

D3.js Quick Start Guide

Create amazing, interactive visualizations in the browser
with JavaScript

Matthew Huntington

BIRMINGHAM - MUMBAI

D3.js Quick Start Guide
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudari
Acquisition Editor: Noyonika Das
Content Development Editor: Mohammed Yusuf Imaratwale
Technical Editor: Sushmeeta Jena
Copy Editor: Safis Editing
Project Coordinator: Hardik Bhinde
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Alishon Mendonsa
Production Coordinator: Shantanu Zagade

First published: September 2018

Production reference: 1260918

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78934-238-3

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
https://www.packt.com/
https://www.packt.com/

Contributors

About the author
Matthew Huntington has worked as a developer for about 15 years now, and has a full
understanding of all aspects of development (server side, client side, and mobile). He
graduated magna cum laude from Vassar College with a degree in computer science in
which he received departmental honors. He's worked for many clients in New York,
including Nike, IBM, Pfizer, MTV, Chanel, Verizon, Goldman Sachs, Nestle, AARP, and
BAM. He's worked with companies in pretty much all of the major industries applicable to
development, and he has a deep understanding of the differences in the ways those
industries work.

As an instructor, Matt has been teaching full-time since 2015 at General Assembly and has
lead workshops at many locations, including prestigious universities such as Columbia
University and NYU.

About the reviewer
Xun (Brian) Wu is the Founder and CEO of smartchart.tech. He has over 16 years of
extensive hands-on experience in design and development with Blockchain, big data,
Cloud, UI, and system infrastructure. He is the coauthor of Blockchain By
Example, Hyperledger cookbook, Blockchain Quick Start Guide, and Seven NoSQL Databases in a
Week. He has also been a technical reviewer for over 40 books for Packt. He served as a
board advisor for several blockchain startups and owned several patents on blockchain. He
holds a Master's in computer science from NJIT and lives in New Jersey with his two
beautiful daughters, Bridget and Charlotte.

I would like to thank my parents, wife, and kids for their patience and support throughout
this endeavor.

Nikita Rokotyan is a data visualization engineer with a background in physics and creative
technologies. He specializes in creating enriched, data-driven experiences with strong
dynamic and interactive components.

Focusing on aesthetics and information content, Nikita has worked on a number of applied
and artistic data visualizations for various startups as well as large organizations such as
University of Tokyo, Proctor & Gamble, and the Paul Mellon Centre for Studies in British
Art.

Currently he's running a data visualization studio Interacta and co-running a company in
NYC—CultivateMe—that explores how data visualization can help with a better
understanding and cultivating human talent

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Getting Started with D3.js 6
What is SVG? 6
What makes D3 so special? 8
This book's approach to learning 8
A preview of each build 9

Using SVG to create images using code 9
Building an interactive scatter plot 11
Making a basic scatter plot interactive 13
Creating a bar graph using a data file 17
Animating SVG elements to create an interactive pie chart 18
Using physics to create a force-directed graph 19
Mapping 19

Setting up 20
Summary 21

Chapter 2: Using SVG to Create Images Using Code 22
Base tag 22
Basic elements 23
Positioning an element 25
Styling an element 26
Important SVG elements 29

Circle 29
Line 30
Rectangle 30
Ellipse 31
Polygon 31
Polyline 32
Text 33
Group 33
Bezier curves 33

Cubic Bezier curves 33
Smooth cubic Bezier curves 35
Quadratic Bezier curve 36
Smooth quadratic Bezier curve 37

Drawing a path 37
Arcs 40

Documentation 43
Summary 43

Table of Contents

[ii]

Chapter 3: Building an Interactive Scatter Plot 44
Adding a link to the D3 library 45
Adding an<svg>tag and sizing it with D3 46
Creating some fake data for our app 49
Adding SVG circles and styling them 49
Creating a linear scale 50
Attaching data to visual elements 54
Use data attached to a visual element to affect its appearance 54
Creating a time scale 57
Parsing and formatting times 57
Setting dynamic domains 59
Dynamically generating SVG elements 62
Creating axes 64
Displaying data in a table 69
Summary 71

Chapter 4: Making a Basic Scatter Plot Interactive 72
Creating a click handler 72
Removing data 79
Dragging an element 86
Updating data after a drag 88
Creating a zoom behavior that scales elements 90
Updating axes when zooming and panning 91
Updating click points after a transform 94
Avoiding redrawing the entire screen during rendering 98
Hiding elements beyond an axis 99
Summary 103

Chapter 5: Creating a Bar Graph Using a Data File 104
Setting up our application 104
Creating an external file to hold our data 105
Making an AJAX request 109

Writing the basic code 109
Handling file access 109

Using AJAX data to create SVG elements 111
Adjusting the height and the width of the bars 113
Adjusting the horizontal and the vertical placement of the bars 115
Making the width of the bars dynamic 118
Changing the color of the bar based on data 119
Adding axes 120
Summary 124

Chapter 6: Animating SVG Elements to Create an Interactive Pie Chart 125
Setting up the application 126

Table of Contents

[iii]

Create data/configuration variables 126
Creating an ordinal scale 127
Creating the color scale to map labels to colors 129
Setting up the SVG 130
Adding paths for each pie segment 131
Generating an arc creating function 132
Formatting the data for the arc 132
Adjusting the position of the pie 136
Making a donut graph 137
Removing parts of the pie 138
Summary 141

Chapter 7: Using Physics to Create a Force-Directed Graph 142
What is a force-directed graph? 142
How to set up a graph of relationships 142

Display 143
Physics 143

Setting up the HTML 143
Setting up styling for nodes and links 144
Setting up the SVG 144
Adding data for people 145
Adding data for relationships 145
Add circles to the SVG 146
Adding lines to the SVG 146
Creating a simulation 147
Specifying how the simulation affects visual elements 148
Creating forces 149
Summary 152

Chapter 8: Mapping 153
Defining GeoJSON 153
Setting up the HTML 155
Using a projection 157
Generating a path using a projection and GeoJSON data 157
Summary 159

Other Books You May Enjoy 160

Index 162

Preface
Welcome to D3.js Quick Start Guide. In it, we'll be covering the basics of D3 through a series
of large builds. By the end, you should have a strong enough grasp of the library to go out
and build your own interactive data visualizations.

Who this book is for
This book is for junior-to senior-level frontend and full-stack web developers who are
interested in getting to data visualization. The reader needs to have a basic understanding
of HTML, CSS, JavaScript, AJAX, and what a server is, in order to be able to work with the
code and concepts given in this book.

What this book covers
Chapter 1, Getting Started with D3.js, provides a high-level overview of what makes D3 so
interesting. We examine what an SVG element is and set up our machine so that it is ready
to create D3 code. We also take a look at this book's approach to learning and how it applies
to the applications that we'll build.

Chapter 2, Using SVG to Create Images Using Code, covers the basics of SVG (base tags, basic
elements, positioning, and styling). We also look at Bezier curves and how to draw organic
shapes with them. We're now ready to learn how D3 can be used to modify these elements.

Chapter 3, Building an Interactive Scatter Plot, explains static scatter plots and a shows how
to build a table that displays its data.

Chapter 4, Making a Basic Scatter Plot Interactive, shows you as many useful modules as
possible, with examples of daily activities that can be carried out and personal comments
based on our experience of using them.

Chapter 5, Create a Bar Graph Using a Data File, covers many interesting use cases that any
system administrator will need to run daily. Many other tasks can be performed as we
show with customized playbooks. But not every script is considered as good automation.
What matters is that the right nodes go from state A to state B with no errors and in a short
time.

Preface

[2]

Chapter 6, Animating SVG Elements to Create an Interactive Pie Chart, shows how a pie chart
animates when you remove sections from it.

Chapter 7, Use Physics to Create a Force Directed Graph, shows how to use D3 to create a
graph that visualizes relationships between various nodes of data. This can be very useful
in scenarios such as graphing a friend network, showing parent/child company
relationships, or displaying a company's staff hierarchy.

Chapter 8, Mapping, discusses GeoJSON, what it's used for, and why it differs from more
general JSON data. We also cover how to use D3 to create a projection and render GeoJSON
data as a map.

To get the most out of this book
This book assumes a basic understanding of HTML, CSS, JavaScript, AJAX, and what a
server is, in order to be able to work with the code and concepts given in this book.

For this book you really only need to download and install the following:

Chrome, available at https:/ ​/ ​www. ​google. ​com/ ​chrome/ ​: a web browser so that
we can view our visualizations.
Node: https:/ ​/ ​nodejs. ​org/ ​en/ ​: This allows us to run JavaScript from the
terminal. In Chapter 4, Making a Basic Scatter Plot Interactive, we will use it so that
we can make AJAX calls.
A code editor. I'd suggest Atom if you're new to coding: https:/ ​/​atom. ​io/​.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
http://www.packt.com
http://www.packt.com/support

Preface

[3]

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​D3. ​js- ​Quick- ​Start- ​Guide. In case there's an update to the code, it will
be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​9781789342383_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

http://www.packt.com
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789342383_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342383_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342383_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342383_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342383_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342383_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342383_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342383_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342383_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342383_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342383_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342383_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342383_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342383_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342383_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342383_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342383_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342383_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342383_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342383_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342383_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342383_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789342383_ColorImages.pdf

Preface

[4]

A block of code is set as follows:

<circle r=50 cx=50 cy=50 fill=red stroke=blue stroke-width=5></circle>

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<head>
 <link rel="stylesheet" href="app.css">
</head>

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

http://www.packt.com/submit-errata

Preface

[5]

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://authors.packtpub.com
https://www.packtpub.com/

1
Getting Started with D3.js

 The era of big data is upon us! Advances in hardware have made it possible for computers
to store, analyze, and transmit massive amounts of information in a way that was
previously impossible. Data science has become one of the most in-demand fields in the
United States, and companies are constantly coming up with new techniques to analyze
customer information; it seems as if every day there are new ways to visualize all this data.
D3 has become the most popular library used to create dynamic, interactive, data-driven
visualizations on the web. Unlike many technologies previously used in data vizualization
, D3 leverages the power of combining SVG images with web browsers and JavaScript. In
this chapter, we'll discuss the following topics:

What is SVG?
What makes D3 so special?
This book's approach to learning

What is SVG?
One of the best ways to present your data is via an interactive graphic on the web. The
advantage of this approach is that its interactivity allows creators to pack more information
into a single visualization, while the ubiquity of the web allows anyone to instantly access
it. Gone are the days of PowerPoint presentations, or, worse still, printing static images on
to paper as handouts. There are many ways to create a web-based interactive data
visualization, but none of them is more popular than the JavaScript library called D3.js.

Getting Started with D3.js Chapter 1

[7]

To understand why D3.js works so well, it's important to understand what SVG is and
how it relates to D3. SVG stands for Scalable Vector Graphics, and it's a way to display
shapes using mathematical directions/commands. Traditionally, the information for an
image is stored in a grid, also called a raster. Each square (called a pixel) of the image has a
specific color:

But with SVG, a set of succinct drawing directions is stored. For example, the drawing
command for a circle is as follows:

<circle r=50><circle>

This code produces a much smaller file size, and because it's a set of drawing directions, the
image can be enlarged without any pixelation. A raster image becomes blurry and pixelated
as it's enlarged. The advantage of raster graphics over vector graphics is that they're great
for storing complex images such as photographs. With a photograph, where each pixel
probably has a different color, it's better to use a raster image. Imagine writing SVG
drawing commands for a photograph: you would end up creating a new element for each
pixel, and the file size would be too large.

Once an SVG drawing command is written, a program needs to interpret the command and
display the image. Up until recently, only designated drawing applications such as Adobe
Illustrator could view and manipulate these images. But by 2011 all major modern browsers
supported SVG tags, allowing for developers to embed SVG directly on a web page. Since
the SVG image was directly embedded in the code of a web page, JavaScript, which
normally is used for manipulating HTML, could be used to manipulate the shape, size, and
colors of the image in response to user events. To make the circle in the SVG example you
have just seen grow to twice its original size, all that JavaScript had to do was change
the rattribute:

<circle r=100><circle>

This was the massive breakthrough that allowed complex interactive data visualizations to
be hosted on the web.

Getting Started with D3.js Chapter 1

[8]

What makes D3 so special?
D3.js came in at this point because writing the code to make complex data-driven
documents (how D3 got its name) that linked SVG images with the big data that had
become available on the internet was a difficult task. It rose to prominence during the
Obama/Romney presidential debates as the New York times published a series of amazing
visualizations. Check out some examples here:

https:/​/ ​archive. ​nytimes. ​com/ ​www. ​nytimes. ​com/ ​interactive/ ​2012/ ​11/ ​07/ ​us/
politics/ ​obamas- ​diverse- ​base- ​of- ​support. ​html

http:/​/​archive. ​nytimes. ​com/ ​www.​nytimes. ​com/ ​interactive/ ​2012/ ​11/ ​02/​us/
politics/ ​paths- ​to- ​the- ​white- ​house. ​html

https:/​/ ​archive. ​nytimes. ​com/ ​www. ​nytimes. ​com/ ​interactive/ ​2012/ ​10/ ​15/ ​us/
politics/ ​swing- ​history. ​html

https:/​/ ​www. ​nytimes. ​com/ ​elections/ ​2012/ ​electoral- ​map. ​html

https:/​/ ​archive. ​nytimes. ​com/ ​www. ​nytimes. ​com/ ​interactive/ ​2012/ ​09/ ​06/ ​us/
politics/ ​convention- ​word- ​counts. ​html

https:/​/ ​archive. ​nytimes. ​com/ ​www. ​nytimes. ​com/ ​interactive/ ​2012/ ​03/ ​07/ ​us/
politics/ ​how- ​candidates- ​fared- ​with- ​different- ​demographic- ​groups. ​html

D3 simplifies some of the most common, as well as some of the most, complex tasks that a
developer can run into when creating browser-based visualizations. At its core, D3 easily
maps SVG image properties to data values. As the data values change, due to user
interactions, so do the images.

This book's approach to learning
D3 is a massive library, full of millions of options, but its core concepts are easy to learn.
You do not need to know every detail of the library to become a functional D3 developer.
Instead, this book attempts to teach the most fundamental aspects of D3 so that the reader
can get job-ready quickly. It does so by stepping the user through a series of the most
common graphs that a developer will be asked to make: a scatter plot, a bar graph, a pie
chart, a force-directed graph, and a map. The goal is not only to teach the basics but also to
give the reader a final set of builds that are fun to work, toward as well as useful to draw
from as their career continues.

https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/11/07/us/politics/obamas-diverse-base-of-support.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
http://archive.nytimes.com/www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/15/us/politics/swing-history.html
https://www.nytimes.com/elections/2012/electoral-map.html
https://www.nytimes.com/elections/2012/electoral-map.html
https://www.nytimes.com/elections/2012/electoral-map.html
https://www.nytimes.com/elections/2012/electoral-map.html
https://www.nytimes.com/elections/2012/electoral-map.html
https://www.nytimes.com/elections/2012/electoral-map.html
https://www.nytimes.com/elections/2012/electoral-map.html
https://www.nytimes.com/elections/2012/electoral-map.html
https://www.nytimes.com/elections/2012/electoral-map.html
https://www.nytimes.com/elections/2012/electoral-map.html
https://www.nytimes.com/elections/2012/electoral-map.html
https://www.nytimes.com/elections/2012/electoral-map.html
https://www.nytimes.com/elections/2012/electoral-map.html
https://www.nytimes.com/elections/2012/electoral-map.html
https://www.nytimes.com/elections/2012/electoral-map.html
https://www.nytimes.com/elections/2012/electoral-map.html
https://www.nytimes.com/elections/2012/electoral-map.html
https://www.nytimes.com/elections/2012/electoral-map.html
https://www.nytimes.com/elections/2012/electoral-map.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/03/07/us/politics/how-candidates-fared-with-different-demographic-groups.html

Getting Started with D3.js Chapter 1

[9]

Please note, the code demonstrated here was created to be easy to understand from an
educational standpoint. It is not meant to be code that is ready for production. Nor does it
employ ES6 or ES7 syntax. Often, demonstrating a concept in code that is production-ready
or written in ES6/ES7 can hinder the educational experience. It is assumed that the reader is
comfortable enough with the core concepts of programming that they can refine the code
on their own, once they are comfortable with the fundamentals of D3.

A preview of each build
Each chapter focuses on a specific build. The completed build code for each chapter can be
found at: https:/ ​/​github. ​com/ ​PacktPublishing/ ​D3. ​js-​Quick- ​Start- ​Guide.

Using SVG to create images using code
In this chapter, we learn how to render shapes in the browser, using SVG. We'll cover
shapes such as these:

Circles:

Lines:

https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide

Getting Started with D3.js Chapter 1

[10]

Rectangles:

Ellipses:

Polygons:

Getting Started with D3.js Chapter 1

[11]

Polylines:

Cubic Bezier Curves:

The completed code for this section can be found here: https:/ ​/​github. ​com/
PacktPublishing/​D3. ​js- ​Quick- ​Start- ​Guide/ ​tree/ ​master/ ​Chapter02.

Building an interactive scatter plot
In this chapter, you'll learn how to plot points on a graph to create a scatter plot. It will
look a bit like this:

https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02

Getting Started with D3.js Chapter 1

[12]

The completed code for this section can be found here: https:/ ​/​github. ​com/
PacktPublishing/​D3. ​js- ​Quick- ​Start- ​Guide/ ​tree/ ​master/ ​Chapter03.

https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03

Getting Started with D3.js Chapter 1

[13]

Making a basic scatter plot interactive
This chapter builds on the previous one, adding interactive functionality that allows you to
do the following:

Create new points:

Getting Started with D3.js Chapter 1

[14]

Remove points:

Getting Started with D3.js Chapter 1

[15]

Update points:

Getting Started with D3.js Chapter 1

[16]

Zoom and pan:

The completed code for this section can be found here: https:/ ​/​github. ​com/
PacktPublishing/​D3. ​js- ​Quick- ​Start- ​Guide/ ​tree/ ​master/ ​Chapter04.

https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04

Getting Started with D3.js Chapter 1

[17]

Creating a bar graph using a data file
In this chapter, we'll learn how to use AJAX to make an asynchronous call, after the page
has loaded, to retrieve some JSON data and render it as a bar graph. It should look as
follows:

The completed code for this section can be found here: https:/ ​/​github. ​com/
PacktPublishing/​D3. ​js- ​Quick- ​Start- ​Guide/ ​tree/ ​master/ ​Chapter05.

https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05

Getting Started with D3.js Chapter 1

[18]

Animating SVG elements to create an interactive
pie chart
In this chapter, we'll learn how to make a pie chart:

Then we'll turn it into a donut chart:

And then we'll create functionality so that the user can remove a section of the chart and it
will close the gap with a smooth transition:

Getting Started with D3.js Chapter 1

[19]

The completed code for this section can be found here: https:/ ​/​github. ​com/
PacktPublishing/​D3. ​js- ​Quick- ​Start- ​Guide/ ​tree/ ​master/ ​Chapter06.

Using physics to create a force-directed graph
In this chapter, we'll graph relationships between people with a force-directed graph. It will
look as follows:

The completed code for this section can be found here: https:/ ​/​github. ​com/
PacktPublishing/​D3. ​js- ​Quick- ​Start- ​Guide/ ​tree/ ​master/ ​Chapter07.

Mapping
In Chapter 8, Mapping, we'll learn how to use GeoJSON data to create a map of the world.
It will look as follows:

https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07

Getting Started with D3.js Chapter 1

[20]

The completed code for this section can be found here: https:/ ​/​github. ​com/
PacktPublishing/​D3. ​js- ​Quick- ​Start- ​Guide/ ​tree/ ​master/ ​Chapter08.

Setting up
For this book, you really only need to download and install the following:

Chrome: https:/ ​/ ​www. ​google. ​com/ ​chrome/ ​.
A web browser so that we can view our visualizations.

Node: https:/ ​/ ​nodejs. ​org/ ​en/ ​.
This allows us to run javascript from the terminal. In Chapter 4,
Making a Basic Scatter Plot Interactive,we will use it so that we can
make AJAX calls.

A code editor. I'd suggest Atom if you're new to coding: https://atom.io/.

https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://atom.io/

Getting Started with D3.js Chapter 1

[21]

Summary
In this chapter, you've received a high-level overview of what makes D3 so interesting. We
examined what an SVG element is and set up our machine so that it is ready to create D3
code. We also took a look at this book's approach to learning and how it applies to the
applications that we'll build. In Chapter 2, Using SVG to Create Images Using Code, we'll dive
into creating SVG elements.

2
Using SVG to Create Images

Using Code
SVG elements are a way to create images within a web page and are the foundation of D3
and how it works. They use code to create shapes, rather than defining each pixel of an
image. This chapter covers how to create various SVG elements within a web page. In it, we
will cover the following topics:

Base tags
Basic elements
Positioning
Styling
Important SVG elements

The complete code for this section can be found here: https:/ ​/​github. ​com/
PacktPublishing/​D3. ​js- ​Quick- ​Start- ​Guide/ ​tree/ ​master/ ​Chapter02.

Base tag
When viewing SVG graphics in a browser, it's important to embed an <svg> tag inside an
HTML page. Let's create an index.html file and add the following to it:

<!DOCTYPE html>
<html lang="en" dir="ltr">
 <head>
 </head>
 <body>
 <svg></svg>
 </body>
</html>

https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter02

Using SVG to Create Images Using Code Chapter 2

[23]

Now start a web browser and open that file (usually, File | Open File). For this book, it is
recommended that the reader use Google Chrome, but in development and production, any
browser will do. If we inspect our HTML in the Elements tab of Chrome's Dev Tools
(View | Developer | Developer Tools), we'll see the following:

Basic elements
We can draw elements in our <svg> element by adding a variety of predefined tags as
child elements of the <svg>. This is just as we did in HTML, where we add <div>, <a>,
and tags inside the <body> tag. There are many tags, such as <circle>, <rect>,
and <line>, that we'll explore in a bit. Here's just one example:

<!DOCTYPE html>
<html lang="en" dir="ltr">
 <head>
 </head>
 <body>
 <svg>
 <circle></circle>
 </svg>
 </body>
</html>

Using SVG to Create Images Using Code Chapter 2

[24]

Note that we can't see the circle because it doesn't have a radius, as shown in this
screenshot:

We'll talk more about this later, but, for now, if we want to see the circle, we can add a
special attribute that all <circle> elements take:

<circle r=50></circle>

This tells the browser to give the circle a radius of 50 px, which is shown in the following
screenshot:

At the moment, though, we only see the lower–right quarter of the circle. This is because
the center of the circle is being drawn at the very upper–left corner of the <svg>, and the
rest of it is being clipped outside the <svg>. We can change this by changing the position of
the circle, which we'll do next.

Using SVG to Create Images Using Code Chapter 2

[25]

Positioning an element
The <svg> tag is an inline element, such as an image (as opposed to a block element such as
a <div>). Elements within the <svg> are positioned similar to Photoshop, with a set of
coordinates that follow the form (x,y). An example of this could be (10,15), which
translates to x=10 and y=15. This is different than HTML, where elements are laid out
relative to one another. Here are some important things to keep in mind:

The point (0,0) is the upper–left corner of the <svg> element.
As y values increase, the point moves vertically down the <svg> element.
Don't confuse this with a typical coordinate system that has (0,0) at
the lower–left corner with a point moving up, as y increases in value. This
diagram shows the difference between a traditional coordinate system and an
SVG coordinate system:

We can use negative x/y values:

-x: moves left
-y :moves up

Let's adjust the position of our circle in our previous section by adjusting cx and cy values
(the x and y values for the center of the element):

<!DOCTYPE html>
<html lang="en" dir="ltr">
 <head>
 </head>
 <body>
 <svg>
 <circle r=50 cx=50 cy=50></circle>
 </svg>

Using SVG to Create Images Using Code Chapter 2

[26]

 </body>
</html>

Now we see the full circle:

Styling an element
The appearance of any tag inside an <svg> can be styled with the following attributes (the
following are the attributes with example values):

fill=red or fill=#ff0000 will alter the color of the shape.
stroke=red or stroke=#ff0000 will alter stroke color. Stroke is a line that
surrounds each element.
stroke-width=4 will adjust the width of the stroke.
fill-opacity=0.5 will adjust the transparency of the fill color.
stroke-opacity=0.5 will adjust the transparency of the stroke color.
transform = "translate(2,3)" will translate the element by the given x, y
values.
transform = "scale(2.1)" will scale the size of the element by the given
proportion (for example, 2.1 times as big).
transform = "rotate(45)" will rotate the element by the given number of
degrees.

Using SVG to Create Images Using Code Chapter 2

[27]

Let's style the circle we positioned previously:

<circle r=50 cx=50 cy=50 fill=red stroke=blue stroke-width=5></circle>

Now we get this:

Note that the stroke in the preceding screenshot is getting clipped. That's because the stroke
is created outside the element. If we want to see the full stroke, we can resize the circle:

<circle r=45 cx=50 cy=50 fill=red stroke=blue stroke-width=5></circle>

Now we get the following output:

Styling can also be done with CSS. The following steps will tell you how to style your
<svg> element with CSS:

Create an external app.css file in the same folder as your index.html file with1.
the following contents:

 circle {
 fill:red;
 stroke:blue;

Using SVG to Create Images Using Code Chapter 2

[28]

 stroke-width:3;
 fill-opacity:0.5;
 stroke-opacity:0.1;
 transform:rotate(45deg) scale(0.4) translate(155px,
 1px);
 r:50px;
 }

Link the file in the <head> tag of index.html:2.

 <head> <link rel="stylesheet" href="app.css"> </head>

Lastly, remove our previous inline styling that we had on our <circle> tag:3.

 <circle></circle>

Now we get this result:

Note that I've hovered over the element in the dev tools to show that the element has been
rotated 45 degrees. That's what the blue box is.

Using SVG to Create Images Using Code Chapter 2

[29]

Important SVG elements
To demonstrate each element, we'll use the following code as a starting point and then add
each element inside the <svg> tag:

<!DOCTYPE html>
<html lang="en" dir="ltr">
 <head>
 </head>
 <body>
 <svg width=800 height=600>
 </svg>
 </body>
</html>

Let's now move on to each element. Note that you can write each tag in the form
<element></element>, as we did with <circle></circle> previously, or the self-
closing form, <element/>, which you will see next with <circle/>.

Circle
Circles have the following attributes:

r: radius
cx: x position
cy: y position

<circle r="50" cx="200" cy="300"/>

The output for the previous code will be as follows:

Using SVG to Create Images Using Code Chapter 2

[30]

Line
Lines have the following attributes:

x1: starting x position
y1: starting y position
x2: ending x position
y2: ending y position

Here are two examples:

<!--
the first element won't be visible because it doesn't have a stroke
the second will be visible because it does have a stroke
-->
<line x1="0" y1="0" x2="100" y2="100"/>
<line x1="0" y1="0" x2="100" y2="100" stroke="purple"/>

The following output will be displayed:

Rectangle
Rectangles have the following attributes:

x: x position of upper–left
y: y position of top left
width: width
height: height

Here's an example:

<rect x="50" y="20" width="150" height="150"/>

Using SVG to Create Images Using Code Chapter 2

[31]

Here's what this code produces:

Ellipse
An ellipse has the following attributes:

cx: x position
cy: y position
rx: x radius
ry: y radius

The attributes will be as follows:

<ellipse cx="200" cy="80" rx="100" ry="50"/>

The output can be seen as follows:

Polygon
Polygons have the following attributes:

points, which is a set of coordinate pairs
Each pair is of the form x,y

Using SVG to Create Images Using Code Chapter 2

[32]

The attributes will be as follows:

<polygon points="200,10 250,190 160,210" />

The output can be seen as follows:

Polyline
Polyline is a series of connected lines. It can have a fill, as a polygon does, but it won't
automatically rejoin itself:

<polyline points="20,20 40,25 60,40 80,120 120,140 200,180" stroke="blue"
fill="none"/>

The output will be as follows:

Using SVG to Create Images Using Code Chapter 2

[33]

Text
The content of the tag is the text to be displayed. It has the following attributes:

x, the x position of upper–left corner of the element
y, the y position of upper-left corner of the element

The attributes can be used as follows:

<text x="0" y="15">I love SVG!</text>

You can use font-family and font-size CSS styling on this element.

Group
This element has no special attributes, so we'll use transform to position it. You can put
multiple elements inside it and all of its positioning will apply to its children. It's good for
moving many elements together as one:

<g transform = "translate(20,30) rotate(45) scale(0.5)"></g>

Bezier curves
What if we want to draw complex organic shapes? To do this, we'll need to use paths. First,
though, to understand paths, you have to understand Bezier curves.

Cubic Bezier curves
There are two types of Bezier curves:

Bezier curves (http:/ ​/​blogs. ​sitepointstatic. ​com/ ​examples/ ​tech/ ​svg-
curves/​cubic- ​curve. ​html)
Quadratic Bezier curves (http:/ ​/​math. ​hws.​edu/ ​eck/ ​cs424/ ​notes2013/ ​canvas/
bezier.​html)

http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html
http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html
http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html
http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html
http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html
http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html
http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html
http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html
http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html
http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html
http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html
http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html
http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html
http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html
http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html
http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html
http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html
http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html
http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html
http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html
http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html
http://blogs.sitepointstatic.com/examples/tech/svg-curves/cubic-curve.html
http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html
http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html
http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html
http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html
http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html
http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html
http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html
http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html
http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html
http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html
http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html
http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html
http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html
http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html
http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html
http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html
http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html
http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html
http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html
http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html

Using SVG to Create Images Using Code Chapter 2

[34]

Each curve is made up of four points:

Start point
End point
Starting control point
Ending control point

The start/end points are where the curve starts and ends. The control points define the
shape of the curve. It's easiest to conceptualize it with the following diagram:

As we manipulate the control points, we can see how the shape of the curve is affected:

Using SVG to Create Images Using Code Chapter 2

[35]

You can even join multiple Bezier curves together, as shown in this diagram:

Smooth cubic Bezier curves
Smooth cubic Bezier curves are just a way to simplify some cubic Bezier curves when
they're joined together. Take a look at the two control points in the red square shown in this
diagram:

The point in the lower–left corner of the square is the end control point of the first curve.
The point in the upper-right corner of the square is start control point of the second curve.

Note that the two points are reflections of each other around the central black dot, which is
the end point of the first curve and the start point of the second curve. The two points are
exactly 180 degrees from each other, and they have the same distance from that central
point.

Using SVG to Create Images Using Code Chapter 2

[36]

In scenarios such as this, where the start control point of one curve is a reflection of the end
control point of the previous curve, we can skip stating the start control point of the second
curve. Instead, we let the browser calculate it, based on the end control point of the first
curve:

We can also omit the start point, since the browser knows it will be the same as the end
point of the previous curve. In summary, to define that second curve, we only need two
points:

The end point
The end control point

Quadratic Bezier curve
Another situation where we can simplify defining a Bezier curve is where the start control
point and end control point are the same:

Using SVG to Create Images Using Code Chapter 2

[37]

Here, we can define the curve with just three points:

The start point
The end point
One single control point that acts as both a start control point and an end control
point

Smooth quadratic Bezier curve
The final situation where we can simplify defining a Bezier curve is where we have a
quadratic Bezier curve (one single control point) that is a reflection of the end control point
of a previous curve:

In this situation, the browser knows the start point of the curve (the end point of the
previous curve), and it can calculate the single control point needed (since it is a quadratic
Bezier curve) based on the end control point of the previous curve. This is a smooth
quadratic Bezier curve, and you only need one point to define it:

The end point

Drawing a path
Now that we understand Bezier curves, we can use them in our SVGs
with <path> elements.

Documentation can be found here: https:/ ​/​developer. ​mozilla. ​org/​en- ​US/ ​docs/ ​Web/
SVG/​Tutorial/​Paths.

https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Paths

Using SVG to Create Images Using Code Chapter 2

[38]

These tags take a d attribute, which stands for a set of drawing commands. The value of this
attribute is any combination of the following:

M = moveto: move the drawing point to the given coordinates
M x y

L = lineto: draw a line from the previous point in the d command to the point
given

L x y
C = curveto: draw a curve from the previous point in the d command to the point
given with the given control points

C x1 y1, x2 y2, x y
The first pair is first control point
The second pair is second control point
The last pair is final ending point of curve

S = smooth curveto:
S x2 y2, x y
Follows another curve
Uses a reflection of x2 y2 of the previous S or C command for x1 y1

Q = quadratic Bezier curve:
Q x1 y1, x y
Uses one control point for start and end controls (x1, y1)

T = smooth quadratic Bezier curveto:
T x y
Follows another curve
Uses a reflection of the previous quadratic curve's control point as
its control point

Z = closepath: draws a line from the previous point in the d command to the first
point in the d command

Note that all of these commands can also be expressed with lowercase
letters. If capital letters are used, this means absolutely positioned (relative
to the upper–left corner of the SVG element); lowercase letters mean that
all the points are expressed relative to the previous point in
the d command.

Let's use lines to draw a triangle:

<path d="M150 0 L75 200 L225 200 Z" stroke="black" fill="transparent"/>

Using SVG to Create Images Using Code Chapter 2

[39]

The following output will be displayed:

Next, we'll draw a Bezier curve:

<path d="M0 70 C 0 120, 50 120, 50 70 S 100 20, 100 70" stroke="black"
fill="transparent"/>

The following output will be displayed:

Here's a quadratic Bezier curve:

<path d="M0 100 Q 50 50, 100 100 T 200 100 Z" stroke="black"
fill="transparent"/>

The following output will be displayed:

Using SVG to Create Images Using Code Chapter 2

[40]

Arcs
An arc is a command that you can add to a path that will draw part of an ellipse. To do this,
we begin with only two points:

For any two points, there are only two ellipses with the same width/height and rotation
that contain both points. In the previous diagram, try to imagine moving the ellipses
around without rotating or scaling them. As soon as you do, they lose contact with at least
one of the two given points. One point might be on the ellipse, but the other won't be.

We can use this information to draw any of the four colored arcs shown in the previous
diagram.

Make the following code part of the d attribute's value on a <path> element:

A rx ry x-axis-rotation large-arc-flag sweep-flag x y

Let's look at the various properties of an arc:

A: creates an arc draw command
rx: the x radius of both ellipses (in px)
ry: the y radius of both ellipses (in px)
x-axis-rotation: rotates both ellipses a certain number of degrees
large-arc-flag: indicates whether to travel along the arc that contains more
than 180 degrees (1 to do so, 0 to not do so)

Using SVG to Create Images Using Code Chapter 2

[41]

sweep-flag: indicates whether to move along the arc that goes clockwise (1 to
do so, 0 to not do so)
x: destination x value (in px)
y: destination y value (in px)

large-arc-flag determines whether to make an arc that is greater than 180 degrees.
Here's an example without it (note, the red shows the arc drawn, while the green arcs are
other possible arcs that could be drawn using a combination of large-arc-
flag and sweep-flag):

Note, it chooses one of the two smaller arcs. Here's an example with the large-arc-
flag set:

Note, it chooses one of the two larger arcs.

Using SVG to Create Images Using Code Chapter 2

[42]

In the previous example, for both situations where the large-arc-flag was set or not set,
there was one other arc that could have been taken. To determine which of those two arcs
to take, we use the sweep-flag, which determines whether to travel clockwise from the
start point to the end point. Here's an example with the large-arc-flag set, but without
the sweep-flag set:

Note that we move in a counterclockwise motion from start to end (left to right). If we set
the sweep-flag, we travel in a clockwise motion:

Here are all the possible combinations for sweep-flag and large-arc-flag:

Using SVG to Create Images Using Code Chapter 2

[43]

Here's an example code for a path that uses an arc in its d attribute:

<path d="M10 10 A 50 50 0 0 0 50 10" stroke="black" fill="transparent"/>

Here's what it looks like:

Play with the different kinds of arc values here: http:/ ​/ ​codepen. ​io/ ​lingtalfi/ ​pen/
yaLWJG.

Documentation
If needed, you can find all the documentation for SVG elements here: https:/ ​/​developer.
mozilla.​org/​en-​US/ ​docs/ ​Web/ ​SVG/ ​Element.

Summary
In this chapter, we covered the basics of SVG (base tags, basic elements, positioning, and
styling). We also looked at Bezier curves and how to draw organic shapes with them. We're
now ready to learn how D3 can be used to modify these elements. In Chapter 3, Building an
Interactive Scatter Plot, we will dive into the basics of D3.js and create an interactive scatter
plot.

http://codepen.io/lingtalfi/pen/yaLWJG
http://codepen.io/lingtalfi/pen/yaLWJG
http://codepen.io/lingtalfi/pen/yaLWJG
http://codepen.io/lingtalfi/pen/yaLWJG
http://codepen.io/lingtalfi/pen/yaLWJG
http://codepen.io/lingtalfi/pen/yaLWJG
http://codepen.io/lingtalfi/pen/yaLWJG
http://codepen.io/lingtalfi/pen/yaLWJG
http://codepen.io/lingtalfi/pen/yaLWJG
http://codepen.io/lingtalfi/pen/yaLWJG
http://codepen.io/lingtalfi/pen/yaLWJG
http://codepen.io/lingtalfi/pen/yaLWJG
https://developer.mozilla.org/en-US/docs/Web/SVG/Element
https://developer.mozilla.org/en-US/docs/Web/SVG/Element
https://developer.mozilla.org/en-US/docs/Web/SVG/Element
https://developer.mozilla.org/en-US/docs/Web/SVG/Element
https://developer.mozilla.org/en-US/docs/Web/SVG/Element
https://developer.mozilla.org/en-US/docs/Web/SVG/Element
https://developer.mozilla.org/en-US/docs/Web/SVG/Element
https://developer.mozilla.org/en-US/docs/Web/SVG/Element
https://developer.mozilla.org/en-US/docs/Web/SVG/Element
https://developer.mozilla.org/en-US/docs/Web/SVG/Element
https://developer.mozilla.org/en-US/docs/Web/SVG/Element
https://developer.mozilla.org/en-US/docs/Web/SVG/Element
https://developer.mozilla.org/en-US/docs/Web/SVG/Element
https://developer.mozilla.org/en-US/docs/Web/SVG/Element
https://developer.mozilla.org/en-US/docs/Web/SVG/Element
https://developer.mozilla.org/en-US/docs/Web/SVG/Element
https://developer.mozilla.org/en-US/docs/Web/SVG/Element
https://developer.mozilla.org/en-US/docs/Web/SVG/Element
https://developer.mozilla.org/en-US/docs/Web/SVG/Element
https://developer.mozilla.org/en-US/docs/Web/SVG/Element

3
Building an Interactive Scatter

Plot
Let's pretend we've started jogging and we want to visualize the data regarding our
progress as a runner, with a scatter plot. We're going to have an array of objects, each with
a date and distance properties. For each object in the array, we're going to create a circle in
our SVG. If the distance property of an object is relatively high, its associated circle will
be higher up on the graph. If the date property of an object is relatively high (a later date),
its associated circle will be farther right.

By the end of this lesson, you should be able to do the following:

Add a link to the D3 library
Add an<svg>tag and size it with D3
Create some fake data for our app
Add SVG circles and style them
Create a linear scale
Attach data to visual elements
Use data attached to a visual element to affect its appearance
Create a time scale
Parse and format times
Set dynamic domains
Dynamically generate SVG elements
Create axes
Display data in a table

The complete code for this section can be found here: https:/ ​/​github. ​com/
PacktPublishing/​D3. ​js- ​Quick- ​Start- ​Guide/ ​tree/ ​master/ ​Chapter03.

https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter03

Building an Interactive Scatter Plot Chapter 3

[45]

Adding a link to the D3 library
The first thing we want to do is create a basic index.html file:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>
 </body>
</html>

Now add a link to D3 at the bottom of your <body> tag in index.html. We'll put it at the
bottom so that the script loads after all your other HTML elements have loaded into the
browser:

<body>
 <script src="https://d3js.org/d3.v5.min.js"></script>
</body>

Now create app.js in the same folder as your index.html. In it, we will store all of our JS
code. For now, just put this code in it to see whether it works:

console.log('this works');
console.log(d3);

Link to it in index.html at the bottom of the <body> tag. Make sure it comes after the D3
script tag so that D3 loads before your app.js script:

<body>
 <script src="https://d3js.org/d3.v5.min.js"></script>
 <script src="app.js" charset="utf-8"></script>
</body>

Open index.html in Chrome just as we did in Chapter 2, Using SVG to Create Images Using
Code, (File | Open File), and check your Dev Tools (View | Developer | Developer tools)
to see whether your JavaScript files are linked correctly:

Building an Interactive Scatter Plot Chapter 3

[46]

Adding an<svg>tag and sizing it with D3
In <indexentry content=" tag:sizing, with D3"> the index.html, at the top of
<body>, before <indexentry content=" tag:adding"> your script tags, add an <svg>
tag:

<body>
 <svg></svg>
 <script src="https://d3js.org/d3.v5.min.js"></script>
 <script src="app.js" charset="utf-8"></script>
</body>

Building an Interactive Scatter Plot Chapter 3

[47]

If we examine the Elements tab of our dev tools, we'll <indexentry content="
tag:adding"> see the svg element has <indexentry content=" tag:sizing, with
D3"> been placed. In Chrome, it has a default width/height of 300 px/150 px:

In app.js, remove your previous console.log statements and create variables to hold the
width and height of the <svg> tag:

var WIDTH = 800;
var HEIGHT = 600;

Next, we can use d3.select() to select a single element, in this case the <svg> element:

var WIDTH = 800;
var HEIGHT = 600;

d3.select('svg');

Building an Interactive Scatter Plot Chapter 3

[48]

The return value of d3.select('svg') is a D3 version of the svg element (as in jQuery),
so we can chain commands onto this. Let's add some styling to adjust the height/width of
the element:

d3.select('svg')
 .style('width', WIDTH)
 .style('height', HEIGHT);

Now, when we check the dev tools, we'll see the <svg> element has been resized:

Building an Interactive Scatter Plot Chapter 3

[49]

Creating some fake data for our app
In app.js, let's create an array of run objects, I am storing the date as a string on purpose
also, it's important that this is an array of objects, to work with D3). Here's what your
app.js code should look like so far:

var WIDTH = 800;
var HEIGHT = 600;

var runs = [
 {
 id: 1,
 date: 'October 1, 2017 at 4:00PM',
 distance: 5.2
 },
 {
 id: 2,
 date: 'October 2, 2017 at 5:00PM',
 distance: 7.0725
 },
 {
 id: 3,
 date: 'October 3, 2017 at 6:00PM',
 distance: 8.7
 }
];

d3.select('svg')
 .style('width', WIDTH)
 .style('height', HEIGHT);

Adding SVG circles and styling them
In index.html, add three circles to your <svg> element (each one will represent a run):

<svg>
 <circle/>
 <circle/>
 <circle/>
</svg>

Building an Interactive Scatter Plot Chapter 3

[50]

Create app.css in the same folder as index.html, with some styling for the circles and
our svg element:

circle {
 r:5;
 fill: black;
}
svg {
 border: 1px solid black;
}

Link to it in the head of index.html:

<head>
 <meta charset="utf-8">
 <title></title>
 <link rel="stylesheet" href="app.css">
</head>

Our page should now look as follows:

Building an Interactive Scatter Plot Chapter 3

[51]

Creating a linear scale
We currently have three circles in our SVG and three objects in our runs array. One of the
best things D3 does is provide the ability to link SVG elements with data so that as the data
changes so do the SVG elements. In this chapter, we're going to link each circle to an object
in the runs array. If the distance property of an object is relatively high, its associated
circle will be higher up on the graph. If the date property of an object is relatively high (a
later date), its associated circle is farther right.

First, let's position the circles vertically, based on the distance property of the objects in
our runs array. One of the most important things that D3 does is provide the ability to
convert (or map) data values to visual points and vice versa. It does so using a scale. There
are lots of different kinds of scales that handle lots of different data types, but for now we're
just going to use a linear scale, which will map numeric data values to numeric visual
points, and vice versa.

At the bottom of app.js, add the following:

var yScale = d3.scaleLinear(); //create the scale

Whenever we create a scale, we need to tell it the minimum and maximum possible values
that can exist in our data (this is called the domain). To do so for our yScale, add the
following to the bottom of app.js:

yScale.domain([0, 10]); //minimum data value is 0, max is 10

We also need to tell the scale what visual values correspond to those min/max values in the
data (this is called the range). To do so, add the following to the bottom of app.js:

//HEIGHT corresponds to min data value
//0 corresponds to max data value
yScale.range([HEIGHT, 0]);

Your last three lines of code in app.js should now look as follows:

var yScale = d3.scaleLinear(); //create the scale
yScale.domain([0, 10]); //minimum data value is 0, max is 10
//HEIGHT corresponds to min data value
//0 corresponds to max data value
yScale.range([HEIGHT, 0]);

Building an Interactive Scatter Plot Chapter 3

[52]

In the previous snippet, the first (starting) value for the range is HEIGHT (600) and the
second (ending) value is 0. The minimum for the data values is 0 and the max is 10. By
doing this, we're saying that a data point (distance run) of 0 should map to a visual height
value of HEIGHT (600):

This is because the lower the distance run (data value), the more we want to move the
visual point down the y axis. Remember that the y axis starts with 0 at the top and increases
in value as we move down vertically on the screen.

We also say that a data point (distance run) of 10 should map to a visual height of 0:

Again, this is because, as the distance run increases, we want to get back a visual value that
is lower and lower so that our circles are closer to the top of the screen.

If you ever need to remind yourself what the domain/range is, you can do so by logging
yScale.domain() or yScale.range(). Temporarily add the following at the bottom
app.js:

//you can get the domain whenever you want like this
console.log(yScale.domain());
//you can get the range whenever you want like this:
console.log(yScale.range());

Our Chrome console should look as follows:

Building an Interactive Scatter Plot Chapter 3

[53]

When declaring the range/domain of a linear scale, we only need to specify start/end values
for each. Values in between the start/end will be calculated by D3. For instance, to find out
what visual value corresponds to the distance value of 5, use yScale(). Remove the
previous two console.log() statements and add the following to the bottom of app.js:

console.log(yScale(5)); //get a visual point from a data value

Here's what our dev console should look like in Chrome:

It makes sense that this logs 300 because the data value of 5 is half way between the
minimum data value of 0 and the maximum data value of 10. The range starts at HEIGHT
(600) and goes to 0, so halfway between those values is 300.

So, whenever you want to convert a data point to a visual point, call yScale(). We can go
the other way and convert a visual point to a data value by calling yScale.invert(). To
find out what data point corresponds to a visual value of 450, remove the previous
console.log() statement and add the following to the bottom of app.js:

//get a data values from a visual point
console.log(yScale.invert(450));

Here's what Chrome's console looks like:

Building an Interactive Scatter Plot Chapter 3

[54]

It makes sense that this logs 2.5 because the visual value of 450 is 25% of the way from the
starting visual value of 600 (HEIGHT)to the ending visual value of 0. You can now delete
that last console.log() line.

Attaching data to visual elements
Now let's attach each of the JavaScript objects in our runs array to a circle in our SVG. Once
we do this, each circle can access the data of its associated run object to determine its
position. Add the following to the bottom of app.js:

yScale.range([HEIGHT, 0]);
yScale.domain([0, 10]);
//selectAll is like select,
//but it selects all elements that match the query string
d3.selectAll('circle').data(runs);

If there were more objects in our runs array than there are circles, the extra objects are
ignored. If there are more circles than objects, then JavaScript objects are attached to circles
in the order in which they appear in the DOM until there are no more objects to attach.

Use data attached to a visual element to
affect its appearance
We can change attributes for a selection of DOM elements by passing static values, and all
selected elements will have that attribute set to that one specific value. Add the following
temporarily to the end of app.js:

d3.selectAll('circle').attr('cy', 300);

Building an Interactive Scatter Plot Chapter 3

[55]

The following should be seen on your screen:

But now that each circle has one of our runs JavaScript data objects attached to it, we can
set attributes on each circle using that data. We do that by passing the .attr() method a
callback function instead of a static value for its second parameter. Remove
d3.selectAll('circle').attr('cy', 300); and adjust the last line of app.js from
d3.selectAll('circle').data(runs); to the following:

d3.selectAll('circle').data(runs)
 .attr('cy', function(datum, index){
 return yScale(datum.distance);
 });

Building an Interactive Scatter Plot Chapter 3

[56]

If we refresh the browser, this is what we should see:

Let's examine what we just wrote. The callback function passed as the second parameter to
.attr() runs on each of the visual elements selected (each of the circle elements in this
case). During each execution of the callback, the return value of that callback function is
then assigned to whatever aspect of the current element is being set (in this case the cy
attribute).

The callback function takes two params:

The individual datum object from the runs array that was attached to that
particular visual element when we called .data(runs)
The index of that datum in theruns array

In summary, what this does is loop through each circle in the SVG. For each circle, it
looks at the run object attached to that circle and finds its distance property. It then
feeds that data value into yScale(), which then converts it into its corresponding visual
point. That visual point is then assigned to that circle's cy attribute. Since each data object
has a different distance value, each circle is placed differently, vertically.

Building an Interactive Scatter Plot Chapter 3

[57]

Creating a time scale
Let's position the circles horizontally, based on the date that their associated run happened.
First, create a time scale. This is like a linear scale, but instead of mapping numeric values
to visual points, it maps dates to visual points. Add the following to the bottom of app.js:

//scaleTime maps date values with numeric visual points
var xScale = d3.scaleTime();
xScale.range([0,WIDTH]);
xScale.domain([new Date('2017-10-1'), new Date('2017-10-31')]);
console.log(xScale(new Date('2017-10-28')));
console.log(xScale.invert(400));

Here's what our console should look like:

You can now remove the two console.log() statements.

Parsing and formatting times
Note that the date properties of the objects in our runs array are strings and not date
objects. This is a problem because xScale, as with all time scales, expects its data values to
be date objects. Fortunately, D3 provides us an easy way to convert strings to dates and
vice versa. We'll use a specially formatted string, based on the documentation (https:/ ​/
github.​com/​d3/​d3- ​time- ​format#locale_ ​format), to tell D3 how to parse the date string
properties of the objects in our runs array into actual JavaScript date objects. Add the
following at the end of app.js:

//this format matches our data in the runs array
var parseTime = d3.timeParse("%B%e, %Y at %-I:%M%p");
console.log(parseTime('October 3, 2017 at 6:00PM'));
var formatTime = d3.timeFormat("%B%e, %Y at %-I:%M%p");
//this format matches our data in the runs array
console.log(formatTime(new Date()));

https://github.com/d3/d3-time-format#locale_format
https://github.com/d3/d3-time-format#locale_format
https://github.com/d3/d3-time-format#locale_format
https://github.com/d3/d3-time-format#locale_format
https://github.com/d3/d3-time-format#locale_format
https://github.com/d3/d3-time-format#locale_format
https://github.com/d3/d3-time-format#locale_format
https://github.com/d3/d3-time-format#locale_format
https://github.com/d3/d3-time-format#locale_format
https://github.com/d3/d3-time-format#locale_format
https://github.com/d3/d3-time-format#locale_format
https://github.com/d3/d3-time-format#locale_format
https://github.com/d3/d3-time-format#locale_format
https://github.com/d3/d3-time-format#locale_format
https://github.com/d3/d3-time-format#locale_format
https://github.com/d3/d3-time-format#locale_format

Building an Interactive Scatter Plot Chapter 3

[58]

Here's our Chrome console:

Let's use this when calculating cx attributes for our circles. Remove the last two
console.log() statements, and add the following to the bottom of app.js:

//use parseTime to convert the date string property on the datum object to
a Date object.
//xScale then converts this to a visual value
d3.selectAll('circle')
 .attr('cx', function(datum, index){
 return xScale(parseTime(datum.date));
 });

Here's what Chrome should look like:

Building an Interactive Scatter Plot Chapter 3

[59]

In summary, this selects all of the circle elements. It then sets the cx attribute of each
circle to the result of a callback function. That callback function runs for each circle and
takes the run data object associated with that circle and finds its date property
(remember it's a string, for example, 'October 3, 2017 at 6:00PM'). It passes that
string value to parseTime() which then turns the string into an actual JavaScript date
object. That date object is then passed to xScale(), which converts the date into a visual
value. That visual value is then used for the cx attribute of whichever circle the callback
function has just run on. Since each date property of the objects in the runs array is
different, the circles have different horizontal locations.

Setting dynamic domains
At the moment, we're setting arbitrary min/max values for the domains of both distance
and date. D3 can find the min/max of a dataset, so that our graph displays just the data
ranges we need. All we need to do is pass the min/max methods a callback that gets called
for each item of data in the runs array. D3 uses the callback to determine which properties
of the datum object to compare for min/max.

Go to this part of the code:

var yScale = d3.scaleLinear(); //create the scale
yScale.range([HEIGHT, 0]); //set the visual range (for example 600 to 0)
yScale.domain([0, 10]); //set the data domain (for example 0 to 10)

Change it to this:

var yScale = d3.scaleLinear(); //create the scale
yScale.range([HEIGHT, 0]); //set the visual range (for example 600 to 0)
var yMin = d3.min(runs, function(datum, index){
 //compare distance properties of each item in the data array
 return datum.distance;
})
var yMax = d3.max(runs, function(datum, index){
 //compare distance properties of each item in the data array
 return datum.distance;
})
//now that we have the min/max of the data set for distance,
//we can use those values for the yScale domain
yScale.domain([yMin, yMax]);
console.log(yScale.domain());

Building an Interactive Scatter Plot Chapter 3

[60]

Chrome should look as follows:

Let's examine what we just wrote. The following code finds the minimum distance:

var yMin = d3.min(runs, function(datum, index){
 //compare distance properties of each item in the data array
 return datum.distance;
})

D3 loops through the runs array (the first parameter) and calls the callback function (the
second parameter) on each element of the array. The return value of that function is
compared the return values of the callback function as it runs on the other elements. The
lowest value is assigned to yMin. The same thing happens for d3.max() but with the
highest value.

Building an Interactive Scatter Plot Chapter 3

[61]

We can combine both the min/max functions into one extent function that returns an
array that has the exact same structure as[yMin, yMax]. Let's look at the code we just
wrote:

var yScale = d3.scaleLinear(); //create the scale
yScale.range([HEIGHT, 0]); //set the visual range (for example 600 to 0)
var yMin = d3.min(runs, function(datum, index){
 //compare distance properties of each item in the data array
 return datum.distance;
})
var yMax = d3.max(runs, function(datum, index){
 //compare distance properties of each item in the data array
 return datum.distance;
})
//now that we have the min/max of the data set for distance
//we can use those values for the yScale domain
yScale.domain([yMin, yMax]);
console.log(yScale.domain());

Change the previous code to this:

var yScale = d3.scaleLinear(); //create the scale
yScale.range([HEIGHT, 0]); //set the visual range (for example 600 to 0)
var yDomain = d3.extent(runs, function(datum, index){
 //compare distance properties of each item in the data array
 return datum.distance;
})
yScale.domain(yDomain);

It's much shorter, right? Let's do the same for the xScale's domain. Go to this part of the
code:

//scaleTime maps date values with numeric visual points
var xScale = d3.scaleTime();
xScale.range([0,WIDTH]);
xScale.domain([new Date('2017-10-1'), new Date('2017-10-31')]);

//this format matches our data in the runs array
var parseTime = d3.timeParse("%B%e, %Y at %-I:%M%p");
//this format matches our data in the runs array
var formatTime = d3.timeFormat("%B%e, %Y at %-I:%M%p");

Change it to this:

var parseTime = d3.timeParse("%B%e, %Y at %-I:%M%p");
var formatTime = d3.timeFormat("%B%e, %Y at %-I:%M%p");
var xScale = d3.scaleTime();
xScale.range([0,WIDTH]);

Building an Interactive Scatter Plot Chapter 3

[62]

var xDomain = d3.extent(runs, function(datum, index){
 return parseTime(datum.date);
});
xScale.domain(xDomain);

Notice we moved parseTime and formatTime up so they could be used within the
.extent(). Here's what Chrome should look like:

Dynamically generating SVG elements
Currently, we have just enough <circle> elements to fit our data. What if we don't want
to count how many elements are in the array? D3 can create elements as needed. First,
remove all <circle> elements from index.html. Your <body> tag should now look as
follows:

<body>
 <svg></svg>
 <script src="https://d3js.org/d3.v5.min.js"></script>
 <script src="app.js" charset="utf-8"></script>
</body>

In app.js, go to this part of the code:

d3.selectAll('circle').data(runs)
 .attr('cy', function(datum, index){
 return yScale(datum.distance);
 });

Modify the code to create the circles:

//since no circles exist, we need to select('svg')
//so that d3 knows where to append the new circles
d3.select('svg').selectAll('circle')
 .data(runs) //attach the data as before
 //find the data objects that have not yet

Building an Interactive Scatter Plot Chapter 3

[63]

 //been attached to visual elements
 .enter()
 //for each data object that hasn't been attached,
 //append a <circle> to the <svg>
 .append('circle');

d3.selectAll('circle')
 .attr('cy', function(datum, index){
 return yScale(datum.distance);
 });

It should look exactly the same as before, but now circles are being created for each object
in the runs array:

Building an Interactive Scatter Plot Chapter 3

[64]

Here's a more in-depth explanation of what we just wrote. Take a look at the first line of the
new code:

d3.select('svg').selectAll('circle')

This might seem unnecessary. Why not just do d3.selectAll('circle')? Well, at the
moment, there are no circle elements. We're going to be appending circle elements
dynamically, so d3.select('svg') tells D3 where to append them. We still need
.selectAll('circle') though, so that when we call .data(runs) on the next line, D3
knows what elements to bind the various objects in the runs array to. But there aren't any
circle elements to bind data to. That's OK..enter() finds the run objects that haven't
been bound to any circle elements yet (in this case all of them). We then use
.append('circle') to append a circle for each unbound run object that .enter()
found.

Creating axes
D3 can automatically generate axes for you. Add the following to the bottom ofapp.js:

//pass the appropriate scale in as a parameter
var bottomAxis = d3.axisBottom(xScale);

This creates a bottom axis generator that can be used to insert an axis into any element you
choose. Add the following code to the bottom of app.js to append a <g> element inside
our SVG element and then insert a bottom axis inside it:

d3.select('svg')
 .append('g') //put everything inside a group
 .call(bottomAxis); //generate the axis within the group

Building an Interactive Scatter Plot Chapter 3

[65]

Here's what Chrome should look like:

Display of Chrome

We want the axis to be at the bottom of the SVG, though. Modify the code we just wrote so
it looks like this (note: we removed a; after.call(bottomAxis) and
added.attr('transform', 'translate(0,'+HEIGHT+')');):

//pass the appropriate scale in as a parameter
var bottomAxis = d3.axisBottom(xScale);
d3.select('svg')
 .append('g') //put everything inside a group
 .call(bottomAxis) //generate the axis within the group
 //move it to the bottom
 .attr('transform', 'translate(0,'+HEIGHT+')');

Building an Interactive Scatter Plot Chapter 3

[66]

Currently, our SVG clips the axis:

Let's alter our svg CSS so it doesn't clip any elements that extend beyond its bounds:

svg {
 overflow: visible;
}

Building an Interactive Scatter Plot Chapter 3

[67]

Now it looks good:

The left axis is pretty similar. Add the following to the bottom of app.js:

var leftAxis = d3.axisLeft(yScale);
d3.select('svg')
 .append('g')
 //no need to transform, since it's placed correctly initially
 .call(leftAxis);

Building an Interactive Scatter Plot Chapter 3

[68]

Note: we don't need to set a transform attribute, since it starts out in the correct place
initially:

It's a little tough to see, so let's add the following at the bottom of app.css:

body {
 margin: 20px 40px;
}

Building an Interactive Scatter Plot Chapter 3

[69]

Now our axes are complete:

Displaying data in a table
Just for debugging purposes, let's create a table that will show all of our data. Make your
<body> tag in index.html look as follows:

<body>
 <svg></svg>
 <table>
 <thead>
 <tr>
 <th>id</th>
 <th>date</th>
 <th>distance</th>
 </tr>

Building an Interactive Scatter Plot Chapter 3

[70]

 </thead>
 <tbody>
 </tbody>
 </table>
 <script src="https://d3js.org/d3.v5.min.js"></script>
 <script src="app.js" charset="utf-8"></script>
</body>

D3 can also be used to manipulate the DOM, just like jQuery. Let's populate the<tbody>in
that style. Add the following to the bottom of app.js:

var createTable = function(){
 for (var i = 0; i < runs.length; i++) {
 var row = d3.select('tbody').append('tr');
 row.append('td').html(runs[i].id);
 row.append('td').html(runs[i].date);
 row.append('td').html(runs[i].distance);
 }
}

createTable();

Add some styling for the table at the bottom of app.css:

table, th, td {
 border: 1px solid black;
}
th, td {
 padding:10px;
 text-align: center;
}

Adjust the CSS for svg to add a bottom margin. This will create some space between the
graph and the table:

svg {
 overflow: visible;
 margin-bottom: 50px;
}

Building an Interactive Scatter Plot Chapter 3

[71]

Now the browser should look like this:

Summary
At this point, you have a static scatter plot and a table that displays its data. In Chapter
4, Making a Basic Scatter Plot Interactive, we will be learning how to make it interactive.

4
Making a Basic Scatter Plot

Interactive
In the last chapter, we created a static scatter plot. In this chapter, we'll make it interactive
so that we can add, update, and delete runs. You'll learn how to do the following:

Create a click handler
Remove data
Drag an element
Update data after a drag
Create a zoom behavior that scales elements
Update axes when zooming/panning
Update click points after a transform
Avoid redrawing the entire screen during rendering
Hide elements beyond axes

The complete code for this section can be found here: https:/ ​/​github. ​com/
PacktPublishing/​D3. ​js- ​Quick- ​Start- ​Guide/ ​tree/ ​master/ ​Chapter04.

Creating a click handler
Let's say that we want it so that when the user clicks on the <svg> element, it creates a new
run. Add the following to the bottom of app.js:

d3.select('svg').on('click', function(){
 //gets the x position of the mouse relative to the svg element
 var x = d3.event.offsetX;
 //gets the y position of the mouse relative to the svg element
 var y = d3.event.offsetY;

https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter04

Making a Basic Scatter Plot Interactive Chapter 4

[73]

 //get a date value from the visual point that we clicked on
 var date = xScale.invert(x);
 //get a numeric distance value from
 //the visual point that we clicked on
 var distance = yScale.invert(y);

 //create a new "run" object
 var newRun = {
 //generate a new id by adding 1 to the last run's id
 id: runs[runs.length-1].id+1,
 //format the date object created above to a string
 date: formatTime(date),
 distance: distance //add the distance
 }
 runs.push(newRun); //push the new run onto the runs array
 createTable(); //render the table
});

Let's examine what we just wrote. Note that d3.select('svg').on('click',
function(){ sets up a click handler on the svg element. The anonymous function that
gets passed in as the second parameter to .on() gets called each time the user clicks on the
SVG. Once inside that callback function, we use d3.event.offsetX to get the x position of
the mouse inside the SVG, and we use d3.event.offsetY to get the y position. We then
use xScale.invert() and yScale.invert() to turn the x/y visual points into data
values (date and distance, respectively). We then use those data values to create a new run
object. We create an ID for the new run by getting the ID of the last element in the runs
array and adding 1 to it. Lastly, we push the new run on to the runs array and call
createTable().

Click on the SVG to create a new run. You might notice that createTable() just adds on
all the run rows again:

Making a Basic Scatter Plot Interactive Chapter 4

[74]

Let's alter the createTable() function so that when it runs, it clears out any rows
previously created and re-renders everything. Add d3.select('tbody').html('') to
the top of the createTable function in app.js:

var createTable = function(){
 //clear out all rows from the table
 d3.select('tbody').html('');
 for (var i = 0; i < runs.length; i++) {
 var row = d3.select('tbody').append('tr');
 row.append('td').html(runs[i].id);
 row.append('td').html(runs[i].date);
 row.append('td').html(runs[i].distance);
 }
}

Making a Basic Scatter Plot Interactive Chapter 4

[75]

Now refresh the page and click on the SVG to create a new run. The table should then look
like this:

The only issue now is that circles aren't being created when you click on the SVG. To fix
this, let's wrap the code for creating <circle> elements in a render function, and call
render() immediately after it's defined:

var render = function(){

 var yScale = d3.scaleLinear();
 yScale.range([HEIGHT, 0]);
 yDomain = d3.extent(runs, function(datum, index){
 return datum.distance;
 })
 yScale.domain(yDomain);

 d3.select('svg').selectAll('circle')
 .data(runs)
 .enter()
 .append('circle');

 d3.selectAll('circle')
 .attr('cy', function(datum, index){
 return yScale(datum.distance);
 });

 var parseTime = d3.timeParse("%B%e, %Y at %-I:%M%p");
 var formatTime = d3.timeFormat("%B%e, %Y at %-I:%M%p");
 var xScale = d3.scaleTime();
 xScale.range([0,WIDTH]);
 xDomain = d3.extent(runs, function(datum, index){
 return parseTime(datum.date);
 });
 xScale.domain(xDomain);

Making a Basic Scatter Plot Interactive Chapter 4

[76]

 d3.selectAll('circle')
 .attr('cx', function(datum, index){
 return xScale(parseTime(datum.date));
 });

}
render();

If you refresh the browser, you'll see an error in the console. This is because bottomAxis
and leftAxis use xScale and yScale that are now scoped to exist only inside the
render() function. For future use, let's move xScale and yScale out of the render
function along with the code for creating the domains/ranges:

var parseTime = d3.timeParse("%B%e, %Y at %-I:%M%p");
var formatTime = d3.timeFormat("%B%e, %Y at %-I:%M%p");
var xScale = d3.scaleTime();
xScale.range([0,WIDTH]);
xDomain = d3.extent(runs, function(datum, index){
 return parseTime(datum.date);
});
xScale.domain(xDomain);

var yScale = d3.scaleLinear();
yScale.range([HEIGHT, 0]);
yDomain = d3.extent(runs, function(datum, index){
 return datum.distance;
})
yScale.domain(yDomain);
var render = function(){

 //since no circles exist,
 //we need to select('svg') so that
 //d3 knows where to append the new circles
 d3.select('svg').selectAll('circle')
 //attach the data as before
 .data(runs)
 //find the data objects that have not yet
 //been attached to visual elements
 .enter()
 //for each data object that hasn't been attached,
 //append a <circle> to the <svg>
 .append('circle');

Making a Basic Scatter Plot Interactive Chapter 4

[77]

 d3.selectAll('circle')
 .attr('cy', function(datum, index){
 return yScale(datum.distance);
 });

 d3.selectAll('circle')
 .attr('cx', function(datum, index){
 //use parseTime to convert
 //the date string property on the datum object
 //to a Date object,
 //which xScale then converts to a visual value
 return xScale(parseTime(datum.date));
 });

}
render();

Now go to the bottom of app.js and add a line to call render() inside our <svg> click
handler:

var newRun = {
 id: runs[runs.length-1].id+1,
 date: formatTime(date),
 distance: distance
}
runs.push(newRun);
createTable();
render(); //add this line

Making a Basic Scatter Plot Interactive Chapter 4

[78]

Now when you click the SVG, a circle will appear:

Making a Basic Scatter Plot Interactive Chapter 4

[79]

Removing data
Let's set up a click handler on all <circle> elements so that when the user clicks on
<circle>, D3 will remove that circle and its associated data element from the array. Add
the following code at the bottom of the render function declaration we wrote in the last
section. We do this so that the click handlers are attached after the circles are created:

//put this at the bottom of the render function,
//so that click handlers are attached when the circle is created
d3.selectAll('circle').on('click', function(datum, index){
 //stop click event from propagating to
 //the SVG element and creating a run
 d3.event.stopPropagation();
 //create a new array that has removed the run
 //with the correct id. Set it to the runs var
 runs = runs.filter(function(run, index){
 return run.id != datum.id;
 });
 render(); //re-render dots
 createTable(); //re-render table
});

Let's examine the previous code. The first line selects all <circle> elements and creates a
click handler on each of them. However, d3.event.stopPropagation(); prevents the
click from bubbling up the DOM to the SVG. If we don't add it, the click handler on the
SVG will fire as well, when we click on a circle. This would create an additional run every
time we try to remove a run. Next, we call the following:

runs = runs.filter(function(run, index){
 return run.id != datum.id;
});

This loops through the runs array and filters out any objects that have an id property that
matches the id property of datum that is associated with <circle> that was clicked.
Notice that the callback function in .on('click', function(datum, index){ takes
two parameters: datum, the run object associated with that <circle> , and the index of
the run object in the runs array.

Making a Basic Scatter Plot Interactive Chapter 4

[80]

Once we've filtered out the correct run object from the runs array, we call render() and
createdTable() to re-render the graph and the table.

But if we click on the middle circle and examine the Elements tab of the Developer Tools,
we'll see that the <circle> element hasn't been removed:

Elements tab showing the <circle> element

Making a Basic Scatter Plot Interactive Chapter 4

[81]

In the previous screenshot, it appears as though there are only two circles, but really the
middle one has had its cx set to 800 and its cy set to 0. It's overlapping the other circle in
the same position. This is because we've removed the second element in the runs array.
When we re-render the graph, the runs array only has two objects; the second run object
used to be the third run object before we removed the middle run. Now that it's the second
run object, the second <circle> is assigned its data. The third circle still has its old data
assigned to it, so both the second and the third circle have the same data and are therefore
placed in the same location.

Let's put the circles in <g> so that it's easy to clear out all the circles and re-render them
when we remove a run. This way we won't have any extra <circle> elements lying
around when we try to remove them. This approach is similar to what we do when re-
rendering the table. Adjust your <svg> element in index.html so it looks as follows:

<svg>
 <g id="points"></g>
</svg>

Now we can clear out the <circle> elements each time render() is called. This is a little
crude, but it'll work for now. Later on, we'll do things in a more elegant fashion. At the top
of the render() function declaration, add d3.select('#points').html(''); and
adjust the next line from d3.select('svg').selectAll('circle') to
d3.select('#points').selectAll('circle'):

//adjust the code at the top of your render function
 //clear out all circles when rendering d3.select('#points').html('');
 //add circles to #points group, not svg
d3.select('#points').selectAll('circle') .data(runs) .enter()
.append('circle');

Making a Basic Scatter Plot Interactive Chapter 4

[82]

Now if we click on the middle circle, the element is removed from the DOM:

Removing the element from the DOM

Making a Basic Scatter Plot Interactive Chapter 4

[83]

If you try to delete all the circles and then add a new one, you'll get an error:

Displaying the error you get when deleting all the circles and adding a new one

This is because our code for creating newRun in the SVG click handler needs some work:

var newRun = { //create a new "run" object
 //generate a new id by adding 1 to the last run's id
 id: runs[runs.length-1].id+1,
 //format the date object created above to a string
 date: formatTime(date),
 distance: distance //add the distance
}

This is because when there are no run elements in the runs array, runs[runs.length-1]
tries to access an element at index -1 in the array. Inside the <svg> click handler, let's put
in a little code to handle when the user has deleted all runs and tries to add a new one:

//inside svg click handler
var newRun = {
 //add this line
 id: (runs.length > 0) ? runs[runs.length-1].id+1 : 1,
 date: formatTime(date),
 distance: distance
}

Making a Basic Scatter Plot Interactive Chapter 4

[84]

Here's what Chrome should look like now if you delete all the runs and then try to add a
new one:

Lastly, let's put in some CSS, so we know we're clicking on a circle. First, add transition:
r 0.5s linear, fill 0.5s linear; to the CSS code you've already written for
circle:

circle {
 r: 5;
 fill: black;

Making a Basic Scatter Plot Interactive Chapter 4

[85]

 /* add this transition to original code */
 transition: r 0.5s linear, fill 0.5s linear;
}

Then add this to the bottom of app.css:

/* add this css for the hover state */
circle:hover {
 r:10;
 fill: blue;
}

Here's what a circle should look like when you hover over it:

Making a Basic Scatter Plot Interactive Chapter 4

[86]

Dragging an element
We want to be able to update the data for a run by dragging the associated circle. To do
this, we'll use a behavior, which you can think of as a combination of multiple event
handlers. For a drag behavior, there are three callbacks:

When the user starts to drag
Each time the user moves the cursor before releasing the mouse button
When the user releases the mouse button

There are two steps whenever we create a behavior:

Create the behavior1.
Attach the behavior to one or more elements2.

Put the following code at the bottom of the render() function declaration:

//put this code at the end of the render function
var drag = function(datum){
 var x = d3.event.x;
 var y = d3.event.y;
 d3.select(this).attr('cx', x);
 d3.select(this).attr('cy', y);
}
var dragBehavior = d3.drag()
 .on('drag', drag);
d3.selectAll('circle').call(dragBehavior);

Making a Basic Scatter Plot Interactive Chapter 4

[87]

You can now drag the circles around, but the data doesn't update:

Let's examine how this code works:

var drag = function(datum){
 var x = d3.event.x;
 var y = d3.event.y;

Making a Basic Scatter Plot Interactive Chapter 4

[88]

 d3.select(this).attr('cx', x);
 d3.select(this).attr('cy', y);
}

This drag function will be used as a callback anytime the user moves the cursor before
releasing the mouse button. It gets the x and y coordinates of the mouse and sets the cx and
cy values of the element being dragged (d3.select(this)) to those coordinates.

Next, we generate a drag behavior that will, at the appropriate time, call the drag function
that was just explained:

var dragBehavior = d3.drag()
 .on('drag', drag);

Lastly, we attach that behavior to all the <circle> elements:

d3.selectAll('circle').call(dragBehavior);

Updating data after a drag
Now we're going to add functionality so that when the user releases the mouse button, the
data for the run object associated with the circle being dragged gets updated.

First, let's create the callback function that will get called when the user releases the mouse
button. Toward the bottom of the render() function declaration, add the following code
just above var drag = function(datum){:

var dragEnd = function(datum){
 var x = d3.event.x;
 var y = d3.event.y;

 var date = xScale.invert(x);
 var distance = yScale.invert(y);
 datum.date = formatTime(date);
 datum.distance = distance;
 createTable();
}

Now attach that function to dragBehavior so that it is called when the user stops dragging
a circle. Look at the following code:

var dragBehavior = d3.drag()
 .on('drag', drag);

Making a Basic Scatter Plot Interactive Chapter 4

[89]

Change it to this:

var dragBehavior = d3.drag()
 .on('drag', drag)
 .on('end', dragEnd);

Now, once you stop dragging a circle around, you should see the data in the table change:

Making a Basic Scatter Plot Interactive Chapter 4

[90]

Let's change the color of a circle while it's being dragged too. Add this to the bottom of
app.css:

circle:active {
 fill: red;
}

When you drag a circle, it should turn red.

Creating a zoom behavior that scales
elements
Another behavior we can create is the zooming/panning ability. Once this functionality is
complete, you will be able to zoom in and out on different parts of the graph by doing one
of the following:

A two-finger drag on a trackpad
Rotating your mouse wheel
Pinching/spreading on a trackpad

You will also be able to pan left, right, up, and down on the graph by clicking and dragging
on the SVG element.

Put the following code at the bottom of app.js:

var zoomCallback = function(){
 d3.select('#points').attr("transform", d3.event.transform);
}

This is the callback function that will be called when the user attempts to zoom or pan. All
it does is take the zoom or pan action and turn it into a transform attribute that gets
applied to the <g id="points"></g> element that contains the circles. Now add the
following code to the bottom of app.js to create the zoom behavior and attach it to the svg
element:

var zoom = d3.zoom()
 .on('zoom', zoomCallback);
d3.select('svg').call(zoom);

Making a Basic Scatter Plot Interactive Chapter 4

[91]

Now, if we zoom out, the graph should look something like this:

Updating axes when zooming and panning
Now when we zoom, the points move in/out. When we pan, they move
vertically/horizontally. Unfortunately, the axes don't update accordingly. Let's first add IDs
to the <g> elements that contain them. Find the following code:

var bottomAxis = d3.axisBottom(xScale);
d3.select('svg')

Making a Basic Scatter Plot Interactive Chapter 4

[92]

 .append('g')
 .call(bottomAxis)
 .attr('transform', 'translate(0,'+HEIGHT+')');
var leftAxis = d3.axisLeft(yScale);
d3.select('svg')
 .append('g')
 .call(leftAxis);

Add .attr('id', 'x-axis') after the first .append('g'), and .attr('id', 'y-
axis') after the second .append('g'):

d3.select('svg')
 .append('g')
 .attr('id', 'x-axis') //add an id
 .call(bottomAxis)
 .attr('transform', 'translate(0,'+HEIGHT+')');
var leftAxis = d3.axisLeft(yScale);
d3.select('svg')
 .append('g')
 .attr('id', 'y-axis') //add an id
 .call(leftAxis);

Now let's use those IDs to adjust the axes when we zoom. Find this code:

var zoomCallback = function(){
 d3.select('#points').attr("transform", d3.event.transform);
}

Add the following to the end of the function declaration:

d3.select('#x-axis')
 .call(bottomAxis.scale(d3.event.transform.rescaleX(xScale)));
d3.select('#y-axis')
 .call(leftAxis.scale(d3.event.transform.rescaleY(yScale)));

Now zoomCallback should look as follows:

var zoomCallback = function(){
 d3.select('#points').attr("transform", d3.event.transform);
 d3.select('#x-axis')
 .call(bottomAxis.scale(d3.event.transform.rescaleX(xScale)));
 d3.select('#y-axis')
 .call(leftAxis.scale(d3.event.transform.rescaleY(yScale)));
}

Making a Basic Scatter Plot Interactive Chapter 4

[93]

There are two things to note about the previous code:

bottomAxis.scale() tells the axis to redraw itself.
d3.event.transform.rescaleX(xScale) returns a value indicating how the
bottom axis should rescale.

Now when you zoom out, the axes should redraw themselves:

Making a Basic Scatter Plot Interactive Chapter 4

[94]

Updating click points after a transform
Try zooming and panning and then clicking on the SVG to create a new run. You'll notice
it's in the wrong place. That's because the SVG click handler has no idea that a zoom or pan
has happened. Currently, if you click on the visual point, no matter how much you may
have zoomed or panned, the click handler still converts it as if you had never zoomed or
panned.

When we zoom, we need to save the transformation information to a variable so that we
can use it later to figure out how to properly create circles and runs. Find the
zoomCallback declaration and add var lastTransform = null right before it. Then
add lastTransform = d3.event.transform; to the beginning of the function
declaration. It should look as follows:

var lastTransform = null; //add this
var zoomCallback = function(){
 lastTransform = d3.event.transform; //add this
 d3.select('#points').attr("transform", d3.event.transform);
 d3.select('#x-axis')
 .call(bottomAxis.scale(d3.event.transform.rescaleX(xScale)));
 d3.select('#y-axis')
 .call(leftAxis.scale(d3.event.transform.rescaleY(yScale)));
}

Now whenever the user zooms or pans the transformation data that was used to shrink or
move the SVG and axes is saved in the lastTransform variable. Use that variable when
clicking on the SVG.

Find these two lines at the beginning of the SVG click handler:

var x = d3.event.offsetX;
var y = d3.event.offsetY;

Change them to the following:

var x = lastTransform.invertX(d3.event.offsetX);
var y = lastTransform.invertY(d3.event.offsetY);

Your click handler should look like this now:

d3.select('svg').on('click', function(){
 var x = lastTransform.invertX(d3.event.offsetX); //adjust this
 var y = lastTransform.invertY(d3.event.offsetY); //adjust this

 var date = xScale.invert(x)
 var distance = yScale.invert(y);

Making a Basic Scatter Plot Interactive Chapter 4

[95]

 var newRun = {
 id: (runs.length > 0) ? runs[runs.length-1].id+1 : 1,
 date: formatTime(date),
 distance: distance
 }
 runs.push(newRun);
 createTable();
 render();
});

But now click before any zoom is broken, since lastTransform will be null:

Find the code that we just wrote for the SVG click handler:

var x = lastTransform.invertX(d3.event.offsetX);
var y = lastTransform.invertY(d3.event.offsetY);

Adjust it so it looks as follows:

var x = d3.event.offsetX;
var y = d3.event.offsetY;

if(lastTransform !== null){
 x = lastTransform.invertX(d3.event.offsetX);
 y = lastTransform.invertY(d3.event.offsetY);
}

Now initially, x and y are set to d3.event.offsetX and d3.event.offsetY,
respectively. If a zoom or pan occurs, lastTransform will not be null, so we overwrite x
and y with the transformed values.

Making a Basic Scatter Plot Interactive Chapter 4

[96]

Add a new run initially:

Making a Basic Scatter Plot Interactive Chapter 4

[97]

Now pan right and add a new point:

Making a Basic Scatter Plot Interactive Chapter 4

[98]

Avoiding redrawing the entire screen during
rendering
At the moment, every time we call render(), we wipe all <circle> elements from <svg>.
This is inefficient. Let's just remove the ones we don't want

At the top of the render() function, assign
d3.select('#points').selectAll('circle').data(runs) to a variable, so we can
use it later. This helps preserve how DOM elements are assigned to data elements in the
next sections. Find this at the top of the render() function declaration:

d3.select('#points').html('');
d3.select('#points').selectAll('circle')
 .data(runs)
 .enter()
 .append('circle');

Change it to this:

d3.select('#points').html('');
var circles = d3.select('#points')
 .selectAll('circle')
 .data(runs);
circles.enter().append('circle');

Next, remove the d3.select('#points').html(''); line. We'll use .exit() to find the
selection of circles that haven't been matched with data, and then we'll use .remove() to
remove those circles. Add the following after the last line we just wrote
(circles.enter().append('circle');):

circles.exit().remove();

Reload the page, click on the center (second) circle. You'll notice it looks as if the circle
disappears, and the circle in the upper-right briefly gains a hover state and then shrinks
back down. That's not really what's happening.

Making a Basic Scatter Plot Interactive Chapter 4

[99]

If we click on the middle circle (second), it deletes the second run object in the runs array,
and the third run object moves down to replace it in second place. We now only have an
array of two run objects: the first and what used to be the third (but is now the second).
When render() gets called again, what was the middle (second) circle gets assigned to
what used to be the third run object in the runs array (but is now the second). This "run"
object used to be assigned to the third circle, which was in the upper right. But now, since
there are only two runs, that third (upper-right) circle gets deleted when we call
circles.exit().remove();. The second circle's data has changed now, and it jumps to
the upper–right corner to match that data. It used to have a hover state, but all of a sudden
it's moved out from under the cursor, so it shrinks back down to normal size and becomes
black.

To avoid these effects, we need to make sure that each circle stays with the data it used to
be assigned to when we call render(). To do this, we can tell D3 to map <circles> to
datum by ID, rather than index, in the array. At the top of the render() function, find this
code:

var circles = d3.select('#points')
 .selectAll('circle')
 .data(runs);

Change it to this:

var circles = d3.select('#points')
 .selectAll('circle')
 .data(runs, function(datum){
 return datum.id
});

This tells D3 to use the id property of each run object when determining which <circle>
element to assign the data object to. It basically assigns that id property of the run object to
the <circle> element initially. That way, when the second run object is deleted,
circles.exit().remove(); will find the circle that had the corresponding ID (the
middle circle) and remove it.

Now clicking on the middle circle should work correctly.

Hiding elements beyond an axis
If you pan or zoom extensively, you'll notice that the circles are visible beyond the bounds
of the axes:

Making a Basic Scatter Plot Interactive Chapter 4

[100]

To hide elements once they get beyond an axis, we can just add an outer SVG with
id="container" around our current <svg> element in index.html:

<svg id="container">
 <svg>
 <g id="points"></g>
 </svg>
</svg>

Making a Basic Scatter Plot Interactive Chapter 4

[101]

Now replace all d3.select('svg') code with d3.select('#container'). You can
perform a find-and-replace. There should be five instances to change:

d3.select('#container')
 .style('width', WIDTH)
 .style('height', HEIGHT);

//
// lots of code omitted here, including render() declaration...
//

var bottomAxis = d3.axisBottom(xScale);
d3.select('#container')
 .append('g')
 .attr('id', 'x-axis')
 .call(bottomAxis)
 .attr('transform', 'translate(0,'+HEIGHT+')');

var leftAxis = d3.axisLeft(yScale);
d3.select('#container')
 .append('g')
 .attr('id', 'y-axis')
 .call(leftAxis);

//
// code for create table omitted here...
//

d3.select('#container').on('click', function(){
 //
 // click handler functionality omitted
 //
});

//
// zoomCallback code omitted here
//

var zoom = d3.zoom()
 .on('zoom', zoomCallback);
d3.select('#container').call(zoom);

Making a Basic Scatter Plot Interactive Chapter 4

[102]

And, lastly, adjust CSS to replace svg { with #container {:

#container {
 overflow: visible;
 margin-bottom: 50px;
}

Now circles should be hidden once they move beyond the bounds of the inner <svg>
element:

Making a Basic Scatter Plot Interactive Chapter 4

[103]

Summary
In this chapter, we've learned the basics of D3 and have created a fully interactive scatter
plot. In the next chapter, we'll learn how to use AJAX to make an asynchronous request that
will populate a bar graph.

5
Creating a Bar Graph Using a

Data File
AJAX stands for Asynchronous JavaScript And XML. Basically, what we can do is use
JavaScript to load data into the page after it has loaded. This is a great way to generate a
graph based on user interaction. In this chapter, we'll use AJAX to build a bar graph. By the
end of the chapter, you should be able to do the following:

Use AJAX to make an asynchronous call to an external data file
Create a bar graph

The complete code for this section can be found here: https:/ ​/​github. ​com/
PacktPublishing/​D3. ​js- ​Quick- ​Start- ​Guide/ ​tree/ ​master/ ​Chapter05.

Setting up our application
Let's create our standard setup in index.html:

<!DOCTYPE html>
<html lang="en" dir="ltr">
 <head>
 <link rel="stylesheet" href="app.css">
 </head>
 <body>
 <svg></svg>
 <script src="https://d3js.org/d3.v5.min.js"></script>
 <script src="app.js" charset="utf-8"></script>
 </body>
</html>

https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter05

Creating a Bar Graph Using a Data File Chapter 5

[105]

Now add the following code to app.js:

var WIDTH = 800;
var HEIGHT = 600;

d3.select('svg')
 .style('width', WIDTH)
 .style('height', HEIGHT);

Now add the following code to app.css:

svg {
 border:1px solid black;
}

This is what we should have:

Creating an external file to hold our data
Let's create a data.json file, which will hold fake data regarding how often job posts
require certain skills. This should be the contents of the file:

[
 {
 "name": "HTML",
 "count": 21
 },
 {
 "name": "CSS",

Creating a Bar Graph Using a Data File Chapter 5

[106]

 "count": 17
 },
 {
 "name": "Responsive Web Design",
 "count": 17
 },
 {
 "name": "JavaScript",
 "count": 17
 },
 {
 "name": "Git",
 "count": 16
 },
 {
 "name": "Angular.js",
 "count": 9
 },
 {
 "name": "Node.js",
 "count": 9
 },
 {
 "name": "PostgreSQL",
 "count": 8
 },
 {
 "name": "Agile Project Management",
 "count": 8
 },
 {
 "name": "MongoDB",
 "count": 7
 },
 {
 "name": "Trello",
 "count": 7
 },
 {
 "name": "Testing / TDD",
 "count": 7
 },
 {
 "name": "jQuery",
 "count": 7
 },
 {
 "name": "User Testing",

Creating a Bar Graph Using a Data File Chapter 5

[107]

 "count": 6
 },
 {
 "name": "MySQL",
 "count": 6
 },
 {
 "name": "PHP",
 "count": 6
 },
 {
 "name": "React.js",
 "count": 6
 },
 {
 "name": "AJAX",
 "count": 6
 },
 {
 "name": "Express.js",
 "count": 5
 },
 {
 "name": "Heroku",
 "count": 5
 },
 {
 "name": "Wireframing",
 "count": 5
 },
 {
 "name": "Sass/SCSS",
 "count": 5
 },
 {
 "name": "Mobile Web",
 "count": 4
 },
 {
 "name": "Rails",
 "count": 4
 },
 {
 "name": "WordPress",
 "count": 4
 },
 {
 "name": "Drupal",

Creating a Bar Graph Using a Data File Chapter 5

[108]

 "count": 3
 },
 {
 "name": "Ruby",
 "count": 3
 },
 {
 "name": "Ember.js",
 "count": 3
 },
 {
 "name": "Python",
 "count": 3
 },
 {
 "name": "Amazon EC2",
 "count": 2
 },
 {
 "name": "Computer Science degree",
 "count": 1
 },
 {
 "name": "Backbone.js",
 "count": 1
 },
 {
 "name": "Less",
 "count": 1
 },
 {
 "name": "Prototyping",
 "count": 1
 },
 {
 "name": "Redis",
 "count": 1
 }
]

Creating a Bar Graph Using a Data File Chapter 5

[109]

Making an AJAX request
Now we're going to use JavaScript to make a request for some data.

Writing the basic code
D3 has lots of different methods for making AJAX requests to files of different data types:

d3.json('path').then(function(data){
 //do something with the json data here
});
d3.csv('path').then(function(data){
 //do something with the csv data here
});
d3.tsv('path').then(function(data){
 //do something with the tsv data here
});
d3.xml('path').then(function(data){
 //do something with the xml data here
});
d3.html('path').then(function(data){
 //do something with the html data here
});
d3.text('path').then(function(data){
 //do something with the text data here
});

Since our data is in JSON format, we'll use the first kind of call. Add the following to the
end of app.js:

d3.json('data.json').then(function(data){ console.log(data); });

Handling file access
If you opened the index.html file in Chrome directly, instead of serving it on a web
server, you'll notice we've encountered an error. Check your developer console:

Creating a Bar Graph Using a Data File Chapter 5

[110]

The issue here is that web browsers are not supposed to make AJAX requests to files on
your computer. If they could, this would be a huge security flaw because any website could
access files on your computer. Let's create a basic file server. To do this, you'll need to
installNode.js (https:/ ​/ ​nodejs. ​org/ ​en/ ​). Once that's done, open your computer's
Terminal:

For Mac: command + Space, and then type terminal and hit Enter.
For Windows: click Start, type cmd,and hit Enter.

Next, type the following into your Terminal:

npm install -g http-server

If you get error messages, try this:

sudo npm install -g http-server

This installs a basic http-server that was built using Node.js. To run it, use the Terminal
to navigate to the directory where you saved your code (type cd to change folders in the
Terminal) and run the following:

http-server .

You should see something such as this:

https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/

Creating a Bar Graph Using a Data File Chapter 5

[111]

Now go to http://localhost:8080/ in your browser. You should now see that your
AJAX call is succeeding (if you have issues, hold down shift and hit the refresh button to
force the browser to reload all files that may have been cached):

Using AJAX data to create SVG elements
Now that our AJAX calls are succeeding, let's start building our app. From here on out, it's
all basic JavaScript and D3. Note that everything we'll write for the rest of this lesson is
done within the success callback of our AJAX request. In production, we might want to
move this code elsewhere, but for now this is easier for learning. Let's create some
rectangles for our bar graph. The bottom of app.js (the callback to the AJAX request)
should now look as follows:

d3.json('data.json').then(function(data){
 d3.select('svg').selectAll('rect')
 .data(data)
 .enter()
 .append('rect');
});

Creating a Bar Graph Using a Data File Chapter 5

[112]

Our Elements tab in our dev tools should look something like this:

Creating a Bar Graph Using a Data File Chapter 5

[113]

Adjusting the height and the width of the
bars
Let's create a scale that maps the count property of each element in data to a visual height
for the corresponding bar. We'll use a linear scale. Remember to map HEIGHT of the graph
to a very low data point and the top of the graph (0 in the range) map to a very high data
value. Add this code to the bottom of the AJAX callback:

var yScale = d3.scaleLinear();
yScale.range([HEIGHT, 0]);
var yMin = d3.min(data, function(datum, index){
 return datum.count;
})
var yMax = d3.max(data, function(datum, index){
 return datum.count;
})
yScale.domain([yMin, yMax]);

We could use d3.extent, but we're going to need the individual min values later on.
Immediately after the previous code, let's tell D3 to adjust the height of the rectangles using
the yScale. Remember that the y axis is flipped. A low data value produces a high range
value. But even though the range is high, the bar itself should be small. We'll need to re-flip
the values just for height so that a low data value produces a small bar and a high data
value produces a large bar. To do this, let's subtract whatever the range point is from
HEIGHT of the graph. This way, if yScale(datum.count) produces, say, 500, the height of
the bar will be 100. We can use yScale(datum.count) normally when adjusting the
position of the bars later. Add the following to the bottom of the AJAX callback:

d3.selectAll('rect')
 .attr('height', function(datum, index){
 return HEIGHT-yScale(datum.count);
 });

Creating a Bar Graph Using a Data File Chapter 5

[114]

Now our rectangles have height, but no width:

At the bottom of app.css, let's give all our bars the same width:

rect {
 width: 15px;
}

Creating a Bar Graph Using a Data File Chapter 5

[115]

Here's what we should see in Chrome now:

Adjusting the horizontal and the vertical
placement of the bars
Our bars all overlap one another at the moment. Let's space them out by mapping x's
position to index in the data array. Add the following to the bottom of the AJAX callback:

var xScale = d3.scaleLinear(); xScale.range([0, WIDTH]); xScale.domain([0,
data.length]); d3.selectAll('rect') .attr('x', function(datum, index){
return xScale(index); });

Creating a Bar Graph Using a Data File Chapter 5

[116]

This maps indices in the array to horizontal range points. Chrome should look as follows:

Now let's move the bars so they grow from the bottom, as opposed to hanging from the
top. Add the following to the end of the AJAX callback:

d3.selectAll('rect')
 .attr('y', function(datum, index){
 return yScale(datum.count);
 });

Using our yScale function, a high data value produces a low range value, which doesn't
push a large bar down much. A low data point produces a high range value, which pushes
a small bar down a lot.

Our last few bars don't have any height, because we've mapped the minimum count
property of our data to a visual range value of 0 in yScale. Let's adjust the last line of this
code:

var yScale = d3.scaleLinear();
yScale.range([HEIGHT, 0]);
var yMin = d3.min(data, function(datum, index){
 return datum.count;
})
var yMax = d3.max(data, function(datum, index){
 return datum.count;
})

Creating a Bar Graph Using a Data File Chapter 5

[117]

yScale.domain([yMin, yMax]);

We will change it to this code:

var yScale = d3.scaleLinear();
yScale.range([HEIGHT, 0]);
var yMin = d3.min(data, function(datum, index){
 return datum.count;
})
var yMax = d3.max(data, function(datum, index){
 return datum.count;
})
yScale.domain([yMin-1, yMax]); //adjust this line

Now the domain minimum is one less than what's actually in our data set. Domains with
the original minimum are treated as higher values than what's expected for the minimum
of the graph. We get this:

Creating a Bar Graph Using a Data File Chapter 5

[118]

Making the width of the bars dynamic
Currently, our bars have a fixed width. No matter how many elements we have, they have
a 15 px width. If we had more data elements, the bars could overlap. Let's change this.
Since each rect will be the same width, no matter what the data is, we can just assign
width a computed value. Add the following to the end of the AJAX callback:

d3.selectAll('rect')
 .attr('width', WIDTH/data.length);

Now let's adjust our rect CSS so our bars are more visible:

rect {
 /* remove the width rule that was here */
 stroke:white;
 stroke-width:1px;
}

The output will be shown as follows:

Creating a Bar Graph Using a Data File Chapter 5

[119]

Changing the color of the bar based on data
Right now, the bars are black. A linear scale will interpolate between colors, just like a
regular number. Add the following to the end of the AJAX callback:

var yDomain = d3.extent(data, function(datum, index){
 return datum.count;
})
var colorScale = d3.scaleLinear();
colorScale.domain(yDomain)
colorScale.range(['#00cc00', 'blue'])
d3.selectAll('rect')
 .attr('fill', function(datum, index){
 return colorScale(datum.count)
 })

Notice that we calculate they Domain using d3.extent so that the real minimum of the
data set is used to map #00cc00:

Creating a Bar Graph Using a Data File Chapter 5

[120]

Adding axes
The left axis is the same as shown in Chapter 4, Making a Basic Scatter Plot Interactive. Add
this code to the bottom of the AJAX callback:

var leftAxis = d3.axisLeft(yScale);
d3.select('svg')
 .append('g').attr('id', 'left-axis')
 .call(leftAxis);

To create the bottom axis, we need to be able to map strings to points on a domain. We'll
use a band scale for this, which just divides up the range into equal parts and maps it to an
array of discrete values (values that can't be interpolated, for example, strings). Add this
code to the bottom of the AJAX callback:

var skillScale = d3.scaleBand();
var skillDomain = data.map(function(skill){
 return skill.name
});
skillScale.range([0, WIDTH]);
skillScale.domain(skillDomain);

Notice we use data.map(). This is regular JavaScript that simply loops through an array
and modifies each element based on the given function. It then returns the resulting array,
leaving the original array in tact. In the previous example, skillDomain will be an array
containing the various name properties of each of the data elements.

Once we have an array of each of the skills, we use this as the domain and map each skill to
a point within the range. Remember the point in the range is created by dividing up the full
range equally based on the number of elements in the domain.

Now that we have a scale that maps each skill text to a point in the x range, we can create
the bottom axis as before. Add this code to the bottom of the AJAX callback:

var bottomAxis = d3.axisBottom(skillScale);
d3.select('svg')
 .append('g').attr('id', 'bottom-axis')
 .call(bottomAxis)
 .attr('transform', 'translate(0,'+HEIGHT+')');

Creating a Bar Graph Using a Data File Chapter 5

[121]

We still need to stop the <svg> element from clipping the axes. Change the CSS for svg in
app.css:

svg {
 overflow: visible;
}

The following is the result:

The bottom axis text is all cluttered, though. Let's add some CSS to bottom of app.css to
fix this:

#bottom-axis text {
 transform:rotate(45deg);
}

Creating a Bar Graph Using a Data File Chapter 5

[122]

The output will be shown as follows:

It's rotated, but it's rotated around the center of the element. Let's add a line to what we just
wrote, so it rotates around the start of the text:

#bottom-axis text {
 transform:rotate(45deg);
 text-anchor: start; /* add this line */
}

Creating a Bar Graph Using a Data File Chapter 5

[123]

The output will be shown as follows:

Creating a Bar Graph Using a Data File Chapter 5

[124]

Let's move the graph to the right, so we can see the values for the left axis. Adjust our svg
css code so it looks as follows:

svg {
 overflow: visible;
 margin-left: 20px; /* add this line */
}

Summary
In this chapter, we learned how to use AJAX to make an asynchronous request that will
populate a bar graph. In Chapter 6, Animating SVG Elements to Create an Interactive Pie
Chart, we'll create a pie chart that animates when you remove sections from it.

6
Animating SVG Elements to

Create an Interactive Pie Chart
In this chapter, we'll be use animation to make our graphs move. This can give your
visualizations a more polished and professional feel.

In this section, we will cover the following topics:

Creating an ordinal scale
Creating a color scale
Adding paths for each pie segment
Generating an arc creating function
Formatting the data for the arc
Adjusting the position of the pie
Making a donut graph
Removing parts of the pie

The complete code for this section can be found at https:/ ​/​github. ​com/ ​PacktPublishing/
D3.​js-​Quick-​Start- ​Guide/ ​tree/ ​master/ ​Chapter06.

https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter06

Animating SVG Elements to Create an Interactive Pie Chart Chapter 6

[126]

Setting up the application
As always, we'll need an index.html file to house our SVG code. Let's create the file and
add the following code to it:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title></title>
 <script src="https://d3js.org/d3.v5.min.js"></script>
 </head>
 <body>
 <svg>
 <g></g>
 </svg>
 <script src="app.js" charset="utf-8"></script>
 </body>
</html>

Create data/configuration variables
At the bottom of the <body> tag, we're referencing an app.js file. Let's create that file and
add the following code to it:

var WIDTH = 360;
var HEIGHT = 360;
var radius = Math.min(WIDTH, HEIGHT) / 2;

var dataset = [
 { label: 'Bob', count: 10 },
 { label: 'Sally', count: 20 },
 { label: 'Matt', count: 30 },
 { label: 'Jane', count: 40 }
];
console.log(dataset);

To be sure that it's working and linked up properly, we've added console.log(dataset)
to the bottom. Let's open index.html in Chrome and view the developer console, to make
sure that everything is hooked up the way it should be:

Animating SVG Elements to Create an Interactive Pie Chart Chapter 6

[127]

Once we're sure that it's working, we can remove console.log(dataset);, as follows:

var WIDTH = 360;
var HEIGHT = 360;
var radius = Math.min(WIDTH, HEIGHT) / 2;

var dataset = [
 { label: 'Bob', count: 10 },
 { label: 'Sally', count: 20 },
 { label: 'Matt', count: 30 },
 { label: 'Jane', count: 40 }
];

Creating an ordinal scale
An ordinal scale maps a discrete value to some other value. A discrete value is something
that can't be divided. Previously, we've used values such as numbers that can be divided
up and interpolated. Interpolated just means that for any two numbers, we can find other
numbers in between them. For instance, given 10 and 5, we can find values between them
(6, 8.2, 7, 9.9, and so on). Now, we want to map values that can't be interpolated—the label
properties in our dataset (Bob, Sally, Matt, and Jane). What values lie between Bob and
Sally? What about between Bob and Matt? There are none. These are just strings, not
numerical values that can be divided up and interpolated.

Animating SVG Elements to Create an Interactive Pie Chart Chapter 6

[128]

What we want to do is map these discrete values to other values. The following is an
example of how to do this with an ordinal scale. Add the following to the bottom of
app.js:

var mapper = d3.scaleOrdinal();
mapper.range([45, 63, 400]); //list each value for ordinal scales, not just
min/max
mapper.domain(['Bob', 'Sally', 'Zagthor']); //list each value for ordinal
scales, not just min/max

console.log(mapper('Bob'));
console.log(mapper('Sally'));
console.log(mapper('Zagthor'));

The previous code should produce the following:

Note that when you are working with ordinal scales, you'll need to list all of the values for
both the domain and range. Even if one set is numerical (in the previous case, the range),
you'll still have to list each value. If we just listed the min/max for the range, omitting63, D3
would have no idea what value to map Sally to. After all, how close is Sally to Bob,as a
value? How close is Sally to Zagth or, as a value? There's no way to calculate that distance,
since they're all strings of text, not numbers.

One thing that's surprising is that you can't invert ordinal scales. Remove the previous
three console.log() statements and temporarily add the following to the bottom of
app.js:

console.log(mapper.invert(45));

Animating SVG Elements to Create an Interactive Pie Chart Chapter 6

[129]

The following will be displayed:

D3 can only go in one direction: from domain to range. You can now remove the
console.log() statement.

Creating the color scale to map labels to
colors
Now, we want to map the label properties of our dataset to colors, instead of random
numbers, like in the previous section. We can come up with our own color scheme, or we
choose one of D3's sets of colors from https:/ ​/ ​github. ​com/ ​d3/​d3- ​scale-
chromatic#categorical.

If we want to, we can see that these color schemes are just arrays. Temporarily, add the
following to the bottom of app.js:

console.log(d3.schemeCategory10)

The following content will be displayed:

https://github.com/d3/d3-scale-chromatic#categorical
https://github.com/d3/d3-scale-chromatic#categorical
https://github.com/d3/d3-scale-chromatic#categorical
https://github.com/d3/d3-scale-chromatic#categorical
https://github.com/d3/d3-scale-chromatic#categorical
https://github.com/d3/d3-scale-chromatic#categorical
https://github.com/d3/d3-scale-chromatic#categorical
https://github.com/d3/d3-scale-chromatic#categorical
https://github.com/d3/d3-scale-chromatic#categorical
https://github.com/d3/d3-scale-chromatic#categorical
https://github.com/d3/d3-scale-chromatic#categorical
https://github.com/d3/d3-scale-chromatic#categorical
https://github.com/d3/d3-scale-chromatic#categorical
https://github.com/d3/d3-scale-chromatic#categorical

Animating SVG Elements to Create an Interactive Pie Chart Chapter 6

[130]

Consequently, we can use a color scheme when setting a range. Replace the previous
console.log() statement with the following:

var colorScale = d3.scaleOrdinal();
colorScale.range(d3.schemeCategory10);

We can generate an array of labels for the domain by using JavaScript's native map function.
Add the following to the bottom of app.js:

colorScale.domain(dataset.map(function(element){
 return element.label;
}));

The following is our code, so far:

var WIDTH = 360;
var HEIGHT = 360;
var radius = Math.min(WIDTH, HEIGHT) / 2;

var dataset = [
 { label: 'Bob', count: 10 },
 { label: 'Sally', count: 20 },
 { label: 'Matt', count: 30 },
 { label: 'Jane', count: 40 }
];

var colorScale = d3.scaleOrdinal();
colorScale.range(d3.schemeCategory10);
colorScale.domain(dataset.map(function(element){
 return element.label;
}));

Setting up the SVG
The next code block is pretty standard. Add the following code to the bottom of app.js:

d3.select('svg')
 .attr('width', WIDTH)
 .attr('height', HEIGHT);

Animating SVG Elements to Create an Interactive Pie Chart Chapter 6

[131]

Adding paths for each pie segment
Let's add path elements for each element in our dataset. Add the following code to the
bottom of app.js:

var path = d3.select('g').selectAll('path')
 .data(dataset)
 .enter()
 .append('path')
 .attr('fill', function(d) {
 return colorScale(d.label);
 });

If we examine our elements in the developer tools, we'll see that the paths were added, and
each path has a fill value, as determined by colorScale(d.label), which is mapping the
label of each data object to a color:

Animating SVG Elements to Create an Interactive Pie Chart Chapter 6

[132]

Generating an arc creating function
The paths have fill colors, but no shapes. If you'll recall, the <path> elements take a d=
attribute, which determines how they're drawn. We want to set up something that will
somehow map data to a d= string, such as the following code (you don't have to add the
next code snippet; it's only there for reference):

.attr('d', function(datum){
 //return path string here
})

Fortunately, D3 can generate the anonymous function that we need for the second
parameter of .attr() in the previous code snippet. Add the following to app.js, just
before our previous code for var path = d3.select('g').selectAll('path')...:

var arc = d3.arc()
 .innerRadius(0) //to make this a donut graph, adjust this value
 .outerRadius(radius);

Let's plug this function into its correct place in our previous var path =
d3.select('g').selectAll('path')... code (it won't work yet, though):

var path = d3.select('g').selectAll('path')
 .data(dataset)
 .enter()
 .append('path')
 .attr('d', arc) //add this
 .attr('fill', function(d) {
 return colorScale(d.label);
 });

Formatting the data for the arc
The reason that our arc() function won't work is the data isn't formatted properly for the
function. The arc function that we generated expects the data object to have things like a
start angle, an end angle, and so on. Fortunately, D3 can reformat our data so that it will
work with our generated arc() function. To do this, we'll generate a pie function that will
take a dataset and add the necessary attributes to it for the start angle, end angle, and so on.
Add the following just before the code for var path
=d3.select('g').selectAll('path')...:

var pie = d3.pie()
 .value(function(d) { return d.count; }) //use the 'count' property each

Animating SVG Elements to Create an Interactive Pie Chart Chapter 6

[133]

value in the original array to determine how big the piece of pie should be
 .sort(null); //don't sort the values

Our pie variable is a function that takes an array of values as a parameter and returns an
array of objects that are formatted for our arc function. Temporarily add the following
code to the bottom of app.js, and take a look at the console in Chrome's Developer tools:

console.log(pie(dataset));

The following content will be displayed:

Animating SVG Elements to Create an Interactive Pie Chart Chapter 6

[134]

You can now remove the console.log(pie(dataset)) call. We can use this pie()
function when attaching data to our paths. Adjust the previous var path =
d3.select('g').selectAll('path') code, as follows:

var path = d3.select('g').selectAll('path')
 .data(pie(dataset)) //adjust this line to reformat data for arc
 .enter()
 .append('path')
 .attr('d', arc)
 .attr('fill', function(d) {
 return colorScale(d.label);
 });

Unfortunately, now, each object from the data array that's been attached to our path
elements doesn't have a .label property, so our code for .attr('fill', function(d)
{})is broken. Fortunately, our data does have a .data attribute that mirrors what the data
looked like before we passed it to the pie() function. Let's adjust our var path =
d3.select('g').selectAll('path') code to use that code, instead, as follows:

var path = d3.select('g').selectAll('path')
 .data(pie(dataset))
 .enter()
 .append('path')
 .attr('d', arc)
 .attr('fill', function(d) {
 return colorScale(d.data.label); //use .data property to access
 original data
 });

Animating SVG Elements to Create an Interactive Pie Chart Chapter 6

[135]

So far, our code is as follows:

var WIDTH = 360;
var HEIGHT = 360;
var radius = Math.min(WIDTH, HEIGHT) / 2;

var dataset = [
 { label: 'Bob', count: 10 },
 { label: 'Sally', count: 20 },
 { label: 'Matt', count: 30 },
 { label: 'Jane', count: 40 }
];

var mapper = d3.scaleOrdinal();
var colorScale = d3.scaleOrdinal();
colorScale.range(d3.schemeCategory10);
colorScale.domain(dataset.map(function(element){
 return element.label;
}));

d3.select('svg')
 .attr('width', WIDTH)
 .attr('height', HEIGHT);

var arc = d3.arc()
 .innerRadius(0)
 .outerRadius(radius);

var pie = d3.pie()
 .value(function(d) { return d.count; })
 .sort(null);

var path = d3.select('g').selectAll('path')
 .data(pie(dataset))
 .enter()
 .append('path')
 .attr('d', arc)
 .attr('fill', function(d) {
 return colorScale(d.data.label);
 });

Animating SVG Elements to Create an Interactive Pie Chart Chapter 6

[136]

The preceding code produces the following result:

Adjusting the position of the pie
Currently, we can only see the lower-right quarter of the pie graph. This is because the pie
starts at (0,0), but we can move the group element containing the pie by adjusting our
d3.select('svg') code, as follows:

d3.select('svg')
 .attr('width', WIDTH)
 .attr('height', HEIGHT);
var container = d3.select('g') //add this line and the next:
 .attr('transform', 'translate(' + (WIDTH / 2) + ',' + (HEIGHT / 2) +
')'); //add this line

Animating SVG Elements to Create an Interactive Pie Chart Chapter 6

[137]

The pie graph now looks as follows:

Making a donut graph
If you want the pie to have a hole in the center, just adjust the inner radius of the arc()
function, as follows:

var arc = d3.arc()
 .innerRadius(100) //to make this a donut graph, adjust this value
 .outerRadius(radius);

The graph will now look as follows:

Animating SVG Elements to Create an Interactive Pie Chart Chapter 6

[138]

Removing parts of the pie
We want to make it possible to click on a section of the pie to remove it. First, let's add IDs
to our data, to make the removal easier. Adjust the var dataset code at the top of
app.js:

var dataset = [
 { id: 1, label: 'Bob', count: 10 }, //add id property
 { id: 2, label: 'Sally', count: 20 }, //add id property
 { id: 3, label: 'Matt', count: 30 }, //add id property
 { id: 4, label: 'Jane', count: 40 } //add id property
];

Now, let's use those IDs when we map data to paths. Adjust the .data() portion of our
var path =d3.select('g').selectAll('path')code at the bottom of app.js, as
follows:

var path = d3.select('g').selectAll('path')
 .data(pie(dataset), function(datum){ //attach datum.data.id to each
element
 return datum.data.id
 })

Let's save a record of the current data for each element by adding a _current property to
each element (we'll use this later). Add .each(function(d) { this._current = d;
});to the end of our var path =d3.select('g') code, at the bottom of app.js:

var path = d3.select('g').selectAll('path')
 .data(pie(dataset), function(datum){
 return datum.data.id
 })
 .enter()
 .append('path')
 .attr('d', arc)
 .attr('fill', function(d) {
 return colorScale(d.data.label);
 })//watch out! remove the semicolon here
 .each(function(d) { this._current = d; }); //add this

Animating SVG Elements to Create an Interactive Pie Chart Chapter 6

[139]

Create the click handler by adding the following code to the bottom of app.js:

path.on('click', function(clickedDatum, clickedIndex){
});

Remove the selected data from the dataset array, using JavaScript's native filter function.
Adjust the code that we just added, as follows:

path.on('click', function(clickedDatum, clickedIndex){
 dataset = dataset.filter(function(currentDatum, currentIndex){ //new
 return clickedDatum.data.id !== currentDatum.id //new
 }); //new
});

Remove the path elements from the SVG by adding the following to our click handler
function:

path.on('click', function(clickedDatum, clickedIndex){
 dataset = dataset.filter(function(currentDatum, currentIndex){
 return clickedDatum.data.id !== currentDatum.id
 });
 path //new
 .data(pie(dataset), function(datum){ //new
 return datum.data.id //new
 }) //new
 .exit().remove(); //new
});

Now, if we click on the orange segment, we should get the following result:

Animating SVG Elements to Create an Interactive Pie Chart Chapter 6

[140]

Let's close the donut and add a transition. Add the following to the bottom of our click
handler. Check out the comments in the following code to see what each line does:

path.on('click', function(clickedDatum, clickedIndex){
 dataset = dataset.filter(function(currentDatum, currentIndex){
 return clickedDatum.data.id !== currentDatum.id
 });
 path
 .data(pie(dataset), function(datum){
 return datum.data.id
 })
 .exit().remove();

 path.transition() //create the transition
 .duration(750) //add how long the transition takes
 .attrTween('d', function(d) { //tween the d attribute
 var interpolate = d3.interpolate(this._current, d);
 //interpolate
 from what the d attribute was and what it is now
 this._current = interpolate(0); //save new value of data
 return function(t) { //re-run the arc function:
 return arc(interpolate(t));
 };
 });
});

Now, when we click on the orange segment, the donut closes smoothly, as follows:

Animating SVG Elements to Create an Interactive Pie Chart Chapter 6

[141]

Summary
In this chapter, we created a pie chart that animates when you remove sections from it. You
learned how to generate paths from data, so that you can get different parts of the pie
without having to specify the drawing commands directly in the path elements. You also
learned how to use animation to make visualizations look more professional. Finally, you
learned how to remove sections of the pie and have the other path elements redraw
themselves, so that the result will be a full pie.

In the next chapter, we will use D3 to create a graph that visualizes the relationships
between various nodes of data.

7
Using Physics to Create a

Force-Directed Graph
This chapter will cover how to make a force-directed graph that will visualize the
relationships between various nodes.

In this lesson, you will learn about the following topics:

Creating a physics-based force that will center nodes
Creating a physics-based force that make the nodes repel each other
Creating a physics-based force that will link the nodes to show their relationships

The complete code for this section can be found at https:/ ​/​github. ​com/ ​PacktPublishing/
D3.​js-​Quick-​Start- ​Guide/ ​tree/ ​master/ ​Chapter07.

What is a force-directed graph?
A force-directed graph is a graph that is affected by various forces (such as gravity and
repulsion). It can be extremely helpful when creating graphs of relationships.

How to set up a graph of relationships
The following sections will provide an overview of what we're going to build. The
overview will cover the display side and the physics side of the implementation.

https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter07

Using Physics to Create a Force-Directed Graph Chapter 7

[143]

Display
The display aspect controls what we see; the display will include the following:

A list of nodes representing people, displayed as circles
A list of links representing connections between people, displayed as lines

Physics
The physics of the simulation control how the elements interact, as follows:

A centering force at the center of the SVG will draw all of the nodes toward it
A repulsive force on each node will prevent the nodes from getting too close to
each other
Link forces will connect each of the nodes, so that they don't repel each other too
much

Setting up the HTML
Our file will be a pretty standard index.html file, but we'll need two <g> elements, as
follows:

One to contain the nodes (people: circles)
One to contain the links (relationship: lines)

Here's what our code should look like:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title></title>
 <script src="https://d3js.org/d3.v5.min.js"></script>
 </head>
 <body>
 <svg>
 <g id="nodes"></g>
 <g id="links"></g>
 </svg>
 <script src="app.js" charset="utf-8"></script>
 </body>
</html>

Using Physics to Create a Force-Directed Graph Chapter 7

[144]

Setting up styling for nodes and links
Create an app.css file for our circles (nodes/people) and lines (links/relationships), as
follows:

circle {
 fill: red;
 r: 5;
}

line {
 stroke: grey;
 stroke-width: 1;
}

Don't forget to create a link to it in your index.html file, as follows:

<head>
 <link rel="stylesheet" href="app.css">
 <script src="https://d3js.org/d3.v5.min.js"></script>
</head>

Setting up the SVG
At the top of our app.js file, add the following:

var WIDTH = 300;
var HEIGHT = 200;

d3.select("svg")
 .attr("width", WIDTH)
 .attr("height", HEIGHT);

Using Physics to Create a Force-Directed Graph Chapter 7

[145]

If we open index.html in Chrome and look at Elements in the Developer tools, we should
see the following:

Adding data for people
Let's create an array of people at the bottom of app.js, as follows:

var nodesData = [
 {"name": "Charlie"},
 {"name": "Mac"},
 {"name": "Dennis"},
 {"name": "Dee"},
 {"name": "Frank"},
 {"name": "Cricket"}
];

Adding data for relationships
Now, let's create the relationships by adding the following array to the bottom of app.js.
Note that the attributes must be source and target, in order for D3 to do its magic:

var linksData = [
 {"source": "Charlie", "target": "Mac"},
 {"source": "Dennis", "target": "Mac"},
 {"source": "Dennis", "target": "Dee"},
 {"source": "Dee", "target": "Mac"},
 {"source": "Dee", "target": "Frank"},
 {"source": "Cricket", "target": "Dee"}
];

Using Physics to Create a Force-Directed Graph Chapter 7

[146]

Add circles to the SVG
Add the following to the bottom of app.js:

var nodes = d3.select("#nodes")
 .selectAll("circle")
 .data(nodesData)
 .enter()
 .append("circle");

This will create a circle for each element in our nodesData array. Our Developer tools
should look as follows:

Adding lines to the SVG
Add the following to the bottom of app.js:

var links = d3.select("#links")
 .selectAll("line")
 .data(linksData)
 .enter()
 .append("line");

Using Physics to Create a Force-Directed Graph Chapter 7

[147]

This will create a line for each element in our linksData array. Our Developer tools
should look as follows:

Creating a simulation
Now, we'll generate a simulation by adding the following to the bottom of app.js:

d3.forceSimulation()

Note that this simply creates a simulation; it doesn't specify how the simulation should run.
Let's tell it which data to act on by modifying the previous line of code, as follows:

d3.forceSimulation()
 .nodes(nodesData) // add this line

Using Physics to Create a Force-Directed Graph Chapter 7

[148]

Specifying how the simulation affects visual
elements
At this point, our visualization still looks the same, as indicated by the following
screenshot:

Let's make our simulation affect the circles/lines that we created, as follows:

The simulation runs ticks, which run very quickly. Think of this a series of steps
that happen very quickly, like the ticking of a stopwatch, but faster.
Each time a new tick occurs, you can update the visual elements. This allows our
simulation to animate.
D3 will calculate and tack positional data onto our regular data, so that we can
make use of it.

Add the following to the bottom of app.js:

d3.forceSimulation()
 .nodes(nodesData)
 .on("tick", function(){

Using Physics to Create a Force-Directed Graph Chapter 7

[149]

 nodes.attr("cx", function(datum) {return datum.x;})
 .attr("cy", function(datum) {return datum.y;});

 links.attr("x1", function(datum) {return datum.source.x;})
 .attr("y1", function(datum) {return datum.source.y;})
 .attr("x2", function(datum) {return datum.target.x;})
 .attr("y2", function(datum) {return datum.target.y;});
 });

Now, our circles distance themselves from each other a little bit, but this is just a side effect
of not having any forces attached to them. We'll add forces next:

Creating forces
Let's create a centering force at the center of screen, which will pull all of the elements
toward it. Adjust the code that we added in the previous step, so that it looks as follows.
Not that we only add .force("center_force", d3.forceCenter(WIDTH / 2,
HEIGHT / 2)) to the previous code:

d3.forceSimulation()
 .nodes(nodesData)
 // add the line below this comment
 .force("center_force", d3.forceCenter(WIDTH / 2, HEIGHT / 2))
.on("tick", function(){

Using Physics to Create a Force-Directed Graph Chapter 7

[150]

 nodes.attr("cx", function(datum) {return datum.x;})
 .attr("cy", function(datum) {return datum.y;});

 links.attr("x1", function(datum) {return datum.source.x;})
 .attr("y1", function(datum) {return datum.source.y;})
 .attr("x2", function(datum) {return datum.target.x;})
 .attr("y2", function(datum) {return datum.target.y;});
 });

Now our circles are pulled towards the center of the SVG element:

Create a force on each of the nodes, so that they repel each other. Just like in the last step,
we will only add .force("charge_force", d3.forceManyBody()) to the previous
code:

d3.forceSimulation()
 .nodes(nodesData)
 .force("center_force", d3.forceCenter(WIDTH / 2, HEIGHT / 2))
 // add the line below this comment
 .force("charge_force", d3.forceManyBody())
 .on("tick", function(){
 nodes.attr("cx", function(datum) {return datum.x;})
 .attr("cy", function(datum) {return datum.y;});

 links.attr("x1", function(datum) {return datum.source.x;})
 .attr("y1", function(datum) {return datum.source.y;})
 .attr("x2", function(datum) {return datum.target.x;})
 .attr("y2", function(datum) {return datum.target.y;});
 });

Using Physics to Create a Force-Directed Graph Chapter 7

[151]

You'll notice that the cx/cy values for the circles initially change rapidly, before finally
stopping. This is because D3 is running a simulation. Note that center_force is trying to
reach a state of equilibrium with charge_force. You'll even notice that when you first
load the page, the circles move outward from the center. This is due to the same reason:

Finally, we'll create the links between the nodes, so that they don't repel each other too
much. Just like in the last step, we will add the following code to the previous code:

.force("links", d3.forceLink(linksData).id(function(datum){
 return datum.name
}).distance(160))

Our last chunk of code should now look as follows:

d3.forceSimulation()
 .nodes(nodesData)
 .force("center_force", d3.forceCenter(WIDTH / 2, HEIGHT / 2))
 .force("charge_force", d3.forceManyBody())
 //add the three lines below this comment
 .force("links", d3.forceLink(linksData).id(function(datum){
 return datum.name
 }).distance(160))
 .on("tick", function(){
 nodes.attr("cx", function(datum) {return datum.x; })
 .attr("cy", function(datum) {return datum.y; });

 links.attr("x1", function(datum) {return datum.source.x;})
 .attr("y1", function(datum) {return datum.source.y;})
 .attr("x2", function(datum) {return datum.target.x;})
 .attr("y2", function(datum) {return datum.target.y;});
 });

Using Physics to Create a Force-Directed Graph Chapter 7

[152]

The d3.forceLink function takes the array of links. It then uses the source and
target attributes of each link data object to connect the nodes via their .name
properties (as specified in the return value of the function we just wrote).
You can tack on .distance() to specify how long the lines are visually between
each circle.

Finally, our graph looks as follows:

Summary
In this chapter, we used D3 to create a graph that visualizes relationships between various
nodes of data. This can be very useful in scenarios such as graphing a friend network,
showing parent/child company relationships, or displaying a company's staff hierarchy.

In Chapter 8, Mapping, we'll cover how to create a map from GeoJSON data.

8
Mapping

D3 is a great tool for generating maps. To do so, we use specially formatted JSON data to
generate <path> SVG elements. This specially formatted JSON data is called GeoJSON,
and in this chapter, we'll use it to create a map of the world.

In this chapter, we will cover the following topics:

Creating a map
Defining GeoJSON
Using a projection
Generating a <path> using a projection and GeoJSON data

The complete code for this chapter can be found at https: https:/ ​/ ​github. ​com/
PacktPublishing/​D3. ​js- ​Quick- ​Start- ​Guide/ ​tree/ ​master/ ​Chapter08.

Defining GeoJSON
GeoJSON is just JSON data that has specific properties that are assigned specific data types.
The following is an example of GeoJSON:

{
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [125.6, 10.1]
 },
 "properties": {
 "name": "Dinagat Islands"
 }
}

https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08
https://github.com/PacktPublishing/D3.js-Quick-Start-Guide/tree/master/Chapter08

Mapping Chapter 8

[154]

In this example, we have one Feature, the geometry of which is a Point with the
coordinates [125.6, 10.1]. Its name is Dinagat Islands. Each Feature will follow
this general structure. An example, with the type as STRING, is as follows:

{
 "type": STRING,
 "geometry": {
 "type": STRING,
 "coordinates": ARRAY
 },
 "properties": OBJECT
}

We can also have a FeatureCollection, which includes many features grouped together
in a features array. In the following code snippet, you can see an example of
FeatureCollection with different geometry:

{
 "type": "FeatureCollection",
 "features": [
 {
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [102.0, 0.5]
 },
 "properties": {
 "prop0": "value0"
 }
 },
 {
 "type": "Feature",
 "geometry": {
 "type": "LineString",
 "coordinates": [
 [102.0, 0.0], [103.0, 1.0], [104.0,
 0.0], [105.0, 1.0]
]
 },
 "properties": {
 "prop0": "value0",
 "prop1": 0.0
 }
 },
 {
 "type": "Feature",
 "geometry": {

Mapping Chapter 8

[155]

 "type": "Polygon",
 "coordinates": [
 [
 [100.0, 0.0], [101.0, 0.0],
 [101.0, 1.0], [100.0, 1.0],
 [100.0, 0.0]
]
]
 },
 "properties": {
 "prop0": "value0",
 "prop1": { "this": "that" }
 }
 }
]
}

Here's the general form:

{
 "type": "FeatureCollection",
 "features": ARRAY
}

The features property is an array of feature objects that were defined previously.

Setting up the HTML
Let's set up a basic D3 page, using the following code:

<!DOCTYPE html>
<html lang="en" dir="ltr">
<head>
 <meta charset="utf-8">
 <title></title>
 <script src="https://d3js.org/d3.v5.min.js" charset="utf-8">
 </script>
 <script
src="https://cdn.rawgit.com/mahuntington/mapping-demo/master/map_data3.js"
charset="utf-8">
 </script>
</head>
<body>

Mapping Chapter 8

[156]

 <svg></svg>
 <script src="app.js" charset="utf-8"></script>
</body>
</html>

The only thing different than the setup we've used in previous chapters is the following
line:

<script
src="https://cdn.rawgit.com/mahuntington/mapping-demo/master/map_data3.js"
charset="utf-8">
</script>

The preceding line just loads an external JavaScript file, which sets our GeoJSON data to a
variable. The beginning of the code looks as follows:

var map_json = {
 type: "FeatureCollection",
 features: [
 {
 type: "Feature",
 id: "AFG",
 properties: {
 name: "Afghanistan"
 },
 geometry: {
 type: "Polygon",
 coordinates: [
 //lots of coordinates
]
 }
 }
 // lots of other countries
]
}

Note that the map_json variable is just a JavaScript object that adheres to the GeoJSON
structure (it adds an idproperty, which is optional). This is very important. If the object
didn't adhere to the GeoJSON structure, D3 would not work as it should.

In production, you would probably make an AJAX call to get this data or, at the very least,
create your own GeoJSON file, similar to the one being hosted on https:/ ​/ ​rawgit. ​com/ ​.
The preceding setup was created to make learning easier, by decreasing the complexity
associated with AJAX.

https://rawgit.com/
https://rawgit.com/
https://rawgit.com/
https://rawgit.com/
https://rawgit.com/
https://rawgit.com/
https://rawgit.com/
https://rawgit.com/

Mapping Chapter 8

[157]

Using a projection
Now, let's start on our app.js file, as follows:

var width = 960;
var height = 490;

d3.select('svg')
 .attr('width', width)
 .attr('height', height);

At the bottom of app.js, let's add the following code:

var worldProjection = d3.geoEquirectangular();

This generates a projection, which governs how we're going to display a round world on a
flat screen. There are lots of different types of projections that we can use, which can be
seen at https:/​/ ​github. ​com/ ​d3/ ​d3- ​geo/ ​blob/ ​master/ ​README. ​md#azimuthal- ​projections.

The preceding line tells D3 to create an equirectangular projection (https:/ ​/​github.
com/​d3/​d3-​geo/​blob/ ​master/ ​README. ​md#geoEquirectangular).

Generating a path using a projection and
GeoJSON data
Now that we have our projection, we're going to generate <path> elements for each data
element in the map_json.features array. Then, we will set the fill of each element to
#099. Add the following to the end of app.js:

d3.select('svg').selectAll('path')
 .data(map_json.features)
 .enter()
 .append('path')
 .attr('fill', '#099');

https://github.com/d3/d3-geo/blob/master/README.md#azimuthal-projections
https://github.com/d3/d3-geo/blob/master/README.md#azimuthal-projections
https://github.com/d3/d3-geo/blob/master/README.md#azimuthal-projections
https://github.com/d3/d3-geo/blob/master/README.md#azimuthal-projections
https://github.com/d3/d3-geo/blob/master/README.md#azimuthal-projections
https://github.com/d3/d3-geo/blob/master/README.md#azimuthal-projections
https://github.com/d3/d3-geo/blob/master/README.md#azimuthal-projections
https://github.com/d3/d3-geo/blob/master/README.md#azimuthal-projections
https://github.com/d3/d3-geo/blob/master/README.md#azimuthal-projections
https://github.com/d3/d3-geo/blob/master/README.md#azimuthal-projections
https://github.com/d3/d3-geo/blob/master/README.md#azimuthal-projections
https://github.com/d3/d3-geo/blob/master/README.md#azimuthal-projections
https://github.com/d3/d3-geo/blob/master/README.md#azimuthal-projections
https://github.com/d3/d3-geo/blob/master/README.md#azimuthal-projections
https://github.com/d3/d3-geo/blob/master/README.md#azimuthal-projections
https://github.com/d3/d3-geo/blob/master/README.md#azimuthal-projections
https://github.com/d3/d3-geo/blob/master/README.md#azimuthal-projections
https://github.com/d3/d3-geo/blob/master/README.md#azimuthal-projections
https://github.com/d3/d3-geo/blob/master/README.md#azimuthal-projections
https://github.com/d3/d3-geo/blob/master/README.md#azimuthal-projections
https://github.com/d3/d3-geo/blob/master/README.md#azimuthal-projections
https://github.com/d3/d3-geo/blob/master/README.md#azimuthal-projections
https://github.com/d3/d3-geo/blob/master/README.md#azimuthal-projections
https://github.com/d3/d3-geo/blob/master/README.md#geoEquirectangular
https://github.com/d3/d3-geo/blob/master/README.md#geoEquirectangular
https://github.com/d3/d3-geo/blob/master/README.md#geoEquirectangular
https://github.com/d3/d3-geo/blob/master/README.md#geoEquirectangular
https://github.com/d3/d3-geo/blob/master/README.md#geoEquirectangular
https://github.com/d3/d3-geo/blob/master/README.md#geoEquirectangular
https://github.com/d3/d3-geo/blob/master/README.md#geoEquirectangular
https://github.com/d3/d3-geo/blob/master/README.md#geoEquirectangular
https://github.com/d3/d3-geo/blob/master/README.md#geoEquirectangular
https://github.com/d3/d3-geo/blob/master/README.md#geoEquirectangular
https://github.com/d3/d3-geo/blob/master/README.md#geoEquirectangular
https://github.com/d3/d3-geo/blob/master/README.md#geoEquirectangular
https://github.com/d3/d3-geo/blob/master/README.md#geoEquirectangular
https://github.com/d3/d3-geo/blob/master/README.md#geoEquirectangular
https://github.com/d3/d3-geo/blob/master/README.md#geoEquirectangular
https://github.com/d3/d3-geo/blob/master/README.md#geoEquirectangular
https://github.com/d3/d3-geo/blob/master/README.md#geoEquirectangular
https://github.com/d3/d3-geo/blob/master/README.md#geoEquirectangular
https://github.com/d3/d3-geo/blob/master/README.md#geoEquirectangular
https://github.com/d3/d3-geo/blob/master/README.md#geoEquirectangular

Mapping Chapter 8

[158]

The following screenshot shows what it should look if we open index.html in Chrome
and view the Elements tab in the Developer tools:

We created the path elements, but they each need a d attribute, which will determine how
they will be drawn (that is, their shapes).

We want something like the following:

d3.selectAll('path').attr('d', function(datum, index){
 //use datum to generate the value for the 'd' attributes
});

Writing the kind of code described in the preceding comment would be very difficult.
Luckily, D3 can generate that entire function for us. All we need to do is specify the
projection that we created earlier. At the bottom of app.js, add the following code:

var dAttributeFunction = d3.geoPath()
 .projection(worldProjection);

d3.selectAll('path').attr('d', dAttributeFunction);

geoPath() generates the function that we'll use for the d attribute, and the projection
(worldProjection) tells it to use the worldProjection variable created earlier, so that
the path elements appear as an equirectangular projection, as follows:

Mapping Chapter 8

[159]

Summary
In this chapter, we discussed GeoJSON, what it's used for, and why it differs from more
general JSON data. We've also covered how to use D3 to create a projection and render
GeoJSON data as a map. Using this information, we can create all sorts of interesting maps
of countries, cities, towns, or any area that we have GeoJSON data for. We can use different
projections to view this data in interesting ways

Congratulations! You've made it to the end of the book. Now, go and create amazing
visualizations.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Learning D3.js 5 Mapping – Second Edition
Thomas Newton, Oscar Villarreal, Lars Verspohl

ISBN: 978-1-78728-017-5

Work with SVG geometric shapes
Learn to manage map data and plot it with D3.js
Add interactivity and points of interest to your maps
Compress and manipulate geoJSON files with the use of topoJSON
Learn how to write testable D3.js visualizations
Build a globe with D3.js and Canvas and add interactivity to it
Create a hexbin map with D3.js

https://www.packtpub.com/web-development/learning-d3js-5-mapping-second-edition

Other Books You May Enjoy

[161]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
AJAX data
 used, for creating SVG elements 111
AJAX request
 basic code, writing 109
 file access, handling 109
 making 109
arc creating function
 generating 132
arc
 about 40, 42
 data, formatting 132
Asynchronous JavaScript And XML (AJAX) 104
Atom
 reference 20
axes
 adding 120, 121, 124
 creating 64, 66
 updating, when panning 91
 updating, when zooming 91

B
bar color
 modifying, based on data 119
bar graph
 creating, data file used 17
 setting 104
bar width
 creating 118
bars
 height, adjusting 113
 horizontal and the vertical placement, adjusting

115

 horizontal and vertical placement, adjusting 116
 width, adjusting 113
base tag 22

basic elements 23
basic scatter plot
 making, interactive 13
Bezier curves
 about 33
 cubic 33
 quadratic 36
 reference 33
 smooth 35
 smooth quadratic 37

C
Chrome
 download link 20
click handler
 adding 83
 creating 72, 75, 77
click points
 updating, after transform 94, 97
color scale
 creating, for mapping labels to colors 129
config vars
 setting up 126, 127

D
D3 library
 about 6
 link, adding 45
d3-notes
 reference 9
D3.js library
 about 6
 features 8
data file
 used, for creating bar graph 17
data, attached to visual elements
 using 54, 56

[163]

data
 attaching, to visual elements 54
 displaying, in table 69
 for people, adding 145
 for relationships, adding 145
 formatting, for arc 132
 removing 79
 updating, after drag 88
date string
 formatting 57
 parsing 57
donut graph
 creating 137
dynamic domains
 setting 59

E
element
 dragging 86, 88
 positioning 25
 styling 26, 27
elements, beyond axis
 hiding 99
entire screen redraw
 avoiding, during rendering 98
equirectangular projection
 reference 157
external file
 creating, for data storage 105

F
fake data
 creating, for app 49
force-directed graph
 about 142
 creating, physics used 19
forces
 creating 152

G
GeoJSON
 about 153
 defining 153
 used, for creating world map 19
 used, for generating path 157, 158

graph of relationships
 display 143
 physics 143
 setting up 142

H
HTML
 setting up 143, 155

I
images
 creating, SVG used 9
interactive pie chart
 creating, by animating SVG 18
 setting up 126
interactive scatter plot
 building 11

L
labels, mapping to colors
 color scale, creating 129
linear scale
 creating 51, 53
links
 styling, setting up 144

N
node
 reference 20
 styling, setting up 144

O
ordinal scale
 creating 127, 129

P
path
 adding, to pie segment 131
 drawing 37
pie segment
 paths, adding 131
pie
 parts, removing 138
pipe

 position, adding 136
projection
 reference 157
 used, for generating path 157, 158
 using 157

Q
Quadratic Bezier curves
 reference 34

S
Scalable Vector Graphics (SVG)
 about 7
 circles, adding 146
 lines, adding 146
 setting up 130, 144
 used, for creating images using code 9
simulation
 creating 147
SVG circles
 adding 50
 styling 50
SVG elements
 about 29
 animating, for creation of interactive pie chart 18

 Bezier curves 33
 circle 29
 creating, AJAX data used 111
 documentation, reference 43
 ellipse 31
 generating dynamically 62
 group 33
 line 30
 path, elements 37
 polygon 31
 polyline 32
 rectangle 30
 text 33

T
time scale
 creating 57

V
visual elements
 data, attaching 54
 simulation, affecting 148

Z
zoom behavior
 creating 90

	Cover

	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with D3.js

	What is SVG?
	What makes D3 so special?
	This book's approach to learning
	A preview of each build
	Using SVG to create images using code
	Building an interactive scatter plot
	Making a basic scatter plot interactive
	Creating a bar graph using a data file
	Animating SVG elements to create an interactive pie chart
	Using physics to create a force-directed graph
	Mapping

	Setting up
	Summary

	Chapter 2: Using SVG to Create Images Using Code

	Base tag
	Basic elements
	Positioning an element
	Styling an element
	Important SVG elements
	Circle
	Line
	Rectangle
	Ellipse
	Polygon
	Polyline
	Text
	Group
	Bezier curves
	Cubic Bezier curves
	Smooth cubic Bezier curves
	Quadratic Bezier curve
	Smooth quadratic Bezier curve

	Drawing a path
	Arcs

	Documentation

	Summary

	Chapter 3: Building an Interactive Scatter Plot

	Adding a link to the D3 library
	Adding an<svg>tag and sizing it with D3
	Creating some fake data for our app
	Adding SVG circles and styling them
	Creating a linear scale
	Attaching data to visual elements
	Use data attached to a visual element to affect its appearance
	Creating a time scale
	Parsing and formatting times
	Setting dynamic domains
	Dynamically generating SVG elements
	Creating axes
	Displaying data in a table
	Summary

	Chapter 4: Making a Basic Scatter Plot Interactive

	Creating a click handler
	Removing data
	Dragging an element
	Updating data after a drag
	Creating a zoom behavior that scales elements
	Updating axes when zooming and panning
	Updating click points after a transform
	Avoiding redrawing the entire screen during rendering
	Hiding elements beyond an axis
	Summary

	Chapter 5: Creating a Bar Graph Using a Data File

	Setting up our application
	Creating an external file to hold our data
	Making an AJAX request
	Writing the basic code
	Handling file access

	Using AJAX data to create SVG elements
	Adjusting the height and the width of the bars
	Adjusting the horizontal and the vertical placement of the bars
	Making the width of the bars dynamic
	Changing the color of the bar based on data
	Adding axes
	Summary

	Chapter 6: Animating SVG Elements to Create an Interactive Pie Chart

	Setting up the application
	Create data/configuration variables
	Creating an ordinal scale
	Creating the color scale to map labels to colors
	Setting up the SVG
	Adding paths for each pie segment
	Generating an arc creating function
	Formatting the data for the arc
	Adjusting the position of the pie
	Making a donut graph
	Removing parts of the pie
	Summary

	Chapter 7: Using Physics to Create a Force-Directed Graph

	What is a force-directed graph?
	How to set up a graph of relationships
	Display
	Physics

	Setting up the HTML
	Setting up styling for nodes and links
	Setting up the SVG
	Adding data for people
	Adding data for relationships
	Add circles to the SVG
	Adding lines to the SVG
	Creating a simulation
	Specifying how the simulation affects visual elements
	Creating forces
	Summary

	Chapter 8: Mapping

	Defining GeoJSON
	Setting up the HTML
	Using a projection
	Generating a path using a projection and GeoJSON data
	Summary

	Other Books You May Enjoy
	Index

