be Phaser.

Methods

e +preload(): void
e +create(): void
o +update(): void

The preload, create, and update functions are life cycle methods within
the Phaser framework. Life cycle methods are functions that are called by
the underlying framework (Phaser.js in this case), which runs at a specific
point in time in the framework’s life cycle. So for these methods we are
calling the Phaser library to run on preload (before creating the game), on
create (which creates the game world), and on update (updates the game
world). Both the preload and create functions are called once, while the
update function is called infinite times.

19

CHAPTER 3 ORCHESTRATING OUR DOMAIN MODEL

r 6/%/95

+ preload(): void
+ create(): void
+ wpdate(): vord

Figure 3-4. Engine class diagram

Our engine class will not have any properties because it will inherit the
properties from our game. This will give us full access to the parent class
and would be able to create the phaser engine inside of the engine class.

Like this, everything is nicely abstracted away. The Engine class
diagram should then resemble the following image.

20

CHAPTER 3 ORCHESTRATING OUR DOMAIN MODEL

) 6
Vars Ll . avie,
* 1
+ 'platja‘: Phﬂser.&pr{tc l - actors: Array (m5¢r>f
+ projectile: P'Qj”m - actor: Player
+ controls: KeyBoardControl ' - projectile: Projectile /
+ playerstate: Map<string, boolean | munber> - game: Phaser.Game
+ hud: Hud
L+ anguiarveloctty: mr?hcr - managesssets (): void
l - properties(): void
+ereateplager(): void L gameupdate(): void /
+view(): void

- addcontrols (): void
= attaahphasiu {Gawe): void

1 L fx;&/x

+ ereate(): void

é— gawecontrols: any / (’ + update(): void

+ preload(): void ;

- playertnstance: Player

a-’ + wpdate(): void {

Figure 3-5. Engine class diagram

Creating Our Directories

Now that we have our basic models on paper for our game, let’s start
creating some directories in our project. Personally, am a big proponent
of starting everything from scratch if the opportunity to learn something
arises. Around 5to 6 years ago, this was ok and reasonable to do.

These days it could cost you a day or even a whole week to get set up if
you are thinking about setting up your own build-street and project from
scratch. Solving NPM and dependency issues is something that is not easy
and increases in complexity the longer the software is in production.

21

CHAPTER 3 ORCHESTRATING OUR DOMAIN MODEL

If you are the curious sort (I hope you are :)), in your directory, open
up the “package.json” file inside while on the start branch and you will see
how much code from the dependency tree is actually needed to make this
a smooth ride. I recommend you hitch a ride and study what I have done
inside of the “start” branch. Once you clone the project by running, check
out the game repository if you have not yet done so.

Listing 3-1. git clone Command
git clone git@github.com:codeowl/Multiplayer-Phaser-game.git

After that, switch to the start branch

Listing 3-2. git checkout Branch Command

git checkout start

Note About environments: Having the same environment as each
other is a great thing. If anything goes wrong for any reason, it is
easier to debug and reduce engineering complications since our
project not only shares the same structure but the same codebase.

Directory Construction

The next step we should take after digesting our mental models of our
classes is to create a directory structure. There are two important things
one must consider before mapping out a directory structure that makes
sense not just to us but especially to others.

22

CHAPTER 3 ORCHESTRATING OUR DOMAIN MODEL

Some good practices for directory structures means semantically
separating your implementation by groups. This means grouping related
implementations or related functionality. A more complex structure might
entail the need to group directories if assets in a directory are being shared
by multiple implementors. A good approach would be to upgrade the
feature in question’s status in the hierarchy and promote it to the same
level as the root implementors. We shall be using a similar strategy in our

structure.

e public
o assets
o dist

e SIC
o client
e actors
e player

e controls

e engine
e game
e server

o shared (code shared between client and server)

Go ahead and validate if this is the structure inside of the start branch.
We shall continue with the implementation of the code in the following
section.

23

CHAPTER 3 ORCHESTRATING OUR DOMAIN MODEL

Conclusion

Having a clear blueprint of what we are building will make it considerably
easier to start thinking in code. Having just made the UMLs, we have
familiarized ourselves with the idea of how the game will function and
where the dependencies may lay. In the upcoming chapter, we can finally

focus on some code.

24

CHAPTER 4

Implementing Our
Game Domain Models

In this chapter we shall be covering the following: introduction to Phaser.js
and which features we will be utilizing. We will also implement the engine
class along with the Game, Player and Keyboard classes.

We have not been coding yet, but this chapter will change all of that.
We are going to implement the bare minimum to have a working game.

More features will be added to later chapters, as it is nice to see some
results quickly. An introduction to Phaser is also pretty handy to give us a
sense of what it is and why we need it.

About Phaser

Phaser is an awesome HTML5 game framework that works both on
Desktop and HTML5-capable mobile devices. It’s a framework because
it offers all of the tools you might need to build a game, instead of a small
subset of it.

Phaser ranges from a graphic to a gravity engine. It does so effectively by
incorporating other open-source engines like PIXI (http://www.pixijs.com).

The original version of this chapter was revised. A correction to this chapter is
available at https://doi.org/10.1007/978-1-4842-4249-0_11

© Oscar Lodriguez 2019 25
O. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0_4

http://www.pixijs.com
https://doi.org/10.1007/978-1-4842-4249-0_11

CHAPTER 4 IMPLEMENTING OUR GAME DOMAIN MODELS

Being a framework, though, does have its drawbacks. The more
features you include in one such engine also means the person wielding
all that power needs to know all of its features and how to use them
effectively.

Phaser supports all of the following features:

o Sprites: A sprite engine that controls rendering
based on images

e Scenes and pre-loaders: Ability to tie your applications
to multiple applications

e Physics: Allow the game to be more realistic by
adding weight to the world

o PIXI: Rendering engine

e Animation: Gives an easy API to create amazing
animations, fast

o Particle engine: Allow thousands of particles on-screen
for a positive effect

o Sanitized camera controls: Makes it easier to allow
the browser to focus on a specific action on the screen
at any time (the player, the enemy, or any specific
location)

e Mobile phone: Optimized for speed and allows gestures
to be performed and ties them with actual functions of
the game

e Input (keyboard, mouse): Standard and most used
keybindings are already included for you out of the box

e Sound: Allows for an easy API to make the game
perform sounds based off of actions

26

CHAPTER 4 IMPLEMENTING OUR GAME DOMAIN MODELS

The features we shall be using to make our game are the ones in bold.
Learning is done best through exploration and trial-and-error. I definitely
suggest you play around with the other features once you have your space
shooter up and running.

At the end of this book in a bonus chapter we shall allow mobile users
to connect to our game and play as well. That means creating a smaller
interface and being creative with user input.

Talking About Phaser...
Finally, Some Code!

In order to create any game using Phaser, we need to set up the phaser
game world so we can make use of the powerful framework. The following
code snippets will show and explain the steps for creating such an engine
for our game.

Listing 4-1. src/client/engine/phaser-engine.class.ts

export class PhaserSpaceGame extends Game implements LifeCycle

{

// The PhaserSpaceGame class will have one attribute,

// which is the game itself created by Phaser to power
our complete game with Phaser.

private game: Phaser.Game;

Next we shall add our constructor.

27

CHAPTER 4 IMPLEMENTING OUR GAME DOMAIN MODELS

Listing 4-2. src/client/engine/phaser-engine.class.ts

constructor() {
// the game object in our class and passing in 4 arguments
// width = 1024, height = 768,
// Phaser.AUTO will auto detect what the browser is capable
of (usually it's Phaser.CANVAS)
// And lastly we pass in the same of our game, which is
space-shooter
this.game = new Phaser.Game(1024, 768, Phaser.AUTO,
'space-shooter’, {
preload: this.preload,
create: this.create,
update: this.update

};

This is definitely where all the magic happens. Once this gaming world
is created by our chosen framework (Phaser.js), we can then leverage all
the benefits the framework has to offer. Phaser needs to create our project
(space-shooter), and once it has called all of the life cycles, it then has the
correct dependencies in place for it to work correctly.

Notice how we are implementing the life cycle interface? Phaser offers
us hooks to run code at specific time and places in our game life cycle.

We will take advantage of these life cycle hooks to populate the engine
with our game. Read more about Phaser’s life cycle here: http://www.
html5gamedevs.com/topic/1372-phaser-function-order-reserved-
names-and-special-uses/.

In the preload method we need to bootstrap the application.

28

http://www.html5gamedevs.com/topic/1372-phaser-function-order-reserved-names-and-special-uses/
http://www.html5gamedevs.com/topic/1372-phaser-function-order-reserved-names-and-special-uses/
http://www.html5gamedevs.com/topic/1372-phaser-function-order-reserved-names-and-special-uses/

CHAPTER 4 IMPLEMENTING OUR GAME DOMAIN MODELS

Listing 4-3. src/client/engine/phaser-engine.class.ts

public preload(): void {

}

// no need to set credentials for our requests are
happening on localhost
this.game.load.crossOrigin = 'anonymous';

// set the game's background to space
this.game.load.image('space', 'assets/background.jpg');

// if any shot is fired with the image laser, register the
bullet graphic
this.game.load.image('laser', 'assets/bullet.png');

// load the dust image
this.game.load.spritesheet('dust', 'assets/dust.png’, 64,
64, 16);

// load the explosion image
this.game.load.spritesheet('kaboom', 'assets/explosions.png',
64, 64, 16);

// load the power-up graphic
this.game.load.image('pickup', 'assets/pickup.png');

// load the ship graphic
this.game.load.spritesheet('shooter-sprite’,
"assets/ship.png', 32, 32);

public create(): void {

super.properties(this.game);
super.manageAssets(this.game);

29

CHAPTER 4 IMPLEMENTING OUR GAME DOMAIN MODELS

public update(): void {
super.gameUpdate(this.game);

TypeScript encourages the use of interfaces as well as helping us with
types. Let’s include the life cycle interface that Phaser offers us to our
Engine class.

Listing 4-4. src/client/engine/lifecycle.ts

export interface LifeCycle {
preload(): void;
create(): void;
update(): void;

The full code for our engine should look like that in Listing 4-5.

Listing 4-5. src/client/engine/phaser-engine.class.ts

import { Game } from "../game/game.class"”;

import { LifeCycle } from "./lifecycle";

export class PhaserSpaceGame extends Game implements LifeCycle {
private game: Phaser.Game;

constructor() {
super ();
this.game = new Phaser.Game(1024, 768, Phaser.AUTO,
'space-shooter', {
preload: this.preload,

30

CHAPTER 4 IMPLEMENTING OUR GAME DOMAIN MODELS

create: this.create,
update: this.update
IOk
}

public preload(): void {
const game = this.game.load;
game.crossOrigin = 'anonymous';
game.image('space', 'assets/background.jpg');
game.image('laser', 'assets/bullet.png');
game.spritesheet('dust', 'assets/dust.png’, 64,
64, 16);
game.spritesheet('kaboom', 'assets/explosions.png’, 64,
64, 16);
game.image('pickup', ‘'assets/pickup.png');
game.spritesheet('shooter-sprite', 'assets/ship.png',
32, 32);

}

public create(): void {
super.properties(this.game);
super.manageAssets(this.game);

}

public update(): void {
super.gameUpdate(this.game);

31

CHAPTER 4 IMPLEMENTING OUR GAME DOMAIN MODELS

The Player Model

Create a new TypeScript file called “player.class.ts” inside of the player

directory.

Listing 4-6. src/client/actors/player/player.class.ts

export class Player {

// create your member variables like we glanced over inside
// of our domain the player instance which will be a type of
// Phaser Sprite

public player: Phaser.Sprite;

// The player can be controlled with a keyboard

// KeyBoardControl class still does not exist at this point
so your IDE should complain about it not being there

public controls: KeyBoardControl;

// playerState will keep side effects our player will get
// during the course of the game. It will nicely embody all
// of the states in one object

public playerState: Map<string, boolean | number>;

// Through Phaser this is used to control the ship's velocity
// The math behind this is not going to be done by us, this
// is why we decided to go for the usage of Phaser, which
// will be more of a valuein your career.

public angularVelocity: number = 300;

We are making some assumptions based on our domain models as to

what the player class has and what it does.

32

CHAPTER 4 IMPLEMENTING OUR GAME DOMAIN MODELS

Here we start with what we know, with utmost certainty, that the player
contains and will be capable of doing. Next we shall add the methods that
we have in our model. We won'’t fill out anything yet, but we will map them
out and use our maps as guides for implementation.

Listing 4-7. src/client/actors/player/player.class.ts

export class Player {
public player: Phaser.Sprite;
public controls: KeyBoardControl;
public playerState: Map<string, boolean | number>;
public angularVelocity: number = 300;

// Most classes need a constructor method but it is still
optional
// In our Player constructor we shall initialize some
// members with initial values so we could use them
// throughout our Player class
constructor(private gameInstance: Phaser.Game,
public playerInstance: any) {
// Once we get information from the server we shall
// create the player with the correct phaser game instance
this.createPlayer(this.gameInstance);

// We also save a local copy of the player created by

// the server so we can reference the correct name and
coordinate

this.playerInstance = playerInstance;

// Lastly we shall be needing a place to keep all of our
// side effects. This will serve as a common container
// for all of our player states (ex: number of bullets
// fired, is the player moving?, etc)

this.playerState = new Map();

33

CHAPTER 4 IMPLEMENTING OUR GAME DOMAIN MODELS

34

// We shall need a way to create our players which are
// requested through other classes in our game Having a
// factory or a centralized way to create a player means
// that we run little risk of duplicating code

public createPlayer(): void {

}

// Our game will have some sort of loot drop system.

// If a player picks up a loot, we shall assign it to the
// player who picked it up

public assignPickup(): void {

}

// As changes happen through the game world, the player

// view will have to reflect these changes. The view is

// nothing more than a graphical representation of our
awesome spaceship

public view(): void {

}

// Once we instantiate the player we must attach some
controls to it!
private addControls(): void {

}

// Let's add an extra method to attach physics to our player
// Physics will be provided by Phaser's arcade implementation
// and will add a lot of liveliness to our game.

private attachPhysics(): void {

}

CHAPTER 4 IMPLEMENTING OUR GAME DOMAIN MODELS

Since creating the player is the most trivial, let’s create the logic for this
method first.

Listing 4-8. src/client/actors/player/player.class.ts

// When Instantiating a new player instance, we shall be needing
// the game world as an instance. This is so we can inject it
// directly into Phaser's created canvas.
public createPlayer(gameInstance): void {
// Attach the controls to this player's game world
this.addControls();

// Add the player to our world through Phaser.
this.player = gameInstance.add.sprite(
100, 100, 'shooter-sprite’

)5

// Set the anchor to center of the sprite
this.player.anchor.setTo(0.5, 0.5);

// To attach physics to our sprite, we need to call this
private class
this.attachPhysics(gameInstance);

Phaser Arcade Physics

Before we go into integrating more of Phaser’s features, Let’s take time to
talk about Phaser’s physics arcade engine. The arcade engine is one of the
simplest implementations of physics inside of the phaser framework. It is
all we shall need to implement our awesome space shooter.

35

CHAPTER 4 IMPLEMENTING OUR GAME DOMAIN MODELS

It will save us tons of performance and our game will not require a
more complicated/feature-rich physics implementation. To illustrate a
simple difference between Arcade and the p2 engine, consider the image
in Figure 4-1.

Figure 4-1. src/client/game/game.class.ts

The image on the left is showing the Arcade model, and the image on
the right is showing the more complex p2 engine model. Both are great, p2
is just more detailed, and with Arcade it is more performant as it has less
vector points for the collision body.

It is also much easier to implement and will allow us to see results
much quicker. To make our spaceship aware in the game world, we shall
need to attach Phaser’s physics to it. Let’s go ahead and add this to our
spaceship class. In the next class we shall incorporate these calls to enable
Phaser.js to add physics to any created ship.

Listing 4-9. src/client/actors/player/player.class.ts

// Pass the game instance so we can to the physics method to

// give it the correct phaser game instance to work with. Do

// not worry about this too much since we shall be covering
this in the following models

36

CHAPTER 4 IMPLEMENTING OUR GAME DOMAIN MODELS

private attachPhysics(gameInstance): void {
// using the Phasers game instance method we are attaching
// to the world and setting the physics mode to arcade
gameInstance.physics.enable(this.player, Phaser.Physics.
ARCADE);

// Let the player respect the browser edges. If you fly
further than the allocated space you will bounce and be
forced back into the game world

this.player.body.collideWorldBounds = true;

// If anything collides against our player, this is the
bounciness setting
this.player.body.bounce.setTo(10, 10);

// We are in space so let's set our space body to 0 gravity
this.player.body.gravity.y = 0;

// we do not want our spaceship to just stop out of nowhere
// when we stop accelerating. This drag indicates the

// momentum we bring along when flying around the screen
this.player.body.drag.set(80);

// Our max speed
this.player.body.maxVelocity.set(100);

// When another ship collides against us, we want to have a
reaction to that

// This means we should be moveable inside of the phaser
framework.

this.player.body.immovable = false;

37

CHAPTER 4 IMPLEMENTING OUR GAME DOMAIN MODELS

That will conclude our player class. The end result should look like that
in Listing 4-10.

Listing 4-10. src/client/actors/player/player.class.ts

export class Player {
public player: Phaser.Sprite;
public projectile: Projectile;
public controls: KeyBoardControl;
public playerState: Map<string, boolean | number>;
public angularVelocity: number = 300;

constructor(private gameInstance: any, public

playerInstance: any) {
this.createPlayer(this.gameInstance);
this.playerState = new Map();

}
public createPlayer(gameInstance): void {
this.addControls();
this.player = gameInstance.add.sprite(
100,
100,
'shooter-sprite’
)
this.player.id = "1";
this.player.anchor.setTo(0.5, 0.5);
this.player.animations.add('accelerating’,
[1, 0], 60, false);
this.player.name = "your name";
this.attachPhysics(gameInstance);
}

38

CHAPTER 4 IMPLEMENTING OUR GAME DOMAIN MODELS

public assignPickup(game, player?): void {
this.projectile = new Projectile(game, player.
player);
this.playerState.set('ammo’, this.projectile.
bulletCount);

}

public view(): void {
this.controls.update();
}

private addControls(): void {
this.controls = new KeyBoardControl(this.
gameInstance, this);

}

private attachPhysics(gameInstance): void {
gameInstance.physics.enable(this.player, Phaser.
Physics.ARCADE);
this.player.body.collideWorldBounds = true;
this.player.body.bounce.setTo(10, 10);
this.player.body.gravity.y = 0;
this.player.body.drag.set(80);
this.player.body.maxVelocity.set(100);
this.player.body.immovable = false;

39

CHAPTER 4 IMPLEMENTING OUR GAME DOMAIN MODELS

The Game Model

Our little spaceship needs a world to live in. It’s impossible to shoot your
friends when you do not both live in the same galaxy.

Listing 4-11. src/client/game/game.class.ts
export class Game {
// The game world members

// The game world will serve as our main application

// container. It will be the communication layer between

// our server and our client. With that in mind it makes
it a fairly busy class.

// first we are going to need a place where we store all
// of the players on the client-side
private actors: Array;

// Every game should also have a protagonist. Our main
protagonist will be stored like so
private actor: Player;

// The protected member variable will make much more
sense once we have created the Phaser Game engine.
protected game: Phaser.Game;

Let’s now add the methods created in our game. Remember that the
Game will never be instantiated, because the Phaser engine class we
have created first is extending and drawing properties for this class. So
that means we can also set up this class to have nice, compact, protected
methods that can only be implemented in subclasses.

40

CHAPTER 4 IMPLEMENTING OUR GAME DOMAIN MODELS

Listing 4-12. src/client/game/game.class.ts

protected manageAssets(): void {
// Use the manageAssets class control our game
creational lifecycle
// Which mainly means to turn on our event listeners!

}

protected gameUpdate(): void {
// Our busiest class! The update will be called 60 frames
// per second to update our game mode and our
// subscriptions mentioned above. Think of it as the
game's heartbeat. Now that everything is in place
The heart pumps life to all of our organs (modules) 12

}

protected properties(): void {

Implementing our game domain models

// We also should call the properties methods on the

// create lifecycle of the engine. This makes it much

// easier to set all of our game properties in one
place. Since it is our "game" properties, we should

// either put it in a game.config file or in the game
class directly.

In the end, our full game class will be much more complicated than
this. But let’s take it one step at a time. It’s better to introduce certain values
first and then take our time to upgrade the already earned knowledge,
instead of everything at once.

41

CHAPTER 4 IMPLEMENTING OUR GAME DOMAIN MODELS

Listing 4-13. src/client/game/game.class.ts

export class Game {

// since we do not have models yet. To stop your IDE from
complaining

// we shall change the types to any for now, until we
have created our

// game models.

private actors: Array;

private actor: any;

protected game: Phaser.Game;

protected manageAssets(): void { }

protected gameUpdate(): void {
// If the actor exists in our game. let's update it!
// We shall be making the controls in the next
section when we
// implement our keyboard class
if (this.actor && this.actor.controls) {
this.actor.view();

}
}

protected properties(): void {
// The properties below are mainly configurations
// the Phaser framework offers to use.

// Since we are making a multiplayer game it's

// crucial we are always updating the world.

// Removing the disability change means that our
game will always be running, even if we switch

// from windows whilst using our browsers

this.game.stage.disableVisibilityChange = true;

42

CHAPTER 4 IMPLEMENTING OUR GAME DOMAIN MODELS

// We have preloaded the space texture, here we are
setting it in
// our game
this.game.add.tileSprite(
0, 0,
this.game.width,
this.game.height,
"space’
)

this.game.add.sprite(0, 0, 'space');

// We want our game to be fast and furious! 60FPS
all the things
this.game.time.desiredFps = 60;

// clear before render will give us better
performance because we

// have a static background

this.game.renderer.clearBeforeRender = false;

// Set the correct physics engine for our game and
this.game.physics.startSystem(Phaser.Physics.ARCADE);

The Keyboard Model

Finally we shall need a way of controlling our player on the screen. Let’s

go for the easiest one to implement—the input module! Let’s first add

our instance properties of the keyboard, which will be used as our input

module of choice.

43

CHAPTER 4 IMPLEMENTING OUR GAME DOMAIN MODELS

Listing 4-14. src/client/controls/keyboard.class.ts

export class KeyBoardControl {
// The purpose of the KeyBoardControl class is to
delegate any player
// input to here. This keeps our logic in one central
place when it
// comes to character movement and actions

// since we do not have any models yet, create the
gameControls method

// and set it to any and an empty object

public gameControls: Controls;

Inside of the same directory, we shall create a model for our controls to
help us in the future of what the control object will require.

Listing 4-15. src/client/controls/keyboard.model.ts

export interface Controls {
// Having an interface will help us in the future as it
will hint to us
// and other developers what our model is expecting in
the end
cursors: Phaser.CursorKeys;
firelWeapon: Phaser.Key;

Now we can mainly focus on creating the functionality of the
keyboard itself. Let’s include the methods that will govern the control
of our spaceship. Creating a good API requires a lot of sympathy for the
developers, integrators, and your future self. So it is on us to come with
meaningful and logical names for our methods.

44

CHAPTER 4 IMPLEMENTING OUR GAME DOMAIN MODELS
Listing 4-16. src/client/controls/keyboard.class.ts

// add the player class to the imports

import {Player} from '../actors/player/player.class’;

// since the keyboard will not be called inside of this file,
let's export it
export class KeyBoardControl {

public gameControls: Controls;

// The keyboard class has two dependencies.
// The game world and the player instance
constructor(private gameInstance: any, private
playerInstance: Player) {
// Add the following definition of our gameControls
this.gameControls = {
// Keep records of the phaser's input keys in our
implementation
cursors: this.gameInstance.input.keyboard.
createCursorKeys(),

// We do not yet have the fire feature, but it's
good to add the
// functionality hook for it already. We are
telling Phaser at
// this point to react to spacebar input presses.
fireWeapon: this.gameInstance.input.keyboard.addKey(
Phaser.KeyCode.SPACEBAR

45

CHAPTER 4 IMPLEMENTING OUR GAME DOMAIN MODELS

46

// The heartbeat of the keyboard class is being called
outside.

// The game-loop created by phaser is responsible for
calling the update

// method on every iteration. Which is what we of course
hope, 60fps.

public update(): void {

// Wrap any logic here for when the player is alive
if (this.playerInstance.player.alive) {

// Update the player state if the player has fired
a shot
this.playerInstance.playerState.set('fire', false);

// Add a const for the player velocity

// To avoid a long method path add a small variable
to capture

// our static element of the player's velocity speed

const vel = this.playerInstance.angularVelocity;

// If the player is moving do the following
if (this.gameControls.cursors.up.isDown) {

// Get the current rotation of the player and
allow the

// player to move forward within the bounded
acceleration

// constraints

this.gameInstance.physics.arcade.

accelerationFromRotation(
this.playerInstance.player.rotation,
100,
this.playerInstance.player.body.acceleration);

CHAPTER 4 IMPLEMENTING OUR GAME DOMAIN MODELS

// Let's update the state if the player is
moving so we can

// notify the game world and later the other
players that

// this current player is currently moving.

this.playerInstance.player.animations.

play('accelerating');

this.playerInstance.playerState.set('moving’,

true);

} else {

}

// Our ship can only accelerate forward in
space at the

// moment, so if the player is not moving at
all, we can set

// the acceleration to 0 and reset the moving
state back to

// false. This lets the other players and the
game-world know

// that this spaceship is not moving anymore.

this.playerInstance.player.body.acceleration.

set(0);

this.playerInstance.playerState.set('moving’,

false);

// Logic for when the player is turning

if (this.gameControls.cursors.left.isDown) {

// Add the negative value to the Angular's
velocity to
// update the character when turning left.

47

CHAPTER 4 IMPLEMENTING OUR GAME DOMAIN MODELS

this.playerInstance.player.body.angularVelocity
= -vel;

} else if (this.gameControls.cursors.right.isDown) {

// Add the value to the Angular's velocity to
// update the character when turning right
this.playerInstance.player.body.
angularVelocity = vel

} else {

// If the user is not turning left, nor right
that means

// that the user is currently not turning at
all. So let's

// set the current degree to 0

this.playerInstance.player.body.

angularVelocity = 0;

Conclusion

Awesome! Now that all of the parts are created separately on their
separate islands, let’s hook them together in the upcoming chapter. We are
extremely close to actually seeing something on the screen. Before we get
too eager to see our work, it is good to get intimately associated with the
code. This will give you a better insight into our overall structure and how
you can add your own features.

In the following chapter, we will concentrate on getting a visibly
working program.

48

CHAPTER 5

Seeing It In Action

It’s that exciting time where we can actually see what we have been created
on screen! In this chapter, we shall be covering how to create relationship
between our implementations by putting all we have done together to
work in unison.

Code for this chapter is found on GitHub (https://github.com/
codeOowl/Multiplayer-Phaser-game/tree/chapter/4). This will let you
view what you already should have running locally. If you run “git checkout
chapter/4” in your terminal, you will checkout this chapter of the project.
While we have focused on the previous chapters to get the code into the
right place, this chapter will mostly focus on existing code and how to

make them interact with one another.

Hooking it All up Together

This is the easy part. TypeScript allows us to use ES15+ imports in our
code. If you are unfamiliar with this concept of “imports,” you can read
more about it here (https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Statements/import). I recommend clicking
and reading a bit more on that even if you are a seasoned developer who
has been working with JS for a couple of years. There are probably some
features you did not know about before.

The original version of this chapter was revised. A correction to this chapter is
available at https://doi.org/10.1007/978-1-4842-4249-0_11

© Oscar Lodriguez 2019 49
O. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0_5

https://github.com/code0wl/Multiplayer-Phaser-game/tree/chapter/4
https://github.com/code0wl/Multiplayer-Phaser-game/tree/chapter/4
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://doi.org/10.1007/978-1-4842-4249-0_11

CHAPTER 5 SEEING IT IN ACTION

We should go ahead and review the classes we have created so far and
add some adjustments so they know to create associations with each other
during the compilation phase. Do not worry about which adjustments just
yet, as they will be covered in the code section with their corresponding
descriptions. This is a lot of jargon for: “Let’s add some imports.” Let’s look
at our game final game engine file.

Listing 5-1. src/client/engine/phaser-engine.class.ts

import { Game } from
import { LifeCycle } from

../game/game.class";
"./lifecycle";

export class PhaserSpaceGame extends Game implements LifeCycle

{

private game: Phaser.Game;

constructor() {
super();
this.game = new Phaser.Game(1024, 768, Phaser.AUTO,
"space-shooter"', {
preload: this.preload,
create: this.create,
update: this.update

};
}

public preload(): void {
const game = this.game.load;
game.crossOrigin = 'anonymous';
game.image('space’, 'assets/background.jpg');
game.image('laser’, ‘'assets/bullet.png’);
game.spritesheet('dust', 'assets/dust.png', 64, 64, 16);

50

CHAPTER 5 SEEING IT IN ACTION

game.spritesheet('kaboom', 'assets/explosions.png’, 64,
64, 16);
game.image('pickup’, ‘assets/pickup.png’);
game.spritesheet('shooter-sprite', 'assets/ship.png’,
32, 32);

}

public create(): void {
super.properties(this.game);
super.manageAssets(this.game);

}

public update(): void {
super.gameUpdate(this.game);

The only addition is that we have added the import to our game class.
This way we tell the phaser engine class to use our game class specifically.

Our game class also has an association with our player class, as it is the
area where our game world and the player interact with one another. Our
game class should reflect what is shown in Listing 5-2.

Listing 5-2. src/client/actors/player/game.class.ts
import {Player} from '../actors/player/player.class’;
declare const window: any;

export class Game {
private actors: Array;
private actor: Player;

51

CHAPTER 5 SEEING IT IN ACTION

protected manageAssets(game): void {
this.actors = [];
// later will contain all of our game logic code
this.actor = new Player(game);

}

protected gameUpdate(game): void {
if (this.actor && this.actor.controls) {
this.actor.view();

}

protected properties(game): void {
game.stage.disableVisibilityChange = true;
game.add.tileSprite(o, 0, game.width, game.height,
"space');
game.add.sprite(0, 0, 'space');
game.time.desiredFps = 60;
game.renderer.clearBeforeRender = false;
game.physics.startSystem(Phaser.Physics.ARCADE);

Our game has an engine! That means we can go on and start hooking
up our player to the game world.

Listing 5-3. src/client/actors/player/player.class.ts

import {KeyBoardControl} from '../../controls/keyboard.class’;

export class Player {
public player: Phaser.Sprite;
public controls: KeyBoardControl;

52

CHAPTER 5 SEEING IT IN ACTION

public playerState: Map;
public angularVelocity: number = 300;

constructor(private gameInstance: Phaser.Game,
public playerInstance: any) {

// the any type for the player instance will be

resolved soon
this.createPlayer(this.gameInstance);
this.playerState = new Map();

public createPlayer(gameInstance): void {
this.addControls();
this.player = gameInstance.add.sprite(
100, 100, 'shooter-sprite’
);
this.player.id = '1';
this.player.anchor.setTo(0.5, 0.5);

this.player.animations.add('accelerating’, [1, 0],

60, false);
this.player.name = "Your name";
this.attachPhysics(gameInstance);

public view(): void {
this.controls.update();
}

private addControls(): void {

this.controls = new KeyBoardControl(this.

gameInstance, this);

53

CHAPTER 5 SEEING IT IN ACTION

private attachPhysics(gameInstance): void {
gameInstance.physics.enable(this.player, Phaser.
Physics.ARCADE);
this.player.body.collideWorldBounds = true;
this.player.body.bounce.setTo(10, 10);
this.player.body.gravity.y = 0;
this.player.body.drag.set(80);
this.player.body.maxVelocity.set(100);
this.player.body.immovable = false;

There is one more step to perform after setting up our keyboard
class. This is to include the “main.ts” file that will serve as our application
entry file. Before we get to the concepts of entry files, let’s make sure our
keyboard class has all the dependencies it needs to work.

Listing 5-4. src/client/controls/keyboard.class.ts

import {Player} from '../actors/player/player.class’;
import {Controls} from './keyboard.model’;

export class KeyBoardControl {
public gameControls: Controls;

constructor(private gameInstance: Phaser.game,
private playerInstance: Player) {
const space = Phaser.KeyCode.SPACEBAR;
this.gameControls = {
cursors: this.gameInstance.input.keyboard.
createCursorKeys(),
firelWeapon: this.gameInstance.input.keyboard.
addKey(space)

54

CHAPTER 5 SEEING IT IN ACTION

public update(): void {
if (this.playerInstance.player.alive) {
this.playerInstance.playerState.set('fire', false);
const vel = this.playerInstance.angularVelocity;
if (this.gameControls.cursors.up.isDown) {
this.gameInstance.physics.arcade.
accelerationFromRotation(
this.playerInstance.player.rotation,
100,
this.playerInstance.player.body.acceleration);
this.playerInstance.player.animations.
play('accelerating');
this.playerInstance.playerState.set('moving’, true);
} else {
this.playerInstance.player.body.acceleration.set(0);
this.playerInstance.playerState.set('moving’,
false);

}

if (this.gameControls.cursors.left.isDown) {
this.playerInstance.player.body.angularVelocity
= -vel;

} else if (this.gameControls.cursors.right.isDown)

this.playerInstance.player.body.angularVelocity
= vel;

} else {
this.playerInstance.player.body.angularVelocity = 0;

55

CHAPTER 5 SEEING IT IN ACTION

Finally, we discussed a bit about our project entry file. This is the main
application shell whose sole job is to load the application and instantiate
it. The main will import our index, which will import our whole game.
Applications are not that far away from novels. Consider the following
analogy. A book contains the game. The book is the main object, so let’s
call it the main. Inside of the main object, you will have an index that is
aware of all the parts of the book. This will be our “index.ts” file. Let’s start
with the index file.

Listing 5-5. src/client/index.ts

import {PhaserSpaceGame} from './client/engine/phaser-engine.class’;
new PhaserSpaceGame();

Voila! We are all done. We can now see our initial game in action by
running the following in our terminals. Head over to the project directory
with your terminal and run the following command.

Inside of our terminal or prompt, let's run the following command:
"npm start”

Conclusion

You may now view your game with the following on your localhost port
3000. You can also change the standard port inside of our “server.ts” file.
This way you can manage which port is best suitable for you. It’s pretty cool
that we have our game running, but it hardly feels or seems like a game

at all at this point in time. We should add more game functionality in the
following chapter so we can then show off to our friends!

56

CHAPTER 6

Projectiles!

We made it to Chapter 6! This is where we shall add the fun parts to the
game. We shall be setting up the props and also assigning new features to
our existing sprites! We shall also look at how we are allowing the user to
fire her laser beams.

Code for this chapter is found on GitHub or by checking out the
chapter/5 branch. Our spaceship is created and can move around the
screen. Let’s add a new feature that allows our spaceship to shoot! Phaser
comes with a handy ability to shoot/fire feature, as it has a built-in method
that we can call to assist us when adding our weapon.

Let’s set up a Projectile class that implements the idea of something
being launched from our spaceships. We shall only be implementing
the laser projectile. You are here encouraged to build homing seeking
rockets that follow the nearest enemy’s x,y coordinates! To start creating a
projectile class that wasn’t described in our original diagrams, we need to
comprehend first how the projectile will be attained.

The player in this instance will attain the projectile by the means of a
pickup, so the player will touch or fly over the item and then the pickup/
power-up will be assigned to the player. That hints to us that we shall need
a pickup class as well. Let’s start with that. We shall skip in making the
additional UMLs for now. But it is still a really good practice to update it
with our latest features. This will serve as a good source of documentation
for new team members and your future self.

© Oscar Lodriguez 2019 57
O. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0_6

CHAPTER6 PROJECTILES!

Pickup

A pickup in the gaming world includes items that a user can pickup. They
are also often referred to as “power-ups,” as they enhance the player’s
capabilities for a brief moment and then return the player back to normal.

Additional Folder Structure

We want to create a folder hierarchy that encapsulates our features like
we understand them in our game. This is not by any means the only
structure but it will help distinguish, before even writing code, what type
of hierarchy you will have in your implementations. Head into the src
directory.

Let’s go ahead and create the following folder structure to give our
feature a bit more shape and existence:

e client
e props
e powers

e pickup
e projectile

Inside the powers folder, we can create the two classes. The file
“pickup.class.ts” should be in the pickup folder, and the file “projectile.
class.ts” should be in the projectile folder.

e pickup
e pickup.class.ts
e projectile

e projectile.class.ts

58

CHAPTER6 PROJECTILES

We shall be leaving the projectile class empty for now. Inside of the
pickup.class.ts file, let’s implement the following:

Listing 6-1. src/client/props/powers/pickup/pickup.class.ts

export class Pickup {
// We shall need the item we would want to be able to
pickup. This
// Ttem will have to be accessible to other classes as
well, so we shall
// mark it as public
public item: Phaser.Sprite;

constructor(game, coors) {
// When generating the pickup, we want to pass two
arguments. One
// being the game instance we have created with
Phaser. This is
// needed to place the item into the phaser world
this.item = game.add.sprite(coors.x, coors.y,
‘pickup’);
// Since players can pick up the pickup item in
the game. We will
// add physics to the object, to detect if any
other Phaser
// objects have collided or overlapped with this
one pickup
game.physics.enable(this.item, Phaser.Physics.
ARCADE) ;

59

CHAPTER6 PROJECTILES!

Voila, now we need to assign items that can be picked up. I was
thinking something simple, like a laser that just shoots straight. Also, it
would have an ammunition count. So if the user runs out of ammo, they
would need to pick it up again. Next, we need to populate our projectile
class with functionality so it works as intended. The code section in
Listing 6-2 will provide the code in detail.

Listing 6-2. src/client/props/powers/projectile/projectile.class.ts

import {Pickup} from '../pickup/pickup.class’;

export class Projectile {
// member variables
// We can make use of Phaser's built-in weapons feature
to keep count
// and aim direction based on our ship's sprite
public weapon: Phaser.Weapon;

// Keeping the current count of the players ammunition
public bulletCount: number;

// Since we need to remove the pickup item from the game
area once the

// user has picked it up, we need a reference to the
projectile sprite

// item

public pickup: Pickup;

// To pass the projectile to the right user, we then
also need a

// reference of this user in our projectile class
private player: Phaser.Sprite;

// also let's go ahead and keep a reference of the game
instance as well

60

CHAPTER6 PROJECTILES!

// as we might need to directly populate our world with
the sprite

// graphic

private gameInstance: Phaser.Game;

public constructor(gameInstance, player?) {

// we will be needing to reference the game and the
player we are

// attaching the weapon on

}

public fireWeapon() {
// one other requirement is to able to shoot and
rid the galaxy of
// fowl enemies!

}

public renderPickup(coors): void {
// last but not least we need to let the
projectile class have
// its own graphic
// apart from being a pickup. This way the player
can visually see
// which pickup they are picking up and if they
want it or not

That is a good start, we know the private and public members of the
class. That makes it a lot easier for us to now populate the class with our
shooting projectile mechanics.

61

CHAPTER6 PROJECTILES!

Listing 6-3. src/client/props/powers/projectile/projectile.class.ts

// add a default bullet number you would like a pickup to
contain

// distribute. Make it a believable and fair number as games
can be very

// hard to balance correctly.

public bulletCount: number = 10;

public constructor(private gameInstance: Phaser.Game, player?) {
// using the built-in weapon manager from Phaser, assign
it to the
// weapon member and add the following properties.
this.weapon = this.gameInstance.add.weapon(10, ‘laser');
this.weapon.firelimit = this.bulletCount;
this.weapon.fireRate = 1000;

// next we do a bit of defensive programming to detect
if there is a
// player in the constructor
// we will understand soon why this is necessary, but it
// boils down to projectiles existing if a player exists.
if (player) {
this.player = player;
this.weapon.trackSprite(this.player, 10, 0, true);

public fireWeapon() {
// release the cannons!
this.weapon.fire();

62

public

CHAPTER6 PROJECTILES!

// here we shall update out bullet count after we have
fired
this.bulletCount = this.weapon.firelLimit - this.weapon.
shots;

renderPickup(): void {

// let's render our projectile as a pickup to display it
on the screen.

this.pickup = new Pickup(this.gameInstance, {x: 12, y: 12});

Our final implementation of our Projectile class should reflect the code

shown in Listing 6-4.

Listing 6-4. src/client/props/powers/projectile/projectile.class.ts

import {Pickup} from

../pickup/pickup.class’;

export class Projectile {

public weapon: Phaser.Weapon;
public bulletCount: number = 10;
public pickup: Pickup;

private player: Phaser.Sprite;

public constructor(private gameInstance: Phaser.Game,
player?) {

this.weapon = this.gameInstance.add.weapon(10, 'laser');
this.weapon.firelLimit = this.bulletCount;
this.weapon.fireRate = 1000;
if (player) {
this.player = player;
this.weapon.trackSprite(this.player, 10, 0, true);

63

CHAPTER6 PROJECTILES!

}
}
public fireWeapon() {
this.weapon.fire();
this.bulletCount = this.weapon.fireLimit - this.weapon.
shots;
}

public renderPickup(): void {
this.pickup = new Pickup(this.gameInstance, {x: 12,

y: 12});

Making it to the Big Screen

We are missing one small piece of the puzzle so far—that is, when do we
render the pickup on the screen and to what frequency? To see results
quickly we shall be sending the coordinates directly on the client side
when we instantiate our projectile class. Let’s refresh our memories.

All of the game logic will be in the game.ts file. This means that all of
the modules come together with business rules inside of one area. This
makes it easy to see what the rules of the games are.

For a much bigger project it is best to exclude the implementation and
avoid having everything in one giant file. This also means possibly having
the class and the implementation of the game rules on the same directory
but in separate files.

We shall be doing this in our final chapter when we refactor the lot. For
now let’s keep it simple and implement it directly without any abstractions.
Inside of game.class.ts file we will add the code from Listing 6-5.

64

CHAPTER6 PROJECTILES!

Listing 6-5. src/client/game/game.class.ts

protected manageAssets(game): void {
this.actors = [];
this.actor = new Player(game);

// create a new instance for our projectile which will
render the pickup

// graphic as well. We went for a composition approach
const projectile = new Projectile(game);

// after the instance has been created, just add water :)
projectile.renderPickup();

By adding the new projectile and having control when and where it
renders, we can place a graphic illustrating the type of power pickup the
player can eventually pickup. We still have a long way to go. We are missing
four fundamental features at the moment.

The first missing fundamental is the player having the ability to
pickup the power. This means we should modify the player class with an
assign pickup method. The second fundamental is a way to tell the game
engine that the player and the pickup have overlapped with each other and
to go ahead and assign the pickup to the player who was lucky enough to
get ammo.

Third, we need to update our keyboard class to allow the user to fire
her cannons while pressing the space bar on the keyboard. The final
fundamental is adding some sort of graphic that the player has picked up
the power up. We shall solve this by implementing a HUD.

The HUD will also show the total number of ammo and the remaining
ammo if the player decides to unleash her cannons. We shall solve the first
one pretty easily thanks to Phaser. Perform this operation with an overlap
method that we shall call during the game loop.

65

CHAPTER6 PROJECTILES!

Overlap

Phaser’s overlap component, as it is referred to in the documentation,
allows a game objects to validate if it overlaps with the bounds of any other
game world objects.

Phaser offers an extremely handy feature to detect when objects
in our game world have overlapped. We shall be using the colliding
feature as well, but for the pickup in particular. We need the overlapping
functionality.

Gimme the Gun!

Add a new method, assignPickup, to our player.class.ts file. It should reflect
the code in Listing 6-6.

Listing 6-6. src/client/actors/player/player.class.ts

// import the projectile class
import {Projectile} from '../../props/powers/projectile/
projectile.class';

export class Player {
public player: Phaser.Sprite;
public controls: KeyBoardControl;
public playerState: Map;
public angularVelocity: number = 300;
public projectile: Projectile;

constructor(private gameInstance: Phaser.Game,
public playerInstance: any) {
// the playerInstance type will be picked up by a
future section
this.createPlayer(this.gameInstance);

66

public

public

CHAPTER6 PROJECTILES

this.playerState = new Map();

createPlayer(gameInstance): void {
this.addControls();
this.player = gameInstance.add.sprite(
100,
100,
"'shooter-sprite’

)5

this.player.id = '1°';
this.player.anchor.setTo(0.5, 0.5);
this.player.animations.add('accelerating', [1, 0],
60, false); 26

this.player.name = "Your name";
this.attachPhysics(gameInstance);

assignPickup(game, player?): void {

// create a new instance of the projectile and
assign it

// immediately to the player who has picked up
the projectile

this.projectile = new Projectile(game, player.
player);

// update the player state indicating that the
player has ammo in

// her possession, let's set the ammo to the
projectile's default

// bullet count to make the source of truth at
one place

67

CHAPTER6 PROJECTILES!

this.playerState.set('ammo', this.projectile.
bulletCount);

}

public view(): void {
this.controls.update()
}

private addControls(): void {
this.controls = new KeyBoardControl(this.
gameInstance, this);

}

private attachPhysics(gameInstance): void {
gameInstance.physics.enable(this.player, Phaser.
Physics.ARCADE);
this.player.body.collideWorldBounds = true;
this.player.body.bounce.setTo(10, 10);
this.player.body.gravity.y = 0;
this.player.body.drag.set(80);
this.player.body.maxVelocity.set(100);
this.player.body.immovable = false;

Updating the Game

There needs to be a way we can tell Phaser that we have collision enabled
in our gaming world for it to act on it. The following update to our game.
class.ts file will make sure this is possible (see Listing 6-7).

68

CHAPTER6 PROJECTILES!
Listing 6-7. src/client/game/game.class.ts

import {Player} from '../actors/player/player.class’;
import {Projectile} from '../props/powers/projectile/
projectile.class’;

declare const window: any;

export class Game {
private actors: Array;
private actor: Player;

// promote the const to a member variable to be used
anywhere inside of

// our game class

private projectile: Projectile;

protected manageAssets(game): void {
this.actors = [];
this.actor = new Player(game, {x: 20, y:20});

// change the const to a member variable so we can
access it

// everywhere within the Game class
this.projectile = new Projectile(game);
this.projectile.renderPickup();

}

protected gameUpdate(game): void {

if (this.actor && this.actor.controls) {
this.actor.view();

// check if there is a projectile in the
game-world first

69

CHAPTER6 PROJECTILES!

// or the runtime compiler will crash
because it is not

// synced with our 60fps game render
if (this.projectile) {

// implement the overlap check
game.physics.arcade.overlap(
this.projectile.pickup.item,
this.actor.player,
(pickup, actor) => {
// once collided.
// Assign a projectile
pickup
// to our actor
this.actor.assignPickup(
game, this.actor
)
pickup.kill();

)5

}

protected properties(game): void {
game.stage.disableVisibilityChange = true;
game.add.tileSprite(0, 0, game.width, game.height,
"'space');
game.add.sprite(o, 0, 'space');
game.time.desiredFps = 60;

70

CHAPTER6 PROJECTILES!

game.renderer.clearBeforeRender = false;
game.physics.startSystem(Phaser.Physics.ARCADE);

Match up your implementation with this one to reflect the latest
changes. This will ensure our game world is listening for collisions. Next
we need to update our keyboard to let the game know when we want to fire
a projectile.

Updating the Keyboard with a Fire!

Our keyboard needs a way to communicate with our ship. Let’s implement
that next (see Listing 6-8).

Listing 6-8. src/client/controls/keyboard.class.ts

import {Player} from '../actors/player/player.class’;
import {Controls} from °./keyboard.model’;

export class KeyBoardControl {
public gameControls: Controls;
constructor(private gameInstance: any, private
playerInstance: Player) {
const space = Phaser.KeyCode.SPACEBAR;
this.gameControls = {

CUTSOrs:
this.gameInstance.input.keyboard.
createCursorKeys(),

firelWeapon: this.gameInstance.input.

keyboard.addKey(space)

71

CHAPTER6 PROJECTILES!

72

}

public update(): void {

if (this.playerInstance.player.alive) {

this.playerInstance.playerState.set('fire',

false);

const vel = this.playerInstance.

angularVelocity;

if (this.gameControls.cursors.up.isDown) {

this.gameInstance.physics.arcade.

accelerationFromRotation(
this.playerInstance.player.rotation,
100,
this.playerInstance.player.body.
acceleration);

this.playerInstance.player.animations
.play('accelerating");
this.playerInstance.playerState.
set('moving', true);
} else {
this.playerInstance.player.body.
acceleration.set(0);
this.playerInstance.playerState.
set('moving', false);

}

if (this.gameControls.cursors.left.isDown) {
this.playerInstance.player.body.
angularVelocity = -vel;

} else if (this.gameControls.cursors.right.

isDown) {

CHAPTER6 PROJECTILES

this.playerInstance.player.body.
angularVelocity = vel;

} else {
this.playerInstance.player.body.
angularVelocity = 0;

}

// add the ability to shoot
if (this.gameControls.fireWeapon.isDown) {
if (this.playerInstance.projectile) {

// use the projectile class to
fire the weapon
// and update it's internal ammo
count
this.playerInstance.projectile.
firelWeapon();

// update the player state to

firing, this will

// be used as a hook in the near

future for our

// multiplayer game

this.playerInstance.playerState
.set('fire', true);

// update the bullet count in the
player
this.playerInstance.playerState.
set('ammo’,
this.playerInstance.
projectile.bulletCount);
} else {

73

CHAPTER6 PROJECTILES!

// update the fire map to false

when the user has

// finished firing

this.playerInstance.playerState
.set(‘fire', false);

The HUD

One more thing is we need to do something for the HUD. The HUD, you
ask...? That is game terminology for a heads up display. It is a graphical
interface that games can implement to display information regarding the
player in the game or the game status. The main key for the HUD is to have
information available without the user having to look away from a specific
focal point. If you are interested in learning more about how a HUD came
about in interfaces, read the wiki page (https://en.wikipedia.org/wiki/
Head-up_display).

We shall build the much-needed HUD to represent the user’s current
ammunition and possibly the user name as well. Create a new directory
under the src/client/hud and then create another file called hud.class.ts.
The HUD will then have the properties in Listing 6-9.

74

https://en.wikipedia.org/wiki/Head-up_display
https://en.wikipedia.org/wiki/Head-up_display

CHAPTER6 PROJECTILES

Listing 6-9. src/client/hud/hud.class.ts
export class Hud {

// will be used to display visually the current state of
the ammo count
private ammo: Phaser.Text;

// we will add a feature where the user will be able to
add her name
private name: string;

// since we are in outer space, we need readable text.
here we are

// declaring a type of font and the color it will have
private style: { font, fill };

constructor() {
// declare the style to be used in the name and
ammo text
this.style = {
font: '10px Arial’,
fill: "#ffffff!

}

// Once the user has entered their name, we can grab that value
and add
// the text to the player they have just created
public setName(game, player): void {
this.name = game.add.text(o, 10,
player.name.substring(o, 6),
this.style

)5

75

CHAPTER6 PROJECTILES!

player.addChild(this.name);
}

// the update method will be used as a hook that will keep
rendering the
// initial ammo count
public update(ammo): void {
this.ammo.setText (" ${ammo ? ammo : “}°);

}

// an api is handy if we want to assign ammo to a weapon

and a player.

// We shall be making use of this method when the user

picks up the
// projectile
public setAmmo(game, player, weapon): void {
if (this.ammo) {
this.ammo.setText(“);

}

this.ammo = game.add.text(0, 25, weapon.
bulletCount, this.style);
player.addChild(this.ammo);

Once we have the initial implementation in place, we need to
implement the HUD class inside of the player class. This allows the

player to make use of her name and ammo count to display through the

HUD. Inside of our player class we shall update Listing 6-10.

76

CHAPTER6 PROJECTILES

Listing 6-10. src/client/actors/player/player.class.ts

import {KeyBoardControl} from '../../controls/keyboard.class’;
import {Projectile} from '../../props/powers/projectile/
projectile.class’;

// import the Hud class to be used inside of player

import {Hud} from '../../hud/hud.class’;

export class Player {
public player: Phaser.Sprite;
public controls: KeyBoardControl;
public playerState: Map;
public angularVelocity: number = 300;

// make the Hud public so we can access its APIs outside
of the player

// encapsulation

public hud: Hud;

public projectile: Projectile;

constructor(private gameInstance: Phaser.Game,
public playerInstance: any) {

}

public createPlayer(gameInstance): void {
// every player needs a Hud. This way we assign a
hud directly to
// the player and have access to read and writing
text for this
// player
this.hud = new Hud();

77

CHAPTER6 PROJECTILES!

// will have the value of 'your name' We shall
build the real name

// functionality after we make the hud work
this.hud.setName(gameInstance, this.player);

}

public assignPickup(game, player?): void {
this.projectile = new Projectile(game, player.
player);
this.playerState.set('ammo', this.projectile.
bulletCount);

// when the user picks up an ammo, we shall want
to update the hud
// through the api we have created.
this.hud.setAmmo(game, player.player, this.
projectile);

}

public view(): void {
this.controls.update();

// always check first if we have a projectile
instance on
// the player or we shall get a nasty null pointer
if (this.projectile) {
// take advantage of the game-loop to update
the ammo
// count if the player has been using her
projectiles

this.hud.update(this.playerState.
get('ammo"));

78

CHAPTER6 PROJECTILES

The final class with everything together should look like Listing 6-11.

Listing 6-11. src/client/actors/player/player.class.ts

import {KeyBoardControl} from
import {Projectile} from
projectile.

../../controls/keyboard.class’;
../../props/powers/projectile/

class';

import {Hud} from '../../hud/hud.class’;

export class Player {

public
public
public
public
public
public

player: Phaser.Sprite;

projectile: Projectile;

controls: KeyBoardControl;

playerState: Map<string, boolean | number>;
hud: Hud;

angularVelocity: number = 300;

constructor(private gameInstance: Phaser.Game, public

playerInstance: any) {
this.createPlayer(this.gameInstance);
this.playerState = new Map();

}
public

createPlayer(gameInstance): void {

this.hud = new Hud();
this.addControls();
this.player = gameInstance.add.sprite(

this.playerInstance.x,
this.playerInstance.y,
"'shooter-sprite’

79

CHAPTER6 PROJECTILES!

80

)5

this.player.id = '1';

this.player.anchor.setTo(0.5, 0.5);
this.player.animations.add('accelerating', [1, 0], 60,
false);

// will show up as 'your n' because of our name
shortener function

// found in the hud class

this.player.name = 'your name';

this.attachPhysics(gameInstance);
this.hud.setName(gameInstance, this.player);

}

public assignPickup(game, player?): void {
this.projectile = new Projectile(game, player.player);
this.hud.setAmmo(game, player.player, this.projectile);
this.playerState.set('ammo', this.projectile.bulletCount);

}

public view(): void {
this.controls.update();
if (this.projectile) {
this.hud.update(this.playerState.get('ammo"));

}

private addControls(): void {
this.controls = new KeyBoardControl(this.gameInstance,
this);

CHAPTER6 PROJECTILES!

private attachPhysics(gameInstance): void {
gameInstance.physics.enable(this.player, Phaser.
Physics.ARCADE);
this.player.body.collideWorldBounds = true;
this.player.body.bounce.setTo(10, 10);
this.player.body.gravity.y = 0;
this.player.body.drag.set(80);
this.player.body.maxVelocity.set(100);
this.player.body.immovable = false;

Conclusion

We need things to shoot at, though. Follow me in the next chapter as
we explore the server side and discover how we shall be adding more
spaceships in the galaxy.

81

CHAPTER 7

Hooking Up Our
Server

In this chapter, we shall be discussing how we are going to set up the server
along with socket communication as our internet protocol between the
server and client. We will then create and register the player through the
server and generate pickups/power-ups with random coordinates for the
player to pick up.

Code for this chapter is found on GitHub (https://github.com/
codeowl/Multiplayer-Phaser-game/tree/chapter/6). We have come a
long way space marine! I am afraid we are just halfway through our long

journey.

On to the Server Side of Things!

Luckily for us, the server is a place where we can use a fairly clean and
straightforward implementation without a heavy use of frameworks and
libraries. Our implementation is so small, we can arguably keep everything
in one file for simplicity. However, I highly encourage you to create
modules if you use this project as a base for your other projects!

© Oscar Lodriguez 2019 83
O. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0_7

https://github.com/code0wl/Multiplayer-Phaser-game/tree/chapter/6
https://github.com/code0wl/Multiplayer-Phaser-game/tree/chapter/6

CHAPTER 7 HOOKING UP OUR SERVER

Models and Events
Models

Correctly configuring our application by setting up our events and models
from the start saves us a lot of pain down the road by saving us time from
refactoring and reimplementing our logic. Create a new folder and file
inside of our src directory and call it shared. We can name the file models.ts.

// our spaceship model

export interface SpaceShip {
// we need a name
name: string;

// a way of identifying our vessel
id: string;

// x- and y-coordinates we shall be receiving from the

backend
X: number;
y: number;

// the current amount of ammo the player has
ammo: number; 15

Events

For our events, we shall be doing the same. Inside of the shared folder
located in src, let’s add a file called events.model.ts to encapsulate our
events model. The reason we need an events model is to create the types
of events we shall be using and where those events originate from. Are
they from the player, game, or the server? This file will keep track of these

constants so we can use them freely in our server and client-side code.

84

CHAPTER 7 HOOKING UP OUR SERVER
Listing 7-1. src/shared/events.model.ts

// Events produced by our game

export class GameEvent {
// When someone logs in successfully
public static authentication: string =
"authentication:successful';

// When the game is over
public static end: 'game:over';

// When the game started
public static start: 'game:start’;

// When a pickup or power-up has entered the arena
public static drop: string = 'drop’;

}

// Events produced by the Server

export class ServerEvent {
public static connected: string = 'connection’;
public static disconnected: string = 'disconnect’;

}

// Events produced by the player
export class PlayerEvent {

// When a enemy joins
public static joined: string = 'player:joined';

// When the main character joins
public static protagonist: string = 'player:protagonist’;

// When we ping all players
public static players: string = 'actors:collection';

85

CHAPTER 7 HOOKING UP OUR SERVER

// When a player dies or leaves
public static quit: string = 'player:left’;

// When a player picks up the loot
public static pickup: string = 'player:pickup’;

// When one gets hit
public static hit: string = 'player:hit';

// When the player moves we need to update the coordinates
public static coordinates: string = 'player:coordinates’;

Setting up Our Static File Server

Inside of our src directory, create a folder called server. After that, create

a file with the name server.ts. We shall begin by first integrating express.js
into our application. Doing so will run the server. The server then can serve
our static files to the client. You can read more about express.js on their
website (http://expressjs.com). We shall cover a subset of functionality
but it is always nice to know what the framework is capable of.

Listing 7-2. src/server/server.ts

// Express.js needs the following imports to work correctly. It
is also

// appointed in the order at which it needs the imports to be
declared.

const express = require('express');

const app = express();

const http = require('http').Server(app);

86

http://expressjs.com

CHAPTER 7 HOOKING UP OUR SERVER

// We definitely need a static file server. The fileserver's sole
// responsibility is to serve the public directory we have in
our project.

// The public server will be the artefact of our project.
Everything we

// create will be output in a bundled file with external images
and

// isolated in the public folder
app.use(express.static('public'));

// When the user visits our domain with no sub-domain. We shall
serve them
// our index.html file that contains the game and our login screen.
app.get('/', (req, res) => {

res.sendfile("./index.html™);

1

// GameServer class will be responsible to contain the logic of
our socket

// implementation.

class GameServer {

// The first and necessary public method we shall need is
a way to
// connect to a port. Here we are keeping it simple and
using Express'’
// easy http.listen method.
public connect(port) {

http.listen(port, () => {

console.info(Listening on port ${port}");

};

87

CHAPTER 7 HOOKING UP OUR SERVER

// create a new instance of our game server
const gameSession = new GameServer();

// then run the connect method with any port of your choosing.
gameSession.connect(3000);

Socket Connection

The WebSocket protocol we are going to use allows us to interact between
aweb client and a web server with lower overheads, in the process paving
the way for real-time data transfer bidirectionally to and from our server.

We can go on and fill out our server code with how to handle
multiplayer functionality. We shall complete the entire server code in small
digestible segments so we can move on and concentrate on a simple login
screen. This will allow the user to login and display their names under
their corresponding spaceships!

Listing 7-3. src/server/server.ts

import {GameEvent, PlayerEvent, ServerEvent} from './../shared/
events.model’;

import {SpaceShip} from '../shared/models’;

import Socket = SocketIO.Socket;

const express = require('express');

const app = express();

const http = require('http').Server(app);

const io = require('socket.io")(http);

const uuid = require('uuid");

app.use(express.static('public'));

app.get('/', (req, res) => {
res.sendfile("./index.html™);

};

88

CHAPTER 7 HOOKING UP OUR SERVER

class GameServer {

public connect(port) {

}

http.listen(port, () => {
console.info(Listening on port ${port}’);

};

constructor() {

}

// once we have initialized we shall call the
socket in to start

// listening to our events that we have yet have
to create

this.socketEvents();

private socketEvents() {

// called by our class constructor. We shall

leverage this as the

// sole place to call all of our events. It is

nothing more than an

// indirection for our event's functionality with

a socket layer.

// Here we are declaring that if the client is

connected to the

// port we are listening on. We want socket To

fire off a

// connected event

io.on(ServerEvent.connected, socket => {
this.attachListeners(socket);

};

89

CHAPTER 7 HOOKING UP OUR SERVER

private attachlListeners(socket) {
// Attach other events that we are interested in
once we know a
// user is connected to the assigned port

}

const gameSession = new GameServer();
gameSession.connect(3000);

Next, we will implement the event handlers (see Listing 7-4).

Listing 7-4. src/server/server.ts

import {GameEvent, PlayerEvent, ServerEvent} from './../shared/
events.model';

import {SpaceShip} from '../shared/models’;

import Socket = SocketIO.Socket;

const express = require('express');

const app = express();

const http = require('http').Server(app);

const io = require('socket.io')(http);

const uuid = require('uuid');

app.use(express.static('public'));

app.get('/', (req, res) => {
res.sendfile("./index.html™);

};

90

CHAPTER 7 HOOKING UP OUR SERVER
class GameServer {

private dirtyFlag: boolean = false;
constructor() {
this.socketEvents();

}

public connect(port) {
http.listen(port, () => {
console.info(Listening on port ${port}’);
1;
}

private socketEvents() {
io.on(Serverkvent.connected, socket => {
this.attachListeners(socket);
}s
}

private attachListeners(socket) {
// Create methods corresponding to our listener class
this.addSignOnListener(socket);
this.addMovementListener(socket);
this.addSignOutListener(socket);
this.addHitListener(socket);
this.addPickuplListener(socket);

}

private addHitListener(socket): void {
// called when a player gets hit

}

private addPickuplistener(socket): void {
// called when loot is picked up

91

CHAPTER 7 HOOKING UP OUR SERVER

private addMovementlListener(socket): void {
// called when player moves

}

private addSignOutListener(socket): void {
// called when user quits or dies

}

private addSignOnListener(socket): void {
// called when user logs on

}

const gameSession = new GameServer();
gameSession.connect(3000);

Our server fully implemented should reflect the information in
Listing 7-5.

Listing 7-5. src/server/server.ts

import {GameEvent, PlayerEvent, ServerEvent} from './../shared/
events.model';

import {SpaceShip} from '../shared/models’;

import Socket = SocketIO.Socket;

const express = require('express');

const app = express();

const http = require('http').Server(app);

const io = require('socket.io')(http);

const uuid = require('uuid");

app.use(express.static('public'));

92

CHAPTER 7 HOOKING UP OUR SERVER

app.get('/', (req, res) => {
res.sendfile(”./index.html™);

1

class GameServer {

// A simple Boolean to detect if the game has already been
started
private dirtyFlag: boolean = false;

constructor() {
this.socketEvents();

}

public connect(port) {
http.listen(port, () => {
console.info(Listening on port ${port});
1;
}

private socketEvents() {
io.on(ServerEvent.connected, socket => {
this.attachListeners(socket);
IOk
}

private attachListeners(socket) {
this.addSignOnListener(socket);
this.addMovementListener(socket);
this.addSignOutListener(socket);
this.addHitListener(socket);
this.addPickuplListener(socket);

93

CHAPTER 7 HOOKING UP OUR SERVER

94

private addHitListener(socket) {
// If the player has been hit, we get a player hit
event, including the
// player id, notifying the others that this specific
player has
// been struck
socket.on(PlayerEvent.hit, (playerId) => {

socket.broadcast.emit(PlayerEvent.hit, playerId);

D;

}

private gameInitialized(socket): void {
// initialize the game if the first user logs in
if (!this.dirtyFlag) {
this.dirtyFlag = true;

// Generate pickup loot every 10 seconds so the

players can

// replenish their ammo

setInterval(() => {
const coordinates = {x: Math.floor(Math.
random() * 1024) + 1, y: Math.floor(Math.
random() * 768) + 1};
socket.emit(GameEvent.drop, coordinates);
socket.broadcast.emit(GameEvent.drop,
coordinates);

}, 10000);

CHAPTER 7 HOOKING UP OUR SERVER

private addPickupListener(socket) {

// If the player picks up an item. Emit the pickup

event to notify

// the front end

socket.on(PlayerEvent.pickup, (player) => {
socket.player.ammo = player.ammo;
socket.broadcast.emit(PlayerEvent.pickup,
player.uuid);

1);

}

private addMovementlListener(socket) {
// Keep track of the player positions
socket.on(PlayerEvent.coordinates, (coors) => {
socket.broadcast.emit(PlayerEvent.coordinates,
{coors: coors, player: socket.player});
1);
}

private addSignOutlistener(socket): void {
// Detect if a player has died or has quit the session
socket.on(ServerEvent.disconnected, () => {
if (socket.player) {
socket.broadcast.emit(PlayerEvent.quit,
socket.player.id);

};

95

CHAPTER 7 HOOKING UP OUR SERVER

private addSignOnListener(socket): void {
// Detect if a player has joined the session
socket.on(GameEvent.authentication, (player, gameSize)
=> {
socket.emit(PlayerEvent.players, this.
getAllPlayers());
this.createPlayer(socket, player, gameSize);
socket.emit(PlayerEvent.protagonist,
socket.player);
socket.broadcast.emit(PlayerEvent.joined,
socket.player);
this.gameInitialized(socket);
1;
}

private createPlayer(socket, player: SpaceShip,
windowSize: { x, y }): void {
// here is where the magic happens. We create a new
player and add
// the following properties to her
socket.player = {
name: player.name,
id: uuid(),
ammo: 0,
x: this.randomInt(0, windowSize.x),
y: this.randomInt(0, windowSize.y)
};
}

private get players(): number {
// a method for collecting the total player length
return Object.keys(io.sockets.connected).length;

96

CHAPTER 7 HOOKING UP OUR SERVER

private getAllPlayers(): Array<SpaceShip> {
// We need a way to notify all of the players. Using
this method we
// can always get all of the current players logged
into our session
const players = [];
Object.keys(io.sockets.connected).map((socketID) => {
const player = io.sockets.connected[socketID].
player;
if (player) {
players.push(player);
}
1;

return players;

}

private randomInt(low, high) {
// for generating random coordinates, we shall be using
this one a
// lot as we are generating both random coordinates for
our players
// and our loot
return Math.floor(Math.random() * (high - low) + low);

}

const gameSession = new GameServer();

gameSession.connect(3000);

97

CHAPTER 7 HOOKING UP OUR SERVER

Back to the Client

This, of course, bakes in a lot of new functionality that our game can

muster. Let’s head back and update our initial game file located on the

client side.

Listing 7-6. src/client/game/game.ts

import {Player} from

../actors/player/player.class’;

import {Projectile} from '../props/powers/projectile/

projectile.class';
// import our created events

import {GameEvent, PlayerEvent} from

../../shared/events.

model’;

declare const window: any;

export class Game {

98

private actors: Array<Player>;
private actor: Player;
private projectile: Projectile;

// create a new socket io session
constructor() {
window.socket = io.connect();

}

protected manageAssets(game): void {
this.actors = [];

// Once the server has detected that a new player has
joined we

// shall notify our client to create a new player for
us on

CHAPTER 7 HOOKING UP OUR SERVER

window.socket.on(PlayerEvent.joined, (player) => {
this.actors.push(new Player(game, player));

};

// Once you have joined (the protagonist) we need a

special event

// for you. This so we can determine that you are the

main player in

// your world and the others are your enemy

window.socket.on(PlayerEvent.protagonist, (player) => {
this.actor = new Player(game, player);
this.actors.push(this.actor);

};

window.socket.on(PlayerEvent.players, (players) => {
// If a new player or a returning player joins our
game. We
// shall collect all of the players and their
current states and
// update their clients with the data. This way
what he is
// seeing is not any different to what others are
seeing
players.map((player: any) => {
const enemy = new Player(game, player);
if (player.ammo) {
enemy.assignPickup(game, enemy);
}
this.actors.push(enemy);
1);
1);

99

CHAPTER 7 HOOKING UP OUR SERVER

window.socket.on(PlayerEvent.quit, (playerId) => {
// If a player dies or quits, we call the following
actions on
// the actors array.
// First we filter who quit or died and then move
to removing
// them from the game world
this.actors
.filter(actor => actor.player.id === playerId)
.map(actor => actor.player.body.sprite.destroy());
1);

window.socket.on(GameEvent.drop, (coors) => {
// our server will be causing a loot drop every 10
seconds. When
// this happens we want to act upon it.

// if there is already a loot in our world, we

shall remove it

// before placing the new one.

if (this.projectile) {
this.projectile.pickup.item.kill();

}

// create a new loot every 10 seconds and pass the
coordinates

// sent by the server

this.projectile = new Projectile(game);
this.projectile.renderPickup(coors);

};

100

CHAPTER 7 HOOKING UP OUR SERVER

window.socket.on(PlayerEvent.hit, (enemy) => {

};

// similar to when a player quits we detect who the
player was
// and reload their client so they get brought back
into the
// game to try again if they dare face you again!
this.actors
.filter(actor => this.actor.player.id === enemy)
.map(actor => window.location.reload());

window.socket.on(PlayerEvent.pickup, (player) => {

};

// Once the projectile has been picked up, we shall
assign it to
// the user that has picked it up
this.actors
.filter(actor => actor.player.id === player)
.map(actor => actor.assignPickup(game, actor));

// kill the pick for the other players as well
this.projectile.pickup.item.kill();

window.socket.on(PlayerEvent.coordinates, (player) => {

// This is the heart of our multiplayer game.
Because here we

// decided to keep track of all of the other
players actions in

// our gameworld, if a new player joins, he or she
needs to be

// aware of who is already in the game world and
what their ammo

101

CHAPTER 7 HOOKING UP OUR SERVER

102

1

// levels are. We in the industry call this the

current state.
this.actors.filter((actor: Player) => {

};

if (actor.player.id === player.player.id) {

actor.player.x = player.coors.x;
actor.player.y = player.coors.y;
actor.player.rotation = player.coors.r;

// Update the player hud
if (actor.projectile) {
actor.hud.update(player.coors.a);

}

// detect if the player is shooting
if (player.coors.f) {
actor.projectile.firelWeapon();

}

if (player.coors.m) {
// if the enemy player is moving, we
shall add the

// moving animation to their ship. This

way in our

// screen we do not see him moving
about without any

// thrusters!
actor.player.animations.
play('accelerating');

CHAPTER 7 HOOKING UP OUR SERVER

protected gameUpdate(game): void {
// This method is called through the Phaser engine
class we
// created before. This means that it is running an
endless loop to
// update in real time what the characters are up to.
Someone needs
// to keep an eye on them!
if (this.actor && this.actor.controls) {

this.actor.view();

// During the loop we shall constantly be emitting
the state of
// our player. Once we have a change in our
coordinates or if we
// are firing, a new event is triggered which will
in turn notify
// the server whom will notify the other connected
clients
window.socket.emit(PlayerEvent.coordinates, {

x: this.actor.player.position.x,
: this.actor.player.position.y,
: this.actor.player.rotation,
: this.actor.playerState.get('fire'),
: this.actor.playerState.get('moving"),

v S H H X

: this.actor.playerState.get('ammo")
1);

// In the loop we shall also check if the player
collides with
// another player. If they do, we shall make the
arcade engine

103

CHAPTER 7 HOOKING UP OUR SERVER

104

// do it's default action, which is to let them
bounce off of

// each other because of the player properties we
added when

// creating the player
game.physics.arcade.collide(

this.actor.player,

this.actors.map(actor => actor.player)
)
// If the bullet collides with a player, we need a
way to

// tell both the player and the bullet to destroy
themselves.
// Here we are matching whether if the fired bullet
collided with an
// enemy based on the id of that enemy. If so
destroy both
// sprites. Once destroyed they will notify the
server so every
// client will be updated of the event.
if (this.actor.projectile) {
game.physics.arcade.collide(
this.actor.projectile.weapon.bullets,
this.actors.map((actor) => actor.player),
(enemy, projectile) => {
if (enemy.id !== this.actor.player.id) {
// make the player explode
this.actor.projectile.
kaboom(projectile);
// update the server about the
player who has

CHAPTER 7 HOOKING UP OUR SERVER

// been hit and pass along the id
window.socket.emit(PlayerEvent.hit,
enemy.id);

// destroy the sprites in the view
projectile.kill();
enemy.kill();

)5
}

// this time we shall be using the overlap to
detect if the
// player has picked up a projectile
// first we detect which player it is who has
overlapped with
// the pickup.
// then we notify all of the listeners who it was.
// lastly we destroy the pickup
if (this.projectile) {
game.physics.arcade.overlap(this.projectile.
pickup.item,
this.actors.map((actor) => actor.player),
(pickup, actor) => {

this.actors
.filter(actorInstance =>
actor.id === actorInstance.
player.id

105

CHAPTER 7 HOOKING UP OUR SERVER

.map(actorInstance =>
actorInstance.assignPickup
(game, actorInstance)
)5
window.socket.emit(PlayerEvent.pickup, {
uuid: actor.id,
ammo: true
}s
pickup.kill();
}s

}

protected properties(game): void {
game.stage.disableVisibilityChange = true;
game.add.tileSprite(0, 0, game.width, game.height,
"space');
game.add.sprite(0, 0, 'space');
game.time.desiredFps = 60;
game.renderer.clearBeforeRender = false;
game.physics.startSystem(Phaser.Physics.ARCADE);

Marvelous Explosions!

This would mean that we have a semi-functioning game! But remember
how we wanted to kill the player and we have implemented a kaboom
method. Well the player does not have this method yet, so let’s update the
player to be allowed to be destroyed in a marvelous explosion! Inside of

106

CHAPTER 7 HOOKING UP OUR SERVER

our props folder, create a new directory called “explosion.” Inside of the
newly created directory, create a file called explosion.class.ts.

Listing 7-7. src/client/props/explosion/explosion.class.ts

export class Explode {
// the explosions property will be a phaser sprite
private explosions: Phaser.Sprite;

constructor(gameInstance, projectile) {
// let's add the sprite and give it a graphic that
we already have
// in our start project called kaboom
this.explosions = gameInstance.add.sprite(64, 64,
"kaboom');

// We also have an animation that will play this
kaboom! :D
this.explosions.animations.add('kaboom");

// We shall need an offset to center the explosion

on our

//sprites

this.explosions.reset(projectile.body.x + -20,
projectile.body.y - 30);

// Phaser offers us a play method for animations
to be played and

// will commence as soon as the explode class is
created
this.explosions.animations.play('kaboom', 15,
false);

// after half a second of the animation playing we
shall

107

CHAPTER 7 HOOKING UP OUR SERVER

// kill the sprite to release its burden on our
memory
setTimeout(() => {
this.explosions.kill();
}, 500);

Back in our projectile class, we want to look at different usages of
projectiles to determine how they impact a certain enemy or object.
Implementing kaboom, which is an explosion with fire in space... hum,
means that all of our ships will destroy the same way, but what if there was
another projectile? Wouldn't it be awesome if that projectile had another
way of killing our targets? Let’s say a vaporizing ray? With that reasoning in
mind, let’s create the kaboom method in the projectile class (see Listing 7-8).

Listing 7-8. src/client/props/powers/projectile/projectile.class.ts

import {Pickup} from '../pickup/pickup.class’;

export class Projectile {
public weapon: Phaser.Weapon;
public bulletCount: number = 10;
public pickup: Pickup;
private player: Phaser.Sprite;

public constructor(private gameInstance: Phaser.Game,
player?) {
this.weapon = this.gameInstance.add.weapon(10,
'laser');
this.weapon.firelLimit = this.bulletCount;
this.weapon.fireRate = 1000;

108

CHAPTER 7 HOOKING UP OUR SERVER

if (player) {
this.player = player;
this.weapon.trackSprite(this.player, 10, 0, true);

}
}
public fireWeapon() {
this.weapon.fire();
this.bulletCount = this.weapon.fireLimit - this.weapon.
shots;
}

public renderPickup(): void {
this.pickup = new Pickup(this.gameInstance,
{x: 12, y: 12});

}

// our kaboom class is fairly short and straightforward
public kaboom(projectile) {
// all we need is a new class instance with the
following arguments
new Explode(this.gameInstance, projectile);

Conclusion

To make our game work, we need to add one more thing. There are a lot

of features we are adding quickly, but this is the last one, as it will help our

user identify their spaceship on-screen! Follow me to the next section with

the mission of telling the galaxy your name.

109

CHAPTER 8

The World Should
Remember Your Name

In this chapter, we shall be discussing -the login screen for acquiring the
user name. The game code for this chapter is found on GitHub (https://
github.com/codeowl/Multiplayer-Phaser-game/tree/chapter/7).
You have rid the galaxy of foes and evil-doers, but there is no way of ever
knowing your name! We are not masked crusaders, we are people and
want credit where it's due dammit! We need an input field where the
user can enter their name into our game, so we can save it somewhere
and display it under the spaceship. Hmmm. Consider the following
proposition.

Login

We build a login scene, where the user is met with an input field where
she can type her name. After that, she will then be presented with the
galaxy with her name right under her ship. In this final chapter, we shall be

implementing such a login screen.

© Oscar Lodriguez 2019 111
O. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0_8

https://github.com/code0wl/Multiplayer-Phaser-game/tree/chapter/7
https://github.com/code0wl/Multiplayer-Phaser-game/tree/chapter/7

CHAPTER 8 THE WORLD SHOULD REMEMBER YOUR NAME

Listing 8-1. src/client/scenes/login.class.ts

// import our game event model so we can use it to notify when
the user has

// been logged into our game!

import {GameEvent} from '../../shared/events.model’;

declare const window: any;
export class LoginScene {

public formContainer: HTMLDivElement;
public loginPage: HTMLDivElement;
public form: HTMLDivElement;

public loginForm: HTMLFormElement;
public input: HTMLInputElement;
public button: HTMLButtonElement;
private name: any;

constructor() {
this.createForm()

}

private createForm() {
// fairly straightforward DOM manipulation syntax for
our form. Feel
// free to use this one or create your own sassy form
this.formContainer = document.createElement('div');
this.formContainer.className = 'form-container';

this.loginPage = document.createElement('div');
this.loginPage.className = 'login-page’;

this.form = document.createElement('div');
this.form.className = 'form';

112

CHAPTER 8 THE WORLD SHOULD REMEMBER YOUR NAME
this.loginForm = document.createElement('form"');

this.input = document.createElement('input');
this.input.setAttribute('type', 'text');
this.input.placeholder = 'username’;
this.input.id = 'your-name';
this.input.focus();

this.button = document.createElement('button');
this.button.innerText = 'Join game';
this.button.addEventListener('click', (e) => this.
createPlayer(e));

this.loginForm.appendChild(this.input);
this.loginForm.appendChild(this.button);
this.loginPage.appendChild(this.form);
this.form.appendChild(this.loginForm);
this.formContainer.appendChild(this.loginPage);

document.body.appendChild(this.formContainer);
}

private createPlayer(e): void {
// once the player has been created. We want to remove
the login
// screen and show the game
e.preventDefault();

// remove the login screen
this.togglelLogin();

// save the name value the user entered
const name = this.input.value;

113

CHAPTER 8 THE WORLD SHOULD REMEMBER YOUR NAME

// ship the following payload to the server.
window.socket.emit(GameEvent.authentication, {name}, {
X: window.innerWidth,
y: window.innerHeight

1
}

// the private method called within our class that

toggles the

// visibility of our login form

private togglelLogin(): void {
this.formContainer.classList.toggle('visible"');

We will be implementing this login screen also in our “game.ts” file.
Let’s do so now! :))))

Listing 8-2. src/client/game/game.ts

import {Player} from '../actors/player/player.class’;
import {Projectile} from '../props/powers/projectile/
projectile.class’;

import {GameEvent, PlayerEvent} from
model’;

../../shared/events.

declare const window: any;

export class Game {
public login: LoginScene;
private actors: Array<Player>;
private actor: Player;
private projectile: Projectile;

114

CHAPTER 8 THE WORLD SHOULD REMEMBER YOUR NAME

constructor() {
window.socket = io.connect();
// create the new instance for the login screen
this.login = new LoginScene();

Since we are now rendering the pickup from the server, we need to
update our projectile class as well. Instead of passing the hard object we
can literally pass in the real coordinates!

Listing 8-3. src/client/props/powers/projectile/projectile.class.ts

import {Pickup} from '../pickup/pickup.class’;

export class Projectile {
public weapon: Phaser.Weapon;
public bulletCount: number = 10;
public pickup: Pickup;
private player: Phaser.Sprite;

public constructor(private gameInstance: Phaser.Game,
player?) {
this.weapon = this.gameInstance.add.weapon(10,
'laser');
this.weapon.fireLimit = this.bulletCount;
this.weapon.fireRate = 1000;
if (player) {
this.player = player;
this.weapon.trackSprite(this.player, 10, 0, true);

115

CHAPTER 8 THE WORLD SHOULD REMEMBER YOUR NAME

public fireWeapon() {
this.weapon.fire();
this.bulletCount = this.weapon.firelLimit - this.weapon.
shots;

}

public renderPickup(coors): void {
// pass in the coors we get from the server through our
game class
this.pickup = new Pickup(this.gameInstance, coors);

}

public kaboom(projectile) {
new Explode(this.gameInstance, projectile);

While we are at it, let’s update our player class to also take the real data
and not the stub we created earlier.

Listing 8-4. src/client/actors/player/player.ts

import {KeyBoardControl} from
import {Projectile} from '../../props/powers/projectile/
projectile.class’;

import {Hud} from '../../hud/hud.class’;

../../controls/keyboard.class’;

export class Player {
public player: Phaser.Sprite;
public projectile: Projectile;
public controls: KeyBoardControl;
public playerState: Map<string, boolean | number>;
public hud: Hud;
public angularVelocity: number = 300;

116

CHAPTER 8 THE WORLD SHOULD REMEMBER YOUR NAME

constructor(private gameInstance: Phaser.Game, public

playerInstance: any) {

}

this.createPlayer(this.gameInstance);
this.playerState = new Map();

public createPlayer(gameInstance): void {

}

this.hud = new Hud();

this.addControls();

// update to include the playerInstance instead
this.player = gameInstance.add.sprite(this.
playerInstance.x, this.playerInstance.y,
"shooter-sprite');

// update to include the playerInstance instead
this.player.id = this.playerInstance.id;
this.player.anchor.setTo(0.5, 0.5);

this.player.animations.add('accelerating', [1, 0], 60,

false);

// update to include the playerInstance instead
this.player.name = this.playerInstance.name;
this.attachPhysics(gameInstance);
this.hud.setName(gameInstance, this.player);

public assignPickup(game, player?): void {
this.projectile = new Projectile(game, player.player);
this.hud.setAmmo(game, player.player, this.projectile);

this.playerState.set('ammo', this.projectile.
bulletCount);

117

CHAPTER 8 THE WORLD SHOULD REMEMBER YOUR NAME

public view(): void {
this.controls.update();
if (this.projectile) {
this.hud.update(this.playerState.get('ammo"));

}

private addControls(): void {
this.controls = new KeyBoardControl(this.gameInstance,
this);

}

private attachPhysics(gameInstance): void {
gameInstance.physics.enable(this.player, Phaser.
Physics.ARCADE);
this.player.body.collideWorldBounds = true;
this.player.body.bounce.setTo(10, 10);
this.player.body.gravity.y = 0;
this.player.body.drag.set(80);
this.player.body.maxVelocity.set(100);
this.player.body.immovable = false;

It would be nice if we also added an effect when any item has
entered the game world. This way we discern much easier what has been
changed in our game world. Inside of our props folder, let’s create a new
directory called particle. Inside the new folder create a new file called
“particle.class.ts”.

118

CHAPTER 8 THE WORLD SHOULD REMEMBER YOUR NAME

Listing 8-5. src/client/props/particle/particle.class.ts
export class Particle {

// add a member to the particle class that keeps the
instance of the

// phaser sprite.

private particle: Phaser.Sprite;

constructor(gameInstance: Phaser.Game, sprite: Phaser.
Sprite) {
// we already have graphic and animation waiting, so
let's use that // one.
this.particle = gameInstance.add.sprite(64, 64, 'dust');
this.particle.animations.add('dust');
this.particle.reset(sprite.body.x + -20, sprite.
body.y - 30);
this.particle.animations.play('dust', 16, false);

setTimeout(() => {
// after the animation we can just kill the sprite.
this.particle.kill();

}, 1000);

Once the particle class is in place, we need to rationalize where and
when we shall be using it. I think personally it would work well when a new
player has joined the game but also when the server generates a loot drop.
Your final player class will look like this:

import {KeyBoardControl} from '../../controls/keyboard.class’;
import {Projectile} from '../../props/powers/projectile/
projectile.class’;

import {Hud} from '../../hud/hud.class’;

119

CHAPTER 8 THE WORLD SHOULD REMEMBER YOUR NAME

import {Particle} from '../../props/particle/particle.class’;

export class Player {

120

public
public
public
public
public
public

player: Phaser.Sprite;

projectile: Projectile;

controls: KeyBoardControl;

playerState: Map<string, boolean | number>;
hud: Hud;

angularVelocity: number = 300;

private particle: Particle;

constructor(private gameInstance: Phaser.Game, public

playerInstance: any) {
this.createPlayer(this.gameInstance);
this.playerState = new Map();

}
public

createPlayer(gameInstance): void {

this.hud = new Hud();
this.addControls();
this.player = gameInstance.add.sprite(this.

playerInstance.x,

this.playerInstance.y, 'shooter-sprite');

this.player.id = this.playerInstance.id;
this.player.anchor.setTo(0.5, 0.5);
this.player.animations.add('accelerating', [1, 0], 60,
false);

this.player.name = this.playerInstance.name;
this.attachPhysics(gameInstance);
this.hud.setName(gameInstance, this.player);
this.particle = new Particle(gameInstance, this.player);

CHAPTER 8 THE WORLD SHOULD REMEMBER YOUR NAME

public assignPickup(game, player?): void {
this.projectile = new Projectile(game, player.player);
this.hud.setAmmo(game, player.player, this.projectile);
this.playerState.set('ammo’, this.projectile.
bulletCount);

}

public view(): void {
this.controls.update();
if (this.projectile) {
this.hud.update(this.playerState.get('ammo"));

}

private addControls(): void {
this.controls = new KeyBoardControl(this.gameInstance,
this);

}

private attachPhysics(gameInstance): void {
gameInstance.physics.enable(this.player, Phaser.
Physics.ARCADE);
this.player.body.collideWorldBounds = true;
this.player.body.bounce.setTo(10, 10);
this.player.body.gravity.y = 0;
this.player.body.drag.set(80);
this.player.body.maxVelocity.set(100);
this.player.body.immovable = false;

121

CHAPTER 8 THE WORLD SHOULD REMEMBER YOUR NAME

We now need to add the same particle implementation for both the
projectile and pickup classes.

Listing 8-6. src/client/props/powers/projectile/projectile.class.ts

import {Explode} from '../../explosion/explosion.class’;
import {Pickup} from '../pickup/pickup.class’;
import {Particle} from '../../particle/particle.class’;

export class Projectile {
public weapon: Phaser.Weapon;
public bulletCount: number = 10;
public pickup: Pickup;
private player: Phaser.Sprite;
private gameInstance: Phaser.Game;
private particle: Particle;

public constructor(gameInstance, player?) {
this.gameInstance = gamelnstance;
this.weapon = gameInstance.add.weapon(this.bulletCount,
'laser');
this.weapon.firelLimit = this.bulletCount;
this.weapon.fireRate = 1000;
if (player) {
this.player = player;
this.weapon.trackSprite(this.player, 10, 0, true);

}
}
public fireWeapon() {
this.weapon.fire();
this.bulletCount = this.weapon.firelLimit - this.weapon.
shots;
}

122

CHAPTER 8 THE WORLD SHOULD REMEMBER YOUR NAME

public renderPickup(coors): void {
this.pickup = new Pickup(this.gameInstance, coors);
this.particle = new Particle(this.gameInstance, this.
pickup.item);

}

public kaboom(projectile) {
new Explode(this.gameInstance, projectile);

}
}
Do the same for the pickup class by adding the particle inside of the
constructor.

Listing 8-7. src/client/props/powers/pickup/pickup.class.ts

import {Particle} from '../../particle/particle.class’;
import * as Phaser from 'phaser-ce';

export class Pickup {

public item: Phaser.Sprite;
private particle: Particle;

constructor(game, coors) {
this.item = game.add.sprite(coors.x, coors.y, 'pickup');
game.physics.enable(this.item, Phaser.Physics.ARCADE);
this.particle = new Particle(game, this.item);

123

CHAPTER 8 THE WORLD SHOULD REMEMBER YOUR NAME

Congratulations!

Running npm start on your initial directory will launch the game and you

can play and explore by adding new features! The next chapter is all based
on the Phaser community and how you may leverage it to make awesome
game experiences in the near future!

124

CHAPTER 9

Bonus! Refactoring &
Asteroids

For the diehards in us who want to learn to add another complex feature,
this one is for you! In the upcoming chapter we shall learn to refactor our
functionality for reusability while implementing comets on the server side.
We shall also render the comets on the client side and update the player
class to implement its own explode method.

Adding More Features

Let’s add a new feature that adds a new level of threat to our galaxy in the
form of giant asteroids. We shall be keeping our implementation fairly
simple, considering complexity could increase rather quickly.

Refactoring

Refactoring is a crucial part of software engineering. The reason is we need
software to work within a specific deadline, or we need to build for the
features we are supporting now. After a while, we get to implement new
features or enhance existing functionalities.

© Oscar Lodriguez 2019 125
O. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0_9

CHAPTER9 BONUS! REFACTORING & ASTEROIDS

That’s when it might dawn on us that we might want to do a bit of
refactoring to make a class leaner, cleaner, or more reusable. This is the
case with our explode class that is located directly in the projectile class.
If a comet or a projectile hits our player, we want the ship to explode.
Following this new rationalization, we can go ahead and refactor our
projectile class to look like Listing 9-1.

Listing 9-1. src/client/props/powers/projectile/projectile.class.ts

import {Pickup} from '../pickup/pickup.class’;
import {Particle} from '../../particle/particle.class’;

export class Projectile {
public weapon: Phaser.Weapon;
public bulletCount: number = 10;
public pickup: Pickup;
private player: Phaser.Sprite;
private gameInstance: Phaser.Game;

public constructor(gameInstance, player?) {
this.gameInstance = gameInstance;
this.weapon = gameInstance.add.weapon(this.bulletCount,
"laser');
this.weapon.firelLimit = this.bulletCount;
this.weapon.fireRate = 1000;
if (player) {
this.player = player;
this.weapon.trackSprite(this.player, 10, 0, true);

126

CHAPTER9 BONUS! REFACTORING & ASTEROIDS

public fireWeapon() {
this.weapon.fire();
this.bulletCount = this.weapon.firelLimit - this.weapon.
shots;

}

public renderPickup(coors): void {
this.pickup = new Pickup(this.gameInstance, coors);
new Particle(this.gameInstance, this.pickup.item);

We moved out the kaboom method, and this will be placed inside of
the player class for controlling how the player would get destroyed if such
an event occurs!

Listing 9-2. src/client/actors/player/player.class.ts

import {KeyBoardControl} from '../../controls/keyboard.class’;
import {Projectile} from '../../props/powers/projectile/
projectile.class';

import {Hud} from '../../hud/hud.class’;

import {Particle} from '../../props/particle/particle.class’;
import {SpaceShip} from '../../../shared/models’;

import {Explode} from '../../props/explosion/explosion.class’;

export class Player {
public player: Phaser.Sprite;
public projectile: Projectile;
public controls: KeyBoardControl;
public playerState: Map<string, boolean | number>;
public hud: Hud;
public angularVelocity: number = 300;
private particle: Particle;

127

CHAPTER9 BONUS! REFACTORING & ASTEROIDS

128

constructor(private gameInstance: Phaser.Game,

public playerInstance: SpaceShip) {
this.createPlayer(this.gameInstance);
this.playerState = new Map();

public createPlayer(gameInstance): void {

this.hud = new Hud();
this.addControls();
this.player = gameInstance.add.sprite(this.
playerInstance.x,

this.playerInstance.y, 'shooter-sprite');
this.player.id = this.playerInstance.id;
this.player.anchor.setTo(0.5, 0.5);
this.player.animations.add('accelerating', [1, 0], 60,
false);
this.player.name = this.playerInstance.name;
this.attachPhysics(gameInstance);

// we will have a destroy method for the player that
calls the
// explode and kills the player for clean up afterward.
This is
// exactly what we want to express if the player
happens to be
// killed by anything
this.player.destroy = () => {
new Explode(this.gameInstance, this.player);
this.player.kill();

}

this.hud.setName(gameInstance, this.player);
this.particle = new Particle(gameInstance, this.player);

CHAPTER9 BONUS! REFACTORING & ASTEROIDS

public assignPickup(game, player?): void {
this.projectile = new Projectile(game, player.player);
this.hud.setAmmo(game, player.player, this.projectile);
this.playerState.set('ammo’, this.projectile.bulletCount);

}

public view(): void {
this.controls.update();
if (this.projectile) {
this.hud.update(this.playerState.get('ammo"));

}

private addControls(): void {
this.controls = new KeyBoardControl(this.gameInstance,
this);

}

private attachPhysics(gameInstance): void {
gameInstance.physics.enable(this.player, Phaser.
Physics.ARCADE);
this.player.body.collideWorldBounds = true;
this.player.body.bounce.setTo(10, 10);
this.player.body.gravity.y = 0;
this.player.body.drag.set(80);
this.player.body.maxVelocity.set(100);
this.player.body.immovable = false;

That should cover the part of our classes in terms of refactoring. We
need to change our “game.class.ts” file to reflect these changes as well, or our
game will just break since it has no idea we just had a refactoring occurrence.

129

CHAPTER9 BONUS! REFACTORING & ASTEROIDS

Asteroids!

Navigate to inside of the props folder, and create the following folder called
“asteroid.” Inside of asteroid create a class called “astroid.class.ts”

Listing 9-3. src/client/props/asteroid/asteroid.class.ts
export class Asteroid {
public asteroid: Phaser.Sprite;

constructor(gameInstance) {
this.asteroid = gameInstance.add.sprite(o, -128,
'asteroid');
this.asteroid.animations.add('asteroid");
this.asteroid.animations.play('asteroid', 10, true,
false);
this.attachPhysics(gameInstance);

}

private attachPhysics(gameInstance): void {
gameInstance.physics.enable(this.asteroid, Phaser.
Physics.ARCADE);
this.asteroid.body.collideWorldBounds = false;
this.asteroid.body.bounce.setTo(0);
this.asteroid.body.gravity.y = 0;
this.asteroid.body.drag.set(80);
this.asteroid.body.maxVelocity.set(100);
this.asteroid.body.immovable = true;

130

CHAPTER9 BONUS! REFACTORING & ASTEROIDS

As you can see, this is not any new knowledge. We have been doing this
for all the other props and other classes located throughout the project. It’s
an achievement to you that you already know this crucial creation process
of our Phaser sprites. Once we have the class, we need to update our game.
class.ts with the functionality that the asteroids will bring to the table.

Listing 9-4. src/client/game/game.class.ts

/1 ...
// import the asteroid class
import {Asteroid} from '../props/asteroid/asteroid.class’;

// since our focus is not getting the Window object typed, we
can leave this as any, as it removes the overhead of typing it.
declare const window: any;

export class Game {
/...
// Add a type to a null object called comet
private comet: Asteroid;

protected manageAssets(game): void {
/1 ...
// create a new instance of a comet to match the server
if a new
// player joined the room
this.comet = new Asteroid(game);

// Add a new method to listen to the create event from
the server so
// we can create and sync the asteroid field for all of
the clients
window.socket.on(CometEvent.create, () => {

this.comet = new Asteroid(game);

B;

131

CHAPTER9 BONUS! REFACTORING & ASTEROIDS

// once the asteroid exists, we need to update its

coordinates

// throughout the game instance. We shall achieve that

with this

// method, which will get a direct feed from our server

window.socket.on(CometEvent.coordinates, (coors) => {

if (this.comet) {

this.comet.asteroid.x
this.comet.asteroid.y

CO0Ts. X,

CO0IS.Y;

}
};

// lastly we add the destroy so when the asteroid is
out of bounds,
// we shall call this method to destroy the comet in
order to
// instantiate a new one
window.socket.on(CometEvent.destroy, () => {
if (this.comet) {
this.comet.asteroid.kill();
this.comet = null;

}
1);
/] ...
}
protected gameUpdate(game): void {
/...

// lastly we need to add a simple detector to see if
the comet has

132

CHAPTER9 BONUS! REFACTORING & ASTEROIDS

// collided with any user along its way down the screen
if (this.comet) {
game.physics.arcade.collide(this.comet.asteroid,
this.actors.map(actor => actor.player), (comet,
actor) => {
if (actor.id !== this.actor.player.id) {
// if the player hit is not our current
player, then
// emit the topic and the actor it did
hit for their
// screen to go back to login and
// remove all states
window.socket.emit(PlayerEvent.hit,
actor.id);
} else {
// otherwise just bring us to the login
screen and
// remove all states
window.location.reload();

};

Since we are already using “comet”-specific events as topics for our
subscription callback using sockets, we can go ahead and update our
models to supports these constants.

133

CHAPTER9 BONUS! REFACTORING & ASTEROIDS

Listing 9-5. src/shared/events.model.ts

export class GameEvent {
public static authentication: string =
"authentication:successful';
public static end: 'game:over';
public static start: 'game:start’;
public static drop: string = 'drop’;

}

export class CometEvent {
public static create: string = 'comet:create';
public static destroy: string = 'comet:destroy';
public static coordinates: string = 'comet:coordinates’;

}

export class ServerEvent {
public static connected: string = 'connection';
public static disconnected: string = 'disconnect’;

}

export class PlayerEvent {
public static joined: string = 'player:joined';
public static protagonist: string = 'player:protagonist’;
public static players: string = 'actors:collection’;
public static quit: string = 'player:left’;
public static pickup: string = 'player:pickup';
public static hit: string = 'player:hit';
public static coordinates: string = 'player:coordinates’;

The last step we should take is to update our server to make the
appropriate calls.

134

CHAPTER9 BONUS! REFACTORING & ASTEROIDS

Listing 9-6. src/server/server.ts

/...
import {
CometEvent,
GameEvent,
PlayerEvent,
ServerEvent
} from './../shared/events.model’;

class GameServer {
/1 ...
private gameHasStarted: boolean = false;

// check if the comet is already in the game instance
private hasComet: boolean = false;

private gameInitialized(socket): void {
if (!this.gameHasStarted) {
this.gameHasStarted = true;
// once the game has started for the first time,

called the

// create comet class which takes two arguments.
The socket

// instance and the interval we want to check if we
need to add

// a new comet/asteroid to our game
this.createComet(socket, 1000);
/...

135

CHAPTER9 BONUS! REFACTORING & ASTEROIDS

private createComet(socket, interval: number) {
// here we have an interval that loops every 1 second
to check if we
// need to add a comet to our game
setInterval(() => {
if (!this.hasComet) {
// if there isn't a comet, add one! Then notify
all of the
// channels that we have added this comet.
Later we update
// the comet coordinates
this.hasComet = true;
socket.emit(CometEvent.create);
socket.broadcast.emit(CometEvent.create);
this.updateComet(socket);
}

}, interval);

}

private updateComet(socket) {

// double-check to see if we do have a comet. Bit of

defensive programming

if (this.hasComet) {
// Generate random numbers, but always make sure
these are
// offscreen, or the user will see a comet for a
split-second
// on-screen and then disappear to the correct spot.
let asteroidCoordinates = this.
generateRandomCoordinates();

136

CHAPTER9 BONUS! REFACTORING & ASTEROIDS

// Move the comet offscreen based on the sprite's
initial height
asteroidCoordinates.y = -128;

const update = setInterval(() => {
// after 25 milliseconds we update the comet's
x- and y-values
// to illustrate an animation in time. This
allows for
// smooth scrolling from the top to the bottom
of the screen.
asteroidCoordinates.y += 1;
asteroidCoordinates.x -= 1;

// broadcast to the clients about the right

coordinates

socket.emit(CometEvent.coordinates,

asteroidCoordinates);

socket.broadcast.emit(
CometEvent.coordinates,
asteroidCoordinates

)5

// in this loop we shall be checking if we need
to ever
// destroy the comet as well. This makes it
more efficient
// for us as the life cycle is all in one place.
this.destroyComet(asteroidCoordinates, socket,
update)

s 25);

137

CHAPTER9 BONUS! REFACTORING & ASTEROIDS

138

private destroyComet(asteroidCoordinates, socket, update):
void {
// if we detect that the comet is out of bounds. We
then move in to
// change the comet boolean to false. This will be
caught by our
// interval trigger to create a new one, and we reset
the boolean
// value to true.
if (asteroidCoordinates.x < -128) {
this.hasComet = false;

// update the clients with the destroy method for
them to remove

// their sprites accordingly.
socket.emit(CometEvent.destroy);
socket.broadcast.emit(CometEvent.destroy);

// clear the update interval to free up memory and
also to not

// have two or more different streams of asteroids
being

// generated, we only want one of these. Not
removing the

// interval will result in the server mismatching
with the

// client and the client flickering between the
newly created

CHAPTER9 BONUS! REFACTORING & ASTEROIDS

// instances of comets. A buggy experience indeed
global.clearInterval(update);

/7 ...

Nice! If all went according to plan, you now have killer asteroids/
comets or giant rocks of doom waiting to crush your little ship as soon
as you touch them! We can better distinguish our player from the enemy
players as well in our game.

Let’s add a special sprite for the protagonist, which is the blue ship we
have. But since every player from their perspective will be a protagonist, it’s
good to have control of who will get the blue or the red ship! Grab the player.
class.ts file and let’s make the following modifications (see Listing 9-7).

Listing 9-7. src/client/actors/player/player.class.ts

import {KeyBoardControl} from '../../controls/keyboard.class’;
import {Projectile} from '../../props/powers/projectile/
projectile.class’;

import {Hud} from '../../hud/hud.class’;

import {Particle} from '../../props/particle/particle.class’;
import {SpaceShip} from '../../../shared/models’;

import {Explode} from '../../props/explosion/explosion.class’;

export class Player {
public player: Phaser.Sprite;
public projectile: Projectile;
public controls: KeyBoardControl;
public playerState: Map<string, boolean | number>;

139

CHAPTER9 BONUS! REFACTORING & ASTEROIDS

public hud: Hud;
public angularVelocity: number = 300;
private particle: Particle;

// add the type argument here as well!
constructor(private gameInstance: Phaser.Game,
public playerInstance: SpaceShip, type) {

// pass the type as a value
this.createPlayer(this.gameInstance, type);
this.playerState = new Map();

}

// We shall pass the type argument to the creation of the
player through
// this method
public createPlayer(gameInstance, type): void {
this.hud = new Hud();
this.addControls();

// modify the sprite form we shall be taking with a
type argument
this.player = gameInstance.add.sprite(this.
playerInstance.x,

this.playerInstance.y, type);
this.player.id = this.playerInstance.id;
this.player.anchor.setTo(0.5, 0.5);
this.player.animations.add('accelerating', [1, 0], 60,
false);
this.player.name = this.playerInstance.name;
this.attachPhysics(gameInstance);

140

CHAPTER9 BONUS! REFACTORING & ASTEROIDS

this.player.destroy = () => {
new Explode(this.gameInstance, this.player);
this.player.kill();

}

this.hud.setName(gameInstance, this.player);
this.particle = new Particle(gameInstance, this.player);

}

public assignPickup(game, player?): void {
this.projectile = new Projectile(game, player.player);
this.hud.setAmmo(game, player.player, this.projectile);
this.playerState.set('ammo', this.projectile.bulletCount);

}

public view(): void {
this.controls.update();
if (this.projectile) {
this.hud.update(this.playerState.get('ammo"));

}

private addControls(): void {
this.controls = new KeyBoardControl(this.gameInstance,
this);

}

private attachPhysics(gameInstance): void {
gameInstance.physics.enable(this.player, Phaser.
Physics.ARCADE);
this.player.body.collideWorldBounds = true;
this.player.body.bounce.setTo(10, 10);
this.player.body.gravity.y = 0;
this.player.body.drag.set(80);

141

CHAPTER9 BONUS! REFACTORING & ASTEROIDS

this.player.body.maxVelocity.set(100);
this.player.body.immovable = false;

We are one step closer to having real enemies! It’s not ethical to shoot at
our own colored banners!

Listing 9-8. src/client/game/game.class.ts

/1 ...
export class Game {

protected manageAssets(game): void {
// modify your player create scripts to have a ship
type.
window.socket.on(PlayerEvent.joined, (player) => {
this.actors.push(new Player(game, player, 'shooter-
sprite-enemy'));

};

// and here!

window.socket.on(PlayerEvent.protagonist, (player) => {
this.actor = new Player(game, player, 'shooter-
sprite');
this.actors.push(this.actor);

};

// here three!
window.socket.on(PlayerEvent.players, (players) => {
players.map((player: any) => {
const enemy = new Player(game, player,
"shooter-sprite-enemy');

142

CHAPTER9 BONUS! REFACTORING & ASTEROIDS

if (player.ammo) {
enemy.assignPickup(game, enemy);
}
this.actors.push(enemy);
1;
D;

/...

Last, but definitely not least, we are going to touch the engine class
in order to add the evil sprite! This way we can distinguish between evil
enemy ships and ourselves. This would also work for the other player. You
will then appear red on her screen and blue on your own.

Listing 9-9. src/client/engine/phaser-engine.class.ts

import { Game } from
import { LifeCycle } from

'../game/game.class";

./lifecycle";
export class PhaserSpaceGame extends Game implements Life Cycle {
private game: Phaser.Game;

constructor() {
super();
this.game = new Phaser.Game(1024, 768, Phaser.AUTO,
"space-shooter"', {
preload: this.preload,
create: this.create,
update: this.update

};

143

CHAPTER9 BONUS! REFACTORING & ASTEROIDS

public preload(): void {

}

const game = this.game.load;

game.crossOrigin = 'anonymous';

game.image('space', 'assets/background.jpg');
game.image('laser', 'assets/bullet.png');
game.spritesheet('dust', 'assets/dust.png', 64, 64, 16);
game.spritesheet('kaboom', 'assets/explosions.png’, 64,
64, 16);

game.image('pickup', ‘'assets/pickup.png’);
game.spritesheet('shooter-sprite', 'assets/ship.png’,
32, 32);

// add the new evil sprite!
// Feel free to use any graphic you have and place it
inside of the
// assets folder with the name mentioned below. If you
cannot
// think of anything, you can use the provided sprite
in the main
// branch of this github repository.
game.spritesheet(

'shooter-sprite-enemy’,

'‘assets/ship-enemy.png', 32, 32

)s

public create(): void {

144

super.properties(this.game);
super.manageAssets(this.game);

CHAPTER9 BONUS! REFACTORING & ASTEROIDS

public update(): void {
super.gameUpdate(this.game);

Conclusion

That concludes our adventure in space for this time. In the next chapter,
we finish off the ride with some souvenirs from the world and places you
can keep leveling up your skills. Changes and updates will happen just on
the free github repo. Check for the latest features added to the game by
starring the repo so you will automatically track and watch for changes.
The latest addition added was the ability to destroy the asteroid once it has
been fired!

The book’s final code and repo are found on the following link:
https://github.com/codeowl/Multiplayer-Phaser-game.

145

https://github.com/code0wl/Multiplayer-Phaser-game

CHAPTER 10

Further Reading
And Discovery

Congratulations and I hope you have learned a lot by following me through
this short book. Use this as a guide or a template if you are interested in
creating more multiplayer games out there. Following me on Twitter and
github will give me more energy to help others with the knowledge I have
gained in my career. Thank you for your support, and I really appreciate
you for taking the time to read and hopefully learn from this material.

My upcoming book will be covering the same material but using the
newly created Phaser 3 framework. I will be making a completely different
game, but it will also be a multiplayer game.

Other Phaser Resources

Here is a comprehensive list of materials that have helped me and others
keep up-to-date with Phaser. Having these in your arsenal will make you
build much better, more technically sound games if you are using the
Phaser framework!

If you are stuck or need help with anything, please just create an issue
on the github page of the game and I or the community around this book
will help resolve that (https://github.com/codeowl/Multiplayer-
Phaser-game/issues).

© Oscar Lodriguez 2019 147
O. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0_10

https://github.com/code0wl/Multiplayer-Phaser-game/issues
https://github.com/code0wl/Multiplayer-Phaser-game/issues

CHAPTER 10 FURTHER READING AND DISCOVERY

The online repo of this game:

o https://github.com/codeowl/Multiplayer-
Phaser-game

Awesome github repo:

o https://github.com/Raiper34/awesome-phaser
Phaser’s personal shop:

o https://phaser.io/shop
Phaser tutorials:

o https://phaser.io/learn/official-tutorials
Phaser examples:

o https://phaser.io/examples
Interphase:

o https://phaser.io/interphase

148

https://github.com/code0wl/Multiplayer-Phaser-game
https://github.com/code0wl/Multiplayer-Phaser-game
https://github.com/Raiper34/awesome-phaser
https://phaser.io/shop
https://phaser.io/learn/official-tutorials
https://phaser.io/examples
https://phaser.io/interphase

Correction to: Let’s Build a Multiplayer Phaser Game

Correction to:
0. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0

The text highlighted occurring in listing 4-16 in Chapter 4 mentioned below:
keyboard.model.ts

Has been replaced with:

keyboard.class.ts

The text highlighted occurring in listing 5-2 in Chapter 5 mentioned below:
player.class.ts

Has been replaced with:

game.class.ts

The above mentioned corrections have been updated in the book.

The updated versions of the chapters could be found at
https://doi.org/10.1007/978-1-4842-4249-0_4
https://doi.org/10.1007/978-1-4842-4249-0_5

© Oscar Lodriguez 2019 C1
O. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0_11

https://doi.org/10.1007/978-1-4842-4249-0_11
https://doi.org/10.1007/978-1-4842-4249-0

Index

A, B Domain model

game class, 15-16
keyboard class, 17, 19
player class, 16-17

Arcade model, 36, 38-39

Asteroid
class creation, 130-131
comet specific events, 133-139
engine class, 143-145 E
game class, 131-133, 142-143

Explosion
player class, 139-141

class creation, 107-108
projectile class, 108-109

C

Client side, game, 98-106 F

Comet specific events, 133
Front-end architecture, 9-10

D

Development setup G
code editors, 7 Game engine file
devmode, 9 import index, 56
folder structure, 10-11 imports, code, 50-51
front-end architecture, 9-10 keyboard class
installing Git, 6 code, 54-56
installing Node.js, 5-6 player class
project, dev mode, 9 code, 51-52, 54
project, run, 8-9 Game model, 40-41, 43

Directory Git, 6,7
construction, 23 clone command, 22
creation, 21-22 Github, 2, 7

© Oscar Lodriguez 2019

O. Lodriguez, Let’s Build a Multiplayer Phaser Game,
https://doi.org/10.1007/978-1-4842-4249-0

149

https://doi.org/10.1007/978-1-4842-4249-0

INDEX

H I, J

Heads up display (HUD)
definition, 74
player class, 76, 78-81
properties, 74-75

K

Kaboom method, 106, 127

Keyboard model, 17, 19, 46
control object, 44
game-loop creation, 46-48
input module, 43

L, M

Login screen
game.ts, 114-115
implementation, 111-114
particle class, 118-119
particle implementation,

pickup classes, 123

particle implementation,

projectile classes, 122-123

pickup code, 115-116
player class, 116-118

N, O

Node.js, 6

150

PQ

Particle class, 118

Phaser, 1
Arcade model, 36-39
creating engine, 27-29
definition, 25
engine, 13
engine code, 30-31
features, 26-27
multiplayer game, 147-148
resources, 147

Pickup, 58

Player model, 16-17, 32-35

Projectile class
game class code, 64-65
implementation code, 63-64
mechanics, 61-62
pickup class, 58-59
pickup code, 60-61
player model, code, 66-68
updating game model, 68-71
updating keyboard model,

code, 71-73

R

Refactoring, 125
kaboom method, 127
player class, 127-129
projectile class, 126-127

S

Server
events, 84-86
models, 84
socket connection, 88-97
static file setting, 86-88
Shell, 10
Socket connection, 88

INDEX

UV

TypeScript, 7, 30, 49

W XY Z

WebSocket protocol, 88

151

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction
	Who This Book Is For
	How to Approach This Book
	What the Heck Are We Building Together?

	Chapter 2: Setting Up Our Development Environment
	Setting up Our Development Environment
	Node.js
	Git

	The Main Ingredient
	Editors
	Running the Project
	Running the Project in Dev Mode

	Our Front-End Architecture
	Our Folder Structure
	Conclusion

	Chapter 3: Orchestrating Our Domain Model
	The Building Blocks
	Creating Our First Model
	The Player Model
	The Keyboard Model
	Creating Our Directories
	Directory Construction
	Conclusion

	Chapter 4: Implementing Our Game Domain Models
	About Phaser
	Talking About Phaser…
	Finally, Some Code!

	The Player Model
	Phaser Arcade Physics
	The Game Model
	The Keyboard Model
	Conclusion

	Chapter 5: Seeing It In Action
	Hooking it All up Together
	Conclusion

	Chapter 6: Projectiles!
	Pickup
	Additional Folder Structure

	Making it to the Big Screen
	Overlap
	Gimme the Gun!

	Updating the Game
	Updating the Keyboard with a Fire!
	The HUD
	Conclusion

	Chapter 7: Hooking Up Our Server
	On to the Server Side of Things!
	Models and Events
	Models
	Events

	Setting up Our Static File Server
	Socket Connection
	Back to the Client
	Marvelous Explosions!
	Conclusion

	Chapter 8: The World Should Remember Your Name
	Login
	Congratulations!

	Chapter 9: Bonus! Refactoring & Asteroids
	Adding More Features
	Refactoring
	Asteroids!
	Conclusion

	Chapter 10: Further Reading And Discovery
	Other Phaser Resources

	Correction to: Let’s Build a Multiplayer Phaser Game
	Index

