

Onur Yılmaz and Süleyman Akbaş

Build scalable cloud-native applications using
DevOps patterns created with Kubernetes

Introduction to
DevOps with
Kubernetes

Introduction to DevOps with Kubernetes

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Onur Yılmaz and Süleyman Akbaş

Technical Reviewer: Hasan Turken

Managing Editor: Aditya Datar

Acquisitions Editor: Aditya Date

Production Editor: Samita Warang

Editorial Board: David Barnes, Mayank Bhardwaj, Ewan Buckingham, Simon Cox,
Mahesh Dhyani, Taabish Khan, Manasa Kumar, Alex Mazonowicz, Douglas Paterson,
Dominic Pereira, Shiny Poojary, Erol Staveley, Ankita Thakur, Mohita Vyas,
and Jonathan Wray

First Published: May 2019

Production Reference: 1210519

ISBN: 978-1-78980-828-5

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK

Table of Contents

Preface 	  i

Introduction to DevOps 	  1

Introduction ...  2

DevOps' Effect on Industry .. 3

DevOps Culture and its Benefits ... 3

The DevOps Toolchain ..  5

Plan ... 6

Exercise 1: Creating a Repository and Project Board on GitHub .................... 9

Create ... 13

Exercise 2: Creating a DevOps Blog .. 16

Verify .. 18

Exercise 3: Connecting the DevOps Blog to a CI/CD System ......................... 22

Package .. 26

Release ... 28

Exercise 4: Releasing the DevOps Blog  .. 29

Configure ... 32

Monitor .. 32

Activity 1: CI/CD Pipeline for the DevOps Blog .. 33

Summary ..  36

Introduction to Microservices and Containers 	  39

Introduction ...  40

Introduction to Docker ...  43

The Fundamental Concepts of Docker  .. 44

Exercise 5: Creating a "Hello World" Container in Docker ............................. 49

Building Docker Images ...  51

Dockerfiles ... 52

The Docker Registry .. 53

Exercise 6: Building a Docker Image and Pushing it to Docker Hub ............. 54

Running Docker Containers ..  57

Exercise 7: Running Docker Containers, Volume Mapping,
and Port Sharing ... 60

Activity 2: Installing a WordPress Blog and Database Using Docker ............ 62

Summary ..  66

Introduction to Kubernetes 	  69

Introduction ...  70

What is Kubernetes? ... 70

Kubernetes Architecture ..  71

Master Components ... 72

Node Components .. 74

Exercise 8: Installing and Starting a Local Kubernetes Cluster ..................... 75

Accessing Kubernetes Clusters ...  78

Exercise 9: Checking Application Status in Kubernetes Dashboard ............. 78

Exercise 10: Carrying Out Cluster Management Using kubectl .................... 82

Fundamental Kubernetes Resources ...  85

The Pod .. 85

Replication Sets ... 87

Deployment ... 89

Stateful Sets ... 90

Activity 3: Installing a WordPress Blog and Database on Kubernetes ......... 92

Summary ..  96

Creating a Kubernetes Cluster 	  99

Introduction ...  100

Manual Kubernetes Cluster Setup ..  100

Exercise 11: Creating a Kubernetes Cluster Using kubeadm .....................  102

Kubernetes Cluster Considerations ...  112

Development or Production-Ready Setup ..  112

In-House or Managed Services ...  112

On-Premises or Cloud Infrastructure ..  113

Vanilla Kubernetes or Custom Solutions ..  113

Kubernetes Platform Options ...  113

Local Machine Solutions ...  114

Hosted Solutions ..  114

Turnkey Solutions ..  116

Heptio ..  116

CoreOS Tectonic ...  117

Red Hat OpenShift ...  117

Exercise 12 – Creating Managed Kubernetes Clusters on GCP ..................  118

Activity 4: Migrating a Running Application in Kubernetes Cluster ..........  124

Summary ..  127

Deploy an Application to Kubernetes 	  129

Introduction ...  130

Object Management in Kubernetes ...  130

Imperative Commands ..  131

Imperative Configuration ...  132

Declarative Configuration ...  134

Exercise 13: Deploying Applications Using kubectl .....................................  136

Service Discovery in Kubernetes ...  139

Exercise 14: Access Applications Using Services ..  141

Kubernetes Package Manager: Helm ...  143

Exercise 15: Installing Helm in the Kubernetes Cluster ..............................  145

Activity 5: Installing and Scaling a WordPress Blog in Kubernetes
Using Helm ..  147

Summary ..  149

Configuration and Storage Management in Kubernetes 	  151

Configuration Management ..  152

Infrastructure Configurations ..  152

Runtime Configurations ..  152

Configuration Management in Kubernetes ...  153

Creating a ConfigMap ..  155

Updating a ConfigMap  ..  158

Consuming ConfigMaps from a Pod  ...  158

Exercise 16: Create ConfigMaps from a Literal and a File ...........................  160

Secret Management ...  163

Secret Management Best Practices ..  164

Identifying Secrets ...  165

Decoupling Secrets from the Source Code ...  165

Rotating Secrets ...  165

Principle of Least Privilege  ...  166

Preventing Printing Out Secrets on Application Logs .................................  166

Encryption at Rest ..  166

Secret Management in Kubernetes ...  166

Creating a Secret  ...  168

Updating a Secret ..  171

Consuming Secrets from a Pod ..  171

Exercise 17: Create and Update a Secret ..  173

Activity 6: Updating Configurations on the Fly ...  175

Storage Management ...  176

Storage Management in Kubernetes ...  177

Volume ..  177

emptyDir ...  177

gcePersistentDisk ..  178

glusterfs ..  179

Exercise 18: Use emptyDir Volume to Share Content
Between Containers  ...  180

Persistent Volume (PV) ..  181

Persistent Volume Claim (PVC) ...  182

Access Modes ...  183

Storage Class ..  183

Activity 7: Running a Persistent Database on Kubernetes ....................  185

Summary ..  186

Updating and Scaling an Application in Kubernetes 	  189

Updating an Application ..  190

Blue-Green Deployments ..  190

Rolling Updates ..  192

Canary Releases ...  194

Dark Launches and Feature Toggles ...  196

Software Update versus Software Upgrade ...  197

Updating an Application in Kubernetes ...  197

StatefulSet Update Strategies ..  197

OnDelete ...  197

RollingUpdate ...  198

Deployment Update Strategies ..  199

Recreate ..  199

RollingUpdate ...  200

Performing Blue-Green Deployment in Kubernetes ...................................  201

Performing Rolling Updates in Kubernetes ..  203

maxSurge ..  203

maxUnavailable  ..  203

Updating a Deployment Using a Rolling Update ...  205

Updating an Application using Helm ...  206

Exercise 19: Updating a Deployment in Kubernetes Using
a Rolling Update ...  207

Scaling an Application ...  209

Horizontal versus Vertical Scaling ...  210

Autoscaling ...  212

Strong versus Eventual Consistency ..  212

Scaling an Application in Kubernetes ...  213

Exercise 20: Scaling a Deployment Up and Down in Kubernetes ..............  215

Horizontal Pod Auto-Scaler (HPA) ..  218

Activity 8: Enabling Autoscaling and Performing a Rolling Update ...........  219

Summary ..  220

Troubleshooting Applications in Kubernetes 	  223

Introduction ...  224

Troubleshooting ..  224

Identifying the Problem ..  225

Improving Tests ..  225

Documentation ..  225

Tools ..  226

Logging ..  226

Logging levels ...  226

Troubleshooting Applications in Kubernetes ..  227

Pod Life Cycle ...  228

Pod Status ...  228

Pod Conditions ...  229

Condition Types ...  229

Pod Phase ...  230

Restart Policy ..  231

Container States ..  231

Auto Recovery ..  232

Health checks ...  232

Liveness Probe ...  232

Readiness Probe ...  234

Exercise 21: Using Liveness and Readiness Probes in Kubernetes ............  235

Creating a Termination Log ..  237

Handy Commands for Troubleshooting ..  239

Other Handy Commands ..  241

Action Commands ..  242

Suggestions for Some Common Problems ...  242

Lack of Resources ..  242

Image Pull Failure ..  243

Exercise 22: Fixing a Pod Failure in Kubernetes ...  243

Ask the Community ...  248

Activity 9: Troubleshooting an Application in Kubernetes .........................  248

Summary ..  250

Monitoring Applications in Kubernetes 	  253

Monitoring ...  254

Infrastructure Monitoring ..  255

Application Performance Monitoring (APM) ..  255

Alerting ..  256

Tools ..  256

Monitoring Applications in Kubernetes ...  257

Prometheus ..  257

Alertmanager ...  259

Grafana ...  261

Creating a Dashboard in Grafana ..  263

Exercise 23: Installing Prometheus and Grafana ...  263

Custom Metrics ...  278

Exercise 24: Exposing a Custom Metric in Prometheus  .............................  279

Exposed Metrics in Kubernetes ..  283

Slack ...  284

Incoming Webhooks ..  286

Exercise 25: Signing Up for Slack and Creating a Workspace  ....................  286

Activity 10: Setting Up Alert Notifications in Kubernetes ...........................  293

Summary ..  294

Appendix 	  297

Index 	  349

About

This section briefly introduces the author, the coverage of this book, the technical skills you'll
need to get started, and the hardware and software required to complete all the included
activities and exercises.

Preface

>

ii | Preface

About the Book
Kubernetes and DevOps are the two pillars that can keep your business at the top by
ensuring high performance of your IT infrastructure.

Introduction to DevOps with Kubernetes will help you develop the skills you need to
improve your DevOps with the power of Kubernetes. The book begins with an overview
of Kubernetes primitives and DevOps concepts. You'll understand how Kubernetes
can assist you with overcoming a wide range of real-world operation challenges. You
will get to grips with creating and upgrading a cluster, and then learn how to deploy,
update, and scale an application on Kubernetes. As you advance through the chapters,
you'll be able to monitor an application by setting up a pod failure alert on Prometheus.
The book will also guide you in configuring Alertmanager to send alerts to the Slack
channel and trace down a problem on the application using kubectl commands.

By the end of this book, you'll be able to manage the lifecycle of simple to complex
applications on Kubernetes with confidence.

About the Authors

Onur Yılmaz is a senior software engineer in a multinational enterprise software
company. He is a certified Kubernetes administrator and works on Kubernetes and
cloud management systems. He is a keen supporter of cutting-edge technologies,
including Docker, Kubernetes, and cloud-native applications. He has one master's
degree and two bachelor's degrees in engineering and is pursuing a doctorate degree.

Süleyman Akbaş is a senior software engineer in a multinational enterprise software
company. He is also a certified Kubernetes administrator and works on open source,
cloud-native projects using Kubernetes. He is passionate both about developing
and managing cloud-native applications. He has a bachelor's degree with honors in
computer science and is now pursuing his master's degree in computer science in one
of the top European universities, the University of Helsinki.

Objectives

•	 Create and manage Kubernetes clusters in on-premises systems and the cloud

•	 Exercise various DevOps practices using Kubernetes

•	 Explore configuration, secret, and storage management techniques, and exercise
them with Kubernetes

•	 Perform different update techniques and apply them on Kubernetes

About the Book | iii

•	 Use the built-in scaling feature in Kubernetes to scale your applications up and
down

•	 Use various troubleshooting techniques and have a monitoring system installed on
Kubernetes

Audience

Introduction to DevOps with Kubernetes is for you if you want to gain a solid
understanding of DevOps and how to apply DevOps practices using Kubernetes.
It's a handy book for those with no experience with DevOps or Kubernetes and for
experienced DevOps engineers to broaden their views of using Kubernetes for DevOps
practices.

Approach

Introduction to DevOps with Kubernetes takes a hands-on approach to understanding
DevOps practices with Kubernetes. It contains multiple activities that use real-life
business scenarios for you to practice and apply your new skills in a highly relevant
context.

Hardware Requirements

For an optimal student experience, we recommend the following hardware
configuration:

•	 Processor: Intel Core i5 or equivalent

•	 Memory: 8 GB RAM (16 GB Preferred)

•	 Hard disk: 10 GB available space

•	 Internet connection

Software Requirements

You'll also need the following software installed in advance:

•	 Sublime Text (latest version), Atom IDE (latest version), or another similar text
editor application

•	 Git

iv | Preface

Conventions

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Github handles are shown as follows: Click on
the Create button, and you will be redirected to the new repository page.

A block of code is set as follows:

FROM ubuntu:18.10

RUN apt-get update

RUN apt-get install -y nodejs npm

RUN npm install -g http-server

WORKDIR /usr/apps/hello-world/

CMD ["http-server", "-p", "8080"]

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this:
"Click Add a column and add these three columns: Backlog, WIP, and Done."

Installation and Setup

Installing Git

Please follow the steps for your operating system to install Git: https://docs.gitlab.
com/ee/topics/git/how_to_install_git/

Additional Resources

The code bundle for this book is also hosted on GitHub at: https://github.com/
TrainingByPackt/Introduction-to-DevOps-with-Kubernetes

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/ Check them out!

https://docs.gitlab.com/ee/topics/git/how_to_install_git/
https://docs.gitlab.com/ee/topics/git/how_to_install_git/
https://github.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes
https://github.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes

Learning Objectives

By the end of this chapter, you will be able to:

•	 Identify the benefits of DevOps for organizations

•	 Define DevOps toolchain steps in detail

•	 Create a modern DevOps pipeline running on GitHub

This chapter gives an introduction to DevOps. This chapter will briefly explain what DevOps is
and the concepts around it

Introduction to
DevOps

1

2 | Introduction to DevOps

Introduction
In the last decade, several comprehensive paradigm shifts have taken place in the
software industry. These changes have made it possible for millions of people to
chat on their mobile phones at the same time and stream their favorite movies
while traveling throughout the world. When changes in software development and
operations are reviewed, two prominent, mutually reinforcing paradigms come to the
forefront: DevOps and cloud-native architecture. DevOps created a cultural change
by establishing more open communication between teams. This cultural change led
to practices such as continuous integration, testing, and deployment, which shaped
today's software development methodology. Likewise, cloud-native architecture
created an open environment with scalable microservices capable of serving millions of
customers. In order to manage this scalability, container technologies have evolved for
the development, testing, and deployment of applications. These two paradigm shifts
have enabled today's robust, scalable, and easy-to-manage software applications to
change the technological, social, and industrial face of the world.

Before diving into innovative software development methods, let's have a glance
at a conventional approach. Traditionally, software development was similar to
manufacturing a passenger aircraft. Considerable investments in infrastructure
and personnel followed the collection of requirements, design, and planning. There
were teams identical to production-line engineers and workers that specialized in
a particular topic and delivered parts of the aircraft for the next stages. There were
even companies with organizational structures including teams named "production
line." Prodigious output was delivered to customers following formal acceptance
tests. After that, it was the customer's responsibility to make the aircraft fly with its
team of engineers and operators. Further requests and upgrades were part of another
substantial project.

Today, software development has evolved and become more customer-oriented. It
has moved away from making customers buy software products by having customers
subscribe to software services. A similar thing could be said for the aircraft analogy:
software applications are smaller and more flexible, like drones. Requirements are
collected at every stage, and the product is configured to the customer's environment
"on the fly." Since customers also buy the product as a service, maintenance and
keeping drones in the air is the job of the producer. In order to manage these services,
microservice orchestrators such as Kubernetes make these small drones run in
harmony to achieve more complex air shows. These changes in software development
and operations owe their success to the cultural shift of DevOps and containerized
cloud-native technologies.

Introduction | 3

DevOps' Effect on Industry

Leading companies such as PayPal, Facebook, and Netflix have very strong DevOps
success stories that have evolved over the years. For instance, Paypal has more than 200
million active users, with nearly 5,000 developers. In 2013, creating a new application
on PayPal required opening dozens of tickets and following their complex statuses for
months instead of writing code. To resolve this problem, PayPal developed a software
development lifecycle system to manage the complete lifecycle of software, going from
planning to production in a couple of weeks.

Likewise, Facebook focused on code ownership, automation, and continuous
improvement way before DevOps became popular. Today, Facebook uses the Chef
configuration management tool to manage all of its infrastructure and backend systems.
Similarly, Netflix created an environment where thousands of changes are made to
production each day. It both decreased the time taken to fix problems and increased its
market responsiveness.

When old and new software development practices are compared, it is evident that
the old mindset of conventional software development is doomed to fail. Running
scalable, reliable, and robust applications on cloud providers that can scale to serve
millions of customers requires learning and applying new methodologies. The basics of

these methodologies include learning the basics of DevOps culture and toolchain and
container technology. Following that, it is essential to learn and exercise how to install,
configure, scale, and monitor containerized applications inside the de facto container
orchestrator, Kubernetes.

In this chapter, the inception of the DevOps cultural shift and its value toolchain are
explored. How DevOps changed the software development environment and potential
benefits for organizations are covered. Following that, every step of a complete DevOps
toolchain will be discussed, starting from the plan for a software project to monitoring
an installed application. All toolchain steps are presented and experimented on with a
modern cloud-native application suitable for today's software trends.

DevOps Culture and its Benefits

Traditional software development focused on planning, developing, testing, and
delivering software systems with separate teams focused on the respective areas. The
outputs and expectations of teams were defined in detail beforehand, and each team
was responsibile for its deliverables. For instance, the planning team, consisting of
seasoned planning managers and industrial engineers, would calculate the working-
hour requirements and delivery dates for their output. The development team would
create software, and the testing team would test the output of the development team.

4 | Introduction to DevOps

Finally, the delivery team would visit a customer on site and install the software systems
according to the customer's needs. These consecutive stages were huge, and they
were done with minimal inter-team communication. The state of mind was based on
not interfering with the business of other teams involved in the development process.
With this style of development, many IT projects were undertaken; however, most of
them failed. To make it clear with actual numbers, according to research on "The Impact
of Business Requirements on the Success of Technology Projects", by IAG Consulting, in
2008, 68% of IT projects failed as they were impractical due to lack of communication
between the various teams.

What made the software projects impractical was a lack of proper requirement
analysis and inter-team communication. Planning and consulting teams would collect
requirements without the collaboration of development teams. With the same kind
of flawed approach, development teams did not cooperate with the operations teams
responsible for configuring, installing, and monitoring applications for customers.
This lack of formal inter-team communication resulted in development teams having
minimal knowledge about the runtime environment. On the other hand, operations
teams had practically no concrete understanding of the requirements and features of
the applications they were deploying. With enormous barriers between these teams,
they created applications that did not concurrently consider the runtime environment
and software requirements. Consequently, both development and operations teams
were held responsible for many failures, thus leading to financial losses.

As the term DevOps derives from the combination of development and operations, the
DevOps culture came in to being to increase the collaboration between development
and operations teams. With DevOps' cultural change, companies now form DevOps
teams consisting of engineers from development and organizational backgrounds.
These new teams help developers to realize both operational and customer
requirements. On the other hand, operations engineers gain insights into applications
and development requirements. With the barriers between teams having collapsed,
requirements are collected efficiently, quality is fostered, and lead times are reduced.
The benefits of this cultural shift have led to DevOps being adopted in organizations of
various sizes, from start-ups to enterprise companies.

Note

The term DevOps was coined by Patrick Debois in 2009 and was first used at a
devopsdays conference in Belgium. Devopsdays focuses on software development
and IT infrastructure operations and events are organized worldwide throughout
the year. You can read more about this at:

https://www.devopsdays.org/

https://www.devopsdays.org/

The DevOps Toolchain | 5

With the successful implementation of DevOps, not only has communication between
teams increased, but software delivery speed, reliability, and scalability have also been
enhanced. Firstly, DevOps culture indicates better requirement collection and better
utilization of those requirements in the product design. Therefore, it is expected to
have decreased the time taken to deliver new product features to the market. Secondly,
with continuous integration and testing, more robust and reliable applications are
expected. Finally, DevOps also enhances operations including configuring, deploying,
and monitoring.

With infrastructure-as-a-code practices and metrics from production environments,
it is expected to have scalable applications. DevOps culture is capable of providing
organizations with various advantages. However, before implementation, understanding
the current company's culture and creating a feasible action plan for introducing
DevOps is crucial. In the following sections, the DevOps toolchain is explained in detail
to illustrate how DevOps' cultural shift has evolved into a value chain for software
development.

The DevOps Toolchain
The DevOps toolchain consists of practices that connect development and operations
teams, with the aim of creating a value chain. The stages of the DevOps chain and their
interconnectivity is presented as follows:

Figure 1.1: The DevOps toolchain

6 | Introduction to DevOps

The DevOps toolchain is a continuous chain of streamlined activities that can be
grouped into two: development and operations. DevOps tries to remove the barriers
between development and operations and its toolchain also emphasizes the association
of activities and teams. For the successful implementation of a DevOps culture, it is
crucial that each stage is executed and communicated transparently. In the following
sections, each step is presented along with its interaction with other stages and modern
real-life software application examples.

Plan

Planning is the first step in most software development projects and is also a critical
step that should be revisited for long-term ongoing projects. Planning a modern, cloud-
native software application requires more than calculating person-hour requirements,
and it is a crucial step between the monitor and create stages. If planning is considered
a black box, it should take production and busines metrics from the monitoring stage as
inputs. As depicted in Figure 1.2, it should produce requirements, release schedules, and
quality standards for the create stage:

Figure 1.2: The plan stage in the DevOps toolchain

With everchanging requirements, high-level configurations, and scalability, planning
today's applications requires agility and visibility. The principal approach for planning
is based on classifying, prioritizing, and tracking the execution of work on issue boards.
Issue boards help to manage backlog and work-in-progress items by following statuses
collaboratively. The overall state of all work items is available to anyone, following the
main idea of DevOps: collaboration.

The DevOps Toolchain | 7

Work items are created in project management systems such as JIRA, GitHub Issues,
or GitLab Issues and classified with labels such as bug, enhancement, or needs help
based on the content and requirements of the issues. In Figure 1.3, the issue list of the
Kubernetes project is shown with labels near to the issue names:

Figure 1.3: Kubernetes issues in GitHub

Being the most popular project in GitHub, there are more than 2,000 open issues in
the Kubernetes repository and more than 26,000 closed ones. Besides, Kubernetes
Special Interest Groups (SIGs) are used within issue labels to specify the main group
responsible.

8 | Introduction to DevOps

The second level of classifying is based on the planning timeframe of issues, and
the most common groups are Backlog, WIP (Work in progress), and Done. For the
Kubernetes repository, the CustomResourceDefinition project board can be checked:

Figure 1.4: CustomResourceDefinition board of Kubernetes on GitHub

This project board consists of issues related to the CustomResourceDefinition feature
(formerly known as ThirdPartyResource) in Kubernetes. Compared to all issue lists,
this provides a more focused and manageable list of topics. There are three blocks,
named Backlog, Assigned, and Done. Backlog items consist of things that the team has
not started working on yet, whereas Assigned items are in progress. As expected, this
project aims to move all issues into the Done block eventually.

The DevOps Toolchain | 9

Project boards and issues are conventionally created and tracked using code
repositories such as GitHub and GitLab. This makes it easier to mention bugs in code
and failing test cases, and also increases the developers' contributions to boards, since
they are already dealing with the code repository daily. However, the most critical input
of planning using project boards, according to DevOps culture, is providing an overview
of a project's status, which is created and followed collaboratively. In the following
exercise, you will open and create a repository in GitHub and add your first item to a
project board.

Note

If you do not have a GitHub account, you need to create one before starting the
exercise. GitHub is a free service, and you can register with your email, choosing a
username and password, at https://github.com/join.

Exercise 1: Creating a Repository and Project Board on GitHub

In this exercise, we'll create a new repository in GitHub and start the planning stage by
adding our first backlog items to the project board.

Note

The code files for the exercises in this chapter can be found at https://github.com/
TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/tree/master/Lesson01.

To successfully complete the exercise, we need to ensure the following steps are
executed:

1.	 Click + in the header menu in GitHub and choose New Repository:

Figure 1.5: Header menu in GitHub

https://github.com/join
https://github.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/tree/master/Lesson01
https://github.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/tree/master/Lesson01

10 | Introduction to DevOps

2.	 Fill Repository name with devops-blog and ensure that Public is selected. Click
Create Repository:

Figure 1.6: Creating a repository in GitHub

You will be redirected to the new repository:

Figure 1.7: DevOps blog repository in GitHub

The DevOps Toolchain | 11

3.	 Click Projects in the repository view and then choose Create a Project:

Figure 1.8: Projects view in GitHub

4.	 Fill Project board name with First Version and click Create Project:

Figure 1.9: Creating a new project in GitHub

12 | Introduction to DevOps

You will be redirected to the new project board:

Figure 1.10: Project board in GitHub

5.	 Click Add a column and add these three columns: Backlog, WIP, and Done:

Figure 1.11: Project board with columns in GitHub

6.	 Click the + icon in the Backlog column add two new items: Create the first
working blog and Connect CI/CD pipeline:

Figure 1.12: Backlog items in GitHub

The DevOps Toolchain | 13

7.	 Move Create the first working blog into the WIP column from the Backlog
column since we have started working on it:

Figure 1.13: WIP items in GitHub

With the GitHub repository set up, now it is possible to add some backlog items to the
project board and start planning. In the next section, planning requirements and issues
will be utilized while creating the software according to DevOps practices.

Create

With a detailed planning stage carried out, there are items in Backlog ready to be
assigned to teams so that the software creation can start. When this stage is modeled
as a black box, as in Figure 1.14, it takes inputs from the plan stage as requirements and
release dates, and creates the source code of the application, which should be verified
in the next step:

Figure 1.14: Create stage in the DevOps toolchain

14 | Introduction to DevOps

Modern software applications are developed by geographically distributed teams of
developers collaboratively, with clear communication channels. Therefore, the de facto
path is to keep all source code, configuration, and sensitive data in distributed version
control systems as Git repositories. All popular tools, such as GitHub, GitLab, and
Bitbucket, provide Git repositories to manage source code securely, and developers
commit their changes to repositories as frequently as possible.

For an open source project such as Kubernetes, which is developed by different people
from various organizations and in various time zones, there are more than 74,000
commits by almost 2,000 contributors in the repository:

Figure 1.15: Kubernetes code in GitHub

The DevOps Toolchain | 15

The create stage in DevOps culture is the stage at which collaborative work is
converted into a single source code. It is important to have clear communication
and transparency between teams, and the popular Git repositories facilitate these
requirements. When the active branches are checked in Figure 1.16, there are seven
active branches for the Kubernetes repository. This indicates that more than one copy
of the primary source code is in progress and some future commits will be part of these
branches:

Figure 1.16: Active branches for Kubernetes in GitHub

In the following exercise, the source code for a DevOps blog will be uploaded to the
GitHub repository created in the previous section.

16 | Introduction to DevOps

Exercise 2: Creating a DevOps Blog

In this exercise, we'll create the source code of a DevOps blog and maintain it in the
GitHub repository created in Exercise 1, Creating a Project Board on GitHub.

Note

The code files for this exercise can be found at https://github.com/TrainingByPackt/
Introduction-to-DevOps-with-Kubernetes/tree/master/Lesson01.

To successfully complete this exercise, we need to ensure the following steps are
executed:

1.	 Download the code for Lesson01 to your local computer and open it in the
terminal:

$ ls Lesson01

Figure 1.17: Contents of the Lesson01 folder

2.	 Go to the master folder and commit the files in the master folder into GitHub with
the following commands:

$ cd Lesson01/master
$ git init && git add -A && git commit -m "first commit"
$ git remote add origin https://github.com/<USERNAME>/devops-blog.git
$ git push -u origin master

https://github.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/tree/master/Lesson01
https://github.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/tree/master/Lesson01

The DevOps Toolchain | 17

Figure 1.18: Committing the master branch into GitHub

3.	 Go into the gh-pages folder and commit the files in gh-pages folder into GitHub
with the following commands, one by one:

$ cd ../gh-pages
$ git init && git checkout --orphan gh-pages
$ git add -A && git commit -m "first commit" --quiet
$ git push https://GitHub.com/<USERNAME>/devops-blog.git gh-pages

Figure 1.19: Committing the gh-pages branch into GitHub

18 | Introduction to DevOps

4.	 Open the GitHub repository in the browser and ensure that there are two
branches with code inside them:

Figure 1.20: GitHub repository for a DevOps blog

In this exercise, source code for a DevOps blog has been created and pushed to a Git
repository. The next step, verification, focuses on the requirements for accepting and
validating changes.

Verify

Verification in DevOps software development culture is based on the idea of manual
and automated testing of changes for acceptance or rejection from the source code.
Manual verification includes reviewing code changes by other developers, to comment
on and discuss them in an open environment. Automated testing consists of multiple
levels, starting from static code analysis to end-to-end scenario tests. Sets of commits,
from development branches to active release branches, are accepted when a set of
criteria is passed, and code reviews are marked as approved by other developers.

The DevOps Toolchain | 19

As a black-box model, verification processes potential changes to source code from the
create stage and creates a confirmed source code, ready to be packaged in the next
step:

Figure 1.21: Verify stage in the DevOps toolchain

Practically, sets of commits are grouped into pull-requests. When a developer opens
a pull request (PR), it indicates that the included commits are ready to be reviewed by
other developers and tests can be run including these new changes. For the Kubernetes
repository, there are almost 1,000 open and 44,000 closed PRs. Open ones are still in
discussion or waiting to be approved. On the other hand, closed PRs could be accepted
and merged into active branches or entirely rejected by reviewers:

Figure 1.22: Pull requests for Kubernetes in GitHub

20 | Introduction to DevOps

The automated testing of changes is handled by continuous integration and testing
systems, such as Travis CI, Jenkins, and GitLab CI/CD. On these cloud systems, the
source code of new PRs is retrieved, and test operations are undertaken. If any of
these test steps fail, it returns the status to PR and does not allow it to be merged. For
instance, PR #73854 has passed all 16 checks, as follows:

Figure 1.23: PR checks for Kubernetes in GitHub

The DevOps Toolchain | 21

Unfortunately, PR #73953 failed some tests and cannot be merged before they are
solved:

Figure 1.24: PR checks for Kubernetes in GitHub

Verification by automated testing removes the burden of building and testing every
PR locally and decreases the time taken to review them. Without automation and
streamlined results, it would not be possible to merge 44,000 PRs in less than 5 years.
In other words, extensive reviews and the automated verification of changes made it
possible to create the de facto container orchestration tool, which enables running
applications on the cloud. In the following exercise, a method for connecting a cloud
CI/CD system, Travis CI, to the DevOps blog is presented.

Note

If you do not have a Travis-CI account, you need to create one before starting the
exercise. Travis-CI is a free service, and you can register with your existing GitHub
account at https://travis-ci.org/.

https://travis-ci.org/

22 | Introduction to DevOps

Exercise 3: Connecting the DevOps Blog to a CI/CD System

In this exercise, we'll connect the DevOps blog to a CI/CD system for automated
testing and builds. We will use Travis-CI, which is a free cloud-service providing CI/CD
capabilities.

To successfully complete the exercise, we need to ensure the following steps are
executed:

1.	 Open GitHub and click your profile picture and then Settings > Developer
settings > Personal access tokens:

Figure 1.25: Personal access tokens in GitHub

2.	 Click Generate new token, fill Token description with travis-devops-blog and
ensure that the repo scope is selected:

Figure 1.26: Generating a personal access token in GitHub

The DevOps Toolchain | 23

3.	 Click Generate token and you will be redirected to your new token page:

Figure 1.27: New personal access token in GitHub

4.	 Copy the token highlighted in green to use in Travis-CI in the next steps.

5.	 Open Travis-CI (https://travis-ci.org/) and click the + icon on the left-hand menu,
next to My Repositories, and search for devops-blog:

Figure 1.28: Repository list in Travis-CI

https://travis-ci.org/

24 | Introduction to DevOps

6.	 Enable devops-blog by checking the slider:

Figure 1.29: Enabling a new repository in Travis-CI

7.	 Click on devops-blog and on the redirected page, click More Options > Settings in
the menu:

Figure 1.30: Repository view in Travis-CI

The DevOps Toolchain | 25

8.	 Ensure that Build pushed branches and Build pushed pull requests are checked
at the top. In addition, Add a new environment variable below with the name
GITHUB_TOKEN and the value you copied in step 4:

Figure 1.31: The settings view in Travis-CI

With this exercise, continuous integration is now possible for the DevOps blog. In the
next section, verified changes in release branches will be packaged and delivered to end
users.

26 | Introduction to DevOps

Package

Packaging is the last step in the development part of the DevOps toolchain. In this
final step, the verified and accepted source code changes are gathered and end-user
packages are created:

Figure 1.32: Package stage in the DevOps toolchain

For modern cloud-native applications, there are two main approaches to packaging
and delivering end products. The first is for the client or on-premise applications to
be installed on local systems. Executables of these applications are made available in
GitHub releases or GitLab artifacts sections. The second is containerized applications
that run on cloud systems such as Kubernetes. These applications are packaged as
containers and managed inside container registries such as Docker Hub, Google Cloud
Platform Container Registry, and GitLab Registry. For instance, Minikube is a local
Kubernetes solution, and its releases are available on GitHub:

Figure 1.33: Minikube packages on GitHub

The DevOps Toolchain | 27

Since Minikube is expected to be downloaded and installed on local systems, it is
acceptable to have a list of executables in the GitHub releases section. However,
kubernetes-dashboard is the official dashboard for Kubernetes clusters, and it is
expected to be installed on clusters. Therefore, it is a containerized application, and its
versions are available on the Google Cloud Platform - Container Registry:

Figure 1.34: Kubernetes Dashboard releases on GCP

With these packaged artifacts available in different formats, operation team tasks start.
In the next section, the first task – releasing artifacts – will be explained.

28 | Introduction to DevOps

Release

Releasing is the first step in the operations part of the DevOps toolchain. In this step,
packaged and versioned applications from the previous step are put into the end-user
service:

Figure 1.35: Release stage in the DevOps toolchain

Modern cloud-native applications are delivered to end users or cloud systems by
considering three essential characteristics – downtime, targeting, and infrastructure
costs:

•	 Downtime: While offering applications, it is possible to have downtime, in which
no instances of the application are serving user requests.

•	 Targeting: With an enormous user base, it is vital to differentiate between
customers and target them with specific feature sets, such as geolocations and
device models.

•	 Infrastructure costs: As applications scale to millions of users, the cost of
infrastructure and investment is an inevitable characteristic to consider for the
delivery of systems.

The DevOps Toolchain | 29

While some of these characteristics are given more importance, some sacrifices
are made based on business requirements. For instance, for a banking application,
downtime is not acceptable; however, high infrastructure cost is bearable. Likewise,
it is critical for a marketing start-up to classify and target users without increasing
infrastructure costs dramatically. With an appropriate deployment strategy and
automation, it is possible to deploy and update cloud-native microservices in the cloud
reliably. In the following exercise, the DevOps blog will be released for the first time, on
GitHub Pages. GitHub Pages is a service provided by GitHub to host websites directly
from a GitHub repository.

Exercise 4: Releasing the DevOps Blog

In this exercise, we'll release the DevOps blog to the entire world by using GitHub
Pages. To successfully complete the exercise, we need to ensure the following steps are
executed:

1.	 Open the devops-blog repository in GitHub and click Settings:

Figure 1.36: Settings in the devops-blog repository in GitHub

30 | Introduction to DevOps

2.	 Scroll down to GitHub Pages, select "gh-pages branch" in the Source section, and
click "Save":

Figure 1.37: Enabling GitHub Pages in GitHub

Note

It could take a couple of minutes to resolve the subdomain for your username. If
you receive a 404 error from GitHub, please try again in a couple of minutes.

The DevOps Toolchain | 31

3.	 Open http://<USERNAME>.github.io/devops-blog in the browser:

Figure 1.38: DevOps blog is up and running

4.	 Open the project board created in Exercise 1 and move the "Create the first
working blog" item to "Done," since the blog is up and running now:

Figure 1.39: Done items in GitHub

With this exercise, the very first version of the DevOps blog is released to the world.

http://<USERNAME>.github.io/devops-blog

32 | Introduction to DevOps

Configure

The configuration step focuses on managing all the custom configuration required for
the generic application released in the last step:

Figure 1.40: Configure stage in the DevOps toolchain

The configuration of modern cloud-native applications consists of two parts: runtime
configuration for the application and infrastructure configuration definition. Both of
these configurations are created, managed, and tracked as code in Git repositories. This
approach increases the visibility of requirements to all teams while strengthening the
DevOps culture. For instance, if there is a requirement for a replica of the PostgreSQL
database, it should be declared in the respective configuration files in the repository.
This makes it easy for not only the operations team but also developers to know about
runtime requirements. It removes the barrier between teams and distributes knowledge
democratically, while increasing the quality of the application. Development and testing
teams can create their testing environment based on this requirement, resulting in
more reliable software systems. In the next and final section, software applications that
are configured based on customer requirements will be monitored, and metrics will be
collected.

Monitor

Monitoring is the last step in the DevOps toolchain, but it is also a critical step to
feed planning, the very first step in the toolchain. It takes released and configured
applications and provides business-critical metrics for the planning stage:

Figure 1.41: Monitor stage in the DevOps toolchain

The DevOps Toolchain | 33

For cloud-native applications, monitoring enables the tracking of key performance
indicators and indicates the status of applications compared to goals. Besides this,
monitoring is critical for troubleshooting production systems to find problems and
resolve them proactively.

Within the framework of the DevOps toolchain, monitoring is the only step that shows
the impact of changes made in the previous steps. In other words, it is now possible to
show how newly developed, verified, packaged, released, and configured changes will
affect production systems. For current, cloud-native monitoring, there are three crucial
aspects to consider:

•	 Logging: Collecting, storing, and making logs searchable to troubleshoot problems
in the long run.

•	 Error tracking: Receiving and collecting key details about errors that have
occurred in running systems. These errors could indicate misconfiguration,
undesired user behavior, and malicious activities.

•	 Cluster monitoring: Tracking the health of clusters based on master and worker
health statuses, applications running on them, and scalability.

With the monitoring stage, all seven steps in the DevOps toolchain are presented
with real-life examples and exercises. In the following activity, an automated pipeline
running in the cloud will be set up to show how DevOps culture is practically converted
into a pipeline.

Activity 1: CI/CD Pipeline for the DevOps Blog

The aim of this activity to create an automated pipeline to verify, package, configure,
and release the DevOps blog. Until now, the DevOps blog has been generated locally,
and HTML files have been uploaded to the gh-pages branch. GitHub Pages hosts
the pages in this branch and makes the blog available to the public. It should verify,
generate, and configure the blog from the source code automatically, so that when a
new blog post is added, the pipeline should update the running website.

34 | Introduction to DevOps

All previous exercises in this chapter will need to have been completed to complete this
activity. The GitHub repository, the source code in the master branch, and Travis-CI
should be utilized with a pipeline to achieve automation. Once completed, you should
have a complete pipeline running in Travis-CI and successfully passing:

Figure 1.42: Successful run in Travis-CI

As expected, the blog should be up and running:

Figure 1.43: DevOps blog is up and running

The DevOps Toolchain | 35

When a new blog post is added to the content/post folder in the source code, the
pipeline should run automatically and update the website with the new post:

Figure 1.44: Automated updates in the DevOps blog

Execute the following steps to complete this activity:

1.	 Create a file with the name .travis.yml in the master branch of the repository
including the Travis-CI definition.

2.	 Commit the .travis.yml file into the master branch.

3.	 Trigger a build in Travis-CI for the master branch.

4.	 Add a new blog post to the content/post folder. An example of blog content could
be as follows, in a file named 2019-02-02-kubernetes-scale.md.

5.	 Wait for Travis-CI to trigger an automated build with the new material.

6.	 Check for the blog on the browser for the new content once the build is
completed.

7.	 Move the Connect CI/CD pipeline item to Done in the project board created in
Exercise 1, Creating a Project Board on GitHub.

Note

The solution of this activity can be found on page 298.

36 | Introduction to DevOps

Summary
In this chapter, we first described conventional software development methods and
discovered their boundaries. Precisely, we explained how conventional methods failed
to encourage collaboration between development and operations, ultimately resulting
in failures. Then, we discussed the motivation for the DevOps cultural shift.

We then progressed to introduce the DevOps toolchain in detail. Each stage of
the toolchain was explained, firstly as a black box, and later, cloud-native modern
implementations were discussed. We mentioned that each stage of the DevOps
toolchain aims to increase collaboration and create a successful software project.
Through the chain, a DevOps blog was planned, created, and released. At the end of the
chapter, this DevOps blog was automated with a CI/CD pipeline within an activity.

The DevOps toolchain and DevOps practices discussed in this chapter will be revisited
in later chapters to be implemented inside Kubernetes. In the next chapter, we will
be describing the fundamentals of cloud-native technologies, microservices, and
containers. These concepts are essential, since they are the building blocks of container
orchestration and Kubernetes.

Learning Objectives

By the end of this lesson, you will be able to:

•	 Summarize the basics of microservice architecture

•	 Demonstrate the fundamental concepts of Docker

•	 Build and release Docker containers

•	 Run and share volumes and ports using Docker containers

This lesson gives an introduction to microservices and containerization.

Introduction to
Microservices and

Containers

2

40 | Introduction to Microservices and Containers

Introduction
Microservices are one of the most recent and prominent trends in software
development and architecture. Nowadays, applications are designed as a set of
loosely-coupled services in microservice architecture. These "micro" services are
expected to be developed independently, and they focus on a small subset of business
functionalities. For instance, let's imagine developing a banking application with a
web frontend for its customers and multiple backend services. It is expected to run
frontend and backend services independently, and the frontend finds the IP address of
the backend from discovery services to send queries. Each service focuses only on its
business functionality and does not directly depend on other services. This architecture
enables faster development, bug-fixing, and customer responsiveness. Therefore, it is
inevitable for competitive organizations to engage in microservice architecture.

Creating single and large applications, namely, monolithic architecture, was a common
approach in the past. All the functionalities of an application were packaged into a
single process and delivered to customers as a single binary. It was easy to build,
deploy, and update; however, it lacked horizontal scalability. For instance, let's assume
that you have purchased a human-resources system such as a monolith application
and installed it into costly servers in your data center. Within a couple of months, you
realize that everything works, but the payroll systems are not responding fast enough
because complex calculations are required for your company. The most straightforward
solution is to buy another high-priced server and run two instances of the complete
HR system. Although you only need faster payroll operations, it will cost you more
than double since you must upgrade the whole system. This is the main problem
with monolith applications; that is, without proper scalability based on usage levels,
monolithic architecture is doomed to fail in the long run.

On the other hand, microservice architecture puts each business functionality into a
separate service so that you can quickly increase the number of "only" payroll service
replicas. Even better than this is that it can scale itself automatically with the usage
level – since the microservice architecture will not span the complete resources of
the servers. The scalability of microservices makes them the ultimate choice for the
successful applications of today and the future compared to the monolithic architecture
of yesterday.

Using traditional methods and tools for a new architectural style of microservices is
impractical. Dramatic changes are needed for the development, build, testing, and
runtime environment due to the requirements of microservice architecture. Prior to
the last decade, the only solution for this was to actually run applications on physical
servers. Since our applications are now "micro" services, it is possible to run multiple
services on the same host.

Introduction | 41

However, this comes with its own risks, such as conflicting dependency libraries or
causing a chaotic domino effect of failing applications in the same host. Virtualization
is the solution to this problem; it creates multiple virtual servers or virtual machines
(VMs) on the same physical server. It is a very well established and popular technology,
and it is the fundamental service provided by all cloud providers, such as AWS, Google
Cloud, Azure, and Alibaba Cloud. However, a fine level of virtualization is required
considering the scalability and the high number of microservices in a complex
application. Containerization technology provides a high level of virtualization as a de
facto runtime solution for microservices:

A lightweight runtime: VMs partition the physical server by using a comprehensive
operating system as their runtime environment. Considering the scope of
microservices, using one VM for one microservice results in heavy infrastructure costs.
In addition, there is theoretically no need for a completely "new" operating system
to run an application. In order to reach the scalability required by microservices,
virtualization is moved one level closer to the application. Containerization focuses
on virtualization at the operating system level so that multiple containers are able to
share the same operating system without interfering with each other. Figure 2.1 shows
how VMs and containers are structured as layers on top of the infrastructure. Each
microservice running in its container creates a separate execution environment while
reducing the overhead and enabling scalability. Compared to VMs, containers – with
their lightweight runtime environments – are a better option for running microservice
applications.

Figure 2.1: The VM and container layers on top of the infrastructure

42 | Introduction to Microservices and Containers

The build and run speed: Hypervisors start VMs on physical servers, and it could take a
couple of minutes to bootstrap and start a complete operating system. In order to solve
this issue, some additional idle VMs could be initialized and kept ready for workloads,
but this will come with extra costs. On the other hand, microservices are started inside
an operating system with less overhead and in a couple of seconds. Today's applications
are expected to react more quickly to spikes in usage levels, and so waiting a couple
of minutes is not acceptable in most cases. Containers are a better option compared
to physical servers and VMs to run scalable, reliable, and robust applications when
considering these performance concerns.

Microservice architecture focuses on the design and operations of multiple services
but does not indicate any runtime choice. Containers are the most appropriate runtime
environment considering the requirements of scalability, reliability, and responsiveness
of today's applications. It is best if you start your microservices journey from scratch.
However, it is also acceptable if you have a well-established system such as Netflix
running an entire microservice architecture on AWS instances instead of containers.
Container runtimes are standardized under the Container Runtime Interface (CRI)
so that container orchestrators such as Kubernetes can support different runtimes.
There are open source and licensed container runtimes available in the market, such as
Docker Engine, CRI-O, and Kata Containers:

Docker Engine: This was started in 2013 and is currently being supported by Docker
Inc. It is the most widely adopted, popular, and mature environment, which has been
tested by a huge number of users and organizations. It is the best choice if you started
the containerization of your applications recently and want a mature environment that
is supported by many cloud providers and Kubernetes.

CRI-O: This is sponsored by the Cloud Native Computing Foundation (CNCF) and
was started in 2016 as a lightweight Kubernetes-specific runtime. It is supported by
the OpenShift Kubernetes engine by default; however, it lacks some security features
compared to Docker.

Kata Containers: This is the youngest runtime environment, which was started in 2017
and is supported by Intel. It provides many more security options but creates extra
overhead that reduces the overall performance of the system. Although it is a young
environment, it is already supported by Kubernetes and is promising for enterprises
because of its extra security options.

In this chapter, we will focus on Docker Engine, since Kubernetes support it and it is
the most mature and popular container runtime environment. First, we will introduce
Docker using a "Hello World" container. Second, we will explain container images and
image repositories. We'll then continue by presenting methods that can be used to
share resources between the host system and the containers. Finally, we will perform an
activity to run a WordPress blog using a database connection inside a Docker container.

Introduction to Docker | 43

Introduction to Docker
Docker is an open source container runtime system based on Linux containers. Linux
containers use Linux kernel features such as namespaces, control groups (cgroups), and
layered filesystems:

•	 Namespaces: Namespaces isolate each application from the host and other
applications by creating separate environments.

•	 cgroups: In Linux, cgroups are used to limit applications for a specific set of
resources such as memory or processing power.

•	 Layered filesystems: Layered filesystems consist of reusable layers stacked on
top of each other to form the base of a root filesystem. They are the primary
technology that enables containers to be lightweight.

Namespaces and cgroups surround the containers that are to be isolated and limited;
whereas a layered filesystem consists of what is shared and packaged inside the
containers. When you consider the popularity of Docker, the following three essential
features make it prominent:

•	 Speed: Docker containers are lightweight, and their engines work quickly not only
on data center servers but also on developer laptops. Therefore, they shorten the
time that is required to debug problems, test fixes, and release new versions.

•	 Ecosystem: The Docker ecosystem enables newcomers to build and run
containerized applications. It is possible to find, download, and start a Docker
container from the Docker Hub registry in a couple of seconds. Docker Hub is a
free-to-use Docker container registry, which is similar to the mobile application
store in Apple or Android.

•	 Usability: Docker makes it easier to run containers for everyone, including
developers, quality teams, and operators. It made the motto of Java "build once run
everywhere" real with its easy-to-use client and API.

44 | Introduction to Microservices and Containers

The speed, vibrant ecosystem, and usability features of Docker make it the container
runtime that comes to mind first. In order to learn about Docker in detail and use it, we
need to cover some fundamental concepts next.

Note

You are required to have Docker Engine installed on your local system before
starting on the fundamental concepts and the exercise. Download and install the
Docker Desktop based on your local operating system from the Docker website at
https://www.docker.com/products/docker-desktop.

The Fundamental Concepts of Docker

In this section, the basic concepts of Docker are explained in detail as some of them
are used interchangeably in various blogs and tutorials. Starting from the operating
system part of Docker itself to the containers, the fundamental concepts are visualized
in Figure 2.2, as follows:

Figure 2.2: The fundamental concepts of Docker

https://www.docker.com/products/docker-desktop

Introduction to Docker | 45

Docker Engine

Docker Engine is the layer on top of the operating system where the containers run. It
consists of the Docker Daemon running in the host system and the Docker Client in
order to communicate with its daemon service.

Docker Daemon

Docker Daemon is the service that runs on the host system and manages the containers
and their interactions with external systems. We can easily check whether the daemon
is installed and running on the Docker system by executing the following command:

ps aux |grep docker

Figure 2.3: The process status output filtered for Docker

If you cannot see any process items for Docker in the process status output, you could
check for them by restarting the daemon with the commands based on your operating
system. If you see a couple of items like in Figure 2.3, it shows that the daemon is
working and is accessible by Docker Client.

46 | Introduction to Microservices and Containers

Docker Client

Docker Client is the tool that is used for interacting with Docker Daemon and, by
default, it is accessible by a Docker command in the Terminal. In a system where
Docker is installed and running, the version and API information can be checked using
the following command:

docker version

Figure 2.4: The output of the docker version command

This lists the version of the client and server with the corresponding API versions and
further information about the runtime environment. This command is helpful if any
unexpected API mismatches occur between the client and the daemon.

Introduction to Docker | 47

Docker Images

Docker images are read-only packages, which can include operating system libraries
and application requirements, if necessary. Docker images are defined using Dockerfiles
which include stepwise actions on the base image. Dockerfiles are used when Docker
images are built, and each step that is specified in a Dockerfile is executed on the base
image. Official and community-maintained images are designed to be stored in the
Docker registry, and Docker Hub is the official one; for instance, Ubuntu images can be
checked in the Docker registry, as follows:

Figure 2.5: The official Ubuntu Docker image in Docker Hub

The Docker registry page for Ubuntu lists all of the available versions and quick-start
information to run containers using an Ubuntu image. It is possible to download any
Docker image from the Docker registry in a couple of seconds, and it is one of the
reasons that makes the Docker environment a popular one.

48 | Introduction to Microservices and Containers

Docker Containers

Docker containers are running instances of Docker images that consist of an execution
environment for applications. They are expected to run many instances of the same
Docker image; in other words, multiple Docker containers. Two essential features are
added to containers in addition to the images; first, since Docker images are read-only,
Docker containers include an additional filesystem layer to enable read-and-write
capabilities. Additionally, a network interface is attached to those containers with an
available IP so that containers are reachable from the host system and from outside.
The flow of Docker images to the registry, and then to the containers is summarized in
Figure 2.6:

Figure 2.6: The flow of the Docker container and image

In the following exercise, we will combine these fundamental concepts in order to run
and manage a "Hello World" container in Docker.

Introduction to Docker | 49

Exercise 5: Creating a "Hello World" Container in Docker

In this exercise, we aim to create and manage a "Hello World" container in Docker
Engine.

To complete the exercise, we need to ensure the following steps are executed:

1.	 Ensure that Docker is working as expected by running the following command:

docker version

Figure 2.7: The output of the docker version command

Here, you should see both the client and server version with their matching API
versions in order to operate in harmony. In Figure 2.7, both the client and server
have the same version of 18.09.3 and the same API version of 1.39, which indicates
that our Docker engine is working.

50 | Introduction to Microservices and Containers

2.	 Create a hello-world container by running the following command:

docker run hello-world

Figure 2.8: The output of docker run hello-world

In Figure 2.8, the first line indicates Unable to find image 'hello-world: latest'
locally, which is to be expected if this container image is never used locally. In
the following lines, the Docker image is downloaded from the registry, which is
indicated by "latest: Pulling from library/hello-world". After downloading, Hello
from Docker! shows the first outputs of the running containers. These stages are
also described in the four steps in the output.

3.	 Check the Docker process status by executing the following command:

docker ps

Figure 2.9: The output of docker ps

Building Docker Images | 51

Since the hello-world container has been started and completed, there is no
container listed in the output. When the same command is used with the --all
flag to show all the containers, the hello-world container is expected to be listed:

docker ps --all

Figure 2.10: The output of docker ps --all

The container with ID b06d40f39b58 has an Exited (0) 3 minutes ago status,
which shows that it was completed successfully.

In this exercise, we have demonstrated how to run a simple Docker container and check
its status. In addition, we have shown how the Docker image is downloaded from the
Docker registry automatically and is ready to reuse locally. In the following section, we
will explain how to build a Docker container and publish it to the Docker registry in
order to show how applications are built and released as Docker containers.

Building Docker Images
Docker images consist of applications with their dependencies and they are ready to
be launched at scale. In addition, they are suitable to run on cloud servers and data
centers because of their lightweight architecture. Docker images are created from the
steps defined in Dockerfile, where each instruction forms a layer on top of the previous
one. This layered design of images is the prominent feature that makes Docker images
lightweight and quick to start. The underlying technology of layered Docker images is
the union file system (UFS). The UFS can be considered as stackable layers of files and
directories. Each layer is traceable back to its parent layer in a tree structure so that
different branches can share the same root. In other words, if two container images
have the same base image of ubuntu:18.10, this base image will not be replicated twice;
Docker Engine will reuse the same base image to run these two containers. In the next
sections, we will present Dockerfiles, how containers are defined, and how they are
released in registries.

52 | Introduction to Microservices and Containers

Dockerfiles

A Dockerfile consists of the necessary commands that are required to build a Docker
image in a sequential scheme. Docker Engine uses the text file in Dockerfile format to
create the Docker image and this file consists of the steps defined with the commands
including but not limited to:

•	 FROM: The base image for the container as a starting phase

•	 ADD: To copy files from the host system into the container filesystem

•	 ENV: The environment variables for the container

•	 RUN: To execute commands in the container, such as running commands in the
Terminal

•	 WORKDIR: The working directory to run the container commands

•	 CMD: The executable command to run every time the container starts

Note

A complete list of supported commands in Dockerfile is available in the official
reference document at https://docs.docker.com/engine/reference/builder/.

An example Dockerfile is defined for a web server using the following script:

•	 The base image of ubuntu:18.10.

•	 The RUN commands to update the apt-get repositories, install nodejs and npm, and
install http-server.

•	 WORKDIR is defined as the /usr/apps/hello-world/ folder that is used for HTML files
in the future.

•	 The executable command to run http-server on port 8080. Since WORKDIR was
defined previously, the CMD command will run in the /usr/apps/hello-world/ folder:

FROM ubuntu:18.10
RUN apt-get update
RUN apt-get install -y nodejs npm
RUN npm install -g http-server

WORKDIR /usr/apps/hello-world/

CMD ["http-server", "-p", "8080"]

https://docs.docker.com/engine/reference/builder/

Building Docker Images | 53

The Docker Registry

Docker registries are the solution for building and delivering containers in a cloud-
native way. A Docker registry is a content delivery and storage solution for Docker
images, which are tagged, given specific versions, and different tags of the same
Docker image are kept in the same repository. Docker registries play a crucial role
in continuous delivery and deployment. They make it possible to run hundreds of
instances in a distributed cluster by storing them efficiently and delivering them in a
scalable fashion. Cloud registries provide a high level of security features that could
work for startups and large enterprises. There are various cloud registry services, and
some of the most popular ones are as follows:

•	 Docker Hub: https://hub.docker.com/

•	 Quay: https://quay.io/

•	 AWS EC2 Container Registry: https://aws.amazon.com/ecr/

•	 Google Container Registry: https://cloud.google.com/container-registry/

In the following exercise, we will build a Docker image and push it to the Docker
registry. This will demonstrate how to build and deliver images in a cloud-native way,
which is a prerequisite for running containerized microservices in cloud systems such
as Kubernetes.

Note

You will need a Docker Hub account to push the images into the registry in the
following exercise. Docker Hub is a free service and you can sign up to it at https://
hub.docker.com/signup.

https://hub.docker.com/
https://quay.io/
https://aws.amazon.com/ecr/
https://cloud.google.com/container-registry/
https://hub.docker.com/signup
https://hub.docker.com/signup

54 | Introduction to Microservices and Containers

Exercise 6: Building a Docker Image and Pushing it to Docker Hub

In this exercise, we aim to build and push a web server container to Docker Engine.

To complete the exercise, we need to ensure the following steps are executed:

1.	 Create a text file with the Dockerfile name, and include the following content:

FROM ubuntu:18.10

RUN apt-get update
RUN apt-get install -y nodejs npm
RUN npm install -g http-server
WORKDIR /usr/apps/hello-world/

CMD ["http-server", "-p", "8080"]

Note

Dockerfile is already available at https://github.com/TrainingByPackt/Introduction-
to-DevOps-with-Kubernetes/blob/master/Lesson02/Dockerfile.

2.	 Build the Docker image with the tag including your Docker Hub username:

docker build -t <USERNAME>/webserver:latest .

Figure 2.11: The output of docker build (end of the run)

https://github.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/blob/master/Lesson02/Dockerfile
https://github.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/blob/master/Lesson02/Dockerfile

Building Docker Images | 55

Building the image includes installing various libraries, therefore, a long output
is to be expected. At the end of the build, you will see Successfully built
1e54f0e11db7 and Successfully tagged onuryilmaz/webserver:latest on the
screen, which indicate successful completion.

3.	 Create a repository in Docker Hub with the webserver name:

Figure 2.12: The repository view in Docker Hub

Figure 2.13: Create a repository in Docker Hub

56 | Introduction to Microservices and Containers

Fill the name field with webserver and ensure that you select Public under
Visibility. Click on the Create button, and you will be redirected to the new
repository page:

Figure 2.14: The new repository in Docker Hub

Note

If this is the first time that you are using Docker client with your Docker Hub
account, you need to log in using the docker login command from the Terminal.

4.	 Push the image to the Docker hub registry, as follows:

docker push <USERNAME>/webserver

Figure 2.15: The output of docker push

Running Docker Containers | 57

Following successful completion, all layers inside the Docker image should be
uploaded. The new image with the latest tag can be checked from the Docker Hub
in the Tags section of the repository:

Figure 2.16: Tags of the new repository in Docker Hub

In this exercise, we demonstrated how to build a Docker image and push the image
to the Docker registry in Docker Hub. In the following section, we will explain how
you can run a Docker container and share resources from the host system in order to
demonstrate the fundamentals of managing containers in the cloud.

Running Docker Containers
Containers in Docker are considered ephemeral environments where executables
are run, and no state is kept. This is partially true, since the data generated inside the
container is only available in the same container. However, Docker Engine provides
methods that allow you to share data between the host system and containers. In
addition, the services inside the containers are reachable between the host system and
other containers.

In this section, we will explain how to run Docker containers using volume and
port mapping in order to show how containers are used for stateful services.
Running a container starts by running processes, which are packaged as Docker
images, as isolated containers. This could be initiated by the docker run command, or
programmatically by using the Docker API on local or remote host systems. Docker
Engine provides more than just running processes and it can attach networks or
volumes, ensure runtime constraints on resources, or add Linux privileges. In this
section, the two fundamental capabilities that are presented are port mapping and
volume mapping:

58 | Introduction to Microservices and Containers

Port Mapping: Docker Engine allows containers to connect to the outside world by
default, however, it does not allow incoming traffic to containers. There are a couple of
docker run options to allow incoming traffic to containers; the first option is to use the
--publish-all=true flag to enable all the ports exposed in the container. The required
ports for this application can be exposed in Dockerfiles by using the EXPOSE command,
and then the --publish-all flag can be used while running them. The second option is
to explicitly use the --publish flag with a map of host and container ports; for instance,
--publish=8080:80 will map the host port 8080 to the container port 80, as demonstrated
in Figure 2.17. Since microservices are designed to implement business operations,
having an API and being reachable from the outside world is expected behavior. Docker
and container orchestration tools provide reliably-running containers while also
enabling network access:

Figure 2.17: Port mapping in Docker

Volume Mapping: Docker is designed so that containers do not contain persistent data.
If any data is stored in the writable layer of a container, it will be unavailable when the
container is stopped. In order to solve this issue, Docker provides volume-mounting
options in the docker run command. It is possible to mount a file or folder from the host
filesystem to a running command using the --volume flag. For instance, the --volume=/
var/data:/db/data flag will mount the /var/data folder of the host system to the /db/
data folder of the container. Mounted files and folders are writable from inside the
container so that they are reusable when the containers are restarted.

Running Docker Containers | 59

Mounted volumes from the host system and ephemeral temporary storage in memory
are demonstrated in Figure 2.18. Although containers are considered for ephemeral
business operations, containerization with volume capabilities makes it possible to run
and manage stateful applications such as databases:

Figure 2.18: Volume mapping in Docker containers

In the following exercise, we will run the Docker image of the web server from the
previous exercise using host volume mapping and port sharing. By doing so, we will
demonstrate how you can manage the data and networking of containers when they
run at scale.

60 | Introduction to Microservices and Containers

Exercise 7: Running Docker Containers, Volume Mapping, and Port Sharing

In this exercise, we aim to run the web server container using host volume mapping and
port sharing.

To complete this exercise, we need to ensure the following steps are executed:

1.	 Create a text file with the index.html name, and the following content.

This file consists of a simple HTML page with a Hello DevOps World header:

<html>
 <body>
 <h1>Hello DevOps World</h1>
 </body>
</html>

Note

index.html is already available at https://github.com/TrainingByPackt/
Introduction-to-DevOps-with-Kubernetes/blob/master/Lesson02/index.html

2.	 Start the container using the following command:

docker run -it \
-p 8080:8080 \
-v ${PWD}:/usr/apps/hello-world/ \
<USERNAME>/webserver:latest

Figure 2.19: The output of the docker run command

https://github.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/blob/master/Lesson02/index.html
https://github.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/blob/master/Lesson02/index.html

Running Docker Containers | 61

Using this command, a volume is mapped from the pathname of the current
Working Directory ($PWD) to /usr/apps/hello-world/, where the web server inside
the container is running. Additionally, port 8080 from the host system is mapped to
port 8080 of the container. This indicates that the container will be reachable from
the 8080 port of the host system.

3.	 Check the running containers in another Terminal, as follows:

docker ps

Figure 2.20: The output of the docker ps command

You can expect to see an instance of <USERNAME>/webserver with a status that is
similar to Up About a minute and the published ports.

4.	 Open http://localhost:8080 in a browser, as follows:

Figure 2.21: The web server in the browser

This shows that the web server is working and that the container is reachable
through host port mapping. In addition, the output shows the file created in Step
1, which also indicates that volume mapping is working.

5.	 Stop the container started in Step 2 using the Ctrl + C command.

In this exercise, we demonstrated how you can run a stateful container that is reachable
from the host system. In the following activity, we will create a stateful database
instance using Docker containers and a WordPress blog instance to connect to the
database and run coherently.

62 | Introduction to Microservices and Containers

Activity 2: Installing a WordPress Blog and Database Using Docker

The aim of this activity is to install and manage a MySQL database and WordPress blog
using Docker containers. WordPress is based on PHP and is a free and open source
content management system. It needs a MySQL database as its data source for user and
content management. In this activity, both the database and blog containers should be
ephemeral, however, persistent data should be kept on the host system. Additionally,
these two containers should interact with each other using Docker functionalities.

Note

WordPress is the most popular content management system on the internet, and
it is used by more than 60 million websites, including 30.6% of the top 10 million
websites as of April 2018. It can be found at https://wordpress.org/.

MySQL is an open source relational database, which was first released in 1995, and
is still one of the most popular database management systems with more than six
million installations. It can be found at https://www.mysql.com/.

Using the Docker commands from the previous exercises in this chapter, you can
expect to have two containers running and communicating with each other. With
the successful start of the WordPress container, you should see the setup screens as
follows:

https://wordpress.org/
https://www.mysql.com/

Running Docker Containers | 63

Figure 2.22: The setup steps for installing WordPress

64 | Introduction to Microservices and Containers

After setup, the new blog should be up and running, as follows:

Figure 2.23: The home page of the WordPress blog

 Execute the following steps to complete this activity:

1.	 Create a folder named data. This folder will keep the stateful state of the database
in the next steps.

2.	 Start a MySQL container using the official Docker image and the following
specifications:

Use the data folder from Step 1 as the database file. Publish port 3306 to the
local system. Set the MYSQL_ROOT_PASSWORD environment variable as rootPassword.
Set the MYSQL_DATABASE environment variable as database. Set the MYSQL_USER
environment variable as user. Set the MYSQL_PASSWORD environment variable as
password. Use mysql as the name of the container. Use the mysql:5.7 container
image

Wait for the MySQL container to be ready using a similar logline to [Note] mysqld:
ready for connections.

Running Docker Containers | 65

3.	 Start a WordPress container using the following specification:

Publish port 80 of the container to port 8080 of the host system. Link the mysql
container using the db name. Set the WORDPRESS_DB_HOST environment variable
as db:3306. Set the WORDPRESS_DB_NAME environment variable as database. Set the
WORDPRESS_DB_USER environment variable as user. Set the WORDPRESS_DB_PASSWORD
environment variable as password. Use WordPress as the name of the container. Use
the latest WordPress container image.

4.	 Open http://localhost:8080 in the browser and fill out the WordPress setup form.

5.	 Open http://localhost:8080 in the browser and check that your new blog is
running in the containers.

6.	 Stop the running containers and remove the data folder.

Note

The solution of this activity can be found on page 304.

In this activity, we have presented how to operate a WordPress blog and its database on
the same host using Docker. With this basic activity of running a single instance blog,
you can imagine how difficult it is to run and manage hundreds of blogs and databases
in a cloud environment. For instance, it is a fundamental problem if two blog containers
are using the same HTTP ports and running on the same host. Additionally, consider
running a database container with volume mapping and what will happen if the node is
broken; in this instance, the container could start running on another node, but its node
will not have the data at all. Operational problems like this and many more are already
being embraced by Kubernetes in order to run reliable and scalable applications, and
this will be explained in Chapter 3, Introduction to Kubernetes.

66 | Introduction to Microservices and Containers

Summary
In this chapter, we first described the microservice architecture and compared it to
monolith applications. We discussed how traditional methods for the development,
building, testing, and runtime environments could fail for running microservices in a
cloud-native environment. Then, we explored containers in detail and explained why
they have become the de facto solution for microservices. Following this, we presented
different container runtime environments and introduced Docker. The fundamental
concepts of Docker containers were covered, including Docker Engine, client, image,
and container terminology. Following the theoretical background, we built Docker
images and stored them in registries. Finally, we ran Docker containers by sharing
volumes and ports from host systems. At the end of the chapter, we used Docker
containers to create a stateful popular MySQL database and a WordPress blog in order
to show how multiple containers can work in harmony.

Docker concepts and operational knowledge was discussed throughout the chapter,
and we will be revisiting this in the following chapter on Kubernetes. Since Docker
is the default container runtime for Kubernetes, it is crucial to have fundamental
knowledge of Docker and some practical hands-on experience, as covered in this
chapter.

Learning Objectives

By the end of this chapter, you will be able to:

•	 Acquaint yourself with the various sections of Kubernetes architecture

•	 Install a local Kubernetes solution and create a cluster

•	 Access a Kubernetes cluster graphically and by using the command-line interface (CLI)

•	 Work with the building-block concepts of Kubernetes

•	 Install a real-life application in a Kubernetes cluster

This chapter gives an introduction to Kubernetes. We will cover Kubernetes history, architecture,
and important Kubernetes concepts required for further chapters.

Introduction to
Kubernetes

3

70 | Introduction to Kubernetes

Introduction
Running microservice applications in containers solves problems related to scalability,
reliability, and robustness; however, it comes with own its drawbacks. In the previous
chapter, a database and blog application were run in Docker containers. If you want to
run multiple databases and blogs across numerous servers, there are a couple of issues
to consider. For instance, networking should be configured to enable communication
between database and blog instances. In addition, the storage of the database instances
should be handled so that no data is lost. Furthermore, there should be a method to
handle failures at the application and hardware levels. Kubernetes is the answer to
solve all these problems, plus many more to run microservice applications in containers
in a scalable, reliable, and robust way. In this chapter, the history and architecture of
Kubernetes are presented first. After that, accessing Kubernetes clusters is covered,
and, finally, Kubernetes concepts and resources are introduced.

What is Kubernetes?

Kubernetes is actually a Greek word meaning ship captain. As ships carry a vast number
of containers overseas, it is an excellent analogy for managing containers in the massive
ocean of data centers. Kubernetes is also abbreviated as k8s to indicate the eight
letters between "k" and "s" in both developer communities and source code. Kubernetes
started as an open source project backed by Google in 2014. It is the outcome of 15
years of experience in managing containers for almost every Google product, such as
Search or Gmail.

From a technical point of view, Kubernetes is a platform for running and managing
containers. Kubernetes enables the running of microservice applications, defined as
a set of containers on a Kubernetes cluster. It focuses on the complete life cycle of
containers to provide scalability and high availability. With Kubernetes, it is possible to
define the number of instances of a database application and interaction points with the
outside world. You can also scale up or down manually or with usage level, roll out new
updates, or redirect customer traffic. Kubernetes provides building blocks to define and
manage complex cloud-native applications with a high level of flexibility and reliability.

There are many container orchestration tools in the market, such as Mesos, Docker
Swarm, Amazon Elastic Container Service, and Kubernetes. All of these tools have an
active community and many organizations adopt them. However, Kubernetes puts itself
forward among others with Google support, a significant amount of popularity, and
many success stories, including GitHub, GoDaddy, and Workday.

With more than 76,000 commits and nearly 50,000 stars on GitHub, Kubernetes is the
most popular open source repository, as shown in Figure 3.1. Its vast popularity and fast
adoption in the industry made Kubernetes the de facto container management solution:

Kubernetes Architecture | 71

Figure 3.1: Kubernetes GitHub repository

In the following section, the Kubernetes architecture is discussed to give an overall idea
of how Kubernetes manages microservices in containers.

Kubernetes Architecture
Kubernetes is a sophisticated platform consisting of various components that enables
us to run production-ready container applications robustly and reliably. It is crucial
to learn about its architecture and design to understand how it works and why it is
so successful. Kubernetes is designed to run applications on clusters on the cloud
or on-premise systems. Virtual or physical server instances are used with a shared
network in these clusters to operate in harmony. This is the actual environment where
all Kubernetes components and user applications are configured and run.

Servers in a Kubernetes cluster are given two essential roles: master or node. If a server
is assigned with the master role, it is expected to run centralized logical components
of Kubernetes. It is possible to have more than one master server to achieve high
availability, and the master servers run the Kubernetes API server, key/value store,
scheduler, and controllers. These components create the brain of Kubernetes that
interacts with the outside world and makes decisions based on the changes in the
cluster or user demands. Other servers in the clusters are assigned the node role to run
the workload as containers. Node servers receive the definition of the workload from
the master and create, update, or delete the containers accordingly. In addition, nodes
form the required networking and storage for the containers and forward the traffic
between them.

72 | Introduction to Kubernetes

Kubernetes with master and node components work on the desired state of
applications provided by the Kubernetes API. For example, it is possible to send a
declarative JSON or YAML definition of a workload to the Kubernetes API in master
servers. Master components enrich these definitions for the required storage,
networking, and computing resources and these are then sent to nodes for execution.
Node instances execute the plan by running containerized applications and checking
application statuses continuously. To sum up, the Kubernetes cluster tries to achieve
the desired state, defined in JSON or YAML, by changing and testing the actual state. In
the following sections, components in the master and node servers are described in
more detail, as shown in Figure 3.2:

Figure 3.2: Kubernetes architecture overview

Master Components

Master components of Kubernetes, also called the control plane, is the primary set of
services that provide the API operations, authentication, scheduling, and networking. It
is possible to install these components on a single server or distribute across servers.
Control plane components and their interaction with each other are as follows:

Kubernetes Architecture | 73

etcd

etcd is the data store of Kubernetes where all configuration, runtime information, and
statuses are stored. The actual statuses and the desired states of resources are stored
in etcd, which is the only stateful component in the master components. etcd is an open
source key/value store developed by CoreOS, and is one of the crucial components that
make Kubernetes reliable. etcd can be installed in multiple master servers, as well as
being reachable inside the Kubernetes cluster.

kube-apiserver

The API server is the central management interface in the Kubernetes cluster for user
interactions and status information. It is possible to send and receive data from kube-
apiserver, since it is a RESTful API server. Every workload definition is sent to this API
server, and it handles the storing the data in etcd. Since Kubernetes is an API-driven
platform, kube-apiserver is the most critical component in the control plane.

kube-controller-manager

The controller is a general pattern in Kubernetes to manage the life cycle of resources.
Controllers are expected to read the new information when a change is seen. Then,
they implement the required changes to achieve the desired state. For instance, when
an application is scaled up by the user, the data is sent to kube-apiserver and persisted
in etcd. The controller manager of the corresponding resource handles the creation of
additional instances. kube-controller-manager consists of such controllers to manage
the Kubernetes resources.

kube-scheduler

The scheduler is responsible for assigning workload containers to the nodes, taking into
account capacity, requirements, and the infrastructure environment. It can be regarded
as a continuous loop for checking unassigned workloads and finding appropriate nodes.

cloud-controller-manager

Kubernetes is designed to be installed into any cloud provider that implements required
interfaces. It is possible to run Kubernetes on AWS, Google Cloud, Azure, Alibaba Cloud,
or on-premise OpenStack systems. Cloud controller managers are the set of bridges
that connect Kubernetes resources to the cloud providers. For instance, they manage
the storage and networking requirements based on the cloud environment. It is possible
to have portable and robust applications running in Kubernetes with the help of cloud
controller managers.

74 | Introduction to Kubernetes

Node Components

Node components are responsible for running workloads in Kubernetes. Thus, it is
expected to manage containers, networking, and storage operations of the workload
assigned to the node. Node components and their interaction with the control plane are
as follows:

Container runtime

The container runtime is required to run the workload as containers in the node
servers. It is expected to implement the Container Runtime Interface (CRI) and Docker,
rkt, and runc, which are the notable container runtimes for Kubernetes environment.
The main functionality of the container runtime is to start, check the status, and delete
containers according to the desired state in Kubernetes.

kubelet

kubelet is the primary service running on the servers that collect information from the
control plane and manage the resources in the node. It is expected that kubelet will
communicate with the control plane to get desired states and send commands to the
container runtime to convert the actual state into the desired one.

kube-proxy

kube-proxy is the service responsible for networking on the node servers. Since
containers and the host system are isolated in terms of networking, this is the service
that forwards requests to the containers and makes them reachable from the outside
world.

In the following exercise, a local Kubernetes solution will be installed, and a cluster will
be started to show all master and node components in action.

Note

In the following exercise, the official local Kubernetes solution, namely minikube,
will be used. It uses a virtual machine (VM) to run all Kubernetes clusters,
therefore, it is required that a hypervisor, such as VirtualBox, is installed:

https://kubernetes.io/docs/tasks/tools/install-minikube/#install-a-hypervisor

https://kubernetes.io/docs/tasks/tools/install-minikube/#install-a-hypervisor

Kubernetes Architecture | 75

Exercise 8: Installing and Starting a Local Kubernetes Cluster

In this exercise, we aim to install and start a local Kubernetes solution and check for all
master and node components.

To complete the exercise, we need to ensure that the following steps are executed:

1.	 Download the minikube executable based on your operating system by running the
commands in your local Terminal:

Linux
curl -Lo minikube https://storage.googleapis.com/minikube/releases/latest/
minikube-linux-amd64
MacOS
curl -Lo minikube https://storage.googleapis.com/minikube/releases/latest/
minikube-darwin-amd64

2.	 Make the downloaded minikube executable and move to the following path:

chmod +x minikube
sudo mv minikube /usr/local/bin

3.	 Start the minikube cluster:

minikube start

Figure 3.3: Starting the minikube cluster

With this command, the VM image is first downloaded, as mentioned by
Downloading Minikube ISO. Then, the Kubernetes environment is set inside this
VM with the Preparing Kubernetes environment line. All required images and
tools are downloaded into the VM and a one-node cluster is started.

76 | Introduction to Kubernetes

4.	 Check for the status and wait for the cluster to be Running:

minikube status

Figure 3.4: minikube status output

5.	 Connect to the minikube VM using SSH:

minikube ssh

Figure 3.5: Minikube status output

With this command, you are running the commands in the VM that was started in
Step 3.

6.	 List the running Docker containers to check the master components:

 docker ps --format 'table {{.Image}}\t{{.Command}}'

Figure 3.6: Running containers in minikube

Kubernetes Architecture | 77

With this command, all Docker containers are listed with their Image and
Command fields. It is possible to find the following master components:

Figure 3.7: Master components with their respective commands

There is only one master component missing, and it is the cloud-controller-
manager. This is an expected result, since minikube is not running in a cloud
environment, where it would interact with a cloud provider such as AWS or
Google Cloud Platform.

7.	 List the running processes to check the node components:

pgrep -a kubelet && pgrep -a kube-proxy

Figure 3.8: Running node components

Since we have already interacted with Docker, it is evident that a container
runtime will be found in the system. In addition, it is shown that kubelet and
kube-proxy are running on the node, which shows that all required master and
node components are running in our one-node local cluster.

8.	 Exit from the Terminal accessed in Step 5 by pressing Ctrl + C.

Note

The code files for the exercises of this chapter can be found at https://github.com/
TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/tree/master/Lesson03

https://github.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/tree/master/Lesson03
https://github.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/tree/master/Lesson03

78 | Introduction to Kubernetes

In this exercise, you were shown how to start a one-node local Kubernetes cluster.
In addition, we checked all master and node components, so they are expected to be
working flawlessly. In the next section, we will look at accessing a Kubernetes cluster to
check its status and send workloads to the cluster.

Accessing Kubernetes Clusters
Accessing the Kubernetes clusters is a crucial step for installing and operating the
cloud-native applications. In this section, we will look at the two primary ways of
reaching Kubernetes clusters. The first method will cover the Kubernetes Dashboard,
which is a web-based Kubernetes user interface. The second method will use the
Kubernetes CLI, namely kubectl, to access the Kubernetes API. Kubernetes provide a
rich API that enables us to install and operate complex cloud-native applications. It is
designed as a RESTful API and can be consumed programmatically using client libraries
as well as tools such as kubectl, Terraform, or Ansible.

Kubernetes Dashboard is the official user interface, which also runs as a containerized
web application in the cluster. It is possible to deploy applications, troubleshoot
running applications, and check the status of Kubernetes resources. The Dashboard
enables basic cluster management and operational tasks, such as scaling applications
up or down, or restarting instances. It is a very friendly tool for checking the status of
applications and the overall cluster easily. In the following exercise, we'll learn to access
the Dashboard and monitor the status of an application.

Exercise 9: Checking Application Status in Kubernetes Dashboard

In this exercise, we aim to access the Kubernetes dashboard and check the status of
a running application. To complete the exercise, we need to ensure that the following
steps are executed:

1.	 Run the following command in Terminal to access the Kubernetes dashboard of
the cluster running in minikube:

minikube dashboard

Figure 3.9: minikube dashboard command

This output indicates that the dashboard is enabled, and a local proxy is started.

Accessing Kubernetes Clusters | 79

2.	 Open the address from Step 1, if it is not automatically opened, in a browser:

Figure 3.10: Kubernetes dashboard

3.	 Click default and select the kube-system namespace from the dropdown:

Figure 3.11: Changing namespace in Kubernetes dashboard

80 | Introduction to Kubernetes

4.	 Scroll down to the Pods section and click on kube-apiserver-minikube:

Figure 3.12: Pod view in Kubernetes dashboard

In this pod view, all details of the kube-apiserver-minikube pod are visible,
including the containers, environment variables, commands, and the condition of
the pod.

Accessing Kubernetes Clusters | 81

5.	 Click Logs in the header menu inside the pod view:

Figure 3.13: Logs of a pod in Kubernetes dashboard

On this screen, the stream of logs from the pod is presented in real time, as if the
application were running locally. This is a straightforward way of checking the
status of an application and troubleshooting the errors.

6.	 Stop the proxy started in Step 1 by pressing Ctrl + C.

This exercise walks you through the steps to access the Kubernetes dashboard and
check the logs of a running application. Although the dashboard is a handy and human-
friendly tool, it is always required to access the Kubernetes API programmatically.
Kubernetes provides an open source official CLI tool, namely kubectl, to interact with
Kubernetes API. It is a CLI tool that can be installed on the local system and it can
connect to any cluster with the required credentials. kubectl is a powerful tool that can
handle not only basic operations, such as getting, deleting, or editing resources, but
also cluster management and troubleshooting operations.

82 | Introduction to Kubernetes

For instance, it is possible to deploy an application, check the logs, and create a proxy
to the local system to access ports by using kubectl. Also, operational tasks, such as
marking a node unschedulable or checking the resource (CPU/Memory/Storage) usage
levels can be done by kubectl.

In the following exercise, we will look at kubectl and the use of cluster management
commands. kubectl is an indispensable tool for using and managing Kubernetes
clusters and cloud-native applications, so getting hands-on experience with kubectl
and incorporating it into your daily workload is crucial.

Exercise 10: Carrying Out Cluster Management Using kubectl

In this exercise, we aim to access the Kubernetes API using kubectl and run cluster
management commands.

To complete the exercise, we need to ensure that the following steps are executed:

1.	 Download the kubectl executable based on your operating system by running the
commands in your local Terminal:

Linux
curl -LO https://storage.googleapis.com/kubernetes-release/release/
v1.13.0/bin/linux/amd64/kubectl

MacOS
curl -LO https://storage.googleapis.com/kubernetes-release/release/
v1.13.0/bin/darwin/amd64/kubectl

2.	 Make the downloaded kubectl an executable and move to the following path:

chmod +x kubectl
sudo mv kubectl /usr/local/bin

3.	 Check kubectl config with the following command:

kubectl config current-context

Figure 3.14: Output of kubectl config current-context

Accessing Kubernetes Clusters | 83

The result of minikube indicates that the kubectl context is correctly configured to
the minikube cluster.

4.	 Check cluster-info with the following command:

kubectl cluster-info

Figure 3.15: Output of kubectl cluster-info

This output lists the critical cluster components and their IP addresses. This is
helpful output to find out whether there are any broken cluster components.

5.	 Get the client and server version with the following command:

kubectl version

Figure 3.16: Output of kubectl version

This command lists the versions of the Kubernetes API server and the kubectl
client, and it is essential to check whether you found any inconsistencies between
API requests and responses.

84 | Introduction to Kubernetes

Get the supported API resources by using the following command:
kubectl api-resources -o name

Figure 3.17: Output of kubectl api-resources

This long list shows all the resources supported by the minikube Kubernetes cluster
that is running. In the following section, the core building block resources from this list
will be presented. Furthermore, throughout this book, most of these resources will be
explicitly or implicitly used and discussed.

In this exercise, we've seen how to configure and use kubectl to interact with the
Kubernetes API. Both the dashboard and kubectl are essential parts of the DevOps
toolset to make daily life more comfortable, and automate operations. Therefore, it
is suggested that you play around with kubectl and create aliases and shortcuts to
incorporate this tool into your environment. In the following section, Kubernetes will be
used to manage workloads, and the very first Kubernetes resources will be presented as
the building block of complex cloud-native applications.

Fundamental Kubernetes Resources | 85

Fundamental Kubernetes Resources
Kubernetes creates a powerful abstraction to provide life cycle management of scalable
and robust cloud-native applications. Master and node components, as discussed
in the previous chapters, work continuously to fulfill the desired state of workloads
defined by the users using the Kubernetes API and client tools. In this section, different
Kubernetes concepts and resources are explained with their essentials and real-life
practices.

The Pod

The pod is the building block of Kubernetes computation objects. A pod consists
of containers that are tightly coupled and should be treated as a single application.
These containers in the same pod are always scheduled on the same node since they
share volume and networking interfaces. Therefore, the pod can be imagined as an
encapsulated set of containers that should work together and share the same life cycle,
such as scaling up or down together.

Pods can be defined with just one container and its associated metadata and runtime
environments. In the following pod definition, a pod with the name my-first-pod is
presented. There is only one container with the Docker image of busybox and the
command for the Hello DevOps! output:

apiVersion: v1

kind: Pod

metadata:

 name: my-first-pod

spec:

 containers:

 - name: main

 image: busybox

 command: ['sh', '-c', 'echo Hello DevOps! && sleep 3600']

When this pod definition is submitted, Kubernetes schedules this pod to a node in
the cluster. The kubelet service running in the respective node creates the container
with the requirements defined and checks the status continuously by interacting the
container runtime. Furthermore, a pod can have more than one containers that should
work together and share resources.

86 | Introduction to Kubernetes

In the following pod definition, two containers are defined to share a volume.
Furthermore, the following pod follows a pattern of having one main container, nginx, to
serve the files, and has a sidecar container, debian, to prepare and manage the served
files:

apiVersion: v1

kind: Pod

metadata:

 name: multiple-containers

spec:

 volumes:

 - name: shared

 emptyDir: {}

 containers:

 - name: main	

 image: nginx

 volumeMounts:

 - name: shared

 mountPath: /usr/share/nginx/html

 - name: sidecar

 image: debian

 volumeMounts:

 - name: shared

 mountPath: /shared

 command: ["/bin/sh"]

 args: ["-c", "echo Hello from the sidecar container > /shared/index.html
&& sleep 3600"]

Fundamental Kubernetes Resources | 87

In this pod definition, an empty volume is defined with the name shared and mounted
into two containers with different paths. The debian container writes Hello from the
sidecar container to index.html in this volume, whereas the nginx container uses this
volume to serve its contents, as illustrated in Figure 3.18:

Figure 3.18: Shared volume between containers

Pods are the primary and fundamental building blocks of Kubernetes resources, so
they are generally managed by higher levels of resources, such as replication sets,
deployments, and stateful sets. In the following sections, we'll examine these higher-
level resources and how they fulfill sophisticated scaling and life cycle management
requirements.

Replication Sets

Replication sets (ReplicaSet) are the Kubernetes resources that maintain a set of
replica pods running in the cluster. Kubernetes is designed to enable and support high
availability. Therefore, it is expected to have the same pod instances running in the
cluster as those defined in the replication sets. Similar to pods, replication sets are
building blocks of life cycle management resources, such as deployments. They are
used with other high-level resources to scale up or down or roll out new versions of
the applications. A replication set definition looks similar to a pod definition, because it
encapsulates a pod specification:

apiVersion: apps/v1

kind: ReplicaSet

metadata:

 name: high-available-hello

spec:

 replicas: 3

 selector:

88 | Introduction to Kubernetes

 matchLabels:

 app: hello

 template:

 metadata:

 labels:

 app: hello

 spec:

 containers:

 - name: main

 image: busybox

 command: ['sh', '-c', 'echo Hello DevOps! && sleep 3600']

In this replication set definition, the same pod specification from my-first-pod is used.
There are two critical points to check in this definition; replicas and matchLabels.

The replicas field defines the desired number of the pods that should be running in the
cluster. Kubernetes controllers inside kube-controller-manager create and manage the
pods to fulfill this request.

The matchLabels field defines a set of labels to match with the pods that should be
replicated. Labels in Kubernetes are semantic tags attached to Kubernetes resources
to group them. Controllers use these labels to target a group of resources and manage
them. For instance, in this example, replication set controllers will check for the
number of pods with the label app:hello, since they are mentioned in matchLabels.

Replication sets are the fundamental resources that make Kubernetes applications
highly available and resilient to failures in the cluster. In our discussion of the next
resource, replication sets will be used to achieve higher life cycle requirements.

Fundamental Kubernetes Resources | 89

Deployment

Deployments are one of the most potent Kubernetes resources that makes it easier to
manage containerized applications at large scales. A deployment specification looks
similar to a replication set with an encapsulated pod definition:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: my-first-deployment

 labels:

 app: nginx

spec:

 replicas: 3

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: nginx

 image: nginx:1.7.9

 ports:

 - containerPort: 80

90 | Introduction to Kubernetes

Although it looks similar to a replication set definition, the power of the deployments
comes from the capabilities of the deployment controllers. By creating a deployment
or changing the fields in a deployment specification, it is possible to manage these life
cycle operations:

•	 Rolling out a new application: When the deployment is sent to the Kubernetes
API, replication sets are defined, and the application is rolled to the cluster.

•	 Rolling out an update to running application: When a change is made to
deployment specification, these changes are propagated by deleting old
replication sets and creating new ones. This rollout of new versions is managed at
a controlled rate so that there is no downtime when you add another environment
variable to your pod specification.

•	 Rollback to an older version: If any problems occur while rolling out new releases,
it is always possible to roll back the changes, since deployment controllers store
history.

•	 Scaling up or down a running application: It is possible to change the number of
replicas to scale down or up manually.

Deployments are high-level Kubernetes resources that enable complex life cycle
operations. They are essential and among the most commonly used Kubernetes
resources for deploying scalable, reliable, and highly available ephemeral workloads. In
the next resource, we will discuss how to handle stateful applications, such as databases
in Kubernetes with stateful sets.

Stateful Sets

Kubernetes enables both stateless ephemeral and stateful applications to be run with
the same level of scalability and robustness, thanks to stateful sets (StatefulSet).
Stateful sets fulfill the enhanced requirements of data-oriented applications, such as
databases, with the help of persistent volumes. The stateful set definition looks similar
to deployment and includes volume claim parts to create persistent volumes, as follows:

apiVersion: apps/v1beta2

kind: StatefulSet

metadata:

 name: my-first-statefulset

spec:

 selector:

 matchLabels:

 app: nginx

Fundamental Kubernetes Resources | 91

 serviceName: "nginx"

 replicas: 3

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: nginx

 image: nginx:1.7.9

 ports:

 - containerPort: 80

 volumeMounts:

 - name: www

 mountPath: /usr/share/nginx/html

 volumeClaimTemplates:

 - metadata:

 name: www

 spec:

 accessModes: ["ReadWriteOnce"]

 resources:

 requests:

 storage: 1Gi

In my-first-statefulset, a persistent volume, www, is created for every pod instance and
mounted to the /usr/share/nginx/html path inside containers.

92 | Introduction to Kubernetes

When a stateful set is sent to the Kubernetes API, the controllers create ordered pods
with the defined volumes. Special care of the stateful set pods prevents data loss when
the pods are rescheduled to another node. This is because the same ordered volumes
are bound to the same ordered pods, as illustrated in Figure 3.19. In addition, volumes
attached to these pods stay in the system when the stateful set is scaled down or
deleted:

Figure 3.19: Stateful set and volume handling in Kubernetes

The stateful set controller and ordered execution of pods and volumes make
stateful applications run in Kubernetes in a scalable and reliable way. With all of the
fundamental resources of pods, replication sets, deployments, and stateful sets, it is
possible to deploy any complex cloud-native application in Kubernetes. With the rich
functionality of the Kubernetes API and toolsets, it is also possible to operate these
applications in the cloud. In the following activity, a blog application and its database
are installed in Kubernetes by using primary resources and the kubectl tool.

Activity 3: Installing a WordPress Blog and Database on Kubernetes

The aim of this activity to install and manage a MySQL database and a WordPress blog
in Kubernetes in a cloud-native way. WordPress is based on PHP and is a free and open
source content management system. It needs a MySQL database as the data source for
user and content management. In this activity, database and blog containers should be
stateful to persist their data, as expected in a production system.

Fundamental Kubernetes Resources | 93

Using the stateful set examples and previous kubectl exercises, it is expected that you
will have a stateful set with two containers running and communicating with each
other. Since the blog will be running inside Kubernetes, you need to access this by
using the port-forward capabilities of kubectl. With the successful initialization of the
WordPress container, it is expected that you will see the following setup screens:

Figure 3.20: Setup Steps – WordPress Install

94 | Introduction to Kubernetes

After the setup, the new blog should be up and running:

Figure 3.21: Home page – WordPress blog

 Execute the following steps to complete this activity:

1.	 Create a two-container stateful set definition inside the wordpress-database.yaml
file with the following specifications:

The name should be wordpress-database and the replica count can be set to 1. The
database container should have the name of database and the container image of
mysql:5.7. Publish the container to port 3306 and mount the data volume to the /
var/lib/mysql path. In addition, set the following environment variables:

Figure 3.22: Environment variables

Fundamental Kubernetes Resources | 95

Create a blog container with the name blog using the latest WordPress container
image and publish the container to port 80. In addition, set the following
environment variables:

Figure 3.23: Environment variables

Include a volume claim with the name data and 1GB of storage.

Deploy the wordpress-database stateful set into the Kubernetes cluster.

2.	 Check the status of the wordpress-database-0 pod and wait until it is ready.

3.	 Create a proxy to the local system from the blog container using the port-forward
command of kubectl.

4.	 Open the forwarded address in the browser and fill in the WordPress setup form.

5.	 Open the forwarded address in the browser and check that your new blog is
running in containers.

6.	 Stop the port forwarding started in step 4 and remove the stateful set.

Note

The solution to this activity can be found on Page 309.

Through this activity, we have operated a WordPress blog and its database in a
Kubernetes cluster. For the blog and the database, only a stateful set is defined and
sent to the cluster. Scheduling, networking, and storage operations were handled by
Kubernetes in a couple of seconds, and the blog was ready. In addition, Kubernetes
is always checking for node failures, and could reschedule the blog and database to
another node without any data loss. Even for a single blog instance, it shows how
powerful the Kubernetes resources and controllers are in creating scalable and reliable
cloud-native applications.

96 | Introduction to Kubernetes

Summary
In this chapter, we first described the characteristics of Kubernetes and the essential
solutions it offers for running cloud-native microservice applications. Following
that, we then presented Kubernetes architecture with the details of master and node
components. Furthermore, a local Kubernetes solution was installed and run to show
the components of the Kubernetes architecture in action. Then, we discussed how to
access Kubernetes clusters to send workloads, and troubleshoot running applications
with the help of the Kubernetes dashboard and the Kubernetes CLI tool.

Finally, the fundamental set of Kubernetes resources are presented, including pods,
replication sets, deployments, and stateful sets. Also, the importance of labels was
mentioned in explaining how Kubernetes handles these resources. At the end of the
chapter, the popular blog application, WordPress, was installed in Kubernetes with its
database as a stateful set.

With the fundamental basis of Kubernetes covered in this chapter, creating production-
ready Kubernetes clusters and managing sophisticated applications on these clusters
will be covered in the following chapters.

Learning Objectives

By the end of this chapter, you will be able to:

•	 Analyze the requirements and concerns for a reliable Kubernetes cluster.

•	 Describe the various Kubernetes platform options.

•	 Create a minimum-viable Kubernetes cluster.

•	 Create and manage a production-ready Kubernetes cluster in the cloud.

In this chapter, we will create out first Kubernetes cluster and take a look at Kubernetes platform
options.

Creating a Kubernetes
Cluster

4

100 | Creating a Kubernetes Cluster

Introduction
Kubernetes is a flexible platform that can work on a developer laptop, on-premise bare
metal servers, or the virtual machines of a cloud provider. The knowledge and effort
required to set up and maintain Kubernetes on different platforms varies tremendously,
and is profoundly affected by the business requirements. Therefore, it is crucial to learn
the basics of Kubernetes cluster setup and management to be successful in DevOps
with Kubernetes. In the previous chapter, we looked at the Kubernetes architecture and
the building blocks of Kubernetes. In addition, we looked at installing and accessing a
cluster in order to create a basis for a deep-dive into Kubernetes clusters and platform
options. In this section, we will first create a Kubernetes cluster using kubeadm to show
the details of the manual in-house process. Following that, we will look at the evaluation
criteria for choosing a Kubernetes platform. Then, we will look at different platforms
and explore their favorable and unfavorable aspects with hands-on exercises. Finally, we
will undertake a production-ready cluster management activity to illustrate the real-life
complexities faced by Kubernetes operators.

Manual Kubernetes Cluster Setup
Kubernetes is a fairly elaborate system; however, it relies on developer experience to
make it easier to set up and manage the clusters. kubeadm is the official Kubernetes
toolkit for quickly and easily creating a minimal, viable, and certified cluster. This
installs all required master and node components; however, cloud-specific or nice-
to-have add-ons, such as the dashboard, are left out. kubeadm is used in many complex
Kubernetes provider solutions as a building block; however, it should be mentioned that
it cannot provision any infrastructure. On the other hand, it has a huge advantage of
running on every platform, from high-end servers to Raspberry Pi nodes.

To create a Kubernetes cluster, the main approach is to initialize a master first, and join
all the nodes afterward. Let's look at the following flowchart to understand this:

Manual Kubernetes Cluster Setup | 101

Figure 4.1: Flow of cluster creating with kubeadm

It is expected that you will have a complete and running control plane in the master, as
shown in Step 1 of Figure 4.1. In Step 2, network plugins are installed if required. Finally,
the nodes are installed, and they register themselves to the master with join commands
in Step 3 and Step 4 and so on, as illustrated in Figure 4.1. In the following exercise, we
will show you how to create a manual Kubernetes cluster using kubeadm. It is essential
to know how this is done without any automation and additional service to evaluate
managed and turnkey solutions in the following sections.

102 | Creating a Kubernetes Cluster

Exercise 11: Creating a Kubernetes Cluster Using kubeadm

In this exercise, we aim to create a five-node Kubernetes cluster using kubeadm. To
successfully complete the exercise, we need to ensure the following steps are executed:

1.	 Open https://labs.play-with-k8s.com in your browser and log in with the GitHub
or Docker credentials from the previous chapters:

Figure 4.2: Logging in to Play with Kubernetes

Note

labs.play-with-k8s.com is a free playground service supported by Docker to create
Kubernetes clusters.

2.	 Enable pop-ups and redirections in browser settings for the labs.play-with-k8s.
com address by completing the following steps:

https://labs.play-with-k8s.com
http://labs.play-with-k8s.com
http://labs.play-with-k8s.com
http://labs.play-with-k8s.com

Manual Kubernetes Cluster Setup | 103

	 Click the lock icon in the address bar and select Site settings:

Figure 4.3: Website settings menu in Chrome

 Choose Allow for Pop-ups and redirects:

Figure 4.4: Website settings menu in Safari

Note

For the Safari browser, right-click the address bar and select Settings for this
Website and then choose Allow for Pop-up Windows.

104 | Creating a Kubernetes Cluster

 Click Start to create a session:

Figure 4.5: Starting a session in Play with Kubernetes

3.	 Click Add New Instance and wait until the Terminal is loaded:

Figure 4.6: Creating the first instance in Play with Kubernetes

Manual Kubernetes Cluster Setup | 105

4.	 Initialize node1 as master with the following command in the Terminal loaded in
step 3:

kubeadm init --apiserver-advertise-address $(hostname -i)

In a couple of minutes, kubeadm downloads and installs all the master node
components:

Figure 4.7: kubeadm init output

106 | Creating a Kubernetes Cluster

5.	 Copy the kubeadm join command from the output to use in the further steps:

The output of the kubeadm init command can be tracked from the Terminal for
node1:

Figure 4.8: kubeadm join token

Manual Kubernetes Cluster Setup | 107

6.	 Initialize cluster networking with the following command:

kubectl apply -n kube-system -f \
"https://cloud.weave.works/k8s/net?k8s-version=$(kubectl version | base64
|tr -d '\n')"

7.	 The result of the networking installation can be tracked from the Terminal for
node1:

Figure 4.9: Cluster networking setup

With this command, a networking plugin is installed to manage the networking
between the master and the nodes of the Kubernetes cluster.

108 | Creating a Kubernetes Cluster

8.	 Click Add New Instance and wait until the Terminal is loaded for node2:

Figure 4.10: Creating the second instance in Play with Kubernetes

9.	 Join node2 to the cluster with the kubeadm join command copied in step 6:

Note

The following command includes the token as an example – do not forget the use
your own token from step 6.

kubeadm join 172.27.0.2:6443 --token nhoc2x.
w9etr3ml7s9557x0 --discovery-token-ca-cert-hash
sha256:e56208fb4009baec6a49522890f50efa81f49895e7a3318c27bd23659cdeec80

Manual Kubernetes Cluster Setup | 109

The output of the kubeadm join command can be tracked from the Terminal for
node2:

Figure 4.11: Joining node2 to the cluster

With this command, the worker node is initialized and has registered itself to the
API server running in the master node.

110 | Creating a Kubernetes Cluster

10.	 Repeat steps 8 and 9 for node3, node4, and node5:

Figure 4.12: Five instances in Play with Kubernetes

Manual Kubernetes Cluster Setup | 111

11.	 Run the following command in node1:

kubectl get nodes

The output of the kubeadm get nodes command can be tracked from the Terminal
for node1:

Figure 4.13: Ready nodes in the cluster

This output shows that five nodes are successfully initialized and connected to the
cluster.

It takes 10 to 15 minutes to create a Kubernetes cluster with kubeadm, as long as the
infrastructure provides the nodes with requirements, as in this playground.

12.	 Click Close Session to remove all nodes in the playground.

In this exercise, we have shown how we can manually create a certified and minimum-
viable Kubernetes cluster. Although it is convenient to create Kubernetes clusters
with kubeadm, there are additional concerns and issues to be resolved before creating a
production-ready cluster. In the following section, these issues will be discussed and
then the Kubernetes solution types will be presented.

112 | Creating a Kubernetes Cluster

Kubernetes Cluster Considerations
Kubernetes could run on various platforms to meet business and operational
requirements. However, some critical questions and concerns should be clarified before
choosing a platform. Some of these concerns overlap across multiple topics. Therefore,
creating a workflow to choose the most appropriate product is no simple matter. It is
recommended that you evaluate solution types and off-the-shelf products according
to business requirements and limitations. Consider the following issues when analyzing
and evaluating your requirements.

Development or Production-Ready Setup

The Kubernetes platform is ready to handle production-ready workloads; however,
it also requires the use of disposable clusters in development and testing. CI/
CD systems require a Kubernetes cluster to be ready in a couple of seconds, and
could make sacrifices from some features, such as security, node resiliency, or high
availability. Therefore, it is vital to select a Kubernetes solution based on development
or production usage. It is possible to use single-node local solutions for development
and testing environments, whereas more complicated and managed installations are
required for production-ready environments.

In-House or Managed Services

The Kubernetes platform is self-healing, robust, and resilient; however, it needs
human operators for installation, upgrading, and management. There are Kubernetes
providers that not only install and give the credentials of Kubernetes clusters; but also
manage them with their dedicated teams. On the other hand, it is also possible to have
Kubernetes clusters installed on-premise or on the cloud, and managed by the in-house
teams of organizations. It is a critical business decision to determine how Kubernetes
clusters need to be managed in your organization. There are two dimensions of this
issue that should be analyzed in depth: core value and budget. If managing Kubernetes
clusters in-house will increase the core value of your products and services, then it
is a valuable asset to have. On the other hand, if your organization considers itself as
only being an end user of Kubernetes, it will create an additional burden. The second
dimension of the budget applies to both in-house and managed services, since both
will cost money. The organization should have a high level of investment in training
and teams for in-house services, whereas managed services will require ongoing
subscriptions with vendor lock-in.

Kubernetes Platform Options | 113

On-Premises or Cloud Infrastructure

Kubernetes can run on cloud providers or on-premise systems; however, this is a
decision to make upfront, since hybrid solutions are not mature enough yet. There
are two important aspects that affect the decision between cloud-providers and
on-premise systems. The first one is choosing between an in-house team or outsourced
service for the cluster operations. The second one is the current and expected
workload level to run on the clusters. For instance, if you have only a couple of services
running on Kubernetes and do not expect high-scale usage soon, it seems reasonable
to have a small setup in cloud providers, such as Amazon Web Services (AWS), the
Google Cloud Platform (GCP), or Azure. However, if you are planning to have your
security-critical data to operate in Kubernetes and have a dedicated team, then having
on-premise systems is a feasible solution. Although it is possible to move Kubernetes
workloads between clusters, it will need additional effort and investment to switch from
on-premise to cloud infrastructure or vice versa.

Vanilla Kubernetes or Custom Solutions

Kubernetes itself is an application that can be customized based on your requirements.
It is an extensible environment where you can plug in your schedulers, custom
resource controllers, or security handlers. On the other hand, it is also possible to use
only upstream, latest official releases, namely the vanilla Kubernetes. This decision
affects the selection of custom providers, since some of them create their APIs, new
dashboards, and controllers to manage the Kubernetes API and provide this as a service.
On the other hand, if you expect to have active development on Kubernetes itself, it is
advisable to have vanilla Kubernetes and add your custom flavors.

These three considerations are essential for choosing a Kubernetes platform solution
and should be analyzed and clarified beforehand. Kubernetes platform solutions and
their response to these considerations are discussed in the following section.

Kubernetes Platform Options
Kubernetes can run on practically every kind of infrastructure, from a commercial
laptop to the high-end servers of cloud providers. It is possible to have fully-managed
Kubernetes as a service or create a self-managed cluster on the bare-metal servers in
your data center. Choosing which option to use to manage Kubernetes cluster depends
on your budget, team, and required flexibility. In this section, Kubernetes platform
options are grouped into three as local machine, hosted, and turnkey solutions. Each
platform option is discussed in light of the considerations of the previous section and
some example products.

114 | Creating a Kubernetes Cluster

Local Machine Solutions

Creating a local cluster is the simplest way of getting started with Kubernetes. The
primary approach of these solutions is to install master and node components on the
same computer. This leads to having a Kubernetes API and a worker running on the
same node, which is suitable for development and testing, but is not suggested for
production-grade workloads. Also, these solutions do not need operation teams, since
they are not designed to have complex setups and requirements. These solutions focus
on having vanilla Kubernetes with the minimum overhead and are therefore beneficial
for testing new versions of Kubernetes.

The leading community-maintained and off-the-shelf local Kubernetes solutions are as
follows:

Minikube: Minikube implements a local Kubernetes cluster to enable fast local
development and high coverage of Kubernetes features. It is the official method for
running Kubernetes locally and is maintained in the kubernetes/minikube (https://
github.com/kubernetes/minikube) repository. Minikube uses the official stable releases
of Kubernetes and supports all locally available Kubernetes features. Usage of Minikube
was already covered in Exercise 8, and it is reasonably simple to create a cluster in a
couple of seconds.

Docker Desktop: Docker Desktop is the toolbox installation of Docker for local
development environments. It is a product developed and maintained by Docker, Inc,
and can be downloaded from https://www.docker.com/products/docker-desktop.
With Docker Desktop, it is possible to create a single-node Kubernetes cluster. All
master and worker components run in Docker containers, so creating and starting a
complete Kubernetes cluster is very fast and lightweight.

MicroK8s: MicroK8s is a Linux package that can be installed in various Linux flavors
as a package. It makes running a local Kubernetes cluster as easy as installing a Linux
application. Also, it supports upstream Kubernetes features and plugins for custom
requirements. Installation documentation can be checked on its official website,
https://microk8s.io. MicroK8s uses native Linux services to install and run Kubernetes
master and node components, so a preliminary Linux experience is required in the long
run.

Hosted Solutions

Hosted Kubernetes solutions are managed clusters that are running under the control
of cloud providers. An end user is only expected to connect to the cluster and run the
Kubernetes workload. There are two essential advantages of using hosted solutions:
management effort and scalability. Creating and operating Kubernetes clusters requires
effort and experience for a production-ready scalable and reliable setup. Therefore, if
you do not have, or do not plan to have, a dedicated operations team, it is appropriate

https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://www.docker.com/products/docker-desktop
https://microk8s.io

Kubernetes Platform Options | 115

to have managed clusters. In addition, for a scalable cluster, there is a need to add
and flexibly remove worker nodes. Cloud infrastructure providers support elastically
starting and terminating servers, so it is suitable for managing Kubernetes clusters.

The leading hosted Kubernetes solutions are the ones created by the leading cloud
infrastructure providers, such as GCP, AWS, and Microsoft Azure. They aim to provide
Kubernetes solutions integrated with the cloud services they already offer, such as
object stores, cloud identity services, or container registries. Significant differences and
prominent features of these services can be listed as follows:

•	 Google Kubernetes Engine (GKE): GKE is the oldest Kubernetes service, was
started in 2014, since Google is the original creator of container management
systems. Therefore, GKE always provides the most advanced features with
upstream Kubernetes versions. It is also one of the most intuitive Kubernetes
solutions to set up and operate a managed cluster.

Note

Integration between other GCP applications and further documentation can be
checked from the GKE official website, https://cloud.google.com/kubernetes-
engine/.

•	 Azure Kubernetes Service (AKS): AKS is the Kubernetes solution provided
by Microsoft on the Azure platform. It started in 2017 and provides managed
Kubernetes clusters, which are well integrated into other Azure services, such
as Azure Identity. However, AKS lacks some essential features, such as a highly
available control plane and auto-repair of the cluster.

Note

The AKS documentation can be checked on its official website, https://azure.
microsoft.com/en-us/services/kubernetes-service/.

https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/

116 | Creating a Kubernetes Cluster

•	 Amazon Elastic Container Service for Kubernetes (EKS): EKS is the newest
service provided by AWS, and was made public in 2018. Compared to other
solutions, it offers reasonably complex cluster creation, and is also missing
worker-node management and auto-repair. In other words, EKS provides a
managed control plane; however, EKS still lacks features to operate nodes.

Note

The EKS documentation can be checked on its official website, https://aws.amazon.
com/eks/.

Turnkey Solutions

Turnkey solutions provide Kubernetes clusters deployed on the cloud or on-premise
systems with a couple of commands. As an end user, with a couple of clicks or
command-line executions, you will have Kubernetes clusters running on your favorite
cloud provider or your data center. Compared to hosted solutions, they provide
more flexibility with custom features and infrastructure options. Installation and
management of control plane components and nodes are handled with the turnkey
solution application. In other words, these solutions are the ready-to-use packaged
knowledge of the Kubernetes operations experience.

Turnkey solutions are mostly provided by companies that have unique experience in the
development and management of cloud systems, such as CoreOS or Heptio. Popular
turnkey solutions with these prominent features will now be discussed.

Heptio

Heptio was founded by two of the original Kubernetes creators, and it provides a set of
tools to install and manage Kubernetes clusters. Their services include diagnostic tools,
reverse proxy implementations, and disaster recovery tools. The turnkey Kubernetes
solution, namely Heptio Kubernetes Subscription (HKS), is the combination of their
services and tools for installing upstream Kubernetes in production.

https://aws.amazon.com/eks/
https://aws.amazon.com/eks/

Kubernetes Platform Options | 117

CoreOS Tectonic

Tectonic is the turnkey solution provided by CoreOS, and it enables hybrid clusters
running on multiple cloud providers and on-premise systems. Tectonic supports
upstream Kubernetes and all additional features are designed using Kubernetes
primitives, such as custom resource controller managers similar to kube-controller-
manager. The essential element of Tectonic is the support of hybrid clusters and the
removal of vendor lock-in.

Note

Vendor lock-in means dependency on the services provided by a given vendor,
so that switching to another vendor is complicated. In cloud development, it
is achieved by making the users develop platform-dependent solutions that
only work in the corresponding cloud provider. In other words, if you design a
solution that uses proprietary services from AWS, you will need to redesign your
architecture should you want to move to GCP.

Red Hat OpenShift

Red Hat, as a company, is the second-largest contributor to the Kubernetes project.
OpenShift is the turnkey solution provided by Red Hat that is capable of multi-tenancy,
improved networking, and high-level automation. OpenShift encapsulates upstream
Kubernetes and provides an opinionated version with extra security and enterprise
features. It is possible to have OpenShift in Red Hat Cloud, as well as installed on
on-premise systems.

118 | Creating a Kubernetes Cluster

Kubernetes solution providers and their products are following the latest trends in
the cloud-native world, along with microservices trends. However, the characteristics
of the solution types stay roughly the same. Therefore, a comparison to help you in
choosing an appropriate solution type is provided in Figure 4.14:

Figure 4.14: Kubernetes Platform Options

In the following exercise, we will create a hosted Kubernetes cluster in GKE, since this
provides the most advanced developer experience among managed services.

Exercise 12 – Creating Managed Kubernetes Clusters on GCP

In this exercise, we will create a cluster in GKE and check the details of the new cluster.
Before attempting this exercise, you will need to register on the GCP.

Note

If you are using GCP for the first time, you can activate a credit to explore GCP
products. This requires a billing address and payment data, to be used after the
credit is consumed.

Kubernetes Platform Options | 119

Perform the following steps to complete the exercise:

1.	 Log into Google Cloud Console with your Google account at https://console.
cloud.google.com:

Figure 4.15: Google Cloud Console

2.	 Click on Select a project on the header menu, and then click New Project in the
pop-up window:

Figure 4.16: Google Cloud project selection

https://console.cloud.google.com
https://console.cloud.google.com

120 | Creating a Kubernetes Cluster

3.	 Fill Project Name with devops and select whether you are part of an organization,
such as a company or school:

Figure 4.17: Google Cloud project creation

4.	 Open the Kubernetes cluster view under the Compute – Kubernetes Engine menu
and wait until Kubernetes Engine is ready:

The Kubernetes Engine status is visible in the main section of the Clusters:

 Figure 4.18: Google Cloud – Kubernetes Engine: Getting Ready

Kubernetes Platform Options | 121

 Figure 4.19: Google Cloud – Kubernetes Engine: Ready

Note

If this is your first usage of GCP, it could take a couple of minutes to set up the
Google user permissions and enable the Kubernetes API. It will be indicated in the
Kubernetes cluster view as Kubernetes Engine API is being enabled. This
may take a minute or more.

5.	 Click Activate Cloud Shell in the header menu as follows:

Figure 4.20: Cloud shell menu

122 | Creating a Kubernetes Cluster

6.	 When the pop-up appears, click the Start Cloud Shell, as follows:

Figure 4.21: Cloud shell details

7.	 Wait until a Terminal is started in the cloud shell:

Figure 4.22: Cloud shell initialization

Kubernetes Platform Options | 123

8.	 Set a default compute zone with the following command in the cloud shell:

gcloud config set compute/zone us-west1-a

Figure 4.23: Default compute zone setting in gcloud

9.	 Create a GKE cluster with the following command in the cloud shell:

gcloud container clusters create devops

The output of the new cluster creation can be tracked from the cloud shell:

Figure 4.24: Creating the DevOps Kubernetes cluster

124 | Creating a Kubernetes Cluster

With that command, a control plane is created and started as a managed service
on GCP. Following this, three Kubernetes nodes are provisioned as virtual
machines in our project, and the node components are installed by default. All
master and node components are tested to see whether they work as expected,
and, finally, kubeconfig is retrieved for the kubectl tool in the shell. It is also
possible to see the details of the cluster in the Kubernetes cluster table in the
upper-side of this view.

10.	 Get the node information with the following command in the cloud shell:

kubectl get nodes

Figure 4.25: Node information of the devops Kubernetes cluster

As expected, the three nodes are registered, and their status is Ready. This
indicates that we have successfully created a three-worker node-managed
Kubernetes cluster in GKE.

Through this exercise, we have shown how easy it is to create a managed Kubernetes
cluster hosted in the cloud. If you need a fully-managed environment and if you do
not want to focus on infrastructure setup and monitoring, creating such a managed
Kubernetes cluster is appropriate for you. In the following activity, you will perform
some operational tasks on this managed cluster.

Activity 4: Migrating a Running Application in Kubernetes Cluster

This activity aims to perform operational activities in a Kubernetes cluster installed
in GKE. You will be required to use both Kubernetes and GCP primitives to upgrade
cluster nodes without downtime.

You will start by installing a sample application that has more replicas than the number
of nodes in the cluster. Then, you will be assigned to solve the "out-of-memory" issues
of this application by creating a new set of worker nodes with higher memory limits.
However, you need to handle this migration without this application undergoing any
downtime.

Kubernetes Platform Options | 125

Using the Kubernetes cluster from Exercise 12, you will first have three nodes of the
n1-standard-1 type:

Figure 4.26: Node pool of the devops cluster before migration

In addition, the sample application will be running on these nodes:

Figure 4.27: Sample application running before migration

With the migration, you will have two nodes of the n1-highmem-2 type:

Figure 4.28: Node pool of the devops cluster after migration

As expected, the sample application will be running on the new nodes after migration:

Figure 4.29: Sample application running after migration

126 | Creating a Kubernetes Cluster

Perform the following steps to complete this activity:

1.	 Run a sample web application with six replicas in the cluster.

2.	 Check the status of pods of the sample web application and their nodes.

3.	 Create a node pool in GCP with a larger memory.

4.	 Wait until all nodes are Ready in the cluster.

5.	 Mark the nodes in the default node pool as unschedulable and make Kubernetes
move the workloads from the default node pool.

6.	 Check the status of the nodes.

7.	 Ensure that the pods of the sample application are moved to new nodes.

8.	 Remove the default node pool.

9.	 Verify that the nodes from the default node pool are removed from the cluster

10.	 If you do not plan to use this Kubernetes cluster in the following chapters or the
future, remove the Kubernetes cluster.

Note

The solution to this activity can be found on Page 314.

Through this activity, we have shown how we can perform operational activities in a
Kubernetes cluster using Kubernetes and cloud provider tools. Kubernetes makes it
possible to migrate an application to higher-performance workers with its tools and
architecture, since it is designed to be cloud-native and microservice-oriented. The
benefits of using a managed environment are also demonstrated by the fact that you do
not have to buy the hardware, install the operating systems, and connect the cables of
the new servers joined to the cluster. The elasticity of cloud providers makes it easier to
scale vertically and horizontally based on your usage level, as in the sample application
in this activity.

Summary | 127

Summary
In this chapter, we started by creating a Kubernetes cluster manually using the
official Kubernetes tools. We saw that it is convenient to create a minimum-viable
verified cluster, as long as the underlying infrastructure is working. We then discussed
Kubernetes cluster considerations as a guideline to decide which Kubernetes platform
options are suitable. Kubernetes platform options were then discussed in detail with
open source and off-the-shelf examples. Finally, we looked at how to create a managed
cluster in the cloud without considering the monitoring and management of the
infrastructure. At the end of the chapter, the managed cluster environment was used to
illustrate operational activities undertaken in a Kubernetes cluster.

The Kubernetes cluster considerations, platform types, and on-hands exercises covered
throughout the chapter will be revisited in the following chapters, since the installation
and management of a Kubernetes cluster is a must-have tool in your DevOps toolset.

Learning Objectives

By the end of this chapter, you will be able to:

•	 Perform object management using different techniques in Kubernetes

•	 Create and define Kubernetes services to connect applications

•	 Install and use Helm as the package manager for Kubernetes

•	 Use official Helm charts to configure and install applications on the clusters

In this chapter, we will explore object management in Kubernetes and deploy a WordPress blog
to Kubernetes using object management techniques.

Deploy an Application
to Kubernetes

5

130 | Deploy an Application to Kubernetes

Introduction
Kubernetes is designed for managing cloud-native, reliable, and scalable applications
in a microservice architecture. As a platform, Kubernetes provides all the resources,
API endpoints, and tools that are required for deploying and managing applications. In
the previous chapter, we analyzed the requirements for a reliable Kubernetes cluster
and discussed various options for choosing a Kubernetes platform. Additionally, we
learned how to manage a Kubernetes cluster from an operational perspective. In this
chapter, we will focus on deploying and managing our applications on the Kubernetes
cluster. First, we will explore object management in Kubernetes and discuss options
for deploying applications to Kubernetes. Following that, we will explore how services
are an essential Kubernetes resource for connecting microservice applications. In
fact, with services, it is possible to install multiple applications that can connect and
interact with each other. Finally, we will discuss Helm, which is used to deploy and
manage applications as the official package manager of Kubernetes. Finally, an activity
will be undertaken to deploy a WordPress blog to Kubernetes using object management
techniques and Helm package management.

Object Management in Kubernetes
Kubernetes resources such as pods or deployments are maintained in etcd by kube-
apiserver. Controller managers and schedulers interact with kube-apiserver to create
pods for scaling up or for assigning nodes for scheduling. Additionally, every API
request made by client tools such as kubectl is reflected on the cluster state maintained
in etcd. While creating, updating, and deleting resources appears to be straightforward,
there are multiple approaches that you can use to manage Kubernetes resources. In this
section, the following three techniques for object management in Kubernetes will be
discussed:

•	 Imperative commands: These are used for running kubectl commands directly on
live Kubernetes resources.

•	 Imperative configuration: This is used for running kubectl commands with a
specific command and configuration file.

•	 Declarative configuration: This is used for running kubectl commands with a
configuration file and making kubectl automatically detect the required actions.

Object Management in Kubernetes | 131

Imperative Commands

The easiest and the most straightforward way of interacting with Kubernetes is to
provide an imperative command and some arguments. It is possible to create, update,
and delete resources without any configuration file by using kubectl commands.

The following kubectl commands are used imperatively for creating, updating, or
deleting resources:

•	 kubectl run: This creates a new deployment using one or multiple containers with
specific container images, environment variables, and arguments. For instance,
the following command will create a 5-replica deployment with the name and
container image of nginx:

kubectl run nginx --image=nginx --replicas=5

•	 kubectl expose: This creates a new service for exposing the deployments or pods
specified in the command. For instance, the following command will create a
service to expose the 80 port nginx deployment on 8080 port:

kubectl expose deployment nginx --port=8080 --target-port=80

•	 kubectl scale: This changes the replica count of a deployment, replication
set, or job. For instance, it is possible to increase the replica count of the nginx
deployment to 10, as follows:

kubectl scale --replicas=10 deployment/nginx

•	 kubectl annotate: This adds or removes annotations from a Kubernetes resource.
For instance, it is possible to add a new annotation, owner, and value, devops, using
the following command to the nginx deployment:

kubectl annotate deployment nginx owner="devops"

•	 kubectl get: This retrieves the basic data of the Kubernetes resource in a human-
readable YAML or JSON output. For instance, it is possible to get the running pods
with the following command:

kubectl get pods

•	 kubectl delete: This can be used with the type and name of a resource to delete
from Kubernetes. For instance, it is possible to delete the nginx deployment and
service as follows:

kubectl delete deployment/nginx service/nginx

132 | Deploy an Application to Kubernetes

Imperative commands are a straightforward way of creating, updating, or deleting
resources because they are easy to learn and remember. However, they are not suitable
for production environments because they do not provide any history of previous
states. For instance, it is not possible to roll back to an earlier version of the deployment
using imperative commands. In addition to this, these commands are not suitable for
complex configurations as they are limited to the command-line arguments provided by
kubectl. Although they are as powerful as other methods, imperative commands should
be used for testing, developing, or troubleshooting on Kubernetes clusters.

Imperative Configuration

Kubernetes resources can be managed with the help of kubectl commands and
configuration files. It is possible to use a configuration file and imperatively specify
commands such as create, replace, or delete.

The following kubectl commands are used imperatively for creating, updating, or
deleting resources using configuration files:

•	 kubectl create -f <FILE or URL>: This creates the defined resource in
the configuration file. For instance, the resource specified in https://raw.
githubusercontent.com/TrainingByPackt/Introduction-to-DevOps-with-
Kubernetes/master/Lesson05/nginx-deployment-5-replicas.yaml will be created
in the cluster using the following command:

kubectl create -f https://raw.githubusercontent.com/TrainingByPackt/
Introduction-to-DevOps-with-Kubernetes/master/Lesson05/nginx-deployment-5-
replicas.yaml

•	 kubectl replace -f <FILE or URL>: This updates the live Kubernetes resource with
the one defined in the configuration file. Using the following command, the nginx
deployment will be replaced with the one specified in the new file:

kubectl replace -f https://raw.githubusercontent.com/TrainingByPackt/
Introduction-to-DevOps-with-Kubernetes/master/Lesson05/nginx-deployment-
10-replicas.yaml

•	 kubectl delete -f <FILE or URL>:This deletes the Kubernetes resources defined
in the configuration file. For instance, the deployment defined in the file as nginx
will be removed from the cluster, using the following command:

kubectl delete -f https://raw.githubusercontent.com/TrainingByPackt/
Introduction-to-DevOps-with-Kubernetes/master/Lesson05/nginx-deployment-
10-replicas.yaml

https://raw.githubusercontent.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/master/Lesson05/nginx-deployment-5-replicas.yaml
https://raw.githubusercontent.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/master/Lesson05/nginx-deployment-5-replicas.yaml
https://raw.githubusercontent.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/master/Lesson05/nginx-deployment-5-replicas.yaml
https://raw.githubusercontent.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/master/Lesson05/nginx-deployment-10-replicas.yaml
https://raw.githubusercontent.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/master/Lesson05/nginx-deployment-10-replicas.yaml
https://raw.githubusercontent.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/master/Lesson05/nginx-deployment-10-replicas.yaml
https://raw.githubusercontent.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/master/Lesson05/nginx-deployment-10-replicas.yaml
https://raw.githubusercontent.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/master/Lesson05/nginx-deployment-10-replicas.yaml
https://raw.githubusercontent.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/master/Lesson05/nginx-deployment-10-replicas.yaml

Object Management in Kubernetes | 133

With the imperative configuration, kubectl takes specified actions on the resources
defined as YAML or JSON in the configuration files. These files are expected to be
stored in the source code repositories. Additionally, configuration files make it possible
to have more complex Kubernetes resources with a high level of configuration options.
Therefore, using imperative configuration is suitable for production environments.
However, it is critical to keep configuration files up-to-date if any other imperative
commands are executed, such as annotate or scale.

For instance, let's imagine that you defined a deployment with 5 replicas in a
configuration file created by kubectl create -f. Then, you needed to scale up the
deployment to 10 replicas and run the imperative command of kubectl scale. From that
moment, the configuration file does not have the latest replica number of 10. If you do
not reflect the imperative changes to the file, you will have a 5-replica deployment in
the next installation, as illustrated in Figure 5.1. Therefore, imperative commands with
configuration files should be used with care:

Figure 5.1: The imperative configuration flow

134 | Deploy an Application to Kubernetes

Declarative Configuration

Kubernetes resources can be defined as desired states in configuration files and can be
managed with the help of kubectl automation capabilities. In other words, it is possible
to use configuration files and let kubectl decide and take necessary actions.

The following kubectl commands are used for managing the resource with declarative
configuration:

•	 kubectl apply -f <FILE or URL>: This creates or updates the resources defined
in the configuration file. kubectl automatically checks the live resources in the
cluster and compares this with the configuration provided in the files. It can
create new resources if they do not exist in the cluster or update the live ones
according to the new resource definitions. An update of the resources includes
adding, removing, or changing the values of fields such as container images,
labels, or annotations. For instance, the following command will create a nginx
deployment with 5 replicas:

kubectl apply -f https://raw.githubusercontent.com/TrainingByPackt/
Introduction-to-DevOps-with-Kubernetes/master/Lesson05/nginx-deployment-5-
replicas.yaml

If you run the following command after the previous one, it will update the
number of replicas to 10:

kubectl apply -f https://raw.githubusercontent.com/TrainingByPackt/
Introduction-to-DevOps-with-Kubernetes/master/Lesson05/nginx-deployment-
10-replicas.yaml

Object Management in Kubernetes | 135

The flow of kubectl apply commands is illustrated in Figure 5.2:

Figure 5.2: The declarative configuration flow

•	 kubectl delete -f <FILE or URL>: This deletes the Kubernetes resources defined
in the configuration file in the same way as the imperative command. It is the
recommended way of removing resources that are declaratively configured and
maintained.

With declarative configuration, the main focus is on maintaining configuration
files. Creating or updating resources in the cluster are left to the operational logic
implemented in Kubernetes' tools and APIs. Since it does not rely on humans, it is
appropriate for a production environment with distributed teams and Continuous
Integration/Continuous Delivery systems. Additionally, declarative configuration
can safely work on folders to apply multiple resources defined in various files. Inside
a folder, kubectl will evaluate each resource separately to determine and perform the
required actions. In other words, declarative configuration could be considered as
maintaining a local desired state defined in configuration files and using Kubernetes'
client tools to reflect this state in a Kubernetes cluster.

136 | Deploy an Application to Kubernetes

Each object management technique in Kubernetes has its advantages and
disadvantages; therefore, choosing the most appropriate method for development,
testing, and troubleshooting is essential. In the following exercise, these three
techniques are illustrated with real-life examples.

Note

You will require a Kubernetes cluster to complete the following exercise. It is
possible to use a minikube cluster from Chapter 3, Introduction to Kubernetes or a
Google Kubernetes Engine cluster from Chapter 4, Creating a Kubernetes Cluster.

Exercise 13: Deploying Applications Using kubectl

In this exercise, we aim to create a deployment with imperative commands and manage
it with declarative methods of kubectl. To successfully complete the exercise, perform
the following steps:

1.	 Run the following command in Terminal to create an nginx deployment:

kubectl run nginx --image=nginx --replicas=5

Figure 5.3: Creating the nginx deployment

The output indicates that the nginx deployment is created.

2.	 Check the status of the pods with the following command:

kubectl get pods

Figure 5.4: The pods of the nginx deployment

This output shows that the deployment with 5 replicas is running in the cluster as
expected.

Object Management in Kubernetes | 137

3.	 Export the nginx deployment with the following command:

kubectl get deployment nginx -o yaml --export > deployment.yaml

With this command, deployment specification is written into the local file named
deployment.

4.	 Open the deployment.yaml file with a text editor and change the replicas field to
10, as follows:

Figure 5.5: The deployment specification

138 | Deploy an Application to Kubernetes

5.	 Deploy the changes using the kubectl apply command:

kubectl apply -f deployment.yaml

Figure 5.6: Applying deployment changes

6.	 Check the status of pods using the following command:

kubectl get pods

Figure 5.7: The pods of the nginx deployment

This output shows that the deployment with 10 replicas is running in the cluster as
expected.

7.	 Run the following command to delete the nginx deployment:

kubectl delete -f deployment.yaml

Figure 5.8: Deleting the nginx deployment

In this exercise, we demonstrated how to imperatively create a Kubernetes resource
and then convert it into a file and manage it with declarative configuration. All these
three object management methods are useful for daily tasks while working with
Kubernetes. In the following section, a new Kubernetes resource will be presented to
enable interaction between multiple applications in the cluster.

Service Discovery in Kubernetes | 139

Service Discovery in Kubernetes
Kubernetes manages containerized microservice applications by creating pods. Pods
are the building blocks of Kubernetes, where multiple containers are grouped together
and share the same network interface. For every pod, Kubernetes assigns an IP that
is reachable within the Kubernetes cluster; however, the pods are ephemeral in their
nature. In other words, pods and their IPs could change when they are assigned to
different nodes. In order to reliably access pods, Kubernetes provides an abstraction
layer known as service. Kubernetes services group a logical set of pods that can run
on the different nodes inside the cluster and enable other pods to reach them over the
service.

Let's imagine having a backend deployment in Kubernetes with two replicas and a
frontend deployment with three replicas. To reach the backend pods from the frontend
pods, the IPs of the backends should be made available to the frontends, as shown in
Figure 5.9. Additionally, a health status check is required since some of the backend
instances can break and their IPs should be removed from the frontend configuration.
Kubernetes creates an abstraction layer in front of the backend instances and decouples
the backend and frontend instances, as illustrated in Figure 5.10. With the help of
services, the frontend instances only need to know how to connect the service:

Figure 5.9: Frontend instances connecting to backend instances

Figure 5.10: Frontend instances connecting to the backend service

140 | Deploy an Application to Kubernetes

Kubernetes services are defined by grouping pods with their labels. For instance, using
the following service description, port 80 of each pod with the app = nginx label will be
reachable from port 8080:

kind: Service

apiVersion: v1

metadata:

 namespace: default

 name: nginx-service

spec:

 selector:

 app: nginx

 ports:

 - protocol: TCP

 port: 8080

 targetPort: 80

When this service is created, Kubernetes will assign an IP for this service and it will
be reachable by all pods inside the cluster. If other pods want to connect to the
nginx pods abstracted by this service, they only need to know the service IP address.
Furthermore, Kubernetes provides a domain name system (DNS) inside the cluster
to connect services with their names only. For instance, it is possible to connect the
service previously defined with http://nginx-service:8080 from the pods in the same
namespace; and http://nginx-service.default:8080 from all the namespaces in the
cluster.

With the service Kubernetes resource, it is possible to deploy multiple decoupled
applications in a scalable and reliable way. This is a powerful way of connecting scalable
applications with an essential abstraction layer. In the following exercise, we will
demonstrate how to create a deployment with its service and how to access the service
from other pods.

Note

You will require a Kubernetes cluster to complete the following exercise. It is
possible to use a minikube cluster from Chapter 3, Introduction to Kubernetes or a
GKE cluster from Chapter 4, Creating a Kubernetes Cluster.

Service Discovery in Kubernetes | 141

Exercise 14: Access Applications Using Services

In this exercise, we aim to create a deployment and service accessible from other pods
in the cluster. To successfully complete the exercise, perform the following steps:

1.	 Run the following command in Terminal to create an nginx deployment:

kubectl run nginx --image=nginx --replicas=5

Figure 5.11: Creating the nginx deployment

The output indicates that the nginx deployment is created.

2.	 Create a service for the nginx deployment using the following command:

kubectl expose deployment/nginx --target-port=80 --port=8080

Figure 5.12: Exposing the nginx deployment

This output shows that the service with the name nginx is created.

3.	 Create a curl instance and an open connection into the pod using the following
command:

kubectl run curl --rm --image=radial/busyboxplus:curl -i --tty

Figure 5.13: Terminal access in the pod

With command prompt, you are executing commands interactively in a pod
created from the radial/busyboxplus:curl image.

142 | Deploy an Application to Kubernetes

4.	 Connect to the nginx instances using the following command:

curl nginx:8080

Figure 5.14: The nginx output

Here, you can see Welcome to nginx!, which indicates that the default nginx
welcome page is retrieved as expected. It also shows that the service abstraction
works from the curl pod to reach the nginx pods.

5.	 Exit the pod created in step 3 using the exit command:

Figure 5.15: Exiting the curl pod

Kubernetes Package Manager: Helm | 143

6.	 Delete the nginx deployment and service using the following command:

kubectl delete deployment/nginx service/nginx

Figure 5.16: Deleting multiple resources

In this exercise, we demonstrated how to reach the pods of a deployment with service
abstraction. With Kubernetes services, it is possible to deploy applications that interact
with each other in a scalable and reliable way. However, as applications become more
complex, it becomes more complicated to manage configuration files and kubectl
commands. Therefore, in the following section, we will explore how the official package
manager of Kubernetes can be used to solve this problem.

Kubernetes Package Manager: Helm
Cloud-native applications with multiple microservices require the writing of complex
configuration files with interdependent resources such as volumes, configuration maps,
secrets, pods with multiple containers, and services to expose pods. Writing YAML or
JSON configuration files for each resource, along with the maintenance of these files, is
exhausting and is also prone to errors. Helm is the official Kubernetes package manager
that is used to solve this issue by managing resource definitions with templates. It
works by separating resource definition and configuration values. Additionally, it makes
it easier to deploy complex applications for users.

Helm consists of a server-side backend (tiller) running in the cluster and a command-
line client tool (helm). Applications are packaged as charts in Helm, where all required
Kubernetes resource templates and value files are packaged. Helm has an active chart
repository where popular and stable open source Helm charts are maintained (https://
github.com/helm/charts/tree/master/stable). Stable charts include numerous
popular applications from various fields, such as databases (such as MySQL, MongoDB,
and PostgreSQL), CI/CD tools (such as Concourse, Jenkins, and Gitlab), content
management systems (such as Joomla and WordPress), and even machine learning
applications (such as TensorFlow).

https://github.com/helm/charts/tree/master/stable
https://github.com/helm/charts/tree/master/stable

144 | Deploy an Application to Kubernetes

All helm charts have templates for Kubernetes resources as well as the required
configuration values. It is essential to check which values are required prior to using
a Helm chart. For instance, WordPress' helm chart has listed all the configuration
parameters with their descriptions and default values under the README file of the
helm chart repository (https://github.com/helm/charts/tree/master/stable/
wordpress#configuration):

Figure 5.17: The configuration for the WordPress Helm chart

https://github.com/helm/charts/tree/master/stable/wordpress#configuration
https://github.com/helm/charts/tree/master/stable/wordpress#configuration

Kubernetes Package Manager: Helm | 145

The configuration section of the WordPress chart has a very long list of parameters,
which shows it is a highly configurable Helm chart. It is a very good opportunity to
reuse these templates and configuration parameters without writing YAML files from
scratch thanks to the helm package manager and open source community. Helm is a
powerful package manager officially supported by Kubernetes and it is essential to the
learn basics of Helm to deploy complex microservice applications into clusters. In the
following exercise, we will install helm in the Kubernetes cluster and check its health
status.

Note

You will require a Kubernetes cluster to complete the following exercise. It is
possible to use a minikube cluster from Chapter 3, Introduction to Kubernetes or a
GKE cluster from Chapter 4, Creating a Kubernetes Cluster.

Exercise 15: Installing Helm in the Kubernetes Cluster

In this exercise, we will install the official package manager of Kubernetes in a cluster.
To successfully complete the exercise, perform the following steps:

1.	 Install the Helm client on your local computer by running the following official
script on Terminal:

curl https://raw.githubusercontent.com/helm/helm/master/scripts/get | bash

Figure 5.18: The download and installation of Helm

146 | Deploy an Application to Kubernetes

This downloads the helm executable and installs this on the local computer.

2.	 Install the server side of Helm to the Kubernetes cluster, namely tiller:

helm init

Figure 5.19: Installation of Tiller

Happy Helming! indicates that the server side of Helm is installed to the cluster.

3.	 Check the available number of tiller-deploy deployment instances in the kube-
system namespace with the following command:

kubectl get deployment tiller-deploy -n kube-system

Figure 5.20: Tiller deployment status

Wait a couple of minutes until there is 1 of 1 instance available for tiller-deploy
deployment, which indicates that the backend for helm is running successfully.

4.	 Check the version of the helm installation:

helm version

Figure 5.21: Helm version information

The same client and server versions indicate that there are no expected API
mismatches.

Kubernetes Package Manager: Helm | 147

5.	 Search for WordPress Helm charts using the following command:

helm search wordpress

Figure 5.22: The WordPress Helm chart

Here, we can see that chart version 5.8.2 is available and it installs WordPress
version 5.1.1.

In this exercise, the official Kubernetes package manager, helm, is installed in a cluster
and the installation status is validated. It is essential to learn helm with hands-on
experience to deploy complex microservice applications into clusters. In the following
activity, you will be asked to install the popular WordPress application with its official
helm chart.

Activity 5: Installing and Scaling a WordPress Blog in Kubernetes Using Helm

Note

You will require a Kubernetes cluster to complete the activity. It is possible to use
a minikube cluster from Chapter 3, Introduction to Kubernetes or GKE cluster from
Chapter 4, Creating a Kubernetes Cluster.

This activity aims to install and manage a WordPress blog and its database in a
Kubernetes cluster by using the official helm chart. You will be required to use both the
Helm and kubectl tools to install and access the blog for initial setup.

You need to install WordPress into the Kubernetes cluster by using the official Helm
chart and validate that it is running. Then, you are required to complete the setup
procedure of WordPress. With the successful setup, you need to scale the number of
WordPress instances to three in order to reach the expected popularity.

148 | Deploy an Application to Kubernetes

With the successful start of WordPress, the new blog should be up and running as
follows:

Figure 5.23: Home page - WordPress blog

Additionally, there should be three instances of WordPress pods with the successful
scale-up:

Figure 5.24: WordPress pods

Perform the following steps to complete this activity:

1.	 Install the WordPress helm chart. The release name should be devops-blog and the
username should be admin. Use devops as your password and DevOps Blog as the
blog name.

2.	 Wait until all the pods are running and are ready.

3.	 Open the home page of WordPress and check that it is installed successfully.

Summary | 149

4.	 Scale the WordPress instances to three.

5.	 Check the status of the pods with three instances.

6.	 Check that the home page is still accessible in the browser.

7.	 Delete the WordPress installation.

Note

The solution to this activity can be found on Page 318.

In this activity, we have installed and operated a production-ready, scalable WordPress
blog and its database in a Kubernetes cluster. For the blog and its database, various
Kubernetes resources were created, such as secrets, volumes, deployments,
and ingress. With the help of Helm, it is possible to install complex microservice
applications using a couple of commands and configuration values. Therefore, it is
essential to learn the basics of Helm and to deploy and manage production-ready
microservice applications.

Summary
In this chapter, we first started exploring object management methods in Kubernetes.
We learned about imperative commands using kubectl, how to combine imperative
commands using configuration files, and, finally, we demonstrated some declarative
configuration approaches using examples. Following this, we discussed how services are
a crucial Kubernetes resource, which are used to connect microservices in clusters. We
used hands-on exercises to show how microservice applications should be configured
in order to discover other applications. Since it is now possible to create more complex
applications by interacting with each other, their resource files will be more complex
to manage. Therefore, we presented the official Kubernetes package manager, Helm.
Helm separates the resource definition and configuration values to install applications
using a couple of commands. At the end of the chapter, Helm was utilized to install and
scale up a blog application. Deploying applications to Kubernetes is one of the essential
points, since Kubernetes is designed for managing cloud-native, reliable, and scalable
applications. The tools, commands, and approaches shown in this chapter will be used
in the following chapters and will be useful for your daily Kubernetes operations. In
the next chapter, we will examine how to configure applications in Kubernetes using
configuration maps, secrets, and volumes.

Learning Objectives

By the end of this chapter, you will be able to:

•	 Implement configuration management in Kubernetes

•	 List some of the secret management best practices

•	 Implement methods for handling secrets in Kubernetes

•	 Configure and deploy a sample application with persistent storage

In this chapter, you will learn about configuration and storage management in Kubernetes.

Configuration and

Storage Management
in Kubernetes

6

152 | Configuration and Storage Management in Kubernetes

Configuration Management
Configuration management takes care of the life cycle of the configurations of a system
or application. These settings help to make configuring computer programs benefit
optimally from the environment they run on. You can also use these settings to make
them behave differently in some cases. Configuration management includes, but is not
limited to, creating, tracking, storing, and updating the individual configuration items.

Configuration management also refers to the handling of the infrastructure
configuration. From this aspect, it can boost the efficiency of an automated process
instead of a manual configuration process. Configuration management systems such
as Puppet, Chef, and Ansible bring plenty of benefits to the table. Some of which ease
automation, providing consistency throughout the system, and matching the system
to the desired state. However, as Kubernetes increasingly touches upon this area and
solves these problems in its own way, these tools are losing their popularity.

In the following section, we explain two types of configurations that configuration
management for modern cloud-native applications takes care of: infrastructure
configurations and application runtime configurations. Then, we will show how
application runtime configurations can be managed by using the native Kubernetes
resources.

Infrastructure Configurations

Infrastructure configurations include all the resource definitions and configurations
needed for managing the infrastructure. It is also called Infrastructure as Code
(IaC). IaC is a way to automate the deployment of a system without manual work,
which decreases the possibility of human error and increases the deployment speed
significantly. It is a must to make many DevOps practices possible. Keeping the
infrastructure configurations in version control is also very important, especially for
tracking configuration changes, supporting automation, and the assurance of peer
review. Handling infrastructure in version control just like code also allows us to test
and deploy continuously using CI/CD tools. This topic is extensive with its building
blocks, but we won't go into too much detail in this book. Instead, we will focus on
application runtime configurations, which are explained in the next section.

Runtime Configurations

An application's configuration includes everything that may differ from one deployment
to another. Environment-related information, URLs to the external services, and
database credentials are just a few examples. If the configuration values include any
sensitive information, such as database credentials, they are categorized as secrets
and treated with more care in terms of any security issues. You'll learn about secrets in
more detail in the next section.

Configuration Management in Kubernetes | 153

Every application usually has at least three sets of configurations for development, test,
and production environments.

One of the principles of the twelve-factor app methodology is the separation of the
configuration from the code. The twelve-factor app methodology suggests using config
values from the environment as an environment variable. This is a useful technique to
handle configurations easily in a language and operating system agnostic way. It also
makes it easy to find the configuration value rather than scanning the source code to
see where to change it for anyone who wants to change a configuration value.

Note

The twelve-factor app is a set of principles constructed to provide ideal patterns
for developing modern applications. For more information, you can visit
https://12factor.net/.

Storing configuration files should be stored in version control. This allows you to track
the changes and roll back a configuration change if necessary.

Configuration Management in Kubernetes
Kubernetes provides centralized management of application configurations and makes
it possible to update the configurations on the fly without needing to recompile or
reboot your application. It propagates the changes to all the containers that have
the configs as mounted volumes so that you don't have to change every instance's
configurations manually one by one.

Kubernetes provides a built-in resource called ConfigMap to ease the management of
application configurations. This encourages the decoupling of the configurations from
the source code and managing them independently.

https://12factor.net/

154 | Configuration and Storage Management in Kubernetes

Data inside a ConfigMap consists of key-value pairs, where the key is the name of the
provided file or the key provided in the command and the value is file content or the
value provided in the command. The following table shows the API reference for the
ConfigMap object. You can see in the following table which fields correspond to what
type of an object in a ConfigMap definition:

Figure 6.1: Kubernetes ConfigMap API reference

Configuration Management in Kubernetes | 155

The configurations residing in ConfigMaps can be consumed from the Pods either as
environment variables or as files on a mounted volume.

A sample ConfigMap definition is as follows:

apiVersion: v1

kind: ConfigMap

metadata:

 name: test-config

 namespace: default

data:

 environment: test

Creating a ConfigMap

There are a few different ways to create a ConfigMap object in Kubernetes. One way
is to create the ConfigMap file manually either in JSON or YAML and deploy it to
the cluster using kubectl apply/create. Using this option, you can also commit the
definition file you created to a version control system like Git.

Let's create a file named app-config.yaml with the following ConfigMap definition.
Create a file using vi and copy-paste the following definition:

$ vi app-config.yaml

apiVersion: v1

kind: ConfigMap

metadata:

 name: app-config

data:

 environment: test

Now, deploy it using:

$ kubectl apply -f app-config.yaml

$ kubectl get configmap app-config -o yaml

156 | Configuration and Storage Management in Kubernetes

Here is the outcome of kubectl get showing the app-config ConfigMap object created
by the previous kubectl apply command:

apiVersion: v1

data:

 environment: test

kind: ConfigMap

metadata:

 annotations:

 kubectl.kubernetes.io/last-applied-configuration: | {"apiVersion":"v1","
data":{"environment":"test"},"kind":"ConfigMap","metadata":{"annotations":{},
"name":"app-config","namespace":"default"}}

 creationTimestamp: 2019-02-23T20:28:31Z

 name: app-config

 namespace: default

 resourceVersion: "4067078"

 selfLink: /api/v1/namespaces/default/configmaps/app-config

 uid: 95e6d30e-37a9-11e9-b54c-42010a840235

Alternatively, the kubectl create configmap command can be used to create a
ConfigMap. This creates ConfigMaps directly from literals, files, or even directories.

Let's try creating a ConfigMap from two literals:

$ kubectl create configmap test-config --from-literal=test-config-1=test1
--from-literal=test-config-2=test2

$ kubectl get configmap test-config -o yaml

Here is the outcome of kubectl get, showing the test-config ConfigMap object created
by the previous kubectl create configmap command:

apiVersion: v1

data:

 test-config-1: test1

 test-config-2: test2

kind: ConfigMap

metadata:

 creationTimestamp: 2019-02-22T19:14:38Z

 name: test-config

Configuration Management in Kubernetes | 157

 namespace: default

 resourceVersion: "406620"

 selfLink: /api/v1/namespaces/default/configmaps/test-config

 uid: d820c9fd-37a8-11e9-b54c-42010a840235

You can also create a ConfigMap from files or directories by using the --from-file
option instead of --from-literal. The only constraint is that the files must contain
plaintext (unencrypted) key-value pairs:

$ echo "test-config=test" > configs.txt

$ kubectl create configmap test-config-2 --from-file=configs.txt

$ kubectl get configmap test-config-2 -o yaml

Here is the outcome of kubectl get, showing the test-config-2 ConfigMap object
created by the previous kubectl create configmap command:

apiVersion: v1

data:

 configs.txt: |

 test-config=test

kind: ConfigMap

metadata:

 creationTimestamp: 2019-02-25T14:19:18Z

 name: test-config-2

 namespace: default

 resourceVersion: "473070"

 selfLink: /api/v1/namespaces/default/configmaps/test-config

 uid: 56a79682-3908-11e9-bd9a-82d3ccfe1531

In this section, we explored different ways of creating ConfigMaps. We created a
ConfigMap definition file manually and deployed it using kubectl apply. Also, we used
kubectl create configmap to conveniently create a ConfigMap from literals or files,
eliminating the need to create a definition file manually.

158 | Configuration and Storage Management in Kubernetes

Updating a ConfigMap

ConfigMaps can be updated like any other built-in Kubernetes resources using kubectl
apply as follows:

$ kubectl apply -f app-config.yaml

If you created the ConfigMap without a file using kubectl create, you can simply
use the following command to update the ConfigMap. This will utilize the YAML file
automatically created with kubectl create configmap:

$ kubectl create configmap test-config --from-literal=test-config-1=updated-
test1 --from-literal=test-config-2=updated-test2 -o yaml --dry-run | kubectl
replace -f -

Alternatively, you can also use kubectl edit or kubectl patch the same way as any other
Kubernetes resource:

$ kubectl patch configmap test-config -p='{"data":{"test-config-1": "updated-
test1"}}'

Consuming ConfigMaps from a Pod

ConfigMaps can be consumed from a Pod in two ways. These are by injecting the
configurations inside the ConfigMap as environment variables to the application
container and by mounting volumes with the configurations residing on separate files.
Pods can consume ConfigMaps only from the same namespace.

Here is an example pod definition where the ConfigMap is injected as an environment
variable:

apiVersion: v1

kind: Pod

metadata:

 name: test-config-pod

spec:

 containers:

 - name: test

 image: busybox

 env:

 - name: LOG_LEVEL

 valueFrom:

 configMapKeyRef:

Configuration Management in Kubernetes | 159

 name: app-config

 key: log-level

Here is another example where the ConfigMap is mounted as a volume:

apiVersion: v1

kind: Pod

metadata:

 name: test-config-pod-2

spec:

 containers:

 - name: test

 image: busybox

 volumeMounts:

 - name: config-volume

 mountPath: "/configurations"

 volumes:

 - name: config-volume

 configMap:

 name: app-config

When you mount ConfigMap as a volume to a Pod, each data item in the ConfigMap
becomes a separate file in the volume.

Note that consuming the ConfigMaps from the mounted volume has the advantage
of making updates possible. Therefore, when you update the ConfigMap after the
first creation, this change will be propagated to the containers that consume this
ConfigMap. You need to keep in mind that the current value is cached, so it takes a
couple of minutes for the updates to be propagated.

Be aware that ConfigMaps must be created before the Pods that use them. Otherwise,
Pods won't start until ConfigMaps exist.

160 | Configuration and Storage Management in Kubernetes

Exercise 16: Create ConfigMaps from a Literal and a File

In this exercise, we aim to create ConfigMaps from a literal and a configuration file:

1.	 Create a file with sample configuration values:

$ cat > config.txt <<EOF
environment: "test"
max-limit: 999
log-level: "debug"
EOF

2.	 Create the lesson-6 namespace and create a ConfigMap from this file:

$ kubectl create ns lesson-6
$ kubectl create configmap app-config-file --from-file=config.txt -n lesson-6
$ kubectl get configmap app-config-file -o yaml -n lesson-6

Figure 6.2: Creating an app-config-file ConfigMap

3.	 Create a ConfigMap from literal:

$ kubectl create configmap app-config --from-literal=environment=test -n
lesson-6
$ kubectl get configmap app-config -o yaml -n lesson-6

Configuration Management in Kubernetes | 161

Figure 6.3: Creating an app-config ConfigMap

4.	 Create a file named ConfigPod.yaml with the following content, which consumes
these ConfigMaps from a Pod. Then, deploy this Pod:

$ kubectl apply -f ConfigPod.yaml -n lesson-6
apiVersion: v1
kind: Pod
metadata:
 name: test-config-pod
spec:
 containers:
 - name: test
 image: busybox
 command:
 - sleep
 - "99999"
 env:
 - name: ENVIRONMENT
 valueFrom:
 configMapKeyRef:
 name: app-config
 key: environment
 volumeMounts:
 - name: config-volume
 mountPath: "/configurations"
 volumes:
 - name: config-volume
 configMap:
 name: app-config-file

162 | Configuration and Storage Management in Kubernetes

Figure 6.4: Deploying test-config-pod to the cluster

5.	 Get into the container and check the content of /configurations:

$ kubectl exec -it test-config-pod -n lesson-6 sh
$ cat configurations/config.txt
$ echo $ENVIRONMENT

Figure 6.5: Creating an SH into the container and checking the content of configs.txt

6.	 Create another file with sample configuration values:

$ cat > config-2.txt <<EOF
environment: "dev"
max-limit: 111
log-level: "info"
EOF

7.	 Update the existing ConfigMap using the config-2.txt file:

$ kubectl create configmap app-config-file --from-file=config-2.txt -o yaml -n
lesson-6 --dry-run | kubectl replace -f -

Figure 6.6: Replacing app-config-file using the file

Secret Management | 163

8.	 Get into the container and check the content of /configurations:

$ kubectl exec -it test-config-pod -n lesson-6 sh
$ cat configurations/config-2.txt

Figure 6.7: Creating an SH into the container and checking the content of config-2.txt

Note

You might need to wait a couple of minutes (until configmap is synced) before
seeing expected results. Immediate run of this steps fails.

Kubernetes provides a ConfigMap built-in resource as a way to decouple the

configurations from your application's source code and manage them from a centralized
system in the best way possible. That's why it is important to make use of them for
runtime configurations. In this section, we learned configuration management in
general and how we can manage our configurations in Kubernetes. In the next section,
we will take a look at a special type of configurations called secrets. We will learn secret
management best practices and how we can manage our secrets in Kubernetes.

Secret Management
Security is usually a cumbersome topic for developers, but if it is not taken care of, it
can result in severe consequences. Secret management is one of the building blocks
for achieving a completely secure system in DevOps. It usually refers to techniques
and tools for handling sensitive information (secrets) in a digital system. Any sensitive
information could be treated as a secret. For example, these are some of the most
commonly used secrets in DevOps:

•	 API keys

•	 Database passwords

•	 TLS certificates

164 | Configuration and Storage Management in Kubernetes

Secret management implies managing the life cycle of secrets, which includes creating,
storing, consuming, and even disposing of them safely. Secrets can be managed using a
secret management software, such as Hashicorp's Vault (https://www.vaultproject.io/)
or Square's Keywhiz (https://square.github.io/keywhiz/). Although they can be helpful
with some secret management practices, they can also bring unnecessary complexity to
your system. So, they should be evaluated very carefully for the needs of your system,
and full manual management should be considered as well before blindly going for a
secret management tool. Regardless of the chosen method for managing secrets, some
best practices should be taken into consideration. These are presented in the next
section.

Secret Management Best Practices
In this section, we'll go through some secret management best practices. These points
are essential to understand in order to manage secrets in a DevOps environment. The
following figure shows secret management best practices, which are valuable practices
for securing sensitive information:

Figure 6.8: Secret management best practices

https://www.vaultproject.io/
https://square.github.io/keywhiz/

Secret Management Best Practices | 165

Identifying Secrets

The very first step for secret management is to identify all kinds of secrets. They
include, but are not limited to, passwords, SSH keys, and certificates for communication
(for example, TLS). It is very important that this should be a continuous process.
That is, all new configuration values should be evaluated and treated as secret if they
include any sensitive information. Also, secrets should be constrained to have enough
complexity to make them difficult to solve. For example, when you integrate your
application with another one, you'd usually need a kind of credential to authenticate
with, and also some configuration values to customize the other application. You should
go through all these configuration values, including the credentials, decide which ones
could be sensitive information, and categorize them as secrets. Only by identifying
them can you consider more measures to secure them.

Decoupling Secrets from the Source Code

It is, unfortunately, a common practice, especially for a quick start, to keep secrets such
as credentials or connection tokens hardcoded in the source code or in a shared folder;
this could easily result in a security breach that could even lead to the bankruptcy of
companies.

We already talked about why configurations should be decoupled from the source
code in the previous topic. This practice is even more critical when it comes to secrets.
It is a DevOps best practice to keep the source code clear of any secrets and inject
secrets into applications either as an environment variable or in a file. This not only
decreases the possibility of a compromise, but also makes managing all the secrets
under centralized management possible. Imagine that you keep a customer's database
credentials in the source code. A hacker could reverse engineer the application to see
the source code if they can get access to the application. In such cases, the hacker
could obtain the credentials for the customer's database. How catastrophic would that
be for your business with the customer and for your overall reputation?

Rotating Secrets

Rotating secrets means regularly changing secrets. It is an integral part of secret
management. It is crucial to mitigate security vulnerabilities that could arise when an
employee leaves the company or if a secret is exposed in another way at some point.
For instance, a system could be hacked because of a security breach that happened a
year ago if there is no secret rotation policy embraced for that system.

166 | Configuration and Storage Management in Kubernetes

Principle of Least Privilege

A typical DevOps environment makes use of many different technologies and tools in
which secret management is indispensable. The secrets used in various tools could
have quite high privileges for the tool to operate without any problem. In such cases,
the compromise of these secrets could be catastrophic. A hacker could take control of
and destroy the whole system by exploiting highly privileged credentials. That's why all
secrets must have the least possible privileges to achieve their job.

Preventing Printing Out Secrets on Application Logs

You need to make sure that secrets are never printed out in logs. This may sound rather
obvious, but this is also a widespread mistake, especially when printing the whole
object in case of an error. This should be kept in mind while writing code. For example,
you might have a system where the logs are available to the public. If you merge code
printing sensitive information to the logs by mistake, this information could easily be
exploited by someone with bad intentions.

Encryption at Rest

Secrets should be handled with great care, not only during transit, but also at rest.
They shouldn't be stored as plain text but encrypted. This way, even if secrets are
compromised at some point, they'd be useless without the encryption key. Google
Cloud provides a service called Cloud Key Management Service (KMS) to tackle
this problem (https://cloud.google.com/kms/). It can be used for encrypting and
decrypting secrets so that they can be stored more securely. KMS has integration
with Google Kubernetes Engine, so it can be used to encrypt the secrets residing on
Kubernetes etcd. A malicious person or a piece of code can grant access to the storage
at some point, but they can't do anything if the secrets there are encrypted. This brings
us to the next topic, where we will go through secret management in Kubernetes.

Secret Management in Kubernetes

Kubernetes provides a built-in resource called secret to ease the management of
secrets. Each secret object is used to store a small amount of sensitive information.

Data that is kept in the secret resource is in the form of key-value pairs.

https://cloud.google.com/kms/

Secret Management Best Practices | 167

The following table shows the API reference for the secret object. You can see which
fields correspond to what type of an object in a secret definition:

Figure 6.9: Kubernetes Secret API reference

(https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#secret-v1-
core)

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#secret-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.13/#secret-v1-core

168 | Configuration and Storage Management in Kubernetes

A sample Secret definition is as follows:

apiVersion: v1

kind: Secret

metadata:

 name: credentials

type: Opaque

data:

 username: dXNlcgo=

 password: dGVzdC10b	 2tlbg==

Secrets can be referenced in pods either as an environment variable or in a volume.

Creating a Secret

There are several ways to create a secret object in Kubernetes. One way is to create
the secret file manually either in JSON or YAML and deploy it to the cluster using
kubectl apply/create. With this option, you may need to encode the secret by yourself
and use it in the secret definition file based on your choice between using the data or
stringData fields. Let's go on to learn how to create a secret.

You can simply encode your credential using base64:

$ echo -n 'test-token' | base64

$ dGVzdC10b2tlbg==

Then, create a secret file named test-secret.yaml using the encoded credential from
the previous step within the data field:

apiVersion: v1

kind: Secret

metadata:

 name: test-secret

type: Opaque

data:

 token: dGVzdC10b2tlbg==

Secret Management Best Practices | 169

Deploy it using:

$ kubectl create -f test-secret.yaml

Additionally, to decode the existing secrets in the cluster, you can make use of the
kubectl get secret command:

$ kubectl get secret test-secret -o yaml

Here is the output of kubectl get, showing the test-secret secret object created by the
previous kubectl create command:

apiVersion: v1

data:

 token: dGVzdC10b2tlbg==

kind: Secret

metadata:

 creationTimestamp: 2019-02-20T20:09:51Z

 name: test-secret

 namespace: default

 resourceVersion: "7138986"

 selfLink: /api/v1/namespaces/default/secrets/test-secret

 uid: 7b1b57d5-354b-11e9-bd98-42010a9c01eb

type: Opaque

Now, we can utilize base64 again to decode the secret:

$ echo 'dGVzdC10b2tlbg==' | base64 -D

test-token

Note

The -D option is only valid on macOS. For Linux, please use -d instead.

170 | Configuration and Storage Management in Kubernetes

Alternatively, you can provide the credentials in open text as stringData instead of data.
That way, the text will be encoded for you:

apiVersion: v1

kind: Secret

metadata:

 name: test-secret

type: Opaque

stringData:

 token: test-token

Deploy this using:

$ kubectl apply -f test-secret.yaml

Now, when you take a look at the secret content, you will see that it is the same as we
encoded in the previous example:

$ kubectl get secret test-secret -o yaml

Here is the output of kubectl get, showing the test-secret secret object created by the
previous kubectl apply command:

apiVersion: v1

data:

 token: dGVzdC10b2tlbg==

kind: Secret

metadata:

 creationTimestamp: 2019-02-20T20:24:14Z

 name: test-secret

 namespace: default

 resourceVersion: "473531"

 selfLink: /api/v1/namespaces/default/secrets/test-secret

 uid: 06e67b21-3909-11e9-bd9a-82d3ccfe1531

type: Opaque

Another way of creating a secret is to make use of kubectl create secret, which will
generate the secret from either a file or a literal, and then deploy it onto the cluster.

Secret Management Best Practices | 171

The previous secret you created, test-secret, could also be created running the
following command:

$ kubectl create secret generic test-secret-2 --from-literal=token=test-
token

Alternatively, you can put the token into a file and create the secret directly from the
file:

$ echo test-token > token.txt

$ kubectl create secret generic test-secret-3 --from-file=token=token.txt

Updating a Secret

Secrets can also be updated like any other built-in Kubernetes resources using kubectl
apply:

$ kubectl apply -f test-secret.yaml

If you created the secret without a file using kubectl create, you can use the following
command to update the secret easily. This will utilize the YAML file automatically
created by kubectl create secret:

$ kubectl create secret generic test-secret --from-literal=token=new-test-
token -o yaml --dry-run | kubectl replace -f -

Alternatively, you can also use kubectl edit or kubectl patch the same way as any other
Kubernetes resource:

$ kubectl patch secret test-secret -p='{"stringData":{"token": "new-test-
token"}}'

Consuming Secrets from a Pod

Secrets can be used in a pod in two ways. These are by injecting them as an
environment variable to the application container and by mounting volumes with the
secrets residing on a file. Pods can only consume secrets from the same namespace.

Here is an example od definition where the secret is injected as an environment
variable:

apiVersion: v1

kind: Pod

metadata:

 name: test-secret-pod

spec:

172 | Configuration and Storage Management in Kubernetes

 containers:

 - name: test

 image: busybox

 env:

 - name: TOKEN

 valueFrom:

 secretKeyRef:

 name: test-secret

 key: token

Here is another example where the secret is mounted as a volume:

apiVersion: v1

kind: Pod

metadata:

 name: test-secret-pod-2

spec:

 containers:

 - name: test

 image: busybox

 volumeMounts:

 - name: token-volume

 mountPath: "/secrets"

 volumes:

 - name: token-volume

 secret:

 secretName: test-secret

When multiple containers need to consume a secret, the volume must be referenced
only once, but for each container, you must add a separate volumeMount.

Consuming secrets from the mounted volume has the advantage of making updates
possible. Therefore, when you update secrets after their initial creation, this change will
be propagated to the containers that consume this secret. You need to keep in mind
that the current value is cached and that's why it takes some time for the updates to be
propagated.

Secret Management Best Practices | 173

Be aware that secrets must be created before the pods that use them. Otherwise, pods
won't start until secrets exist.

Exercise 17: Create and Update a Secret

In this exercise, we aim to create a secret, decode it and update the existing secret.
Perform the following steps to complete the exercis:

1.	 Create a random token:

$ openssl rand -hex 8

Figure 6.10: Creating a random token

2.	 Create a secret using the kubectl create secret command:

$ kubectl create secret generic token -n lesson-6 --from-
literal=token=b83f7d3cc64efc58

Figure 6.11: Creating a token secret from a literal

3.	 View the secret and decode it:

$ kubectl get secret token -n lesson-6 -o yaml
$ echo "YjgzZjdkM2NjNjRlZmM1OA==" | base64 -D

Figure 6.12: Checking the content of the secret and decoding the token

174 | Configuration and Storage Management in Kubernetes

4.	 Create a new random token using the openssl command from step 1 and replace
the existing secret:

$ kubectl create secret generic token --from-
literal=token=0c796ab82c385dd2 -n lesson-6 -o yaml --dry-run | kubectl
replace -f -

 Figure 6.13: Replacing the existing token in the secret with a new one

As a separate resource type, secrets are treated with more care on Kubernetes. For
example, unlike other resources, Kubernetes does not reveal the contents of secrets
when you run kubectl get or kubectl describe. By making use of this type, you can
manage all your secrets from a centralized system and decoupled from the application.
That's why this abstraction would be the best way to manage secrets for your
applications running on Kubernetes.

In this chapter, we covered secret management in general and learned how we can
manage secrets in Kubernetes. In the next section, we will learn how to handle storage
in Kubernetes.

Secret Management Best Practices | 175

Activity 6: Updating Configurations on the Fly

Imagine that you are running an application on Kubernetes and it is ready for
production use. Your boss asks you to finally deploy the application on the production
environment. You get very excited, deploy the application on the production cluster,
and make it available to customers. You check the logs and you realize that the
application is deployed with the test configurations. You immediately update the
configurations that are being used by the application. Then, a security team member
passing by checks the logs and realizes that the application is using 8-byte tokens and
asks you to improve it to 32-byte. While changing the configurations, the application
must not be down. Your task is first to deploy the application that uses the ConfigMap
and secret you created during the chapter. Then, update the configuration and secrets
according to the scenario.

Note

To complete this activity, all previous exercises in the chapter will need to have
been completed. You can either use a real cluster or Minikube for this activity.

Execute the following steps to complete this activity:

1.	 We created a ConfigMap named app-config and a secret named token earlier in the
chapter; include them in your solution. Create a pod definition file that consumes
this ConfigMap and the secret.

2.	 Deploy the pod.

3.	 Make sure that the pod is running and check the logs to see the current
environment coming from ConfigMap and the token coming from the secret.

4.	 Replace the current environment variable set by the app-config ConfigMap.

5.	 Check the logs to see the updated environment information.

Note

It may take a few minutes for the pod to get the changes.

176 | Configuration and Storage Management in Kubernetes

6.	 Generate and encode a 32-byte token.

7.	 Replace the current token set by the secret.

8.	 Recheck the logs to see the updated token.

Note

The solution to this activity can be found on page 323.

Storage Management
Storage management tries to provide an answer to all the problems regarding
the storage aspect of DevOps. This is especially important because, for DevOps
environments to run smoothly, storage needs to be provisioned quickly and efficiently.

Automation is a keyword for DevOps, which aims to reduce the human error factor as
much as possible and provide a stable environment to improve development and release
processes. By adding highly needed scalability and availability to the recipe, dynamic
storage provisioning is a must to match all the demands capably. It simplifies the
workflows required for a DevOps environment.

Developers not only rely on tools and technologies, but also densely utilize storage
for development purposes. That's why organizations need to provide the right tools to
enable people to do their jobs in a practical way and add more value to the organization.

Luckily, with the rise of cloud and modern storage management solutions, storage
provisioning times have reduced from months to seconds.

DevOps processes make heavy use of the container ecosystem, which also results in
the necessity for a storage platform that supports containers. That's where Kubernetes
comes into play, as the platform abstracts away the underlying storage provisioning
infrastructure and provides a unified interface for users to manage storage. In the next
section, we will look at methods for managing storage for your applications using the
native resources provided by Kubernetes.

Storage Management in Kubernetes | 177

Storage Management in Kubernetes
Kubernetes provides a couple of built-in resources, such as Volumes, to manage storage
needed for an application running on the cloud. As Kubernetes is highly adopted in
the industry, there are many plugins available out of the box to make use of dynamic
storage provisioning on the cloud or on-premise installations. This provides the
required speed and efficiency for automation in DevOps. In the next section, we will
demonstrate these native Kubernetes resources and show how to utilize them.

Volume

Kubernetes aims to address two problems with Volume abstraction. One is containers
having only ephemeral storage, which is gone when the container crashes, and the
other one is the need to share a common volume between the containers inside a pod.

Kubernetes provides a wide range of volume types to utilize all the cloud offerings as
well as supporting on-premise solutions.

Here, you can find the full list of the volume types supported by Kubernetes: https://
kubernetes.io/docs/concepts/storage/#types-of-volumes

In this book, we'll cover a few of the most used volume types, which are emptyDir,
gcePersistentDisk, and glusterfs.

emptyDir

emptyDir is a type of volume that takes advantage of the underlying storage system on
a node. It provides an empty volume mounted to the pod so that every container can
access it through the same or different paths, depending on the configuration. The
lifetime of a Volume is determined by the pod that uses it, so pod restart does not clean
the volume, but killing the pod deletes the volume as well.

Here is a sample pod definition using emptyDir:

apiVersion: v1

kind: Pod

metadata:

 name: emptydir-pod

spec:

 containers:

 - image: busybox

 name: test

 volumeMounts:

https://kubernetes.io/docs/concepts/storage/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/#types-of-volumes

178 | Configuration and Storage Management in Kubernetes

 - mountPath: /test-folder

 name: emptydir-volume

 volumes:

 - name: emptydir-volume

 emptyDir: {}

gcePersistentDisk

gcePersistentDisk is a volume type specific to Google Cloud for handling persistent
disks. This can be used to obtain a persistent disk required for an application running
on Google Compute Engine (GCE), in which data is not erased when the pod is killed.
As another advantage, you can also create the volume beforehand and populate it with
data, which will be served to your application once the pod is running.

This command can be used to create a persistent disk on GCE:

$ gcloud compute disks create --size=20GB --zone=europe-west3-a test-disk

Here is a sample pod definition using the test-disk created by the previous command:

apiVersion: v1

kind: Pod

metadata:

 name: gce-pod

spec:

 containers:

 - image: busybox

 name: test

 volumeMounts:

 - mountPath: /test-folder

 name: gce-volume

 volumes:

 - name: gce-volume

 gcePersistentDisk:

 pdName: test-disk

 fsType: ext4

Storage Management in Kubernetes | 179

glusterfs

glusterfs is a volume type specific to GlusterFS, which is a free and open source
network file system. Just like persistent disks on GCE, volumes created by GlusterFS
are not cleaned when the pod is removed. It also has the same advantage of providing
pre-populated volume to your application. However, as an open source product, you
need to maintain it, as opposed to the managed storage solution from GCE.

Note

You can head here to learn more about GlusterFS: https://docs.gluster.org/en/
latest/Administrator%20Guide/GlusterFS%20Introduction

Here is a sample pod definition using a volume created on GlusterFS:

apiVersion: v1

kind: Pod

metadata:

 name: glusterfs-pod

spec:

 containers:

 - image: busybox

 name: test

 volumeMounts:

 - mountPath: /test-folder

 name: glusterfs-volume

 volumes:

 - name: glusterfs-volume

 glusterfs:

 endpoints: glusterfs-cluster

 path: test-volume

180 | Configuration and Storage Management in Kubernetes

Exercise 18: Use emptyDir Volume to Share Content Between Containers

In this exercise, we aim to use emptyDir as a volume type to create and share a volume
between two containers in the same pod:

1.	 Here is the pod definition to achieve this:

apiVersion: v1
kind: Pod
metadata:
 name: emptydir-pod
spec:
 containers:
 - image: busybox
 command:
 - sleep
 - "99999"
 name: test-container-1
 volumeMounts:
 - mountPath: /test-folder
 name: emptydir-volume
 - image: busybox
 command:
 - sleep
 - "99999"
 name: test-container-2
 volumeMounts:
 - mountPath: /test-folder
 name: emptydir-volume
 volumes:
 - name: emptydir-volume
 emptyDir: {}

2.	 Deploy the pod and check whether it is running using:

$ kubectl apply -f emptyDir-pod.yaml -n lesson-6
$ kubectl get pods -n lesson-6

Figure 6.14: Deploying emptydir-pod to the cluster

Storage Management in Kubernetes | 181

3.	 Get into the first container, create a dummy file, and exit:

$ kubectl exec -it emptydir-pod -c test-container-1 -n lesson-6 sh
$ echo lesson-06 > test-folder/test-file
$ exit

Figure 6.15: Creating an SH into one of the containers to create a shared folder

4.	 Get into the second container and check the content of the file:

$ kubectl exec -it emptydir-pod -c test-container-2 -n lesson-6 sh
$ cat test-folder/test-file

Figure 6.16: Creating an SH into the other container to see the content of the shared folder

We can see from the output that the second container has the same volume mounted,
hence the containers in the same pod can share content between them in this way.

Now, we'll continue with the other Kubernetes built-in resources for managing storage
efficiently, which are Persistent Volume (PV), Persistent Volume Claim (PVC), and
StorageClass.

Persistent Volume (PV)

PV provides the abstraction for volumes that are provisioned on the cluster. They
are similar to Volumes, which we went through in the last section, but as a separate
resource, PV has an independent life cycle from the pods that use it. Therefore, it does
not get affected by any change to the status of pods.

Although cluster administrators can manually provision the underlying physical storage
and create PVs, they can also be provisioned dynamically if the cluster has support for
dynamic storage.

Just like Volumes, there are many supported types for PVs. You can find the full list
here: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-
persistent-volumes

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes

182 | Configuration and Storage Management in Kubernetes

Here is a sample PV, which utilizes the GlusterFS plugin:

kind: PersistentVolume

apiVersion: v1

metadata:

 name: glusterfs-volume

spec:

 capacity:

 storage: 10Gi

 accessModes:

 - ReadWriteOnce

 glusterfs:

 endpoints: glusterfs-cluster

 path: test-volume

You can create a file named glusterfs-volume.yaml using this sample PV, and deploy it
to the cluster:

$ kubectl create -f glusterfs-volume.yaml

You can use generic kubectl commands to verify that it is deployed without any
problem:

$ kubectl get pv glusterfs-volume

$ kubectl describe pv glusterfs-volume

Persistent Volume Claim (PVC)

A PVC is a Kubernetes resource type, which is used to request PV for the pod they are
used in. They can be directly referenced as Volume in pods.

Kubernetes handles the matching of suitable PV with a PVC. On platforms with dynamic
storage support, such as GKE, PV is automatically created to match the needs of the
PVC. Once a suitable match is found or created, they are bound to each other. Then,
Kubernetes mounts the volume to the Pod.

With a PVC, the user can determine the size and the access mode that the application
needs, and also the storage class, which can specify the disk types (this will be explained
more in the next section).

Storage Management in Kubernetes | 183

Access Modes

There are the supported access modes that you can use on PVCs:

•	 ReadWriteOnce: A single node can read or write to the volume.

•	 ReadOnlyMany: Many nodes can read data from the volume but cannot write.

•	 ReadWriteMany: Many nodes can read or write to the volume.

Here is a sample PVC, which requests 50GB of storage:

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: test-pvc

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 50Gi

You can create a file named test-pvc.yaml using this sample PVC, and deploy it to the
cluster:

$ kubectl create -f test-pvc.yaml

You can use generic kubectl commands to verify that it is deployed without any
problem:

$ kubectl get pvc test-pvc

$ kubectl describe pvc test-pvc

Storage Class

Many cloud providers offer different types of storage for various needs, such as speed
and redundancy. Kubernetes provides storage class as a way to choose between
different storage types for the Volumes you want to mount to your application. You can
also create a storage class to configure custom provisioning.

184 | Configuration and Storage Management in Kubernetes

Usually, a default storage class is already provided by cloud providers, so you don't need
to specify a storage class if you don't need to choose a different storage type explicitly.
For example, when you create a managed Kubernetes cluster on GKE, it comes with a
default storage class. This storage class only provisions standard persistent disks when
requested by a PVC. If you want to use any other disk type for your application, you
need to provide a new storage class.

When you create a PVC, Kubernetes automatically generates a PV according to the
specifications coming from the storage classes.

Here is a sample storage class, which provisions standard disks on GCE:

kind: StorageClass

apiVersion: storage.k8s.io/v1

metadata:

 name: slow

provisioner: kubernetes.io/gce-pd

parameters:

 type: pd-standard

 replication-type: none

You can create a file named slow.yaml using this sample PVC, and deploy it to the
cluster:

$ kubectl create -f slow.yaml

You can use generic kubectl commands to verify that it is deployed without any
problem:

$ kubectl get storageclass slow

$ kubectl describe storageclass slow

Activity 7: Running a Persistent Database on Kubernetes | 185

The following diagram shows how each abstraction interacts with the others as a part
of storage management in Kubernetes:

Figure 6.17: Storage management in Kubernetes

In this chapter, we have covered all the resources in Kubernetes that are used to
manage storage in an effective and fast manner. In the following activity, we will deploy
a relational database management system with backing persistent disks to store data by
utilizing the resources provided by Kubernetes.

Activity 7: Running a Persistent Database on Kubernetes
Imagine that you work on a microservice that is responsible for the payments on an
e-commerce website. You are required to deploy a database management system. The
data kept in this database needs to stay secure for a long time, especially for legal and
audit purposes. Data loss could mean catastrophe for the company. Your task is to
deploy a MySQL relational database management system (because of the high number
of transactions in this microservice) with a volume that won't be cleaned up if the pod
crashes or is removed.

Note

To complete this activity, you can use Minikube or a managed Kubernetes cluster
such as GKE.

186 | Configuration and Storage Management in Kubernetes

Execute the following steps to complete this activity:

1.	 Create a Deployment definition file for MySQL, which uses a secret for the user
password and a Volume using a PVC.

2.	 Create a service definition file for your deployment.

3.	 Generate a password and deploy a secret using the password as a literal to the
cluster.

4.	 Create a PVC that requests 20GB of storage and deploy it to the cluster. Then,
check whether a PV is automatically created by Kubernetes and bound to the PVC.

5.	 Deploy MySQL Deployment and Service to the cluster.

6.	 Check whether the Pod is running and verify that MySQL works properly by trying
to access the server.

Note

The solution to this activity can be found on Page no 326.

So, we now have a running MySQL deployment with 20 GB disk space on our
Kubernetes cluster, and we verified that we can access it without any problem using the
password that we determined.

Summary
In this chapter, we first described the configuration management and mentioned
different types of configurations that need to be considered under the umbrella of
DevOps. With hands-on exercises, we showed how you can manage configurations for
an application running on Kubernetes.

We then progressed to secret management, which is a particular type of configuration
for handling sensitive information. We introduced some of the best practices that
need to be taken into consideration when working with secrets. We also explained
how secrets can be managed as an independent resource on Kubernetes. At the end
of the chapter, we applied what we went through in the first two sections to a real-life
scenario in an activity.

Storage management was the last topic of this chapter, in which we described why it is
an essential concept for DevOps. We also explained the built-in Kubernetes resources
for managing storage in a practical way. In the next chapter, we will be demonstrating
two of the fundamental DevOps practices, upgrading and scaling an application.

Learning Objectives

By the end of this chapter, you will be able to:

•	 List different ways of updating an application

•	 Update an application in Kubernetes using different techniques and also by using Helm

•	 Perform the scale up, scale out and scale operations on a application in Kubernetes

•	 Use autoscalers in Kubernetes

This chapter, explains how to update and scale an application on Kubernetes

Updating and Scaling
an Application in

Kubernetes

7

190 | Updating and Scaling an Application in Kubernetes

Updating an Application
In the previous chapter, Configuration and Storage Management in Kubernetes, we
saw how to manage configurations and secrets generally as well as in Kubernetes.
We also went through the process of handling storage and explored how Kubernetes
provides a number of abstractions in order to make this easy for users. After covering
configuration and storage management as key practices in DevOps, in this chapter,
we will see how we can update and scale an application, as they are equally important
practices that we need to apply in DevOps.

Updating an application is an inevitable part of software management – especially
DevOps. In continuous integration and delivery, applications can be updated a number
of times a day or even an hour. These updates can be disruptive in cases where high
availability is a very important function of the application. No user likes to land on
a website where they see an error message saying that the service is currently not
available. That's why it is critical to perform updates with great care, and as quickly as
possible, without causing application downtime.

There are some advanced techniques that can be used in order to perform updates.
Each technique introduces a different update process, with its own advantages and
disadvantages. They also cover roll back scenarios, if needed. Of course, it is always
possible to update an application by shutting it down and starting its new version,
which is called simple or reckless deployment. However, as mentioned previously, this
will lead to application downtime, causing customer frustration and impacting your
company's reputation.

In the following section, we will explore four of these update techniques, namely blue-
green deployments, rolling updates, canary releases, dark launches, and feature
toggles, including their advantages and usage areas.

Blue-Green Deployments

In blue-green deployments, two independent production environments are configured
in exactly the same way for updating an application. One environment (Environment 1)
serves the software actively in production, while the other one (Environment 2) serves
the software in the idle state. These two environments never become active at the same
time. While updating the software from the old version (v1) to the new one (v2), the load
balancer is simply switched between these environments. Hence, application downtime
is either minimal or even eliminated.

Updating an Application | 191

For instance, for a monolithic application – where you can't avoid shutting down the
application altogether and starting up a new one – you can use blue-green deployment
for a seamless update process. You can prepare the application and run it in the new
environment so that when you switch the traffic, it'll be ready to serve. The order of the
blue-green deployment procedure is as follows:

1.	 The blue environment gets normal traffic, while the green one is disabled from the
load balancer:

Figure 7.1: The initial phase of blue-green deployment

2.	 The application on the green environment is updated to the new version and tests
are run in order to verify that the new version of the software behaves correctly:

Figure 7.2: Preparing the green environment for the updated version

192 | Updating and Scaling an Application in Kubernetes

3.	 Once verified, the load balancer is switched to only serve the traffic to the green
environment:

Figure 7.3: Switching the traffic to the green environment

4.	 The blue environment is deleted after ensuring that everything works well.

In this technique, rollbacks are also as simple as switching the load balancer back to the
old environment. One big advantage of blue-green deployment is that it can be used for
monolithic applications as well. The main disadvantage of this technique is having to
maintain two independent environments, which must be robust and performant enough
to serve production traffic.

Rolling Updates

With the rolling updates technique, there is only one production environment in
which there are multiple instances of the application. These instances are updated
one by one. The instance being updated does not receive any traffic as it is taken out
of the load balancer. After the update is completed for that instance, it starts receiving
traffic again, and another instance is taken out of the load balancer for the update.
This continues until all the instances have been updated. Although the overall traffic
handling is reduced, since there is always an instance alive, this update strategy causes
zero downtime. That's why it's the most common way to update an application. For
example, when you need to update the backend services for a website, you can use a
rolling update so that users will keep using the website seamlessly without noticing
any changes or facing any problems during your update process. To be able to use this
technique, the application must support running with multiple instances, and even with
multiple versions at the same time.

Updating an Application | 193

In the following diagram, each step of a rolling update is demonstrated:

Figure 7.4: The steps of a rolling update

Using this technique, rollbacks happen in the same way, that is, instances are
downgraded to the old version one by one. One disadvantage here is that, at the
same time, multiple versions of the same application will be active, so this can cause
unpredictable behavior. Therefore, the rolling update should be tested beforehand in a
test environment.

194 | Updating and Scaling an Application in Kubernetes

Canary Releases

In canary releases, you can update an application for a limited number of users or
update only a percentage of all instances. This technique is mostly used for testing a
new feature in production with a small number of users before opening it up to the
general user base. For example, global brands such as Netflix always roll out new
features to a specific part of the world, such as the East Coast of the United States, in
order to receive feedback about the new feature from the people living there. Hence,
you can be more confident about the feature and fix any bugs that have occurred
before rolling it out to the whole world. To be able to perform canary releases, the
infrastructure must allow you to direct a determined fraction of the traffic to the
desired instances. It works in a similar way to rolling updates. The order of the canary
release procedure is as follows:

1.	 The canary instances (for example, based on amount or location), which will be
updated to the new version, are determined.

2.	 These instances are taken out of the load balancer and are updated:

Figure 7.5: Preparing the canary environment for the updated version

Updating an Application | 195

3.	 They are then added to the load balancer with a predetermined amount of traffic
after the update is completed:

Figure 7.6: Switching a predetermined amount of traffic to the canary environment

4.	 If the results are satisfactory with the new feature, all the instances are updated
to the latest version in the same way until there is no instance left with the old
version:

Figure 7.7: Updating the regular environment to the same version
and distributing the traffic equally

This technique is particularly useful for getting feedback from some users before
making it generally available. Just like rolling updates, in canary releases, there are
multiple versions of the application that are active at the same time. This can cause
unexpected behaviors and needs to be tested beforehand. To roll back an application,
you can use the rolling update strategy; you only need to roll back the instances with
the new version.

196 | Updating and Scaling an Application in Kubernetes

Dark Launches and Feature Toggles

Similar to canary releases, dark launches are also used to test new features in
production environments. In comparison, in dark launches, you don't expose the new
functionality to the users. Instead, you only deploy and test the backend and decide
whether the feature is ready to be made available for the users. If so, you deploy the
frontend as well and make it available to users:

Figure 7.8: Phases of a dark launch

Another similar way of releasing a new feature is to release it as disabled by default. In
this way, the new feature does not affect the behavior of the software until it is enabled.
You can make the same version of the software available to everyone and toggle the
feature only for the designated beta users.

The most significant advantage of this compared to canary releases is that you do not
need to maintain multiple versions of the software in production at the same time.
Instead, the same version is active with the toggle on or off based on how you want to
test the new feature.

On the other hand, a significant disadvantage is that these techniques require the
capability of feature toggling or dark launching at the source code level. This can be
tricky – especially for an application with a large code base. Hence, from a development
point of view, they involve much more work than canary releases.

Rolling back is pretty simple for these types of updates; the feature toggle should be
disabled, or the dark launch feature should be made unavailable for the users.

Updating an Application in Kubernetes | 197

Software Update versus Software Upgrade

Both terms are very commonly used in DevOps. Put simply, an upgrade is a particular
type of update where the new version of the software comes with significant
improvements over the current one. Companies usually make minor releases, also
called patches, for fixing bugs or slightly improving the software, while they make major
releases with new features and significant improvements. Patches are usually free of
charge, but software upgrades usually cost money. In both cases, the same techniques
can be used to update the software to the new version.

In the next section, we will go through how an application can be updated in
Kubernetes.

Updating an Application in Kubernetes
Updates are handled differently for different resources in Kubernetes. Since
deployments are used for stateless applications, they need to be managed differently
from StatefulSets, which are used for stateful applications. In this section, we will
explore how updates can be handled in StatefulSets and deployments.

StatefulSet Update Strategies

In StatefulSets, an update strategy can be configured using the updateStrategy field
in the resource definition. It can be set to the two following values: OnDelete and
RollingUpdate.

OnDelete

When the OnDelete option is used, the Kubernetes controller does not automatically
update the StatefulSet's pods. You must first delete the pods in order for the update
process to take place. This is particularly useful for performing checks to verify whether
the new version works correctly. However, in this way, an update is entirely a manual
process that takes a lot of time and cannot be used in automation scenarios.

Here is a sample StatefulSet definition using the OnDelete option:

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: test-statefulset

spec:

 serviceName: test-svc

 replicas: 2

198 | Updating and Scaling an Application in Kubernetes

 updateStrategy:

 type: OnDelete

 selector:

 matchLabels:

 app: test

 template:

 metadata:

 labels:

 app: test

 spec:

 containers:

 - name: test

 image: busybox

RollingUpdate

Choosing RollingUpdate as the update strategy allows the Kubernetes controller to
update pods by deleting and recreating them automatically. Using this strategy, pods
are updated one by one in reverse ordinal order. The controller makes sure that the
updated pods come to the ready state before continuing with the other pods – this is
to prevent updating all the instances to a problematic version. Moreover, if an updated
pod does not become healthy after a while, the controller rolls it back to the previous
version.

Here is a sample StatefulSet definition using the RollingUpdate option:

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: test-statefulset

spec:

 serviceName: test-svc

 replicas: 2

 updateStrategy:

 type: RollingUpdate

 selector:

 matchLabels:

Updating an Application in Kubernetes | 199

 app: test

 template:

 metadata:

 labels:

 app: test

 spec:

 containers:

 - name: test

 image: busybox

As you can see, the only difference with the previous definition is the updateStrategy
field. Because of this, you can also modify an existing StatefulSet's update strategy type
on the fly by using a patch command:

$ kubectl patch statefulset test-statefulset -p
'{"spec":{"updateStrategy":{"type":"RollingUpdate"}}}'

This will change the update strategy type to RollingUpdate. We will continue with the
deployment update strategies in the following section.

Deployment Update Strategies

In deployments, the update strategy can be configured by using the strategy field
in the resource definition. It can be set to the two following values: Recreate and
RollingUpdate.

Recreate

When Recreate is chosen as the update strategy, the Kubernetes controller terminates
all the pods and recreates them using the new version. This leads to application
downtime, so this should not be used in production unless it is really needed for the
application.

Here is a sample Deployment definition using the Recreate option:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: test-deployment

spec:

 replicas: 2

200 | Updating and Scaling an Application in Kubernetes

 strategy:

 type: Recreate

 selector:

 matchLabels:

 app: test

 template:

 metadata:

 labels:

 app: test

 spec:

 containers:

 - name: test

 image: busybox

RollingUpdate

Just like StatefulSets, the RollingUpdate strategy can be used for deployments as well.
The Kubernetes controller then updates the pods one by one, by making sure that the
updated pods become ready before it continues with the others.

Here is a sample Deployment definition using the RollingUpdate strategy:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: test-deployment

spec:

 replicas: 2

 strategy:

 type: RollingUpdate

 selector:

 matchLabels:

 app: test

 template:

 metadata:

 labels:

Updating an Application in Kubernetes | 201

 app: test

 spec:

 containers:

 - name: test

 image: busybox

You can switch between different update strategy types on an existing deployment by
patching the deployment, as follows:

$ kubectl patch deployment test-deployment -p
'{"spec":{"strategy":{"type":"RollingUpdate"}}}'

Performing Blue-Green Deployment in Kubernetes

Apart from using the provided update strategies, you can also perform blue-green
deployments manually on Kubernetes. For this, you need to set the Service selector
to direct the traffic to the new deployment. However, this type of update should be
avoided unless it is really necessary, as this is highly manual.

Let's say that you want to update your deployment using nginx:1.14 to the one using
nginx:1.15 by performing blue-green deployment. You can do this by following these
steps:

Note

NGINX is an open source HTTP web server. For more information on NGINX, you
can take a look at https://www.nginx.com/resources/wiki.

1.	 Deploy the deployment using the nginx:1.14 version, as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment-114
spec:
 replicas: 2
 selector:
 matchLabels:
 app: nginx-114
 template:
 metadata:
 labels:
 app: nginx-114

https://www.nginx.com/resources/wiki

202 | Updating and Scaling an Application in Kubernetes

 spec:
 containers:
 - name: nginx
 image: nginx:1.14
 ports:
 - containerPort: 80

2.	 Deploy the Service selector to route the traffic to the deployment using the
nginx:1.14 version, as follows:

apiVersion: v1
kind: Service
metadata:
 name: nginx-svc
 labels:
 app: nginx
spec:
 ports:
 - port: 80
 name: web
 clusterIP: None
 selector:
 app: nginx-114

3.	 Deploy the deployment using the nginx:1.15 version, as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment-115
spec:
 replicas: 2
 selector:
 matchLabels:
 app: nginx-115
 template:
 metadata:
 labels:
 app: nginx-115
 spec:

Updating an Application in Kubernetes | 203

 containers:
 - name: nginx
 image: nginx:1.15
 ports:
 - containerPort: 80

4.	 After testing and verifying that this version works fine, switch the Service selector
to route the traffic to the new deployment:

$ kubectl patch service nginx-svc -p
'{"spec":{"selector":{"app":"nginx-115"}}}'

5.	 If there are any problems, switch the Service selector to route the traffic to the
old deployment in order to roll back the update:

$ kubectl patch service nginx-svc -p
'{"spec":{"selector":{"app":"nginx-114"}}}'

Performing Rolling Updates in Kubernetes

Rolling updates allow your application to be updated with zero downtime in
Kubernetes. The controller updates the pods one by one so that there will be some
pods available to receive traffic all the time. Moreover, when you use a rolling update
as the update strategy for a deployment, you can determine the maximum number of
new pods that can be created and the maximum number of pods that can be unavailable
during an update by setting the maxSurge and maxUnavailable fields. Both options are set
to one (1) by default.

maxSurge

This is an optional field that determines the maximum number of pods that can be
created during an update. It can be set as a percentage value or as an absolute number.
The percentage value is rounded up while converting to the absolute number. maxSurge
cannot be set to zero (0) when maxUnavailable is also set to zero (0)

maxUnavailable

This is an optional filed that determines the maximum number of pods that can be
unavailable during an update. Like maxSurge, this can also be set as a percentage value or
as an absolute number. The percentage value is rounded down while converting to the
absolute number. maxUnavailable cannot be set to zero (0) when maxSurge is also set to
zero (0).

204 | Updating and Scaling an Application in Kubernetes

Take a look at the following sample deployment definition using the maxSurge and
maxUnavailable sets:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: test-deployment

spec:

 replicas: 10

 strategy:

 type: RollingUpdate

 rollingUpdate:

 maxUnavailable: 50%

 maxSurge: 10%

 selector:

 matchLabels:

 app: test

 template:

 metadata:

 labels:

 app: test

 spec:

 containers:

 - name: test

 image: busybox

In this example, if you update the deployment, then the controller can terminate half
of the pods in order to update them based on the maxUnavailable value (50%). The
controller also knows that it can increase the number of pods to a maximum of 11 based
on the maxSurge value (10%).

Updating an Application in Kubernetes | 205

Updating a Deployment Using a Rolling Update

Let's say that you want to update your deployment, which is using nginx:1.14, to one
that is using nginx:1.15 by performing a rolling update. You can do this by following
these steps:

1.	 We assume that the nginx deployment using version 1.14 is already deployed on the
cluster:

$ kubectl apply -f nginx-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 replicas: 4
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.14
 ports:
 - containerPort: 80

2.	 We can change the image of the deployment to nginx version 1.15 in a number
of ways, such as by using kubectl set image or kubectl edit deployment, or by
changing the file and redeploying it using kubectl apply:

$ kubectl set image deployment/nginx-deployment nginx=nginx:1.15 --record

$ kubectl edit deployment nginx-deployment

$ kubectl apply -f nginx-deployment.yaml

3.	 We can keep track of the rollout by checking the status using kubectl rollout
status:

$ kubectl rollout status deployment/nginx-deployment

206 | Updating and Scaling an Application in Kubernetes

4.	 If the update finishes successfully, we check whether the pods are running
without any problem. We can also check the deployment's events by using kubectl
describe to see whether the update was successful:

$ kubectl get pods
$ kubectl describe deployment nginx-deployment

5.	 If there is a problem, then we can check the rollout history to find a previous
revision to roll back to by using kubectl rollout history:

$ kubectl rollout history deployment/nginx-deployment

6.	 Finally, if there is a problem, we can roll back to the previous revision or a
specified revision using the --to-revision option:

$ kubectl rollout undo deployment/nginx-deployment --to-revision=1

Therefore, we have demonstrated how we can perform a rolling update in Kubernetes
in order to update our application from one version to another without any downtime.
We have also shown how we can roll back an update if something goes wrong using
the new version of the application. In the next section, we will talk about how to utilize
Helm in order to update our applications.

Updating an Application using Helm

In the previous chapter, we explored the Helm package manager for Kubernetes. As you
will remember, Helm is used for packaging applications that are running on Kubernetes
with all their resources such as ConfigMaps, deployments, and services. Each
application package is called a chart. Using Helm, you can conveniently deploy, update,
or roll back your applications.

You can update a chart using Helm as follows:

$ helm upgrade <release_name>

This will trigger an update for all the resources that the application has on the cluster.
These resources will be updated based on their update strategies.

Similar to kubectl, you can also check the revision history and roll back to an older
version:

$ helm history <release_name>

$ helm rollback <release_name> <revision>

Updating an Application in Kubernetes | 207

Exercise 19: Updating a Deployment in Kubernetes Using a Rolling Update

In this exercise, we aim to demonstrate how to roll out a new version of a deployment
using the rolling update strategy:

1.	 Create a new namespace called lesson-7 and deploy busybox with version 1.29 to
this namespace:

$ kubectl create ns lesson-7
$ kubectl apply -f busybox-deployment.yaml -n lesson-7
apiVersion: apps/v1
kind: Deployment
metadata:
 name: busybox-deployment
spec:
 replicas: 3
 strategy:
 type: RollingUpdate
 selector:
 matchLabels:
 app: busybox
 template:
 metadata:
 labels:
 app: busybox
 spec:
 containers:
 - name: busybox
 image: busybox:1.29
 command:
 - sleep
 - "99999"

Figure 7.9: Creating the lesson-7 namespace and deploying the busybox-deployment

208 | Updating and Scaling an Application in Kubernetes

2.	 Check whether the pods are running, as follows:

$ kubectl get pods -n lesson-7

Figure 7.10: Checking whether the pods are running without any problems

3.	 Change the image of the busybox deployment to use version 1.30:

$ kubectl set image deployment/busybox-deployment busybox=busybox:1.30
--record -n lesson-7

Figure 7.11: Setting the deployment image to busybox version 1.30

4.	 Check the rollout status, as follows:

$ kubectl rollout status deployment/busybox-deployment -n lesson-7

Figure 7.12: Checking the rollout status

5.	 Once successfully finished, check whether the new pods are running without any
problems:

$ kubectl get pods -n lesson-7

Figure 7.13: Checking whether the pods are running without any problems

6.	 Clean up the environment by removing the deployment, as follows:

$ kubectl delete -f busybox-deployment.yaml -n lesson-7

Updating an Application in Kubernetes | 209

In this exercise, we demonstrated how to update a deployment using the rolling update
in Kubernetes. By doing it in this way, we can update the application without any
downtime. We also saw how we can make use of the kubectl set image command by
eliminating the need to modify the deployment file, which would be error-prone. In the
next chapter, Troubleshooting Applications in Kubernetes, we will explore what scaling
an application means and how to perform it in Kubernetes.

Scaling an Application

Scalability is a system's capability for handling the growing amount of work that is
requested from it. As an application gets more users over time, it starts to receive
many more requests than before. If the application cannot handle the number of new
requests, then its performance will drop significantly, which reduces the usability of
the application. It may even start to reject the requests and go down for some time. Of
course, it is a pretty bad user experience when an application is down or does not work
as expected.

At this point, it is essential to find out which resource is a bottleneck – only then can
you work on a solution to mitigate the problem. The bottleneck is usually one of the
following resources, though it could be something completely different:

•	 CPU

•	 Memory

•	 Disk

•	 I/O operations

Once the root cause of the problem is found, scaling options can be evaluated. Until
then, trying to provide a solution will just be a blind guess.

Bear in mind the scalability when architecting an application; leveraging the twelve-
factor app methodology helps a lot too when it comes to building a scalable application.
Your application can benefit from utilizing the twelve-factor app principles, especially
when you need to scale it over time, so that you won't need to worry much in the
future.

Note

The twelve-factor app is a set of principles constructed to provide ideal patterns for
developing modern applications. For more information, you can visit the website at
https://12factor.net/.

https://12factor.net/

210 | Updating and Scaling an Application in Kubernetes

Moreover, you should not try to scale an application without considering the
consequences. Addressing scalability introduces a lot of complexity to the code.
This will result in longer development times for new features, cause problems to be
harder to debug and solve, and make testing the application painful. Therefore, it is
very significant to understand the root cause first and then explore whether it can be
addressed differently.

To figure out the root cause, or to find the resource that is being the bottleneck, you
can use monitoring tools, which we will explore in Chapter 9, Monitoring Applications in
Kubernetes.

Once you decide to scale your application, you need to make a choice between the
different scaling methods – they all have different advantages and disadvantages. There
are two particular ways in which to scale an application: horizontal and vertical scaling.
We will explain them in the next section.

Horizontal versus Vertical Scaling

Horizontal scaling (scaling out) means the ability to scale by adding more resources,
such as new nodes, computers, or containers to an overall system, such as a cluster, in
order to distribute the load. It aims to make use of low-cost, off-the-shelf hardware,
also called commodity hardware, instead of spending a lot of money on a single
powerful machine. This method turns out to be the best for reaching the required
computing power at its limits, which is not possible to achieve if using a single system.
This is realized by accumulating the computing power that comes with all the systems
added together. However, this comes at a price. Scaling out an application requires
plenty of code changes and increases the overall complexity of the source code. It
even affects the architecture of the application; that's why it is best to architect an
application with scalability in mind. Also, with the introduction of new computers to the
overall system, communication between these computers can become costly in terms
of overall performance. This network will cause delays. Because of this, communication
between these computers needs to be minimized. All these technical challenges need to
be clearly evaluated when deciding to scale out a system or an application.

Updating an Application in Kubernetes | 211

Vertical scaling (scaling up) means the ability to scale by increasing the capacity of the
internal resources within a single computer or a node in order to enable it to handle
more work. These improvements are usually carried out by mounting additional CPUs,
memory, or disks. In this way, these improved systems can manage to serve more
requests or can allow the virtualization of more resources, such as virtual machines
(VMs). This method is much easier and faster to apply than scaling out. However, there
is a hard limit to the number of resources that you can increase in a system. After some
point, it is impossible to add more resources to a single unit as it cannot host that many
resources:

Figure 7.14: Horizontal versus vertical scaling

Figure 7.15: Horizontal versus vertical scaling

In the end, you need to evaluate both methods and make a decision that is based on the
advantages and disadvantages that they bring to your application. It's usually a trade-
off between convenience and budget. However, hard limits on the hardware need to be
taken into consideration as well.

If horizontal scaling is the way to go for your application, then autoscaling can be
utilized to manage the workload efficiently. We will explore autoscaling in the following
section.

212 | Updating and Scaling an Application in Kubernetes

Autoscaling

Autoscalers are tools that automatically scale an application out or in by monitoring the
related resources that are needed to keep the cost down and performance stable. They
can either increase or decrease the number of instances based on the load. Cluster
admins determine an autoscaling policy such as minimum and maximum instance count
or the resource type that will trigger the scaling – and autoscalers take care of the
scaling by adhering to this policy. Thanks to autoscalers, unpredictable incoming traffic
can be handled efficiently. They work 24*7 and make sure there are always enough
instances to match the load. We will delve further into autoscalers in this chapter when
we talk about autoscaling in Kubernetes.

In the next section, we will explain an important concept called eventual consistency,
which comes to life when scaling an application to several replicas.

Strong versus Eventual Consistency

When scaling out an application, it is essential to think about how to manage the data.
If the data is distributed as well, this can lead to inconsistencies when reading the
data from different partitions. In order to prevent this from happening, you can lock
the partitions for some time to let them sync, however, this will reduce the availability
of the application. Instead, distributing systems can help to create a new consistency
model called eventual consistency. In theory, this model guarantees that reading an
updated value from all the partitions will give you the same result after some time.
This might be perfectly fine for a personal notebook application, but it is not especially
useful for financial applications. Applications where consistency of data is critical
require strong consistency, which means that reading the data will always return the
same value as its name implies.

For the same reason, transactions are not possible within the distributed system either.
That's why modules with strong consistency needs must be together and reside on the
same system. This is just another reason to keep scalability in mind while architecting a
new application.

In the next section, we will explore how to scale an application in a Kubernetes cluster.

Scaling an Application in Kubernetes | 213

Scaling an Application in Kubernetes
There is a built-in way of scaling an application horizontally on a Kubernetes
cluster. You can utilize the native Kubernetes resource deployment for scaling your
application quickly. When you create a deployment object, you need to provide a
value for the number of replicas. Once the deployment is applied to the cluster, it will
generate a Replication Controller, which is responsible for controlling the number of
replicas created by this deployment. Each replica represents a rod that includes the
application containers. When you change this value for the number of replicas, it will
be automatically reflected on the cluster, either by deleting the existing pods or by
creating new ones. In this way, scalability is handled out of the box by Kubernetes.

While creating new pods, Kubernetes also ensures there are enough resources on
nodes before scheduling a pod to them. In this way, a pod is only scheduled if there are
enough resources for it to run without any problems.

Furthermore, in some cases – for example, when there is no incoming traffic at all –
you might want to scale down to zero replicas, which means that there are no running
pods on your application. Kubernetes natively supports this as well. You can just set
the number of replicas field to zero, which will terminate all the pods created by this
deployment.

When your application has more than one replica running, you will need a load balancer
to distribute the traffic to all the replicas. To achieve this, as we learned in Chapter 4,
Creating a Kubernetes Cluster, services have an integrated load balancer that checks the
availability of the pods and distributes the traffic only to the available pods (which are
running and have the ready status). Services achieve this by implementing a simple load
balancing algorithm. As long as you don't need a more sophisticated way to distribute
the traffic to your replicas, you can simply create a Service object to do this for you.

To scale an application, you can use generic kubectl commands to modify an object in
Kubernetes, such as kubectl patch or kubectl edit. You can also use the kubectl scale
command, which is only used for this particular need.

Here is a sample Deployment definition:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: test-deployment

spec:

 replicas: 1

 selector:

214 | Updating and Scaling an Application in Kubernetes

 matchLabels:

 app: test

 template:

 metadata:

 labels:

 app: test

 spec:

 containers:

 - name: test

 image: busybox

 command:

 - sleep

 - "99999"

As you can see from the Deployment definition, the replicas field is set to 1. That's why
there will be only one pod created for this deployment.

To scale this Deployment up or down, you can use kubectl scale, as follows:

$ kubectl scale deployment/test-deployment --replicas 3

Alternatively, you can modify the deployment object to change the replicas field either
with kubectl edit or by using patch:

$ kubectl edit deployment test-deployment

$ kubectl patch deployment test-deployment -p '{"spec":{"replicas":3}}'

After running one of these commands, you can check the pods to see whether they are
scaled accordingly. You can also check the event logs from the deployment object by
using kubectl describe:

$ kubectl describe deployment test-deployment

Kubernetes also supports autoscaling through a native resource called Horizontal
Pod Autoscalers (HAPs), which will be explained in the next section. Before that, let's
demonstrate how to scale a deployment in Kubernetes up and down.

Scaling an Application in Kubernetes | 215

Exercise 20: Scaling a Deployment Up and Down in Kubernetes

In this exercise, we aim to demonstrate how to scale a deployment up and down
manually using kubectl commands:

1.	 Deploy the busybox deployment with one replica to the lesson-7 namespace:

$ kubectl apply -f deployment.yaml -n lesson-7
apiVersion: apps/v1
kind: Deployment
metadata:
 name: busybox
spec:
 replicas: 1
 selector:
 matchLabels:
 app: busybox
 template:
 metadata:
 labels:
 app: busybox
 spec:
 containers:
 - name: busybox
 image: busybox
 command:
 - sleep
 - "99999"

Figure 7.16: Deploying the busybox deployment to the cluster

216 | Updating and Scaling an Application in Kubernetes

2.	 Scale up the deployment to three replicas, as follows:

$ kubectl scale deployment/busybox -n lesson-7 --replicas 3

Figure 7.17: Scaling up the deployment to three replicas

3.	 Check the deployment object details to see the event logs:

$ kubectl describe deployment/busybox -n lesson-7

Figure 7.18: Checking the deployment details

Here, you can see from the event logs at the end of the page that the deployment was
successfully scaled up to three replicas.

Scaling an Application in Kubernetes | 217

4.	 Scale down the application to zero replicas:

$ kubectl scale deployment/busybox -n lesson-7 --replicas 0

Figure 7.19: Scaling down the deployment to zero replicas

5.	 Check the event logs of the deployment again:

$ kubectl describe deployment/busybox -n lesson-7

Figure 7.20: Checking the deployment details

As you can see from the event logs, the deployment was successfully scaled down
to zero replicas.

218 | Updating and Scaling an Application in Kubernetes

6.	 Clean up the environment by removing the deployment:

$ kubectl delete -f deployment.yaml -n lesson-7

Here, we demonstrated how to scale a deployment up and down in Kubernetes. We
can see that it is even possible to scale down a deployment to zero replicas. In the next
section, we will go through the autoscaling resource in Kubernetes, namely, HPA.

Horizontal Pod Auto-Scaler (HPA)

HPA is a built-in Kubernetes resource that automatically adjusts the number of replicas
(or pods) to match the loads by periodically observing CPU utilization and by adhering
to the rules provided by the user. It only supports autoscaling based on CPU utilization.

A HPA can be defined as a YAML file, just like any other Kubernetes resource, and can
easily be set up by using kubectl commands.

Here is a sample HPA definition:

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:

 name: autoscaler
spec:

 maxReplicas: 8

 minReplicas: 3

 scaleTargetRef:

 apiVersion: apps/v1

 kind: Deployment

 name: test-deployment

 targetCPUUtilizationPercentage: 70

Once you deploy this to the cluster (for example, by using kubectl apply -f), it will start
watching the CPU utilization of the pods created by the test-deployment deployment
object. Based on the target CPU utilization (70%), it can increase the number of pods to a
maximum of eight, or decrease them to a minimum of three pods.

You can also use the kubectl autoscale command, which will automatically create an
HPA object:

$ kubectl autoscale deployment test-deployment --min=3 --max=8 --cpu-
percent=70

Scaling an Application in Kubernetes | 219

You can check already-existing HPAs in the cluster by running kubectl get or
examining the detailed description of the object with kubectl describe:

$ kubectl get hpa --all-namespaces

$ kubectl describe hpa <name>

You can use kubectl edit or kubectl patch to modify the object as follows:

$ kubectl edit hpa <name>

$ kubectl patch hpa <name> -p '{"spec":{"minReplicas":2}}'

Finally, you can delete the HPA by running the following command:

$ kubectl delete hpa <name>

Here, we have covered the HPA object in Kubernetes, and now we will move to an
activity where we will practice what we explored in this chapter.

Activity 8: Enabling Autoscaling and Performing a Rolling Update

Imagine that you have built a very cool application and you can't wait to make it publicly
available. You don't know how many people will start using it at the beginning – that's
why you set an autoscaler so that, even if you are not available for any kind of manual
operation, your application can handle the increasing amount of traffic. You deploy your
application and set up the autoscaler to make sure that scaling works automatically.
You check the pods and notice that there is a sudden increase in the number of pods,
although you haven't informed anyone yet. Then, you realize that there is a bug in the
application that exhausts the CPU, and the autoscaler is trying to adjust the replicas
based on this unnecessary load. You immediately perform a rolling update to fix the
problem. Then, you check again to see whether the autoscaler scales down the number
of replicas, and whether everything works out smoothly.

Note

To complete this activity, you need to use a real cluster. You can create and use a
managed cluster on Google Kubernetes Engine (GKE).

Execute the following steps to complete this activity:

1.	 Create a deployment definition file that uses the suakbas/lesson07:v1 image and
has the RollingUpdate strategy type set; this application does a CPU-intensive
operation.

2.	 Deploy the deployment and check whether the pod is running.

220 | Updating and Scaling an Application in Kubernetes

3.	 Create a HorizontalPodAutoscaler for this deployment using the suakbas/
lesson07:v1 image, which has two as the minimum number of pods and five as the
maximum. It should also have a CPU percentage target of 50%.

4.	 Check the HorizontalPodAutoscaler for the deployment using the suakbas/
lesson07:v1 image to see the current status.

5.	 Check the pods to see whether they are scaled up and are running without any
problems.

6.	 Perform a rolling update by changing the used image to suakbas/lesson07:v2. This
application just sleeps, which relieves the CPU; Then, check whether the rolling
update has finished successfully.

7.	 Recheck the HorizontalPodAutoscaler that you created before to see the current
status after the update. Watch the change in the number of pods and check the
latest status after a few minutes.

8.	 Clean up the environment by removing the namespace.

Note

The solution to this activity can be found on page 330.

In this activity, we set an autoscaler in Kubernetes and examined how it scales a sample
application up and down. We also performed a rolling update to update the deployment
from a CPU-intensive application to a non-intensive one. In this way, we exercised the
DevOps practices that we explored throughout this chapter and used them in a running
Kubernetes cluster.

Summary
In this chapter, we first mentioned the importance of updating an application without
causing any downtime. Then, we continued with different strategies to update an
application, such as blue-green deployments and rolling updates. We also explored the
terminological difference between updating and upgrading software.

In the section that followed, we explored how to update an application in Kubernetes.
We studied the different object types in Kubernetes, such as StatefulSets, and explored
the existing update strategies that we can use. Then, we performed the most common
update strategies: blue-green deployment and rolling updates in Kubernetes. We
continued with a hands-on exercise to update a deployment using the rolling update
strategy in a Kubernetes cluster.

Summary | 221

We then progressed to scaling. We explored its meaning and its importance, especially
in DevOps. We introduced different scaling techniques, such as vertical and horizontal
scaling. After this, we continued with autoscaling and explored an important
concept, namely, eventual consistency. Then, we moved onto scaling an application
in Kubernetes. We investigated methods to scale an application up and down using
the native objects and existing kubectl commands. We performed an exercise to
demonstrate scaling a deployment up and down in a Kubernetes cluster.

In the last section, we discussed HAP, which is a built-in Kubernetes object that is
used to adjust the number of replicas of an application automatically based on CPU
utilization. We then performed an activity where we set an autoscaler in Kubernetes
and examined the behavior based on the resource consumption on a running cluster. In
the next chapter, we will demonstrate ways in which to troubleshoot an application in
Kubernetes. We will do practical exercises in order to gain an understanding of how we
can perform these operations in a Kubernetes cluster.

Learning Objectives

By the end of this chapter, you will be able to:

•	 List troubleshooting practices

•	 List the different states of a Pod

•	 Set up liveness and readiness probes

•	 Use different kubectl commands to troubleshoot applications in Kubernetes

This chapter explains how to troubleshoot the problems encountered in applications running
on Kubernetes.

Troubleshooting
Applications in

Kubernetes

8

224 | Troubleshooting Applications in Kubernetes

Introduction
In the previous chapter, we went through many different ways to update and scale
your application in Kubernetes. We also explored setting up an autoscaler so that
we wouldn't worry about scaling our applications up and down manually to handle
incoming traffic. Now we continue with another essential topic that we need to
embrace as a part of DevOps, which is troubleshooting. It is important to know how to
fix problems quickly. In the next section, we will go through the necessary information
for better troubleshooting in general. Kubernetes provides us with all the necessary
functionality to troubleshoot applications, which we will explore in the Troubleshooting
in Kubernetes section.

Troubleshooting
As a term, troubleshooting refers to searching for the real cause of an issue and giving
your best effort to tackle it as soon as possible to make a system or an application
operational again. It is an important concept in DevOps. Troubleshooting can be done
in a trial-and-error way where someone checks whatever occurs to them to check, but
at the cost of a lot of time. Therefore, it should instead be done in a systematic way. In
this chapter, we will see how we can systematically approach problems, and we will also
present some practices for troubleshooting an application. Later, we'll dig deeper into
the ways of troubleshooting an application in Kubernetes.

Troubleshooting can take place at various stages of development. For example, while
network engineers try to solve a problem within a network, quality engineers dig into
an issue to figure out what's not working for the end-to-end scenarios. That's why
having good troubleshooting skills appeals to the people from a broad range of areas.

It is of great importance to have troubleshooting skills, especially when working on an
application where availability is crucial. For instance, if you are running an e-commerce
website, downtime would mean losing many customers, and, consequently, lots
of money. For some tech giants such as Facebook or Twitter, downtime on their
website would even result in being in the news and destroying their reputation. Good
troubleshooting skills would play a significant role in solving problems as quickly as
possible so that downtime is really short or can even be eliminated.

There are many aspects that could influence the effectiveness of troubleshooting. We
present some of the key ones in the following sections. To have good troubleshooting
skills, you should be highly competent with these concepts and should apply them
appropriately in real-life situations.

Troubleshooting | 225

Identifying the Problem

While identifying the problem, the first thing that you need to ensure is understand of
how things work. Trying to fix a problem without prior knowledge could lead to more
severe problems. In the end, an easy problem that could have been solved with prior
knowledge could turn into a complex issue resulting in a disaster.

Another course of identifying the problem is to check what exactly changed in the
system that led to this problem. Most of the time, problems occur right after making
some changes. It's crucial to know what changed to understand the root cause.
Sometimes, a change thought to be small and harmless could cause many issues, which
is why they shouldn't be disregarded while troubleshooting a problem.

Communication is also an essential factor to identify a problem quickly. An immediate
call or a chat with the relevant people would save much time as compared to sending
an email and waiting for an answer. When people can collaborate effectively, solving a
problem is easier and faster.

Improving Tests

Another aspect of troubleshooting is to ensure that already-solved problems will not
occur again. That's why it is essential to identify problematic areas and invest in more
tests to cover them. This way, these situations can be seen and handled in the test
environment before they happen in production. Fixing a problem right away might save
you in that instance alone, but covering it in a test that runs regularly can prevent it
from occurring again.

We need to ensure that there are not only unit or integrations tests, but also sufficient
number of end-to-end (E2E) tests covering end-to-end scenarios. These tests should
run regularly in CI/CD so that we would be able to see the problems and fix them
before going live.

Documentation

Just as with adding tests, we also need to ensure that the root cause of the problem and
how we solved it are documented so if the same problem occurs again in the future, you
or someone in the team would know the root cause right away instead of going through
the same steps you went through the first time. This knowledge is precious as it would
save the team a lot of time and effort if an issue recurs.

If possible, we should document the instance of the problem occurrence, its root cause,
contextual information, and each step we took to solve the problem. This information
log significantly reduces the time it will take to tackle the problem next time.

226 | Troubleshooting Applications in Kubernetes

Tools

Using the right tools for logging, monitoring, and tracing would ease the way to figure
out what's wrong. The infrastructure (for example, the health of the nodes) should
especially be monitored all the time as it could be the root cause of many problems
within the application. We will go through several tools and cover this aspect in the
next chapter where we explain monitoring applications in Kubernetes.

Logging

Logs are one of the most critical assets for understanding what your code is doing in
production. Logs are mostly the first thing you'll be checking during troubleshooting,
which is why it is important to have as much information in them as possible to figure
out the problem quickly. They should include time of the problem, any informational
messages, and contextual information, helping to categorize each event and understand
its behavior. However, logging too much information could easily consume too many
resources and slow down your application and make it harder to find the actual
problem. The application cannot afford to produce too many logs, but you need them to
understand the behavior. This problem brings up the concept of logging levels.

Logging levels

The logging level determines the number of logs for different severity grades. Making
this configurable helps you to receive more logs during troubleshooting and fewer logs
when the application needs to be performant. There are several commonly used logging
levels:

•	 Debug: In this level, every little detail of diagnostic information is being logged
to help you understand a problem. This level is usually set when someone is
troubleshooting an application.

•	 Info: In this level, informational logs are presented. For example, they include
information such as the starting of an application or the successful connection to
another service. These logs show the usual behavior of the application.

•	 Warning: In this level, there is unusual behavior that hasn't created a problem.
For example, an external connection could be dropped and reestablished. These
warning messages should be investigated to ensure that they will not lead to a
severe issue later on.

•	 Error: In this level, there are failures that have occurred in the application.
These need to be taken into serious consideration and should be fixed as soon as
possible. For example, an external connection could be dropped and might not be
able to be established for some time. This usually indicates that something is not
working and needs attention.

Troubleshooting Applications in Kubernetes | 227

Utilizing different log levels can help troubleshoot problems as well as enable an
application to run faster. That's why it is important to make use of them and be able to
configure them while the application is running. Various techniques to ensure effective
troubleshooting are shown in Figure 8.1:

Figure 8.1: Concepts to improve the effectiveness of troubleshooting

All these concepts help you to understand the root cause of the problem and solve
it efficiently. It is essential to understand that you need to fix the problem in a way
that it will not easily occur again. It should have already been caught in the CI/CD
process by the tests and solved before going to production. Even if it recurs, there
should be documentation explaining the steps to be taken to solve it. Furthermore, by
making use of different logging levels, the application should provide the capabilities
to enable us to troubleshoot effectively. In this section, we covered the different
aspects of troubleshooting applications in general. In the next one, we will present the
fundamental concepts and tools to troubleshoot applications in Kubernetes.

Troubleshooting Applications in Kubernetes
To be able to troubleshoot applications efficiently, you need to understand some key
concepts in Kubernetes. This will light up the way to ease the process of figuring out
and solving issues. As one of these concepts, we explain the Pod life cycle in the next
section.

228 | Troubleshooting Applications in Kubernetes

Pod Life Cycle

In Kubernetes, a Pod goes through many different stages. They are controlled either by
the creator of the Pod object or by the Kubernetes controller. In the lifetime of a Pod, it
is never destroyed unless that is explicitly requested.

Pod Status

Every Pod object has a status field that shows the life cycle events of the Pod. It consists
of many subfields for us to understand what the current health status of the Pod is.

Here's an example of what a Pod status includes:

status:

 conditions:

 - lastProbeTime: null

//[...]

Events:

 FirstSeen	 LastSeen	 Count	 From			
SubobjectPath	 Type		 Reason			 Message

 ---------	 --------	 -----	 ----			 ----------
---	 --------	 ------			 -------

 1m		 48s		 7	 {default-scheduler }		
	 Warning		 FailedScheduling	 pod (nginx-deployment-
1370807587-fz9sd) failed to fit in any node

 fit failure on node (kubernetes-node-6ta5): Node didn't have enough
resource: CPU, requested: 1000, used: 1420, capacity: 2000

 fit failure on node (kubernetes-node-wul5): Node didn't have enough
resource: CPU, requested: 1000, used: 1100, capacity: 2000

Note

You can find the complete Pod status at https://github.com/TrainingByPackt/
Introduction-to-DevOps-with-Kubernetes/blob/master/Lesson08/podstatus.txt.

https://github.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/blob/master/Lesson08/podstatus.txt
https://github.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/blob/master/Lesson08/podstatus.txt

Troubleshooting Applications in Kubernetes | 229

There is a lot of information there. The condition list, the container statuses, the restart
count, and the phase are the most critical fields while troubleshooting a problem.
We will go through each of them to clarify what they mean for you. Let's first start by
explaining Pod conditions.

Pod Conditions

Pod conditions list all the different conditions a Pod goes through. It consists of six
fields:

•	 lastProbeTime: This is a timestamp that shows the last time the condition was
enquired.

•	 lastTransitionTime: This is a timestamp that shows the last time the Pod status
changed.

•	 Message: This has the details of the condition changes.

•	 Reason: This provides the reason for the last condition change in a single word.

•	 Status: This shows the status of the related condition, which can be True, False, or
Unknown.

•	 Type: This shows the type of condition, which will be explained further in the next
section.

Condition Types

There are different conditions types that a Pod can have. They are explained one by one
as follows:

•	 Unschedulable: This means that the Pod cannot be scheduled to a node, which
can be because of resource constraints of the Pod or a lack of resources in the
cluster.

•	 PodScheduled: This means that the Pod is successfully scheduled to a node.

•	 Initialized: This denotes that all the init containers started without any problem.

•	 ContainersReady: This shows that all the containers in the Pod are ready.

•	 Ready: This shows that the Pod can handle incoming requests now.

This list of conditions provides historical information to help diagnose a problem. Now
we continue with the phase subfield.

230 | Troubleshooting Applications in Kubernetes

Pod Phase

Phase is yet another subfield in the Pod status, and provides high-level information
about the current status of the Pod. There are seven possible Pod phases, which are as
follows:

•	 Pending: This phase specifies that the Pod is waiting for something to finish. This
could be the phase where the container images are being downloaded or where
the nodes are being evaluated to schedule the Pod.

•	 Failed: This phase specifies that at least one of the containers finished with failure.

•	 CrashLoopBackOff: This phase shows that at least one of the containers finished
with failure. This phase appears after a few restart trials, which can be set by
restartPolicy, which will be defined later.

•	 Running: This phase indicates that the Pod is successfully scheduled to a node,
and all the related containers started. However, it does not give any guarantees for
the health of the containers.

•	 Succeeded: This phase shows that the containers in the Pod have successfully
concluded.

•	 Completed: This phase states that the Pod has reached completion and is no
longer running. This can be observed in the Pods created by a Job.

•	 Unknown: This phase informs that Kubernetes does not know the current state of
the Pod. This usually happens when Kubernertes API Server can no longer access
the node where the Pod is running.

The following figure shows the phases of a Pod and the transitions between them:

Figure 8.2: Different Phases of a Pod

Troubleshooting Applications in Kubernetes | 231

Understanding what each phase means helps with quickly identifying whether
something is wrong. However, only checking this field does not help. You should
combine all the information you get from these fields to understand the problem.

You can use this command to see the current phase of any Pod:

$ kubectl get pod <pod-name> -o jsonpath={.status.phase}

Restart Policy

Restart policy is a subfield of Pod spec. It can take one of these three values: Always,
Never, and OnFailure, and Always is the default choice. This field specifies when
Kubernetes should restart the Pod if there is a problem. Whenever a Pod is restarted,
the restart count on the Pod status is incremented to show the number of restarts.

Note

Kubernetes restarts the Pod without changing the node. Once a Pod is scheduled
to a node successfully, it is guaranteed that it won't be rescheduled to another one.

Container States

Container state is a subfield of container status, which is a part of the Pod status. This
field shows the current state of the containers inside the Pod. They can be in three
different states:

•	 Waiting: This state shows that the container is waiting for an operation to finish.
For example, it could be mounting the volumes or downloading the container
image. A container can be in this state because of failure as well. Failing to
download the container image is one example. Waiting is the default state of a
container.

•	 Terminated: This state specifies that the container is no longer running. This can
be because of an error, or it can indicate that the container successfully finished.

•	 Running: This state indicates that the container is running without any issues.

These are the most important fields to check when something is not working right in
the Pod. As mentioned earlier, a combination of all this information should be evaluated
to understand the root cause better. In the next section, we will touch on the auto-
recovery concept in Kubernetes as it is useful for our application to become operational
again without our action.

232 | Troubleshooting Applications in Kubernetes

Auto Recovery

Auto recovery or self-healing means the capability of healing when the application
encounters a problem. To make this more clear, sometimes it is just enough to restart
an application to make it operational again. Kubernetes provides a way to configure
this so that in certain situations, it restarts the application, solving the problem and
eliminating the need for us to fix the issue.

One way to ensure auto recovery in Kubernetes is through using the controllers
whenever possible. Instead of manually creating Pods, the appropriate controller object
(such as a Deployment, DaemonSet, or Job) should be utilized. This way, when failure
occurs, the controller tries its best to match the desired state as soon as possible. For
example, when one of the Pods managed by a Deployment becomes unhealthy, it will
be replaced by a new Pod immediately so that your application won't be affected by
this failure. This is much more effective and resilient than manually trying to keep the
system running.

Kubernetes provides a way of checking the health of the application regularly by
probing for its liveness and readiness.

Health checks

Two different health checks can be set for a Pod in Kubernetes. These are liveness and
readiness probes.

Liveness Probe

This informs Kubernetes that the containers are running, and that the application is
generally in a healthy status. It always returns success if not set. Whenever this probe
fails, Kubernetes restarts the respective containers to make them run again.

Setting a liveness probe is not a must if the containers can exit with failure when they
are not healthy. In that case, Kubernetes will already restart them if the restart policy
allows. However, if you want to specify another reason for Kubernetes to restart the
containers in case of failures, you can utilize this. For example, when your application
cannot connect to a database anymore, it does not necessarily need to crash, but you
can use liveness probes for it to be killed and restarted to solve the problem.

A liveness probe can be one of these three types: a command, HTTP check, or TCP
check. Its configuration resides under spec/containers.

Troubleshooting Applications in Kubernetes | 233

Here's a sample configuration for setting a command as a liveness probe:

livenessProbe:

 exec:

 command:

 - cat

 - /tmp/healthy

 initialDelaySeconds: 5

 periodSeconds: 5

Once a command probe is set, this command will be executed every five seconds
(defined by periodSeconds) to check the health status. If the command fails, the
respective container will be restarted. In the preceding code, initialDelaySeconds also
determines the amount of time to wait before the first check.

Alternatively, you can set an HTTP liveness probe. In this case, an HTTP GET request is
sent to the provided port through the provided path:

livenessProbe:

 httpGet:

 path: /healthz

 port: 8080

 initialDelaySeconds: 3

 periodSeconds: 3

Just like in the command, you can set periodSeconds to determine the interval of the
check and initialDelaySeconds to determine the amount of time before the first check.

Any result code between 200 and 400 (200 and 400 included) is regarded as a success.
If it returns any other code, the container will be restarted.

The last alternative is to set a TCP liveness probe. In this way, Kubernetes will check
whether it is possible to open a socket to the specified port. If it succeeds, the container
is regarded as healthy, and it is restarted if not:

livenessProbe:

 tcpSocket:

 port: 8080

 initialDelaySeconds: 15

 periodSeconds: 20

234 | Troubleshooting Applications in Kubernetes

Just like in the other probe types, you can set periodSeconds to determine the interval
of the check and initialDelaySeconds to determine the amount of time before the first
check.

There are two more important configurations that you can set, which are
failureThreshold and successThreshold. The first one, that is, failureThreshold,
determines the number of failed probes necessary before restarting the Pod. For
example, if you set it to three, a failing probe does not immediately cause the Pod to
restart till the third attempt. The next one, which is successThreshold, determines the
number of successful probes until the Pod is marked as healthy.

Readiness Probe

This informs Kubernetes that the containers are ready to serve incoming requests. This
way, the respective Services start directing traffic to this Pod by adding it to the load
balancer. It always returns success if not set. Whenever this probe fails, the Pod is taken
out of the available Pod list in the Service, and the traffic is cut immediately.

A readiness probe can be set to the same condition as the liveness probe if the
application does not need a startup time before accepting requests. If it needs some
time, for example, to connect to the other services before serving the traffic, you can
utilize the readiness probe. Hence, the related Service won't send any traffic until the
readiness probe succeeds.

Readiness probes are set in an identical way to the liveness probes. The configuration
also resides under spec/containers. The only difference is the use of readinessProbe
instead of livenessProbe:

readinessProbe:

 exec:

 command:

 - cat

 - /tmp/healthy

 initialDelaySeconds: 5

 periodSeconds: 5

Like liveness probes, you can set a readiness probe by a command, HTTP check, or a
TCP check. Furthermore, you can set periodSeconds to determine the interval of the
check and initialDelaySeconds to determine the amount of time before the first check.
You can also set the failureThreshold and successThreshold fields, as explained in the
Liveness Probe section.

Troubleshooting Applications in Kubernetes | 235

In the next section, we present an exercise on how to use the liveness and readiness
probes for a Pod in Kubernetes.

Exercise 21: Using Liveness and Readiness Probes in Kubernetes

In this exercise, we aim to practice how to create liveness and readiness probes for a
Pod in Kubernetes. We'll be observing the events of the Pod to see how they affect the
life cycle:

1.	 Create a file named probe-pod.yaml using the following Pod definition. We set
a liveness probe as a command, which will check whether a file named healthy
exists. In the same way, we also set a readiness probe as a command, which will
check whether a file named ready exists:

apiVersion: v1
kind: Pod
metadata:
 name: probe-pod
spec:
 containers:
 - name: test
 image: busybox
 args:
 - /bin/sh
 - -c
 - touch /healthy; touch /ready; sleep 20; rm -rf /ready; sleep 40; rm
-rf /healthy; sleep 100
 livenessProbe:
 exec:
 command:
 - cat
 - /healthy
 initialDelaySeconds: 3
 periodSeconds: 5
 readinessProbe:
 exec:
 command:
 - cat
 - /ready
 initialDelaySeconds: 3
 periodSeconds: 5

236 | Troubleshooting Applications in Kubernetes

2.	 Create a new namespace called lesson-8 and deploy probe-pod.yaml to this
namespace:

$ kubectl create ns lesson-8
$ kubectl create -f probe-pod.yaml -n lesson-8

This is as shown in Figure 8.3:

Figure 8.3: Creating the lesson-8 namespace and deploying the probe-pod

3.	 Observe the Pod readiness using the watch option of kubectl get pods as shown
in Figure 8.4:

$ kubectl get pods -n lesson-8 -w

Figure 8.4: Observing the Pod readiness

Since we have the healthy and ready files from the beginning, the Pod starts
healthy (without any restarts) and ready (Ready 1/1). After 20 seconds, we remove
the ready file, which leads to the failed readiness probe. As a result of the readiness
probe failure, the Pod is not listed as Ready anymore. This will cause the Pod not
to receive traffic from the Service anymore.

4.	 Observe the Pod liveness using the watch option of kubectl get pods again:

$ kubectl get pods -n lesson-8 -w

Figure 8.5: Observing the Pod liveness

Troubleshooting Applications in Kubernetes | 237

After 40 more seconds, we remove the healthy file, which leads to the failed
liveness probe. As a result of the liveness probe failure, the Pod is restarted.

5.	 Observe the Pod events using kubectl describe:

$ kubectl describe pod probe-pod -n lesson-8

Figure 8.6: Events of the probe-pod

At the end of the page, you'll see the events for this Pod. Pay attention, particularly
to the last two lines. They inform you about the liveness and readiness probe
failures. As you practice, this will be the easiest way to understand what's wrong
with a Pod.

6.	 You can delete the Pod now using kubectl delete:

$ kubectl delete -f probe-pod.yaml -n lesson-8

In this exercise, we saw how we can set the liveness and readiness probes. We also
observed what happens when these probes fail. In the following section, we'll see
another Kubernetes feature providing another way to make it clear why a Pod is
terminated.

Creating a Termination Log

Kubernetes provides a nice feature to understand why the application running inside
the Pod is terminated. You can make your application write down the reason of
termination to a pre-defined path, /dev/termination-log is the default, so that you can
see the termination reason quickly by checking the Pod definition. You can determine a
different location by setting the terminationMessagePath field of a container.

238 | Troubleshooting Applications in Kubernetes

Here's a sample Pod writing the termination reason to the /termination-log path:

apiVersion: v1

kind: Pod

metadata:

 name: termination-pod

spec:

 containers:

 - name: termination

 image: busybox

 command: ["/bin/sh"]

 args: ["-c", "sleep 20 && echo Done sleeping > /termination-log"]

 terminationMessagePath: "/termination-log"

When this Pod exits after 20 seconds, you can check the Pod definition to see the
termination reason by executing the kubectl get command:

$ kubectl get pod termination-pod -o yaml

Here's a sample output showing the termination message:

apiVersion: v1

kind: Pod

...

 lastState:

 terminated:

 containerID: ...

 exitCode: 0

 finishedAt: ...

 message: |

 Done sleeping

 ...

In the next section, we will go over several handy commands that we can make use of
while troubleshooting a problem in Kubernetes.

Troubleshooting Applications in Kubernetes | 239

Handy Commands for Troubleshooting

The first step to solve a problem is always figuring out what's wrong. To see what
a problem with an application's Pods could be, you can use a couple of kubectl
commands. Let's check them one by one. The most handy command is kubectl
describe.

kubectl describe

This command provides you with all the information for the current state of a Pod and
of the containers running inside the Pod.

Here, you can see the sample output from a kubectl describe call:

$ kubectl describe pod <pod-name>

The Pod status is as shown:

Status: Running

IP: 10.44.0.30

Controlled By: ReplicaSet/test-76656f9f8

Containers:

 test:

 Container ID:
docker://9c020c544611fd5c2be4f42bbd89f65934fd8d9e6e14ab32d5a9a517a5fee717

 Image: suakbas/lesson08:v1

 Port: 8888/TCP

 Host Port: 0/TCP

 Args:

 --enable=false

 State: Running

 Started: Wed, 20 Mar 2019 10:36:03 +0100

 Ready: True

 Restart Count: 0

Conditions:

 Type Status

 Initialized True

 Ready True

 PodScheduled True

240 | Troubleshooting Applications in Kubernetes

Running kubectl describe provides you with detailed information about the Pod
and the containers, as shown earlier. What is important to check here is whether
the containers are in running state, the restart count, and the Pod conditions. This
information can show you what's going on with your application.

kubectl get

In the case of a problem, you may want to check whether the configuration of your
application Pods is correct. You can easily do this using kubectl get.

This command provides the Pod definition of the application with a little high-level
information about the status of the Pod:

$ kubectl get pod <pod-name> -o yaml

You can also get the current status of the Pods by adding the -w option to the kubectl
get command. This way, you can see what's happening in real time, and this can give
insights to solve the problem:

$ kubectl get pods -w

Another useful option for kubectl get is -o wide, which will show the nodes on which
the Pods are running and the IP addresses of the Pods. This information can be useful
to detect a problematic node and determine which Pods can be affected:

$ kubectl get pods -o wide

There is one more useful option of kubectl get, which is to check the events in the
cluster. This can save a lot of time as it allows you to see all the events from the cluster
together. Hence, you can get the health of a cluster:

$ kubectl get events

kubectl logs

You can check the logs of the Pod using kubectl log:

$ kubectl logs <pod-name>

It has a handy option to reach the logs of the previously crashed container by specifying
the --previous flag:

$ kubectl logs --previous <pod-name>

Troubleshooting Applications in Kubernetes | 241

kubectl exec

Another way to debug a problem is by getting into the container using kubectl exec:

$ kubectl exec -it <pod-name> bin/bash

You can alternatively run a command inside the container without necessarily opening
a shell:

$ kubectl exec -it <pod-name> -- printenv

This command will print the environment variables set in the container. For all these
commands, you can also specify the container name using the -c option if the Pod has
more than one container:

$ kubectl logs <pod-name> -c <container-name>

Other Handy Commands

While troubleshooting an issue, an alternate way is to run a busybox Pod in the cluster
and access the interactive shell. This way, you can be in the same environment with
your application Pods and can interact with them. For example, you can test sending
requests from inside the cluster:

$ kubectl run busybox --image=busybox -i -- sh

There is another handy command in kubectl called attach, which you can use to attach
to the running process inside the container:

$ kubectl attach <pod-name> -i

You can also use the kubectl port-forward command to forward the specified port in
the container to the specified one in the local machine. This way, you can quickly test
interacting with your application over the port:

$ kubectl port-forward <pod-name> <local-port>:<container-port>

The kubectl top command shows the resource usage of the Pods. You can easily see
whether there is any conspicuous resource consumption such as CPU and memory,
which could be the root cause of a bigger problem:

$ kubectl top pods --containers

242 | Troubleshooting Applications in Kubernetes

Action Commands

After figuring out what's wrong and coming up with the solution, you can apply this to
the cluster using a handful amount of commands to update a Kubernetes resource. You
can use any one of the following three commands to update a resource in Kubernetes:

•	 Use kubectl apply -f to apply the changes you make in the object's definition file:

$ kubectl apply -f <file-wt-correct-resource>

•	 Use kubectl edit to make the changes in a text editor:

$ kubectl edit <resource-type> <resource-name>

•	 Use kubectl patch to change only a field of the object:

$ kubectl patch <resource-type> <resource-name> -p <updated-field>

Suggestions for Some Common Problems

There might be plenty of reasons why your application is not healthy. Here are some of
the common problems and how you can understand the reasons behind them. We will
also suggest some solutions to these problems.

Lack of Resources

If a Pod is in the Pending state for a long time, it could mean that it couldn't be
scheduled to a node. There could be many reasons, but the most common one is that
you don't have enough resources left in the cluster. You can confirm this by checking
the conditions of the Pod by running kubectl describe. If this is the case, you need
to either increase the number of available resources or free the current resources by
deleting other Pods:

$ kubectl describe pod <pod-name>

Also, you can use kubectl top nodes to see whether the nodes are having capacity
issues. It shows the resource usage of the nodes:

$ kubectl top nodes

Note

To run this command on Minikube, ensure that the metrics-server addon is
enabled:

$ minikube addons enable metrics-server

Troubleshooting Applications in Kubernetes | 243

This command will show you the resource usage, whereas the following one will show
the capacity:

$ kubectl get nodes -o jsonpath='{range .items[*]}{.metadata.name} {.status.
capacity} {"\n"}{end}'

By using both, you can check whether there is a resource issue with the nodes.

Image Pull Failure

If the Pod is in the Waiting state for a long time, it could mean that the container images
take a long time to be downloaded or cannot be downloaded at all. You can confirm
this by running kubectl describe and checking the conditions. In this case, you need
to check whether the specified image is correct and can be downloaded. You can use
a simple docker pull command to check whether you can download the image by
yourself.

In the next section, we will practice troubleshooting a Pod failure using several kubectl
commands.

Exercise 22: Fixing a Pod Failure in Kubernetes

In this exercise, we will use kubectl commands to troubleshoot a problem with a Pod in
Kubernetes:

Note

To do this exercise on Minikube, ensure that the metrics-server addon is
enabled:

$ minikube addons enable metrics-server

244 | Troubleshooting Applications in Kubernetes

1.	 Create a file named test-pod.yaml using the following Pod definition:

apiVersion: v1
kind: Pod
metadata:
 name: test-pod
spec:
 containers:
 - name: test
 image: busybo
 command: ["/bin/sh"]
 args: ["-c", "sleep 99999"]

2.	 Deploy the Pod in the lesson-8 namespace using kubectl create:

$ kubectl create -f test-pod.yaml -n lesson-8

Figure 8.7: Deploying the test-pod

3.	 Check whether the Pod is running successfully:

$ kubectl get pods -n lesson-8

Figure 8.8: Checking the test-pod status

Troubleshooting Applications in Kubernetes | 245

As you see, the Pod fails to run. We can also see the cause of the problem in the
status field. However, let's pretend that we don't know what this status stands for
and inspect the problem further using several kubectl commands.

4.	 Check the resource usage of the Pod to check whether excessive usage could be
the source of the problem:

$ kubectl top pods -n lesson-8

Figure 8.9: Checking the resource usage

As you see, resource usage is not even available as the Pod didn't run at all, which
means excessive resource usage cannot be the problem.

5.	 Check the Pod logs to see what's happening with the application:

$ kubectl logs test-pod -n lesson-8

Figure 8.10: Checking the logs of test-pod

As you see from the logs, the container inside the Pod is still waiting to start
because of the reason: image can't be pulled. Now that we know there is
something wrong with the image, let's check the Pod details to figure out the
problem.

246 | Troubleshooting Applications in Kubernetes

6.	 Use kubectl describe to see the Pod details, including the states and the
conditions:

$ kubectl describe pod test-pod -n lesson-8

Figure 8.11: Object details for test-pod

The overall status of the Pod is Pending, and the container is in the Waiting
state. We check the Pod conditions to see that Pod is successfully scheduled and
initialized, but it is not ready. Finally, we check the events at the end of the page
and see that Pod complains saying the image does not exist or no pull access (see
the highlighted event under Events at the end of the Figure 8.11). We realize that
the image name should have been busybox instead of busybo.

Troubleshooting Applications in Kubernetes | 247

7.	 Let's fix the image name in the file that was the source of the problem so that
when someone else is using the same file in the future, they won't have this
problem:

$ vi test-pod.yaml
Fix the image name to busybox and exit the file using ':wq'. This will
save your changes.

Figure 8.12: Opening the text editor

8.	 Apply the fix to the cluster:

$ kubectl apply -f test-pod.yaml -n lesson-8

Figure 8.13: Modifying the test-pod

9.	 Check whether the Pod runs successfully after the fix:

$ kubectl get pods -n lesson-8

Figure 8.14: Checking the test-pod status

As you see, the problem is fixed, and the Pod is running without any issues now.

10.	 You can delete the Pod now using kubectl delete:

$ kubectl delete -f test-pod.yaml -n lesson-8

In this exercise, we practiced different commands while troubleshooting an application
in Kubernetes. In the end, we fix the problem and reflect the changes in such a way that
the problem will not happen in the future again.

In the next section, we mention another vital point of where to ask, in case you cannot
solve a problem by yourself.

248 | Troubleshooting Applications in Kubernetes

Ask the Community

Trying to solve a problem alone or within the company is sometimes not enough.
Someone else could have experienced the same problem and already provided a
solution somewhere online. You can go over the existing or closed issues in the
Kubernetes GitHub repository (https://github.com/kubernetes/kubernetes) to find out
whether a related issue has already been solved before. If you cannot find the solution
to your problem, you can create a new issue, or you can always ask for help in Stack
Overflow using the kubernetes tag (https://stackoverflow.com/questions/tagged/
kubernetes). Also, don't hesitate to post a question on Kubernetes Slack channels
(https://kubernetes.slack.com). Kubernetes has one of the most active communities,
and it wouldn't take long for someone to pick up and answer your question.

Also, you can take a look at the debugging section of the official Kubernetes website
(https://kubernetes.io/docs/tasks/debug-application-cluster/debug-application-
introspection/) for the most up-to-date information for troubleshooting your
applications in Kubernetes.

In the next section, we will practice our learnings in a problem similar to real-life
situations by performing an activity.

Activity 9: Troubleshooting an Application in Kubernetes

Imagine that you are a nightly on-call DevOps engineer maintaining the health of
the applications deployed for your company. There is an application that is behaving
strangely by exiting all the time. You check the logs for the application, but the
information there is not sufficient to understand the problem. Luckily, your team
decoupled the configurations from the source code, and you can configure the logging
level to get more verbose logs. After changing the logging level, you figure out what
the problem can be and take some actions to fix it. In the end, you verify that the
application is running without any issues by checking the logs.

Note

To complete this activity, you can use Minikube or a real cluster.

https://github.com/kubernetes/kubernetes
https://stackoverflow.com/questions/tagged/kubernetes
https://stackoverflow.com/questions/tagged/kubernetes
https://kubernetes.slack.com
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-application-introspection/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-application-introspection/

Troubleshooting Applications in Kubernetes | 249

Perform the following steps to complete this activity:

1.	 Create a Pod definition file that uses the suakbas/lesson08:v1 image and is
consuming the LOG_LEVEL and ENABLE_CONNECTION environment variables from a
ConfigMap named app-config. Name the file as pod.yaml.

2.	 Create a ConfigMap with the LOG_LEVEL field set to INFO and ENABLE_CONNECTION set
to No. Name the file as configmap.yaml.

3.	 Deploy the ConfigMap and the Pod to the lesson-8 namespace. Then, check
whether the Pod is running.

4.	 Try to figure out why the Pod is constantly terminating instead of running. Use
kubectl logs to check the logs of the application.

5.	 Change the log level by updating the LOG_LEVEL field from the ConfigMap to 'DEBUG'.

6.	 Use kubectl logs again to check more verbose logs.

7.	 Check the set environment variables using kubectl exec.

8.	 Fix the problem by setting ENABLE_CONNECTION to Yes by updating the configmap.
yaml file. Apply the updated file to the cluster.

9.	 Check the logs to verify the solution.

10.	 You can clean up everything now by removing the namespace.

Note

The solution to this activity can be found on page 333.

In this activity, we practiced several kubectl commands to troubleshoot an application.
We also see the importance of logging in finding out how an application is behaving and
to help determine the root cause of a problem. We completed an exercise where we
used different logging levels and configured them by utilizing environment variables.
This way, we practiced the same steps that you would take in a real-life situation. In the
next section, we summarize the learning of this chapter.

250 | Troubleshooting Applications in Kubernetes

Summary
In this chapter, we first explored troubleshooting in general and saw why it is an
important concept. We looked at several aspects for troubleshooting applications
effectively, including identifying the problem, adding tests to prevent the chances of the
problem occurring again, documenting the solution to tackle it easily if it occurs again,
using monitoring tools, and logging more efficiently to understand the underlying
issues quickly.

Later, we moved to troubleshooting in Kubernetes. We explained some key concepts
such as the Pod life cycle. We went through the many different conditions and states
that a Pod can have. We also saw what each of these conditions and states mean and
what issues they indicate. After that, we continued with the auto recovery topic. We
introduced two health checks in Kubernetes, liveness and readiness probes, and we also
practiced utilizing them through an exercise.

We then continued by creating a termination log from an application to make it possible
to understand why a Pod terminated. We proceeded to the kubectl commands, which
are most helpful while troubleshooting a problem. We covered many commands such
as kubectl logs, kubectl exec, and kubectl port-forward. Then, we checked some
suggestions to avoid some of the common problems encountered by an application
running on Kubernetes. We then used these commands via an exercise to troubleshoot
a Pod failure.

Finally, in the last section, we introduced the communication channels to the
Kubernetes community. We then continued with an activity where we made use of
different logging levels and fixed a problem using kubectl commands. In the next
chapter, we will explore monitoring and alerting in Kubernetes.

Learning Objectives

By the end of this chapter, you will be able to:

•	 Explain the importance of monitoring

•	 List the tools for monitoring resources on Kubernetes

•	 Explore ways to create alert rules on Prometheus and dashboards on Grafana

•	 Use Alertmanager to receive alert notifications on Slack

This chapter introduces various techniques to monitor infrastructures and applications by using
the most commonly used tools in Kubernetes

Monitoring
Applications in

Kubernetes

9

254 | Monitoring Applications in Kubernetes

Monitoring
In the previous chapter, Troubleshooting Applications in Kubernetes, we explored ways
to troubleshoot our applications quickly in the event of a problem. Now we're moving
one step further in detecting any potential problems before they occur with the help of
monitoring, which is about observing and determining the behavior of a system.

Nowadays, companies need to ensure high levels of customer satisfaction in order to
stay competitive in the market. Particularly for websites, it is important to be functional
and provide an excellent service 24/7. In spite of this, many companies still embrace
a reactive approach in order to tackle any issues that may occur; that is, they wait
for problems to occur before attempting to tackle and fix them. This causes system
downtime and can lead to customer frustration.

Formerly, the source code of an application was mostly static; that's why sophisticated
tools were not necessary to monitor applications in real time. Instead, it was enough
to collect statistical information in order to gain an understanding of how users were
consuming a product. This was then mostly used to develop a brand-new product or
to implement an improvement for the next big release in upcoming months. However,
in the DevOps era, it is usually an everyday practice to deploy a new version of an
application to a production environment, that is, once all the tests are green. With
this change, it is now vital to continually watch for any issues in real time and provide
solutions as quickly as possible.

With the evolution of DevOps, monitoring has become a part of the daily life of
application developers. In the pre-DevOps era, this was usually the responsibility of the
operations team, but now it is the responsibility of the entire team. This allows a team
to maintain a system's productivity and systematically detect potential problems early
on in the project life cycle so that preventive actions can be taken to tackle problems
quickly.

Nowadays, software usually depends on many other resources, such as external
services and databases. Any problems related to these other resources could quickly
destroy the value brought by your application. That's why they should be continuously
monitored, and any problems should be detected as soon as possible.

Furthermore, monitoring an application provides significant information, such as about
the performance of the application. Particularly with microservices, there are now many
independent services that make a lot of API calls in a distributed environment. Due to
this, it is tricky to detect any problems manually. Additionally, there are many metrics
generated by these systems that refer to quantitative measurements for software. This
makes it necessary to have a monitoring tool that can automatically watch the overall
health of systems by monitoring these metrics and notifying you in the event of a
problem.

Monitoring | 255

Although monitoring can touch on many operational aspects in DevOps, we will be
focusing on two types of monitoring: infrastructure monitoring and application
performance monitoring (APM).

Infrastructure Monitoring

Infrastructure monitoring refers to analyzing servers (or any other devices that are
included in a system) to detect the overall status. It includes basic but important server
metrics such as memory, CPU, and disk performance. This provides timely information,
so that if a device is being overloaded in terms of resources, then the resources can
be increased before it causes an issue. Additionally, the information obtained by
monitoring the infrastructure can be used to increase the efficiency of the system.
You can determine the under- or over-utilized system elements and take appropriate
actions to use them as efficiently as possible.

Application Performance Monitoring (APM)

APM consists of tracking the performance of the internal assets of an application. These
can be metrics such as request queue processing times, garbage collection, and page
load times. This provides us with essential information to understand any problems and
find areas to improve – even before customers themselves become aware of them. For
example, if a problem is not easily detectable, monitoring the calls within an application
makes it easier to see precisely what the application is doing rather than going through
the source code. You can also explore whether there is an inefficient pattern, such
as two microservices making too many calls between them. In such cases, it may
make more sense to bring those services together into one microservice to increase
application performance:

Figure 9.1: Sample metrics for APM

256 | Monitoring Applications in Kubernetes

APM also enables us to understand how customers are using software so that we
can engage more actively with them and provide solutions to improve their overall
experience.

Apart from these monitoring tasks, there are some other key aspects of monitoring,
such as alerting and tools. In the next section, we will go through these aspects in
detail.

Alerting

Alerting refers to being notified if there is a problem or any unusual activity within a
system or an application. These alerts can be in various forms, such as emails, SMS
messages, or chat notifications. An alerting tool plays a vital role as an early warning
system about the current health status of a system or an application. Later, in the
Monitoring Applications in Kubernetes section, we will demonstrate how to enable
alerting for a cluster and how to receive alert notifications.

Tools

There are many monitoring tools available in the market today. It can be difficult to
compare and find the best tool for your case, so you should determine the requirements
that you need in a monitoring system before obtaining a tool.

You can either have one tool for everything or you can combine many tools to work
together to realize a monitoring system. In the end, you must have a running system
that should be capable of performing the following:

•	 All the metrics in a system can be gathered and aggregated.

•	 Alerting should be provided; it should have the necessary capabilities for your
case, such as sending emails or sending resolved messages.

•	 Visualization should be available; it should allow you to customize dashboards to
your needs. You should be able to visualize as much as possible in order to see
application trends and detect any problems early on.

The tools in the market usually provide many more features, but these three features
are necessary to achieve a useful monitoring system.

In the next section, we will demonstrate how to achieve a capable monitoring system in
Kubernetes.

Monitoring Applications in Kubernetes | 257

Monitoring Applications in Kubernetes
In this section, we will explore how to monitor infrastructures and applications by using
the most commonly used tools in Kubernetes. We will also discover how we can expose
our custom metrics from these applications and set up alert notifications so that we will
have a fully capable monitoring system.

We will start with Prometheus as a tool for collecting metrics from a cluster and
Alertmanager as an alert notifier. Then, we'll continue with Grafana as the visualizer
tool for the metrics obtained by Prometheus. Finally, we'll complete the system by
configuring a Slack channel to receive these alert notifications.

Prometheus

Prometheus is an open source monitoring and alerting system. It periodically collects
real-time data from the configured applications and stores them in a database in
timely order, also called time series data. Prometheus has a querying language called
Prometheus Query Language (PromQL), which enables the user to select and aggregate
data obtained from metrics.

PromQL allows the user to write many complex queries, just like any other querying
language using different operators. You can create a query by using only the metric
name. By doing so, the query behaves like a selector and returns all the data collected
by that particular metric, just like a Select * from <table> query in MySQL. You can
then use labels in curly braces ({}) to filter out the results. Additionally, you can use the
many functions provided to derive some kind of meaning from the data. For example,
using the sum function, you can aggregate all the results to find the total number of
values for a metric.

PromQL is also used to create alert rules. An alert rule is a configuration that includes
a Boolean expression provided by the user, which is periodically checked against the
metrics data. If the expression returns false, then an alert is fired. If there is a receiver
configured by the user for this particular alert, then an alert notification is sent. We will
discuss this in more detail in the Alertmanager section.

Here is a simple alert rule that is defined by using a PromQL query in the expr field:

- name: pod-container-not-running-rule

 rules:

 - alert: PodContainerNotRunning

 expr: (kube_pod_container_status_running { namespace="default",
container="test" } == 0)

 for: 30s

 labels:

258 | Monitoring Applications in Kubernetes

 severity: warning

 annotations:

 description: "{{$labels.namespace}}/{{$labels.pod}} is not running"

 summary: "Test container is not running"

This query in the expression field selects all the containers in the running status from
the default namespace along with the containers called test. This expression will
return false if there is no container called test in the default namespace and it will
trigger an alert.

Prometheus has a pull model for getting metrics, which requires the services to have a /
metrics endpoint so that it can periodically fetch the metrics from there. Therefore, you
need to expose a /metrics endpoint from every service where you provide only plain
text data. Then, Prometheus obtains them by sending an HTTP request.

Prometheus, as a system, is composed of several components; these are as follows:

•	 The Prometheus server: This is responsible for collecting metrics.

•	 The exporters: These are the supporting servers, which are used to export existing
metrics from well-known services such as Kubernetes.

•	 Alertmanager: This is responsible for sending alerts.

•	 Pushgateway: This is responsible for collecting metrics from short-lived jobs.

Prometheus comes with a built-in UI, where you can see and use the exposed metrics
to make queries using PromQL. You can start by writing a metric name that will
trigger the suggestions through autocomplete and from there you can explore more
metrics. Finally, after writing the full metric name and any configuration values inside
the brackets, you can click on Execute to see the measurements aggregated from this
metric:

Figure 9.2: The query page on the Prometheus UI

Monitoring Applications in Kubernetes | 259

The installation of Prometheus by Helm, which will be practiced in the first exercise
later, deploys two ConfigMaps: prometheus-server and prometheus-alertmanager. The
prometheus-server ConfigMap holds all the configurations needed for the Prometheus
server and the alert rules. Therefore, to add a new alert rule, the alerts field in this
ConfigMap should be modified.

Here is the initial state of the alerts field:

Figure 9.3: The initial state of the alerts field

This is how the alerts field should look after configuring a sample alert:

Figure 9.4: The state of the alerts field after configuring a sample alert

In the next section, we will dig deeper into one of the components, called
Alertmanager. This is important for sending alerting notifications.

Alertmanager

Alertmanager comes as an independent module within the Prometheus system. It is
responsible for sending alert notifications based on the firing alerts in Prometheus. It
supports many receivers out of the box, such as email clients, Slack (https://slack.com),
VictorOps (https://victorops.com/), and WeChat (https://www.wechat.com).

https://slack.com
https://victorops.com/
https://www.wechat.com

260 | Monitoring Applications in Kubernetes

Here is a sample configuration for a slack receiver:

- name: "slack"

 slack_configs:

 - channel: "test"

 send_resolved: true

 api_url: "<webhook-url>"

 title: "{{ .CommonAnnotations.description }}"

 text: "Description: {{ .CommonAnnotations.description }}"

Here, an alerting notification can be customized and enriched using different fields; for
example, an explanatory title and text field can be added. Many other fields that can
be used for customizing the notification can be found at https://prometheus.io/docs/
alerting/configuration/#slack_config.

Here is a sample configuration for an email receiver:

- name: email_config

 email_configs:

 - to: 'to@test.com'

 from: 'from@test.com'

 smarthost: 'smtp.test.com:587'

 auth_username: 'from@test.com'

 auth_password: '<password>'

 auth_secret: 'admin@test.com'

 auth_identity: 'admin@test.com'

Just like the slack receiver, this can also be enriched by utilizing many more fields from
https://prometheus.io/docs/alerting/configuration/#email_config.

Additional configurations for all the other receivers, such as VictorOps and WeChat, can
be found at https://prometheus.io/docs/alerting/configuration/.

The ConfigMap named prometheus-alertmanager, deployed by the installation
of Prometheus, holds the configurations for Alertmanager, such as all the receiver
information. So, to add a new receiver, the receivers field in this ConfigMap should be
modified.

https://prometheus.io/docs/alerting/configuration/#slack_config
https://prometheus.io/docs/alerting/configuration/#slack_config
https://prometheus.io/docs/alerting/configuration/#email_config
https://prometheus.io/docs/alerting/configuration/

Monitoring Applications in Kubernetes | 261

Here is the initial state of the receivers field in the prometheus-alertmanager
ConfigMap:

Figure 9.5: The initial state of the receivers field

This is how the receivers field in the prometheus-alertmanager ConfigMap should
look after configuring a sample Slack receiver:

Figure 9.6: The state of the receivers field after configuring a sample slack receiver

We will learn how to obtain and fill in these fields, especially the API URL, in the Slack
section.

In the next section, we will explore Grafana, which is used to visualize all the metrics we
obtained with Prometheus on nice dashboards and graphs.

Grafana

Even though Prometheus provides a UI where you can inspect metrics, it is difficult
to visualize this information with nice dashboards or graphs. That's where Grafana
comes into play; Grafana is called a metric analytics and visualization suite. Just
like Prometheus, Grafana is also open source. Alongside other data stores, such as
Elasticsearch (https://github.com/elastic/elasticsearch) and InfluxDB (https://github.
com/influxdata/influxdb), Prometheus is a supported data source in Grafana for
obtaining metrics data.

https://github.com/elastic/elasticsearch
https://github.com/influxdata/influxdb
https://github.com/influxdata/influxdb

262 | Monitoring Applications in Kubernetes

Grafana provides many features that can be used to visualize monitored data by
creating custom dashboards. A dashboard consists of many panels visualizing a
particular metric in a graph. In addition to creating a custom dashboard, there are a
lot of free dashboards that you can get from the Grafana marketplace (https://grafana.
com/dashboards). It also comes with out-of-the-box authentication and authorization,
which means that it is highly convenient to share these dashboards publicly, if
necessary. These dashboards can also be stored in version control as they are plain
JSON files:

Figure 9.7: A sample dashboard in Grafana

https://grafana.com/dashboards
https://grafana.com/dashboards

Monitoring Applications in Kubernetes | 263

Creating a Dashboard in Grafana

Although there are already plenty of dashboards in the Grafana marketplace, you may
want to create your own custom dashboard as well. To achieve this, Grafana offers you
many different panel types, such as a graph, a table, or a panel showing a single stat.
You can create all the panels that you need and collect them together in a dashboard.
We will observe how to create a custom dashboard in the following exercise.

In the next exercise, we will demonstrate how to install Prometheus and Grafana. We
will even install our first dashboards in Grafana.

Exercise 23: Installing Prometheus and Grafana

In this exercise, we will go through the installation of Prometheus and Grafana using
their Helm charts. Then, we will add Prometheus as a data source in Grafana. Finally, we
will create a custom dashboard and import an existing one to see the current status of
the Kubernetes cluster.

Note

To complete this exercise, please use a real cluster. You can obtain a managed
Kubernetes cluster on Google Kubernetes Engine.

Perform the following steps to complete this exercise:

1.	 Create the lesson-9 namespace:

$ kubectl create ns lesson-9

Figure 9.8: Creating the lesson-9 namespace

264 | Monitoring Applications in Kubernetes

2.	 Install Prometheus using the stable/prometheus Helm chart:

$ helm install stable/prometheus --name prometheus --namespace lesson-9

Figure 9.9: Installing Prometheus using Helm

Monitoring Applications in Kubernetes | 265

3.	 Check the pods to see whether there are any problems:

$ kubectl get pods -n lesson-9

Figure 9.10: Checking the pods in the lesson-9 namespace

4.	 Export POD_NAME to a variable and then use it while port-forwarding (kubectl port-
forward) in order to access the Prometheus UI:

$ export POD_NAME=$(kubectl get pods -n lesson-9 -l
"app=prometheus,component=server" -o jsonpath="{.items[0].metadata.name}")
$ kubectl port-forward $POD_NAME 9090 -n lesson-9

Figure 9.11: Port-forwarding the Prometheus server to reach the UI

5.	 Open a browser and go to http://localhost:9090 to see the Prometheus UI:

Figure 9.12: The Prometheus UI

Being able to access the Prometheus UI and view the preceding screen means
that our Prometheus installation was successful. Now, let's continue with the
installation of Grafana on a new Terminal. Keep this Terminal open to use it later
in the activity.

266 | Monitoring Applications in Kubernetes

6.	 Install Grafana using the stable/grafana Helm chart on a new Terminal:

$ helm install stable/grafana --name grafana --namespace lesson-9

Figure 9.13: Installing Grafana using Helm

7.	 Check the pods to see whether there are any problems:

$ kubectl get pods -n lesson-9

Figure 9.14: Checking the pods in the lesson-9 namespace

Monitoring Applications in Kubernetes | 267

8.	 Take a look at the secret named grafana in order to obtain the username and
password for Grafana UI:

$ kubectl get secret grafana -n lesson-9 -o yaml

Figure 9.15: Checking the contents of Grafana secret

9.	 Decode the username and password as follows:

$ echo '<admin-user-value>' | base64 -D
$ echo '<admin-password-value>' | base64 -D

Figure 9.16: Decoding the Grafana username and password

Note

To decode secrets using base64, use the -D option in macOS or -d in Linux.

268 | Monitoring Applications in Kubernetes

10.	 Export POD_NAME to a variable and use it while port-forwarding in order to access
the Grafana UI:

$ export POD_NAME=$(kubectl get pods -n lesson-9 -l "app=grafana" -o
jsonpath="{.items[0].metadata.name}")
$ kubectl port-forward $POD_NAME 3000 -n lesson-9

Figure 9.17: Port-forwarding the Grafana pod to reach the UI

11.	 From the browser, go to http://localhost:3000 to see the Grafana UI. Enter the
username and password you obtained in the previous step to log in:

Figure 9.18: The Grafana login page

At this point, we have both Prometheus and Grafana installed successfully.

Monitoring Applications in Kubernetes | 269

12.	 To add Prometheus as a data source, click on Add data source:

Figure 9.19: The Grafana home page

13.	 From the data source types, select Prometheus, as follows:

Figure 9.20: The Grafana configuration page

270 | Monitoring Applications in Kubernetes

14.	 As the URL, enter http://prometheus-server.lesson-9.svc.cluster.local. For the
other field, use the default value and then click on Save & Test:

Figure 9.21: Adding Prometheus as a data source in Grafana

Now that both Prometheus and Grafana are installed, and Prometheus is added
as a data source in Grafana, we have the complete monitoring system. As the next
step, let's create a custom dashboard in Grafana to start monitoring the health of
the cluster.

Monitoring Applications in Kubernetes | 271

15.	 To create a custom dashboard, click on the plus (+) sign and choose Dashboard:

Figure 9.22: Creating a custom dashboard in Grafana

16.	 Choose Graph as the panel type that we want to create for this dashboard:

Figure 9.23: Adding a graph panel to the dashboard

272 | Monitoring Applications in Kubernetes

17.	 Click on Panel Title and then click on Edit:

Figure 9.24: Editing a graph panel

Monitoring Applications in Kubernetes | 273

18.	 Choose Prometheus as the data source and enter kube_node_status_capacity_
cpu_cores in the text field to see the current capacity status of the CPUs for the
nodes:

Figure 9.25: Creating a panel to see the current node CPU capacity

274 | Monitoring Applications in Kubernetes

19.	 To save this dashboard, click on the Save button in the top-right panel. Enter a
name and then click on Save:

Figure 9.26: Saving the dashboard

Now your dashboard is ready:

Figure 9.27: A custom-created Test Dashboard

Monitoring Applications in Kubernetes | 275

We have seen how to create a new custom dashboard. Now, let's also import an
already available dashboard from the marketplace, called Kubernetes Cluster:

Figure 9.28: The Kubernetes Cluster dashboard in the Grafana marketplace

Note

You can read more about the Kubernetes Cluster dashboard at https://grafana.
com/dashboards/6417.

https://grafana.com/dashboards/6417
https://grafana.com/dashboards/6417

276 | Monitoring Applications in Kubernetes

20.	To add the Kubernetes Cluster dashboard to your Grafana instance, click on the
plus sign (+) on the left and then click on Import:

Figure 9.29: Grafana's Import dashboard page

Monitoring Applications in Kubernetes | 277

21.	 On this page, enter the dashboard ID for the Kubernetes Cluster, which is 6417,
and then click on the Tab key for Grafana to obtain the dashboard details. Then,
click on Import:

Figure 9.30: Importing the Kubernetes Cluster dashboard

278 | Monitoring Applications in Kubernetes

22.	Go back to the home page and choose Kubernetes Cluster as the dashboard you
want to see in the top-left menu:

Figure 9.31: The Kubernetes Cluster dashboard in Grafana

Now we have the Kubernetes Cluster dashboard showing various essential metrics,
such as CPU usage and memory usage, in order to view the current health status
of the cluster.

In this exercise, we installed Prometheus and Grafana so that we have a complete
monitoring system, which is capable of collecting metrics and showing them on a
dashboard in real time.

In the following section, we will demonstrate how to expose custom metrics from our
applications.

Custom Metrics
Prometheus provides client libraries for many languages, such as Go, Java, and Python,
to expose custom metrics that can be read by the Prometheus server. You need to
create a /metrics endpoint from your application for Prometheus to read the custom
metrics. Additionally, for the Prometheus server to discover your application, you need
to add this annotation to your pod: prometheus.io/scrape: true.

Custom Metrics | 279

Here is how it will look in the pod definition:

metadata:

 annotations:

 prometheus.io/scrape: "true"

These custom metrics can be categorized under APM. They can be anything that
would be valuable for you to monitor for the application. For example, for a financial
institution, the number of transactions can be really valuable, whereas, for a messaging
application, the number of messages in the queue can be much more valuable. After
determining the needs of the application, you can use the appropriate client library for
your application to expose the metric.

In the following exercise, we will see how a sample custom metric can be exposed in Go
code using Prometheus' Go client. We will explore how the metric we exposed will be
picked up by Prometheus and will become available for queries.

Exercise 24: Exposing a Custom Metric in Prometheus

In this exercise, we will explore a sample Go application, which exposes a sample
custom metric in Prometheus. Then, we will deploy this application to the cluster and
look at how the custom metric read by Prometheus can become available for queries.

Perform the following steps to complete this exercise:

1.	 Take a look at the following Go code to see a sample metric being exposed. This
code is used to create the suakbas/lesson09:v1 Docker image.

Here, in this code, a sample custom metric, number_of_incrementals, is simply
calculated by incrementing a number variable every second. To create the metric,
the NewCounter function from Prometheus' Go client library is used. We expose the
/metrics endpoint for Prometheus to read this metric:

package main

import (
 "net/http"
 "time"

 "github.com/prometheus/client_golang/prometheus"
 "github.com/prometheus/client_golang/prometheus/promauto"
 "github.com/prometheus/client_golang/prometheus/promhttp"
)

280 | Monitoring Applications in Kubernetes

func main() {
 numOfInc := promauto.NewCounter(prometheus.CounterOpts{
 Name: "number_of_incrementals",
 Help: "The number of incrementals",
 })

 go func() {
 for {
 numOfInc.Inc()
 time.Sleep(1 * time.Second)
 }
 }()

 http.Handle("/metrics", promhttp.Handler())
 http.ListenAndServe(":3000", nil)
}

2.	 Create a file named deploy.yaml using the following Deployment and Service
definitions:

$ vi deploy.yaml

Copy and paste the following definitions and close the file using wq:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: metric-app
spec:
 replicas: 1
 selector:
 matchLabels:
 app: metric
 template:
 metadata:
 annotations:
 prometheus.io/scrape: "true"
 labels:
 app: metric

Custom Metrics | 281

 spec:
 containers:
 - image: suakbas/lesson09:v1
 imagePullPolicy: Always
 name: metric
 ports:
 - containerPort: 3000

apiVersion: v1
kind: Service
metadata:
 name: metric-svc
spec:
 ports:
 - port: 3000
 selector:
 app: metric

3.	 Deploy the Deployment and the Service to the cluster:

$ kubectl apply -f deploy.yaml -n lesson-9

Figure 9.32: Deploying metric-app

282 | Monitoring Applications in Kubernetes

4.	 Go to the Prometheus UI and enter the sample metric (number_of_
incrementals) in the query field to see the results:

Figure 9.33: Querying number_of_incrementals in the Prometheus UI

As you can see from the Prometheus UI, number_of_incrementals becomes available
to be queried. We can see the value in the bottom-right of the UI as 103 in this call.

Note

scrape_interval determines the interval for Prometheus to read the metric data
and it is set to one minute by default. This means that the data will be updated
after each minute.

In this exercise, we learned how to expose custom metrics from a Go application. We
also saw how to enable Prometheus to read custom metrics from our application by
exposing an endpoint. We can now use this custom metric for various purposes, such
as creating an alert or creating a monitoring dashboard, to be able to observe how it
changes over time.

In the next section, we will explore some of the critical metrics exposed by Kubernetes.

Exposed Metrics in Kubernetes | 283

Exposed Metrics in Kubernetes
Kubernetes provides many out-of-the-box metrics that can be collected by
Prometheus. For this, Kubernetes' system has a service called kube-state-metrics
(https://github.com/kubernetes/kube-state-metrics), which listens to the Kubernetes
API server and produces metrics to inform you about the current status of the objects.
These metrics provide information on the current health status of the cluster nodes and
the other Kubernetes resources, such as pods and services. Some of the key metrics are
explained here:

•	 kube_pod_info: This provides detailed information about the pods, such as the pod
name, namespace, and the node name that the pod is running on.

•	 kube_pod_status_ready: This enables you to check whether the pod is in Ready
status.

•	 kube_pod_container_status_running: This enables you to check whether the
container has a Running status.

•	 kube_node_status_condition: This provides information about the current
condition of the node.

•	 kube_endpoint_address_available: This enables you to check whether an
endpoint address is currently available:

Figure 9.34: Querying kube_pod_container_status_running for the lesson-9 namespace and the
container metric

https://github.com/kubernetes/kube-state-metrics

284 | Monitoring Applications in Kubernetes

These are just a few helpful metrics used in typical cases. You can see the list of all the
exposed metrics at https://github.com/kubernetes/kube-state-metrics/tree/master/
docs#exposed-metrics.

So far, we have learned about the available metrics, how to create custom metrics,
and how to create alerts and alert rules. In the following section, we will explore a
communication tool called Slack, which we will use for sending alert notifications.

Slack

Slack is a commonly used, modern communication tool. It provides many features,
such as creating purpose-specific channels or creating a thread under a message for
the related discussion. Slack uses the workspace concept, which allows the overall
environment to communicate within a particular group of people, such as the team
members of a particular project. Each channel inside a workspace is used to separate
communication into more specific topics. For example, a company can have a
workspace that has sales and development channels.

Since it is easy to use and provides many functionalities, Slack has become one of the
most common communication tools in the workplace. It even offers free usage, with
some limitations, such as up to 10,000 free messages. Many open source communities,
such as Kubernetes, have Slack workspaces that are active. This is the most convenient
way to reach out to the people behind open source projects:

https://github.com/kubernetes/kube-state-metrics/tree/master/docs#exposed-metrics
https://github.com/kubernetes/kube-state-metrics/tree/master/docs#exposed-metrics

Exposed Metrics in Kubernetes | 285

Figure 9.35: A screenshot from the Kubernetes Slack workspace

Note

You can check out the Kubernetes Slack workspace at https://kubernetes.slack.
com.

Slack can also be used as a ChatOps tool, which is a new concept, referring to the use
of a chat medium as the primary communication tool to handle incidents quickly and
efficiently. Slack can be configured to receive webhooks (or event notifications) from
monitoring tools, so this makes it a great tool to be used for ChatOps. In this way, you
can receive failure notifications in a Slack channel and start a discussion right there
under the notification. Put simply, imagine that an incident occurred in the live system
and a monitoring tool sent an alert to a Slack channel created for tracking specific
issues coming from this system. Only the relevant people, who are members of this
channel, will be notified. Furthermore, a discussion can take place right in the channel
for that specific alert; even an immediate call can be started right from the channel.

We will now explore more about Incoming Webhooks.

https://kubernetes.slack.com
https://kubernetes.slack.com

286 | Monitoring Applications in Kubernetes

Incoming Webhooks

A webhook refers to a web callback, which sends real-time data from one application
to another. Incoming Webhooks is a handy feature in Slack that enables you to send
messages from another application to Slack. When you enable this feature, it generates
a unique URL that is used for sending JSON-typed messages to a particular Slack
channel. You can create an Incoming Webhook by going to Customize Slack | Configure
Apps – we will practice this later, in the activity.

In the next exercise, we will demonstrate how to sign up for Slack and create a
workspace.

Exercise 25: Signing Up for Slack and Creating a Workspace

In this exercise, we will sign up for Slack and create a new workspace, which will be
used later to receive alert notifications:

1.	 Open a browser and go to https://slack.com/. Enter your email address on the
home page and then click on GET STARTED:

Figure 9.36: Signing up on slack.com

https://slack.com/

Exposed Metrics in Kubernetes | 287

2.	 Select the Create a new workspace option, as follows:

Figure 9.37: Choosing a Slack workspace

288 | Monitoring Applications in Kubernetes

3.	 This will send a code to your email address; enter the code and then proceed. On
the next page, you will be asked to fill in the name of your company or team. You
can enter a fake name for this exercise:

Figure 9.38: Entering the company name in Slack

Exposed Metrics in Kubernetes | 289

4.	 On the next page, you will be asked the project name of your team. Enter DevOps
and then click on Next; this will also create a DevOps channel for you:

Figure 9.39: Entering the project name in Slack

290 | Monitoring Applications in Kubernetes

5.	 Then, you will be asked to send out invitations, which you can skip by clicking on
skip for now:

Figure 9.40: Inviting people to the Slack workspace

Exposed Metrics in Kubernetes | 291

6.	 Finally, your workspace is ready! Click on See Your Channel in Slack to proceed:

Figure 9.41: The workspace creation success page in Slack

292 | Monitoring Applications in Kubernetes

7.	 Now you can see the Slack UI. On the left-hand side, you can find all the channels;
a DevOps channel has already been created because we entered DevOps as the
team's project name:

Figure 9.42: The DevOps channel on Slack

In this exercise, we signed up to Slack and created our workspace. You can even
invite your colleagues to the workspace to use it as an easy communication channel.
It is essential that you complete this exercise as, during the activity, we will use this
workspace to receive alert messages.

In the following activity, we will practice creating an alert and configuring Alertmanager
to receive alert notifications for that alert in Slack. For this, we will enable Incoming
Webhooks in Slack. Finally, we will examine the alert notification when the test pod is
not running.

Exposed Metrics in Kubernetes | 293

Activity 10: Setting Up Alert Notifications in Kubernetes

Imagine that you have an application running in production that occasionally stops
working for various reasons. You only realize that the application is not working when
a customer representative calls you to complain. You are frustrated about the situation,
and the company reputation is at risk. You want to receive real-time notifications
from the application whenever there is a problem so that you can fix it immediately to
avoid creating customer dissatisfaction. To achieve this, you create an alert rule and
configure Alertmanager to send notifications to a Slack channel so that you can quickly
notice the problems and fix them.

Note

To complete this activity, you must first complete all the exercises in this chapter.

Execute the following steps to complete this activity:

1.	 Create an Incoming Webhook for the devops channel. Click on your username and
then click on Customize Slack.

2.	 On the next page, click on Configure Apps, which will direct you to the App
Directory page; here, search for Incoming Webhooks.

3.	 Click on Add Configuration.

4.	 Select the channel that you want to set for the alerting notifications and then click
on Add Incoming WebHooks integration.

5.	 From the resulting page, note down the Webhook URL that will be used to
configure Alertmanager.

6.	 Prepare an alert rule in Prometheus.

7.	 Modify the prometheus-server ConfigMap to specify this alert.

8.	 Create a Slack receiver in Alertmanager.

294 | Monitoring Applications in Kubernetes

9.	 Modify the prometheus-alertmanager ConfigMap to add the Slack receiver.

10.	 Check the Prometheus UI to see whether the alert is visible on Prometheus.

11.	 Create a file named pod.yaml using the pod definition, which has a mistake in the
image name written as busybo instead of busybox.

12.	 Deploy the test pod; then, check to see the error.

13.	 Check the Prometheus UI to see whether the alert is firing.

14.	 Check the devops channel in Slack to see the alert notification.

15.	 Fix the image to be busybox.

16.	 Check the devops channel in Slack again to see the resolved notification.

17.	 To clean up the environment, you can delete the lesson-9 namespace.

Note

The solution to this activity can be found on Page 337.

In this activity, we explored how we can set up an alert rule in Prometheus and
configure Alertmanager to send notifications for this alert to a Slack channel. To
achieve this, we also demonstrated how to enable Incoming Webhooks in Slack. We
examined the notification in the Slack channel while the pod was not working, and we
saw the resolved notification when the pod returned to a healthy state.

Summary
In this chapter, we first explored the concept of monitoring in general, and examined
why it is essential to have a monitoring system. Then, we introduced infrastructure
monitoring and APM as the two main categories of monitoring. We also discussed
alerting and tools within the monitoring context.

We then continued with monitoring in Kubernetes. We demonstrated the most
common monitoring tools available in Kubernetes. We started with Prometheus, which
is used to collect metrics from the infrastructure and application. We continued with
Alertmanager as a component of Prometheus, which is responsible for sending alert
notifications to many supported receivers, such as Slack and email clients. Next, we
discussed Grafana as the tool used to visualize metrics through graphs and dashboards.
We then installed Prometheus and Grafana and also installed our first dashboard to
check the status of the Kubernetes cluster. With all of these topics, we explored how to
create a capable monitoring system in Kubernetes.

Summary | 295

In this chapter, we also concluded the Introduction to DevOps with Kubernetes
course. Throughout this course, we have explored the basics of DevOps practices and
Kubernetes primitives. We covered creating clusters locally or on the cloud. Then, we
learned about configuration, secret, and storage management for your applications.
We explored how to update and scale an application in many different ways. We also
went through troubleshooting practices that are used heavily in Kubernetes, so that you
understand how to handle a problem quickly. Finally, we set up a monitoring system
in Kubernetes to be able to monitor and receive alert notifications in the event of a
problem. With all of these topics, we aimed to equip you with the necessary skills for
using Kubernetes in all of your DevOps practices.

About

This section is included to assist the students to perform the activities present in the book. It
includes detailed steps that are to be performed by the students to complete and achieve the
objectives of the book.

Appendix

>

298 | Appendix

Chapter 1: Introduction to DevOps

Activity 1: CI/CD Pipeline for the DevOps Blog

Solution:

Note

In this solution, Hugo is used to generate website content. Hugo is a popular open-
source static site generator that provides speed and flexibility. Documentation and
further information is available on the official website: https://gohugo.io

Perform the following steps to complete this activity:

1.	 Create a file with the name .travis.yml in the master branch of the repository.
Configure .travis.yml as follows:

Use go with version 1.11.x as the Travis-CI worker language:

language: go
go:
 - 1.11.x

Install Hugo (https://GitHub.com/gohugoio/hugo) using the "go get GitHub.com/
gohugoio/hugo" command:

install:
 - go get GitHub.com/gohugoio/hugo

Install the beautifulhugo theme by creating a themes/beautifulhugo folder
and cloning it from the GitHub repository: https://GitHub.com/halogenica/
beautifulhugo.git

Generate blog content with the hugo --theme beautifulhugo command:

script:
 - mkdir -p themes/beautifulhugo && git clone https://GitHub.com/
halogenica/beautifulhugo.git themes/beautifulhugo
 - hugo --theme beautifulhugo

https://gohugo.io
https://GitHub.com/gohugoio/hugo

Chapter 1: Introduction to DevOps | 299

Use the deploy block of Travis-CI with the provider pages and the GITHUB_TOKEN
environment variable defined in the exercises.

The deployment should be configured to run only the master branch, as follows:

deploy:
 provider: pages
 skip_cleanup: true
 GitHub_token: $GITHUB_TOKEN
 local_dir: public
 on:
 branch: master

2.	 Commit the .travis.yml file into the master branch:

git add .travis.yml
git commit -m "travis file added"
git push origin master

3.	 Trigger a build in Travis-CI for the master branch:

Figure 1.45: Triggering the build in Travis-CI

300 | Appendix

Select the master branch and fill the details:

Figure 1.46: Triggering the build in Travis-CI

4.	 Add a new blog post to the content/post folder. An example of blog content could
be as follows, in a file named 2019-02-02-kubernetes-scale.md:

title: Scaling My Kubernetes Deployment
date: 2019-02-02
tags: ["kubernetes", "code"]

Scaling my Kubernetes deployment

<!--more-->

'''sh
 $ kubectl scale deployments/kubernetes-bootcamp --replicas=4
'''

Now, check whether it is scaled up:

Chapter 1: Introduction to DevOps | 301

'''sh
 $ kubectl get deployments
 NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
 kubernetes-bootcamp 4 4 4 4 26s

 $ kubectl get pods -o wide
 NAME READY STATUS RESTARTS
AGE IP NODE
 kubernetes-bootcamp-5c69669756-9jhz9 1/1 Running 0
3s 172.18.0.7 minikube
 kubernetes-bootcamp-5c69669756-lrjwz 1/1 Running 0
3s 172.18.0.5 minikube
 kubernetes-bootcamp-5c69669756-slht6 1/1 Running 0
3s 172.18.0.6 minikube
 kubernetes-bootcamp-5c69669756-t4pcs 1/1 Running 0
28s 172.18.0.4 minikube
'''

5.	 Wait for Travis-CI to trigger an automated build with the new material:

Figure 1.47: Automated triggered build in Travis-CI

302 | Appendix

6.	 Check for the blog on the browser for the new content once the build is
completed:

Figure 1.48: Automated updates in the DevOps blog

Chapter 1: Introduction to DevOps | 303

7.	 Move the Connect CI/CD pipeline item to Done on the project board created in
Exercise 1.

Note

A complete pipeline solution in .travis.yml is available as follows:

language: go
go:
 - 1.11.x
install:
 - go get GitHub.com/gohugoio/hugo
script:
 - mkdir -p themes/beautifulhugo && git clone https://GitHub.com/
halogenica/beautifulhugo.git themes/beautifulhugo
 - hugo --theme beautifulhugo
deploy:
 provider: pages
 skip_cleanup: true
 GitHub_token: $GITHUB_TOKEN
 local_dir: public
 on:
 branch: master

304 | Appendix

Chapter 2: Introduction to Microservices and Containers

Activity 2: Installing a WordPress Blog and Database Using Docker

Solution:

Perform the following steps to complete this activity:

1.	 Create a folder named data. This folder will keep the stateful state of the database
in the next steps:

mkdir data

2.	 Start a MySQL container using the official Docker image and the following
specifications:

Use the data folder from Step 1 as the database file. Publish port 3306 to the local
system. Set the MYSQL_ROOT_PASSWORD environment variable as rootPassword. Set the
MYSQL_DATABASE environment variable as database. Set the MYSQL_USER environment
variable as user. Set the MYSQL_PASSWORD environment variable as password. Use
mysql as the name of the container. Use the mysql:5.7 container image:

docker run \
-v ${PWD} /data/:/var/lib/mysql \
-p 3306:3306 \
-e MYSQL_ROOT_PASSWORD=rootPassword \
-e MYSQL_DATABASE=database \
-e MYSQL_USER=user \
-e MYSQL_PASSWORD=password \
--name mysql \
 mysql:5.7

Chapter 2: Introduction to Microservices and Containers | 305

Wait for the MySQL container to be ready using a similar logline to [Note] mysqld:
ready for connections:

Figure 2.24: The start of the MySQL container

3.	 Start a WordPress container using the following specification:

Publish port 80 of the container to port 8080 of the host system. Link the mysql
container using the db name. Set the WORDPRESS_DB_HOST environment variable
as db:3306. Set the WORDPRESS_DB_NAME environment variable as database. Set the
WORDPRESS_DB_USER environment variable as user. Set the WORDPRESS_DB_PASSWORD
environment variable as password. Use WordPress as the name of the container. Use
the latest WordPress container image:

docker run \
-p 8080:80 \
--link=mysql:db \
-e WORDPRESS_DB_HOST=db:3306 \
-e WORDPRESS_DB_NAME=database \
-e WORDPRESS_DB_USER=user \
-e WORDPRESS_DB_PASSWORD=password \
--name WordPress \
 WordPress:latest

306 | Appendix

4.	 Open http://localhost:8080 in the browser and fill out the popular WordPress
setup form:

Figure 2.25: Language selection for installing WordPress

Chapter 2: Introduction to Microservices and Containers | 307

Add the necessary details like Sub Title, Password etc:

Figure 2.26: The admin setup for installing WordPress

308 | Appendix

5.	 Open http://localhost:8080 in the browser and check that your new blog is
running in the containers:

Figure 2.27: The home page of the WordPress blog

6.	 Stop the running containers and remove the data folder:

docker stop WordPress mysql
docker rm WordPress mysql
rm -rf ${PWD} /data

Chapter 3: Introduction to Kubernetes | 309

Chapter 3: Introduction to Kubernetes

Activity 3: Installing a WordPress Blog and Database on Kubernetes

Solution:

Perform the following steps to complete this activity:

1.	 Create a two-container stateful set definition inside the wordpress-database.yaml
file with the following specifications:

The nme should be wordpress-database and the replica count should be set to 1.
The database container should have the name of database and use the container
image of mysql:5.7. Publish the container to port 3306 and mount the data volume
to the /var/lib/mysql path. In addition, set the following environment variables:

Figure 3.24: Environment variables

Create a blog container with the name blog using the latest WordPress container
image and publish the container to port 80. In addition, set the following
environment variables:

Figure 3.25: Environment variables

Include a volume claim with the name data and 1GB storage.

310 | Appendix

The stateful set description as YAML for the specification is as follows:

apiVersion: apps/v1beta2
kind: StatefulSet
metadata:
 name: wordpress-database
spec:

//[...]

 volumeClaimTemplates:
 - metadata:
 name: data
 spec:
 resources:
 requests:
 storage: 1Gi

Note

The entire stateful set description as YAML for the specification can be found at
https://github.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/
blob/master/Lesson03/wordpress-database.yaml

2.	 Deploy the wordpress-database stateful set into the Kubernetes cluster:

 kubectl apply -f wordpress-database.yaml

Figure 3.26: Deploying stateful set

3.	 Check the status of the wodpress-database-0 pod and wait until it is ready:

kubectl get pods wordpress-database-0

Figure 3.27: Pod status

https://github.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/blob/master/Lesson03/wordpress-database.yaml
https://github.com/TrainingByPackt/Introduction-to-DevOps-with-Kubernetes/blob/master/Lesson03/wordpress-database.yaml

Chapter 3: Introduction to Kubernetes | 311

Ready 2/2 and Running indicate that both blog and database containers are running
for the wodpress-database-0 pod.

4.	 Create a proxy to the local system from the blog container using the port-forward
command of kubectl:

kubectl port-forward wordpress-database-0 8080:80

Figure 3.28: Port forwarding with kubectl

5.	 Open the forwarded address in the browser and fill in the WordPress setup form:

Figure 3.29: Language selection – WordPress Install

312 | Appendix

Add the necessary information on the admin setup page to proceed:

Figure 3.30: Admin setup – WordPress Install

Chapter 3: Introduction to Kubernetes | 313

6.	 Open the forwarded address in the browser and check that your new blog is
running in the containers:

Figure 3.31: Home page – WordPress blog

7.	 Stop the port forwarding that we started in step 4, and remove the stateful set:

kubectl delete -f wordpress-database.yaml

Figure 3.32: Cleanup

314 | Appendix

Chapter 4: Creating a Kubernetes Cluster

Activity 4: Migrating a Running Application in Kubernetes Cluster

Solution:

Perform the following steps to complete this activity:

1.	 Run a sample web application with six replicas in the cluster:

kubectl run hello-world --image=gcr.io/google-samples/hello-app:1.0
--replicas=6

Figure 4.30: Creating hello-world application

2.	 Check the status of pods of the sample web application and their nodes:

kubectl get pods -o wide

Figure 4.31: Pods and their nodes of the hello-world application

3.	 Create a node pool in GCP with a larger memory:

gcloud container node-pools create high-memory-pool --cluster=devops \
 --machine-type=n1-highmem-2 --num-nodes=2

Figure 4.32: Node pool creation

Chapter 4: Creating a Kubernetes Cluster | 315

4.	 Wait until all nodes are Ready in the cluster:

kubectl get nodes --label-columns=beta.kubernetes.io/instance-type

Figure 4.33: Kubernetes nodes after pool creation

5.	 Mark the nodes in the default node pool as unschedulable and make Kubernetes
move the workloads from the default node pool:

for node in $(kubectl get nodes -l cloud.google.com/gke-nodepool=default-
pool -o=name); do
 kubectl drain --ignore-daemonsets "$node";
done

Figure 4.34: Output of the kubectl drain for default pool

316 | Appendix

6.	 Check the status of nodes:

kubectl get nodes --label-columns=beta.kubernetes.io/instance-type

Figure 4.35: Kubernetes nodes after cordon and drain

7.	 Ensure that the pods of the sample application are moved to new nodes:

kubectl get pods -o wide

Figure 4.36: Pods and their nodes of the hello-world application

8.	 Remove the default node pool:

gcloud container node-pools delete default-pool --cluster devops

Figure 4.37: Node pool deletion

Chapter 4: Creating a Kubernetes Cluster | 317

9.	 Verify that the nodes from the default node pool are removed from the cluster:

kubectl get nodes --label-columns=beta.kubernetes.io/instance-type

Figure 4.38: Kubernetes nodes after node pool deletion

10.	 If you do not plan to use this Kubernetes cluster in the following chapters or the
future, remove the Kubernetes cluster:

gcloud container clusters delete devops

Figure 4.39: Cluster deletion

318 | Appendix

Chapter 5: Deploy an Application to Kubernetes

Activity 5: Installing and Scaling a WordPress Blog in Kubernetes

Using Helm

Solution:

Perform the following steps to complete this activity:

1.	 Install the WordPress helm chart. The release name should be devops-blog and the
username should be admin. Use devops as your password and DevOps Blog as the
blog name:

helm install --name devops-blog \
--set wordpressUsername=admin,wordpressPassword=devops \
--set wordpressBlogName="DevOps Blog" \
stable/wordpress

Figure 5.25: Helm installation of the WordPress chart

Chapter 5: Deploy an Application to Kubernetes | 319

With successful installation, the output lists all the resources installed alongside
the WordPress chart.

2.	 Wait until all the pods are running and are ready:

kubectl get pods

Figure 5.26: The WordPress installation pods

3.	 Open the home page of WordPress and check that it is installed successfully.

The URL can be found using the following commands:

Google Kubernetes Engine installation
kubectl get svc devops-blog-wordpress -o jsonpath='{.status.loadBalancer.
ingress[0].hostname}'

Minikube installation
minikube service devops-blog-wordpress --url

Figure 5.27: Minikube service Ips

320 | Appendix

WordPress homepage is as shown below:

Figure 5.28: Home page of the WordPress blog

Chapter 5: Deploy an Application to Kubernetes | 321

4.	 Scale the WordPress instances to three, as follows:

helm upgrade devops-blog --set replicaCount=3 stable/wordpress

Figure 5.29: Upgrading the Helm chart installation

5.	 Check the status of the pods with three instances:

kubectl get pods

Figure 5.30: WordPress installation pods

322 | Appendix

6.	 Check that the home page is still accessible in the browser:

Figure 5.31: Home page of the WordPress blog

7.	 Delete the WordPress installation:

helm delete --purge devops-blog

Figure 5.32: Deleting the WordPress installation

Chapter 6: Configuration and Storage Management in Kubernetes | 323

Chapter 6: Configuration and Storage Management in Kubernetes

Activity 6: Updating Configurations on the Fly

Solution:

Perform the following steps to complete this activity:

1.	 We created a ConfigMap named app-config and a secret named token earlier in
the chapter. Please include them in your solution. Create a pod definition file that
consumes this ConfigMap and the secret:

apiVersion: v1
kind: Pod
metadata:
 name: config-secret-pod
spec:
 containers:
 - name: content
 image: busybox
 command: ["sh", "-c"]
 args:
 - while true; do
 echo -en '\n';
 echo Current environment is 'cat /configurations/environment';
 echo Used token is 'cat /secrets/token';
 sleep 10;
 done;
 volumeMounts:
 - name: config-volume
 mountPath: "/configurations"
 - name: secret-volume
 mountPath: "/secrets"
 volumes:
 - name: config-volume
 configMap:
 name: app-config
 - name: secret-volume
 secret:
 secretName: token

324 | Appendix

2.	 Deploy the pod:

$ kubectl apply -f Pod.yaml -n lesson-6

Figure 6.18: Deploying config-secret-pod to the cluster

3.	 Make sure that the pod is running and check the logs to see the current
environment coming from ConfigMap and the token coming from the secret:

$ kubectl get pods -n lesson-6
$ kubectl logs config-secret-pod -n lesson-6

Figure 6.19: Checking the logs of config-secret-pod

4.	 Replace the current environment variable set by the app-config ConfigMap:

$ kubectl create configmap app-config -n lesson-6 --from-
literal=environment=prod -o yaml --dry-run | kubectl replace -f -

 Figure 6.20: Replacing the content of app-config to set the environment as prod

Chapter 6: Configuration and Storage Management in Kubernetes | 325

5.	 Check the logs to see the updated environment information:

$ kubectl logs config-secret-pod -n lesson-6

Figure 6.21: Checking the logs of config-secret-pod to see the change

Note

It may take up to a few minutes for the pod to get the changes.

6.	 Generate and encode a 32-byte token:

$ openssl rand -hex 32

Figure 6.22: Creating a 32-byte random token

Note

The token generated will be different for you.

7.	 Replace the current token set by the secret:

$ kubectl create secret generic token -n lesson-6 --from-
literal=token=<new-token> -o yaml --dry-run | kubectl replace -f -

Figure 6.23: Replacing the content of the secret with the new token

326 | Appendix

8.	 Recheck the logs to see the updated token:

Figure 6.24: Checking the logs of config-secret-pod to see the change

Activity 7: Running a Persistent Database on Kubernetes

Solution:

Perform the following steps to complete this activity:

1.	 Create a Deployment definition file for MySQL, which uses a secret for the user
password and a Volume using a PVC:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: mysql-deployment
 labels:
 app: mysql
spec:
 replicas: 1
 selector:
 matchLabels:
 app: mysql
 template:
 metadata:
 labels:
 app: mysql
 spec:
 containers:
 - image: mysql:5.6
 name: mysql-container
 env:
 - name: MYSQL_ROOT_PASSWORD

Chapter 6: Configuration and Storage Management in Kubernetes | 327

 valueFrom:
 secretKeyRef:
 name: mysql-secret
 key: password
 ports:
 - containerPort: 3306
 name: mysql-port
 volumeMounts:
 - name: mysql-volume
 mountPath: /var/lib/mysql
 volumes:
 - name: mysql-volume
 persistentVolumeClaim:
 claimName: mysql-pvc

2.	 Create a service definition file for your deployment:

apiVersion: v1
kind: Service
metadata:
 name: mysql-svc
spec:
 ports:
 - port: 3306
 selector:
 app: mysql

3.	 Generate a password and deploy a secret using the password as a literal to the
cluster:

$ openssl rand -hex 8
$ kubectl create secret generic mysql-secret --from-
literal=password=<generated-password> -n lesson-6

Figure 6.25: Creating a random token and a secret using the token

328 | Appendix

4.	 Create a PVC that requests 20GB of storage and deploy it to the cluster. Then,
check whether PV is automatically created by Kubernetes and bound to the PVC:

$ kubectl apply -f mysql-pvc.yaml -n lesson-6
$ kubectl get pvc -n lesson-6

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: mysql-pvc
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 20Gi

Figure 6.26: Deploying a MySQL PVC to the cluster and seeing whether it's bound

5.	 Deploy MySQL Deployment and Service to the cluster:

$ kubectl apply -f mysql-deployment.yaml -n lesson-6
$ kubectl apply -f mysql-svc.yaml -n lesson-6

Figure 6.27: Deploying MySQL Deployment and Service to the cluster

Chapter 6: Configuration and Storage Management in Kubernetes | 329

6.	 Check whether the pod is running and verify that MySQL works properly by trying
to access the server:

$ kubectl get pods -n lesson-6

Figure 6.28: Checking whether the MySQL pod is running
$ kubectl run -it --rm --image=mysql:5.6 mysql-test -n lesson-6 -- mysql
-h mysql-svc -p<generated-password>
Press enter

Figure 6.29: Running another pod as a client to test the health of MySQL server

330 | Appendix

Chapter 7: Updating and Scaling an Application in Kubernetes

Activity 8: Enabling Autoscaling and Performing a Rolling Update

Solution:

Perform the following steps to complete this activity:

1.	 Create a deployment definition file that uses the suakbas/lesson07:v1 image and
has the RollingUpdate strategy type set; this application does a CPU-intensive
operation:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: lesson07-deployment
spec:
 replicas: 1
 strategy:
 type: RollingUpdate
 selector:
 matchLabels:
 app: lesson07
 template:
 metadata:
 labels:
 app: lesson07
 spec:
 containers:
 - image: suakbas/lesson07:v1
 imagePullPolicy: Always
 name: lesson07
 resources:
 requests:
 memory: "500m"
 cpu: "250m"

Chapter 7: Updating and Scaling an Application in Kubernetes | 331

2.	 Deploy the deployment and check whether the pod is running:

$ kubectl apply -f deployment.yaml -n lesson-7
$ kubectl get pods -n lesson-7

Figure 7.21: Deploying the lesson07-deployment to the cluster

3.	 Create a HorizontalPodAutoscaler for this deployment using the suakbas/
lesson07:v1 image, which has two as the minimum number of pods and five as the
maximum. It should also have a CPU percentage target of 50%:

$ kubectl autoscale deployment lesson07-deployment --min=2 --max=5
--cpu-percent=50 -n lesson-7

Figure 7.22: Setting an HPA for the deployment

4.	 Check the HorizontalPodAutoscaler for the deployment using the suakbas/
lesson07:v1 image to see the current status:

$ kubectl get hpa -n lesson-7

Figure 7.23: Checking the HPA details

5.	 Check the pods to see whether they are scaled up and are running without any
problems:

$ kubectl get pods -n lesson-7

Figure 7.24: Checking whether the pods run without any problems

332 | Appendix

6.	 Perform a rolling update by changing the used image to suakbas/lesson07:v2. This
application just sleeps, which relieves the CPU; then, check whether the rolling
update has finished successfully:

$ kubectl set image deployment/lesson07-deployment lesson07=suakbas/
lesson07:v2 --record -n lesson-7

$ kubectl rollout status deployment/lesson07-deployment -n lesson-7

Figure 7.25: Performing a rolling update

7.	 Recheck the HorizontalPodAutoscaler that you created before to see the current
status after the update. Watch the change in the number of pods and check the
latest status after a few minutes:

$ kubectl get hpa -n lesson-7
$ kubectl get pods -n lesson-7

Figure 7.26: Checking the HPA details and the pods

8.	 Clean up the environment by removing the namespace:

$ kubectl delete ns lesson-7

Chapter 8: Troubleshooting Applications in Kubernetes | 333

Chapter 8: Troubleshooting Applications in Kubernetes

Activity 9: Troubleshooting an Application in Kubernetes

Solution:

Perform the following steps to complete this activity:

1.	 Create a Pod definition file that uses the suakbas/chapter08:v1 image and is
consuming the LOG_LEVEL and ENABLE_CONNECTION environment variables from a
ConfigMap named app-config. Name the file as pod.yaml:

apiVersion: v1
kind: Pod
metadata:
 name: app
spec:
 containers:
 - name: app
 image: suakbas/lesson08:v1
 env:
 - name: LOG_LEVEL
 valueFrom:
 configMapKeyRef:
 name: app-config
 key: log-level
 - name: ENABLE_CONNECTION
 valueFrom:
 configMapKeyRef:
 name: app-config
 key: enable-connection

2.	 Create a ConfigMap with the LOG_LEVEL field set to INFO and ENABLE_CONNECTION set
to No. Name the file as configmap.yaml:

apiVersion: v1
kind: ConfigMap
metadata:
 name: app-config
data:
 log-level: "INFO"
 enable-connection: "No"

334 | Appendix

3.	 Deploy the ConfigMap and the Pod to the lesson-8 namespace:

$ kubectl create -f configmap.yaml -n lesson-8
$ kubectl create -f pod.yaml -n lesson-8

Figure 8.15: Deploying the ConfigMap app-config and the Pod app

Check whether the Pod is running:

$ kubectl get pods -n lesson-8

Figure 8.16: Checking the app status

4.	 Try to figure out why the Pod is constantly terminating instead of running. Use
kubectl logs to check the logs of the application:

$ kubectl logs app -n lesson-8

Figure 8.17: Getting the logs of the app

As you see, the logging level does not allow you to understand the problem. Let's
try changing the logging level to debug.

5.	 Change the log level by updating the LOG_LEVEL field from the ConfigMap to DEBUG:

$ kubectl edit configmap app-config -n lesson-8

Figure 8.18: Modifying the app-config

Chapter 8: Troubleshooting Applications in Kubernetes | 335

6.	 Use kubectl logs again to check more verbose logs:

Note

Since we consume the ConfigMap values as environment variables, we need to
restart the Pod to get the latest changes either by waiting for the next restart or by
deleting/re-creating the Pod.

$ kubectl logs app -n lesson-8

Figure 8.19: Checking the logs of app

Now, we have more information to understand the problem. It seems that the
ENABLE_CONNECTION environment variable is set to No. Let's confirm this by checking
inside the Pod.

7.	 Check the set environment variables using kubectl exec:

$ kubectl exec app -n lesson-8 -- printenv

Figure 8.20: Printing the environment variables inside the app

Note

Since the application will keep crashing because of the problem, you may need
to execute this command multiple times to print the environment variables
successfully.

336 | Appendix

We confirm that ENABLE_CONNECTION is set to No.

8.	 Fix the problem by setting ENABLE_CONNECTION to Yes by updating the configmap.
yaml file. Apply the updated file to the cluster:

apiVersion: v1
kind: ConfigMap
metadata:
 name: app-config
data:
 log-level: "INFO"
 enable-connection: "Yes"
$ kubectl apply -f configmap.yaml -n lesson-8

Figure 8.21: Modifying app-config

9.	 Check the logs to verify the solution:

Note

Since we consume the ConfigMap values as environment variables, we need to
restart the Pod to get the latest changes either by waiting for the next restart or by
deleting/re-creating the Pod.

$ kubectl logs app -n lesson-8

Figure 8.22: Checking the logs of the app

10.	 You can clean up everything now by removing the namespace:

$ kubectl delete ns lesson-8

Chapter 9: Monitoring Applications in Kubernetes | 337

Chapter 9: Monitoring Applications in Kubernetes

Activity 10: Setting Up Alert Notifications in Kubernetes

Solution:

Perform the following steps to complete this activity:

1.	 Create an Incoming Webhook for the devops channel. Click on your username and
then click on Customize Slack:

Figure 9.43: Customizing Slack to add Incoming Webhooks

338 | Appendix

2.	 On the next page, click on Configure Apps, which will direct you to the following
screen. Here, search for Incoming Webhooks, as follows:

Figure 9.44: Searching for Incoming Webhooks

3.	 Click on Add Configuration, as follows:

Figure 9.45: Adding Incoming Webhooks configurations

Chapter 9: Monitoring Applications in Kubernetes | 339

4.	 Select the channel that you want to set for the alerting notifications, and then
click on Add Incoming WebHooks integration:

Figure 9.46: Adding Incoming Webhooks to the devops channel

5.	 From the resulting page, note down the Webhook URL that will be used to
configure Alertmanager:

Figure 9.47: The generated Webhook URL

If you can see the Webhook URL already generated, this means that everything
was successful. Please take a note of this URL.

340 | Appendix

6.	 Prepare an alert rule in Prometheus.

Here is an alert rule that you can use to check the status of the test container:

groups:
 - name: test-pod-not-running-rule
 rules:
 - alert: TestPodNotRunning
 expr: (kube_pod_container_status_running { namespace="lesson-9",
container="test" } == 0)
 for: 30s
 labels:
 severity: critical
 annotations:
 description: "{{$labels.namespace}}/{{$labels.pod}} is not
running"
 summary: "{{$labels.pod}} is not running"

7.	 Modify the prometheus-server ConfigMap to specify this alert:

$ kubectl edit configmap prometheus-server -n lesson-9

Note

kubectl edit uses Vim as the default text editor. If you want to use another one,
such as nano, you can set the KUBE_EDITOR environment variable with the name of
your favorite text editor. For example, you can set nano as the default text editor as
follows:

$ export KUBE_EDITOR="nano"

Note

Copy the alert rule from the previous step and paste it under alerts, as shown in
the following screenshot:

Figure 9.48: Modifying the prometheus-server ConfigMap

Chapter 9: Monitoring Applications in Kubernetes | 341

This is how it should look after pasting the alert rule under alerts from the
previous step:

Figure 9.49: Adding the new alert rule

8.	 Create a Slack receiver in Alertmanager:

Here is a Slack receiver that you can use to configure Alertmanager:

receivers:
- name: "slack"
 slack_configs:
 - channel: "devops"
 send_resolved: true
 api_url: <Webhook_URL>
 title: "{{ .CommonAnnotations.description }}"
 text: "Description: {{ .CommonAnnotations.description }}"
route:
 routes:
 - match:
 alertname: TestPodNotRunning
 receiver: "slack"

342 | Appendix

9.	 Modify the prometheus-alertmanager ConfigMap to add the Slack receiver:

$ kubectl edit configmap prometheus-alertmanager -n lesson-9

Note

Copy the receiver from the previous step and paste it under receivers, as shown
in the following screenshot:

Figure 9.50: Modifying the prometheus-alertmanager ConfigMap

Here is how it should look after pasting the receiver from the previous step under
receivers:

Figure 9.51: Adding the Slack receiver

Chapter 9: Monitoring Applications in Kubernetes | 343

10.	 Check the Prometheus UI to see whether the alert is visible on Prometheus:

Figure 9.52: The Prometheus Alerts page

This shows that we successfully created an alert rule, and it is not firing any alerts
yet.

11.	 Create a file named pod.yaml using the following Pod definition, which has a
mistake in the image name, written as busybo instead of busybox.

$ vi pod.yaml

Note

Copy and paste the following Pod definition and exit with wq.

Here is the Pod definition with the busybo image:

apiVersion: v1
kind: Pod
metadata:
 name: test-pod
spec:
 containers:
 - name: test
 image: busybo
 command: ["/bin/sh"]
 args: ["-c", "sleep 99999"]

344 | Appendix

12.	 Deploy test-pod; then, check to see the error:

$ kubectl apply -f pod.yaml -n lesson-9
$ kubectl get pod test-pod -n lesson-9

Figure 9.53: Deploying test-pod

Here, you can see the pod status, ImagePullBackOff, which refers to a problem
where the image cannot be downloaded; this is because the busybo image does not
really exist:

Figure 9.54: Checking whether the test-pod is running

13.	 Check the Prometheus UI to see whether the alert is firing; note that it could take
about a minute to see the alert firing:

Figure 9.55: The activated alert in Prometheus

Chapter 9: Monitoring Applications in Kubernetes | 345

14.	 Check the devops channel on Slack to see the alert notification:

Figure 9.56: the alerting notification received in Slack

15.	 Fix the image to be busybox:

$ kubectl set image pod/test-pod test=busybox -n lesson-9
$ kubectl get pod test-pod -n lesson-9

Figure 9.57: Fixing the test-pod image

346 | Appendix

16.	 Check the devops channel on Slack again to see the resolved notification:

Figure 9.58: The resolved notification received in Slack

Here, take a closer look at the colors on the left-hand side of the notifications.
Red corresponds to the failure notification, whereas green refers to the resolved
notification.

17.	 To clean up the environment, you can delete the lesson-9 namespace:

$ kubectl delete ns lesson-9

About

All major keywords used in this book are captured alphabetically in this section. Each one is
accompanied by the page number of where they appear.

Index

>

A
abstracted:140
access: 22-23, 58, 69,

78, 81-82, 93, 96,
139-141, 147, 165-166,
177, 182-183, 186, 230,
241, 246, 265, 268

accessible: 45-46, 141, 149
acquaint:69
activate: 118, 121
active: 3, 15, 18-19, 70,

113, 143, 190, 193,
195-196, 248, 284

activities: 5, 33,
124, 126-127

activity: 33-36, 42, 61-62,
64-65, 92, 94-95, 100,
124, 126, 130, 147-149,
175-176, 185-186,
219-221, 248-250, 256,
265, 286, 292-294

addons: 242-243
address: 40, 79, 95,

102-103, 118, 140,
177, 283, 286, 288

adhering: 212, 218
adopted: 4, 42, 177
advanced: 115, 118, 190
aliases:84
alibaba: 41, 73
amazon: 53, 70, 113, 116
analysis: 4, 18
analyzed: 112-113, 130
analyzing: 112, 255
android:43
annotate: 131, 133
annotation: 131, 278
ansible: 78, 152
api-driven:73
apiversion: 85-87,

89-90, 140, 155-159,

161, 168-172, 177-180,
182-184, 197-202,
204-205, 207, 213,
215, 218, 235, 238,
244, 280-281

app-config: 155-156,
158-161, 175, 249

applied: 186, 213
applies:112
approach: 2, 4, 6, 32, 40,

100, 114, 224, 254
apt-get: 52, 54
assets: 226, 255
automate: 84, 152
automated: 18, 20-22,

33, 35-36, 152
automation: 3, 21, 29,

34, 101, 117, 134,
152, 176-177, 197

autoscale:218
autoscaler: 218-221, 224

B
backing:185
backlog: 6, 8-9, 12-13
banking: 29, 40
bankruptcy:165
branch: 17, 30, 33-35
browser: 18, 31, 35, 61,

65, 79, 95, 102-103,
149, 265, 268, 286

bug-fixing:40
building: 21, 36, 51, 53-55,

66, 70, 84-85, 87, 100,
139, 152, 163, 209

built-in: 153, 158, 163,
166, 171, 177, 181, 186,
213, 218, 221, 258

C
chapter: 1, 3, 9, 34, 36, 42,

62, 65-66, 69-70, 77, 96,
99-100, 127, 129-130,
136, 140, 145, 147, 149,
151, 174-175, 185-186,
189-190, 206, 209-210,
212-213, 219-221,
223-224, 226, 249-250,
253-254, 293-295

charts: 129, 143-144,
147, 263

checked: 8, 15, 25, 46-47,
57, 78, 114-116, 250, 257

checking: 24, 72-73, 78,
81-82, 95, 162-163, 173,
205, 208, 216-217, 226,
231-232, 237, 242-245,
247-248, 265-267

client: 26, 43, 45-46,
49, 56, 66, 78, 83,
85, 130, 135, 143,
145-146, 278-279

clients: 259, 294
closed: 7, 19, 248
closer:41
cluster: 33, 53, 69-78,

81-85, 87-88, 90,
95, 99-102, 107-109,
111-116, 118, 120-121,
123-127, 130, 132,
134-136, 138-141, 143,
145-147, 149, 155, 162,
168-170, 175, 180-186,
205-206, 210, 212-213,
215, 218-221, 229,
240-242, 247-249,
256-257, 263, 270,
275-279, 281, 283, 294

clusterip:202
clusters: 27, 33, 70-71, 74,

78, 82, 96, 100, 102,
111-118, 120, 123, 129,
132, 145, 147, 149, 295

coherently:61
column: 12-13
columns:12
combine: 48, 149, 231, 256
coming: 175, 184, 242, 285
command: 45-46, 49-52,

56-58, 60-61, 75-78,
82-83, 85-86, 88, 95,
105-109, 111, 123-124,
130-138, 141-143,
146-147, 154, 156-158,
161, 169-171, 173-174,
178, 180, 199, 207,
209, 213-215, 218-219,
231-235, 238-244

commands: 16-17, 45,
52, 62, 74-77, 80, 82,
101, 116, 130-136, 141,
143, 149, 182-184,
213-215, 218, 221, 223,
238-239, 241-243,
245, 247, 249-250

commercial:113
commit: 14, 16-17, 35, 155
commits: 14-15, 18-19, 70
committing:17
commodity:210
common: 8, 40, 165,

177, 192, 220, 242,
250, 284, 294

commonly: 90, 163, 197,
226, 253, 257, 284

community: 70,
145, 248, 250

component: 73,
77, 265, 294

components: 71-78, 83,
85, 96, 100, 105, 114,
116, 124, 258-259

composed:258
compromise: 165-166
compute: 120, 123, 178
computer: 16, 114,

145-146, 152, 211
computers:210
computing: 42, 72, 210
concept: 186, 212, 221,

224, 226, 231, 250,
284-285, 294

concepts: 1, 36, 39, 44,
48, 66, 69-70, 85, 177,
181, 224, 227, 250

conference:4
config: 82, 123, 153,

160, 162, 260
config-: 162-163
configmap: 153-163, 175,

249, 259-261, 293-294
configmaps: 155-161,

206, 259
configpod:161
configs: 153, 157, 162, 260
connecting: 21-22,

130, 139-140
connection: 42, 141,

165, 226, 249
container: 2-3, 21, 26-27,

36, 41-44, 48-54, 57-58,
60-62, 64-66, 70-71,
74, 77, 85-87, 93-95,
115-116, 123, 131, 134,
158, 162-163, 171-172,
176-177, 181, 229-231,
233, 237, 239-241, 243,
245-246, 257-258, 283

containers: 26, 36, 39,
41-45, 47-48, 50-51, 53,
57-62, 65-66, 70-71,
73-74, 76-77, 80, 85-89,
91-93, 95, 114, 131, 139,
143, 153, 158-159, 161,

172, 176-181, 198-202,
204-205, 207, 210,
213-215, 229-232,
234-235, 238-240,
244, 258, 281

context: 82, 294
contextual: 225-226
controlled: 90, 228, 239
controller: 73, 92, 117,

130, 197-200, 203-204,
213, 228, 232

cooperate:4
copied: 25, 108
copy-paste:155
coreos: 73, 116-117
customer: 2-4, 32, 40,

70, 165, 190, 254, 293
customers: 2-4, 28, 40,

175, 224, 255-256
customize: 165,

256, 286, 293
customized: 113, 260

D
daemonset:232
darwin:82
dashboard: 27,

78-81, 84, 96, 100,
262-263, 270-271,
274-278, 282, 294

dashboards: 113, 253, 256,
261-263, 275, 294

database: 32, 42, 61-62,
64-66, 70, 92, 94-96,
147, 149, 152, 163,
165, 185, 232, 257

databases: 59, 65,
70, 90, 143, 254

dealing:9
debian: 86-87
debois:4

debugging:248
decode: 169, 173, 267
decoding: 173, 267
decouple:163
decoupled: 140,

165, 174, 248
decouples:139
decoupling: 153, 165
depicted:6
deploy: 29, 40, 78, 81,

92, 95, 129-130, 138,
140, 143, 145, 147,
149, 151-152, 155, 161,
168-170, 175, 180,
182-186, 196, 201-202,
206-207, 215, 218-219,
236, 244, 249, 254,
279-281, 294

deployed: 116, 157, 175,
182-184, 205, 248, 260

deploying: 4-5, 90, 130,
136, 149, 162, 180, 207,
215, 236, 244, 281

deployment: 2, 29,
53, 89-90, 131-134,
136-141, 143, 146, 152,
186, 190-192, 199-209,
213-221, 232, 280-281

deploys:259
derive:257
derives:4
detect: 130, 240, 254-256
detectable:255
detected:254
detecting:254
developers: 3-4, 9,

14, 18-19, 32, 43,
163, 176, 254

developing: 3, 40,
132, 153, 209

device: 28, 255
diagram: 185, 193

digital:163
dimension:112
dimensions:112
direct: 194, 201, 293
directing:234
directly: 29, 40, 130,

156, 171, 182
directory: 52, 61, 293
disabled: 191, 196
disaster: 116, 225
domain:140
domino:41
dozens:3
dramatic:40
drawbacks:70
drones:2
dropdown:79
dropped:226
during: 166, 175, 192,

203, 226, 292
dxnlcgo:168
dynamic: 176-177, 181-182

E
e-commerce: 185, 224
ecosystem: 43-44, 176
embrace: 224, 254
embraced: 65, 165
emphasizes:5
encode: 168, 176
encoded: 168, 170
encounters:232
encourage:36
encourages:153
encrypt:166
encrypted:166
encrypting:166
encryption:166
endpoint: 258,

278-279, 282-283
endpoints: 130, 179, 182

end-to-end: 18, 224-225
end-user: 26, 28
engines:43
ephemeral: 57, 59,

62, 90, 139, 177
evident: 3, 77
executable: 52, 75, 82, 146
exercise: 3, 9, 15-16, 18,

21-22, 25, 29, 31, 35, 44,
48-49, 51, 53-54, 57,
59-61, 74-75, 78, 81-82,
84, 101-102, 111, 114,
118-119, 124-125, 136,
138, 140-141, 143, 145,
147, 160, 173, 180, 207,
209, 215, 220-221, 235,
237, 243, 247, 249-250,
259, 263, 278-279,
282, 286, 288, 292

F
facebook: 3, 224
facilitate:15
filesystem: 43, 48, 52, 58
five-node:102
framework:33
frontend: 40, 139, 196

G
gce-pd:184
gce-pod:178
gce-volume:178
gcloud: 123, 178
gh-pages: 17, 30, 33
github: 1, 7-23, 25-27,

29-31, 33-35, 54, 60,
70-71, 77, 102, 114,
143-144, 164, 228, 248,
261, 279, 283-284

gluster:179

glusterfs: 177, 179, 182

H
hashicorp:164
hosted: 113-116, 118, 124
hostname:105
httpget:233

I
imperative: 130-133,

135-136, 149

J
jenkins: 20, 143
json-typed:286

K
key-value: 154, 157, 166
keywhiz:164
keyword:176
kubeadm: 100-102,

105-106, 108-109, 111
kubeconfig:124
kubectl: 78, 81-84,

92-93, 95, 107, 111,
124, 130-138, 141, 143,
146-147, 149, 155-158,
160-163, 168-171,
173-174, 180-184, 199,
201, 203, 205-209,
213-219, 221, 223, 231,
236-247, 249-250,
263, 265-268, 281

kubelet: 74, 77, 85
kube-proxy: 74, 77
kubernetes: 2-3, 7-8,

14-15, 19-21, 26-27,
36, 42, 53, 65-66,

69-75, 78-85, 87-90,
92-93, 95-96, 99-102,
104, 107-108, 110-118,
120-121, 123-127,
129-136, 138-140,
143-147, 149, 151-156,
158, 163, 166-168,
171, 174-177, 181-186,
189-190, 197-201, 203,
206-207, 209-210,
212-215, 218-221,
223-224, 226-228,
230-235, 237-238,
242-243, 247-248,
250, 253-254,
256-258, 263, 275-278,
282-285, 293-295

L
labels: 7, 88-89, 91, 96,

134, 140, 198-202,
204-205, 207, 214-215,
257-258, 280

layered: 43, 51
layers: 41, 43, 51, 57

M
managed: 26, 32, 87, 90,

101, 112, 114-116, 118,
124, 126-127, 132, 134,
152, 164, 179, 184-186,
197, 219, 232, 263

mapping: 57-61, 65
max-limit: 160, 162
maxsurge: 203-204
metadata: 85-91, 140,

155-159, 161, 168-172,
177-180, 182-184,
197-202, 204-205,
207, 213-215, 218,

235, 238, 243-244,
265, 268, 279-281

minikube: 26-27, 74-78,
82, 84, 114, 136, 140,
145, 147, 175, 185,
242-243, 248

mongodb:143
mysqld:64

N
namespace: 79, 140, 146,

155-158, 160, 169-171,
207, 215, 220, 236, 244,
249, 257-258, 263,
265-266, 283, 294

nginx-: 201-203

O
on-call:248
ondelete: 197-198
one-node: 75, 77-78
onfailure:231
ongoing: 6, 112
on-hands:127
online:248
on-premise: 26, 71, 73,

100, 112-113, 116-117, 177
overflow:248
overhead: 41-42, 114
overlap:112

P
package: 26, 33, 114,

129-130, 143, 145,
147, 149, 206, 279

persistent: 58, 62,
90-91, 151, 178-179,
181-182, 184-185

pod-name: 231, 239-242

podstatus:228
points: 70, 88, 149, 164
primitives: 117, 124, 295
probe-pod: 235-237
prometheus: 253,

257-261, 263-265,
268-270, 273, 278-280,
282-283, 293-294

promhttp: 279-280
promql: 257-258
python:278

R
raspberry:100
reckless:190
runtime: 4, 32, 40-44,

46, 57, 66, 73-74,
77, 85, 152, 163

runtimes: 42, 74

S
scaling: 78, 85, 87, 90, 130,

147, 186, 189, 209-213,
215-217, 219, 221, 224

service: 2, 9, 21, 28-29,
40-41, 45, 53, 70, 74,
85, 101-102, 113, 115-116,
124, 131, 139-143, 166,
186, 190, 201-203, 213,
226, 234, 236, 254,
258, 280-281, 283

smarthost:260

T
targetport:140
tcpsocket:233
terraform:78
test-file:181
testing: 2-3, 5, 18, 20-22,

32, 40, 66, 72, 112, 114,
132, 136, 194, 203, 210

test-pod: 244-247
test-pvc:183
test-svc: 197-198
test-token: 168-171
tiller: 143, 146
timeframe:8

U
ubuntu: 47, 51-52, 54

V
visualizer:257
volumes: 39, 57, 59, 66,

86, 90, 92, 143, 149, 153,
158-159, 161, 171-172,
177-181, 183, 231

W
webhook: 286, 293
webhooks: 285-286,

292-294
webserver: 54-56, 60-61
wordpress: 42, 61-66,

92-96, 129-130,
143-145, 147-149

workflow:112
workflows:176

	Preface
	Introduction to DevOps
	Introduction
	DevOps' Effect on Industry
	DevOps Culture and its Benefits

	The DevOps Toolchain
	Plan
	Exercise 1: Creating a Repository and Project Board on GitHub
	Create
	Exercise 2: Creating a DevOps Blog
	Verify
	Exercise 3: Connecting the DevOps Blog to a CI/CD System
	Package
	Release
	Exercise 4: Releasing the DevOps Blog
	Configure
	Monitor
	Activity 1: CI/CD Pipeline for the DevOps Blog

	Summary

	Introduction to Microservices and Containers
	Introduction
	Introduction to Docker
	The Fundamental Concepts of Docker
	Exercise 5: Creating a "Hello World" Container in Docker

	Building Docker Images
	Dockerfiles
	The Docker Registry
	Exercise 6: Building a Docker Image and Pushing it to Docker Hub

	Running Docker Containers
	Exercise 7: Running Docker Containers, Volume Mapping, and Port Sharing
	Activity 2: Installing a WordPress Blog and Database Using Docker

	Summary

	Introduction to Kubernetes
	Introduction
	What is Kubernetes?

	Kubernetes Architecture
	Master Components
	Node Components
	Exercise 8: Installing and Starting a Local Kubernetes Cluster

	Accessing Kubernetes Clusters
	Exercise 9: Checking Application Status in Kubernetes Dashboard
	Exercise 10: Carrying Out Cluster Management Using kubectl

	Fundamental Kubernetes Resources
	The Pod
	Replication Sets
	Deployment
	Stateful Sets
	Activity 3: Installing a WordPress Blog and Database on Kubernetes

	Summary

	Creating a Kubernetes Cluster
	Introduction
	Manual Kubernetes Cluster Setup
	Exercise 11: Creating a Kubernetes Cluster Using kubeadm

	Kubernetes Cluster Considerations
	Development or Production-Ready Setup
	In-House or Managed Services
	On-Premises or Cloud Infrastructure
	Vanilla Kubernetes or Custom Solutions

	Kubernetes Platform Options
	Local Machine Solutions
	Hosted Solutions
	Turnkey Solutions
	Heptio
	CoreOS Tectonic
	Red Hat OpenShift
	Exercise 12 – Creating Managed Kubernetes Clusters on GCP
	Activity 4: Migrating a Running Application in Kubernetes Cluster

	Summary

	Deploy an Application to Kubernetes
	Introduction
	Object Management in Kubernetes
	Imperative Commands
	Imperative Configuration
	Declarative Configuration
	Exercise 13: Deploying Applications Using kubectl

	Service Discovery in Kubernetes
	Exercise 14: Access Applications Using Services

	Kubernetes Package Manager: Helm
	Exercise 15: Installing Helm in the Kubernetes Cluster
	Activity 5: Installing and Scaling a WordPress Blog in Kubernetes Using Helm

	Summary

	Configuration and Storage Management in Kubernetes
	Configuration Management
	Infrastructure Configurations
	Runtime Configurations

	Configuration Management in Kubernetes
	Creating a ConfigMap
	Updating a ConfigMap
	Consuming ConfigMaps from a Pod
	Exercise 16: Create ConfigMaps from a Literal and a File

	Secret Management
	Secret Management Best Practices
	Identifying Secrets
	Decoupling Secrets from the Source Code
	Rotating Secrets
	Principle of Least Privilege
	Preventing Printing Out Secrets on Application Logs
	Encryption at Rest
	Secret Management in Kubernetes
	Creating a Secret
	Updating a Secret
	Consuming Secrets from a Pod
	Exercise 17: Create and Update a Secret
	Activity 6: Updating Configurations on the Fly

	Storage Management
	Storage Management in Kubernetes
	Volume
	emptyDir
	gcePersistentDisk
	glusterfs
	Exercise 18: Use emptyDir Volume to Share Content Between Containers
	Persistent Volume (PV)
	Persistent Volume Claim (PVC)
	Access Modes
	Storage Class

	Activity 7: Running a Persistent Database on Kubernetes
	Summary

	Updating and Scaling an Application in Kubernetes
	Updating an Application
	Blue-Green Deployments
	Rolling Updates
	Canary Releases
	Dark Launches and Feature Toggles
	Software Update versus Software Upgrade

	Updating an Application in Kubernetes
	StatefulSet Update Strategies
	OnDelete
	RollingUpdate
	Deployment Update Strategies
	Recreate
	RollingUpdate
	Performing Blue-Green Deployment in Kubernetes
	Performing Rolling Updates in Kubernetes
	maxSurge
	maxUnavailable
	Updating a Deployment Using a Rolling Update
	Updating an Application using Helm
	Exercise 19: Updating a Deployment in Kubernetes Using a Rolling Update
	Scaling an Application
	Horizontal versus Vertical Scaling
	Autoscaling
	Strong versus Eventual Consistency

	Scaling an Application in Kubernetes
	Exercise 20: Scaling a Deployment Up and Down in Kubernetes
	Horizontal Pod Auto-Scaler (HPA)
	Activity 8: Enabling Autoscaling and Performing a Rolling Update

	Summary

	Troubleshooting Applications in Kubernetes
	Introduction
	Troubleshooting
	Identifying the Problem
	Improving Tests
	Documentation
	Tools
	Logging
	Logging levels

	Troubleshooting Applications in Kubernetes
	Pod Life Cycle
	Pod Status
	Pod Conditions
	Condition Types
	Pod Phase
	Restart Policy
	Container States
	Auto Recovery
	Health checks
	Liveness Probe
	Readiness Probe
	Exercise 21: Using Liveness and Readiness Probes in Kubernetes
	Creating a Termination Log
	Handy Commands for Troubleshooting
	Other Handy Commands
	Action Commands
	Suggestions for Some Common Problems
	Lack of Resources
	Image Pull Failure
	Exercise 22: Fixing a Pod Failure in Kubernetes
	Ask the Community
	Activity 9: Troubleshooting an Application in Kubernetes

	Summary

	Monitoring Applications in Kubernetes
	Monitoring
	Infrastructure Monitoring
	Application Performance Monitoring (APM)
	Alerting
	Tools

	Monitoring Applications in Kubernetes
	Prometheus
	Alertmanager
	Grafana
	Creating a Dashboard in Grafana
	Exercise 23: Installing Prometheus and Grafana

	Custom Metrics
	Exercise 24: Exposing a Custom Metric in Prometheus

	Exposed Metrics in Kubernetes
	Slack
	Incoming Webhooks
	Exercise 25: Signing Up for Slack and Creating a Workspace
	Activity 10: Setting Up Alert Notifications in Kubernetes

	Summary

	Appendix
	Index
	_GoBack
	_GoBack
	_Hlk1508706
	_Hlk1508714
	_Hlk1510798
	_Hlk1510806
	_Hlk1510818
	_Hlk1510868
	_Hlk1510879
	_Hlk1510890
	_Hlk1510902
	_Hlk1513098
	_Hlk1513375
	_GoBack
	_GoBack
	_Hlk1514334
	_Hlk1514341
	_Hlk1514353
	_Hlk1514361
	_Hlk1514375
	_Hlk1514379
	_Hlk1514387
	_Hlk1514521
	_Hlk1514532
	_GoBack

