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INTRODUCTIO N

THIS BOOK INTRODUCES THE READER to more advanced Python programming by providing an 
intermediate course in the Python language.

Recently, Python has become more and more frequently the developer’s language of choice. It is used 
all over the world, for myriad purposes. As adoption continues to increase, more and more develop-
ers are spending their days writing Python.

Python has grown so steadily precisely because it is a very powerful language, and even many seasoned 
Python developers have only scratched the surface of what the language is capable of doing.

WHO THIS BOOK IS FOR

This book is for developers who have already worked in Python, are already familiar with the 
language, and desire to learn more about it. This book assumes that readers have already done 
most basic tasks involved with developing in Python (such as having used the Python interactive 
terminal).

If you are a reader who seeks a general survey of intermediate to advanced Python language 
features, you should read this book from start to fi nish.

Alternatively, you may be a reader who has used some more-advanced language features in 
passing, or potentially needs to maintain code that uses such features. Consider using this 
book as a reference guide or index to fl esh out your understanding when you are grappling with a 
particular implementation.

WHAT THIS BOOK COVERS

This book covers all recent versions of Python (including both Python 2 and Python 3). At the time 
of this writing, the most recent version available is Python 3.4, and Python 3.5 is in beta. This book 
primarily covers Python 2.6, 2.7, 3.3, and 3.4. Most code is provided in a manner that will run on 
both Python 2 and Python 3, with Python 2 code specifi cally noted as such.

Additionally, this book includes a chapter with a deep dive into distinctions between Python 2 and 
Python 3, which provides advice on writing code to run on multiple versions of Python, as well as 
porting over to Python 3.

This book primarily focuses on two areas. The fi rst is features of the language itself. For example, 
this book includes several chapters about various aspects of how Python’s class and object model 
works. The second area is modules provided as part of the standard library. For example, this book 
includes a chapter each on modules such as asyncio, unittest, and argparse. 



xxvi

INTRODUCTION

fl ast.indd 09/21/2015 Page xxvi

HOW THIS BOOK IS STRUCTURED

This book is essentially divided into four parts.

The fi rst three chapters in the book are fundamentally about functions in Python. This part includes 
a chapter each on decorators and context managers, which are reusable ways to modify or wrap 
functions to add functionality. It also includes a chapter on generators, which are a way to design 
functions that yield values one at a time, rather than creating an entire list of values in advance and 
returning them in one block.

The second part comprises the next four chapters, and they are all related somehow to Python 
classes and the language’s object model. There is a chapter on magic methods. Then, there is a 
chapter each on metaclasses and class factories, which are two approaches to constructing classes in 
powerful ways. Finally, a chapter on abstract base classes explains the abc module and how to make 
classes declare patterns that they implement.

The third part comprises two chapters about strings and data. There is a chapter on how to navigate 
using Unicode strings (as opposed to byte strings) in Python, which also covers in detail how strings 
differ between Python 2 and Python 3. There is also a chapter on regular expressions, which covers 
the Python re module as well as how to write regular expressions.

Finally, the fourth part covers everything that does not neatly fi t into one of the fi rst three parts. 
This part begins with an in-depth look at the distinctions between Python 2 and Python 3, and 
how to write code that is interoperable with both. There is a chapter on unit testing, focusing on 
the unittest module. A chapter on command-line interface (CLI) tools teaches you about both 
optparse and argparse, which are Python’s modules for writing command-line tools. There is a 
chapter on asyncio, which is a new asynchronous programming library that was added to the stan-
dard library in Python 3.4. Finally, the book closes with a chapter on style.

WHAT YOU NEED TO USE THIS BOOK

You will, fi rst and foremost, need a machine running Python.

Although it does not make a difference in most chapters, this book is slightly Linux-focused in its 
approach (this will be most relevant in the chapter on CLI tools). Examples were run in a Linux 
environment, and output may vary slightly on Windows.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of 
conventions throughout the book.
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WARNING Boxes like this one hold important, not-to-be forgotten information 
that is directly relevant to the surrounding text.

NOTE Notes, tips, hints, tricks, and asides to the current discussion are offset 
and placed in italics like this.

As for styles in the text:

 ➤ We highlight new terms and important words when we introduce them.

 ➤ We show keyboard strokes like this: Ctrl+A.

 ➤ We show fi lenames, URLs, and code within the text like so: persistence.properties. 

 ➤ We present code as follows:

We use a monofont type for most code examples.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one 
is perfect, and mistakes do occur. If you fi nd an error in one of our books (like a spelling mistake 
or faulty piece of code), we would be very grateful for your feedback. By sending in errata, you may 
save another reader hours of frustration and, at the same time, you will be helping us to provide 
even higher quality information. 

To fi nd the errata page for this book, go to http://www.wrox.com and locate the title using the 
Search box or one of the title lists. Then, on the book details page, click the Book Errata link. On 
this page, you can view all errata that has been submitted for this book and posted by Wrox editors. 
A complete book list (including links to each book’s errata) is also available at www.wrox.com/
misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check 
the information and, if appropriate, post a message to the book’s errata page and fi x the problem in 
subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based 
system for you to post messages relating to Wrox books and related technologies, and to interact 
with other readers and technology users. The forums offer a subscription feature to e-mail you 

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com/contact
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml
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topics of interest of your choosing when new posts are made to the forums. Some Wrox authors, edi-
tors, other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will fi nd a number of different forums that will help you not only as 
you read most Wrox books, but also as you develop your own applications. To join the forums, just 
follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as any optional information you wish to 
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and 
complete the joining process.

NOTE You can read messages in the forums without joining P2P. However, in 
order to post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read 
messages at any time on the web. If you would like to have new messages from a particular forum 
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing. 

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to 
questions about how the forum software works, as well as many common questions specifi c to P2P 
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

http://p2p.wrox.com
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Decorators
A decorator is a tool for wrapping code around functions or classes. Decorators then explicitly 
apply that wrapper to functions or classes to cause them to “opt in” to the decorator’s func-
tionality. Decorators are extremely useful for addressing common prerequisite cases before 
a function runs (for example, ensuring authentication), or ensuring cleanup after a function 
runs (for example, output sanitization or exception handling). They are also useful for taking 
action on the decorated function or class itself. For example, a decorator might register a func-
tion with a signaling system or a URI registry in web applications.

This chapter provides an overview of what decorators are and how they interact with Python 
functions and classes. It enumerates certain decorators that appear in the Python standard 
library. Finally, it offers instruction in writing decorators and attaching them to functions 
and classes.

UNDERSTANDING DECORATORS

At its core, a decorator is a callable that accepts a callable and returns a callable. A decorator 
is simply a function (or other callable, such as an object with a __call__ method) that accepts 
the decorated function as its positional argument. The decorator takes some action using that 
argument, and then either returns the original argument or some other callable (presumably 
that interacts with it in some way).

Because functions are fi rst-class objects in Python, they can be passed to another function just 
as any other object can be. A decorator is just a function that expects another function, and 
does something with it.

This sounds more confusing than it actually is. Consider the following very simple decorator. 
It does nothing except append a line to the decorated callable’s docstring.

def decorated_by(func):
    func.__doc__ += '\nDecorated by decorated_by.'
    return func

1
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Now, consider the following trivial function:

def add(x, y):
    """Return the sum of x and y."""
    return x + y

The function’s docstring is the string specifi ed in the fi rst line. It is what you will see if you run help 
on that function in the Python shell. Here is the decorator applied to the add function:

def add(x, y):
    """Return the sum of x and y."""
    return x + y
add = decorated_by(add)

Here is what you get if you run help:

Help on function add in module __main__:

add(x, y)
    Return the sum of x and y.
    Decorated by decorated_by.
(END)

What has happened here is that the decorator made the modifi cation to the function’s __doc__ 
 attribute, and then returned the original function object.

DECORATOR SYNTAX

Most times that developers use decorators to decorate a function, they are only interested in 
the fi nal, decorated function. Keeping a reference to the undecorated function is ultimately 
superfl uous.

Because of this (and also for purposes of clarity), it is undesirable to defi ne a function, assign it to 
a particular name, and then immediately reassign the decorated function to the same name.

Therefore, Python 2.5 introduced a special syntax for decorators. Decorators are applied by 
 prepending an @ character to the name of the decorator and adding the line (without the implied 
decorator’s method signature) immediately above the decorated function’s declaration.

Following is the preferred way to apply a decorated_by decorator to the add method:

@decorated_by
def add(x, y):
    """Return the sum of x and y."""
    return x + y

Note again that no method signature is being provided to @decorated_by. The decorator is 
assumed to take a single, positional argument, which is the method being decorated. (You will 
see a method signature in some cases, but with other provided arguments. This is discussed later 
in this chapter.)

This syntax allows the decorator to be applied where the function is declared, which makes it easier 
to read the code and immediately realize that the decorator is in play. Readability counts.
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Order of Decorator Application
When is a decorator applied? When the @ syntax is being used, decorators are applied immediately 
after the decorated callable is created. Therefore, the two examples shown of how to apply deco-
rated_by to add are exactly equivalent. First, the add function is created, and then, immediately 
after that, it is wrapped with decorated_by.

One important thing to note about this is that it is possible to use multiple decorators on a single 
callable (just as it is possible to wrap function calls multiple times).

However, note that if you use multiple decorators using the @ syntax, they are applied in order, from 
bottom to top. This may be counterintuitive at fi rst, but it makes sense given what the Python inter-
preter is actually doing.

Consider the following function with two decorators applied:

@also_decorated_by
@decorated_by
def add(x, y):
    """Return the sum of x and y."""
    return x + y

The fi rst thing that occurs is that the add function is created by the interpreter. Then, the deco-
rated_by decorator is applied. This decorator returns a callable (as all decorators do), which is 
then sent to also_decorated_by, which does the same; the latter result is assigned to add.

Remember that the application of decorated_by is syntactically equivalent to the following:

add = decorated_by(add)

The previous two-decorator example is syntactically equivalent to the following:

add = also_decorated_by(decorated_by(add))

In both cases, the also_decorated_by decorator comes fi rst as a human reads the code. However, 
the decorators are applied bottom to top for the same reason that the functions are resolved from 
innermost to outermost. The same principles are at work.

In the case of a traditional function call, the interpreter must fi rst resolve the inner function call in 
order to have the appropriate object or value to send to the outer call.

add = also_decorated_by(decorated_by(add))  # First, get a return value for
                                            # `decorated_by(add)`.
add = also_decorated_by(decorated_by(add))  # Send that return value to
                                            # `also_decorated_by`.

With a decorator, fi rst the add function is created normally.

@also_decorated_by
@decorated_by
def add(x, y):
    """Return the sum of x and y."""
    return x + y
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Then, the @decorated_by decorator is called, being sent the add function as its decorated method.

@also_decorated_by
@decorated_by
def add(x, y):
    """Return the sum of x and y."""
    return x + y

The @decorated_by function returns its own callable (in this case, a modifi ed version of add). That 
value is what is then sent to @also_decorated_by in the fi nal step.

@also_decorated_by
@decorated_by
def add(x, y):
    """Return the sum of x and y."""
    return x + y

When applying decorators, it is important for you to remember that they are applied bottom to top. 
Many times, order does matter.

WHERE DECORATORS ARE USED

The standard library includes many modules that incorporate decorators, and many common tools 
and frameworks make use of them for common functionality.

For example, if you want to make a method on a class not require an instance of the class, you use 
the @classmethod or @staticmethod decorator, which is part of the standard library. The mock 
module (which is used for unit testing, and which was added to the standard library in Python 3.3) 
allows the use of @mock.patch or @mock.patch.object as a decorator.

Common tools also use decorators. Django (which is a common web framework for Python) uses 
@login_required as a decorator to allow developers to specify that a user must be logged in to 
view a particular page, and uses @permission_required for applying more specifi c permissions. 
Flask (another common web framework) uses @app.route to serve as a registry between specifi c 
URIs and the functions that run when the browser hits those URIs.

Celery (a common Python task runner) uses a complex @task decorator to identify a function as 
an asynchronous task. This decorator actually returns an instance of a Task class, which illustrates 
how decorators can be used to make a very convenient API.

WHY YOU SHOULD WRITE DECORATORS

Decorators provide an excellent way to say, “I want this specifi c, reusable piece of functionality in 
these specifi c places.” When written well, they are modular and explicit.

The modularity of decorators (you can apply or remove them from functions or classes easily) makes 
them ideal for avoiding the repetition of boilerplate setup and teardown code. Similarly, because 
decorators interact with the decorated function itself, they excel at registering functions elsewhere.

Also, decorators are explicit. They are applied, in-place, to all callables where they are needed. This 
is valuable for readability, and therefore for debugging. It is obvious exactly what is being applied 
and where.

mailto:@mock.patch
mailto:@mock.patch.object
mailto:@app.route
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WHEN YOU SHOULD WRITE DECORATORS

Several very good use cases exist for writing decorators in Python applications and modules.

Additional Functionality
Probably the most common reason to write a decorator is if you want to add additional functional-
ity before or after the decorated method is executed. This could include use cases such as checking 
authentication or logging the result of a function to a consistent location. 

Data Sanitization or Addition
A decorator could also sanitize the values of arguments being passed to the decorated function, to 
ensure consistency of argument type, or that a value conforms to a specifi c pattern. For example, a 
decorator could ensure that the values sent to a function conform to a specifi c type, or meet some other 
validation standard. (You will see an example of this shortly, a decorator called @requires_ints.)

A decorator can also transform or sanitize data that is returned from a function. A valuable use case 
for this is if you want to have functions that return native Python objects (such as lists or dictionar-
ies), but ultimately receive a serialized format (such as JSON or YAML) on the other end.

Some decorators actually provide additional data to a function, usually in the form of additional 
arguments. The @mock.patch decorator is an example of this, because it (among other things) 
 provides the mock object that it creates as an additional positional argument to the function.

Function Registration
Many times, it is useful to register a function elsewhere—for example, registering a task in a task 
runner, or a function with a signal handler. Any system in which some external input or routing 
mechanism decides what function runs is a candidate for function registration.

WRITING DECORATORS

Decorators are simply functions that (usually) accept the decorated callable as their only argument, 
and that return a callable (such as in the previous trivial example).

It is important to note that the decorator code itself runs when the decorator is applied to the deco-
rated function, rather than when the decorated function is called. Understanding this is critical, and 
will become very clear over the course of the next several examples.

An Initial Example: A Function Registry
Consider the following simple registry of functions:

registry = []
def register(decorated):
    registry.append(decorated)
    return decorated

mailto:@mock.patch
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The register method is a simple decorator. It appends the positional argument, decorated to the 
registry variable, and then returns the decorated method unchanged. Any method that receives the 
 register decorator will have itself appended to registry.

@register
def foo():
    return 3

@register
def bar():
    return 5

If you have access to the registry, you can easily iterate over it and execute the functions inside.

answers = []
for func in registry:
    answers.append(func())

The answers list at this point would now contain [3, 5]. This is because the functions are 
 executed in order, and their return values are appended to answers.

Several less-trivial uses for function registries exist, such as adding “hooks” into code so that cus-
tom functionality can be run before or after critical events. Here is a Registry class that can handle 
just such a case:

class Registry(object):
    def __init__(self):
        self._functions = []

    def register(self, decorated):
        self._functions.append(decorated)
        return decorated

    def run_all(self, *args, **kwargs):
        return_values = []
        for func in self._functions:
            return_values.append(func(*args, **kwargs))
        return return_values

One thing worth noting about this class is that the register method—the decorator—still works 
the same way as before. It is perfectly fi ne to have a bound method as a decorator. It receives self 
as the fi rst argument (just as any other bound method), and expects one additional positional argu-
ment, which is the decorated method.

By making several different registry instances, you can have entirely separate registries. It is even 
possible to take the same function and register it with more than one registry, as shown here:

a = Registry()
b = Registry()

@a.register
def foo(x=3):
    return x

mailto:@a.register
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@b.register
def bar(x=5):
    return x

@a.register
@b.register
def baz(x=7):
    return x

Running the code from either registry’s run_all method gives the following results:

a.run_all()    # [3, 7]
b.run_all()    # [5, 7]

Notice that the run_all method is able to take arguments, which it then passes to the underlying 
functions when they are run.

a.run_all(x=4)    # [4, 4]

Execution-Time Wrapping Code 
These decorators are very simple because the decorated function is passed through unmodifi ed. 
However, sometimes you want additional functionality to run when the decorated method is 
 executed. You do this by returning a different callable that adds the appropriate functionality 
and ( usually) calls the decorated method in the course of its execution.

A Simple Type Check
Here is a simple decorator that ensures that every argument the function receives is an integer, and 
complains otherwise:

def requires_ints(decorated):
    def inner(*args, **kwargs):
        # Get any values that may have been sent as keyword arguments.
        kwarg_values = [i for i in kwargs.values()]

        # Iterate over every value sent to the decorated method, and
        # ensure that each one is an integer; raise TypeError if not.
        for arg in list(args) + kwarg_values:
            if not isinstance(arg, int):
                raise TypeError('%s only accepts integers as arguments.' %
                                decorated.__name__)

        # Run the decorated method, and return the result.
        return decorated(*args, **kwargs)
    return inner

What is happening here?

The decorator itself is requires_ints. It accepts one argument, decorated, which is the decorated 
callable. The only thing that this decorator does is return a new callable, the local function inner. 
This function replaces the decorated method.

mailto:@b.register
mailto:@a.register
mailto:@b.register
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You can see this in action by declaring a function and decorating it with requires_ints:

@requires_ints
def foo(x, y):
    """Return the sum of x and y."""
    return x + y

Notice what you get if you run help(foo):

Help on function inner in module __main__:

inner(*args, **kwargs)
(END)

The inner function has been assigned to the name foo instead of the original, defi ned function. If 
you run foo(3, 5), the inner function runs with those arguments. The inner function performs 
the type check, and then it runs the decorated method simply because the inner function calls it 
using return decorated(*args, **kwargs), returning 8. Absent this call, the decorated method would 
have been ignored.

Preserving the help
It often is not particularly desirable to have a decorator steamroll your function’s docstring or hijack 
the output of help. Because decorators are tools for adding generic and reusable functionality, they 
are necessarily going to be more vague. And, generally, if someone using a function is trying to run 
help on it, he or she wants information about the guts of the function, not the shell.

The solution to this problem is actually … a decorator. Python implements a decorator called @
functools.wraps that copies the important introspection elements of one function onto another 
function.

Here is the same @requires_ints decorator, but it adds in the use of @functools.wraps: 

import functools

def requires_ints(decorated):
    @functools.wraps(decorated)
    def inner(*args, **kwargs):
        # Get any values that may have been sent as keyword arguments.
        kwarg_values = [i for i in kwargs.values()]

        # Iterate over every value sent to the decorated method, and
        # ensure that each one is an integer; raise TypeError if not.
        for arg in args + kwarg_values:
            if not isinstance(i, int):
                raise TypeError('%s only accepts integers as arguments.' %
                                decorated.__name__)

        # Run the decorated method, and return the result.
        return decorated(*args, **kwargs)
    return inner

The decorator itself is almost entirely unchanged, except for the addition of the second line, which 
applies the @functools.wraps decorator to the inner function. You must also import functools 
now (which is in the standard library). You will also notice some additional syntax. This decorator 
actually takes an argument (more on that later).

mailto:@functools.wraps:
mailto:@functools.wraps
mailto:@functools.wraps
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Now you apply the decorator to the same function, as shown here:

@requires_ints
def foo(x, y):
    """Return the sum of x and y."""
    return x + y

Here is what happens when you run help(foo) now:

Help on function foo in module __main__:

foo(x, y)
    Return the sum of x and y.
(END)

You see that the docstring for foo, as well as its method signature, is what is read out when you 
look at help. Underneath the hood, however, the @requires_ints decorator is still applied, and 
the inner function is still what runs.

Depending on which version of Python you are running, you will get a slightly different result from 
running help on foo, specifi cally regarding the function signature. The previous paste represents 
the output from Python 3.4. However, in Python 2, the function signature provided will still be that 
of inner (so, *args and **kwargs rather than x and y).

User Verifi cation
A common use case for this pattern (that is, performing some kind of sanity check before running 
the decorated method) is user verifi cation. Consider a method that is expected to take a user as its 
fi rst argument.

The user should be an instance of this User and AnonymousUser class, as shown here:

class User(object):
    """A representation of a user in our application."""

    def __init__(self, username, email):
        self.username = username
        self.email = email

class AnonymousUser(User):
    """An anonymous user; a stand-in for an actual user that nonetheless
    is not an actual user.
    """
    def __init__(self):
        self.username = None
        self.email = None

    def __nonzero__(self):
        return False

A decorator is a powerful tool here for isolating the boilerplate code of user verifi cation. A 
@requires_user decorator can easily verify that you got a User object and that it is not an 
anonymous user.



12 ❘ CHAPTER 1  DECORATORS

c01.indd 09/21/2015 Page 12

import functools

def requires_user(func):
    @functools.wraps(func)
    def inner(user, *args, **kwargs):
        """Verify that the user is truthy; if so, run the decorated method,
        and if not, raise ValueError.
        """
        # Ensure that user is truthy, and of the correct type.
        # The "truthy" check will fail on anonymous users, since the
        # AnonymousUser subclass has a `__nonzero__` method that
        # returns False.
        if user and isinstance(user, User):
            return func(user, *args, **kwargs)
        else:
            raise ValueError('A valid user is required to run this.')
    return inner

This decorator applies a common, boilerplate need—the verifi cation that a user is logged in to the 
application. When you implement this as a decorator, it is reusable and more easily maintainable, 
and its application to functions is clear and explicit.

Note that this decorator will only correctly wrap a function or static method, and will fail if wrap-
ping a bound method to a class. This is because the decorator ignores the expectation to send self 
as the fi rst argument to a bound method.

Output Formatting
In addition to sanitizing input to a function, another use for decorators can be sanitizing output 
from a function.

When you’re working in Python, it is normally desirable to use native Python objects when pos-
sible. Often, however, you want a serialized output format (for example, JSON). It is cumbersome to 
manually convert to JSON at the end of every relevant function, and (and it’s not a good idea, either). 
Ideally, you should be using the Python structures right up until serialization is necessary, and there 
may be other boilerplate that happens just before serialization (such as or the like).

Decorators provide an excellent, portable solution to this problem. Consider the following decorator 
that takes Python output and serializes the result to JSON:

import functools
import json

def json_output(decorated):
    """Run the decorated function, serialize the result of that function
    to JSON, and return the JSON string.
    """
    @functools.wraps(decorated)
    def inner(*args, **kwargs):
        result = decorated(*args, **kwargs)
        return json.dumps(result)
    return inner

mailto:@functools.wraps
mailto:@functools.wraps
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Apply the @json_output decorator to a trivial function, as shown here:

@json_output
def do_nothing():
    return {'status': 'done'}

Run the function in the Python shell, and you get the following:

>>> do_nothing()
'{"status": "done"}'

Notice that you got back a string that contains valid JSON. You did not get back a dictionary.

The beauty of this decorator is in its simplicity. Apply it to a function, and suddenly a function that 
did return a Python dictionary, list, or other object now returns its JSON-serialized version.

You might ask, “Why is this valuable?” After all, you are adding a one-line decorator that essen-
tially removes a single line of code—a call to json.dumps. However, consider the value of having 
this decorator as the application’s needs expand.

For example, what if certain exceptions should be trapped and output specifi cally formatted JSON, 
rather than having the exception bubble up and traceback? Because you have a decorator, that func-
tionality is very easy to add.

import functools
import json

class JSONOutputError(Exception):
    def __init__(self, message):
        self._message = message

    def __str__(self):
        return self._message

def json_output(decorated):
    """Run the decorated function, serialize the result of that function
    to JSON, and return the JSON string.
    """
    @functools.wraps(decorated)
    def inner(*args, **kwargs):
        try:
            result = decorated(*args, **kwargs)
        except JSONOutputError as ex:
            result = {
                'status': 'error',
                'message': str(ex),
            }
        return json.dumps(result)
    return inner

By augmenting the @json_output decorator with this error handling, you have added it to any func-
tion where the decorator was already applied. This is part of what makes decorators so valuable. 
They are very useful tools for code portability and reusability.

mailto:@functools.wraps
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Now, if a function decorated with @json_output raises a JSONOutputError, you will get this 
 special error handling. Here is a function that does:

@json_output
def error():
    raise JSONOutputError('This function is erratic.')

Running the error function in the Python interpreter gives you the following:

>>> error()
'{"status": "error", "message": "This function is erratic."}'

Note that only the JSONOutputError exception class (and any subclasses) receives this special 
 handling. Any other exception is passed through normally, and generates a traceback. Consider 
this function:

@json_output
def other_error():
    raise ValueError('The grass is always greener...')

When you run it, you will get the traceback you expect, as shown here:

>>> other_error()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 8, in inner
  File "<stdin>", line 3, in other_error
ValueError: The grass is always greener...

This reusability and maintainability is part of what makes decorators valuable. Because a decorator 
is being used for a reusable, generally applicable concept throughout the application (in this case, 
JSON serialization), the decorator becomes the place for housing that functionality as needs arise 
that are applicable whenever that concept is used.

Essentially, decorators are tools to avoid repeating yourself, and part of their value is in providing 
hooks for future maintenance.

This can be accomplished without the use of decorators. Consider the example of requiring a 
logged-in user. It is not diffi cult to write a function that does this and simply place it near the top of 
functions that require that functionality. The decorator is primarily syntactic sugar. The syntactic 
sugar has value, though. Code is read more often than it is written, after all, and it is easy to locate 
decorators at a glance.

Logging
One fi nal example of execution-time wrapping of code is a general-use logging function. Consider 
the following decorator that causes the function call, timings, and result to be logged:

import functools
import logging
import time

def logged(method):
    """Cause the decorated method to be run and its results logged, along
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    with some other diagnostic information.
    """
    @functools.wraps(method)
    def inner(*args, **kwargs):
        # Record our start time.
        start = time.time()

        # Run the decorated method.
        return_value = method(*args, **kwargs)

        # Record our completion time, and calculate the delta.
        end = time.time()
        delta = end - start

        # Log the method call and the result.
        logger = logging.getLogger('decorator.logged')
        logger.warn('Called method %s at %.02f; execution time %.02f '
                    'seconds; result %r.' %
                    (method.__name__, start, delta, return_value))

        # Return the method's original return value.
        return return_value
    return inner

When applied to a function, this decorator runs that function normally, but uses the Python log-
ging module to log out information about the function call after it completes. Now, suddenly, you 
have (extremely rudimentary) logging of any function where this decorator is applied.

>>> import time
>>> @logged
... def sleep_and_return(return_value):
...      time.sleep(2)
...      return return_value
...
>>>
>>> sleep_and_return(42)
Called method sleep_and_return at 1424462194.70; 
     execution time 2.00 seconds; result 42.
42

Unlike the previous examples, this decorator does not alter the function call in an obvious way. No 
cases exist where you apply this decorator and get a different result from the decorated function 
than you did from the undecorated function. The previous examples raised exceptions or modifi ed 
the result if this or that check did not pass. This decorator is more invisible. It does some under-the-
hood work, but in no situation should it change the actual result.

Variable Arguments
It is worth noting that the @json_output and @logged decorators both provide inner functions that 
simply take, and pass on with minimal investigation, variable arguments and keyword arguments.

This is an important pattern. One way that it is particularly important is that many decorators 
may be used to decorate plain functions as well as methods of classes. Remember that in Python, 
methods declared in classes receive an additional positional argument, conventionally known as 

mailto:@functools.wraps
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self. This does not change when decorators are in use. (This is why the requires_user decorator 
shown earlier does not work on bound methods within classes.)

For example, if @json_result is used to decorate a method of a class, the inner function is called 
and it receives the instance of the class as the fi rst argument. In fact, this is fi ne. In this case, that 
argument is simply args[0], and it is passed to the decorated method unmolested.

Decorator Arguments
One thing that has been consistent about all the decorators enumerated thus far is that the decora-
tors themselves appear not to take any arguments. As discussed, there is an implied argument—the 
method that is being decorated.

However, sometimes it is useful to have the decorator itself take some information that it needs to 
decorate the method appropriately. The difference between an argument passed to the decorator and 
an argument passed to the function at call time is precisely that. An argument to the decorator is 
processed once, when the function is declared and decorated. By contrast, arguments to the function 
are processed when that function is called.

You have already seen an example of an argument sent to a decorator with the repeated use of 
@functools.wraps. It takes an argument—the method being wrapped, whose help and docstring 
and the like should be preserved.

However, decorators have implied call signatures. They take one positional argument—the method 
being decorated. So, how does this work?

The answer is that it is complicated. Recall the basic decorators that have execution-time wrap-
ping of code. They declare an inner method in local scope that they then return. This is the call-
able returned by the decorator. It is what is assigned to the function name. Decorators that take 
arguments add one more wrapping layer to this dance. This is because the decorator that takes the 
argument is not actually the decorator. Rather, it is a function that returns the decorator, which is 
a function that takes one argument (the decorated method), which then decorates the function and 
returns a callable.

That sounds confusing. Consider the following example where a @json_output decorator is aug-
mented to ask about indentation and key sorting:

import functools
import json

class JSONOutputError(Exception):
    def __init__(self, message):
        self._message = message

    def __str__(self):
        return self._message

def json_output(indent=None, sort_keys=False):
    """Run the decorated function, serialize the result of that function
    to JSON, and return the JSON string.

mailto:@functools.wraps
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    """
    def actual_decorator(decorated):
        @functools.wraps(decorated)
        def inner(*args, **kwargs):
            try:
                result = decorated(*args, **kwargs)
            except JSONOutputError as ex:
                result = {
                    'status': 'error',
                    'message': str(ex),
                }
            return json.dumps(result, indent=indent, sort_keys=sort_keys)
        return inner
    return actual_decorator

So, what has happened here, and why does this work?

This is a function, json_output, which accepts two arguments (indent and sort_keys). It returns 
another function, called actual_decorator, which is (as its name suggests) intended to be used as 
a decorator. That is a classic decorator—a callable that accepts a single callable (decorated) as an 
argument and returns a callable (inner).

Note that the inner function has changed slightly to accommodate the indent and sort_keys 
arguments. These arguments mirror similar arguments accepted by json.dumps, so the call to 
json.dumps accepts the values provided to indent and sort_keys in the decorator’s signature and 
provides them to json.dumps in the antepenultimate line.

The inner function is what ultimately makes use of the indent and sort_keys arguments. This is 
fi ne, because Python’s block scoping rules allow for this. It also is not a problem that this might be 
called with different values for inner and sort_keys, because inner is a local function (a different 
copy is returned each time the decorator is used).

Applying the json_output function looks like this:

@json_output(indent=4)
def do_nothing():
    return {'status': 'done'}

And if you run the do_nothing function now, you get a JSON block back with indentation and 
newlines added, as shown here:

>>> do_nothing()
'{\n    "status": "done"\n}'

How Does This Work?
But wait. If json_output is not a decorator, but a function that returns a decorator, why does it 
look like it is being applied as a decorator? What is the Python interpreter doing here that makes 
this work?

More explanation is in order. The key here is in the order of operations. Specifi cally, the function 
call (json_output(indent=4)) precedes the decorator application syntax (@). Thus, the result of 
the function call is used to apply the decorator.

mailto:@functools.wraps
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The fi rst thing that is happening is that the interpreter is seeing the function call for json_output 
and resolving that call (note that the boldface does not include the @):

@json_output(indent=4)
def do_nothing():
    return {'status': 'done'}

All the json_output function does is defi ne another function, actual_decorator, and return it. 
As the result of that function, it is then provided to @, as shown here:

@actual_decorator
def do_nothing():
    return {'status': 'done'}

Now, actual_decorator is being run. It declares another local function, inner, and returns it. As 
previously discussed, that function is then assigned to the name do_nothing, the name of the deco-
rated method. When do_nothing is called, the inner function is called, runs the decorated method, 
and JSON dumps the result with the appropriate indentation.

The Call Signature Matters
It is critical to realize that when you introduced your new, altered json_output function, you 
 actually introduced a backward-incompatible change.

Why? Because now there is this extra function call that is expected. If you want the old json_output 
behavior, and do not need values for any of the arguments available, you still must call the method.

In other words, you must do the following:

@json_output()
def do_nothing():
    return {'status': 'done'}

Note the parentheses. They matter, because they indicate that the function is being called (even with 
no arguments), and then the result is applied to the @.

The previous code is not—repeat, not—equivalent to the following: 

@json_output
def do_nothing():
    return {'status': 'done'}

This presents two problems. It is inherently confusing, because if you are accustomed to seeing deco-
rators applied without a signature, a requirement to supply an empty signature is counterintuitive. 
Secondly, if the old decorator already exists in your application, you must go back and edit all of its 
existing calls. You should avoid backward-incompatible changes if possible.

In a perfect world, this decorator would work for three different types of applications:

 ➤ @json_output

 ➤ @json_output()

 ➤ @json_output(indent=4)
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As it turns out, this is possible, by having a decorator that modifi es its behavior based on the argu-
ments that it receives. Remember, a decorator is just a function and has all the fl exibility of any 
other function to do what it needs to do to respond to the inputs it gets.

Consider this more fl exible iteration of json_output:

import functools
import json

class JSONOutputError(Exception):
    def __init__(self, message):
        self._message = message

    def __str__(self):
        return self._message

def json_output(decorated_=None, indent=None, sort_keys=False):
    """Run the decorated function, serialize the result of that function
    to JSON, and return the JSON string.
    """
    # Did we get both a decorated method and keyword arguments?
    # That should not happen.
    if decorated_ and (indent or sort_keys):
        raise RuntimeError('Unexpected arguments.')

    # Define the actual decorator function.
    def actual_decorator(func):
        @functools.wraps(func)
        def inner(*args, **kwargs):
            try:
                result = func(*args, **kwargs)
            except JSONOutputError as ex:
                result = {
                    'status': 'error',
                    'message': str(ex),
                }
            return json.dumps(result, indent=indent, sort_keys=sort_keys)
        return inner

    # Return either the actual decorator, or the result of applying
    # the actual decorator, depending on what arguments we got.
    if decorated_:
        return actual_decorator(decorated_)
    else:
        return actual_decorator

This function is endeavoring to be intelligent about whether or not it is currently being used as 
a decorator.

First, it makes sure it is not being called in an unexpected way. You never expect to receive both a 
method to be decorated and the keyword arguments, because a decorator is always called with the 
decorated method as the only argument. 

mailto:@functools.wraps
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Second, it defi nes the actual_decorator function, which (as its name suggests) is the actual decora-
tor to be either returned or applied. It defi nes the inner function that is the ultimate function to be 
returned from the decorator.

Finally, it returns the appropriate result based on how it was called:

 ➤ If decorated_ is set, it was called as a plain decorator, without a method signature, and 
its responsibility is to apply the ultimate decorator and return the inner function. Here 
again, observe how decorators that take arguments are actually working. First, actual_
decorator(decorated_) is called and resolved, then its result (which must be a callable, 
because this is a decorator) is called with inner provided as its only argument.

 ➤ If decorated_ is not set, then this was called with keyword arguments instead, and the 
function must return an actual decorator, which receives the decorated method and returns 
inner. Therefore, the function returns actual_decorator outright. This is then applied by 
the Python interpreter as the actual decorator (which ultimately returns inner).

Why is this technique valuable? It enables you to maintain your decorator’s functionality as previ-
ously used. This means that you do not have to update each case where the decorator has been 
applied. But you still get the additional fl exibility of being able to add arguments in the cases where 
you need them.

DECORATING CLASSES

Remember that a decorator is, fundamentally, a callable that accepts a callable and returns a call-
able. This means that decorators can be used to decorate classes as well as functions (classes are 
callable, after all).

Decorating classes can have a variety of uses. They can be particularly valuable because, like func-
tion decorators, class decorators can interact with the attributes of the decorated class. A class 
decorator can add or augment attributes, or it can alter the API of a class to provide a distinction 
between how a class is declared versus how its instances are used.

You might ask, “Isn’t the appropriate way to add or augment attributes of a class through sub
classing?” Usually, the answer is “yes.” However, in some situations an alternative approach may be 
appropriate. Consider, for example, a generally applicable feature that may apply to many classes in 
your application that live in distinct places in your class hierarchies.

By way of example, consider a feature of a class such that each instance knows when it was instanti-
ated, and instances are sorted by their creation times. This has general applicability across many 
different classes, and requires the addition of three attributes—the instantiation timestamp, and the 
__gt__ and __lt__ methods.

You have multiple ways to go about adding this. Here is how you can do it with a class decorator:

import functools
import time
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def sortable_by_creation_time(cls):
    """Given a class, augment the class to have its instances be sortable
    by the timestamp at which they were instantiated.
    """
    # Augment the class' original `__init__` method to also store a
    # `_created` attribute on the instance, which corresponds to when it
    # was instantiated.
    original_init = cls.__init__

    @functools.wraps(original_init)
    def new_init(self, *args, **kwargs):
        original_init(self, *args, **kwargs)
        self._created = time.time()
    cls.__init__ = new_init

    # Add `__lt__` and `__gt__` methods that return True or False based on
    # the created values in question.
    cls.__lt__ = lambda self, other: self._created < other._created
    cls.__gt__ = lambda self, other: self._created > other._created

    # Done; return the class object.
    return cls

The fi rst thing that is happening in this decorator is that you are saving a copy of the class’s original 
__init__ method. You do not need to worry about whether the class has one. Because object has 
an __init__ method, that attribute’s presence is guaranteed. Next, you create a new method that 
will be assigned to __init__, and this method fi rst calls the original and then does 
one piece of extra work, saving the instantiation timestamp to self._created.

It is worth noting that this is a very similar pattern to the execution-time wrapping code from previ-
ous examples—making a function that wraps another function, whose primary responsibility is to 
run the wrapped function, but also adds a small piece of other functionality.

It is worth noting that if a class decorated with @sortable_by_creation_time defi ned its own 
__lt__ and __gt__ methods, then this decorator would override them.

The _created value by itself does little good if the class does not recognize that it is to be used 
for sorting. Therefore, the decorator also adds __lt__ and __gt__ magic methods. These cause the 
< and > operators to return True or False based on the result of those methods. This also affects 
the behavior of sorted and other similar functions.

This is all that is necessary to make an arbitrary class’s instances sortable by their instantiation 
time. This decorator can be applied to any class, including many classes with unrelated ancestry.

Here is an example of a simple class with instances sortable by when they are created:

>>> @sortable_by_creation_time
... class Sortable(object):
...     def __init__(self, identifier):
...         self.identifier = identifier
...     def __repr__(self):
...         return self.identifier
...
>>> first = Sortable('first')
>>> second = Sortable('second')

mailto:@functools.wraps
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>>> third = Sortable('third')
>>>
>>> sortables = [second, first, third]
>>> sorted(sortables)
[first, second, third]

Bear in mind that simply because a decorator can be used to solve a problem, that does not mean 
that it is necessarily the appropriate solution.

For instance, when it comes to this example, the same thing could be accomplished by using a 
“mixin,” or a small class that simply defi nes the appropriate __init__, __lt__, and __gt__ 
 methods. A simple approach using a mixin would look like this:

import time

class SortableByCreationTime(object):
    def __init__(self):
        self._created = time.time()

    def __lt__(self, other):
        return self._created < other._created

    def __gt__(self, other):
        return self._created > other._created

Applying the mixin to a class can be done using Python’s multiple inheritance:

class MyClass(MySuperclass, SortableByCreationTime):
    pass

This approach has different advantages and drawbacks. On the one hand, it will not mercilessly 
plow over __lt__ and __gt__ methods defi ned by the class or its superclasses (and it may not be 
obvious when the code is read later that the decorator was clobbering two methods).

On the other hand, it would be very easy to get into a situation where the __init__ method pro-
vided by SortableByCreationTime does not run. If MyClass or MySuperclass or any class in 
MySuperclass’s ancestry defi nes an __init__ method, it will win out. Reversing the class order 
does not solve this problem; it simply reverses it.

By contrast, the decorator handles the __init__ case very well, simply by augmenting the effect 
of the decorated class’s __init__ method and otherwise leaving it intact.

So, which approach is the correct approach? It depends.

TYPE SWITCHING

Thus far, the discussion in this chapter has only considered cases in which a decorator is expected to 
decorate a function and provide a function, or when a decorator is expected to decorate a class and 
provide a class.

There is no reason why this relationship must hold, however. The only requirement for a decorator 
is that it is a callable that accepts a callable and returns the callable. There is no requirement that it 
return the same kind of callable.
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One more advanced use case for decorators is actually when they do not do this. In particular, it can 
be valuable for a decorator to decorate a function, but return a class. This can be a very useful tool 
for situations where the amount of boilerplate code grows, or for allowing developers to use a simple 
function for simple cases, but subclass a class in an application’s API for more advanced cases.

An example of this in the wild is a decorator used in a popular task runner in the Python ecosystem: 
celery. The celery package provides a @celery.task decorator that is expected to decorate a func-
tion. What the decorator actually does is return a subclass of celery’s internal Task class, with the 
decorated function being used within the subclass’s run method.

Consider the following trivial example of a similar approach:

class Task(object):
    """A trivial task class. Task classes have a `run` method, which runs
    the task.
    """
    def run(self, *args, **kwargs):
        raise NotImplementedError('Subclasses must implement `run`.')

    def identify(self):
        return 'I am a task.'

def task(decorated):
    """Return a class that runs the given function if its run method is
    called.
    """
    class TaskSubclass(Task):
        def run(self, *args, **kwargs):
            return decorated(*args, **kwargs)
    return TaskSubclass

What is happening here? The decorator creates a subclass of Task and returns the class. The class is 
callable calling a class creates an instance of that class and runs its __init __ method

The value of doing this is that it provides a hook for lots of augmentation. The base Task class can 
defi ne much, much more than just the run method. For example, a start method might run the task 
asynchronously. The base class might also provide methods to save information about the task’s sta-
tus. Using a decorator that swaps out a function for a class here enables the developer to only con-
sider the actual body of his or her task, and the decorator does the rest of the work.

You can see this in action by taking an instance of the class and running its identify method, as 
shown here:

>>> @task
>>> def foo():
>>>     return 2 + 2
>>>
>>> f = foo()
>>> f.run()
4
>>> f.identify()
'I am a task.'

mailto:@celery.task
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A Pitfall
This exact approach carries with it some problems. In particular, once a task function is decorated 
with the @task_class decorator, it becomes a class.

Consider the following simple task function decorated in this way:

@task
def foo():
    return 2 + 2

Now, attempt to run it directly in the interpreter:

>>> foo()
<__main__.TaskSubclass object at 0x10c3612d0>

That is a bad thing. This decorator alters the function in such a way that if the developer runs 
it, it does not do what anyone expects. It is usually not acceptable to expect the function to be 
declared as foo and then run using the convoluted foo().run() (which is what would be neces-
sary in this case).

Fixing this requires putting a little more thought into how both the decorator and the Task class are 
constructed. Consider the following amended version:

class Task(object):
    """A trivial task class. Task classes have a `run` method, which runs
    the task.
    """
     def __call__(self, *args, **kwargs):
        return self.run(*args, **kwargs)

    def run(self, *args, **kwargs):
        raise NotImplementedError('Subclasses must implement `run`.')

    def identify(self):
        return 'I am a task.'

def task(decorated):
    """Return a class that runs the given function if its run method is
    called.
    """
    class TaskSubclass(Task):
        def run(self, *args, **kwargs):
            return decorated(*args, **kwargs)
    return TaskSubclass()

A couple of key differences exist here. The fi rst is the addition of the __call__ method to the base 
Task class. The second difference (which complements the fi rst) is that the @task_class decorator 
now returns an instance of the TaskSubclass, rather than the class itself.

This is acceptable because the only requirement for the decorator is that it return a callable, and the 
addition of the __call__ method to Task means that its instances are now callable.
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Why is this pattern valuable? Again, the Task class is trivial, but it is easy to see how more function-
ality could be added here that is useful for managing and running tasks.

However, this approach maintains the spirit of the original function if it is invoked directly. 
Consider the decorated function again:

@task
def foo():
    return 2 + 2

And now, what do you get if you run it in the interpreter?

>>> foo()
4

This is what you expect, which makes this a far superior class and decorator design. Under the 
hood, the decorator has returned a TaskSubclass instance. When that instance is called in the 
interpreter, its __call__ method is invoked, which calls run, which calls the original function.

You can see that you still got your instance back, though, by using the identify method.

>>> foo.identify()
'I am a task.'

Now you have an instance that, when called directly, calls exactly like the original function. 
However, it can include other methods and attributes to provide for other functionality.

This is powerful. It allows a developer to write a function that is easily and explicitly grafted into a 
class that provides for alternate ways for that function to be invoked or other related functionality. 
This is a helpful paradigm.

SUMMARY

 Decorators are very valuable tools that you can use to write maintainable, readable Python code. 
A decorator’s value is in the fact that it is explicit, as well as the fact that decorators are reusable. 
They provide an excellent way to use boilerplate code, write it once, and apply it in many different 
situations.

This useful paradigm is possible because Python’s data model provides functions and classes as fi rst-
class objects, capable of being passed around and augmented like any other object in the language.

On the other hand, there are also drawbacks to this model. In particular, the decorator syntax, 
while clean and easy to read, can obscure the fact that a function is being wrapped within another 
function, which can lead to challenges in debugging. Poorly written decorators may create errors by 
being careless about the nature of the callables they wrap (for example, by ignoring the distinction 
between bound methods and unbound functions).

Additionally, bear in mind that, like any function, the interpreter must actually run the code inside the 
decorator, which has a performance impact. Decorators are not immune to this; be mindful of what 
you are asking your decorators to do, in the same way that you would be for any other code you write.
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Consider using decorators as a way to take leading or trailing functionality and wrap it around 
unrelated functions. Similarly, decorators are useful tools for function registries, signaling, certain 
cases of class augmentation, as well as many other things.

Chapter 2 “Context Managers,” discusses context managers, which are another way to take bits of 
functionality that require reuse across an application, and compartmentalize them in an effective 
and portable way. 
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Context Managers
Context managers are the fi rst cousins of decorators. Like their kindred, they are tools for 
wrapping code around other code. However, whereas decorators wrap defi ned blocks of code 
(such as functions or classes), context managers wrap arbitrary, free-form blocks of code.

In almost every other respect, the purposes of context managers and decorators are equivalent 
(and, it is often the case that APIs are written to allow you to use either, as discussed later in 
this chapter).

This chapter introduces and explains the concept of context managers, showing how and when 
to use them, and enumerating the different ways of handling exceptions that may occur within 
context blocks.

WHAT IS A CONTEXT MANAGER?

A context manager is an object that wraps an arbitrary block of code. Context managers ensure 
that setup is consistently performed when the context manager is entered, and that teardown is 
consistently performed when the context manager is exited.

It is important to note early that the exit is guaranteed. If a context manager is entered, it will, 
by defi nition, be exited. This holds true even if the internal code raises an exception. In fact, 
the context manager’s exit code is given an opportunity to handle such exceptions if it sees fi t 
to do so (although it is not obligated to do so).

Therefore, context managers perform a very similar function to the try, except, and finally 
keywords. They are often a useful mechanism to encapsulate boilerplate try-except-finally 
constructs that you may otherwise repeat.

This is probably the most common use of context managers—they are a way to ensure cleanup.

2
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CONTEXT MANAGER SYNTAX

Consider a common use case where a context manager would be useful—opening a fi le. You open a 
fi le in Python with the built-in open function. When you open a fi le, it is your responsibility to close 
it again, as shown here:

try:
    my_file = open('/path/to/filename', 'r')
    contents = my_file.read()
finally:
    my_file.close()

You use a finally clause to ensure that, no matter what happens, my_file will, in fact, be closed. 
If an error occurs when reading the fi le, or something else goes wrong, the finally clause will still 
run, and my_file will be closed.

The with Statement
So, how you do the same thing—open a fi le and ensure that it is properly closed—with a context 
manager? Context managers were introduced in Python 2.5, which adds a new keyword to the 
language: with. You use the with statement to enter a context manager.

As it happens, Python’s built-in open function can also be used as a context manager. This code is 
identical to what you saw previously:

with open('/path/to/filename', 'r') as my_file:
    contents = my_file.read()

Essentially, what is happening here is that the with statement evaluates the expression that comes 
after it (in this case, the open call). That expression is expected to return an object with two special 
methods: __enter__ and __exit__ (more on those shortly). The __enter__ method returns a result 
that is assigned to the variable after the as keyword.

It is important to note that the result of the expression after with is not being assigned to said variable. 
In fact, it is not assigned to anything at all. It is what is returned from __enter__ that is assigned.

Simplicity is a huge reason for doing it this way. More importantly, however, remember that the 
exception-handling and cleanup code can sometimes be very complex, and applying it in many dif-
ferent places is cumbersome. As with decorators, a key reason to use context managers is to avoid 
repetitive code.

The enter and exit Methods
Remember that the with statement’s expression is responsible for returning an object that follows 
a particular protocol. Specifi cally, the object must defi ne an __enter__ and an __exit__ method, 
and the latter method must take particular arguments.

The __enter__ method takes no arguments except for the traditional self argument. It is run 
immediately when the object is returned, and its return value is assigned to the variable used after 
as, if any (the as clause is technically optional). Generally, the __enter__ method is responsible for 
performing some kind of setup.
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The __exit__ method, on the other hand, takes three positional arguments (not including the tradi-
tional self): an exception type, an exception instance, and a traceback. These three arguments are 
all set to None if there is no exception, but are populated if an exception occurs within the block.

Consider the following simple class whose instances act as context managers:

class ContextManager(object):
    def __init__(self):
        self.entered = False

    def __enter__(self):
        self.entered = True
        return self

    def __exit__(self, exc_type, exc_instance, traceback):
        self.entered = False

This context manager does very little. It simply returns itself and sets its entered variable to True 
upon entrance, and then False upon exit.

You can observe this by looking at this context manager in the Python shell. If you create a new 
ContextManager instance, you fi nd that its entered value is False as expected:

>>> cm = ContextManager()
>>> cm.entered
False

If you use this same ContextManager instance as a context manager, observe that its entered 
 attribute becomes True, then False again on exit.

>>> with cm:
...   cm.entered
...
True
>>> cm.entered
False

If you do not need the ContextManager instance for anything else, you can instantiate it in the with 
statement. This works because its __enter__ method just returns itself.

>>> with ContextManager() as cm:
...   cm.entered
...
True

Exception Handling
A context manager must defi ne an __exit__ method, which may optionally handle exceptions that are 
raised in the wrapped code, or handle anything else needed to tear down the context manager state.

As mentioned previously, the __exit__ method must defi ne three positional arguments: the type of 
the exception (called exc_type in this chapter), the instance of the exception (called exc_instance 
here), and the traceback option (called traceback here). If no exception occurred within the context 
manager code, all three of these values will be None.
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If the __exit__ method receives an exception, it has the responsibility to handle that exception. 
Fundamentally, it has three options: 

 ➤ It can propagate the exception (causing it to be re-raised after __exit__ fi nishes).

 ➤ It can suppress the exception. 

 ➤ It can raise a different exception.

You can propagate exceptions by having an __exit__ method that returns False, or suppress 
exceptions by having an __exit__ method that returns True. Alternatively, if __exit__ raises a 
different exception, it is used in place of the exceptions it was sent.

Each of these options is covered in more detail in examples throughout this chapter.

WHEN YOU SHOULD WRITE CONTEXT MANAGERS

Several common reasons exist to write context managers. Generally, these involve ensuring that 
a certain resource is both initialized and de-initialized in an expected manner, or trying to avoid 
repetition.

Resource Cleanliness
One of the key reasons to write context managers is for situations in which you are opening and 
closing a resource (such as a fi le or a database connection). It is often important to ensure that the 
handle in question is closed properly, to avoid ending up with a situation where many zombie pro-
cesses can build up over time.

Context managers excel here. By opening a resource in the __enter__ method and returning it, the 
__exit__ method is guaranteed to be run, and can close the resource before allowing the exception 
to bubble.

Consider the following context manager that opens a PostgreSQL database connection:

import psycopg2

class DBConnection(object):
    def __init__(self, dbname=None, user=None,
                       password=None, host='localhost'):
        self.host = host
        self.dbname = dbname
        self.user = user
        self.password = password

    def __enter__(self):
        self.connection = psycopg2.connect(
            dbname=self.dbname,
            host=self.host,
            user=self.user,
            password=self.password,
        )
        return self.connection.cursor()
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    def __exit__(self, exc_type, exc_instance, traceback):
        self.connection.close()

Within the context manager, it is possible to run queries against the database and retrieve results.

>>> with DBConnection(user='luke', dbname='foo') as db:
...     db.execute('SELECT 1 + 1')
...     db.fetchall()
...
[(2,)]

However, as soon as the context manager exists, the database cursor that you assigned to db 
becomes closed, and further queries cannot be made against it.

>>> with DBConnection(user='luke', dbname='foo') as db:
...     db.execute('SELECT 1 + 1')
...     db.fetchall()
...
[(2,)]
>>> db.execute('SELECT 1 + 1')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
psycopg2.InterfaceError: cursor already closed

What has happened here? This context manager creates a psycopg2 connection object and returns a 
cursor, which the developer can use to interact with the database. What is important here, though, 
is that the connection is guaranteed to be closed when the context manager exits.

This is important because, as mentioned, lingering database connections not only consume 
memory, but they also open fi les or ports on both the application machine and the database machine. 
Additionally, some databases also have maximum connection allowances.

Note also that, unlike the previous example, this context manager does not simply return itself at 
the end of the __enter__ method. Instead, it returns a database cursor. This is fi ne, and a useful 
paradigm. However, it is still the context manager’s __exit__ method that runs.

Most frameworks that work with databases handle opening and closing your database connections 
for you, but this principle remains: if you are opening a resource and must ensure that it is being 
properly closed, a context manager is an excellent tool.

Avoiding Repetition
When it comes to avoiding repetition, the most common place where this is useful is in exception 
handling. Context managers can both propagate and suppress exceptions, which makes them ideal 
for taking repetitive except clauses and defi ning them in one place.

Propagating Exceptions
An __exit__ method that just propagates the exception up the chain can do so by returning False. 
It need not interact with the exception instance at all. Consider the following context manager:

class BubbleExceptions(object):
    def __enter__(self):
        return self
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    def __exit__(self, exc_type, exc_instance, traceback):
        if exc_instance:
            print('Bubbling up exception: %s.' % exc_instance)
        return False

Running a normal block of code (that does not raise an exception) with this context manager will 
do nothing particularly interesting.

>>> with BubbleExceptions():
...     5 + 5
...
10

On the other hand, this block of code does actually raise an exception:

>>> with BubbleExceptions():
...     5 / 0
...
Bubbling up exception: integer division or modulo by zero.
Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
ZeroDivisionError: integer division or modulo by zero

A couple important things are worth noting here. The fi rst printed line (which begins with Bubbling 
up exception: integer…) was generated by the __exit__ method itself. It corresponds to the 
print statement on the second line of __exit__. This means that __exit__ did run, and com-
plete. Because it returned False, the exception that was sent to __exit__ in the fi rst place is simply 
re-raised.

Suppressing Exceptions
As mentioned previously, another option that the __exit__ method has is to suppress the exception 
that it receives. The following context manager suppresses any and every exception that might be 
sent to its __exit__ method (you should never actually do this, however):

class SuppressExceptions(object):
    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_instance, traceback):
        if exc_instance:
            print('Suppressing exception: %s.' % exc_instance)
        return True

The bulk of this code is similar to the BubbleExceptions class from earlier, with the primary 
 difference being that now the __exit__ method returns True instead of False.

The example of showing normal, uninteresting code that does not raise any exception at all remains 
unchanged:

>>> with SuppressExceptions():
...     5 + 5
...
10
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However, if you do something that raises an exception, you see a different result:

>>> with SuppressExceptions():
...     5 / 0
...
Suppressing exception: integer division or modulo by zero.

The fi rst and most obvious thing to note is that the traceback is gone. The exception was handled 
(suppressed) by the __exit__ method, so program execution continues with no exception raised.

The second thing to note is that no value was ever returned. Whereas the expression 5 + 5, when 
entered into the interpreter, gave a value of 10, the exception-raising 5 / 0 simply never shows a 
value. The exception was raised in the process of computing a value, which triggered the running 
of __exit__. A value is never actually returned. It is also worth noting that if any code was present 
after 5 / 0, it would never run.

As you would expect, however, exception handlers that are defi ned within the context block are 
handled before the context block completes. Exceptions handled within a context block are consid-
ered to be dealt with and are not sent to __exit__.

Consider the following example:

with SuppressExceptions():
    try:
        5 / 0
    except ZeroDivisionError:
        print('Exception caught within context block.')

If you run this, the “Exception caught within context block.” message will print, and no exception 
will be sent to __exit__.

Although propagating exceptions is fairly straightforward, suppressing exceptions is always some-
thing that you should do carefully. Suppressing too many exceptions leads to code that is extremely 
diffi cult to debug. Simply suppressing all exceptions is fundamentally equivalent to a try block that 
looks like this:

try:
    [do something]
except:
    pass

Suffi ce it to say that this is very rarely wise.

__exit__ methods can, however, conditionally suppress or handle exceptions, because they are 
provided the type and instance of the exception, as well as a full traceback. In fact, the exception 
handling is extremely customizable. 

Handling Certain Exception Classes
A simple exception-handling __exit__ function may simply check to see if the exception is an 
instance of a particular exception class, perform whatever exception handling is necessary, and 
return True (or return False) if it gets any other exception class.

class HandleValueError(object):
    def __enter__(self):
        return self
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    def __exit__(self, exc_type, exc_instance, traceback):
        # Return True if there is no exception.
        if not exc_type:
            return True

        # If this is a ValueError, note that it is being handled and
        # return True.
        if issubclass(exc_type, ValueError):
            print('Handling ValueError: %s' % exc_instance)
            return True

        # Propagate anything else.
        return False

If you use this context manager and raise ValueError inside the block, you see that it prints and 
then suppresses the exception.

>>> with HandleValueError():
...     raise ValueError('Wrong value.')
...
Handling ValueError: Wrong value.

Similarly, if you use this context manager but raise a different class of exception (such as TypeError, 
instead), it will bubble and you will still get your traceback.

>>> with HandleValueError():
...     raise TypeError('Wrong type.')
...
Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
TypeError: Wrong type.

By itself, this does not have a whole lot of value. After all, this is really just a substitute for a much 
more straightforward try clause.

try:
    [do something]
except ValueError as exc_instance:
    print('Handling ValueError: %s' % exc_instance)

One way that the context manager can be valuable is when the work that must be done in the except 
clause is both non-trivial and must be repeated in multiple places throughout the application. The 
context manager encapsulates not only the except clause, but also its body.

Excluding Subclasses
There is also a little more fl exibility in how the class or instance check is done. For example, sup-
pose that you want to catch a given class of exception, but explicitly not its subclasses. You cannot 
do that in a traditional except block (nor should you be able to), but a context manager is able to 
address such an edge case, as shown here:

class ValueErrorSubclass(ValueError):
    pass
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class HandleValueError(object):
    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_instance, traceback):
        # Return True if there is no exception.
        if not exc_type:
            return True

        # If this is a ValueError (but not a ValueError subclass),
        # note that it is being handled and return True.
        if exc_type == ValueError:
            print('Handling ValueError: %s' % exc_instance)
            return True

        # Propagate anything else.
        return False

Note that the HandleValueError context manager has changed slightly now. It checks its type using 
== rather than the more traditional issubclass check that the previous example used. This means 
that although it will handle ValueError as before, it will not handle a ValueError subclass such as 
the ValueErrorSubclass defi ned previously:

>>> with HandleValueError():
...     raise ValueErrorSubclass('foo bar baz')
...
Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
__main__.ValueErrorSubclass: foo bar baz

Attribute-Based Exception Handling
Similarly, a context manager might decide whether to handle an exception based on not the type of the 
exception (which is what an except clause must do), but rather based on an attribute of the exception.

Consider the following function designed to run shell commands conveniently, and use an exception 
class that is designed to be raised in response to shell errors:

import subprocess

class ShellException(Exception):
    def __init__(self, code, stdout='', stderr=''):
        self.code = code
        self.stdout = stdout
        self.stderr = stderr

    def __str__(self):
        return 'exit code %d - %s' % (self.code, self.stderr)

def run_command(command):
    # Run the command and wait for it to complete.
    proc = subprocess.Popen(command.split(' '), stdout=subprocess.PIPE,
                                                stderr=subprocess.PIPE)
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    proc.wait()

    # Get the stdout and stderr from the shell.
    stdout, stderr = proc.communicate()

    # Sanity check: If the shell returned a non-zero exit status, raise an
    # exception.
    if proc.returncode > 0:
        raise ShellException(proc.returncode, stdout, stderr)

    # Return stdout.
    return stdout

Such a function (and exception class) is very easy to use. The following is an attempt to rm a 
bogus fi le:

run_command('rm bogusfile')

Running this will generate the ShellException traceback as expected.

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 11, in run_command
__main__.ShellException: exit code 1 - rm: bogusfile: No such file or directory

What happens when it comes time to handle these exceptions? Handling any generic 
ShellException is easy, but imagine a situation where you receive a ShellException but only 
want to handle a particular exit code. A context manager is one possible way to approach this.

For example, say that you want to remove a fi le, but you are okay with a situation where the fi le was 
already removed. (For the purpose of this example, ignore that os.remove exists.) In this case, you 
would be fi ne with a return code of 0, which indicates successful removal of the fi le, as well as a return 
code of 1, which indicates that the fi le was already absent. On the other hand, an exit code of 64 is still 
problematic, because this would indicate a usage error of some kind. This should still be raised.

Here is a context manager that would allow some ShellException instances based on their code:

class AcceptableErrorCodes(object):
    def __init__(self, *error_codes):
        self.error_codes = error_codes

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_instance, traceback):
        # Sanity check: If this is not an exceptional situation, then just
        # be done.
        if not exc_type:
            return True

        # Sanity check: If this is anything other than a ShellException,
        # then we do not actually know what to do with it.
        if not issubclass(exc_type, ShellException):
            return False
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        # Return True if and only if the ShellException has a code that
        # matches one of the codes on our error_codes list.
        return exc_instance.code in self.error_codes

This example code actually introduces a new pattern. The context manager is given the error codes 
that it should allow when the context manager is initiated. In this case, AcceptableErrorCodes 
takes any number of integers as arguments, and those are used to determine which error codes are 
actually acceptable.

If you want to attempt to remove a non-existent fi le when using the AcceptableErrorCodes context 
manager, it will work without incident.

>>> with AcceptableErrorCodes(1):
...     run_command('rm bogusfile')
...

What this context manager will not do, however, is just blindly swallow up every ShellException 
it gets. Consider the following case where you actually use rm incorrectly:

>>> with AcceptableErrorCodes(1):
...     # -m is not a switch available to rm (at least in Mac OS X).
...     run_command('rm -m bogusfile')
...
Traceback (most recent call last):
  File "<stdin>", line 3, in <module>
  File "<stdin>", line 11, in run_command
__main__.ShellException: exit code 64 - rm: illegal option -- m
usage: rm [-f | -i] [-dPRrvW] file ...
       unlink file

So, why did this cause a traceback? Because the exit code was 64 (on Mac OS X; this may vary 
based on the exact operating system you are using), and you told the context manager that the only 
acceptable erratic exit code was 1. Therefore, __exit__ returned False, and the exception was 
bubbled as usual.

A SIMPLER SYNTAX

Many of the context managers explored thus far are actually very simple. Although they are fully 
constructed classes, their only real purpose is to provide straightforward, linear __enter__ and 
__exit__ functionality.

This structure is extremely powerful. It allows for the creation of very complex and context managers 
that can do a great deal of customizable logic. However, many context managers are very simple, and 
creating a class and manually defi ning __enter__ and __exit__ may seem like overkill.

A simpler approach is designed around handling the simple cases. The Python standard library pro-
vides a decorator that will decorate a simple function and make it into a context manager class.

This decorator is @contextlib.contextmanager, and functions it decorates are expected to yield 
a single value somewhere during the function. (The yield statement is discussed in more detail in 
Chapter 3, “Generators.”)

mailto:@contextlib.contextmanager
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Consider what the AcceptableErrorCodes class might look like as a single, more 
straightforward function:

import contextlib

@contextlib.contextmanager
def acceptable_error_codes(*codes):
    try:
        yield
    except ShellException as exc_instance:
        # If this error code is not in the list of acceptable error
        # codes, re-raise the exception.
        if exc_instance.code not in codes:
            raise

        # This was an acceptable error; no need to do anything.
        pass

This function ultimately does the exact same thing that your class did. (It is worth noting that the 
pass line is for instructional purposes—it is obviously not necessary.)

>>> with acceptable_error_codes(1):
...     run_command('rm bogusfile')

Similarly, error codes are still checked, and only the appropriate ones are intercepted.

>>> with acceptable_error_codes(1):
...     run_command('rm -m bogusfile')
...
Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
  File "<stdin>", line 11, in run_command
__main__.ShellException: exit code 64 - rm: illegal option -- M
usage: rm [-f | -i] [-dPRrvW] file ...
       unlink file

This simpler syntax (just declaring a function with a single yield and using the @contextlib
.contextmanager decorator) is more than suffi cient to create most simple context managers, and 
is easier to read later. Create a context manager class yourself when you need the power that this 
 provides, and use the decorator with a function otherwise.

SUMMARY

 Context managers provide an excellent way to ensure that resources are handled appropriately, as 
well as to take exception-handling code that would be repeated in multiple different places through-
out an application and giving that code a single home.

mailto:@contextlib.contextmanager
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Along with decorators, context managers are tools for employing the simple principle of not repeat-
ing yourself unless you absolutely must. Where decorators encase named functions and classes, 
 context managers are ideal for encasing arbitrary blocks of code. 

Chapter 3 discusses generators, which produce values one by one when iterated, as each value is 
needed, rather than having to compute an entire set of values in advance. 
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Generators
Generators allow sequences of values to be handled while computing each value of the 
sequence only as it is needed, rather than as a traditional list (which must compute all of 
its values ahead of time).

Using generators where appropriate can result in substantial memory savings, because large 
collections of data do not need to be stored in memory in their entirety. Similarly, generators 
are uniquely able to handle representation of some sequences that cannot be accurately repre-
sented by lists.

This chapter explains what a generator is, and the syntax for using generators in Python. It 
also covers some of the common generators that are provided in the Python standard library.

UNDERSTANDING WHAT A GENERATOR IS

A generator is a function that, instead of executing and returning a single value, sends back 
one or more values in a sequence. A generator function executes until it is told to yield a value, 
and then it continues execution until told to do so again. This continues until the function is 
complete, or until iteration over that generator terminates.

There is no explicit requirement that a generator terminate at all; generators may represent 
infi nite sequences. There is nothing inherently wrong with this. In cases where this occurs, it 
is simply the responsibility of the code iterating over the generator to break out of the sequence 
when appropriate (such as with a break statement).

UNDERSTANDING GENERATOR SYNTAX

A generator function is recognizable by the presence of one or more yield statements inside 
the function, usually instead of a return statement. In Python 2, a yield statement and a 
return statement cannot coexist in the same function. However, in Python 3, it is possible to 
have both yield and return (discussed in more detail later).

3
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Like the return statement, the yield statement commands the function to send back a value to 
the caller. Unlike the return statement, however, the yield statement does not actually terminate 
the function’s execution. Rather, execution is temporarily halted until the generator is resumed by 
the calling code, at which point it picks up where it left off.

Consider the following very simple generator:

def fibonacci():
    yield 1
    yield 1
    yield 2
    yield 3
    yield 5
    yield 8

This generator represents the beginning of the Fibonacci sequence (that is, the sequence in which 
each integer is the sum of the previous two). You can iterate generators, as you can see by using a 
simple for…in loop in the Python interactive terminal.

>>> for i in fibonacci():
...     print(i)
...
1
1
2
3
5
8

Obviously, this particular generator is probably better represented as a plain Python list. However, 
consider a generator which, instead of returning six Fibonacci numbers, returns an infi nite series of 
them, as shown here:

def fibonacci():
    numbers = []
    while True:
        if len(numbers) < 2:
            numbers.append(1)
        else:
            numbers.append(sum(numbers))
            numbers.pop(0)
        yield numbers[-1]

This generator will yield an infi nite sequence of Fibonacci numbers. Using the simple for…in from 
the interactive terminal shown previously would simply print numbers, which very quickly become 
humorously long (that is, to the screen into perpetuity). 

NOTE  For the curious, I tried running this for a few minutes in a Python 3.4 
terminal to see how long it would take to overfl ow the maximum integer size. 
However, after about fi ve minutes, I got bored and said, “KeyboardInterrupt 
to the rescue!” The computations themselves would probably get to sys.max-
size reasonably quickly, but the terminal I/O is much slower.
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Unlike the previous fibonacci function, this one is not better represented as a simple Python list. In 
fact, not only would it be unwise to try to represent this as a simple Python list, it would be impos-
sible. Python lists cannot store infi nite sequences of values.

The next Function
You can ask a generator for a value without using a for…in loop. Sometimes you may want to just 
get a single value, or a fi xed number of values. Python provides the built-in next function, which 
can ask a generator (actually, any object with a __next__ method, called next in Python 2) for its 
next value.

The earlier fibonacci function yields an infi nite sequence of Fibonacci numbers. Instead of iterat-
ing over the entire thing, you can ask for values one at a time.

First, you simply create your generator by calling the fibonacci function and saving its returned 
value. Because the function has yield statements rather than a return statement, the Python 
 interpreter knows to just return the generator object.

>>> gen = fibonacci()
>>> gen
<generator object fibonacci at 0x101555dc8>

At this point, it is worth noting that none of the code within fibonacci has actually run. The only 
thing that the interpreter has done is recognize that a generator is present and return a generator 
object, which is ready to run the code once a value is requested.

You can use the built-in next function to request your fi rst value, as shown here:

>>> next(gen)
1

Now (and only now) some of the actual code in the fibonacci function has been run. (To make the 
explanation as clear as possible, an explicit continue statement has been added at the end of the 
loop.)

def fibonacci():
    numbers = []
    while True:
        if len(numbers) < 2:  # True; numbers == []
            numbers.append(1)
        else:
            numbers.append(sum(numbers))
            numbers.pop(0)
        yield numbers[-1]
        continue

The function is entered, and it begins the fi rst iteration of the while loop. Because the numbers 
list is empty at this point, the value 1 is appended to the list. Finally, you get to the yield 
numbers[-1] statement. At this point, the generator has been given a value to yield, so execution 
halts, and the value 1 is yielded. This is where the execution ends; the continue statement does 
not yet run.
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Now, issue next(gen) again, as shown here:

>>> next(gen)
1

Execution picks up where it left off, which means the fi rst thing to run is the continue statement.

def fibonacci():
    numbers = []
    while True:
        if len(numbers) < 2:
            numbers.append(1)
        else:
            numbers.append(sum(numbers))
            numbers.pop(0)
        yield numbers[-1]
        continue

This sends you back to the top of the while loop. Your numbers list only has one member (it is [1]), 
so len(numbers) is still less than 2, and that path is chosen at the if statement again. Your num-
bers list is now [1, 1], and the fi nal element of the list is yielded, stopping execution.

def fibonacci():
    numbers = []
    while True:
        if len(numbers) < 2:  # True; numbers == [1]
            numbers.append(1)
        else:
            numbers.append(sum(numbers))
            numbers.pop(0)
        yield numbers[-1]
        continue

Now, issue next(gen) yet again, as shown here:

>>> next(gen)
2

Again, execution picks up where it left off, meaning the next thing to run is the continue statement.

def fibonacci():
    numbers = []
    while True:
        if len(numbers) < 2:
            numbers.append(1)
        else:
            numbers.append(sum(numbers))
            numbers.pop(0)
        yield numbers[-1]
        continue

The continue statement sends the interpreter back to the stop of the while loop. However, now it 
takes the else pathway when it gets to the if statement, because numbers is now a list with two 
elements ([1, 1]). The sum of the two elements is then appended to the end of the list, and the fi rst 
element is removed. Again, you get to the yield statement, and it yields the fi nal element of the list, 
which is 2.
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def fibonacci():
    numbers = []
    while True:
        if len(numbers) < 2:  # False; numbers == [1, 1]
            numbers.append(1)
        else:
            numbers.append(sum(numbers))
            numbers.pop(0)
        yield numbers[-1]
        continue

If you issue next(gen) again, the interpreter will follow the same path (because the length of the 
numbers list is still 2). Of course, now the numbers list itself has changed from [1, 1] to [1, 2], 
so the result is different. The value 3 is appended to the list, the 1 is lopped off of the beginning, and 
3 is yielded.

>>> next(gen)
3

If you continue to ask for more values, you see this pattern repeat. The same code runs, but against 
an updated numbers list, so the yielded values continue along the Fibonacci series.

>>> next(gen)
5
>>> next(gen)
8
>>> next(gen)
13
>>> next(gen)
21

Notice that a few things are not happening. You are not storing a huge list of Fibonacci numbers in 
memory. The only numbers that you must store are the most recent two, because they are required 
to fi nd the next number in the series. The generator scraps anything that is out of date. This would 
matter if the generator were to continue on indefi nitely, because if you needlessly held on to every 
previous value, eventually the list would fi ll up free memory.

Similarly, the generator only computes each value in the series when it is specifi cally requested. At 
this point in code execution, the generator has not bothered to determine that the next value that it 
will need to yield back (if asked) is 34, precisely because it may not be asked.

The StopIteration Exception
As with other functions, with generators, you may want to have more than one potential exit 
path. For example, the following “plain” function has multiple exit paths using multiple return 
statements:

def my_function(foo, add_extra_things=True):
    foo += '\nadded things'
    if not add_extra_things:
        return foo
    foo += '\n added extra things'
    return foo
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This function normally returns at the end of the block. However, if the keyword argument add_
extra_things is provided and set to False, the earlier return statement on the third line of the 
function will be hit instead, and function execution will be cut off there.

Plenty of reasons exist to do this, and generators must have a mechanism to serve a similar 
purpose. 

Python 2
The correct approach for this depends somewhat on which version of Python you are using. In 
Python 2, generators are not allowed to have return statements. If you attempt to write a function 
with both a yield statement and a return statement, you get a syntax error, as shown here:

>>> def my_generator():
...     yield 1
...     return
...
  File "<stdin>", line 3
SyntaxError: 'return' with argument inside generator

Instead, Python provides a built-in exception called StopIteration, which serves a similar purpose. 
When a generator is being iterated over and StopIteration is raised, this signals that the genera-
tor’s iteration is complete, and it exits. The exception is caught in this case, and there is no trace-
back. On the other hand, if next is being used, the StopIteration exception bubbles.

Consider the following simple generator:

>>> def my_generator():
...     yield 1
...     yield 2
...     raise StopIteration
...     yield 3

If you iterate over this, you will get the values 1 and 2, and then the generator will exit cleanly. The 
yield 3 statement never runs (similar to code that exists after a return statement).

>>> [i for i in my_generator()]
[1, 2]

If you manually run next on the generator, the fi rst two next calls will yield values, and the third 
(and any subsequent) call will raise a StopIteration exception, as shown here:

>>> gen = my_generator()
>>> next(gen)
1
>>> next(gen)
2
>>> next(gen)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 4, in my_generator
StopIteration
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Python 3
In Python 3, the situation is similar, but you have one additional syntactic option. Python 3 removes 
the restriction that yield and return cannot appear together in a function. In this case, using 
return effectively becomes an alias for raise StopIteration.

It is worth noting that if you return a value in your return statement, it does not become a fi nal 
yielded value. Rather, the value is sent as the exception message. Consider the following statement:

return 42

This is equivalent to the following:

raise StopIteration(42)

And, very importantly, it is not equivalent to the following:

yield 42
return

In code that is intended to be cross-compatible with Python 2 and Python 3, it is probably preferable 
to use the raise StopIteration form explicitly. In code that only runs on Python 3, it likely does 
not matter much.

COMMUNICATION WITH GENERATORS

The generators explored thus far are unidirectional in their communication. They yield values to the 
calling code; nothing is ever sent to the generator.

However, the generator protocol also supports an additional send method that allows communi-
cation back to a generator. This works because the yield statement is actually an expression. In 
addition to yielding back its value, if a generator is resumed with send rather than next, the value 
provided to send can actually be assigned to the result of the yield expression.

Consider the following generator to return the perfect squares in order. This is trivial.

def squares():
    cursor = 1
    while True:
        yield cursor ** 2
        cursor += 1

However, you may want to tell the generator to move to a certain point, forward or backward. You 
could implement that capability with a small change to your generator code, as shown here:

def squares(cursor=1):
    while True:
        response = yield cursor ** 2
        if response:
            cursor = int(response)
        else:
            cursor += 1
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Now you are assigning the result of the yield expression to the response variable (if and only if 
there is a result—you do not want to plow over your value with None).

This enables you to jump around within the squares generator, as shown here:

>>> sq = squares()
>>> next(sq)
1
>>> next(sq)
4
>>> sq.send(7)
49
>>> next(sq)
64

What has happened here? First, the interpreter entered the generator and was asked to yield two val-
ues (1 and 4). But, the next time, the generator was sent the value 7. The squares generator is coded 
such that if a value is sent back, the cursor variable is set to that value. So, instead of cursor being 
incremented to 3, it is set to 7.

The generator then continues as before. The interpreter goes back to the top of the while loop. 
Because cursor is now 7, the value yielded is 49 (72). This generator is written such that it simply 
continues from there, so when next is called against it again, cursor increments as before, to 8, 
and the next value to be yielded is 64 (82).

It is entirely up to the generator to determine how (and whether) sent values are handled. The gen-
erators previously explored in this chapter simply ignore them. A generator could, by contrast, use 
the sent cursor value as a one-off, and then return to its previous spot, as shown here:

def squares(cursor=1):
    response = None
    while True:
        if response:
            response = yield response ** 2
            continue
        response = yield cursor ** 2
        cursor += 1

This version of the squares generator does exactly that:

>>> sq = squares()
>>> next(sq)
1
>>> next(sq)
4
>>> sq.send(7)
49
>>> next(sq)
9

The difference here is entirely in the behavior of the generator. There is no magic for how send 
behaves. The purpose of send is to provide a mechanism for two-way communication with a gen-
erator. It is the responsibility of the generator to determine whether (and how) it handles values 
sent to it.
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ITERABLES VERSUS ITERATORS

Generators in Python are a kind of iterator. An iterator in Python is any object that has a __next__ 
method (and, therefore, is able to respond to the next function).

This is distinct from an iterable, which is any object that defi nes an __iter__ method. An iterable 
object’s __iter__ method is responsible for returning an iterator.

For an example of the subtle distinction here, consider the Python 3 range function (known as 
xrange in Python 2). It is commonly believed that range objects are, in fact, generators. However, 
they are not, as shown here:

>>> r = range(0, 5)
>>> r
range(0, 5)
>>> next(r)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'range' object is not an iterator

This is confusing to many, because an idiom such as for i in range(0, 5) is often one of the fi rst 
things that you learn in Python. This works because the range function returns an iterable.

The actual iterator that the range object’s __iter__ method returns, however, is a generator, and 
responds as expected to the next method.

>>> r = range(0, 5)
>>> iterator = iter(r)
>>> iterator
<range_iterator object at 0x10055ecc0>
>>> next(iterator)
0
>>> next(iterator)
1

Also, as you would expect, calling next after the generator has fi nished yielding values will raise 
StopIteration.

>>> next(iterator)
2
>>> next(iterator)
3
>>> next(iterator)
4
>>> next(iterator)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

When thinking about generators, remember that generators are iterators, but they are not necessar-
ily iterables. Similarly, not all iterables are iterators.
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NOTE  Similarly, not all iterators are actually instances of the generator class. 
The iterator in this example is an instance of range_iterator, which imple-
ments a similar pattern. However, as an implementation detail, it lacks a send 
method.

GENERATORS IN THE STANDARD LIBRARY

The Python standard library includes several generators, which you may already use, possibly with-
out even realizing that they are generators.

range
During the earlier discussion about the distinction between iterables and iterators, you learned 
about the range function, which returns an iterable range object.

NOTE  As previously mentioned, this function is called xrange in Python 2.

The range object’s iterator is a generator. It returns sequential values, beginning with the range 
object’s fl oor, and continuing through its ceiling. By default, its sequence is simply adding one to 
each value to get the next value to yield. But an optional third argument to the range function, 
step, enables you to specify a different increment, including a negative one.

dict.items and Family
The built-in dictionary class in Python includes three methods that allow for iterating over the 
 dictionary, and all three are iterables whose iterators are generators: keys, values, and items.

NOTE  These three methods are called iterkeys, itervalues, and iteritems 
in Python 2.

The purpose of these methods is to allow for iteration over the keys, values, or two-tuples of keys 
and values (items) of a dictionary, as shown here:

>>> dictionary = {'foo': 'bar', 'baz': 'bacon'}
>>> iterator = iter(dictionary.items())
>>> next(iterator)
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('foo', 'bar')
>>> next(iterator)
('baz', 'bacon')

One value of using a generator here is that it prevents the need to make an additional copy of the 
dictionary (or pieces of the dictionary) in another format. dict.items does not need to reformat the 
entire dictionary into a list of two-tuples. It simply returns back one two-tuple at a time, when it is 
requested.

You can see a side effect of this if you attempt to alter the dictionary during iteration, as shown here:

>>> dictionary = {'foo': 'bar', 'baz': 'bacon'}
>>> iterator = iter(dictionary.items())
>>> next(iterator)
('foo', 'bar')
>>> dictionary['spam'] = 'eggs'
>>> next(iterator)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
RuntimeError: dictionary changed size during iteration

Because the items iterator is a generator that simply reads from the referenced dictionary, it does 
not know what it should do if the dictionary changes while it is working. In the face of ambiguity, it 
refuses the temptation to guess, and raises RuntimeError instead.

zip
Python includes a built-in function called zip that takes multiple iterable objects and iterates over 
them together, yielding the fi rst element from each iterable (in a tuple), then the second, then the 
third, and so on, until the end of the shortest iterable is reached. Following is an example:

>>> z = zip(['a', 'b', 'c', 'd'], ['x', 'y', 'z'])
>>> next(z)
('a', 'x')
>>> next(z)
('b', 'y')
>>> next(z)
('c', 'z')
>>> next(z)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

The reasons to use zip are similar to the reasons to use dict.items and family. Its purpose is to 
yield back members of its iterables in a different structure, one set at a time. This alleviates the need 
to copy over the entire thing in memory if such an operation is not necessary.

map
A cousin to the zip function is the built-in map function. The map function takes a function that 
accepts N arguments as well as N iterables, and computes the result of the function against the 
sequential members of each iterable, stopping when it reaches the end of the shortest one.
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Similarly to zip, a generator is used for the iterator here, precisely because it is undesirable to com-
pute every value in advance. After all, these values may or may not be needed. Instead, each value is 
computed when and only when it is requested.

>>> m = map(lambda x, y: max([x, y]), [4, 1, 7], [3, 4, 5])
>>> next(m)
4
>>> next(m)
4
>>> next(m)
7
>>> next(m)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

As before, this is a trivial operation when dealing with small iterables. However, given a larger data 
structure, the use of a generator may entail serious savings in computation time or memory use, 
because the entire structure does not need to be computed and transformed at once.

File Objects
One of the most commonly used generators in Python is the open fi le object. Although you can 
interact in many ways with open fi les in Python, and it is common with smaller fi les to just call read 
to read the entire fi le into memory, the fi le object does support the generator pattern, which reads 
the fi le from disk one line at a time. This is very important when operating on larger fi les. It is not 
always reasonable to read the entirety of a fi le into memory.

For historical reasons, fi le objects have a special method called readline used for reading a line 
at a time. However, the generator protocol is also implemented, and calling next on a fi le does the 
same thing.

Consider the following simple fi le:

$ cat lines.txt
line 1
line 2
line 3
line 4
line 5

You read it in the Python shell by using the built-in open function. The resulting object is, among 
other things, a generator.

>>> f = open('lines.txt')
>>> next(f)
'line 1\n'
>>> next(f)
'line 2\n'

Note that the generator reads one line at a time and yields the entire line, including the trailing 
 newline (\n) character.
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If you attempt to call next after the end of the fi le is reached, StopIteration is raised as expected.

>>> next(f)
'line 5\n'
>>> next(f)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

It is worth noting that __next__ and readline are not exact aliases for one another here. Once 
end of fi le is reached, __next__ raises StopIteration as it would for any other generator, whereas 
readline actually catches this exception and returns an empty string:

>>> next(f)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration
>>> f.readline()
''

WHEN TO WRITE GENERATORS

Essentially, you have two primary reasons to write generators. Both of them spring from the same 
fundamental concept, which is determining the value only when it is needed, rather than well ahead 
of time.

The basic principle at play here is this: You do yourself no favors by having your code do a bunch 
of work or store a bunch of data in advance. Often, you may not need large chunks of data. Even if 
you need all of it, you are still doing unnecessary storage if you do not need all of it at once.

The two use cases that branch out from this fundamental principle are the need to access data in 
pieces, and the need to compute data in pieces.

Accessing Data in Pieces
The fi rst (and probably most common) reason to write generators is to cover cases where you must 
access data in chunks, but where it is undesirable to store copies of the entire thing.

This is essentially what happens in the fi le object generator explored previously, as well as the 
dict.items (and family) methods. When dealing with small fi les, it is entirely reasonable to read 
the entire fi le into memory and do whatever work needs to be done against that in-memory string.

On the other hand, what if a fi le is large? What if you need to restructure a dictionary that is large? 
Sometimes, making a copy to manipulate data is not a feasible operation. This is where accessing 
data in pieces is a valuable capability.

When iterating over a large fi le with the generator method, it does not matter how large the fi le is. 
Each line will be read and yielded, one at a time. When iterating over a dictionary with dict.items, 
it does not matter whatsoever how large the source dictionary is. The iterator will iterate over it one 
piece at a time, and yield only that two-tuple.
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The same principle applies to generators that you write. A generator is a useful tool in any situation 
where you want to iterate over a substantial amount of data, and it is unnecessary to store or copy 
the entirety of that data in memory at once.

Computing Data in Pieces
The second common reason to write generators is to compute data only as it is needed. Consider the 
range function or the fibonacci function discussed earlier in this chapter. A program that must 
loop over each number between zero and a googleplex need not store a list of every number between 
those fi gures. It is suffi cient to simply keep adding one until the maximum is reached.

Similarly, the fibonacci function does not need to compute every Fibonacci number (an impossible 
task, because there exists an infi nite number of them—more on this shortly). It simply must deter-
mine the single next Fibonacci number and yield it back.

This can be important because sometimes the computation of each item in a sequence can be expen-
sive. It is not useful to compute the entire series unnecessarily.

Sequences Can Be Infi nite
One aspect that the earlier discussion about the fibonacci function explored briefl y is the fact that 
some sequences are actually infi nite. In such cases, it is not possible to represent the entire sequence 
in a list, but a generator is capable of representing this.

This is because a generator is not concerned with being aware of every value it must generate. It only 
needs to generate the next one. It does not matter that the Fibonacci sequence goes on forever. As 
long as your generator stores the most recent two numbers in the sequence, it is perfectly reasonable 
to compute the next one.

There is nothing wrong with this. It is the responsibility of the code calling the generator in such 
cases to deal with the fact that the sequence that the generator represents is an infi nite one, and to 
break out of the sequence when appropriate.

WHEN ARE GENERATORS SINGLETONS?

One important (and often overlooked) fact about generators is that many generators are singletons. 
This is most often the case when an object is both iterable and an iterator. Because the iterable sim-
ply returns self, calling iter on such an object repeatedly will return the same object. This essen-
tially means that the object supports only one active iterator.

A simple generator function is not a singleton. Calling the function multiple times returns distinct 
generators, as shown here:

>>> gen1 = fibonacci()
>>> next(gen1), next(gen1), next(gen1), next(gen1), next(gen1)
(1, 1, 2, 3, 5)
>>> gen2 = fibonacci()
>>> next(gen2)
1
>>> next(gen1)
8
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The following iterable class serves a similar purpose, and returns itself in its __iter__ method:

class Fibonacci(object):
    def __init__(self):
        self.numbers = []

    def __iter__(self):
        return self

    def __next__(self):
        if len(self.numbers) < 2:
            self.numbers.append(1)
        else:
            self.numbers.append(sum(self.numbers))
            self.numbers.pop(0)
        return self.numbers[-1]

    def send(self, value):
        pass

    # For Python 2 compatibility
    next = __next__

This is a Fibonacci class, which implements the generator protocol. However, note that it is also 
iterable, and responds to iter… with itself. This means that each Fibonacci object has only one 
iterator: itself.

>>> f = Fibonacci()
>>> i1 = iter(f)
>>> next(i1), next(i1), next(i1), next(i1), next(i1)
(1, 1, 2, 3, 5)
>>> i2 = iter(f)
>>> next(i2)
8

There is nothing inherently wrong with this. It is worth noting, however, because some generators 
may be implemented as singletons, whereas others are not. Be aware of what the relationship is 
between the iterable and the iterators, and whether or not an iterable allows multiple iterators. Some 
do; others do not.

GENERATORS WITHIN GENERATORS

It is often desirable for functions to call other functions. This is a key way that developers structure 
code for reusability. Similarly, it is often desirable for generators to call other generators. Python 3.3 
introduces the new yield from statement to provide a straightforward way for a generator to call 
out to other generators.

Consider the following two trivial, fi nite generators:

def gen1():
    yield 'foo'
    yield 'bar'
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def gen2():
    yield 'spam'
    yield 'eggs'

Prior to Python 3.3, the common way to combine these subgenerators into one would be to iterate 
over them explicitly in the wrapping generator, as shown here:

def full_gen():
    for word in gen1():
        yield word
    for word in gen2():
        yield word

It is also possible to do this with the itertools.chain method:

def full_gen():
    for word in itertools.chain(gen1(), gen2()):
        yield word

The Python 3.3 yield from syntax provides a cleaner way to do the same thing, and looks much 
more in line with a function call within another function.

def full_gen():
    yield from gen1()
    yield from gen2()

Use of this syntax is referred to as generator delegation. And, in fact, the previous two implementa-
tions of full_gen are not actually equivalent. This is because the former implementation discards 
any value sent to the generator using send.

The yield from syntax, on the other hand, preserves this, because the generator is simply delegat-
ing to another generator. This means that any values sent to the wrapping generator will also be sent 
to the current delegate generator, avoiding the need for the developer to handle this.

SUMMARY

 Generators are valuable tools in Python that are used to perform computations or iterate over large 
amounts of data while only storing and computing what you actually need at the time. This can 
mean substantial cost savings in terms of both memory and performance.

Consider using generators when dealing with substantial amounts of data or computational work, 
when not all the work needs to be done in advance. Also consider generators as a way to represent 
infi nite or branching sequences.

In Chapter 4, “Magic Methods,” you begin your study of classes in Python, starting with an intro-
duction to magic methods. 
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PART II
Classes
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Magic Methods
Python classes may optionally defi ne a long list of methods that, when defi ned, are called 
when the instances of the class are used in certain situations. For example, a class may defi ne 
under what situations its instances should be considered equivalent by defi ning a method 
called __eq__. If the __eq__ method is defi ned, it is invoked if the class meets an equality test 
using the == operator.

The purpose of these so-called “magic methods” is to overload Python operators or built-in 
methods. They are defi ned using the __ syntax to avoid a case where a programmer acciden-
tally defi nes a method with the same name without explicitly opting in to the functionality. 
Magic methods provide consistency between the contracts that built-in classes (including 
primitives such as integers and strings) provide, as well as the contracts that custom classes 
provide. If you want to test for equivalence in Python, you should always be able to use == 
to do so, regardless of whether you are testing two integers, two instances of a class that you 
wrote for your specifi c application, or even two instances of unrelated classes.

This chapter explores magic methods, how they work, and what magic methods are available.

MAGIC METHOD SYNTAX

In Python, magic methods follow a consistent pattern—the name of the method is wrapped 
on both sides by two underscores. For example, when an instance of a class is instantiated, 
the method that runs is __init__ (not init).

This convention exists to provide a certain level of future-proofi ng. You can name methods 
as you please, and not have to worry that your method name will later be used by Python to 
assign some special (and unintended) signifi cance, provided that you do not name your meth-
ods such that they both begin and end with two underscores.

When verbally referring to such methods (for example, in talks at conferences), many people 
choose to use the coined term “dunder” to describe them. So, __init__ ends up being pro-
nounced as dunder-init.

4
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Each magic method serves a specifi c purpose; it is a hook that is run when particular syntax 
appears. For example, the __init__ method is run when a new instance of a class is created. 
Consider the following simple class:

class MyClass(object):
    def __init__(self):
        print('The __init__ method is running.')

Of course, this class does nothing, except for print to standard out upon instantiation. That is 
enough to establish that the __init__ method runs in this situation, though.

>>> mc = MyClass()
The __init__ method is running.
>>>

What is important to realize here is that you are not actually calling the __init__ method directly. 
Rather, the Python interpreter simply knows to call __init__ upon object instantiation.

Each of the magic methods works this way. There is a particular spelling and method signature that 
is taken (sometimes the method signature is variable), and the method is actually invoked in a par-
ticular situation.

The __eq__ method (mentioned earlier) takes both the obligatory self argument and a second 
positional argument, which is the object being compared against.

class MyClass(object):
    def __eq__(self, other):
        # All instances of MyClass are equivalent to one another, and they
        # are not equivalent to instances of other classes.
        return type(self) == type(other)

Notice that this __eq__ method takes a second argument, other. Because the __eq__ method runs 
when Python is asked to make an equivalence check with the == operator, other will be set to the 
object on the other side of ==.

This example __eq__ method simply decides equality based solely on whether it is another instance 
of MyClass. Therefore, you get the following results:

>>> MyClass() == MyClass()
True
>>> MyClass() == 42
False

Two different instances of MyClass are equivalent because isinstance(other, type(self)) eval-
uates to True. On the other hand, 42 is an int, and, therefore, not an instance of MyClass. Thus, 
__eq__ (and, therefore, the == operator) returns False.

AVAILABLE METHODS

The Python interpreter understands a rich set of magic methods that serve many different purposes, 
from comparison checks and sorting, to hooks for various language features. This book has already 
explored some of these in Chapter 2, “Context Managers,” and Chapter 3, “Generators.” 
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Creation and Destruction
These methods are run when instances of the class are created or destroyed.

__init__
The __init__ method of an object runs immediately after the instance is created. It must take one 
positional argument (self) and then can take any number of required or optional positional argu-
ments, and any number of keyword arguments.

This method signature is fl exible because the arguments passed to the class instantiation call are 
what are sent to __init__.

Consider the following class with an __init__ method that takes an optional keyword argument:

import random

class Dice(object):
    """A class representing a dice with an arbitrary number
    of sides.
    """
    def __init__(self, sides=6):
        self._sides = sides

    def roll(self):
        return random.randint(1, self._sides)

To instantiate a standard, six-sided die, you need only call the class with no arguments: die = 
Dice(). This creates the Dice instance (more on that later), and then calls the new instance’s 
__init__ method, passing no arguments except self. Because the sides argument is not provided, 
the default of 6 is used.

To instead create a d20, however, you simply pass the sides argument to the call to Dice, which 
forwards it to the __init__ function.

>>> die = Dice(sides=20)
>>> die._sides
20
>>> die.roll()
20
>>> die.roll()
18

It is worth noting that the purpose of the __init__ method is not to actually create the new object 
(that is performed by __new__). Rather, the purpose is to provide initial data to the object after it 
has been created.

What this means in practice is that the __init__ method does not (and should not) actually return 
anything. All __init__ methods in Python return None, and returning anything else will raise 
TypeError.
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The __init__ method is probably the single most common magic method that custom classes 
defi ne. Most classes are instantiated with extra variables that customize their implementation in 
some way, and the __init__ method is the appropriate place for this behavior.

__new__
The __new__ method actually precedes the __init__ method in the dance of creating an instance of 
a class. Whereas the __init__ method is responsible for customizing an instance once it has been 
created, the __new__ method is responsible for actually creating and returning that instance.

The __new__ method is always static. It does not need to be explicitly decorated as such. The fi rst 
and most important argument is the class of which an instance is being created (by convention, 
called cls).

In most cases, the remaining arguments to __new__ should mirror the arguments to __init__. The 
arguments sent to the call to the class will be sent fi rst to __new__ (because it is called fi rst), and 
then to __init__.

Realistically, most classes do not actually need to defi ne __new__ at all. The built-in implementa-
tion is adequate. When classes do need to defi ne __new__, they will almost always want to reference 
the superclass implementation fi rst, as shown here, before doing whatever work is necessary on the 
instance:

class MyClass(object):
    def __new__(cls, [...]):
        instance = super(MyClass, cls).__new__(cls, [...])
        [do work on instance]
        return instance

Normally, you will want the __new__ method to return an instance of the class being instantiated. 
However, occasionally this may not be true. Note, however, that the __init__ half of the dance will 
only be performed if you return an instance of the class whose __new__ method is being run. If you 
return something else, the instance’s __init__ method will not be invoked.

You do this primarily because, in situations where an instance of a different class is returned, the 
__init__ method was likely run by whatever means created that instance within the __new__ 
method, and running it twice would be problematic.

__del__
Whereas the __new__ and __init__ methods are invoked when an object is being created, the 
__del__ method is invoked when an object is being destroyed.

It is relatively rare for developers to destroy their objects in Python directly. (You should do so with 
the del keyword if you need to.) Python’s memory management is good enough that it is generally 
acceptable simply to allow the garbage collector to do so.
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That said, the __del__ method is run regardless of how an object comes to be destroyed, whether it 
is through a direct deletion, or through memory reclamation by the garbage collector. You can see 
this behavior at work by making the following class that deletes noisily:

class Xon(object):
    def __del__(self):
        print('AUUUUUUGGGGGGHH!')

If you make Xon objects but do not assign them to variables, they will be marked as collectable by 
the garbage collector, which will collect them in short order as other program statements run.

>>> Xon()
<__main__.Xon object at 0x1022b8890>
>>> 'foo'
AUUUUUUGGGGGGHH!
'foo'
>>>

What happened here? First, an Xon object was created (but not assigned to a variable, so there is no 
real reason for the Python interpreter to keep it around). Next, the interpreter was sent an immu-
table string, which it must assign to memory (and then immediately release, because it was not 
assigned to a variable either, but that is not important).

In the particular interpreters I was using (CPython 3.4.0 and CPython 2.7.6), that memory opera-
tion causes the garbage collector to take a pass through its table. It fi nds the Xon object and deletes 
it. This triggers the Xon object’s __del__ method, which then loudly screams as it is unceremoni-
ously sent to the great bit bucket beyond.

You see similar (but more immediate) behavior if you delete an Xon object directly, as shown here:

>>> x = Xon()
>>> del x
AUUUUUUGGGGGGHH!

In both cases, the principle is the same. No matter whether the deletion is directly invoked in code 
or automatically triggered by the garbage collector, the __del__ method is invoked identically.

It is worth noting that __del__ methods are generally unable to raise exceptions in any meaningful 
way. Because deletions are usually triggered in the background by the garbage collector, there is no 
good way for exceptions to bubble. Therefore, raising any kind of exception in a __del__ method 
just prints some nastiness to standard error, and it is generally considered inappropriate to raise 
exceptions there.

Type Conversion
Several magic methods are available in Python to take a complex object and make it into a more primi-
tive, or more widely used type. For example, types such as int, str, and bool are used everywhere in 
Python, and it is useful for complex objects to know what their representations are in these formats.

__str__, __unicode__, and __bytes__
By far, the most commonly used type conversion magic method is __str__. This method takes 
one positional argument (self), is invoked when an object is passed to the str constructor, and is 
expected to return a string.
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>>> class MyObject(object):
...     def __str__(self):
...         return 'My Awesome Object!'
...
>>> str(MyObject())
'My Awesome Object!'

Because strings are so ubiquitous, it is very often useful for classes to defi ne a __str__ method.

There is a bit more to this situation, however. In Python 2, strings are ASCII strings, whereas in 
Python 3, strings are Unicode strings. This actually causes a great deal of pain, and this book 
devotes an entire chapter to the subject (Chapter 8, “Strings and Bytestrings”).

Suffi ce it to say here, however, that Python 2 does have Unicode strings, and Python 3 introduces a 
type called bytes (or bytestrings, as they are sometimes called), which are roughly analogous to the 
old Python 2 ASCII strings.

These string brethren have their own magic methods. Python 2 honors a __unicode__ method 
that is invoked when an object is passed to the unicode constructor. Similarly, Python 3 honors a 
__bytes__ method that is invoked when an object is passed to the bytes constructor. In both cases, 
the method is expected to return the proper type.

The __str__ method is invoked in certain other situations, too (essentially, situations where str is 
called under the hood). For example, encountering %s in a format string will run the corresponding 
argument through str, as shown here:

>>> 'This is %s' % MyObject()
'This is My Awesome Object!'

In this case, however, the formatting method is a bit smarter. For example, if %s is encountered 
when formatting a unicode object in Python 2, it will attempt to use __unicode__ fi rst. Consider 
the following code, running in Python 2.7:

>>> class Which(object):
...     def __str__(self):
...         return 'string'
...     def __unicode__(self):
...         return u'unicode'
...
>>> u'The %s was used.' % Which()
u'The unicode conversion was performed.'
>>> 'The %s was used.' % Which()
'The string conversion was performed.'

__bool__
Another common need is for an object to defi ne whether it should be considered True or False, 
either if expressly converted to a Boolean, or in a situation where a Boolean representation is 
required (such as if the object is the subject of an if statement).

This is handled in Python 3 with the __bool__ magic method, which in Python 2 is instead called 
__nonzero__. In both cases, the method takes one positional argument (self) and returns either 
True or False.
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It is often unnecessary to defi ne an explicit __bool__ method. If no __bool__ method is defi ned 
but a __len__ method (explained further shortly) is defi ned, the latter will be used, and these often 
overlap.

__int__, __fl oat__, and __complex__
Occasionally, it is valuable for complex objects to be able to convert to primitive numbers. If an 
object defi nes an __int__ method, which should return an int, it will be invoked if the object is 
passed to the int constructor.

Similarly, objects that defi ne __float__ and __complex__ will have those methods invoked if they 
are passed to float and complex, respectively.

NOTE  Python 2 has a separate long type, and, therefore, a __long__ method. 
This works exactly as you expect.

Comparisons
Objects are being compared when they are checked for equivalence (with == or !=), or for relative 
value to one another (such as with <, <=, >, and >=).

Each of these operators maps to a magic method in Python.

Binary Equality
The following methods support testing equality using == and !=.

__eq__
As already explored, the __eq__ method is called when two objects are compared with the == opera-
tor. The method must take two positional arguments (by convention, self and other), which are 
the two objects being compared.

Under most circumstances, the object on the left side has its __eq__ method checked fi rst. It is used 
if it is defi ned (and returns something other than NotImplemented). Otherwise, the __eq__ method 
of the object on the right side is used instead (with the argument order reversed).

Consider the following class that is noisy when given equivalence tests (and then returns False 
unless it is the exact same object):

class MyClass(object):
    def __eq__(self, other):
        print('The following are being tested for equivalence:\n'
              '%r\n%r' % (self, other))
        return self is other

You can see the order in action based on which side of the operator your objects are on.
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>>> c1 = MyClass()
>>> c2 = MyClass()
>>> c1 == c2
The following are being tested for equivalence:
<__main__.MyClass object at 0x1066de590>
<__main__.MyClass object at 0x1066de390>
False
>>> c2 == c1
The following are being tested for equivalence:
<__main__.MyClass object at 0x1066de390>
<__main__.MyClass object at 0x1066de590>
False
>>> c1 == c1
The following are being tested for equivalence:
<__main__.MyClass object at 0x1066de590>
<__main__.MyClass object at 0x1066de590>
True

Notice how the order in which the objects are dumped to standard out is reversed. This is because 
the order in which they were sent to __eq__ was reversed. This also means that there is no inherent 
requirement that your equivalence check be commutative. However, unless you have a really good 
reason, you should ensure that equivalence is consistently commutative.

You can observe another facet of this behavior by comparing a MyClass object against something 
of a different type. Consider the following type with a plain __eq__ method that does nothing but 
return False:

class Unequal(object):
    def __eq__(self, other):
        return False

And, when you run equivalence tests against instances of these classes, you see different behavior 
based on the order in which they are called. When an instance of MyClass is on the left, its __eq__ 
method is called. When an instance of Unequal is on the left, its quieter brethren is called instead.

>>> MyClass() == Unequal()
The following are being tested for equivalence:
<__main__.MyClass object at 0x1066de5d0>
<__main__.Unequal object at 0x1066de450>
False
>>> Unequal() == MyClass()
False

There is one exception to this rule on order of objects sent to __eq__: direct subclasses. If one of the 
two objects being compared is an instance of a direct subclass of the other, this will override the 
ordering rules, and the __eq__ method of the subclass will be used.

class MySubclass(MyClass):
    def __eq__(self, other):
        print('MySubclass\' __eq__ method is testing:\n'
              '%r\n%r' % (self, other))
        return False

Now, the same method with the same argument order will be invoked, regardless of the order in 
which arguments are provided to the operator.
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>>> MyClass() == MySubclass()
MySubclass' __eq__ method is testing:
<__main__.MySubclass object at 0x1066de690>
<__main__.MyClass object at 0x1066de450>
False
>>> MySubclass() == MyClass()
MySubclass' __eq__ method is testing:
<__main__.MySubclass object at 0x1066de5d0>
<__main__.MyClass object at 0x1066de450>
False

__ne__
The __ne__ method is the converse of the __eq__ method. It works the same way, except that it is 
invoked when the != operator is used.

Normally, it is not necessary to defi ne an __ne__ method, provided that you always want the result 
to be the opposite of the returned value of __eq__. If no __ne__ method is defi ned, the Python inter-
preter will run the __eq__ method and fl ip the result.

It is possible to explicitly provide an __ne__ method for situations where you do not want this 
behavior.

Relative Comparisons
These methods also handle comparison, but using comparison operators that test relative value 
(such as >).

__lt__, __le__, __gt__, __ge__
The __lt__, __le__, __gt__, and __ge__ methods map to the <, <=, >, and >= operators, respec-
tively. Like the equivalence methods, each of these methods should take two arguments (by conven-
tion, self and other), and return True if the relative comparison should be considered to hold, and 
False otherwise.

Usually, it is unnecessary to defi ne all four of these methods. The Python interpreter will rightly 
consider __lt__ to be the inverse of __ge__, and __gt__ to be the inverse of __le__. Similarly, the 
Python interpreter will consider the __le__ method to be the disjunction of __lt__ and __eq__, and 
the __ge__ method to be the disjunction of __gt__ and __eq__.

This means that, in practice, it is usually only necessary to defi ne __eq__ and __lt__ (or __gt__), 
and all six of the comparison operators will work in the way that you expect.

Another important (but easily overlooked) aspect of defi ning these methods is that they are what 
the built-in sorted function uses for sorting objects. Therefore, if you have a list of objects with 
these methods defi ned, passing that list to sorted automatically returns a sorted list, from least to 
greatest, based on the result of the comparison methods.

__cmp__
The __cmp__ method is an older (and less preferred) way of defi ning relative comparisons for 
objects. It is checked if (and only if) the comparison methods described previously are not defi ned.
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This method takes two positional arguments (by convention, self and other), and should return a 
negative integer if self is less than other, or a positive integer if self is greater than other. If self 
and other are equivalent, the method should return 0.

The __cmp__ method is deprecated in Python 2, and not available in Python 3.

Operator Overloading
These methods provide a mechanism to override the standard Python operators.

Binary Operators
A set of magic methods is also available for overloading the various binary operators available in 
Python, such as +, -, and so on. Python actually supplies three magic methods for each operator, 
each of which takes two positional arguments (by convention, self and other).

The fi rst of these is a vanilla method, in which an expression x + y maps to x.__add__(y), and the 
method simply returns the result.

The second is a reverse method. The reverse methods are called (with the operands swapped) if (and 
only if) the fi rst operand does not supply the traditional method (or returns NotImplemented) and 
the operands are of different types. These methods are spelled the same way, but the method name 
is preceded by an r. Therefore, the expression x + y, where x does not defi ne an __add__ method, 
would call y.__radd__(x).

The third and fi nal magic method is the in-place method. In-place methods are called when the 
operators that modify the former variable in place (such as +=, -=, and so on) are used. These are 
spelled the same way, but the method name is preceded by an i. Therefore, the expression x += y 
would call x.__iadd__(y). 

Normally, the in-place methods simply modify self in place and return it. However, this is not a 
strict requirement. It is also worth noting that it is only necessary to defi ne an in-place method if the 
behavior of the straightforward method does not cleanly map. The straightforward method is called 
and its return value assigned to the left operand in the event that the in-place method is not defi ned.

Table 4-1 shows the full set of operator overloading magic methods.

TABLE 4-1  Operator Overloading Magic Methods

OPERATOR METHOD REVERSE IN-PLACE

+ __add__ __radd__ __iadd_

- __sub__ __rsub__ __isub__

* __mul__ __rmul__ __imul__

/ __truediv__ __rtruediv__ __itruediv__

// __floordiv__ __rfloordiv__ __ifloordiv__

% __mod__ __rmod__ __imod__
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OPERATOR METHOD REVERSE IN-PLACE

** __pow__ __rpow__ __ipow__

& __and__ __rand__ __iand__

| __or__ __ror__ __ior__

^ __xor__ __rxor__ __ixor__

<< __lshift__ __rlshift__ __ilshift__

>> __rshift__ __rrshift__ __irshift__

These methods allow for overloading of all of the binary operators that are available in Python. 
Custom classes can (and should) defi ne them when it is sensible to do so.

Division
One binary operator, division (/), requires slightly more discussion. First, you need a bit of back-
ground. Originally, in Python, the division operator between two integers would always return an 
int, not a float. Essentially, what happens is that the division is performed and the fl oor of the 
result is taken. Therefore, 5 / 2 would return 2, and -5 / 2 would return -3. If you wanted a 
float result, at least one of the operands had to be a float. Therefore, 5.0 / 2 would return 2.5.

Python 3 changes this behavior, because many developers found it to be counterintuitive. In 
Python 3, division between two integers returns a float, and does so even if the result is a whole 
number. Thus, 5 / 2 is 2.5, and 4 / 2 is 2.0 (not 2). This is one of the backward-incompatible 
changes that Python 3 introduced to the language.

Because Python 3 introduced backward-incompatible changes, subsequent releases of the Python 2 
series used a mechanism already in place to “opt in” to the new behavior: a special module called 
__future__, from which future behavior can be imported. In Python 2.6 and 2.7, developers can 
opt-in to the Python 3 behavior by issuing from __future__ import division.

This is important to discuss here because it alters which magic method is used. The __truediv__ 
(and siblings) method in Table 5-1 is the Python 3 method. Python 2 originally provided __div__, 
and calls __div__ for the / operator unless division is imported from __future__, in which case it 
conforms to the Python 3 behavior and calls __truediv__.

In most cases, code that runs on Python 2 probably needs to be agnostic as to which division scheme 
is in effect. This means defi ning both the __div__ and __truediv__ methods. In most cases, it is 
probably completely acceptable to just map them to each other, as shown here:

class MyClass(object):
    def __truediv__(self, other):
        [...]

    __div__ = __truediv__

It is probably wise to make __truediv__ be the “proper” method, and __div__ the alias. The 
broader principle here is that any code that may even eventually run on Python 3 should be written 
to target Python 3 and accommodate Python 2, as opposed to the other way around.
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Unary Operators
Python also provides three unary operators: +, -, and ~. Notice that two of the symbols here are 
reused between unary and binary operators. This is fi ne. The interpreter is able to determine which 
is in use based on whether the expression is unary or binary.

The unary operator methods simply take a single positional argument (self), perform the opera-
tion, and return the result. The methods are called __pos__ (which maps to +), __neg__ (which 
maps to -), and __invert__ (which maps to ~).

Unary operators are straightforward. The expression ~x, for example, calls x.__invert__(). 
Consider the following string-like class that is able to return the string backward:

class ReversibleString(object):
    def __init__(self, s):
        self.s = s

    def __invert__(self):
        return self.s[::-1]

    def __str__(self):
        return self.s

And, in the Python interpreter, you would see the following:

>>> rs = ReversibleString('The quick brown fox jumped over the lazy dogs.')
>>> ~rs
'.sgod yzal eht revo depmuj xof nworb kciuq ehT'

So, what is happening here? The ReversibleString object is created and assigned to rs. 
The second statement, ~rs, is a simple unary expression. The result is not being assigned to a 
variable, which means that it is simply being discarded. The rs variable is not being modifi ed in 
place. The interpreter, however, shows you the result, which is a str object that represents your 
string, backward.

Note that the return value is a str, not a ReversibleString. There is no obligation that these meth-
ods return a value of the same type as the operand, and your __invert__ method does not do so.

There is no reason why it cannot return a ReversibleString, however, and often returning an 
object of the same type is desirable.

class ReversibleString(object):
    def __init__(self, s):
        self.s = s

    def __invert__(self):
        return type(self)(self.s[::-1])

    def __repr__(self):
        return 'ReversibleString: %s' % self.s

    def __str__(self):
        return self.s
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This iteration of ReversibleString returns a new ReversibleString instance from its __invert__ 
method. A custom repr has been added for demonstration purposes, because having the interpreter 
provide a memory address in the output is not useful.

NOTE  You may note the use of type(self)(), rather than simply calling 
ReversibleString() directly. This ensures that if ReversibleString is sub-
classed, the subclass would be correctly used there.

The Python interpreter now shows slightly different output:

>>> rs = ReversibleString('The quick brown fox jumped over the lazy dogs.')
>>> ~rs
ReversibleString: .sgod yzal eht revo depmuj xof nworb kciuq ehT

Instead of getting a str object back, you now have a ReversibleString. This means that your 
inverted output is now invertible.

>>> ~~rs
ReversibleString: The quick brown fox jumped over the lazy dogs.

This is straightforward. The rs object is having its __invert__ method called. Then, the result 
of that expression is having its __invert__ method called. This is, therefore, equivalent to 
rs.__invert__().__invert__().

Overloading Common Methods
Python includes many built-in methods (the most common example being len) that are widely used 
and almost as much of the contract that an object observes as are the operators. Therefore, Python 
supplies magic methods that are invoked when an object is passed to those methods.

__len__
The most common method to be overloaded in this way is almost certainly len, which is the 
Pythonic way to determine the “length” of an item. The length of a string is the number of charac-
ters in the string, the length of a list is the number of elements within the list, and so on.

Objects can describe their length by defi ning a __len__ method. This method takes one positional 
argument (self) and should return an integer.

Consider the following class to represent a span of time:

class Timespan(object):
    def __init__(self, hours=0, minutes=0, seconds=0):
        self.hours = hours
        self.minutes = minutes
        self.seconds = seconds

    def __len__(self):
        return (self.hours * 3600) + (self.minutes * 60) + self.seconds
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This class essentially takes a number of hours, minutes, and seconds; it then calculates the seconds 
that this represents and uses that as the length.

>>> ts = Timespan(hours=2, minutes=30, seconds=1)
>>> len(ts)
9001

It is worth noting that the __len__ method, if defi ned, also is used to determine whether an object is 
considered True or False if typecast to a bool or is used in an if statement, unless the object also 
defi nes a __bool__ method (or, in Python 2, __nonzero__).

This will actually do exactly what you expect the bulk of the time, so it often is not necessary to 
defi ne a separate __bool__.

>>> bool(Timespan(hours=1, minutes=0, seconds=0))
True
>>> bool(Timespan(hours=0, minutes=0, seconds=0))
False

In Python 3.4, an additional method, __length_hint__, has been added. Its purpose is to provide 
an estimate of an object’s length, which is allowed to be somewhat greater than or less than an 
object’s actual length, and can be used as a performance optimization. It takes one positional argu-
ment (self), and must return an integer greater than 0.

__repr__
One of the most important built-in methods in Python is also potentially one of the most overlooked: 
repr. Any object can defi ne a __repr__ method, which takes one positional argument (self).

Why is repr so important? An object’s repr is how it will represent itself when output on the 
Python interactive terminal.

It is not generally useful to return an object in the terminal and have it render as <__main__.O 
object at 0x102cdf950>. In the vast majority of cases, an object’s class and address in memory 
are not what you want to know.

Defi ning __repr__ allows you to give objects a more useful representation. Consider the following 
Timespan class with a useful __repr__ method:

class Timespan(object):
    def __init__(self, hours=0, minutes=0, seconds=0):
        self.hours = hours
        self.minutes = minutes
        self.seconds = seconds

    def __repr__(self):
        return 'Timespan(hours=%d, minutes=%d, seconds=%d)' % \
               (self.hours, self.minutes, self.seconds)

What happens when you work with Timespan objects on the terminal now?

>>> Timespan()
Timespan(hours=0, minutes=0, seconds=0)
>>> Timespan(hours=2, minutes=30)
Timespan(hours=2, minutes=30, seconds=0)
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This is much more useful than a memory address!

Notice that in addition to communicating all the key attributes of a Timespan, the repr prints as 
a valid expression that instantiates a Timespan. This is incredibly valuable when it is possible. It 
intuitively communicates that you are working with an object generally, and a Timespan object 
specifi cally. Just printing out the timing information might leave open the interpretation that you 
are looking at a str or a timedelta, for example. Also, the Python interpreter could parse it if it’s 
 copied and pasted. That is a good thing.

What this really points to is a more general distinction that is important: repr and str have 
different purposes. Exactly how you delineate them is a matter of subtle differences of opinion, 
depending on what you read. But an all-encompassing understanding should be that an object’s 
repr is intended for programmers (and machines, possibly), whereas an object’s str is geared 
toward more public consumption. You would not want the Timespan’s str to look like a class 
instantiation call. Most likely, it would be something intended for humans instead.

It is often very useful for an object’s repr to return a valid Python expression to reconstruct the 
object. Many Python built-ins do this. The repr of an empty list is [], which is the expression to 
make an empty list.

When this is impossible or impractical, a good rule of thumb is to return something that looks like 
it is obviously an object, and is noisy about what its key properties are. As an example, an alterna-
tive repr for a Timestamp object might be <Timestamp: X hours, Y minutes, Z seconds>. The 
Python interpreter will not be able to parse that (unlike the repr used previously), but it is clear 
exactly what it is, and nobody will errantly expect it to be able to be parsed, either.

__hash__
Another often overlooked built-in function is the hash function. The purpose of the hash function is 
to uniquely identify objects, and to do so using a numeric representation.

When an object is passed to hash, its __hash__ method is invoked (if defi ned). The __hash__ 
method takes one positional argument (self), and should return an integer. It is acceptable for this 
integer to be negative.

The object class provides a __hash__ function, which normally simply returns the id of the object. 
An object’s id is implementation-specifi c, but in CPython, it is its memory address.

However, if an object defi nes an __eq__ method, the __hash__ method is implicitly set to None. This 
is done because of an ambiguity in the purpose of hashing generally. Depending on how they are 
being used, it may be desirable for every object to have a unique hash, or for equivalent objects to 
have matching hashes. And, “in the face of ambiguity, avoid the temptation to guess.”

Therefore, if a class should understand equivalence and be hashable, it must explicitly defi ne its own 
__hash__ method.

Hashes are used in several places in the Python ecosystem. The two most common uses for them 
are for dictionary keys and in set objects. Only hashable objects can be used as dictionary keys. 
Similarly, only hashable objects can exist in Python set objects. In both cases, the hash is used to 
determine equivalence for testing set membership and dictionary key lookup.
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__format__
Another common Python built-in function is the format function, which is capable of formatting 
various kinds of objects according to Python’s format specifi cation.

Any object can provide a __format__ method, which is invoked if an object is passed to format. 
This method takes two positional arguments, the fi rst being self, and the second being the format 
specifi cation string.

In Python 3, the str.format method has replaced the % operator as the preferred way to handle 
templating within strings. If you pass an object with a __format__ method as an argument to 
str.format, this method will be called.

>>> from datetime import datetime
>>>
>>>
>>> class MyDate(datetime):
...     def __format__(self, spec_str):
...         if not spec_str:
...             spec_str = '%Y-%m-%d %H:%M:%S'
...         return self.strftime(spec_str)
...
>>>
>>> md = MyDate(2012, 4, 21, 11)
>>>
>>> '{0}'.format(md)
'2012-04-21 11:00:00'

Because the string used {0} with no additional formatting information, there was no format specifi -
cation, and the default is used. However, note what happens when you provide one:

>>> '{0:%Y-%m-%d}'.format(md)
'2012-04-21'

The __format__ method is only called in this way when using the format method. It is not called if 
%-substitution is used within a string.

__instancecheck__ and __subclasscheck__
Although most type checking in Python is done using so-called duck typing (if obj.look()-s like 
a Duck and obj.quack()-s like a Duck, it’s probably a Duck), it is also possible to test whether an 
object is an instance of a particular class using the built-in isinstance method. Similarly, a class 
can test whether it inherits from another class using issubclass.

It is rarely necessary to customize this behavior. The isinstance method returns True if the object 
is an instance of the provided class or any subclass thereof (which is almost always what you want). 
Similarly, issubclass (despite its name) returns True if the same class is provided for both argu-
ments (which is also almost always what you want).

Occasionally, though, it is desirable to allow classes to fake their identities. Python 2.6 introduces 
this possibility by providing the __instancecheck__ and __subclasscheck__ methods. Each of 
these methods takes two arguments, the fi rst being self, and the second being the object being 
tested against this class (so, the fi rst argument to isinstance). This allows classes to determine 
what objects may masquerade as their instances or subclasses.
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__abs__ and __round__
Python provides built-in abs and round functions, which return the absolute value of a number and 
a rounded value, respectively.

Although it is not usually necessary for custom classes to defi ne this behavior, they can do so by 
defi ning __abs__ and __round__, respectively. Both take one positional argument (self), and 
should return a numeric value.

Collections
Many objects are collections of various kinds of other objects. Most complex classes functionally 
come down to a collection of attributes (sorted in a meaningful way), as well as actions that the 
object can take.

Python has several ways of understanding “membership” of one object within another. For lists and 
dictionaries, for example, it is possible to test whether an object is a member of the collection by the 
expression needle in haystack (where needle is the variable being searched for, and haystack is 
the collection).

Dictionaries are made up of keys, and can perform lookup based on the key by evaluating 
haystack[key]. Similarly, most objects have attributes that are set during initialization or by other 
methods, which are accessed using dot notation (haystack.attr_name).

Python has magic methods that interact with all of these.

__contains__
The __contains__ method is invoked when an expression such as needle in haystack is evalu-
ated. This method takes two positional arguments (self, and then the needle), and should return 
True if the needle is considered to be present, and False if it is absent.

There is no strict requirement that this conform to object presence within another object, although 
that is the most common use case. Consider the following class that represents a range of dates:

class DateRange(object):
    def __init__(self, start, end):
        self.start = start
        self.end = end

    def __contains__(self, needle):
        return self.start <= needle <= self.end

In this case, the __contains__ method determines whether the date is between the boundaries of 
the range.

>>> dr = DateRange(date(2015, 1, 1), date(2015, 12, 31))
>>> date(2015, 4, 21) in dr
True
>>> date(2012, 4, 21) in dr
False
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__getitem__, __setitem__, and __delitem__
The __getitem__ method and its siblings are used for key lookups on collections (such as dictionaries), 
or index or slice lookups on sequences (such as lists). In both cases, the fundamental expression being 
evaluated is haystack[key]. 

The __getitem__ method takes two arguments: self and key. It should return the appropriate 
value if present, or raise an appropriate exception if absent. What exception is appropriate varies 
somewhat based on the situation, but is usually one of IndexError, KeyError, or TypeError.

The __setitem__ method is used in the same situation, except that it is invoked when a value is 
being set to the collection, rather than being looked up. It takes three positional arguments rather 
than two: self, key, and value.

It is not a requirement that every object that supports item lookup necessarily support item changes. 
In other words, it is entirely acceptable to defi ne __getitem__ and not defi ne __setitem__ if this is 
the behavior that you want.

Finally, the __delitem__ method is invoked in the unusual situation where key is deleted with the 
del keyword (for example, del haystack[key]). 

__getattr__ and __setattr__
The other major way that Python classes serve as collections is by being collections of attributes and 
objects. When a date object contains year, month, and day, those are attributes (which are set to 
integers in that case).

The __getattr__ method is invoked when attempting to get an attribute from an object, either 
with dot notation (such as obj.attr_name), or using the getattr method (such as getattr(obj, 
'attr_name')).

However, unlike other magic methods, it is important to realize that __getattr__ is only invoked 
if the attribute is not found on the object in the usual places. In other words, the Python inter-
preter will fi rst do a standard attribute lookup, return that if there is a match, and if there is not a 
match (in other words, AttributeError would be raised), then and only then is the __getattr__ 
method called.

In other respects, it works similarly to __getitem__ (discussed previously). It accepts two 
positional arguments (self and key), and is expected to return an appropriate value, or raise 
AttributeError. 

Similarly, the __setattr__ method is the writing equivalent of __getattr__. It is invoked when 
attempting to write to an object, whether by dot notation or using the setattr method. Unlike 
__getattr__, it is always invoked (the method would be meaningless otherwise), and, therefore, 
should call the superclass method in situations where the traditional implementation is desired.

__getattribute__
The reason why __getattr__ is only invoked if the attribute is not found is because this is 
ordinarily the desired behavior (otherwise, it would be very easy to fall into infi nite recursion 
traps). However, the __getattribute__ method, unlike its more common counterpart, is called 
unconditionally.
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The logical order here is that __getattribute__ is called fi rst, and is ordinarily responsible for 
doing the traditional attribute lookup. If a class defi nes its own __getattribute__, it becomes 
responsible for calling the superclass implementation if it needs to do so. If (and only if) 
__getattribute__ raises AttributeError, __getattr__ is called.

OTHER MAGIC METHODS

A few other magic methods exist in addition to the ones described so far. In particular, Python 
implements an iterator protocol, which uses the __iter__ and __next__ methods. These are not 
discussed in detail here because they are discussed at length in Chapter 3, “Generators.”

Similarly, Python implements a rich language feature known as context managers, which make use 
of the __enter__ and __exit__ magic methods. These are also not discussed in detail here because 
they are discussed at length in Chapter 2, “Context Managers.”

SUMMARY

 The magic methods available to classes provide the Python language with a consistent data model 
that can be used across custom classes. This greatly enhances the readability of the language, in addi-
tion to providing hooks for classes of disparate types to interact with each other in predictable ways.

There is no reason to require that every custom class implement all of these methods, or even any 
of them. When writing a class, consider what functionality you need. However, if the functionality 
needed maps cleanly to an already defi ned method here, it is preferable to implement these rather 
than provide your own custom spelling.

In Chapter 5, you will learn about metaclasses. 
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Metaclasses
Classes in Python are also objects.

This is a key concept. In Python, almost everything is an object, including both functions and 
classes. This means that functions and classes can be provided as arguments, exist as members 
of class instances, and do anything that any other object is capable of doing.

What else does it mean to say that classes are objects? Chapter 4, “Magic Methods,” discussed 
how object instantiation works. The __new__ and __init__ methods of the class are called, in 
that order, to create the new object. Classes are not an exception to this process. Classes them-
selves, being objects, are instances of another class, which is responsible for creating them.

The classes responsible for generating other classes are called metaclasses. “Meta-” is a 
Greek prefi x that simply means “post-” or “after.” For example, a portion of Aristotle’s 
work is called “The Physics,” and the subsequent portion is called “The Metaphysics,” which 
simply means “the stuff that comes after the physics.” However, the meaning assigned to this 
prefi x has since evolved to refer to a level of self-reference—an instantiation of a concept in 
order to work on that concept. If you have ever been unfortunate enough to be forced to sit 
through a meeting to plan other meetings, that particular atrocity could rightly be called a 
meta-meeting.

This chapter covers metaclasses. First, it delves into the philosophy behind Python’s object 
model, and how metaclasses, classes, and objects connect to one another. Then, it explores 
examples of specifi c ways metaclasses can be used.

CLASSES AND OBJECTS

The relationship between a class and an instance of that class is straightforward and two-fold. 
First, a class defi nes the properties and available actions of its instances. Second, a class serves 
as a factory that creates said instances. 

5
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With this in mind, the only additional understanding necessary to grasp metaclasses is the realiza-
tion that this relationship can be hierarchical. When you instantiate a class that you write, your 
class serves as the defi nition of the instance’s properties and actions, and performs the generation 
of the instance. When you defi ned the class, you were simply using a special, substitute syntax that 
stands in for the instantiation of a different class, called type.

Using type Directly
This can best be illustrated by simply creating a class using type directly, rather than using the 
Python class keyword. This is syntactically quite ugly, but it offers a clear view into what is 
going on under the hood.

Therefore, consider the following simple set of classes:

class Animal(object):
    """A class representing an arbitrary animal."""

    def __init__(self, name):
        self.name = name

    def eat(self):
        pass

    def go_to_vet(self):
        pass

class Cat(Animal):
    def meow(self):
        pass

    def purr(self):
        pass

The Animal class obviously represents an animal, and defi nes certain things that the animal is 
capable of doing, such as eating and being taken to the vet. The Cat subclass additionally knows 
how to meow and purr, functions not available to other animals. (The method bodies are stubbed, 
and left to the reader’s intuition.)

What happens here is that when the Python interpreter gets to the top statement in the code, class 
Animal(object), it invokes the type constructor under the hood. As alluded to earlier, type is a 
built-in class in Python, which is the default class for other class objects. It is the default class that 
creates other classes—or, the default metaclass.

However, nothing stops you from simply doing this directly. The type constructor takes three 
positional arguments: name, bases, and attrs. The name argument (a string) is simply the name 
of the class. The bases argument is a tuple of the superclasses for that class. Python supports mul-
tiple inheritance, which is why this is a tuple. If you are only inheriting from a single class, just 
send a tuple with a single element. Finally, the attrs argument is a dictionary of all the attributes 
on the class.



Classes and Objects ❘ 81

c05.indd 09/21/2015 Page 81

Creating a Class
The following code is (roughly) equivalent to the previous class Animal block:

def init(self, name):
    self.name = name

def eat(self):
    pass

def go_to_vet(self):
    pass

Animal = type('Animal', (object,), {
    '__doc__': 'A class representing an arbitrary animal.',
    '__init__': init,
    'eat': eat,
    'go_to_vet': go_to_vet,
})

This is, obviously, not the preferred way to instantiate a new class. Also, note that it is only roughly 
equivalent. It has a couple of differences, most notably that this code leaves functions called init, 
eat, and go_to_vet, unattached to the class, in that namespace. This is worth noting, but not par-
ticularly important for the purposes of this discussion.

Focus on the call to type. The fi rst argument is just the string 'Animal'. There is some repeti-
tion here. You are sending this string to assign the name of the class, but you are also assigning the 
result of the type call to the variable Animal. The class keyword handled this for you. Because this 
is a direct call to type, you must manually assign the result to a variable, as you would for a new 
instance of any other class.

The second argument is a tuple with a single item: (object,). This means that the Animal class 
inherits from object, as it did in the initial class. You need the trailing comma to disambiguate to 
the Python interpreter that you want a tuple here. Parentheses have other uses in Python, and so a 
trailing comma is required for tuples with only a single element.

The third argument is a dictionary that defi nes the attributes of the class, equivalent to the indented 
portion of the class block. You previously defi ned functions that map to the functions in your 
original class, and pass them into the attrs dictionary. The dictionary keys are used to determine 
the name of the attribute within the class. One thing to note here is the docstring. The Python 
interpreter automatically takes the docstring in a class call and assigns it to the attribute __doc__. 
Because you are instantiating type directly, you must do that manually.

Creating a Subclass
You can create the Cat class similarly, as shown here:

def meow(self):
    return None

def purr(self):
    return None
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Cat = type('Cat', (Animal,), {
    'meow': meow,
    'purr': purr,
})

This is mostly more of the same. The big change here is that you are now subclassing Animal rather 
than object. What you are passing here is the Animal class itself. Also, note that it is still a tuple 
with a single element. You are not passing (Animal, object). The fact that object is Animal’s 
superclass is baked into the Animal class already. Sending in a tuple with more than one element is 
only necessary for multiple inheritance situations.

The type Chain
Consider the following instance of the Cat class:

louisoix = Cat(name='Louisoix')

Notice the three things that are on deck. louisoix is an object, and an instance of Cat. The Cat 
class is also an object (because classes are objects), and is an instance of type. Finally, type is the 
top of the chain.

You can also observe this in another way. Passing a single object to type returns its class, as 
shown here:

>>> type(5)
<type 'int'>

So, observe the following chain:

>>> type(louisoix)
<class '__main__.Cat'>

>>> type(Cat)
<class 'type'>
>>> type(type)
<class 'type'>

The type class is the base case here. It is the top of the chain, and, therefore, type(type) returns 
itself.

NOTE  In a Python 2 terminal, note that the output will show <type 'type'> 
instead of <class 'type'>. This is fi ne. It is still the same type; it simply repre-
sents itself differently on the terminal.

The Role of type
type is the primary metaclass in Python. Ordinary classes that are created with the class keyword, 
by default, have type as their metaclass.
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Colloquially, you can refer to type as the metaclass for both the class (Cat) and its instances 
(louisoix).

Additionally, type is also the superclass from which other metaclasses inherit. This is analogous to 
object being the class from which other classes inherit. Just as object is the top of the class hierar-
chy, type is the top of the metaclass hierarchy.

WRITING METACLASSES

Writing a metaclass is syntactically very straightforward. You simply declare a class (using the 
class keyword) that inherits from type. The beauty of this object model shines through here. 
Classes are just objects, and metaclasses are just classes. The behaviors that metaclasses take on 
are inherited from type. Any class that subclasses type is, therefore, capable of functioning as a 
metaclass.

Before going into examples, note as an aside that you should never attempt to declare or use a meta-
class that does not directly subclass type. This will cause havoc with Python’s multiple inheritance. 
Python’s inheritance model requires any class to have exactly one metaclass. Inheriting from two 
classes with different metaclasses is acceptable if (and only if) one of the metaclasses is a direct 
subclass of the other (in which case, the subclass is used). Attempting to implement a metaclass that 
does not subclass type will break multiple inheritance with any classes that use that metaclass, 
along with any classes that use type (that is, virtually all of them). You do not want to do this.

The new  Method
The most important method that custom metaclasses must defi ne is the __new__ method. This 
method actually handles the creation of the class, and must return the new class.

The __new__ method is a class method (that does not need to be explicitly decorated as such). The 
arguments sent to __new__ in custom metaclasses must mirror the arguments sent to type’s 
__new__ method, which takes four positional arguments.

The fi rst argument is the metaclass itself, prepended to arguments in a manner similar to that of 
bound methods. By convention, this argument is called cls.

Beyond this, __new__ expects three positional arguments: 

 ➤ First, the desired name of the class as a string (name)

 ➤ Second, a tuple of the class’s superclasses (bases)

 ➤ Third, a dictionary of attributes that the class should contain (attrs)

Most custom implementations of __new__ in metaclasses should ensure that they call the superclass 
implementation, and perform whatever work is needed in the code around that.

new  Versus init
Recall at this point the distinction between the __new__ method and the __init__ method. In 
a class or a metaclass, the __new__ method is responsible for creating and returning the object. 
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Conversely, the __init__ method is responsible for customizing the object after it has been created, 
and returns nothing.

In ordinary classes, you generally do not defi ne a custom __new__ method at all. By contract, defi n-
ing a custom __init__ method is extremely common. This is because the implementation of 
__new__ provided by object is essentially always suffi cient, but it is also necessary. Overriding it 
(even in direct subclasses of object) would require calling the superclass method and being careful to 
return the result (the new instance). By contrast, overriding __init__ is easy and relatively risk-free. 
An object’s implementation of __init__ is a no-op, and the method does not return anything at all.

When you’re writing custom metaclasses, this behavior changes. Custom metaclasses generally should 
override the __new__ method, and generally do not implement an __init__ method at all. When 
doing this, keep in mind that you almost always must call the superclass implementation. type’s imple-
mentation of __new__ will actually provide you with the object you need to do work on and return.

A Trivial Metaclass
Before diving into a metaclass that customizes behavior, consider a custom metaclass that does 
nothing but check all the boxes that have been covered thus far.

class Meta(type):
    """A custom metaclass that adds no actual functionality."""

    def __new__(cls, name, bases, attrs):
        return super(Meta, cls).__new__(cls, name, bases, attrs)

This discussion has not yet explored how to assign a metaclass within class creation using the class 
keyword (more on that shortly). But you can create a class that uses the Meta metaclass by calling 
Meta directly, similar to the direct invocation of type earlier.

>>> C = Meta('C', (object,), {})

This creates a class, C, which is an instance of Meta rather than an instance of type. Observe the 
following:

>>> type(C)
<class '__main__.Meta'>

This is distinct from what you observe from a “normal” class, as shown here:

>>> class N(object):
...     pass
...
>>> type(N)
<class 'type'>

Metaclass Inheritance
It is worth noting that metaclasses are inherited. Therefore, subclasses of C will be instances of 
Meta, rather than being direct instances of type as shown in the following code and illustrated in 
Figure 5-1.
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>>> class D(C):
...     pass
...
>>> type(D)
<class '__main__.Meta'>

class

C
subclass of object
instance of Meta

class

D
subclass of C

metaclass

type

metaclass

Meta
subclass of type

FIGURE 5-1: Metaclass inheritance

In this case, D is an instance of Meta not because it has an explicit metaclass declared, or because 
you called Meta to create it, but rather because its superclass is an instance of Meta, and, therefore, it 
is also.

It is important to note here that classes may only have one metaclass. Under most circumstances, 
this is fi ne, even in scenarios where multiple inheritance is in play. If a class subclasses two or more 
distinct classes with distinct metaclasses, the Python interpreter will try to resolve this by checking 
the ancestry of the metaclasses. If they are direct ancestors, the subclass will be used.

Consider the following class that subclasses both C (an instance of Meta) and N (an instance of type) 

>>> class Z(C, N):
...     pass
...
>>> type(Z)
<class '__main__.Meta'>
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Figure 5-2 shows what is happening in this code.

class

C
subclass of object
instance of Meta

class

N
subclass of object
instance of type

class

D
subclass of C and N

metaclass

type

metaclass

Meta
subclass of type

FIGURE 5-2: Metaclass inheritance with subclasses

What is going on here? The Python interpreter is told to create class Z, and that it should subclass 
both C and N. This would be the equivalent of type('Z', (C, N), {}).

First, the Python interpreter examines C, and realizes that it is an instance of Meta. Then it examines 
N, and realizes that it is an instance of type. This is a potential confl ict. The two superclasses have 
different metaclasses. However, the Python interpreter also realizes that Meta is a direct subclass of 
type. Therefore, it knows it can safely use Meta, and does so.

What happens if you have two metaclasses where one is not a direct descendent of the other? Now 
there is a confl ict, and the Python interpreter does not know how to solve it. And it will cowardly 
refuse to try, as shown here: 

>>> class OtherMeta(type):
...     def __new__(cls, name, bases, attrs):
...         return super(OtherMeta, cls).__new__(cls, name, bases, attrs)
...
>>> OtherC = OtherMeta('OtherC', (object,), {})
>>>
>>> class Invalid(C, OtherC):
...     pass
...
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 4, in __new__
TypeError: Error when calling the metaclass bases
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    metaclass conflict: the metaclass of a derived class must be a (non-
    strict) subclass of the metaclasses of all its bases

This happens because Python can only have one metaclass for each class, and will not try to guess 
which metaclass to use in an ambiguous case.

USING METACLASSES

Before delving into more complex metaclasses, let’s explore how to use them. Although it is, of 
course, possible to instantiate metaclasses directly (as shown with type and Meta earlier), it is not 
the desirable method.

The class construct in Python provides a mechanism to declare the metaclass if type is not the 
metaclass being used. However, the syntax to defi ne which metaclass is different, depending on 
which version of Python you are using.

Python 3
In Python 3, metaclasses are declared alongside the superclasses (if any). The syntax resembles that 
of a keyword argument in a function declaration or a function call, and the “keyword argument” is 
metaclass.

Earlier, you created the C class by calling Meta directly. Here is the preferred way to do this in Python 3:

class C(metaclass=Meta):
    pass

This class keyword call does the exact same thing as creating the class by directly calling Meta. 
This, however, is the preferred style.

One thing to note here is that you did not explicitly specify object as the superclass. In most of the 
examples used in this book, you have explicitly specifi ed object as the superclass. This is because 
this book intends examples to be run on either Python 2 or Python 3. In Python 2, specifying this 
matters, because subclassing object is what makes the class be a “new-style class,” which is a con-
struct introduced a long time ago (Python 2.2) that altered Python’s method-resolution order, as 
well as some of the other guts of how Python classes work. The direct subclassing of object was 
used as a way to ensure backward-compatibility, forcing developers to “opt-in” to new-style classes, 
rather than to opt out of them.

In Python 3, which was a backward-incompatible release, all classes are new-style, and directly 
subclassing object is no longer necessary, and thus is not done here. That said, the previous code is 
exactly equivalent to the following:

class C(object, metaclass=Meta):
    pass

This style allows you to observe more explicitly the distinction between superclasses, which are 
declared here using a syntax akin to positional arguments in a function declaration, as opposed to 
the metaclass that is declared with the keyword argument syntax. They must be specifi ed in this 
order, with metaclass last, just like function arguments.
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When directly subclassing object in Python 3, either style (explicitly including it or omitting it) is 
acceptable.

Python 2
Python 2 has an entirely different syntax for metaclass declaration. The Python 2 syntax is not 
 supported under Python 3, and the Python 3 syntax is not supported under Python 2. (Skip down 
a  section to see how to declare a metaclass in a way that does the right thing on both.)

The Python 2 syntax for declaring a metaclass is to assign a __metaclass__ attribute to the class. 
Consider the earlier creation of class C using a call to Meta. Following is the equivalent code in Python 2:

class C(object):
    __metaclass__ = Meta

In this case, the metaclass is being assigned in the class body. This is fi ne. The Python interpreter looks 
for this when the class keyword is invoked, and uses Meta rather than type to create the new class.

What About Code That Might Run on Either Version?
Because Python 3 introduced backward-incompatible changes to the Python language, Python 
developers have come up with strategies for running the same set of code under either the Python 3 
interpreter or the Python 2 interpreter with similar results.

One of the most popular ways to do this involves using a tool called six, which was written by 
Benjamin Peterson and is available from PyPI.

six provides two ways to declare a metaclass: by creating a stand-in class and using it as a direct 
superclass, or by using a decorator to add the metaclass.

The fi rst method (which is the stand-in class method) looks like this:

import six

class C(six.with_metaclass(Meta)):
    pass

What is happening here? six.with_metaclass creates a dummy class of sorts that subclasses 
object, and has Meta as its metaclass, but which does nothing else. By applying this class as the 
superclass to C, and based on how metaclasses interact with class inheritance (discussed previously), 
C is now an instance of Meta, regardless of which Python version is in use.

Depending on exactly what the metaclass in question does, sometimes this solution will not actually 
work. Because six.with_metaclass actually instantiates a class, some metaclasses may want to do 
work, and it is possible that said work would not be compatible with having an abstract superclass.

six provides one other way to assign a metaclass to a class, which is using a decorator: @six.add_
metaclass. The syntax for that looks like this:

import six

@six.add_metaclass(Meta)
class C(object):
    pass

mailto:@six.add_
mailto:@six.add_metaclass
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The result here becomes the same to the Python 2- or Python 3-specifi c implementations. Class C is 
created, using the class keyword, and the Meta metaclass, rather than using type. The decorator 
does this without instantiating an abstract class.

When Is Cross-Compatibility Important?
Because there are two incompatible syntaxes for Python 2 as opposed to Python 3, it’s important to 
explore at this point when it is better to use the “pure” language approach, and when it is the right 
time to introduce six.

Without delving too deeply into the theory, a good rule of thumb here is that if you are running 
Python 2, assume that you may at some point want to migrate to Python 3, and try to write cross-
compatible code. This will entail using six for any number of things (this among them), and so 
probably introducing six into your codebase is wise. By contrast, if you are already exclusively in 
a Python 3 environment, it is unlikely that you will ever want to shift backward, and just writing 
Python 3 code should be fi ne.

WHEN TO USE METACLASSES

One of the trickiest things when you’re learning about metaclasses is understanding when it is really 
appropriate to actually use them. Realistically, most code fi ts pretty well into the traditional class 
and object structure, and does not really require the use of metaclasses.

Similarly, using metaclasses needlessly adds a layer of complexity and challenge to that code. Code 
is read more often than it is written, and, therefore, it is usually desirable to solve problems in the 
simplest possible way that meets the objectives.

That said, when in situations where metaclasses are appropriate, they are often a very clear solution 
that can make code much simpler to understand. Realizing when metaclasses can make code simpler 
rather than more complex is a valuable skill.

Declarative Class Declaration
The most common reason to use a custom metaclass is to create a delineation between class declara-
tion and class structure, particularly when you’re creating APIs for other developers to use.

An Existing Example
First, consider an example from the wild. Many Python developers are familiar with Django models, 
which is a popular web framework. Django models usually correspond to discrete database tables in 
a relational database.

A Django model declaration is quite straightforward. The following sample model might represent 
a book:

from django.db import models

class Book(models.Model):
    author = models.CharField(max_length=100)
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    title = models.CharField(max_length=250)
    isbn = models.CharField(max_length=20)
    publication_date = models.DateField()
    pages = models.PositiveIntegerField()

Given what you know about normal classes in Python, what do you expect to happen here? Clearly, 
models.CharField, models.DateField, and the like are instantiations of objects. So, you expect 
that when you create a Book instance, you should get back those instances if you access those 
attributes.

Those familiar with Django know well that this is not what happens. If you try to get the author 
attribute of a Book instance, it will be a string. The same goes for title and isbn. The publica-
tion_date attribute will be a datetime.date object, and pages will be an int. If any of these are 
not yet provided to the model, they will be None.

How does this happen? What magic is going on under the hood to differentiate between how this 
class was declared (the code provided to generate it) and how it is structured when inspected? When 
the class is declared, its attributes are complex fi eld objects. However, when you look at an instance 
of the class, those same attributes are set to values for a particular book.

The answer is, of course, that Django models use a special metaclass that ships with Django, 
which happens to be called ModelBase. This is largely invisible when you’re using Django, because 
django.db.models.Model uses the ModelBase metaclass. Therefore, subclasses get it for free.

ModelBase does quite a lot of things. (Django is a mature framework, and its ORM has undergone 
a lot of iteration.) But a major thing it does is translate between how the model classes in Django are 
declared versus how their objects are structured. It is advantageous to Django to have a model dec-
laration syntax that is extremely simple and straightforward. A model represents a table; the attri-
butes on the model correspond to columns on the table.

Instances in the Django ecosystem represent rows within a table. When you are accessing a fi eld on 
the instance, what you really want is the value for that row. So, a specifi c Book instance might be 
The Hobbit, and you would want book.title to be 'The Hobbit’ in this case.

Essentially, using a metaclass here is desirable because it allows both the declaration of your Book 
class and accessing data on your Book instances to be very clean, and to use a very intuitive API, 
even though those attributes do not match.

How This Works
Going into every detail of the implementation of ModelBase is beyond the scope of this book, but 
the implementation of this particular concept is actually extremely straightforward.

First, when the model class is being created, recall that the attributes of that class are passed to the 
metaclass’s __new__ method in a dictionary, usually called attrs. In this example model, this dic-
tionary would include author, title, and so on, as keys in that dictionary. The values for those 
keys would be the Field objects (all of these classes are subclasses of django.db.models.Field).

The ModelBase metaclass has a __new__ method that (among other things) iterates over the attrs 
dictionary looking for Field subclasses. Any fi elds that it fi nds are popped off of the attrs diction-
ary and placed in another location—a separate dictionary called fields (which actually lives in 
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an object called _meta that is written to the class). This implementation detail is not particularly 
important except to know that the actual fi eld classes live somewhere else, hidden away where inter-
nal Django code can get at them when needed. But the average person who just wants to write a 
Django model does not need to see it.

Then, when an instance is created, the attributes corresponding to the fi eld are instantiated and set 
to None unless a default or a specifi c value for that row is provided, in which case that value takes 
precedence. Now, suddenly, when the attribute is accessed on that instance, the value for that row is 
returned instead of the Field subclass. Similarly, the value can be written in a straightforward man-
ner, without plowing over the Field.

Essentially, what the metaclass does is take the class declaration, reorganize the structure of the 
attributes of the class, and then create the class with the new structure.

Why This Is a Good Use for Metaclasses
This paradigm is exceptionally useful when you’re designing APIs. A primary goal of a good API is 
to be as simple as possible, and contain as little boilerplate code as possible. This means both that 
declaring a class should be simple and straightforward, and that using the class should be similarly 
simple and straightforward.

In the case of a Django model, those two goals are somewhat in confl ict. The ModelBase metaclass 
resolves that confl ict.

Using metaclasses is an excellent way to bridge this gap. They do this by essentially making the 
class declaration into a front, and then transforming the declaration of the class into the actual class 
structure in the __new__ method.

Class Verifi cation
Another key use for metaclasses is for class verifi cation. If a class must conform to a particular inter-
face, a metaclass can be a very effective way to enforce this. Usually, it is preferable that this sort of 
problem be handled by a sensible default. Occasionally, however, this is not possible.

For example, consider a class that requires either one or another attribute to be set, but not both. 
This is diffi cult to handle with a sensible default if it is important that one attribute be unset (as 
opposed to set to None).

This concept can be handled using a metaclass. The following simple metaclass requires classes to 
contain either a foo attribute or a bar attribute:

class FooOrBar(type):
    def __new__(cls, name, bases, attrs):
        if 'foo' in attrs and 'bar' in attrs:
            raise TypeError('Class %s cannot contain both `foo` and '
                            '`bar` attributes.' % name)
        if 'foo' not in attrs and 'bar' not in attrs:
            raise TypeError('Class %s must provide either a `foo` '
                            'attribute or a `bar` attribute.' % name)
        return super(FooOrBar, cls).__new__(cls, name, bases, attrs)
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The following Python 3 class uses this metaclass and conforms to this interface:

>>> class Valid(metaclass=FooOrBar):
...     foo = 42
...
>>>

Everything here works fi ne. What happens if you try to set both attributes, or neither?

>>> class Invalid(metaclass=FooOrBar):
...     pass
...
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 9, in __new__
TypeError: Class Invalid must provide either a `foo` attribute or a `bar` 
    attribute.
>>>
>>> class Invalid(metaclass=FooOrBar):
...     foo = 42
...     bar = 42
...
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 6, in __new__
TypeError: Class Invalid cannot contain both `foo` and `bar` attributes.

This particular implementation has a problem. It will not work well continuing down the subclass 
chain. The reason for this is because the metaclass examines the attrs dictionary directly, but this 
only contains attributes set for the class being declared. It does not know anything about attributes 
that are inherited from superclasses.

>>> class Valid(metaclass=FooOrBar):
...     foo = 42
...
>>> class AlsoValid(Valid):
...     pass
...
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 8, in __new__
TypeError: Class AlsoValid must provide either a `foo` attribute or a `bar` 
    attribute.

This is a problem. After all, your AlsoValid class is also valid. It contains a foo attribute. An alter-
nate approach to the FooOrBar metaclass is necessary.

class FooOrBar(type):
    def __new__(cls, name, bases, attrs):
        answer = super(FooOrBar, cls).__new__(cls, name, bases, attrs)
        if hasattr(answer, 'foo') and hasattr(answer, 'bar'):
            raise TypeError('Class %s cannot contain both `foo` and '
                            '`bar` attributes.' % name)
        if not hasattr(answer, 'foo') and not hasattr(answer, 'bar'):
            raise TypeError('Class %s must provide either a `foo` '
                            'attribute or a `bar` attribute.' % name)
        return answer
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What is the difference here? This time, you are checking for the attributes on the instantiated class 
before it is returned, rather than looking at the attrs dictionary.

The new class will get all the attributes from the superclass as part of the call to type’s constructor 
on the fi rst line of the __new__ method. Therefore, the hasattr calls work, regardless of whether 
the attribute is declared on this class or inherited from a superclass.

Could this be handled without a metaclass? Absolutely. Nothing prevents writing a simple method 
that receives the class as an argument and does this same check. In fact, this is an excellent use for 
a decorator. However, the class must be manually sent to the verifi cation method. With a metaclass, 
this is just handled when the class is created. Sometimes, an explicit opt-in is preferable; other times, 
it is not. It simply depends on the use case.

Non-Inheriting Attributes
Metaclasses can also be used as a tool to cause certain attributes of a class to not automatically 
inherit. The most common scenario in which you might want to do this is in conjunction with 
other metaclass behavior. For example, suppose that a metaclass provides functionality for its 
classes, but some classes will be created as abstract classes, and you do not want said functionality 
to run in this case.

An obvious way to go about this would be to allow the class to set an abstract attribute, and only 
perform the special functionality of the metaclass if its abstract is either not set or set to False.

class Meta(type):
    def __new__(cls, name, bases, attrs):
        # Sanity check: If this is an abstract class, then we do not
        # want the metaclass functionality here.
        if attrs.get('abstract', False):
            return super(Meta, cls).__new__(cls, name, bases, attrs)
        
        # Perform actual metaclass functionality.
        [...]

There is one problem with this approach, however. The abstract attribute, like any other attribute, 
will be inherited by subclasses. That means that any subclass would have to explicitly declare itself 
not to be abstract, which seems strange. 

class AbstractClass(metaclass=Meta):
    abstract = True

class RegularClass(AbstractClass):
    abstract = False

Intuitively, you want abstract to have to be declared on all abstract classes, but for that attribute 
not to be inherited. It turns out that this is very easy, because instead of just reading the attrs dic-
tionary like your metaclass is doing, it can modify it, disposing of the abstract attribute once it is 
no longer necessary.
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In this case, you can do this by just popping the abstract value off of the attrs dictionary, as 
shown here:

class Meta(type):
    def __new__(cls, name, bases, attrs):
        # Sanity check: If this is an abstract class, then we do not
        # want the metaclass functionality here.
        if attrs.pop('abstract', False):
            return super(Meta, cls).__new__(cls, name, bases, attrs)
        
        # Perform actual metaclass functionality.
        [...]

The difference here is subtle, but important. The abstract attribute is being removed entirely from 
the actual class being created. In this example, AbstractClass would not get the metaclass func-
tionality, but the actual abstract attribute would be gone. Most importantly, this means that sub-
classes do not inherit the attribute, which is exactly the behavior you want.

THE QUESTION OF EXPLICIT OPT-IN

Both of the examples provided earlier as potential use cases for metaclasses can be solved without 
using metaclasses. In fact, essentially any major use case for metaclasses does not explicitly require 
their use.

A class decorator can easily handle requiring a class to conform to a particular interface, for 
example. It is a trivial matter to decorate each class, and the decorator is easily capable of ensuring 
that either foo or bar is set, but not both.

This raises an important question. What is the value of doing this with a metaclass? What value 
does a metaclass provide that a class decorator does not?

The answer to this sort of question is largely dependent on how the fi nal classes are being used. 
The key difference between an approach that uses a metaclass as opposed to an approach that 
uses a class decorator is that the class decorator must be applied explicitly to each subclass. If the 
programmer implementing the subclasses forgets to apply it, the check does not happen.

By contrast, metaclasses are automatic and invisible to the programmer declaring the classes that 
use them. Few (if any) APIs ask a programmer to directly use a metaclass, but many of them ask a 
programmer to subclass a base class that the API package provides. By assigning a metaclass to that 
base class, all subclasses receive it, too. This causes that functionality of the metaclass to be applied 
without the end programmer having to think about it.

Put more simply, one of the fi rst lines in the Zen of Python states, “Explicit is better than implicit.” 
But, like most things in that document, this adage is true … until it is not. For example, being 
implicit is better if you are talking about extraneous information or boilerplate. Similarly, some-
times being more explicit just means more maintenance, which is not usually a win.
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META-CODING

Metaclasses really start to stand out as the operation on the metaclass becomes greater. It would not 
be reasonable or as maintainable to mark every Django model with an explicit decorator. 

Similarly, consider meta-coding situations. In this context, the term meta-coding refers to code that 
inspects other code in the application. For example, consider code that should log itself.

A metaclass that causes all method calls from instances of a class to be logged somehow is quite easy 
to implement. The following metaclass causes its classes to “log” their function calls (except substi-
tuting actual logging for just printing to sys.stdout):

class Logged(type):
    """A metaclass that causes classes that it creates to log
    their function calls.
    """
    def __new__(cls, name, bases, attrs):
        for key, value in attrs.items():
            if callable(value):
                attrs[key] = cls.log_call(value)
        return super(Logged, cls).__new__(cls, name, bases, attrs)
        
    @staticmethod
    def log_call(fxn):
        """Given a function, wrap it with some logging code and
        return the wrapped function.
        """
        def inner(*args, **kwargs):
            print('The function %s was called with arguments %r and '
                  'keyword arguments %r.' % (fxn.__name__, args, kwargs))
            try:
                response = fxn(*args, **kwargs) 
                print('The function call to %s was successful.' %
                      fxn.__name__)
                return response
            except Exception as exc:
                print('The function call to %s raised an exception: %r' %
                      (fxn.__name__, exc))
                raise
        return inner

Let’s fi rst review what is happening here. Logged is being declared as a subclass of type, which 
means it is a metaclass. The Logged class has a __new__ method, and what that method does is iter-
ate over all the attributes in the attrs dictionary, check to see if they are callables (using the Python 
built-in function callable), and wrap them if they are.

The wrapping function itself is very straightforward, especially if you are already familiar with 
the concept of decorators. It declares a local function that performs some logic (in this case, call-
ing print), and then calls the function that was passed as an argument to the log_call method. 
To learn more about this pattern, see Chapter 1, “Decorators,” which makes extensive use of this 
paradigm.
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What happens when a class uses this metaclass? Consider the following Python 3 class that has 
Logged as its metaclass:

class MyClass(metaclass=Logged):
    def foo(self):
        pass

    def bar(self):
        raise TypeError('oh noes!')

When you create an instance of MyClass, you discover that calling methods on it becomes . . . 
er, loud.

>>> obj = MyClass()
>>> obj.foo()
The function foo was called with arguments (<__main__.MyClass object at 
    0x1022a37f0>,) and keyword arguments {}.
The function call to foo was successful.

If you try to call obj.bar(), you get an exception.

>>> obj.bar()
The function bar was called with arguments (<__main__.MyClass object at 
    0x1022a37f0>,) and keyword arguments {}.
The function call to bar raised an exception: TypeError('oh noes!',)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 19, in inner
  File "<stdin>", line 5, in bar
TypeError: oh noes!

Astute readers probably noticed something. When MyClass was instantiated, why was there no 
 logging of the call to __init__? After all, __init__ is certainly callable. It seems like it should 
have been noisy along with foo and bar.

Recall, however, that your metaclass loops over attributes in the attrs dictionary, and you did not 
explicitly defi ne __init__ in your MyClass class. Rather, it is inherited from object. This is the 
behavior you really want as well. Otherwise, subclassing would cause the log_call “decorator” 
to be applied repeatedly on the same callables, which would result in repeated print statements.

By explicitly defi ning __init__, however, you can observe the noisy behavior there.

>>> class MyClass(metaclass=Logged):
...     def __init__(self):
...         pass
...
>>>
>>> obj = MyClass()
The function __init__ was called with arguments (<__main__.MyClass object 
    at 0x1022a3550>,) and keyword arguments {}.
The function call to __init__ was successful.

Also, note that, even though __init__ was not explicitly called in the Python shell, it is still the 
function that is logged, because the Python interpreter calls __init__ under the hood when a new 
instance is created.
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It is worth noting, however, that this behavior only occurs at class creation time. If a method is 
added to the class after it is created (which usually should not be happening anyway), it will not be 
wrapped.

>>> MyClass.foo = lambda self: 42
>>> obj.foo()
42

In this case, your call to foo was not noisy, because MyClass had already been created, and so 
the metaclass had already done its job. Therefore, you just get a plain function call rather than a 
wrapped one.

SUMMARY

 Metaclasses are extremely powerful tools in Python. The fact that classes are fi rst-class objects 
allows for those classes to be manipulated outside of when they are declared. Metaclasses are a way 
to accomplish this.

The presence of metaclasses in the Python language overcomes many of the limitations of other 
object-oriented languages, in which classes are statically declared at coding time.

The ultimate result is that Python’s object model ends up being the best of all worlds. It combines 
the simplicity of languages with a traditional class structure and the power of languages that follow 
other models, such as prototypal inheritance in JavaScript and LUA.

It is a common misconception that metaclasses are diffi cult to understand. However, some of the 
power in Python’s object model is in its simplicity and consistency. Metaclasses are, in fact, a very 
straightforward implementation that adds a huge amount of power to the language.

Chapter 6, “Class Factories,” covers another way to make classes, which is by constructing them 
on-the-fl y. 
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Class Factories
As described in Chapter 5, “Metaclasses,” Python classes are also objects. The fact that classes 
are fi rst-class objects in Python also allows for the possibility to employ other powerful pat-
terns. A class factory is one of these patterns. Essentially, this is a function that creates a class, 
and does so at runtime. This concept allows for the creation of a class whose attributes are 
determined, for example, as a result of user input.

This chapter covers class factories, fi rst by reviewing generating classes on the fl y, and showing 
how to do so within functions. Then, it covers a couple of common cases where class factories 
are valuable.

A REVIEW OF TYPE

Recall from the discussion in Chapter 5 that, like other objects in Python, classes are instanti-
ated by a class. For example, say that you create a class, Animal, as shown here:

class Animal(object):
    """A class representing an arbitrary animal."""

    def __init__(self, name):
        self.name = name

    def eat(self):
        pass

    def go_to_vet(self):
        pass

The Animal class is responsible for creating Animal objects when its constructor is called. But, 
in the same way that Animal creates its objects, so, too, is Animal an object itself. Its class is 
type, a built-in class in Python that creates all other classes.

type is primary metaclass, and custom metaclasses (as you learned in Chapter 5) subclass type.

6
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It is also possible to invoke type directly to create a class, in lieu of using the class keyword. type 
takes three positional arguments: name, bases, and attrs, which correspond to the name of the 
class, the superclass or superclasses for the class (specifi ed as a tuple), and, fi nally, any attributes for 
the class, as a dictionary.

UNDERSTANDING A CLASS FACTORY FUNCTION

A class factory function is exactly what the name implies—a function that creates and returns a class.

Consider the previous Animal class. You can use code to create an equivalent class using type rather 
than using the class keyword, as shown here:

def init(self, name):
    self.name = name

def eat(self):
    pass

def go_to_vet(self):
    pass

Animal = type('Animal', (object,), {
    '__doc__': 'A class representing an arbitrary animal.',
    '__init__': init,
    'eat': eat,
    'go_to_vet': go_to_vet,
})

This is not ideal, for several reasons. One of these reasons is that it leaves functions in the 
namespace alongside Animal. It is usually not desirable to use type directly instead of the class 
keyword unless you really need to do so.

However, sometimes you do, in fact, need to do so. In this kind of case, you can minimize the 
clutter by wrapping this code in a function, which can then be passed around and used. This is a 
class factory. Consider the following function for the example Animal class:

def create_animal_class():
    """Return an Animal class, built by invoking the type
    constructor.
    """
    def init(self, name):
        self.name = name

    def eat(self):
        pass

    def go_to_vet(self):
        pass

    return type('Animal', (object,), {
        '__doc__': 'A class representing an arbitrary animal.',
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        '__init__': init,
        'eat': eat,
        'go_to_vet': go_to_vet,
    })

What has changed here? The init, eat, and go_to_vet functions that were previously cluttering 
the namespace (as well as the creation of the Animal class itself) have been moved inside a 
create_animal_class function.

Now, you can get a custom-built Animal class by calling said function, as shown here:

Animal = create_animal_class()

It is important to note here that multiple calls to create_animal_class will return distinct classes. 
That is, while the classes returned would all have the same name and the same attributes, they will 
not actually be the same class. The similarity between those classes is based on the fact that each 
run of the function assigns the same dictionary keys and similar functions.

In other words, the similarity between the classes that would be returned is contingent. There is no 
reason why the function could not take one or more parameters and return wildly different classes 
based on those parameters. In fact, this is the entire purpose of class factory functions.

 Consider the following distinct classes returned from distinct calls to create_animal_class:

>>> Animal1 = create_animal_class()
>>> Animal2 = create_animal_class()
>>> Animal1
<class '__main__.Animal'>
>>> Animal2
<class '__main__.Animal'>
>>> Animal1 == Animal2
False

Similarly, consider the following instances:

>>> animal1 = Animal1('louisoix')
>>> animal2 = Animal2('louisoix')
>>> isinstance(animal1, Animal1)
True
>>> isinstance(animal1, Animal2)
False

While these classes are both called Animal internally, they are not the same class. They are distinct 
results from two distinct function runs.

This example creates the Animal class by invoking type, but this is actually not necessary. It is far 
more straightforward to create the class using the class keyword. This works, even within the 
function, and then you can return the class at the end of the function:

def create_animal_class():
    """Return an Animal class, built using the class keyword
    and returned afterwards.
    """
    class Animal(object):
        """A class representing an arbitrary animal."""
        def __init__(self, name):
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            self.name = name

        def eat(self):
            pass

        def go_to_vet(self):
            pass

    return Animal

It is almost always preferable to create a class using the class keyword rather than by invoking 
type directly. However, it is not always feasible to do so.

DETERMINING WHEN YOU SHOULD WRITE CLASS FACTORIES

The primary reason to write a class factory function is when it is necessary to create a class based on 
execution-time knowledge, such as user input. The class keyword assumes that you know the attri-
butes you wish to assign to the class (albeit not necessarily the instances) at coding time.

If you do not know the attributes to be assigned to the class at coding time, a class factory function 
can be a convenient alternative.

Runtime Attributes
Consider the following function that creates a class, but this time, the attributes of that class can 
vary based on parameters sent to the function:

def get_credential_class(use_proxy=False, tfa=False):
    """Return a class representing a credential for the given service,
    with an attribute repsenting the expected keys.
    """
    # If a proxy, such as Facebook Connect, is being used, we just
    # need the service name and the e-mail address.
    if use_proxy:
        keys = ['service_name', 'email_address']
    else:
        # For the purposes of this example, all other services use
        # username and password.
        keys = ['username', 'password']

        # If two-factor auth is in play, then we need an authenticator
        # token also.
        if tfa:
            keys.append('tfa_token')

    # Return a class with a proper __init__ method which expects
    # all expected keys.
    class Credential(object):
        expected_keys = set(keys)

        def __init__(self, **kwargs):
            # Sanity check: Do our keys match?
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            if self.expected_keys != set(kwargs.keys()):
                raise ValueError('Keys do not match.')

            # Write the keys to the credential object.
            for k, v in kwargs.items():
                setattr(self, k, v)

    return Credential

This get_credential_class function is asking for information about the type of login that is 
occurring—either a traditional login (with username and password), or using an OpenID service. 
If it is a traditional login, it also may use two-factor authentication, which adds the need for an 
authentication token.

The function returns a class (not an instance) that represents the appropriate type of credential. 
For example, if the use_proxy variable is set to True, then the class will be returned with the 
expected_keys attribute set to ['service_name', 'email_address'], representing the keys nec-
essary to authenticate through the proxy. Alternate inputs to the function will return a class with a 
different expected_keys attribute.

Then, the __init__ method on the class itself checks the keyword arguments that it gets against the 
keys identifi ed in the expected_keys attribute. If they do not match, the constructor raises an error. 
If they do, it writes the values to the instance.

You were able to create this class within the function using the class keyword, rather than invok-
ing type. Because the class block was within the def block, the class was created locally to the 
function.

Understanding Why You Should Do This
You may be asking why a class factory is even valuable in this case. After all, there are only three 
possibilities. These classes could just be hard-coded, rather than dynamically created on the fl y. That 
said, it is easy to extrapolate a case from this example where a hard-coded class is no longer tenable.

After all, there are lots of websites with a non-trivial number of authentication paradigms. For 
example, some use custom usernames, while others use an e-mail address. For development services, 
you are likely to have an API key and potentially one or more secret tokens.

There is really no way to programmatically determine what credentials a website requires (at least 
not reliably), but consider a service that did try to represent credentials from lots of different, sup-
ported third-party sites. That service would likely store the required keys and types of values in a 
database.

Now, suddenly, you have a class with attributes generated based on a database lookup. This is 
important because database lookups happen at runtime, not at coding time. Now, suddenly, you 
have a functionally infi nite number of possibilities for how the expected_keys attribute of the 
classes might need to be written, and it is no longer feasible to code them all up front.

Storing that kind of data in the database also means that, as the data changes, the code need not do 
so. A website may alter or augment what kind of credentials it supports, and this would require add-
ing or removing rows from the database, but the Credential class would still be up to the task.
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Attribute Dictionaries
Just because some attributes are only known at execution time does not always mean that a class 
factory is the correct approach. Often, attributes can be written to the class on the fl y, or a class can 
simply store a dictionary with an arbitrary set of attributes.

If this is a suffi cient solution, it is likely an easier and more straightforward one.

class MyClass(object):
    attrs = {}

The most common case where attribute dictionaries are most likely to fall short is in a situation 
where you are subclassing an existing class over which you do not have direct control, and you 
require the class’s existing functionality to work against the modifi ed attributes. You will see a sub-
classing example shortly.

Fleshing Out the Credential Class
Consider a credentials database with a single table, and that table has two columns: a service name 
(such as Apple or Amazon), and a credential key (such as username).

This mock database is obviously still far too simple to cover all use cases. In this example, support 
for alternative modes of login (such as OpenID) has been dropped. Also, the example does not have 
any concept for presenting credentials in a specifi c order (username before password, for example). 
All of this is fi ne; it is suffi cient for a proof of concept.

Now, consider a class factory that reads from this database (which will simply be stored as a CSV 
fl at fi le) and returns an appropriate class.

import csv

def get_credential_class(service):
    """Return a class representing a credential for the given service,
    with an attribute representing the expected keys.
    """
    # Open our "database".
    keys = []
    with open('creds.csv', 'r') as csvfile:
        for row in csv.reader(csvfile):
            # If this row does not correspond to the service we
            # are actually asking for (e.g., if it is a row for
            # Apple and we are asking for an Amazon credential class),
            # skip it.
            if row[0].lower() != service.lower():
                continue

            # Add the key to the list of expected keys.
            keys.append(row[1])

    # Return a class with a proper __init__ method which expects
    # all expected keys.
    class Credential(object):
        expected_keys = keys



Determining When You Should Write Class Factories ❘ 105

c06.indd 09/21/2015 Page 105

        def __init__(self, **kwargs):
            # Sanity check: Do our keys match?
            if set(self.expected_keys) != set([i for i in kwargs.keys()]):
                raise ValueError('Keys do not match.')

            # Write the keys to the credential object.
            for k, v in kwargs.items():
                setattr(self, k, v)

    return Credential

The inputs for the get_credential_class function have now been entirely replaced. Instead of 
describing the type of credential, you simply specify whom the credential is for.

For example, a sample CSV “database” might look like this:

Amazon,username
Amazon,password
Apple,email_address
Apple,password
GitHub,username
GitHub,password
GitHub,auth_token

The value that get_credential_class takes is a string, and it corresponds to the fi rst column 
in the CSV fi le. Therefore, calling get_credential_class('GitHub') will return a class with 
expected keys of username, password, and auth_token. The lines in the CSV fi le corresponding to 
Apple and Amazon will be skipped.

The Form Example
One place where you can see this concept at work is in the forms API of a popular web framework, 
Django. This framework includes an abstract class, django.forms.Form, which is used to create 
HTML forms.

Django forms have a custom metaclass that takes the attributes declared on the form and erects a 
distinction between form fi elds and form data. Creating a credential form in this API is very easy if 
you know what your fi elds are.

from django import forms

class CredentialForm(forms.Form):
    username = forms.CharField()
    password = forms.CharField(widget=forms.PasswordInput)

On the other hand, if you do not know what your fi elds are (as in the case of the previous example), 
this is a more complicated task. A class factory becomes the perfect approach.

import csv

from django import forms
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def get_credential_form_class(service):
    """Return a class representing a credential for the given service,
    with attributes representing the expected keys.
    """
    # Open our "database".
    keys = []
    with open('creds.csv', 'r') as csvfile:
        for row in csv.reader(csvfile):
            # If this row does not correspond to the service we
            # are actually asking for (e.g. if it is a row for
            # Apple and we are asking for an Amazon credential class),
            # skip it.
            if row[0].lower() != service.lower():
                continue

            # Add the key to the list of expected keys.
            keys.append(row[1])

    # Put together the appropriate credential fields.
    attrs = {}
    for key in keys:
        field_kw = {}
        if 'password' in key:
            field_kw['widget'] = forms.PasswordInput
        attrs[key] = forms.CharField(**field_kw)

    # Return a form class with the appropriate credential fields.
    metaclass = type(forms.Form)
    return metaclass('CredentialForm', (forms.Form,), attrs)

In this case, you have substituted your custom Credential class for a Django form subclass. It is 
no longer the case that you are just setting an expected_keys attribute. Rather, you are setting 
one attribute for each expected key. The previous code puts these together in a dictionary (doing a 
blatant hand-wave for passwords and PasswordInput), and then creates a new form subclass and 
returns it.

It is worth calling out explicitly that Django’s Form class uses a custom metaclass, which subclasses 
type. Therefore, it is important that you call its constructor, rather than type directly. You do 
this on the last two lines by asking forms.Form for its metaclass, and then using that constructor 
directly.

It is also worth noting that this is a case where it really is necessary to use the metaclass constructor, 
rather than creating the class using the class keyword. You are not able to create the class using 
the class keyword here because, even within a function, you would have to create the class and 
then write the attributes to the class, and the metaclass behavior will not be applied to the attributes 
assigned to the class after it is built. (Chapter 5 covers this in more detail.)

Dodging Class Attribute Consistency
Another reason to write class factory functions deals with how attributes differ between classes and 
instances.
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Class Attributes Versus Instance Attributes
The following two code blocks do not produce equivalent classes or instances:

##########################
###  CLASS ATTRIBUTE   ###
##########################

class C(object):
    foo = 'bar'

##########################
### INSTANCE ATTRIBUTE ###
##########################

class I(object):
    def __init__(self):
        self.foo = 'bar'

The fi rst and most obvious thing that is different about these classes is where the foo attri-
bute can be accessed. It is not particularly surprising that C.foo is a string, and I.foo raises 
AttributeError.

>>> C.foo
'bar'
>>> I.foo
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: type object 'I' has no attribute 'foo'

After all, foo was instantiated as an attribute on C, but not on I. Since I is being accessed directly, 
rather than by way of an instance, the __init__ function has not even run yet. Even if an instance 
of I had been created, the instance would have the foo attribute while the class would not.

>>> i = I()
>>> i.foo
'bar'
>>> I.foo
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: type object 'I' has no attribute 'foo'

There is, however, a lesser-noticed difference between C and I, which involves what happens if the 
foo attribute is modifi ed against one of their instances.

Consider the following two instantiated C instances:

>>> c1 = C()
>>> c2 = C()

Now, say you modify the foo attribute on one of them, as shown here:

>>> c1.foo = 'baz'

You see that the c2 instance still uses the attribute of the class, while c1 has its own.
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>>> c1.foo
'baz'
>>> c2.foo
'bar'

The lookup happening here is not quite the same. c1 has written an instance attribute, called foo, 
with the value of 'baz'. However, c2 has no such instance attribute. However, because the class, C, 
does, the lookup uses the class attribute.

Consider what happens if you modify the class attribute, as shown here:

>>> C.foo = 'bacon'
>>> c1.foo
'baz'
>>> c2.foo
'bacon'

Here, c1.foo was unaffected, because c1 has an instance attribute called foo. However, the value 
of c2.foo has changed, because it has no such attribute on the instance. Therefore, when the attri-
bute of the class changes, you observe the change on the instance.

You can view this within Python’s internal data model by examining the __dict__ attribute of both 
instances.

>>> c1.__dict__
{'foo': 'baz'}
>>> c2.__dict__
{}

Under normal circumstances, the special __dict__ attribute is what stores all the attributes 
(and their values) for an object. There are exceptions to this rule. A class may defi ne a custom __
getattr__ or __getattribute__ method (as discussed in Chapter 4, “Magic Methods”), or may 
defi ne a special attribute __slots__, which also introduces alternative attribute behavior. (This is 
rarely needed except in particular situations where memory use is paramount, and is not discussed 
in this book.) Notice that c1 has a foo key in its __dict__, and c2 does not.

The Class Method Limitation
This situation gets really interesting when classes defi ne class methods. Remember that class meth-
ods are methods that do not expect or require an instance of the class to execute, but do require the 
class itself. They are usually declared by decorating a method with the @classmethod decorator, 
and their fi rst argument is traditionally called cls rather than self.

Consider the following C class with a class method that accesses and returns foo from the class:

class C(object):
    foo = 'bar'

    @classmethod
    def classfoo(cls):
        return cls.foo

In the context of the classfoo method, the foo attribute is being accessed explicitly on the class, 
rather than on the instance. Re-run the example using the new class defi nition, and then consider 
the following:
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>>> c1.foo
'baz'
>>> c1.classfoo()
'bacon'
>>> c2.classfoo()
'bacon'

There is, in fact, no actual way to access the instance attribute from the class method. That is the 
entire point of class methods, after all. They do not require an instance.

Tying This in with Class Factories
One of the biggest reasons to need class factories is when you are subclassing existing classes that 
rely on class attributes that must be adjusted.

Essentially, in code that you do not control, if an existing class sets a class attribute that must be 
customized, class factories are an attractive approach to generating appropriate subclasses with the 
overridden attributes.

Consider a situation where a class has an attribute that must be overridden at runtime (or where 
there are too many options for subclassing in static code to be reasonable). In this case, a class fac-
tory can be a very useful approach. Following is a continuation of the use of C as an instructive 
example:

def create_C_subclass(new_foo):
    class SubC(C):
        foo = new_foo
    return SubC

What matters here is that it is not necessary to know what the value of foo should be until the class 
is created, which is when the function runs. Like most other use of class factories, then, this is about 
knowing the attribute value at runtime.

Running your classfoo class method on C subclasses created this way gives you what you expect.

>>> S = create_C_subclass('spam')
>>> S.classfoo()
'spam'
>>> E = create_C_subclass('eggs')
>>> E.classfoo()
'eggs'

It is worth noting that, in many cases, it is much easier to simply create a subclass that accepts this 
value as part of its __init__ method. However, there are some cases where this is an insuffi cient 
solution. If the parent class relies on class methods, for example, then writing a new value to an 
instance will not cause the class methods to receive the new value, and this model of subclass cre-
ation becomes a valuable solution.

Answering the Singleton Question
One thing that can make class factory functions somewhat awkward to use is that, as their name 
suggests, their responsibility is to return classes, rather than instances of those classes.
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This means that if you want an instance, you must call the result of the class factory function to get 
one. The correct code to instantiate a subclass generated with create_C_subclass, for example, 
would be create_C_subclass('eggs')().

There is nothing inherently wrong with this, but it is not always what you really want. Sometimes 
classes created through class factories are functionally singletons. A singleton is a class pattern 
where only one instance is permitted.

In the case of classes generated in functions, it is possible that the purpose of the function is simply 
to act like a class constructor. This is problematic if the end developer must constantly think about 
instantiating the class that comes back.

This is not a requirement, though. If there is not a need to deal with reusing the class elsewhere, or 
if the class factory is able to handle the reuse itself, it is completely reasonable and useful to simply 
have the class factory return an instance of the class it creates, rather than the class itself.

To continue the simple example of C, consider this factory:

def CPrime(new_foo='bar'):
    # If `foo` is set to 'bar', then we do not need a
    # custom subclass at all.
    if new_foo = 'bar':
        return C()

    # Create a custom subclass and return an instance.
    class SubC(C):
        foo = new_foo
    return SubC()

Now, calling CPrime will return an instance of the appropriate C subclass with the foo attribute 
modifi ed as needed.

One issue with this is that many (probably most) classes do expect arguments to be sent to their 
__init__ methods, which this function is not able to handle. The pattern for this is simple enough, 
though. Consider an example of a credential form, with the method retooled to return an instance.

import csv

from django import forms

def get_credential_form(service, *args, **kwargs):
    """Return a form instance representing a credential for the
    given service.
    """
    # Open our "database".
    keys = []
    with open('creds.csv', 'r') as csvfile:
        for row in csv.reader(csvfile):
            # If this row does not correspond to the service we
            # are actually asking for (e.g. if it is a row for
            # Apple and we are asking for an Amazon credential class),
            # skip it.
            if row[0].lower() != service.lower():
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                continue

            # Add the key to the list of expected keys.
            keys.append(row[1])

    # Put together the appropriate credential fields.
    attrs = {}
    for key in keys:
        field_kw = {}
        if 'password' in key:
            field_kw['widget'] = forms.PasswordInput
        attrs[key] = forms.CharField(**field_kw)

    # Return a form class with the appropriate credential fields.
    metaclass = type(forms.Form)
    cls = metaclass('CredentialForm', (forms.Form,), attrs)
    return cls(*args, **kwargs)

This does not actually entail very many changes from the previous class factory. There are really 
only two changes: 

 ➤ First, *args and **kwargs have been added to the function signature.

 ➤ Second, the fi nal line now returns an instance of the class that was created, with the *args 
and **kwargs passed to the instance.

Now you have an entirely functional class factory, which returns an instance of the form class that it 
creates. This raises a fi nal point. Now the function is likely indistinguishable from a class to the end 
developer, unless said end developer inspects the inner workings. Therefore, perhaps it should be 
presented as one in the naming convention.

def CredentialForm(service, *args, **kwargs):
    [...]

In Python, functions are normally named with all lowercased letters, and with underscores for word 
separation. However, this is a function that is being used like a class constructor by developers who 
actually use it, so by changing the naming convention, you present it as a class name.

Conveniently, the name also matches the name of the class used for the instances, because the fi rst 
argument to the metaclass’ constructor, 'CredentialForm', is the internal name of the class.

And, this is Python. If it looks like a duck and quacks like a duck. . .

SUMMARY

 The power of class factories shows itself when it is necessary to have class attributes be determined 
at runtime, rather than at coding time. The Python language is able to handle this situation pre-
cisely because classes are fi rst-class objects, and can be created similarly to how any other object is 
created.

On the other hand, classes containing unknown attributes add some uncertainty. Their methods 
must be written to allow for an attribute to be present or absent, where, in other cases, the presence 
of the attribute may be able to be assumed. 
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The ability to declare classes at runtime is extremely powerful, but brings with it a tradeoff in sim-
plicity. This is fi ne. When you encounter a situation where class factories are the right answer, it is 
often salient, and there is often no other direct way to solve the issue. Put directly, you can be rea-
sonably sure that a class factory is a good approach if it is the simplest approach.

That rule holds true for programming generally, but it is a particularly useful one here.

Chapter 7, “Abstract Base Classes,” discusses Python strings and bytestrings, and how to manage string 
data with minimal pain. 
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Abstract Base Classes
How do you know whether an object you are using conforms to a given specifi cation? The 
common answer to this in Python is referred to as the “duck typing” model. If it looks like 
a duck and quacks like a duck, it is probably a duck.

When dealing with programming and objects, this usually translates to verifying that an 
object implements a given method, or has a given property. If the object has a quack method, 
then you have decent evidence that it is a Duck. And, furthermore, if all you need is a quack 
method, it probably does not matter much whether or not it is actually a Duck.

This is often a very useful construct, and it fl ows naturally from Python’s loose typing system. 
It emphasizes questions of composition over questions of identity, hasattr over isinstance.

Sometimes, however, identity is important. For example, perhaps you are using a library that 
requires input conforming to a particular identity. Alternatively, sometimes it is too cumber-
some to check for a myriad of different properties and methods.

Python 2.6 and Python 3 introduce the concept of abstract base classes. Abstract base classes 
are a mechanism for assigning identity. They are a way of answering, “Is this class funda-
mentally a Duck?” Abstract base classes also provide a mechanism for designating abstract 
methods, requiring other implementers to provide key functionality that is purposefully not 
provided in a base implementation.

This chapter explores abstract base classes, why they exist, and how to use them.

USING ABSTRACT BASE CLASSES

The fundamental purpose for abstract base classes is to provide a somewhat formalized way to 
test whether an object conforms to a given specifi cation.

How do you determine whether you are working with a list? That is quite easy—call 
isinstance on the variable against the list class, and it returns either True or False.

7
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>>> isinstance([], list)
True
>>> isinstance(object(), list)
False

On the other hand, does the code you are writing really require a list? Consider the case where 
you are simply reading a list-like object, but never modifying it. In such cases, you could accept a 
tuple instead.

The isinstance method does provide a mechanism to test against multiple base classes, as 
shown here:

>>> isinstance([], (list, tuple))
True
>>> isinstance((), (list, tuple))
True
>>> isinstance(object(), (list, tuple))
False

However, this is not really what you want, either. After all, a custom sequence class would also be 
entirely acceptable, assuming that it uses a __getitem__ method that accepts ascending integers and 
slice objects (such as QuerySet methods in Django). So, simply using isinstance against the classes 
that you have explicitly identifi ed may generate false negatives, not allowing objects that should be 
allowed.

Of course, it is possible to test for the presence of a __getitem__ method.

>>> hasattr([], '__getitem__')
True
>>> hasattr(object(), '__getitem__')
False

Again, this is not a suffi cient solution. Unlike the isinstance checks, it does not generate false 
negatives. Instead, it generates false positives, because list-like objects are not the only objects that 
implement __getitem__.

>>> hasattr({}, '__getitem__')
True

Fundamentally, simply testing for the presence of certain attributes or methods is sometimes not a 
suffi cient way to determine that the object conforms to the parameters you seek.

Abstract base classes provide a mechanism to declare that one class derives identity from another 
(whether or not it actually does). This is done without any actual object inheritance or any changes 
to method resolution order. Its purpose is declarative; it provides a way for an object to assert that it 
conforms to a protocol.

Additionally, abstract base classes provide a way to require that a subclass implements a given pro-
tocol. If an abstract base class requires a given method to be implemented, and a subclass does not 
implement that method, then the interpreter will raise an exception when attempting to create the 
subclass.
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DECLARING A VIRTUAL SUBCLASS

Python 2.6, 2.7, and all versions of Python 3 provide a module, abc (which stands for “abstract 
base classes”) that provides the tools for using abstract base classes.

The fi rst thing that the abc module provides is a metaclass, called ABCMeta. Any abstract base 
classes, regardless of their purpose, must use the ABCMeta metaclass.

Any abstract base class can arbitrarily declare that it is an ancestor (not a descendent) of any 
arbitrary concrete class, including concrete classes in the standard library (even those implemented 
in C). It does this using the register method, which ABCMeta provides on its instances. (Remember, 
these are the classes themselves, which use ABCMeta as their metaclass.)

Consider an abstract base class that registers itself as an ancestor of dict. (Note that the following 
code uses the Python 3 metaclass syntax.)

>>> import abc
>>> class AbstractDict(metaclass=abc.ABCMeta):
...     def foo(self):
...         return None
...
>>> AbstractDict.register(dict)
<class 'dict'>

This does not cause any changes to the dict class itself. What explicitly does not happen here (and 
this is critical to note) is that dict’s method resolution does not change. You do not suddenly fi nd 
that dict got a foo method.

>>> {}.foo()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'dict' object has no attribute 'foo'

What this does do is make dict objects also identify as AbstractDict instances, and dict itself 
now identifi es as an AbstractDict subclass.

>>> isinstance({}, AbstractDict)
True
>>> issubclass(dict, AbstractDict)
True

Note that the converse is not the case. AbstractDict is not a subclass of dict.

>>> issubclass(AbstractDict, dict)
False

Why Declare Virtual Subclasses?
To understand why you would want to do this, recall the example at the beginning of the chapter 
where you wanted to read from a list-like object. It needs to be iterable like list or tuple, and it 
needs to have a __getitem__ method that takes integers. On the other hand, you do not necessarily 
want to have a restriction of only accepting list or tuple.
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Abstract base classes provide a very good, extensible mechanism for that. A previous example 
showed that you can use isinstance to check against a tuple of classes.

>>> isinstance([], (list, tuple))
True

This is not really extensible, however. If you are checking against list or tuple in your implemen-
tation, and someone using your library wants to send something else that acts list-like but does not 
subclass list or tuple, that person is up a creek.

Abstract base classes provide the solution to this problem. First, defi ne an abstract base class and 
register list and tuple to it, as shown here:

>>> import abc
>>> class MySequence(metaclass=abc.ABCMeta):
...     pass
...
>>> MySequence.register(list)
<class 'list'>
>>> MySequence.register(tuple)
<class 'tuple'>

Now, alter the isinstance check to check against MySequence instead of against (list, tuple). 
It will still return True when a list or tuple is checked, and False for other objects.

>>> isinstance([], MySequence)
True
>>> isinstance((), MySequence)
True
>>> isinstance(object(), MySequence)
False

Thus far, you have the same situation as before. But, there is one crucial difference. Consider the 
case where another developer is using a library that expects a MySequence object, and, therefore, 
expects a list or tuple.

When (list, tuple) is hard-coded in the library, there is nothing that the developer can do. 
However, MySequence is an abstract base class that the library is defi ning. That means that the 
developer can import it.

Once the developer is able to import it, the custom class that is suffi ciently list-like can simply be 
registered with MySequence:

>>> class CustomListLikeClass(object):
...     pass
...
>>> MySequence.register(CustomListLikeClass)
<class '__main__.CustomListLikeClass'>
>>> issubclass(CustomListLikeClass, MySequence)
True

The developer is able to pass the CustomListLikeClass instance into the library that expects a 
MySequence. Now, when the library does its isinstance checks, the check passes, and the object is 
allowed.
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Using register as a Decorator
As of Python 3.3, the register method provided by classes using the ABCMeta metaclass can also 
be used as a decorator.

If you are creating a new class that should be registered as a subclass of an ABCMeta, you normally 
register it like this (using the MySequence abstract base class defi ned in the previous example):

>>> class CustomListLikeClass(object):
...     pass
...
>>> MySequence.register(CustomListLikeClass)
<class '__main__.CustomListLikeClass'>

Note, however, that the register method returns the class that is passed to it. It works this way so 
that register can also be used as a decorator. It is accepting a callable and returning a callable (in 
this case, the exact same callable).

The following code will have an identical effect:

>>> @MySequence.register
... class CustomListLikeClass(object):
...     pass
...
>>> 

You can confi rm this by doing the same issubclass check as you did before.

>>> issubclass(CustomListLikeClass, MySequence)
True

It is worth noting that this decorator behavior was added in Python 3.3. In Python 2, as well as in 
Python 3.2 and below, the register method on abstract base classes returned None, rather than 
returning the class that was passed to it.

This means that it is unable to be used as a decorator in these versions. If you are writing code that 
is intended to be cross-compatible with Python 2 and Python 3, or if you are writing code that may 
run on an older version of Python 3, you should avoid using register as a decorator.

__subclasshook__
For most purposes, using a class with the ABCMeta metaclass and then using the register method 
that ABCMeta provides is an entirely suffi cient way to get what you need. However, you may have a 
case where manual registration of every intended subclass is not tenable.

Classes created with the ABCMeta metaclass may optionally defi ne a special magic method called 
__subclasshook__.

The __subclasshook__ method must be defi ned as a class method (using the @classmethod decora-
tor) and takes a single additional positional argument, which is the class being tested. It can return 
three values: True, False, or NotImplemented.

The case for True and False is salient enough. The __subclasshook__ method returns True if the 
tested class should be considered a subclass, and False if it should not be considered a subclass.

mailto:@MySequence.register
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Consider the traditional duck typing paradigm. The fundamental concern in the duck-typing para-
digm is whether an object has certain methods or attributes (whether it “quacks like a duck”), rather 
than whether it subclasses this or that class. An abstract base class could implement this concept 
with __subclasshook__, as shown here:

import abc

class AbstractDuck(metaclass=abc.ABCMeta):
    @classmethod
    def __subclasshook__(cls, other):
        quack = getattr(other, 'quack', None)
        return callable(quack)

This abstract base class is declaring that any class with a quack method (but not a non-callable 
quack attribute) should be considered its subclass, and nothing else should be.

>>> class Duck(object):
...     def quack(self):
...         pass
...
>>>
>>> class NotDuck(object):
...     quack = 'foo'
...
>>> issubclass(Duck, AbstractDuck)
True
>>> issubclass(NotDuck, AbstractDuck)
False

An important thing to note here is that when the __subclasshook__ method is defi ned, it takes 
 precedence over the register method.

>>> AbstractDuck.register(NotDuck)
<class '__main__.NotDuck'>
>>> issubclass(NotDuck, AbstractDuck)
False

This is where NotImplemented comes in. If the __subclasshook__ method returns NotImplemented, 
then (and only then) the traditional route of checking to see if a class has been registered is checked.

Consider the following modifi ed AbstractDuck class:

import abc

class AbstractDuck(metaclass=abc.ABCMeta):
    @classmethod
    def __subclasshook__(cls, other):
        quack = getattr(other, 'quack', None)
        if callable(quack):
            return True
        return NotImplemented
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The only change made here is that if there is not a quack method, the __subclasshook__ method 
returns NotImplemented instead of False. Now, the registry is checked, and a class that has been 
previously registered will come back as a subclass.

>>> issubclass(NotDuck, AbstractDuck)
False
>>> AbstractDuck.register(NotDuck)
<class '__main__.NotDuck'>
>>> issubclass(NotDuck, AbstractDuck)
True

Essentially, the fi rst example says, “It is an AbstractDuck if it quacks like a duck,” and the second 
example says, “It is an AbstractDuck if it quacks like a duck … or if it just says fl at out that it is an 
AbstractDuck.”

Of course, note that if you do this, you must be able to handle anything that you receive. It does you 
no good to make the quack method optional if you rely on being able to call it!

So, what is the value of doing this? It would be easy enough simply to do a hasattr or callable 
check on the methods you need.

In a relatively straightforward case, it is probably actually a hindrance to use an abstract base class. 
For example, it would simply add unnecessary complexity to use one as a stand-in to check for the 
presence of a single method.

For non-trivial cases, there is some value. First, there is value in compartmentalization. The abstract 
base class defi nes a single place for the overall test to live. Any code using a subclass of the abstract 
base class simply uses the issubclass or isinstance function. This ensures that as needs evolve, 
there is a single place for the conformity-checking code to live.

Also, the availability of NotImplemented as a return value for __subclasshook__ adds some power. 
It provides a mechanism to say that while there are ways to defi nitively pass or defi nitively fail to 
match the given protocol, there is also the way for a custom class author to explicitly opt in.

DECLARING A PROTOCOL

Another major value in abstract base classes is in their capability to declare a protocol. In the 
previous examples, you learned how an abstract base class can be used to cause a class to be able to 
declare that it should be able to pass a type check test.

However, abstract base classes can also be used to defi ne what a subclass must offer. This is similar 
to the concept of interfaces in some other object-oriented languages, such as Java.

Other Existing Approaches
You can approach this fundamental problem without using abstract base classes. Because abstract 
base classes are a relatively new language feature, several of these approaches are quite common.
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Using NotImplementedError
Consider a class that is built with certain functionality, but which intentionally leaves out a critical 
method so that this method may be implemented by subclasses.

from datetime import datetime

class Task(object):
    """An abstract class representing a task that must run, and
    which should track individual runs and results.
    """
    def __init__(self):
        self.runs = []
    
    def run(self):
        start = datetime.now()
        result = self._run()
        end = datetime.now()
        self.runs.append({
            'start': start,
            'end': end,
            'result': result,
        })
        return result
    
    def _run(self):
        raise NotImplementedError('Task subclasses must define '
                                  'a _run method.')

The purpose of this class would be to run some kind of task and track when those runs happened. 
It is easy to intuitively understand how it could also provide logging or similar functionality.

What the base Task class does not provide, however, is a task body. It is up to subclasses to do 
this. Instead, the Task class provides a shell method, _run, which does nothing except raise 
NotImplementedError with a useful error message. Any subclass that fails to override _run will 
most likely hit this error, which is also what you get if you attempt to call run on Task itself.

>>> t = Task()
>>> t.run()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 10, in run
  File "<stdin>", line 20, in _run
NotImplementedError: Task subclasses must define a _run method.

Using Metaclasses
This is not the only way to declare a protocol. Another common way to do this is by using a metaclass.

from datetime import datetime, timezone

class TaskMeta(type):
    """A metaclass that ensures the presence of a _run method
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    on any non-abstract classes it creates.
    """
    def __new__(cls, name, bases, attrs):
        # If this is an abstract class, do not check for a _run method.
        if attrs.pop('abstract', False):
            return super(TaskMeta, cls).__new__(cls, name, bases, attrs)
        
        # Create the resulting class.
        new_class = super(TaskMeta, cls).__new__(cls, name, bases, attrs)
        
        # Verify that a _run method is present and raise
        # TypeError otherwise.
        if not hasattr(new_class, '_run') or not callable(new_class._run):
            raise TypeError('Task subclasses must define a _run method.')
        
        # Return the new class object.
        return new_class

class Task(metaclass=TaskMeta):
    """An abstract class representing a task that must run, and
    which should track individual runs and results.
    """
    abstract = True
    
    def __init__(self):
        self.runs = []
    
    def run(self):
        start = datetime.now(tz=timezone.utc)
        result = self._run()
        end = datetime.now(tz=timezone.utc)
        self.runs.append({
            'start': start,
            'end': end,
            'result': result,
        })
        return result

This is similar to the previous example, but with a couple of subtle differences. The fi rst difference 
is that the Task class itself, while it can still be instantiated, no longer declares a _run method at all, 
so the public-facing run method would raise AttributeError.

>>> t = Task()
>>> t.run()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 12, in run
AttributeError: 'Task' object has no attribute '_run'

The more important distinction, however, lies with subclasses. Because the metaclass has a __new__ 
method that runs when the subclass is created, the interpreter will no longer allow you to create a 
subclass without a _run method.
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>>> class TaskSubclass(Task):
...     pass
...
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 16, in __new__
NotImplementedError: Task subclasses must define a _run method.

The Value of Abstract Base Classes
Both of these approaches are valuable, but it is also fair to criticize them for being somewhat ad hoc.

Abstract base classes provide a more formal way to present the same pattern. They provide a mecha-
nism to declare a protocol using an abstract class, and subclasses must provide an implementation 
that conforms to that protocol.

The abc module provides a decorator called @abstractmethod, which designates that a given 
method must be overridden by all subclasses. The method body may be empty (pass), or may 
contain an implementation that the subclass methods may choose to call using super. 

Consider a Task class that uses the @abstractmethod decorator in lieu of a custom metaclass.

import abc
from datetime import datetime, timezone

class Task(metaclass=abc.ABCMeta):
    """An abstract class representing a task that must run, and
    which should track individual runs and results.
    """
    def __init__(self):
        self.runs = []
    
    def run(self):
        start = datetime.now(tz=timezone.utc)
        result = self._run()
        end = datetime.now(tz=timezone.utc)
        self.runs.append({
            'start': start,
            'end': end,
            'result': result,
        })
        return result
    
    @abc.abstractmethod
    def _run(self):
        pass

Again, this is mostly identical to the previous two examples, but ever so slightly different from both. 
First, note that the Task class itself is unable to be instantiated.

>>> t = Task()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Task with abstract methods _run

mailto:@abc.abstractmethod
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This is distinct from the NotImplementedError approach, which would have allowed the base Task 
class to be instantiated.

Similarly, it is distinct from both of the previous approaches in that the error case for a subclass 
that does not properly override the _run method is slightly different. In the fi rst example, using 
NotImplementedError, you end up having NotImplementedError raised at the point where the 
_run method is called. In the second example, using a custom TaskMeta metaclass, TypeError is 
raised when the offending subclass is created.

When using an abstract base class, the interpreter is perfectly happy to create a subclass that does 
not implement all (or even any) of the abstract methods in the base class.

>>> class Subtask(Task):
...   pass
...
>>>

What the interpreter is not willing to do, however, is instantiate it. In fact, it gives the exact same 
error as the Task class gives, which is logically exactly what you expect.

>>> st = Subtask()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Subtask with abstract methods _run

However, once you defi ne a subclass that overrides the abstract methods, it works just fi ne, and you 
are able to instantiate your subclass.

>>> class OtherSubtask(Task):
...   def _run(self):
...     return 2 + 2
...
>>>
>>> ost = OtherSubtask()
>>> ost.run()
4

And, if you inspect the runs attribute, you will see that information about the run has been saved, 
as shown here:

>>> ost.runs
[{'result': 4, 'end': datetime.datetime(…), 'start': datetime.datetime(…)}]

This is actually a very useful approach to this problem, for several reasons. First (and probably most 
important), this approach is formalized rather than ad hoc. Abstract base classes were specifi cally 
proposed as a solution to fi ll this particular need, pursuant to the notion that, ideally, there should 
be one and only one “correct” way to do it.

Second, the @abstractmethod decorator is very simple, and avoids a lot of potential errors that can 
crop up if you’re attempting to write boilerplate code. As an example, what if, in your TaskMeta meta-
class, you accidentally only check for the presence of _run in the attrs dictionary, but do not allow 
for the presence of _run in the superclass? This is an easy mistake to make, and it would result in Task 
subclasses that are not themselves subclassable unless you manually override _run every time. With the 
@abstractmethod decorator, you get the right behavior without having to put too much thought into it.
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Finally, this approach makes it very easy to have intermediate implementations. Consider an abstract 
base class that has 10 abstract methods instead of one. It is entirely reasonable to have an entire sub-
class tree, where higher subclasses on the chain implement some common methods, but leave other 
methods in their abstract state for their subclasses to implement. In fairness, you can do this with 
the custom metaclass approach also (by declaring every intermediate class abstract = True in the 
TaskMeta example). However, when using @abstractmethod, you basically get exactly the behavior 
you want intuitively.

Of course, there is one big reason not to use an abstract base class if you need this type of function-
ality, which is if you need to support versions of Python that do not yet have abc. This is becoming 
more rare, though, because abc was added in Python 2.6, and many Python packages do not sup-
port versions of Python older than 2.6.

Abstract Properties
It is also possible for properties (that is, methods that use the @property decorator) to be declared 
as abstract. However, the correct approach to this depends slightly on what versions of Python you 
are supporting.

In Python 2.6 through 3.2 (including any code that must be cross-compatible with these versions), 
the correct approach is to use the @abstractproperty decorator, which is provided by the abc 
module.

import abc

class AbstractClass(metaclass=abc.ABCMeta):
    @abc.abstractproperty
    def foo(self):
        pass

In Python 3.3, this approach is deprecated, because @abstractmethod has been updated to be able to 
work alongside @property. Therefore, having a special decorator to provide both is now redundant. 
Thus, the following example is identical to the previous one, but only in Python 3.3 and up:

import abc

class AbstractClass(metaclass=abc.ABCMeta):
    @property
    @abc.abstractmethod
    def foo(self):
        pass

Attempting to instantiate a subclass of AbstractClass that does not override the foo method will 
raise an error.

>>> class InvalidChild(AbstractClass):
...     pass
...
>>> ic = InvalidChild()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class InvalidChild with abstract methods foo

mailto:@abc.abstractproperty
mailto:@abc.abstractmethod
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However, a subclass that overrides the abstract method is able to be instantiated.

>>> class ValidChild(AbstractClass):
...     @property
...     def foo(self):
...         return 'bar'
...
>>>
>>> vc = ValidChild()
>>> vc.foo
'bar'

Abstract Class or Static Methods
As with properties, you may want to combine the @abstractmethod decorator with either a class 
method or static method (that is, a method decorated with @classmethod or @staticmethod).

This is a little bit trickier. Python 2.6 through 3.1 simply do not provide a way to do this at all. 
Python 3.2 does provide a way, using the @abstractclassmethod or @abstractstaticmethod 
decorators. These work similarly to the previous abstract properties example.

Python 3.3 then alters this by changing @abstractmethod to be compatible with the @classmethod 
and @staticmethod decorators, and deprecates the Python 3.2 approach.

In this case, because most code written for Python 3 usually is only written to be compatible with 
Python 3.3 and up (you learn more about this in Chapter 10, “Python 2 Versus Python 3”), most 
likely what you want to do is simply use the two decorators separately. However, if you need com-
patibility with Python 3.2, and do not need compatibility with any previous versions of Python 
(including any versions of Python 2), then those decorators are available to you.

Consider the following abstract class using the Python 3.3 syntax:

class AbstractClass(metaclass=abc.ABCMeta):
    @classmethod
    @abc.abstractmethod
    def foo(cls):
        return 42

Subclassing this class without overriding the method will work as usual, but the subclass is unable 
to be instantiated.

>>> class InvalidChild(AbstractClass):
...     pass
...
>>> ic = InvalidChild()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class InvalidChild with abstract methods foo

The abstract method itself can actually be called directly without error, though.

>>> InvalidChild.foo()
42

mailto:@abc.abstractmethod
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Once the abstract method is overridden in a subclass, that subclass is able to be instantiated.

>>> class ValidChild(AbstractClass):
...     @classmethod
...     def foo(cls):
...         return 'bar'
...
>>> ValidChild.foo()
'bar'
>>> vc = ValidChild()
>>> vc.foo()
'bar'

BUILT-IN ABSTRACT BASE CLASSES

In addition to providing the abc module that enables you to build your own abstract base classes, 
the Python 3 standard library also provides a small number of abstract base classes built into the 
language, particularly for opting in a special class to a common pattern (such as a sequence, mutable 
sequence, iterable, and so on). The most commonly used, which are for collections, live in the 
collections.abc module.

Most of these built-in abstract base classes provide both abstract and non-abstract met hods, 
and are often an alternative to subclassing a built-in Python class. For example, subclassing 
MutableSequence may be a superior alternative to subclassing list or str.

The provided abstract base classes can be divided into two basic categories: those that require and 
check for a single method (such as Iterable and Callable), and those that provide a stand-in to a 
common built-in Python type.

Single-Method ABCs
Python provides fi ve abstract base classes that contain one abstract method each, and whose 
__ subclasscheck__ methods simply check for the presence of that method. They are as follows:

 ➤ Callable (__call__)

 ➤ Container (__contains__)

 ➤ Hashable (__hash__)

 ➤ Iterable (__iter__)

 ➤ Sized (__len__)

Any class that contains the appropriate method is automatically considered to be a subclass of the 
relevant abstract base class.

>>> from collections.abc import Sized
>>>
>>> class Foo(object):
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...     def __len__(self):

...         return 42

...
>>> issubclass(Foo, Sized)
True

Similarly, classes may subclass the abstract base classes directly, and are expected to override the 
relevant method.

>>> class Bar(Sized):
...     pass
...
>>> b = Bar()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Bar with abstract methods __len__

In addition to these fi ve classes, there is one more. Iterator is slightly special. It inherits 
from Iterable, provides an implementation for __iter__ (which just returns itself and can be 
overridden), and adds an abstract method called __next__.

Alternative-Collection ABCs
Another major type of built-in abstract base classes in Python 3 are those that serve to identify 
 subclasses that serve a similar role as the major Python collection classes: list, dict, and set.

There are six of these classes, divided into three categories with two in each category (one immu-
table class and one mutable one).

The fi rst category is Sequence and MutableSequence. These abstract base classes are intended for 
collections that generally act like Python tuples or lists, respectively. The Sequence abstract base 
class requires __getitem__ and __len__. However, it also provides implementations for a lot of 
other common methods you use with list and tuples, such as __contains__ and __iter__ (among 
others). The idea here is that you can subclass Sequence and defi ne just the things you need, and 
Python provides you with the other common functionality of sequences. Of course, list, tuple, 
and set are considered to be subclasses of Sequence.

MutableSequence is similar, but adds the notion of modifying the sequence in-place. Therefore, 
it adds __setitem__, __delitem__, and insert as abstract methods, and provides functionality 
for append, pop, and the like. The principle is still the same—you must defi ne just the things you 
fundamentally need to have a mutable sequence, and Python provides list-like methods for the rest. 
As you probably expect, list and set are already considered to be subclasses of MutableSequence 
out of the box.

The other two categories are Mapping and Set, which come with MutableMapping and MutableSet, 
as you would expect. Mappings are intended for dictionary-like objects (similar to dict, and dict is 
considered a subclass), whereas Sets are intended for unordered collections (similar to set, and set 
is considered a subclass). In both cases, they specify some key methods (with names corresponding 
to those of dict and set) as abstract, and provide implementations for the remainder.
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Using Built-In Abstract Base Classes
The key purpose for these abstract base classes is to provide a means to test for common types of 
collections. Rather than testing to see if you have a list, test for a MutableSequence (or just a 
Sequence if you do not need to modify it). Rather than testing for dict, test for a MutableMapping.

This makes your code more fl exible. If someone who is using your library does have a need to make 
a list-like object or a dictionary-like object for individual purposes, that person can still pass this to 
your code, which can use it without any extra work. This allows your code to test to make sure you 
are getting the kind of object you expect to get, and allows others the fl exibility to pass in compat-
ible objects, which may not be the exact ones you anticipated.

Additional ABCs
There are other abstract base classes in the standard library not covered in detail here. In particu-
lar, the numbers module contains abstract base classes for implementing many different kinds of 
numbers.

SUMMARY

The primary importance of abstract base classes is that they provide a formal and dynamic way to 
answer the question, “Are you getting the kind of object you think you are getting?” It addresses 
some of the shortcomings of both simply testing for the presence of certain attributes and simply 
testing for particular classes. This is valuable.

It is worth remembering, however, that much like the more ad hoc approaches that preceded them, 
abstract base classes are still very much a gentlemen’s agreement. The Python interpreter will catch 
some obvious violations (such as failing to implement an abstract method in a subclass). However, 
it is the responsibility of implementers to ensure that their subclasses do the right thing. There are 
many things that abstract base classes do not check. For example, they do not check method signa-
tures or return types.

The lesson here is that just because a class implements an abstract base class does not guarantee that 
it does so correctly, or in the way that you expect. This is nothing new. Just because a class has a 
particular method does not mean that said method does the right thing. It is easy to inspect whether 
an object has a quack method. It is far more diffi cult to determine whether the quack  method actu-
ally makes the object quack like a duck.

This is fi ne, however. Part of writing software in a dynamic language like Python is that you accept 
that these kinds of gentlemen’s agreements exist. There is still tremendous value in having a formal-
ized and streamlined way to declare and to determine whether an object conforms to a type or pro-
tocol. Abstract base classes provide this.

Chapter 8, “Strings and Bytestrings,” explores the world of Unicode and ASCII strings, and how to 
handle them effectively in Python programs. 
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Strings and Unicode
One of the more common sources of pain when writing Python applications is the handling of 
string data, specifi cally when strings contain characters outside of common Latin characters.

One of the fi rst standards developed for representing string data is known as ASCII, which 
stands for American Standard Code for Information Interchange. ASCII defi nes a diction-
ary for representing common characters such as “A” through “Z” (in both upper- and 
lowercase), the digits “0” through “9,” and a few common symbols (such as period, question 
mark, and so on).

However, ASCII relies upon an assumption that each character maps to a single byte, and, 
therefore, runs into trouble because there are far too many characters. As a result, a standard 
known as Unicode is now used to render text.

In Python, there are two different kinds of string data: text strings and byte strings. It is also 
possible to convert one type to the other. It is important to understand which kind of data you 
are dealing with, and to consistently keep the kinds of data straight.

In this chapter, you learn about the difference between text strings and byte strings, and how 
the types are implemented in both Python 2 and Python 3. You also learn how to deal with 
common problems that can pop up when you’re working with string data within Python 
programs.

TEXT STRING VERSUS BYTE STRING

Data is consistently stored in bytes. Character sets such as ASCII and Unicode are responsible 
for using byte data to render the appropriate text.

ASCII’s approach to this is straightforward. It defi nes a mapping table, and each character 
corresponds to 7 bits. A common superset of ASCII, latin-1 (discussed in more detail later), 
maintains this system, but uses 8 bits. Ordinarily, you represent bytes as either a decimal or 
hexadecimal number. Therefore, whenever the ASCII codec encounters the byte represented 
by the decimal number 65 (or hex 0x41), it knows that this corresponds to the character A.

8
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In fact, Python itself defi nes two functions for converting between a single integer byte and the 
corresponding character: ord and chr. The abbreviation “ord” stands for “ordinal.” The ord func-
tion takes a character and returns the integer corresponding to that character in the ASCII table, as 
shown here:

>>> ord('A')
65

The chr method does the opposite. It accepts an integer and returns the corresponding character on 
the ASCII table, as shown here:

>>> chr(65)
'A'
>>> chr(0x41)
'A'

The fundamental problem with ASCII is its assumption of a 1:1 mapping between characters and 
bytes. This is a serious limitation, because 256 characters is not nearly enough to include the various 
glyphs in different languages. Unicode solves this problem by using up to 4 bytes to represent each 
character.

String Data in Python
The Python language actually has two different kinds of strings: one for storing text, and one for 
storing raw bytes. A text string stores data internally as Unicode, whereas a byte string stores raw 
bytes and displays ASCII (for example, when sent to print).

Adding to the confusion, Python 2 and Python 3 use different (but overlapping) names for their text 
strings and byte strings. The Python 3 terminology makes more sense, so you should learn it and 
then translate to Python 2 when working there.

Python 3 Strings
In Python 3, the text string type (which stores Unicode data) is called str, and the byte string type 
is called bytes. Instantiating a string normally gives you a str instance, as shown here:

>>> text_str = 'The quick brown fox jumped over the lazy dogs.'
>>> type(text_str)
<class 'str'>

If you want to get a bytes instance, you prefi x the literal with the b character.

>>> byte_str = b'The quick brown fox jumped over the lazy dogs.'
>>> type(byte_str)
<class 'bytes'>

It is possible to convert between a str and a bytes. The str class includes an encode method, 
which converts into a bytes using the specifi ed codec. In most cases, you want to use UTF-8 as 
a codec when encoding data. The encode method takes a required argument, which is the string 
 representing the appropriate codec.

>>> text_str.encode('utf-8')
b'The quick brown fox jumped over the lazy dogs.'
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Similarly, the bytes class includes a decode method, which also takes the codec as a single, required 
argument, and returns a str. Decoding is a more interesting issue, though. It is insuffi cient to dog-
matically say that you should always decode data as UTF-8, because data from another source may 
not have been encoded as UTF-8. You must decode data according to how it was encoded. You 
learn more about this later in this chapter.

Python 3 will never attempt to implicitly convert between a str and a bytes. Its approach is to 
require you to explicitly convert between text strings and byte strings with the str.encode and 
bytes.decode methods (a practice that requires you to specify a codec). For most applications, this 
is a preferable behavior, because it helps you avoid getting into situations where programs work 
when given common English text, but fail when running into unexpected characters.

This also means that text strings containing only ASCII characters are not considered to be equal to 
byte strings containing only ASCII characters.

>>> 'foo' == b'foo'
False
>>>
>>> d = {'foo': 'bar'}
>>> d[b'foo']
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
KeyError: b'foo'

Attempting to do nearly any operation on a text string and byte string together will raise 
TypeError, as shown here:

>>> 'foo' + b'bar'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: Can't convert 'bytes' object to str implicitly

One exception to this behavior is the % operator, which is used for string formatting in Python. 
Attempting to interpolate a text string into a byte string will raise TypeError as expected.

>>> b'foo %s' % 'bar'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for %: 'bytes' and 'str'

On the other hand, interpolating a byte string into a text string does work, but does not return the 
intuitively desired response.

>>> 'foo %s' % b'bar'
"foo b'bar'"

What is occurring here is that the operator takes the b'bar' value, which is a bytes. It fi rst 
looks for a __str__ method, which the bytes object actually does have. It returns the text string 
"b'bar'", with the b' prefi x and ' suffi x. This is the same value returned by __repr__.
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Python 2 Strings
Python 2 strings mostly work similarly, but with some subtle but very important distinctions.

The fi rst distinction is the name of the classes. The Python 3 str class is called unicode in 
Python 2. In and of itself, this is fi ne. However, the Python 3 bytes class is called str in Python 2. 
This means that a Python 3 str is a text string, whereas a Python 2 str is a byte string. If you are 
using Python 2, it is critically important to understand this distinction.

Instantiating a string with no prefi x gives you a str (remember, this is a byte string!) instance.

>>> byte_str = 'The quick brown fox jumped over the lazy dogs.'
>>> type(byte_str)
<type 'str'>

If you want a text string in Python 2, you prefi x the string literal with the u character, as shown here:

>>> text_str = u'The quick brown fox jumped over the lazy dogs.'
>>> type(text_str)
<type 'unicode'>

Unlike Python 3, Python 2 does attempt to implicitly convert between text strings and byte strings. 
The way that this works is that if the interpreter encounters a mixed operation, it will fi rst convert 
the byte string to a text string, and then perform the operation against the text strings.

It works this way so that an operation against a byte string and a text string will return a text string:

>>> 'foo' + u'bar'
u'foobar'

The interpreter performs this implicit decoding using whatever the default encoding is. On Python 2, 
this is almost always ASCII. Python defi nes a method, sys.getdefaultencoding, which provides 
the default codec for implicitly converting between text strings and byte strings.

>>> import sys
>>> sys.getdefaultencoding()
'ascii'

This means that many of the previous Python 3 examples show distinctly different behavior in 
Python 2.

>>> 'foo' == u'foo'
True
>>>
>>> d = {u'foo': u'bar'}
>>> d['foo']
u'bar'

str.encode and unicode.decode
One somewhat bizarre aspect of Python 2’s string-handling behavior is that text strings actually 
have a decode method, and byte strings actually have an encode method.

You never want to use these.

The theoretical purpose of these methods is to ensure that you don’t worry too much about what the 
input variable is. Simply call encode to change either kind of string into a byte string, or decode to 
change either kind of string into a text string.
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In practice, however, this can be both disastrous and very confusing, because if the method receives 
the “wrong” kind of input string (that is, a string already of the desired output type), it will attempt 
two conversions, and attempt the implicit one using ASCII.

Consider this Python 2 example:

>>> text_str = u'\u03b1 is for alpha.'
>>>
>>> text_str.encode('utf-8')
'\xce\xb1 is for alpha.'
>>>
>>> text_str.encode('utf-8').encode('utf-8')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
UnicodeDecodeError: 'ascii' codec can't decode byte 0xce in position 0: 
     ordinal not in range(128)

It seems quite bizarre to be asking to encode something as UTF-8 and to get an error back 
complaining that the text is unable to be decoded as ASCII. But this is the implicit conversion 
that Python 2 is attempting to do in order to run encode (a method intended for text strings) on a 
byte string.

To the interpreter, the fi nal line is equivalent to the following:

text_str.encode('utf-8').decode('ascii').encode('utf-8')

That is never what you want.

It seems simple enough not to do this, but the way you encounter an error like this is not to bluntly 
run encode twice (as this example does), but rather to run encode or decode without fi rst checking 
to see what kind of data you have. In Python 2, text strings and byte strings intermingle frequently, 
and it is very easy to get one when you expected the other.

unicode_literals
If you are using Python 2.6 or greater, you can make part of this behavior track the Python 3 
behavior if you choose to do so. Python defi nes a special module called __future__, from which 
you can preemptively opt-in to future behavior.

In this case, importing unicode_literals causes string literals to follow the Python 3 convention, 
although the Python 2 class names are still used.

>>> from __future__ import unicode_literals
>>> text_str = 'The quick brown fox jumped over the lazy dogs.'
>>> type(text_str)
<type 'unicode'>
>>> bytes_str = b'The quick brown fox jumped over the lazy dogs.'
>>> type(bytes_str)
<type 'str'>

Once from __future__ import unicode_literals is invoked, a string literal with no prefi x in 
Python 2.6 or greater becomes a text string (unicode), and a b prefi x creates a byte string (Python 
2 str).
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Doing this does not forward-port other aspects of Python 2’s string handling to the Python 3 behav-
ior. The interpreter will still attempt to implicitly convert between text strings and byte strings, and 
ASCII is still the default encoding.

Nonetheless, most strings specifi ed in code are intended to be text strings rather than byte 
strings. Therefore, if you are writing code that does not need to support versions of Python below 
Python 2.6, it is very wise to use this.

six
The fact that Python 2 and Python 3 provide different class names for text strings and byte strings 
can be a source of confusion, although the transition to the much clearer Python 3 nomenclature is 
an important one.

To help cope with this, the popular Python library six, which is centered around writing 
modules that run correctly in both Python 2 and Python 3 (and which is covered in much more 
detail in Chapter 10, “Python 2 Versus Python 3”), provides aliases for these types so that they can 
be consistently referenced in code that must run on both platforms. The class for text strings (str in 
Python 3 and unicode in Python 2) is aliased as six.text_type, whereas the class for byte strings 
(bytes in Python 3 and str in Python 2) is aliased as six.binary_type.

STRINGS WITH NON-ASCII CHARACTERS

Most Python programs, and nearly any program that handles user input (whether it be direct input, 
from a fi le, from a database, and so on) must be able to handle arbitrary characters, including those 
not found on the ASCII table. Converting ASCII characters between text strings and byte strings is 
trivial (in the utf-8 codec, it is actually a no-op). The complexity arrives when non-ASCII characters 
are in play, especially if text strings and byte strings are being used without suffi cient regard to which 
is which.

Observing the Difference
Consider a text string that contains non-ASCII characters, such as the text string in the following 
code, which says “Hello, world” Google-translated into Greek (note that this is Python 3 code):

>>> text_str = ' .'
>>> type(text_str)
<class 'str'>

The fi rst thing to note about this text string is that it cannot be encoded to a bytes instance using 
the ascii codec at all.

>>> text_str.encode('ascii')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-3: 
     ordinal not in range(128)
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This is because ASCII does not have Greek characters, so the ASCII codec does not have any way to 
translate them into raw byte data. This is fi ne, though, because that is what the utf-8 codec is for, 
as shown here:

>>> text_str.encode('utf-8')
b'\xce\x93\xce\xb5\xce\xb9\xce\xb1 \xcf\x83\xce\xb1\xcf\x82, 
\xcf\x84\xce\xbf\xce\xbd \xce\xba\xcf\x8c\xcf\x83\xce\xbc\xce\xbf.'

Several things are worth noting at this point. First and foremost, this is the fi rst string you have 
encountered where the text string and the byte string look substantially different. The repr of the 
text string looks like human-readable Greek, whereas the repr of the byte string looks like it is 
intended to be machine-readable.

Also, notice that the lengths of the strings are actually not the same.

>>> byte_str = text_str.encode('utf-8')
>>> len(text_str)
20
>>> len(byte_str)
35

Why is this? Remember the problem that Unicode exists to solve: ASCII assumes a 1:1 correlation 
between bytes and characters, which puts a substantial limitation on the number of characters 
available.

Unicode allows for many more characters to exist by breaking out of this limitation. UTF-8 
characters are variable length. A single Unicode character may be as small as a single byte (for 
the characters on the ASCII table), or as large as 4 bytes.

In the case of the example Greek text, most characters are 2 bytes, which is why the len of the byte 
string is almost double the len of the text string. However, the spaces, period, and comma (visible 
in the byte string as such) are all ASCII characters, and only take 1 byte each.

Unicode Is a Superset of ASCII
Why do the text strings and byte strings that only contain ASCII characters look so similar when 
printed, but the Unicode strings look so different?

By convention, you print the bytes in the ASCII range as their ASCII characters. Additionally, 
Unicode is structured in such a way as to make it an exact superset of ASCII. This means that the 
characters in the Latin alphabet, as well as the common punctuation symbols, are represented the 
same way in Unicode strings as well as byte strings.

This has another important meaning. Any valid ASCII text is also valid Unicode text.

OTHER ENCODINGS

Unicode is not the only encoding available to convert between raw byte data and a readable textual 
representation. Many others have been put forward, and some are in common use.
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One common encoding is formally known as the ISO-8859 standard, and colloquially called 
latin-1. (For clarity, the remainder of this chapter will use “Latin-1” to refer to this rather than 
ISO-8859.)

Like Unicode, this encoding is a superset of ASCII, and adds support for glyphs found in many 
different languages other than English. However, as its name suggests, it is designed only to support 
languages that rely on Latin glyphs for their letters, and is not suitable for rendering languages that 
use other alphabets (such as Greek, Chinese, Japanese, Russian, or Korean, among others).

It would not actually be possible to render the previous Greek string using the latin-1 codec, as the 
following Python 3 example demonstrates:

>>> text_str = ' .'
>>> text_str.encode('latin-1')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'latin-1' codec can't encode characters in position 0-
     3: ordinal not in range(256)

Encodings Are Not Cross-Compatible
It is important to recognize that while many encodings are structured as supersets of ASCII, they 
are often not compatible with one another. Outside of ASCII, there is little or no overlap between 
the latin-1 and utf-8 codecs.

Consider the difference in byte strings encoded using each codec.

>>> text_str = 'El zorro marrón rápido saltó por encima ' + \
...            'de los perros vagos.'
>>> text_str.encode('utf-8')
b'El zorro marr\xc3\xb3n r\xc3\xa1pido salt\xc3\xb3 por encima de los 
     perros vagos.'
>>> text_str.encode('latin-1')
b'El zorro marr\xf3n r\xe1pido salt\xf3 por encima de los perros vagos.'

Because of this, a string encoded using one codec is unable to be decoded using the other codec. If 
you try to take a byte string representing text encoded using latin-1 and decode it as utf-8, the 
Unicode codec will realize that it is encountering an invalid character sequence and fail.

>>> text_str.encode('latin-1').decode('utf-8')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xf3 in position 13: 
     invalid continuation byte

Worse, if you try to take a byte string representing text encoded with utf-8 and decode it as latin-
1, the (more permissive) codec will successfully return a text string, but with garbled text.

>>> text_str.encode('utf-8').decode('latin-1')
'El zorro marrÃ³n rÃ¡pido saltÃ³ por encima de los perros vagos.'

It is impossible to infer based on the content of a byte string what encoding is in use. However, 
many common document formats and data-transfer protocols provide a mechanism to declare what 
encoding is in use. On the other hand, it is also possible that a document will incorrectly specify its 
character encoding.
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READING FILES

Files always store bytes. Therefore, to use textual data read in from fi les, you must decode it into a 
text string.

Python 3
In Python 3, fi les are ordinarily decoded automatically for you. Consider the following fi le with 
Unicode text, encoded using UTF-8:

Hello, world.
Γ .

Opening and reading this fi le in Python 3 gives you a text string (not a byte string). 

>>> with open('unicode.txt', 'r') as f:
...   text_str = f.read()
...
>>> type(text_str)
<class 'str'>

This code example is making a few critical assumptions that are important to understand.

The biggest assumption being made is how to decode the fi le. Text fi les do not declare how they are 
encoded. There is no way for the interpreter to know whether it is getting UTF-8 text, Latin-1 text, 
or something else entirely.

Python 3 decides which encoding should be used based on what kind of system it is running on. A 
function is available to expose this: locale.getpreferredencoding(). On Mac OS X and on most 
Linux systems, the preferred encoding is UTF-8.

>>> import locale
>>> locale.getpreferredencoding()
'UTF-8'

However, most Windows systems use a different encoding called Windows-1252 or CP-1252 to 
encode text fi les, and running the same code in Python 3 on Windows refl ects this.

>>> import locale
>>> locale.getpreferredencoding()
'cp1252'

It is important to note explicitly that the preferred encoding that locale.getpreferredencoding() 
provides is based on how the underlying system operates. It is refl ective, not prescriptive. A text 
fi le with special characters saved on almost any system (using that system’s default tools) and then 
opened using open in Python 3 will probably be decoded correctly.

However, fi les are not opened solely on the same type of system on which they are created. This is 
where the assumption becomes problematic.

Specifying Encoding
Python 3 enables you to explicitly declare the encoding of a fi le by providing an optional encoding 
keyword argument to open. This argument accepts a codec, specifi ed as a string, similar to encode 
and decode.
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Because the example Unicode fi le is stipulated as being encoded using UTF-8, you can explicitly tell 
the interpreter to decode it as such.

>>> with open('unicode.txt', 'r', encoding='utf-8') as f:
...   text_str = f.read()
...
>>> type(text_str)
<class 'str'>

Because the fi le was encoded as UTF-8, and the UTF-8 codec was used to decode it, the text string 
contains the expected data.

>>> text_str
'Hello, world.\n .\n'

Reading Bytes
Another implicit assumption being made (which logically precedes which codec to use to decode the 
fi le) is that the fi le should be decoded at all.

You may want to read in the fi le as a byte string instead of as a text string. There are two common 
reasons to do this. The most common reason is if you are accepting non-textual data (for example, 
if you are reading in an image). However, another potential reason is for reading text fi les with an 
uncertain encoding.

To read in a byte string instead of a text string, add the character b to the second string argument 
sent to open. For example, consider reading in the same fi le containing Unicode as a byte string, as 
shown here:

>>> with open('unicode.txt', 'rb') as f:
...   byte_str = f.read()
...
>>> type(byte_str)
<class 'bytes'>

Examining the byte_str variable shows the raw bytes in the string for the second line of text.

>>> byte_str
b'Hello, world.\n\xce\x93\xce\xb5\xce\xb9\xce\xb1 \xcf\x83\xce\xb1\xcf\x82, 
     \xcf\x84\xce\xbf\xce\xbd \xce\xba\xcf\x8c\xcf\x83\xce\xbc\xce\xbf.\n'

This variable can be decoded just as if it were a byte string provided from any other source.

>>> byte_str.decode('utf-8')
'Hello, world.\nΓ .\n'

This can be a useful strategy for dealing with a fi le whose encoding is uncertain. The data can be 
safely read from the fi le as bytes, and then the program can attempt to determine programmatically 
how to decode it.

Python 2
In Python 2, the read method will always return a byte string, regardless of how the fi le 
was opened.
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>>> with open('unicode.txt', 'r') as f:
...     byte_str = f.read()
...
>>> type(byte_str)
<type 'str'>

Note that the b modifi er was not used in the second argument to open, but a str instance (which is 
a byte string in Python 2) was returned anyway.

You can get a text string by using decode, just like on a byte string that comes from any other 
source.

>>> byte_str
'Hello, world.\n\xce\x93\xce\xb5\xce\xb9\xce\xb1 \xcf\x83\xce\xb1\xcf\x82, 
     \xcf\x84\xce\xbf\xce\xbd \xce\xba\xcf\x8c\xcf\x83\xce\xbc\xce\xbf.\n'
>>>
>>> byte_str.decode('utf-8')
u'Hello, world.\n\u0393\u03b5\u03b9\u03b1 \u03c3\u03b1\u03c2, 
     \u03c4\u03bf\u03bd \u03ba\u03cc\u03c3\u03bc\u03bf.\n'

Because Python 2 always provides byte strings, the open function does not have an encoding 
keyword argument, and attempting to provide one will raise TypeError.

If you are writing code that is intended to be run on Python 2, the best and safest way to do so is to 
always open fi les in binary mode (using b) and, if you are expecting textual data, decode it yourself.

READING OTHER SOURCES

Textual data is read from many different places, not only from fi les. Modern programs receive 
direct user input, accept input over protocols (such as HTTP), read out of databases, and transfer 
data using serialization formats such as Extensible Markup Language (XML) or JavaScript Object 
Notation (JSON). 

Python provides many libraries and tools for reading data of many types, and from many sources. 
For example, the json module available in Python 2.6 and later is able to serialize and deserialize 
JSON data. Furthermore, numerous third-party packages are available that read data from other 
types or sources. For example, the pyyaml library reads YAML fi les, and the psycopg2 library reads 
and writes data from PostgreSQL databases.

Most (but not all) of these libraries return text strings. However, it is your responsibility to familiarize 
yourself with the libraries you use and to know whether you are getting text strings or byte strings. 
Also, some libraries may behave differently on different versions of Python, returning byte strings on 
Python 2 and text strings on Python 3. It is very important to make sure you keep them straight!

SPECIFYING PYTHON FILE ENCODINGS

Many document formats do provide a means to declare what codec is being used to encode text. For 
example, an XML fi le may begin like this:

<?xml version="1.0" encoding="UTF-8"?>
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This is a common way to begin an XML fi le. Pay attention to the encoding attribute. This declares 
that textual data is encoded using UTF-8. Because the XML fi le declares that this is the encoding it 
uses, programs that read XML will use UTF-8 to decode any text it fi nds from bytes to text.

Sometimes it is necessary for Python source fi les to declare an encoding. For example, suppose a 
Python source fi le includes a string literal containing Unicode characters. On Python 2, the inter-
preter assumes that Python source fi les are encoded using ASCII, and this will actually fail.

Consider the following Python module saved as unicode.py:

text_str = u'Γε .'
print(text_str)

Running this module in Python 3.3 or greater (because Python 3.0-3.2 lack the u prefi x) works 
without any issues.

$ python3.4 unicode.py
.

However, running the same module in Python 2 will fail with a syntax error on the fi rst line, 
because the Python 2 interpreter wants ASCII.

$ python2.7 unicode.py
  File "unicode.py", line 1
SyntaxError: Non-ASCII character '\xce' in file unicode.py on line 1, but 
     no encoding declared; see http://www.python.org/peps/pep-0263.html 
     for details

As the error message suggests, Python modules actually can declare an encoding, similar to how 
an XML fi le might do so. By default, Python 2 expects fi les to be encoded as ASCII, and Python 3 
expects fi les to be encoded as UTF-8.

To override this, Python enables you to include a comment at the top of a module, formatted in a 
particular way. The interpreter will read this comment and use it as an encoding declaration.

The format for specifying the encoding for a Python fi le is as follows:

# -*- coding: utf-8 -*-

You can use any codec that can be passed to encode and decode here. So, values such as ascii, 
latin-1, and cf-1252 are all acceptable (assuming, of course, that the fi le is encoded that way).

Consider the same module with a coding declaration:

# -*- coding: utf-8 -*-
text_str = u'Γε .'
print(text_str)

If you run this modifi ed fi le under Python 2, it will now succeed instead of raising a syntax error.

$ python2.7 unicode.py
Γε .

Note that, if you choose to manually specify an encoding for a Python module, it is your responsi-
bility to ensure that the encoding you specify is actually correct. Like any other document format, 
Python modules are not exempt from the possibility of declaring one encoding while actually using 
another.

http://www.python.org/peps/pep-0263.html
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If you accidentally specify the wrong encoding, your strings will come out as garbage. Consider 
what happens if the same fi le is declared to be encoded using latin-1 (when it is actually using 
utf-8 characters).

# -*- coding: latin-1 -*-
text_str = u'Γε .'
print(text_str)

Running this in either Python 2 or Python 3.3+ will produce the same result, which is complete 
garbage.

$ python3.4 unicode.py
Î"ÎμÎ¹Î± ÏƒÎ±Ï‚, Ï„Î¿Î½ ÎºÏŒÏƒÎ¼Î¿.

Because the latin-1 codec can accept almost any byte stream, it does not actually recognize that 
this is not latin-1 encoded text, and cheerfully returns bad data. Some codecs (such as utf-8) are 
more strict, in which case you would get an exception instead. The latter situation is preferable, but 
neither is what you want. It is critical to declare encodings correctly.

Note also that this is dependent on your terminal’s capability to display these characters. If you have 
a terminal that does not support Unicode, this will likely raise an exception.

STRICT CODECS

One key advantage of utf-8 as a codec is that, in addition to supporting the entire range of Unicode 
characters, it also is a “strict” codec. This means that it does not just take any byte stream and 
decode it. It can usually detect that non-Unicode byte streams are invalid and fail. 

This can lead to helpful patterns when you’re dealing with a byte stream where the encoding is not 
known (because there is no way to infer the encoding with certainty). For example, if you think that 
a byte stream might be utf-8 and might be latin-1, you can try both, as shown here:

try:
    text_str = byte_str.decode('utf-8')
except UnicodeDecodeError:
    text_str = byte_str.decode('latin-1')

Of course, this is not a panacea. What happens, for example, if you get a byte string encoded as 
something entirely different? Because latin-1 is a permissive codec, it will decode it incorrectly. 

Suppressing Errors
Sometimes when you are decoding or encoding text using strict codecs (such as utf-8 or ascii), 
you do not want a strict exception when the codec encounters text that it does not know how to 
handle.

The encode and decode methods provide a mechanism to ask a codec to behave differently when 
it encounters a set of characters that it cannot handle. Both methods take an optional second 
argument, errors, specifi ed as a string. The default value is strict, which is what raises excep-
tion classes such as UnicodeDecodeError. The two other common error handlers are ignore and 
replace.
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The ignore error handler simply skips over any bytes that the codec does not know how to decode. 
Consider what happens if you attempt to decode your Greek text as ASCII, as shown here:

>>> text_str = 'Γε .'
>>> byte_str = text_str.encode('utf-8')
>>> byte_str.decode('ascii', 'ignore')
' ,  .'

The ASCII code does not know how to handle any of the Greek characters, but it does know how 
to handle the spaces and punctuation. Therefore, it preserves those, but strips all of the foreign 
characters.

The replace error handler is similar, but instead of skipping over unrecognized characters, it 
replaces them with a placeholder character. The exact placeholder character varies slightly based on 
the situation (whether encoding or decoding, and what codec is in use), but is usually either a ques-
tion mark (?) or a special Unicode question mark diamond character ( ).

Here is the result if you try to decode your Greek text using the ascii codec and the replace error 
handler:

>>> text_str = 'Γε .'
>>> byte_str = text_str.encode('utf-8')
>>> byte_str.decode('ascii', 'replace')
' '

And here is the result if you try to encode your Greek text to a byte string using the ascii codec 
and the replace error handler:

>>> text_str = 'Γε .'
>>> text_str.encode('ascii', 'replace')
b'???? ???, ??? ?????.'

You may notice that when using the replace error handler, the number of replacement characters 
may not be 1:1 with the number of characters in the actual text string. When decoding a byte string 
using the ascii codec, the codec has no way of knowing how many bytes correspond to each char-
acter, so it ends up showing more question marks than there are actual characters in the text string.

Registering Error Handlers
It is possible to register additional error handlers if the built-in ones are insuffi cient. The codecs 
module (where the default error handlers are defi ned) exposes a function for registering additional 
error handlers, named register_error. It takes two arguments: the name for the error handler and 
the actual function that does the error handling.

That function receives the exception that would otherwise be raised, and is responsible for re-raising 
it, raising another exception, or returning an appropriate string value to be substituted into the 
resulting string.

The exception instance contains start and end attributes that correspond to the substring that the 
codec is unable to encode or decode. It also has a reason attribute with a human-readable explana-
tion of the reason why it is unable to encode or decode the characters in question, and an object 
attribute with the original string.
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If returning a replacement value, the error function must return a tuple with two elements. The fi rst 
element is the replacement character or characters, and the second is the position in the original 
string where encoding or decoding should continue. Usually, this corresponds to the end attribute 
on the exception instance. If you do this, be careful with the start position you return. It is very 
easy to get into an infi nite loop scenario.

The following example simply replaces characters with a different substitution character:

import codecs

def replace_with_underscore(err):
    length = err.end - err.start
    return ('_' * length, err.end)
codecs.register_error('replace_with_underscore', replace_with_underscore)

This error handler replaces unknown characters, but using underscores rather than question marks. 
The following is what happens if you decode a byte string with Unicode Greek text using the ascii 
codec and this error handler:

>>> text_str = 'Γε .'
>>> byte_str = text_str.encode('utf-8')
>>> byte_str.decode('ascii', 'replace_with_underscore')
'________ ______, ______ __________.'

SUMMARY

 Handling string data can be surprisingly frustrating. It is easier than you might expect to create a 
program that works right up until it encounters textual data that is dissimilar to what it expected.

When possible, try to have as much of your program as possible handle text strings. It is a good idea 
to decode byte strings as soon as possible after you receive them. Similarly, when writing data out, 
endeavor to encode your text strings to byte strings as late as possible.

Sometimes decoding is diffi cult. You may not know how a byte string is encoded, or you may be 
told an encoding, but be told wrong. This is challenging, and there is no easy solution.

Remember, the Python interpreter is your friend here. If you are dealing with problematic data, and 
you do not know the encoding, you may be able to interactively decode a sample of it using different 
codecs until you fi nd something that looks reasonable. Of course, this manual approach assumes 
that the data you are coding for will always be similar to the sample data you are using.

The key thing to remember when handling string data is to ensure that you always know what kind 
of string you are dealing with. The worst and most frustrating problems crop up when you expect a 
text string and receive a byte string, or vice versa. Be sure to keep them straight.

Chapter 9 explores regular expressions, which are a mechanism for searching strings for data that 
matches a given pattern. 
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Regular Expressions
Regular expressions are a tool for matching text by looking for a pattern (rather than looking 
for a text string) in an easy and straightforward manner. For example, you could check for the 
presence of an exact text string within another text string simply by using the Python in key-
word, as shown here:

>>> haystack = 'My phone number is 213-867-5309.'
>>> '213-867-5309' in haystack
True

Sometimes, however, you do not have the exact text you want to match. For example, what 
if you want to know whether any valid phone number is present in a string? To take that one 
step further, what if you want to know whether any valid phone number is present in the 
string, and also want to know what that phone number is?

This is where regular expressions are useful. Their purpose is to specify a pattern of text to 
identify within a bigger text string. Regular expressions can identify the presence or absence 
of text matching the pattern, and also split a pattern into one or more subpatterns, delivering 
the specifi c text within each.

This chapter explores regular expressions (or regexes, for short). First, you learn how to 
perform regular expression searches in Python using the re module. You then explore various 
regular expressions, beginning with the simple and working toward the more complex. Finally, 
you learn about regular expression substitution.

WHY USE REGULAR EXPRESSIONS?

You use regular expressions for two common reasons.

The fi rst reason is data mining—that is, when you want to fi nd a pile of text (matching a given 
pattern) in a bigger pile of text. It is very common to need to identify text that looks like a given 
type of information (for example, an e-mail address, a URL, a phone number, or the like).

9
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As humans, we identify the type of information being presented based on patterns all the time. A 
television commercial that shows alphanumeric characters ending in .com or .org is intuitively 
understood to be presenting a web address. Add an @ character, and it is intuitively understood to be 
an e-mail address instead.

The second reason is validation. You can use regular expressions to establish that you got the data 
that you expected. It is generally wise to consider “outside” data to be untrustworthy, especially 
data from users. Regular expressions can help determine whether or not untested data is valid.

The corollary to this is that regular expressions are valuable tools for coercing data into a consistent 
format. For example, a phone number can be written in multiple valid ways, and if you are asking 
for user input, you likely want to accept all of them. However, you really only want to store the 
actual digits of the phone number, which can then be consistently formatted on display. In addition 
to being useful for validation, regular expressions are useful for this kind of data coercion.

REGULAR EXPRESSIONS IN PYTHON

The Python standard library provides the re module for using regular expressions. 

The primary function that the re module provides is search. Its purpose is to take a regular 
 expression (the needle) and a string (the haystack), and return the fi rst match found. If no match 
is found at all, re.search returns None.

Consider re.search in action with the simplest regular expression possible, which is a simple 
 alphanumeric string.

>>> import re
>>> re.search(r'fox', 'The quick brown fox jumped...')
<_sre.SRE_Match object; span=(16, 19), match='fox'>

The regular expression parser’s job here is quite simple. It fi nds the word fox within the string, and 
returns a match object.

NOTE  The re module also provides a function called match that appears to be 
very similar to search. It has one important difference: it only searches for a 
match that starts at the beginning of the string. It is easy (and common) to use 
re.match by mistake when you actually want to fi nd something anywhere in a 
string. You are usually best off always using re.search and using the ^ anchor 
(discussed later in this chapter) if you need it.

Raw Strings
Observant readers may note that the regular expression was specifi ed slightly differently: r'fox'. 
The r character that precedes the string stands for “raw” (no, it does not stand for “regex”).

The difference between a raw string and a regular string is simply that raw strings do not interpret 
the \ character as an escape character. This means that, for example, it is not possible to escape a 
quote character to avoid concluding your string.
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However, raw strings are particularly useful for regular expressions because the regular expression 
engine itself needs the \ character for its own escaping at times. Therefore, using raw strings for 
regular expressions is very common and very useful. In fact, it is so common that some syntax-
highlighting engines will actually provide regular-expression syntax highlighting within raw strings.

Match Objects
Match objects have several methods to tell you things about the match. The group method is argu-
ably the most important. It returns a string with the text of the match, as shown here:

>>> match = re.search(r'fox', 'The quick brown fox jumped...')
>>> match.group()
'fox'

You may be curious why this method is named group. This is because regular expressions can be split 
into multiple subgroups that call out just a subsection of the match. You learn more about this shortly.

Match objects have several other methods. The start method provides the index in the original 
string where the match began, and the end method provides the index in the original string where 
the match ended.

The groups and groupdict methods are used to call out subsections of the regular expression. 
You learn more about these methods later, during a discussion about regular expressions with 
backreferences.

Finally, the re attribute contains the regular expression used in the match, the string attribute 
 contains the string used as the haystack, and the pos attribute is set to the position in the string 
where the search began.

Finding More Than One Match
A limitation of re.search is that it only returns at most one match, in the form of a match object 
(discussed in more detail shortly). If multiple matches exist within the string, re.search will only 
return the fi rst one. Often, this is exactly what you want. However, sometimes you want multiple 
matches if multiple matches exist.

The re module provides two functions for this purpose: findall and finditer. Both of these 
methods return all non-overlapping matches, including empty matches. The re.findall method 
returns a list, and re.finditer returns a generator.

However, there is a key difference here. These methods do not actually return a match object. 
Instead, they return simply the match itself, either as a string or a tuple, depending on the content 
of the regular expression.

Consider an example of findall:

>>> import re
>>> re.findall(r'o', 'The quick brown fox jumped...')
['o', 'o']

In this case, it returns a list with two o characters, because the o character appears twice in 
the string.
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BASIC REGULAR EXPRESSIONS

The simplest regular expression is one that contains plain alphanumeric characters—and nothing 
else. This is actually easy to overlook. Many regular expressions use direct text matching.

The string Python is a valid regular expression. It matches that word, and nothing else. Regular 
expressions, by default, are also case-sensitive, so it will not match python or PYTHON. 

>>> re.search(r'Python', 'python')
>>> re.search(r'Python', 'PYTHON')

It will, however, match the word in a larger block of text. It will match the word in Python 3, or 
This is Python code, or the like, as shown here:

>>> re.search(r'Python', 'Python 3')
<_sre.SRE_Match object; span=(0, 6), match='Python'>
>>> re.search(r'Python', 'This is Python code.')
<_sre.SRE_Match object; span=(8, 14), match='Python'>

Of course, there is essentially no value in using regular expressions just to match plaintext regular 
expressions. After all, it would be trivially easy to use the in operator to test for the presence of a 
string within another string, and str.index is more than up to the task of telling you where in a 
larger string a substring occurs.

The power of regular expressions lies in their capability to specify patterns of text to be matched.

Character Classes
Character classes enable you to specify that a single character should match one of a set of possible 
characters, rather than just a single character. You can denote a character class by using square 
brackets and listing the possible characters within the brackets.

For example, consider a regular expression that should match either Python or python: [Pp]ython.

What is happening here? The fi rst token in the regular expression is actually a character class with 
two options: P and p. Either character will match, but nothing else. The remaining fi ve characters 
are just literal characters.

What does the following regular expression match?

>>> re.search(r'[Pp]ython', 'Python 3')
<_sre.SRE_Match object; span=(0, 6), match='Python'>
>>> re.search(r'[Pp]ython', 'python 3')
<_sre.SRE_Match object; span=(0, 6), match='python'>

This regular expression matches the word Python in the string Python 3 and the word python in 
the string python 3. It does not make the entire word case-insensitive, though. It does not match the 
word in all caps, for example.

>>> re.search(r'[Pp]ython', 'PYTHON 3')
>>>

Another use for this kind of character class is for words with multiple spellings. The regular expression 
gr[ae]y will match either gray or grey, allowing you to quickly identify and extract either spelling.
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>>> re.search(r'gr[ae]y', 'gray')
<_sre.SRE_Match object; span=(0, 4), match='gray'>

It is also worth noting that character classes like this match one and exactly one character.

>>> re.search(r'gr[ae]y', 'graey')
>>>

Here, the regular expression engine successfully matches the literal g, then the literal r. Next, the 
engine is given the character class [ae], and matches it against the a. Now, the character class has 
been matched, and the engine moves on. The next character in the regular expression is a y, but the 
next character in the string is an e. This is not a match, so the regular expression parser moves on, 
starting over and looking for a starting g. When it gets to the end of the string and fails to fi nd one, 
it returns None.

Ranges
Some quite common character classes are very large. For example, consider trying to match any 
digit. It would be quite unwieldy to provide [0123456789] each time. It would be even more 
unwieldy to provide every letter, both capitalized and lowercase, each time.

To accommodate for this, the regular expression engine uses the hyphen character (-) within character 
classes to denote ranges. A character class to match any digit could be written [0-9] instead. It is also 
possible to use more than one range within a character class, simply by providing the ranges next to 
one another. The [a-z] character class matches only lowercase letters, and the [A-Z] character class 
matches only capital letters. These can be combined—[A-Za-z] would match both lowercase and 
capital letters.

>>> re.search(r'[a-zA-Z]', 'x')
<_sre.SRE_Match object; span=(0, 1), match='x'>
>>> re.search(r'[a-zA-Z]', 'B')
<_sre.SRE_Match object; span=(0, 1), match='B'>

Of course, you may also want to match the literal hyphen character. This is surprisingly common. 
Many reasons exist to match (for example) alphanumeric characters, hyphen, and underscore. What 
happens when you want to do this?

You can escape the hyphen: [A-Za-z0-9\-_]. This will tell the regular expression engine that you 
want a literal hyphen. However, escaping generally makes things more diffi cult to read. You can also 
provide the hyphen as either the fi rst or last character in the character class, as in [A-Za-z0-9_-]. 
In this case, the engine will interpret the character as a literal hyphen.

Negation
The character classes shown thus far are all defi ned by what characters may occur. However, you 
may want to defi ne a character class by what characters may not occur.

You can invert a character class (meaning that it will match any character other than those  specifi ed) 
by beginning the character class with a ^ character.

>>> re.search(r'[^a-z]', '4')
<_sre.SRE_Match object; span=(0, 1), match='4'>
>>> re.search(r'[^a-z]', '#')



152 ❘ CHAPTER 9  REGULAR EXPRESSIONS

c09.indd 09/01/2015 Page 152

<_sre.SRE_Match object; span=(0, 1), match='#'>
>>> re.search(r'[^a-z]', 'X')
<_sre.SRE_Match object; span=(0, 1), match='X'>
>>> re.search(r'[^a-z]', 'd')
>>>

In this scenario, the regular expression parser looks for literally any character other than a through 
z. Therefore, it matches against numbers, capital letters, and symbols, but not lowercase letters.

It is important to note specifi cally what the regular expression is looking for here. It is looking for 
the presence of a character that does not match any of the characters in the character class. It is not 
looking for (and will not match) the absence of a character.

Consider the regular expression n[^e]. This means the character n followed by any character that is 
not an e.

>>> re.search(r'n[^e]', 'final')
<_sre.SRE_Match object; span=(2, 4), match='na'>

In this case, it matches against the word final, and the match is na. The a character is part of the 
match, because it is a single character that is not an e.

The regular expression will fail to match if it follows an n followed by an e, as you expect.

>>> re.search(r'n[^e]', 'jasmine')
>>>

Here, the regular expression engine gets to the only n in the string but cannot match the next 
character, because it is an e, and thus there is no match.

However, the regular expression also will not match against an n at the end of the string.

>>> re.search(r'n[^e]', 'Python')
>>>

The regular expression fi nds the n in the word Python. However, that is as far as it gets. There is no 
character remaining in the string to match against [^e], and, therefore, the match fails.

Shortcuts
Several common character classes also have predefi ned shortcuts within the regular expression 
engine. If you want to defi ne “words,” your instinct may be to use [A-Za-z]. However, many 
words use characters that fall outside of this range.

The regular expression engine provides a shortcut, \w, which matches “any word character.” How 
“any word character” is defi ned varies somewhat based on your environment. In Python 3, it will 
essentially match nearly any word character in any language. In Python 2, it will only match the 
English word characters. In both cases, it also matches digits, _, and -. 

The \d shortcut matches digit characters. In Python 3, it matches digit characters in other 
languages. In Python 2, it matches only [0-9].

The \s shortcut matches whitespace characters, such as space, tab, newline, and so on. The exact 
list of whitespace characters is greater in Python 3 than in Python 2.



Basic Regular Expressions ❘ 153

c09.indd 09/01/2015 Page 153

Finally, the \b shortcut matches a zero-length substring. However, it only matches it at the begin-
ning or end of a word. This is called the word boundary character shortcut.

>>> re.search(r'\bcorn\b', 'corn')
<_sre.SRE_Match object; span=(0, 4), match='corn'>
>>> re.search(r'\bcorn\b', 'corner')
>>>

The regular expression engine matches the word corn here when it is by itself, but fails to match 
the word corner, because the trailing \b does not match (because the next character is e, which is 
a word character).

It is worth noting that these shortcuts work both within character classes and outside of them. For 
example, the regular expression \w will match any word character.

>>> re.search(r'\w', 'Python 3')
<_sre.SRE_Match object; span=(0, 1), match='P'>

Because re.search only returns the fi rst match, it matches the P character and then completes. 
Consider the result of re.findall using the same regular expression and string.

>>> re.findall(r'\w', 'Python 3')
['P', 'y', 't', 'h', 'o', 'n', '3']

Note that the regular expression matches every character in the string except the space. The \w 
shortcut does include digits in the Python regular expression engine.

The \w, \d, and \s shortcuts also include negation shortcuts: \W, \D, and \S. These shortcuts 
match any character other than the characters in the shortcut. Note again that these still require a 
character to be present. They do not match an empty string.

There is also a negation shortcut for \b, but it works slightly differently. Whereas \b matches a zero-
length substring at the beginning or end of a word, \B matches a zero-length substring that is not at 
the beginning or end of a word. This essentially reverses the corn and corner example from earlier.

>>> re.search(r'corn\B', 'corner')
<_sre.SRE_Match object; span=(0, 4), match='corn'>
>>> re.search(r'corn\B', 'corn')
>>>

Beginning and End of String
Two special characters designate the beginning of a string and end of a string.

The ^ character designates the beginning of a string, as shown here:

>>> re.search(r'^Python', 'This code is in Python.')
>>> re.search(r'^Python', 'Python 3')
<_sre.SRE_Match object; span=(0, 6), match='Python'>

Notice that the fi rst command fails to produce a match. This is because the string does not start 
with the word Python, and the ^ character requires that the regular expression match against the 
beginning of the string.
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Similarly, the $ character designates the end of a string, as shown here:

>>> re.search(r'fox$', 'The quick brown fox jumped over the lazy dogs.')
>>> re.search(r'fox$', 'The quick brown fox')
<_sre.SRE_Match object; span=(16, 19), match='fox'>

Again, notice that the fi rst command fails to produce a match, because although the word fox 
appears, it is not at the end of the string, which the $ character requires.

Any Character
The . character is the fi nal shortcut character. It stands in for any single character. However, it only 
serves this role outside a bracketed character class.

Consider the following simple regex using the . character:

>>> re.search(r'p.th.n', 'python 3')
<_sre.SRE_Match object; span=(0, 6), match='python'>
>>> re.search(r'p..hon', 'python 3')
<_sre.SRE_Match object; span=(0, 6), match='python'>

In each of these cases, the period steps in for one single character. In the fi rst example, the 
regular expression engine fi nds the character . in the regular expression. In the string, it sees a y, 
and matches and continues to the next character (a t against a t).

In the second case, the same fundamental thing is happening. Each period character matches one 
and exactly one character. It matches the y and the t, and then this consumes both of the periods, 
and the regular expression engine continues to the next character (this time, an h against an h).

Note that there is one character that the . does not match, which is newline (\n). It is possible to 
make the . character match newline, however, which is discussed later in this chapter.

Optional Characters
Thus far, all of the regular expressions you have seen have involved a 1:1 correlation between 
 characters in the regular expression itself and characters in the string being searched.

Sometimes, however, a character may be optional. Consider again the example of a word with more 
than one correct spelling, but this time, the inclusion of a letter is what separates the two spellings, 
such as “color” and “colour,” or “honor” and “honour.”

You can specify a character, character class, or other atomic unit within a regular expression as 
optional by using the ? character, which means that the regular expression engine will expect the 
token to occur either zero times or once.

For example, you can match the word “honor” with its British spelling “honour” by using the regu-
lar expression honou?r.

>>> import re
>>> re.search(r'honou?r', 'He served with honor and distinction.')
<_sre.SRE_Match object; span=(15, 20), match='honor'>
>>> re.search(r'honou?r', 'He served with honour and distinction.')
<_sre.SRE_Match object; span=(15, 21), match='honour'>
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In both cases, the regular expression contains four literal characters, hono. These match the hono 
in both honor and honour. The next thing that the regular expression hits is an optional u. In the 
fi rst case, the u is absent, but this is okay because the regular expression marks it as optional. In the 
second case, the u is present, which is also okay. In both cases, the regular expression then seeks a 
literal r character, which it fi nds, therefore completing the match.

Repetition
Thus far, you have learned only about characters (or character classes) that occur once and exactly 
once, or that are entirely optional (occurring zero times or once). However, sometimes you need the 
same character or character class to repeat.

You may expect a character class to recur a set number of consecutive times, such as in a phone 
number. American phone numbers comprise the country code 1 (often omitted), an area code, which 
is three digits, then the seven-digit phone number, with the third and fourth digit of the latter sepa-
rated by a hyphen, period, or similar.

You can designate that a token must repeat a given number of times with {N}, where the N character 
corresponds to the number of times the token should repeat.

The following uses a regular expression to identify a seven-digit, local phone number (ignore the 
country code and area code for the moment): [\d]{3}-[\d]{4}.

>>> re.search(r'[\d]{3}-[\d]{4}', '867-5309 / Jenny')
<_sre.SRE_Match object; span=(0, 8), match='867-5309'>

In this case, the regular expression engine starts by looking for three consecutive digits. It fi nds 
them (867), and then moves on to the literal hyphen character. Because this hyphen character is not 
within a character class, it carries no special meaning and simply matches the literal hyphen. The 
regular expression then fi nds the fi nal four consecutive digits (5309) and returns the match.

Repetition Ranges
Sometimes, you may not know exactly how many times the token ought to repeat. Phone numbers 
may contain a static number of digits, but lots of numeric data is not standardized this way.

For example, consider credit card security codes. Credit cards issued in the United States contain a 
special security code on the back, often called a “CVV code.” Most credit card brands use three-
digit security codes, which you can match with [\d]{3}. However, American Express uses four-
digit security codes ([\d]{4}).

What if you want to be able to match both of these cases? Repetition ranges come in handy here. 
The syntax here is {M,N}, where M is the lower bound and N is the upper bound.

It is worth noting here that the bounds are inclusive. If you want to match three digits or four digits, 
the correct syntax is [\d]{3,4}. You might be tempted (based on using Python slices) to believe 
that the upper bound is exclusive (and that you should use {3,5} instead). However, regular expres-
sions do not work this way.

>>> re.search(r'[\d]{3,4}', '0421')
<_sre.SRE_Match object; span=(0, 4), match='0421'>
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>>> re.search(r'[\d]{3,4}', '615')
<_sre.SRE_Match object; span=(0, 3), match='615'>

In both cases, the regular expression engine fi nds a series of digits that matches what it expects, and 
returns a match.

When given the choice to match three characters or four characters, where either is a valid match, 
how does the regular expression engine decide? The answer is that, under most circumstances, the 
regular expression engine is “greedy,” meaning that it will match as many characters as possible 
for as long as it can. In this simple case, that means that if there are four digits, four digits will be 
matched.

Occasionally, this behavior is undesirable. By placing a ? character immediately after the repetition 
operator, it causes that repetition to be considered “lazy,” meaning that the engine will match as few 
characters as possible to return a valid match.

>>> re.search(r'[\d]{3,4}?', '0421')
<_sre.SRE_Match object; span=(0, 3), match='042'>

The re-use of the ? character for another purpose does not cause any ambiguity for the parser, 
because the character comes after repetition syntax, rather than a token to be matched against.

Note that the ? in this situation does not serve to make the repeated segment optional. It simply 
means that, given the opportunity to match three or four digits, it will elect only to match three.

NOTE  Note that the ? character used to make a token optional is essentially an 
exact alias for {0,1}.

Open-Ended Ranges
You also may encounter cases where there is no upper bound for the number of times that a token 
may repeat. For example, consider a traditional street address. This usually starts with a number 
(for the moment, hand-wave the exceptions and assert that they always do), but the number could 
be any arbitrary length. There is nothing technically invalid about an eight-digit street number.

In these cases, you can leave off the upper bound, but retain the , character to designate that the 
upper bound is ∞. For example, {1,} designates one or more occurrences with no upper bound.

>>> re.search(r'[\d]{1,}', '1600 Pennsylvania Ave.')
<_sre.SRE_Match object; span=(0, 4), match='1600'>

This syntax also works if you do not want to specify a lower bound, in which case, the lower bound 
is assumed to be 0.

Shorthand
You can use two shorthand characters in designating common repetition situations. You can use the 
+ character in lieu of specifying {1,} (one or more). Similarly, you can use the * character in lieu of 
specifying {0,} (zero or more).
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Therefore, the previous example could be rewritten using +, as shown here:

>>> re.search(r'[\d]+', '1600 Pennsylvania Ave.')
<_sre.SRE_Match object; span=(0, 4), match='1600'>

Using + and * generally makes for a regular expression that is easier to read, and is the preferred 
syntax in cases where they are applicable.

GROUPING

Regular expressions provide a mechanism to split the expression into groups. When using groups, 
you are able to select each individual group within the match in addition to getting the entire match. 
You can specify groups within a regular expression by using parentheses.

The following is an example of a simple, local phone number. However, this time, each set of digits 
is a group.

>>> match = re.search(r'([\d]{3})-([\d]{4})', '867-5309 / Jenny')
>>> match
<_sre.SRE_Match object; span=(0, 8), match='867-5309'>

As before, you can use the group method on the match object to return the entire match.

>>> match.group()
'867-5309'

The re module’s match objects provide a method, groups, which returns a tuple corresponding to 
each individual group.

>>> match.groups()
('867', '5309')

By breaking your regular expression into subgroups like this, you can quickly get not just the entire 
match, but specifi c bits of data within the match.

It is also possible to get just a single group, by passing an argument to the group method corre-
sponding to the group you want back (note that group numbers are 1-indexed).

>>> match.group(2)
'5309'

By using groups, you can take a phone number formatted in a variety of different ways and extract 
only the data that matters, which is the actual digits of a phone number.

>>> re.search(
...     r'(\+?1)?[ .-]?\(?([\d]{3})\)?[ .-]?([\d]{3})[ .-]?([\d]{4})',
...     '(213) 867-5309')
<_sre.SRE_Match object; span=(0, 14), match='(213) 867-5309'>

>>> re.search(
...     r'(\+?1)?[ .-]?\(?([\d]{3})\)?[ .-]?([\d]{3})[ .-]?([\d]{4})', 
...     '213-867-5309')
<_sre.SRE_Match object; span=(0, 12), match='213-867-5309'>

>>> re.search(
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...     r'(\+?1)?[ .-]?\(?([\d]{3})\)?[ .-]?([\d]{3})[ .-]?([\d]{4})', 

...     '213.867.5309')
<_sre.SRE_Match object; span=(0, 12), match='213.867.5309'>

>>> re.search(
...     r'(\+?1)?[ .-]?\(?([\d]{3})\)?[ .-]?([\d]{3})[ .-]?([\d]{4})',
...     '2138675309')
<_sre.SRE_Match object; span=(0, 10), match='2138675309'>

>>> re.search(
...     r'(\+?1)?[ .-]?\(?([\d]{3})\)?[ .-]?([\d]{3})[ .-]?([\d]{4})', '+1 
...     (213) 867-5309')
<_sre.SRE_Match object; span=(0, 17), match='+1 (213) 867-5309'>

>>> re.search(
...     r'(\+?1)?[ .-]?\(?([\d]{3})\)?[ .-]?([\d]{3})[ .-]?([\d]{4})', '1 
...     (213) 867-5309')
<_sre.SRE_Match object; span=(0, 16), match='1 (213) 867-5309'>

>>> re.search(
...     r'(\+?1)?[ .-]?\(?([\d]{3})\)?[ .-]?([\d]{3})[ .-]?([\d]{4})',
...     '1-213-867-5309')
<_sre.SRE_Match object; span=(0, 14), match='1-213-867-5309'>

This regular expression is a bit more complicated than what you have encountered already. Consider 
each distinct part by itself, however, and it is easier to parse.

The fi rst segment is (\+?1)?[ .-]?. This is fi rst looking for the United States country code in 
almost any format you may encounter it (+1 or 1, and then possibly a hyphen).

The second segment is \(?([\d]{3})\)?[ .-]?, and it grabs the area code, and the optional 
hyphen or whitespace that may follow it. The area code may optionally be provided in parentheses 
(as is common with U.S. phone numbers).

The remainder of the regular expression is the fi nal seven digits of the phone number, and is the 
same as what you have already seen.

Regardless of how the phone number is formatted, the regular expression is capable of matching it. 
And although the full match is still formatted based on the original data provided, the groups are 
consistently the same.

>>> match = re.search(
...     r'(\+?1)?[ .-]?\(?([\d]{3})\)?[ .-]?([\d]{3})[ .-]?([\d]{4})', 
...     '213-867-5309')
>>> match.groups()
(None, '213', '867', '5309')

>>> match = re.search(
...     r'(\+?1)?[ .-]?\(?([\d]{3})\)?[ .-]?([\d]{3})[ .-]?([\d]{4})',
...     '+1 213-867-5309')
>>> match.groups()
('+1', '213', '867', '5309')
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The only difference between the groups is based on what was provided for the country code. If it is 
omitted, then it is not captured either, and None is provided in its place. The second through fourth 
groups consistently contain the three (intra-national) segments of the phone number.

The Zero Group
Up until this point, the examples have consistently used the group method to return the entire 
match, rather than just a single group. In fact, it may seem like very odd nomenclature indeed to 
have to call the group method to get back the entire match in the fi rst place.

Why does it work this way? The purpose of the group is actually to return a single group from the 
match. It takes an optional argument, which is the number of the group to return. If the argument is 
omitted (as the examples had consistently been doing), it defaults to 0.

In regular expressions, the groups are counted based on their position in the regular expression, 
starting with 1.

The 0 group is special, and corresponds to the entire match. This is why groups are 1-indexed. By call-
ing group with no argument, you are asking for group 0 and, therefore, getting the entire match back.

Named Groups
In addition to having positionally numbered groups, the Python regular expression engine also 
provides a mechanism for naming groups. This functionality was actually originally introduced by 
the Python regular expression implementation, although many other languages have picked it up at 
this point.

The syntax for a named group is to add ?P<group_name> immediately after the opening ( character. 
You could specify the local phone number regular expression to use named groups by rewriting it as 
(?P<first_three>[\d]{3})-(?P<last_four>[\d]{4}.

>>> match = re.search(r'(?P<first_three>[\d]{3})-(?P<last_four>[\d]{4})',
...                   '867-5309')
>>> match
<_sre.SRE_Match object; span=(0, 8), match='867-5309'>

First of all, note that named groups are also still positional groups. You can (if you choose) still look 
up the groups this way:

>>> match.groups()
('867', '5309')
>>> match.group(1)
'867'

Using named groups opens up two more ways to look up a group. First, the name of the group can 
be passed as a string to the group method.

>>> match.group('first_three')
'867'

Additionally, match objects provide a groupdict method. This method is similar in most ways to 
the groups method, except that it returns a dictionary instead of a tuple, and the dictionary keys 
correspond to the names of the groups.
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>>> match.groupdict()
{'first_three': '867', 'last_four': '5309'}

It is worth noting that groupdict, like groups, does not return the entire match; it only returns the 
subgroups. Also, if you have a mix of named groups and unnamed groups, the unnamed groups are 
not part of the dictionary returned by groupdict.

>>> match = re.search(r'(?P<first_three>[\d]{3})-([\d]{4})', '867-5309')
>>> match.groups()
('867', '5309')
>>> match.groupdict()
{'first_three': '867'}

In this case, only the fi rst group (named first_three) is a named group, and the second group is 
a numbered group only. Therefore, when groups is called, both groups are returned in the tuple. 
However, when groupdict is called, only the first_three group is included in the result.

Named groups are quite valuable for maintenance reasons. You may reference a group in code later. 
If you use primarily named groups, adding a new group to the regular expression to account for a 
change does not then require updating group numbers later in code, because the existing names stay 
the same.

Referencing Existing Groups
The regular expression engine also provides a mechanism to reference a previously matched group. 
Sometimes, you may be looking for a subsequent occurrence of the same submatch.

For example, if you are trying to parse a block of XML, you may want to very permissively look 
for any valid opening tag, such as <([\w_-]+)>. However, you want to ensure that the same clos-
ing tag exists.

It is insuffi cient to simply repeat this pattern a second time. On the one hand, it will correctly match 
patterns that you want.

>>> re.search(r'<([\w_-]+)>stuff</([\w_-]+)>', '<foo>stuff</foo>')
<_sre.SRE_Match object; span=(0, 16), match='<foo>stuff</foo>'>

On the other hand, it would also match patterns that should not actually match.

>>> match = re.search(r'<([\w_-]+)>stuff</([\w_-]+)>', '<foo>stuff</bar>')
>>> match
<_sre.SRE_Match object; span=(0, 16), match='<foo>stuff</bar>'>
>>> match.group(1)
'foo'
>>> match.group(2)
'bar'

Here, the regular expression engine correctly sees <foo> as an opening XML tag, matches it, and 
assigns the text foo to the subgroup. It then matches the literal characters stuff, and then goes to 
match the closing XML tag.

At this point, what you intuitively want is for the match to fail, because the closing XML tag is 
</bar>, which is not the same as the opening tag of <foo>.
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The regular expression engine does not do that, however. It has simply been told to match the </ 
and > wrapping characters, and then word characters in between. Because bar fulfi lls this require-
ment, the engine matches it, assigns it to the second subgroup, and returns a match.

What you really want at this point is for the regular expression engine to require the same submatch 
as was used in the fi rst group. This should make a string of <foo>stuff</foo> match, but a string 
of <foo>stuff</bar> fail to match.

The regular expression engine provides a way to do this using backreferences. Backreferences refer 
to a previously matched group within a regular expression, and cause the regular expression parser 
to expect the same match text to occur again.

You backreference numbered groups using \N, where N is the group number. Therefore, \1 will 
match the fi rst group, \2 the second group, and so on. This syntax is capable of matching up to the 
fi rst 99 groups.

Consider the following XML regular expression that uses a backreference:

>>> match = re.search(r'<([\w_-]+)>stuff</\1>', '<foo>stuff</foo>')
>>> match
<_sre.SRE_Match object; span=(0, 16), match='<foo>stuff</foo>'>
>>> match.groups()
('foo',)

Notice that there is only one subgroup now. In the previous example, there were two, both contain-
ing the text foo. In this case, however, a backreference has replaced the second group.

A much more important distinction, however, is what this regular expression does not match.

>>> re.search(r'<([\w_-]+)>stuff</\1>', '<foo>stuff</bar>')
>>>

In this case, the regular expression engine successfully matches up to the closing XML tag. 
However, because bar is not the same text as foo, the match fails.

WARNING You should not actually use custom regular expressions to parse 
XML. Use lxml or a similar tool instead. For parsing HTML, use a package like 
BeautifulSoup. The purpose of this example is solely to explain how this type 
of backreference works.

LOOKAHEAD

Earlier, you learned about negated character classes, which enable you to match any character 
other than those in the class. As mentioned before, this method makes the character or characters 
matched by the negated character class be part of the match, and it will not match the absence of 
any character at all.
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There is, however, a mechanism to accept or reject a match based on the presence or absence of con-
tent after it, without making the subsequent content part of the match. This is called lookahead.

The previous example of a negated character class was n[^e]—an n followed by a character that is 
not an e. This matched na in final, failed to match anything in jasmine, and failed to match any-
thing in Python.

A similar regular expression that instead uses negative lookahead would employ the syntax n(?!e).

>>> re.search(r'n(?!e)', 'final')
<_sre.SRE_Match object; span=(2, 3), match='n'>
>>> re.search(r'n(?!e)', 'jasmine')
>>> re.search(r'n(?!e)', 'Python')
<_sre.SRE_Match object; span=(5, 6), match='n'>

These results are slightly different than when a negated character class was used. In the fi rst 
example, using the word final, the regular expression again matches, but the match is different. 
While the negated character class made the a character part of the match, negative lookahead does 
not, and the match comes back as just the n character.

The second result is the most similar. The n in jasmine matches the n character in the regular 
expression. However, because the n is followed by an e, it is disqualifi ed, and the match fails.

The fi nal result is the most different, because this match actually succeeds, where it did not with a 
negated character class. The regular expression engine matches the n in Python. It then reaches the 
end of the string. Because that n is not followed by an e, the match succeeds and is returned.

It is worth noting that while this may look like group syntax, in this case, a group is not saved.

>>> match = re.search(r'n(?!e)', 'final')
>>> match
<_sre.SRE_Match object; span=(2, 3), match='n'>
>>> match.groups()
()

The regular expression engine also supports a different kind of lookahead, called a positive 
lookahead. This requires that the match be followed by the character or characters in question, but 
nonetheless does not make those characters part of the match.

The syntax for positive lookahead simply replaces the ! character with =. Consider this regular 
expression:

>>> re.search(r'n(?=e)', 'jasmine')
<_sre.SRE_Match object; span=(5, 6), match='n'>

In this case, the regular expression engine matches the n in the word jasmine. After doing so, it 
verifi es that the subsequent character is an e, as the regular expression requires. Because it is, the 
match is complete and returned. As before, no group is created by the lookahead.

Without the e, the match fails, as shown here:

>>> re.search(r'n(?=e)', 'jasmin')
>>>

In this case, the regular expression engine again matches the n, but disqualifi es the match because it 
is not followed by an e.
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FLAGS

Sometimes, you need to slightly tweak the behavior of the regular expression engine. The regular 
expression engines in most languages, including Python, offer a small number of fl ags that modify 
the behavior of the entire expression.

The Python engine offers several fl ags that can be sent to a regular expression when using 
re.search or similar functions. In the case of re.search, it takes a third argument for fl ags.

Case Insensitivity
The simplest and most straightforward fl ag is re.IGNORECASE, which causes the regular expression 
to become case-insensitive.

>>> re.search(r'python', 'PYTHON IS AWESOME', re.IGNORECASE)
<_sre.SRE_Match object; span=(0, 6), match='PYTHON'>

When using re.IGNORECASE, the match will still be returned using the case of the string in which it 
was found, and not the case of the regular expression.

re.IGNORECASE is also aliased to re.I. 

ASCII and Unicode
You may recall that there is a difference between how some character shortcuts work between 
Python 2 and Python 3. For example, \w in Python 3 matches word characters in nearly any 
language, rather than just the Latin alphabet.

The re module provides fl ags to make Python 2 follow the Python 3 behavior, and also fl ags to 
make Python 3 follow the Python 2 behavior.

The re.UNICODE (aliased to re.U) fl ag forces the regular expression engine to follow the Python 3 
behavior. This fl ag is defi ned in both Python 2 and Python 3, so it is safe to use it in code designed 
to run on either platform. Note that if you try to use a byte string with re.U in Python 3, the parser 
will raise an exception.

The re.ASCII (aliased to re.A) fl ag forces the regular expression to follow the Python 2 behavior. 
Unlike re.UNICODE, the re.ASCII fl ag is not available in Python 2. If you need re.ASCII in code 
that runs under both Python 2 and Python 3, use the appropriate character classes instead, or do a 
version check before applying the fl ag.

Dot Matching Newline
The re.DOTALL fl ag (aliased to re.S to match the terminology used in Perl and elsewhere) causes the 
. character to match newline characters in addition to all other characters.

>>> re.search(r'.+', 'foo\nbar')
<_sre.SRE_Match object; span=(0, 3), match='foo'>
>>> re.search(r'.+', 'foo\nbar', re.DOTALL)
<_sre.SRE_Match object; span=(0, 7), match='foo\nbar'>
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In the fi rst command, the regular expression engine must match one or more of any character. It 
matches foo, and then it reaches a line break and stops, because . does not normally match line breaks.

However, in the second command, re.DOTALL is passed, and the line break character is included in 
what . matches against. Therefore, the regular expression engine (being greedy) keeps going until it 
reaches end of string, and the entire string is returned as the match.

Multiline Mode
The re.MULTILINE fl ag (aliased to re.M) causes the ^ and $ characters, which normally would only 
match against the beginning or end of the string (respectively), to instead match against the begin-
ning or end of any line within the string.

>>> re.search(r'^bar', 'foo\nbar')
>>> re.search(r'^bar', 'foo\nbar', re.MULTILINE)
<_sre.SRE_Match object; span=(4, 7), match='bar'>

In the fi rst command, the ^ character is only able to match against the beginning of the string. 
Therefore, the word bar does not match, because it is not the fi rst thing in the string.

In the second command, however, the re.MULTILINE fl ag is used. Therefore, the ^ character merely 
requires the beginning of a line. Because a newline character immediately precedes bar, it matches 
and the match is returned.

Verbose Mode
The re.VERBOSE fl ag (aliased to re.X) allows for complicated regular expressions to be expressed in 
a more readable way.

This fl ag does two things. First, it causes all whitespace (other than in character classes) to be 
ignored, including line breaks. Second, it treats the # character (again, unless it’s inside a character 
class) as a comment character.

This allows for easy annotation of regular expressions, which can be valuable as they become 
complicated. The following two commands are equivalent:

>>> re.search(r'(?P<first_three>[\d]{3})-(?P<last_four>[\d]{4})', '867-5309')
<_sre.SRE_Match object; span=(0, 8), match='867-5309'>
>>> re.search(r"""(?P<first_three>[\d]{3})   # The first three digits
...               -                          # A literal hyphen
...               (?P<last_four>[\d]{4})     # The last four digits
...            """, '867-5309', re.VERBOSE)
<_sre.SRE_Match object; span=(0, 8), match='867-5309'>

Debug Mode
The re.DEBUG fl ag (not aliased) dumps some debugging information out to sys.stderr while com-
piling a regular expression.

>>> re.search(r'(?P<first_three>[\d]{3})-(?P<last_four>[\d]{4})', 
     '867-5309', re.DEBUG)
subpattern 1
  max_repeat 3 3



Substitution ❘ 165

c09.indd 09/01/2015 Page 165

    in
      category category_digit
literal 45
subpattern 2
  max_repeat 4 4
    in
      category category_digit
<_sre.SRE_Match object; span=(0, 8), match='867-5309'>

Using Multiple Flags
Occasionally, you may need to use more than one of these fl ags at once. To do this, join them with 
the | (bitwise OR) operator. For example, if you need both the re.DOTALL and re.MULTILINE fl ags, 
the correct syntax is re.DOTALL | re.MULTILINE or re.S | re.M.

Inline Flags
It is also possible to use fl ags within a regular expression itself by beginning the regular expression 
with special syntax. This uses the short-form fl ag, and looks like this:

>>> re.search('(?i)FOO', 'foo').group()
'foo'

Note the (?i) at the beginning. This is the equivalent of using the re.IGNORECASE fl ag. However, 
this syntax is usually less preferable to sending fl ags explicitly. Also, the long form of the fl ags will 
not work. (?ignorecase) is not valid and will raise an exception.

SUBSTITUTION

The regular expression engine is not limited to simply identifying whether a pattern exists within 
a string. It is also capable of performing string replacement, returning a new string based on the 
groups in the original one.

The substitution method in Python is re.sub. It takes three arguments: the regular expression, the 
replacement string, and the source string being searched. Only the actual match is replaced, so if 
there is no match, re.sub ends up being a no-op.

re.sub enables you to use the same backreferences from regular expression patterns within the 
replacement string. Consider the task of stripping irrelevant formatting data from a phone number:

>>> re.sub(r'(\+?1)?[ .-]?\(?([\d]{3})\)?[ .-]?([\d]{3})[ .-]?([\d]{4})',
...        r'\2\3\4',
...        '213-867-5309')
'2138675309'

Because this regular expression matches nearly any phone number and groups only the actual digits 
of the phone number, you will get back the same data regardless of how the original number was 
formatted.

>>> re.sub(r'(\+?1)?[ .-]?\(?([\d]{3})\)?[ .-]?([\d]{3})[ .-]?([\d]{4})', 
...        r'\2\3\4',
...        '213.867.5309')
'2138675309'
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>>> re.sub(r'(\+?1)?[ .-]?\(?([\d]{3})\)?[ .-]?([\d]{3})[ .-]?([\d]{4})', 
...        r'\2\3\4',
...        '2138675309')
'2138675309'

>>> re.sub(r'(\+?1)?[ .-]?\(?([\d]{3})\)?[ .-]?([\d]{3})[ .-]?([\d]{4})',
...        r'\2\3\4',
...        '(213) 867-5309')
'2138675309'

>>> re.sub(r'(\+?1)?[ .-]?\(?([\d]{3})\)?[ .-]?([\d]{3})[ .-]?([\d]{4})', 
...        r'\2\3\4',
...        '1 (213) 867-5309')
'2138675309'

>>> re.sub(r'(\+?1)?[ .-]?\(?([\d]{3})\)?[ .-]?([\d]{3})[ .-]?([\d]{4})', 
...        r'\2\3\4',
...        '+1 213-867-5309')
'2138675309'

The replacement string is not limited to just using the backreferences from the string; other charac-
ters are interpreted literally. Therefore, re.sub can also be used for formatting. For example, what 
if you want to display a phone number rather than store it, but you want to display it in a consistent 
format? re.sub can handle that, as shown here:

>>> re.sub(r'(\+?1)?[ .-]?\(?([\d]{3})\)?[ .-]?([\d]{3})[ .-]?([\d]{4})',
...        r'(\2) \3-\4',
...        '+1 213-867-5309')
'(213) 867-5309'

Everything here is the same as in the previous examples, except for the replacement string, which 
has gained the parentheses, space, and hyphen. Therefore, so has the result.

COMPILED REGULAR EXPRESSIONS

One fi nal feature of Python’s regular expression implementation is compiled regular expressions. 
The re module contains a function, compile, which returns a compiled regular expression object, 
which can then be reused.

The re module caches regular expressions that it compiles on the fl y, so in most situations, there is 
no substantial performance advantage to using compile. It can be extremely useful for passing regu-
lar expression objects around, however.

The re.compile function returns a regular expression object, with the compiled regular expression 
as data. These objects have their own search and sub methods, which omit the fi rst argument (the 
regular expression itself).

>>> regex = re.compile(
...     r'(\+?1)?[ .-]?\(?([\d]{3})\)?[ .-]?([\d]{3})[ .-]?([\d]{4})'
... )
>>> regex.search('213-867-5309')
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<_sre.SRE_Match object; span=(0, 12), match='213-867-5309'>
>>> regex.sub(r'(\2) \3-\4', '+1 213.867.5309')
'(213) 867-5309'

Also, there is one other advantage to using re.compile. The search method of regular expression 
objects actually allows for two additional arguments not available on re.search. These are the 
starting and ending positions of the string to be searched against, enabling you to exempt some of 
the string from consideration.

>>> regex = re.compile('[\d]+')
>>> regex.search('1 mile is equal to 5280 feet.')
<_sre.SRE_Match object; span=(0, 1), match='1'>
>>> regex.search('1 mile is equal to 5280 feet.', pos=2)
<_sre.SRE_Match object; span=(19, 23), match='5280'>

The values sent are available as the pos and endpos attributes on the match objects returned.

SUMMARY

 Regular expressions are extremely useful tools for fi nding, parsing, and validating data. They often 
look intimidating to those who have not used them before, but they are manageable if taken piece by 
piece.

In addition, mastering regular expressions will enable you to perform parsing and formatting tasks 
that are much more diffi cult without a pattern-matching algorithm.

However, be wary of using regular expressions when they are unnecessary. Sometimes, using a few 
lines of code with direct string comparison is much more straightforward. Like any tool, regular 
expressions should be used when they are the appropriate solution, but not when simpler approaches 
are available to you.

Similarly, bear in mind that regular expressions are often unsuitable for parsing extremely complex 
structures. If you are parsing a non-trivial document format, you should probably be looking for 
another library that handles that for you.

Chapter 10 examines testing applications in Python. 
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PART IV
Everything Else
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Python 2 Versus Python 3
In several chapters of this book (particularly Chapter 5, “Metaclasses,” and Chapter 8, 
“Strings and Unicode”), you have learned about the differences that exist in the way that 
Python 2 and Python 3 handle some things.

In fact, Python 3 is a very substantial update to the Python programming language. Throughout 
its history, Python has stressed strong backward compatibility, eschewing changes that are likely 
to break large amounts of existing code. That does not mean that the language never deprecates 
anything, of course, but backward compatibility is a strong focus.

Python 3.0 is an exception to this. Like developers of any complex language or system, the 
developers of Python made certain decisions that they later viewed as mistakes. Therefore, 
Python 3.0 can properly be seen as an endeavor to fi x mistakes at the expense of backward 
compatibility.

Because existing Python programs are so pervasive, both Python 2 and Python 3 have been 
supported for some time—to allow the ecosystem time to migrate from the old to the new. 
Python 2.6 was released roughly concurrently with Python 3.0, and Python 2.7 roughly a 
year and a half later (a full year after the release of Python 3.1).

Currently, Python 2.7 and even Python 2.6 are still in common use. Therefore, it is important 
to understand the differences between Python 2 and Python 3, and how to navigate both.

This chapter explores what distinguishes Python 2 and Python 3, and discusses strategies for 
navigating the dual ecosystem.

CROSS-COMPATIBILITY STRATEGIES

Python 3 introduces a series of backward-incompatible changes (as well as many backward-
compatible ones, but this chapter will not focus much on those). Most of these backward-
incompatible changes either focus on removing ambiguity, ensuring that there is a single and 
coherent approach to solving problems, simply updating the language to address quirks, or 
making Python’s behavior more modern.

10
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Because Python 3 was not intended to be a backward-compatible release, there is no expectation 
that Python 2 code should be able to run unmodifi ed on Python 3. In fact, many valid Python 2 
modules will not run in Python 3, or may produce different results, and some may even contain 
syntax errors.

That said, you can use several strategies to write code for both ecosystems.

The __ future __ Module
In some cases, useful Python 3 behavior is able to be “back-ported” into Python 2.6 and Python 2.7. 
You do this using the __future__ module, which has been in the Python language for some time.

The __future__ module provides a mechanism to introduce a feature into the Python language 
slowly, allowing the feature to be opted into at fi rst, and then eventually becoming the language’s 
default behavior. 

For example, this module was used when yield and later with were being added as keywords to 
Python. Because adding a new keyword to the language will break existing code that may use either 
term as a variable name, these keywords were introduced slowly. For one Python release, it was 
 possible to opt-in to the new keyword by using a statement such as the following:

from __future__ import with_statement

In the case of with, this statement became available in Python 2.5. Using it made both with and as 
become keywords. If you ran code that used either word as an identifi er, you would get a warning. 
Then, in Python 2.6, with and as were always keywords. However, even then, importing 
with_statement from __future__ is still valid (it is simply a no-op). This allows code that uses 
with to run in both Python 2.5 and in later versions.

This same principle applies to many features introduced in Python 3. It is possible to opt-in to 
some or all of their functionality in Python 2.6 and Python 2.7, which makes writing code for 
both  ecosystems more manageable.

As this chapter iterates over specifi c behaviors that are distinct in Python 2 and Python 3, you will 
learn about those that can be opted into in Python 2 using this method.

2to3
When Python 3 was fi rst released, the recommended mechanism to handle sharing source code 
between Python 2 and Python 3 was by using a tool called 2to3.

2to3 is a command-line application that ships with current versions of Python. Its purpose is to 
attempt to take a module written for Python 2 and provide a patch to convert it into a Python 3 
module, or even convert the module automatically. A similar tool, 3to2, is also available (on PyPI) 
to do the converse.

Consider the following conversion of foo.py, which is a very simple, one-line Python 2 module:

$ cat foo.py
print 'foo'
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This particular module is valid in Python 2 and breaks in Python 3, because print in Python 3 is a 
function rather than a statement (more on that later). Therefore, what works in Python 2 is a syntax 
error in Python 3.

$ python2.7 foo.py
foo
$ python3.4 foo.py
  File "foo.py", line 1
    print 'foo'
              ^
SyntaxError: invalid syntax

This is a very straightforward (albeit backward-incompatible) change, and while it may be arduous 
to try to change this manually throughout an entire codebase, it is something that 2to3 can handle. 
By running 2to3 on this fi le, you get some information about what 2to3 thinks must be done.

$ 2to3 foo.py
RefactoringTool: Skipping implicit fixer: buffer
RefactoringTool: Skipping implicit fixer: idioms
RefactoringTool: Skipping implicit fixer: set_literal
RefactoringTool: Skipping implicit fixer: ws_comma
RefactoringTool: Refactored foo.py
--- foo.py     (original)
+++ foo.py     (refactored)
@@ -1 +1 @@
-print 'foo'
+print('foo')
RefactoringTool: Files that need to be modified:
RefactoringTool: foo.py

By default, 2to3 does not actually do anything. It just tells you what must be done and offers 
patches. Here, it has found the print statement on line 1 and changed it to a function, told you 
about it, but it didn't actually modify the fi le and change code (as discussed in the next section).

$ cat foo.py
print 'foo'

Writing Changes
However, 2to3 is able to write changes that it is certain of. The simplest way to do this is to add a 
-w fl ag, which will overwrite the fi les in-place. (Note again that it will overwrite the fi les in-place, 
so you should understand what you are doing.)

$ 2to3 -w foo.py
RefactoringTool: Skipping implicit fixer: buffer
RefactoringTool: Skipping implicit fixer: idioms
RefactoringTool: Skipping implicit fixer: set_literal
RefactoringTool: Skipping implicit fixer: ws_comma
RefactoringTool: Refactored foo.py
--- foo.py     (original)
+++ foo.py     (refactored)
@@ -1 +1 @@
-print 'foo'
+print('foo')
RefactoringTool: Files that were modified:
RefactoringTool: foo.py
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Sure enough, the actual foo.py fi le has been modifi ed on-disk, and now it runs without error in 
Python 3.

$ cat foo.py
print('foo')
$ python3.4 foo.py
foo

Limitations
Unfortunately, the 2to3 tool cannot handle every conceivable situation, so simply running 2to3 on 
a module is not a guarantee that any valid Python 2 module will magically become a valid Python 3 
module.

The way that 2to3 works under the hood is that it contains a number of fi xers, which is its term for 
a translation layer between certain Python 2 code and its equivalent Python 3 code. For example, 
there is a fi xer called print that handles the conversion from print statements to print functions. 
It is even possible to enable or disable specifi c fi xers (with --fix and --nofix, respectively).

Another more fundamental limitation to 2to3 is that using it fundamentally requires the maintenance 
of two separate codebases, one for Python 2 and one for Python 3. The offi cial recommendation when 
using 2to3 is that you simply write Python 2 code and constantly convert it to Python 3 for deploy-
ment. In practice though, this gets frustrating and is not really viable for most large projects.

There is a better way.

six
six is a Python module written by Benjamin Peterson that is intended to provide single-source com-
patibility between Python 2 and Python 3. In 2to3, code is written for Python 2, and then a pro-
gram runs and generates similar Python 3 code. However, six follows a different philosophy. Using 
six, you write a single module in Python 3 syntax that also happens to run correctly on Python 2.6 
and Python 2.7.

This approach offers several advantages over 2to3, but the most important distinction is that only 
one copy of the code must be maintained. The same code runs in both environments. Additionally, 
six is distributed as a single module, making it very easy to include without relying on a dependency 
manager if needed.

What six fundamentally does is provide a unifi ed interface to elements that have changed between 
Python 2 and Python 3. For example, you learned in Chapter 8 that Python 2’s unicode class is the 
same as Python 3’s str class. The six module provides six.text_type, which maps to the correct 
class in either environment.

For example, the following two lines of code are identical in Python 3:

>>> str('foo')
>>> six.text_type('foo')

Additionally, the following two lines of code are identical in Python 2:

>>> unicode('foo')
>>> six.text_type('foo')
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They key limitation to six is that it is often only a viable approach if you do not have to support any 
version of Python before Python 2.6. Although six itself will run previous versions of Python, the 
inability to backport some Python 3 features from __future__ in Python 2.5 and older means that 
it is very diffi cult to ensure consistency of behavior. That said, if you are certain that the features 
you are using work on older versions of Python, six will usually work also.

The good news is that, if you are reading this, it is fairly unlikely that you really need to support 
versions of Python before Python 2.6, which was released in 2008 and now has near universal adop-
tion. Every modern Linux distribution is on at least Python 2.6, and has been for many years. If you 
are on Windows, you are probably installing Python yourself, and are unlikely to have any need to 
be on an older version.

six is now the mechanism that most people recommend to handle writing code designed to operate 
within a Python 2 or Python 3 environment. As this chapter explores differences between Python 2 
and Python 3, you will learn what six’s syntax is to get the same approach on both environments 
with a unifi ed interface. If you are writing code that must run in Python 2 and Python 3, this is 
probably what you will want to use.

CHANGES IN PYTHON 3

Many changes exist between Python 2 and Python 3. Some of them are extremely substantial, 
whereas others just involve something as simple as renaming a module.

Strings and Unicode
Possibly the most sweeping change to Python 3 is that string literals are Unicode instead of ASCII, 
and that most of the strings you will receive throughout your programs are generally Unicode.

This change is such a big deal that this book actually devoted considerable space to this topic in 
Chapter 8, in which you learned about Python’s handling of text data in detail. Here is quick review.

In Python 2, string literals are byte strings by default. They are Unicode strings in Python 3. 
The Python 3 behavior can be backported to Python 2 with from __future__ import 
unicode_literals, and you absolutely should do this if you are writing single-source code 
for both environments.

Also, the byte string and text string classes have different names. In Python 2, the str class is for 
byte strings, and the unicode class is for text strings. In Python 3, these are bytes and str. This 
means that a class named str exists in both, but it is not the same thing. The six module aliases 
these as six.binary_type and six.text_type.

NOTE  For more information, see Chapter 8.



176 ❘ CHAPTER 10  PYTHON 2 VERSUS PYTHON 3

c10.indd 09/01/2015 Page 176

The print Function
As shown in the earlier example, Python 3 alters the way that print works. In Python 2, print is a 
special statement, as shown here:

print 'The quick brown fox jumped over the lazy dogs.'

By default, print would write to sys.stdout and append \n to the end of the string. However, 
print could be used to print elsewhere with a special syntax, >>.

import sys
print >> sys.stderr, 'The quick brown fox jumped over the lazy dogs.'

In Python 3, print has been made a bit more normal. First and foremost, it is now a function, 
which means it is called like a function, with parentheses.

print('The quick brown fox jumped over the lazy dogs.')

It is still possible to print to somewhere that is not sys.stdout. The Python 3 print function takes 
a keyword argument called file (defaulting to sys.stdout), which handles this case.

import sys
print('The quick brown fox jumped over the lazy dogs.', file=sys.stderr)

In addition, the new print function is more fl exible, because you can change the default behavior of 
appending \n to the string using the end keyword argument.

print('The quick brown fox jumped over the lazy dogs.', end='')

This would still print to sys.stdout, but not append \n to the end of the string before doing so.

The Python 3 print function is available in Python 2.6 and Python 2.7 in the __future__ module.

from __future__ import print_function

NOTE  If you are using an even older version of Python, six provides the same 
functionality as six.print_. (Note the trailing underscore so as not to inter-
fere with the Python keyword.) The arguments exactly match the arguments of 
the print function. As a reminder, you generally do not want to attempt to do 
single-source codebases that support Python 2.5 and below.

Division
In Python 2, a division (/) operation between two integers will return an int. This is a constant 
source of confusion in Python 2, where most people intuitively expect division of two integers to 
return a float if appropriate. Consider the following Python 2 code:

>>> 4 / 2
2
>>> 5 / 2
2
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It is counterintuitive that 5 divided by 2 would return 2. The reason why it does is because it is 
integer division. The interpreter is doing the division, getting the correct result of 2.5, and then 
fl ooring it to get an integer to maintain type consistency. However, that is usually not what you 
actually want in a dynamic language.

You get around this by ensuring that either the dividend or the divisor is a float.

>>> 5.0 / 2
2.5

Python 3 fi xes this behavior by having integer division always return a float, which is generally 
what you want in a dynamic language.

>>> 4 / 2
2.0
>>> 5 / 2
2.5

If you want to get an integer back from a division operation, use the “fl oor division” operator, //, 
which always returns an integer regardless of the type of the arguments provided.

>>> 4 // 2
2
>>> 5 // 2
2

The Python 3 behavior is preferable, but backward incompatible. If you are writing code that must 
run in both environments, the __future__ module is once again your friend. You can opt into the 
Python 3 behavior in Python 2.6 and Python 2.7 by using the following:

from __future__ import division

This is the recommended mechanism for a single-source approach.

Absolute and Relative Imports
The primary way that packages are referenced for use in your Python modules is through importing. 
However, what actually happens when you issue import foo? It depends.

In Python 2, the fi rst thing that the interpreter will try (after the standard library) is a relative 
import. This means that it will look for a module called foo.py (or foo/__init__.py) in the same 
directory as the module that is attempting the import. If it fi nds one, it is done; it runs this module 
and makes its attributes available, namespaced under foo.

If the interpreter does not fi nd such a fi le (by far the most common case), then it begins looking in 
every directory on sys.path to fi nd a matching module. Under normal circumstances, this will 
include any installed Python packages. This kind of import is called an absolute import.

This behavior can be problematic. For example, simply adding a duplicatively named module in a 
directory can cause other modules in that directory to break, because suddenly they are  performing 
relative imports rather than absolute ones.
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Python 3 alters this behavior by simply removing relative imports as a possibility. All imports are 
absolute imports. If you want a relative import (which is occasionally desirable), you must explicitly 
ask for one using a special syntax, which is a leading period.

import .foo

This tells the interpreter to import a module named foo that is a sibling of the current module. In 
this case, only a relative import is attempted at all. (An import from the standard library is not, nor 
is an import from modules on sys.path.) The interpreter also provides a .. syntax for reaching up 
in the directory tree.

The Python 3 behavior here is a safer and more explicit approach, but breaks backward compatibil-
ity. If you are maintaining an application or distribution that runs under either Python 2 or Python 
3, you can opt into the Python 3 behavior using the __future__ module, as shown here:

from __future__ import absolute_import

This will cause your module to use the Python 3 import behavior. Only the standard library or 
installed modules are considered as places from which to import a module, unless the explicit 
 relative import syntax is used (in which case, only it is considered).

Removal of “Old-Style” Classes
Python 2.2 introduced what were at the time referred to as new-style classes. Essentially, these were 
an attempt to fi x certain issues with class hierarchies in Python (in particular, method-resolution 
order in multiple inheritance cases was broken), unify the data model, and introduce some new 
 features (such as super).

In order to preserve backward compatibility with older versions of Python, the interpreter required 
opting in. Classes in Python 2 were old-style by default.

>>> class Foo:
...     pass
...
>>> type(Foo)
<type 'classobj'>

You could create a new-style class by explicitly inheriting a class from any new-style class, most 
notably object, which was the top of the new-style class tree.

>>> class Foo(object):
...     pass
...
>>> type(Foo)
<type 'type'>

In Python 3, old-style classes have been entirely removed. The few old-style classes that remain in 
the Python 2 standard library have all been converted to new-style classes. Explicitly inheriting 
classes from object is still allowed, but no longer necessary.

You may notice that the examples in this book (including those that are explicitly Python 3 code) 
all explicitly inherit from object. If you are writing code specifi cally for Python 3, you do not 
need to do this. However, if you are writing code that should run in either a Python 2 or Python 3 
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environment, you should simply continue to explicitly subclass object as you did in Python 2 code. 
This still continues to work in Python 3, and means that these classes are always new-style, regard-
less of which environment they run under.

If you are performing tests to determine whether a variable is a class, six makes available six
.class_types. On Python 2, six.class_types is a tuple with type and classobj, whereas on 
Python 3 it is a tuple containing only type. 

Metaclass Syntax
Python 3 also alters the syntax for assigning a custom metaclass to a class. In Python 2, a custom 
metaclass was assigned to a class using the __metaclass__ attribute.

class Foo(object):
    __metaclass__ = FooMeta

In Python 3, the metaclass has become part of the class declaration itself.

class Foo(object, metaclass=FooMeta):
    pass

These two syntaxes are incompatible. You are unable to use metaclass as a keyword in a class 
 declaration in Python 2, and using a __metaclass__ attribute will do nothing in Python 3.

The six library provides a solution to this problem. It makes available two separate mechanisms 
(six.with_metaclass and six.add_metaclass) for assigning a metaclass to a class as you create it.

six.with_metaclass
The six.with_metaclass function simply takes the desired metaclass and all of the base classes, 
and returns a stub class from which the new class inherits. Syntactically, it is used like this:

class Foo(six.with_metaclass(FooMeta, object)):
    pass

What six is doing under the hood here is creating an empty class that subclasses object and 
has the FooMeta metaclass. It is returning that class, which is then the sole class from which Foo 
inherits. This causes Foo to have the FooMeta metaclass (on both Python 2 and Python 3) and the 
appropriate parent classes, but adds a trivial additional base class (the stub class) under the hood.

You can observe this in action by looking at the method resolution order for the new class.

>>> import six
>>>
>>> class FooMeta(type):
...     pass
...
>>> class Foo(six.with_metaclass(FooMeta, object)):
...     pass
...
>>> Foo.__mro__
(<class '__main__.Foo'>, <class 'six.NewBase'>, <type 'object'>)
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Pay particular attention to that center class in the method resolution order: six.NewBase. That 
is the stub class that six created. It subclasses object (as you told it to in your call to six.with_
metaclass). If you inspect it, you will see it is where the FooMeta metaclass is being picked up.

>>> NewBase = Foo.__mro__[1]
>>> NewBase
<class 'six.NewBase'>
>>> type(NewBase)
<class '__main__.FooMeta'>

Indeed, inspecting the Foo class reveals that it, too, is a FooMeta, because it inherits from NewBase, 
which is also a FooMeta.

>>> type(Foo)
<class '__main__.FooMeta'>

six.add_metaclass
The six module also provides add_metaclass, which achieves the same goal somewhat differently. 
The fi rst difference is in the API. add_metaclass is used as a class decorator.

@six.add_metaclass(FooMeta)
class Foo(object):
    pass

The result here is essentially the same. You can observe this by checking the type of Foo and see that 
it is a FooMeta.

>>> type(Foo)
<class '__main__.FooMeta'>

However, the way in which this gets done under the hood is different. While with_metaclass per-
forms its magic by creating a stub class and placing it in the class hierarchy, add_metaclass avoids 
this. There is no stub class in the method resolution order when you use this method.

>>> Foo.__mro__
(<class '__main__.Foo'>, <type 'object'>)

The way that add_metaclass works under the hood is that the class is ultimately constructed twice. 
First, a “normal” class is created, and then the decorator receives that class and replaces it with a 
class constructed with the appropriate metaclass, which it then returns. This is slightly less effi cient, 
but ends with a slightly cleaner result. 

Exception Syntax
Much like it did with print, Python 3 changes the syntax for exceptions in order to remove an 
unusual (and somewhat arbitrary) syntax.

Under Python 2, the syntax to raise an exception originally looked like this:

raise ValueError, 'Invalid value.'

What happens when you issue this statement in Python 2? The interpreter creates a new ValueError 
object and sends the string as its only argument. Once the object is created, the interpreter raises the 
exception.

mailto:@six.add_metaclass
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In other words, what is really happening is that it is simply a call to create a new instance of a class 
(in this case, ValueError). Therefore, it should look like the following, and in Python 3, it does. 
The unusual syntax with the comma has been removed in favor of a direct object instantiation.

raise ValueError('Invalid value.')

Because exceptions are just objects (that happen to subclass Exception), and because it was already 
valid in Python 2 to raise exception objects, the Python 3 syntax shown here works without any 
modifi cation in Python 2.

You should simply use this syntax all the time, even for code exclusive to Python 2. This means you 
no longer need to worry about this distinction.

Handling Exceptions
In addition to changing the syntax for how exceptions are raised, Python 3 also introduces a new 
syntax for how exceptions are handled. In Python 2, the except statement looked something like 
this (again, note the comma):

try:
    raise ValueError('Invalid value.')
except ValueError, ex:
    print('%s' % ex)

Python 3 alters this syntax to make it slightly clearer. The comma in Python 2 is replaced with the 
as keyword (which was introduced for other, unrelated purposes in Python 2.5).

try:
    raise ValueError('Invalid value.')
except ValueError as ex:
    print('%s' % ex)

The Python 3 syntax shown here is also valid in Python 2.6 and Python 2.7. If you are writing 
code that only needs to run on Python 2.6 or later, you should use the as keyword in lieu of the 
old syntax.

Exception Chaining
Python 3 also adds an important new feature to its exception handling, which is exception chaining. 
Essentially, it is sometimes the case that, while the interpreter is handling one exception (in an except 
clause), another exception is raised. In Python 2, all information about the original exception is lost.

In Python 3, this is no longer the case. When the second exception is raised, it is given a 
__context__ attribute with the original exception.

Additionally, Python 3 provides a mechanism to explicitly specify another exception as a “cause” 
for an exception, using a new syntax: raise...from.

raise DatabaseError('Could not write') from IOError('Could not open file.')

This code would create the DatabaseError exception and the IOError exception. The latter would be 
assigned as the cause of the former. How this works is that exceptions in Python 3 now have a 
__cause__ attribute, normally set to None, and that is set to the appropriate exception when this syntax 
is invoked. The __cause__ attribute is considered to take precedence over the __context__ attribute.
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When is an appropriate time to use this? The most common case for a situation like this is in frame-
works that implement multiple backends for data storage, task execution, or the like, but want to 
expose a common error class so that the programmer using the framework only has to deal with one 
type of exception. In Python 2, such a model required that you simply lose the exception data under-
neath, but in Python 3, it is retained.

Unfortunately, Python 2 does not support such exception chaining at all, and raise...from is not 
valid syntax in Python 2. The six library, however, provides six.raise_from. It takes two argu-
ments (the two exceptions), and will attach the exception context in Python 3 while simply ignoring 
the second argument in Python 2. If you are writing code that should run in both environments and 
want to take advantage of exception chaining in Python 3, you should use six.raise_from.

Dictionary Methods
The dict class in Python 2 includes three methods that change in Python 3: keys, values, and 
items. In Python 2, each of these methods returns a list object containing the appropriate 
contents.

>>> d = {'foo': 'bar'}
>>> d.keys()
['foo']

This is completely fi ne on small dictionaries, but can present a problem on larger ones (especially 
with values and items), because you are making an in-memory copy of what can potentially be a 
large amount of data.

In most cases, a copy is not what you need. You simply want to iterate over the requested data. A 
generator (see Chapter 3, “Generators”) is a much better solution for this task. In fact, Python 2 
provides such generators, which are called iterkeys, itervalues, and iteritems.

>>> d = {'foo': 'bar'}
>>> gen = d.iterkeys()
>>> gen
<dictionary-keyiterator object at 0x10732d7e0>
>>> next(gen)
'foo'
>>> next(gen)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

Additionally, Python 2 also provides views for each of these, called viewkeys, viewvalues, and 
viewitems. These view objects simply refer to the original dictionary. The result is that if the 
 original dictionary changes, the views also change.

In Python 3, only the views remain, and the methods that return a list as well as the methods 
that return only a generator have been removed (the views serve as generators also). In Python 3, 
however, the view methods now use the original method names of keys, values, and items.

If you are writing code that is intended to run under both Python 2 and Python 3, the six module 
provides six.viewkeys, six.viewvalues, and six.viewitems, which map to the appropriate 
methods on both Python 2 and Python 3.
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Function Methods
Python 2 and Python 3 both provide ways to inspect the properties of functions, such as their 
names, the code within them, and the arguments that they take. The recommended way to do this is 
by using the inspect module, but code that interacts with function objects directly is quite 
common, and, therefore, the six module provides an interface to it.

Functions in Python have several attributes that were renamed in Python 2.6 (not Python 3.0). 
Before this point, these attributes were considered to be a private API, so the Python developers 
decided that allowing the attributes to be renamed in Python 2.6 was acceptable.

The Python 2.5 attribute names were func_closure, func_code, func_defaults, and func_
globals. In Python 2.6, these are renamed to remove the func_ prefi x, and instead use double 
underscores (for example, __closure__).

Consider the following __defaults__ tuple for a simple function:

>>> def foo(x=5):
...     return x + 3
...
>>> foo.__defaults__
(5,)

This tells you that the fi rst optional argument has a default of 5. Because there is only one optional 
argument, there is only one element in the tuple.

The six module provides aliases that will return the correct attribute regardless of what version of 
Python you are running. These are six.get_function_closure, six.get_function_code, 
six.get_function_defaults, and six.get_function_globals. Each takes the function as its 
argument, as shown here:

>>> import six
>>> six.get_function_defaults(foo)
(5,)

Iterators
Python 3 changes the structure of iterators slightly. Under Python 2, iterators were expected to have 
a next method that takes no arguments. In Python 3, this becomes __next__.

If you need an iterator that runs correctly under Python 2 and Python 3, the correct solution is to 
have a next method that does nothing but call __next__, such as this one:

class CompatibleIterator(object):
    def next(self):
        return self.__next__()

Any class that subclasses CompatibleIterator will now receive a next method that does nothing 
but call __next__, which will work properly in both Python 2 and Python 3.

However, the six module actually provides such a class, six.Iterator. In fact, it works even 
better than the previous example by providing this implementation on Python 2, but simply aliasing 
to object on Python 3.
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Therefore, if you are building iterators that must run under both Python 2 and Python 3, have them 
subclass six.Iterator, and simply defi ne a __next__ method and not a next method.

STANDARD LIBRARY RELOCATIONS

In addition to providing several new features and changes in syntax, Python 3 also moves several 
modules around within the standard library.

Generally, six provides a unifi ed interface to get at the correct module if you are maintaining code 
that should run under both Python 2 and Python 3. These live in six.moves.

Merging “Fast” Modules
Two modules, pickle and StringIO in Python 2, have two functionally identical copies within the 
Python 2 standard library. The fi rst is a Python implementation, and the second is a faster imple-
mentation written in C.

Python 3 merges both of these together so that there is only a single module, and so developers do 
not have to think about whether they are using the C implementation or the Python implementation 
of a particular library. (Such details usually should not be important when using a library.)

io
The StringIO and cStringIO modules in Python 2 are merged into a single module, io.

To facilitate running a single module in both Python2 and Python 3, six provides 
six.moves.cStringIO, which aliases the class (not the module). Therefore, six.moves.cStringIO 
is equivalent to cStringIO.StringIO on Python 2, and io.StringIO on Python 3.

For example, the following two imports are equivalent in Python 3:

>>> from io import StringIO
>>> from six.moves.cStringIO import StringIO

pickle
The pickle module is handled similarly. Python 2 provides both the pickle and the cPickle mod-
ules, with the latter generally being substantially faster. Python 3 merges the two together under the 
name pickle. Importing from cPickle is no longer valid. 

Again, six provides an alias to the correct thing, regardless of which version of Python you are 
running. However, in this case, six.moves.cPickle aliases the module rather than the class. This 
allows you to import particular methods from the pickle module.

The following two lines of code are equivalent in Python 3:

>>> import pickle
>>> from six.moves import cPickle as pickle
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The URL Modules
Python 2 has three modules for working with URLs: urllib, urllib2, and urlparse. What 
belonged in each is one of the great mysteries of life.

In actual practice, these are commonly needed together, so Python 3 has completely re-organized 
these modules under a single module: urllib. The bulk of the methods from the urlparse module 
(which primarily concerned itself with reading URLs and breaking them up into their individual 
component pieces) now live in urllib.parse.

Additionally, several methods that were really about parsing (such as quote and unquote) have been 
moved from urllib into urllib.parse. 

The reorganized urllib module in Python 3 contains four submodules: error, parse, request, 
and response. The six module provides six.moves.urllib with the same four submodules, which 
collect the appropriate methods as they are organized in Python 3.

If you are writing code that should run under either Python 2 or Python 3, and you are using any-
thing under urllib or its Python 2 cousins, you should use six.moves.urllib.

Renames
Python 3 also renames certain modules, as well as certain built-in functions. Table 10-1 shows a list 
of common renamed or moved functions, as well as the six.moves function that is an alias to both.

TABLE 10-1 Common Renamed or Moved Functions

PYTHON 3 PYTHON 2 six.moves

configparser ConfigParser Configparser

filter itertools.ifilter filter

input raw_input input

map itertools.imap map

range xrange range

functools.reduce reduce reduce

socketserver SocketServer socketserver

zip itertools.izip zip

Other Package Reorganizations
Additionally, many other packages have been reorganized between Python 2 and Python 3, but the 
less common ones do not have aliases within six. These include packages such as xml and tkinter.
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If you are writing a single-source implementation using these, consult the package documentation 
for information on what items have been moved around.

If you encounter a module or attribute that has been moved, you can tell six.moves about it by 
using the six.add_move function. If a module has been moved, send a six.MovedModule object 
to add_move.

The six.MovedModule constructor takes three arguments: the name of the move (and how it will be 
referenced when importing from six.moves), and then the old module name and new module name, 
both as strings.

For example, this will cause six.moves.ttk to be an alias of ttk in Python 2 and tkinter.ttk in 
Python 3:

>>> import six
>>> six.add_move(MovedModule('ttk', 'ttk', 'tkinter.ttk'))

If an attribute within a module is moved, send a six.MovedAttribute object to six.add_move 
instead. The MovedAttribute constructor takes two additional arguments, which are the old and 
new attribute names, as strings. 

VERSION DETECTION

Occasionally, you will end up in situations where you encounter something that works differently 
on Python 2 and Python 3, and there is no easy interface to make your code be the same on both 
versions.

In such cases, the six module provides two constants, six.PY2 and six.PY3. These are set to True 
or False, depending on which version of Python is currently running.

SUMMARY

 Python 3 is a substantial step forward over Python 2. It makes the language cleaner and faster. On 
the other hand, because of the backward-incompatibility issues, the Python community has been 
slow to adopt Python 3.

If you are writing Python 2 code, consider writing it in such a way that it will run unaltered in both 
Python 2 and Python 3. This will be of huge benefi t to you in the future when, eventually, it comes 
time to port to Python 3.

Additionally, this is a good place to emphasize the importance of automated testing. You are writing 
code that runs under very different conditions, and you must be as sure as possible that it works the 
same way under each environment. The way to do this is by having a robust unit test suite, which 
can automatically run in all supported environments. A functional test suite is probably a prerequi-
site for attempting to port from Python 2 to Python 3, and it is also a requirement to have a man-
ageable single-source repository of code that runs in both environments.

Chapter 11 examines testing in more detail, including how to test in multiple environments. 
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Unit Testing
When you think about testing the code that you write, the fi rst thing that probably comes to 
mind is simply running your program directly. If your program executes, you at least know 
that you do not have any syntax errors (provided every module was imported).

Similarly, if you provide appropriate inputs, and do not get a traceback, you know that your 
program completes successfully with those inputs. And, if the result matches the result you 
expect, that is additional inductive evidence that your program works.

This has a couple of key limitations, though. The fi rst is that for a non-trivial program, it 
is not possible to test every scenario. It is impossible to avoid this limitation, although it is 
important to be as complete as possible when thinking through potential scenarios to test.

The second limitation (and the one that the bulk of this chapter covers) is time. For most 
 applications, it is not practical to manually test every scenario you imagine for every change 
that you ever make to your program, because iterating over these scenarios is time-consuming.

It is possible, however, to ameliorate this limitation somewhat by automating your tests. An 
automated test suite can run while you are absent or working on something else, providing a 
signifi cant time savings and making it much easier to test your work early and often.

This chapter explores some of the world of testing. Specifi cally, it focuses on unit testing using 
the built-in tools provided by the Python standard library (such as unittest and mock), and 
some common packages available for testing.

THE TESTING CONTINUUM

So, what is a unit test exactly? Furthermore, how does it differ between a functional test or an 
integration test or some other kind of test? To answer this, this chapter discusses two different 
testing scenarios. 

11
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The Copied Ecosystem
First, consider a very complete testing environment. If you are writing an application that primar-
ily runs on servers, this might entail a “staging” server that has a copy of relevant data, and where 
potentially breaking actions can be performed safely. For a script or desktop application, the 
 principle is the same. It runs in an area with a copy of anything it must touch or alter. 

In this scenario, everything your program must do mimics what it does in its actual live environment. 
If you connect to a particular type of database, that database is still present in your test environment 
(just at a different  location). If you get data from a web service, you still make that same request.

Essentially, in the copied ecosystem, any external dependencies your program relies on must still be 
present and set up in an identical way.

This type of testing scenario is designed not only to test specifi c code being worked on, but also 
to test that the entire ecosystem structure that is put in place is viable. Any data that is passed 
back and forth between different components of your application is actually passed in exactly 
the same way.

Automated tests that are run against a copied ecosystem such as this are generally called system 
tests. This term signifi es the complete duplicated ecosystem under which these tests run. This kind 
of test is designed not only to test your specifi c code, but also to detect breaking changes in the 
external environment.

The Isolated Environment
Another very distinct type of test is one that is intended to test a very specifi c block of code, and to 
do so in an isolated environment.

In a copied ecosystem, any external requirements and dependencies (such as a database, external 
service, or the like) are all duplicated. On the other hand, tests intended to be run in an isolated 
environment do so generally by hand-waving the interactions between the tested code and the 
 external dependencies, focusing only on what the actual code does.

This sort of hand wave is done by stipulating that an external service or dependency received a given 
input and returned a given output. The purpose of this kind of test is explicitly not to test the interac-
tion between your application and the other service. Rather, it is to test what your application does 
with the data it receives from that service.

For example, consider a function that determines a person’s age at the time of his or her wedding. It 
fi rst gets information about the person (birthday and anniversary) from an external database, and 
then  computes the delta between the two dates to determine the person’s age at the time.

Such a function might look like this:

def calculate_age_at_wedding(person_id):
    """Calculate the age of a person at his or her wedding, given the
    ID of the person in the database.
    """
    # Get the person from the database, and pull out the birthday
    # and anniversary datetime.date objects.
    person = get_person_from_db(person_id)
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    anniversary = person['anniversary']
    birthday = person['birthday']

    # Calculate the age of the person on his or her wedding day.
    age = anniversary.year – birthday.year

    # If the birthday occurs later in the year than the anniversary, then 
    # subtract one from the age.
    if birthday.replace(year=anniversary.year) > anniversary:
        age -= 1

    # Done; return the age.
    return age

Of course, if you try to actually run this function, it will fail. This function depends on another 
function, get_person_from_db, which is not defi ned in this example. You intuitively understand 
from reading the comments and code around it that it gets a specifi c type of record from a database 
and returns a dictionary-like object.

When testing a function like this, a copied ecosystem would simply reproduce the database, pull a 
person record with a particular ID, and test that the function returns the expected age. In contrast, 
a test in an isolated environment wants to avoid dealing with the database at all. An isolated envi-
ronment test would declare that you got a particular record, and test the remainder of the function 
against that record.

This kind of test, which seeks to isolate the code being tested from the rest of the world (and even 
sometimes the rest of the application itself) is called a unit test.

Advantages and Disadvantages
Both of these fundamental types of tests have advantages and disadvantages, and most applications 
must have some of both types of tests as part of a robust testing framework.

Speed
One of the most important advantages to unit tests that run in an isolated environment is speed. Tests 
that run against a copied ecosystem often have long setup and teardown processes. Furthermore, the 
I/O required to pass data between the various components is often one of the slowest aspects of your 
application.

By contrast, tests that run in an isolated environment are usually extremely fast. In the previous 
example, the time it takes to do the arithmetic to determine this person’s age is far less (by several 
orders of magnitude) than the time it takes to ask the database for the row corresponding to the 
 person’s ID and to pass the data over the pipe.

Having a set of isolated tests that run very fast is valuable, because you are able to run them 
extremely often and get feedback from running those tests very quickly.

Interactivity
The primary reason why isolated tests are so fast is precisely because they are isolated. Isolated tests 
stipulate the interactions between various services involved in powering your application.
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However, these interactions require testing, too. This is why you also need tests in a copied ecosys-
tem. This enables you to ensure that these services continue to interact the way that you expect.

TESTING CODE

The focus of this chapter is specifi cally on unit testing. Therefore, how can you write a test that runs 
the calculate_age_at_wedding function in the previous example ? Your goal is to not actually talk 
to a database to get a record of a person, so you must test the function and provide that information.

Code Layout
In many cases, the best and by far the most straightforward way to handle testing such a function is 
simply to organize your code in a way that makes it easily testable.

In the example of the calculate_age_at_wedding function, you may not need to retrieve a record 
from the database at all. Depending on your application, it might be fi ne (and even preferable) to 
have the function simply accept the full record, rather than the person_id variable. In other words, 
the baton handoff to this function would not happen until the database call already occurred, and 
the only thing this function would do would be to perform the arithmetic.

Reorganizing in this way would also make the function less opinionated about what kind of data it 
gets. Any dictionary-like object with the appropriate keys would do.

The following trimmed-down function only does the calculation of the age, and is expected to 
receive a full person record (where it gets it from is not relevant).

def calculate_age_at_wedding(person):
    """Calculate the age of a person at his or her wedding, given the
    record of the person as a dictionary-like object.
    """
    # Pull out the birthday and anniversary datetime.date objects.
    anniversary = person['anniversary']
    birthday = person['birthday']
    
    # Calculate the age of the person on his or her wedding day.
    age = anniversary.year - birthday.year
    
    # If the birthday occurs later in the year than the anniversary, then 
    # subtract one from the age.
    if birthday.replace(year=anniversary.year) > anniversary:
        age -= 1
    
    # Done; return the age.
    return age

In most ways, this function is almost exactly the same as the previous version. The only thing that 
has changed is that the call to get_person_from_db has been removed (and the comments and doc-
string updated to match).
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Testing the Function
When it comes to testing this function, the problem is now very simple. Just pass a dictionary and 
make sure you get the correct result.

>>> from datetime import date
>>>
>>> person = {'anniversary': date(2012, 4, 21),
...           'birthday': date(1986, 6, 15)}
>>> age = calculate_age_at_wedding(person)
>>> age
25

Of course, a couple limitations exist here. First, this is still something that was run manually in the 
interactive terminal. The value of a unit testing suite is that you run it in an automated fashion.

A second (and even more important) limitation to recognize is that this tests only one input against 
only one output. Suppose you  gutted the function the next day and replaced it with the following:

def calculate_age_at_wedding(*args, **kwargs):
    return 25

The test would still pass, even though the function would be extremely broken.

Indeed, the test does not even cover some sections of this function. After all, there is an if block in 
the function based on whether or not the birthday falls before or after the anniversary in a calendar 
year. At a minimum, you would want to ensure that your test takes both pathways.

The following test function handles this:

from datetime import date

def test_calculate_age_at_wedding():
    """Establish that the `calculate_age_at_wedding` function seems to
    calculate a person's age at his wedding correctly, given a
    dictionary-like object representing a person.
    """
    # Assert that if the anniversary falls before the birthday in a 
    # calendar year, that the calculation is done properly.
    person = {'anniversary': date(2012, 4, 21),
              'birthday': date(1986, 6, 15)}
    age = calculate_age_at_wedding(person)
    assert age == 25, 'Expected age 25, got %d.' % age

    # Assert that if the anniversary falls after the birthday in a calendar
    # year, that the calculation is done properly.
    person = {'anniversary': date(1969, 8, 11),
              'birthday': date(1945, 2, 15)}
    age = calculate_age_at_wedding(person)
    assert age == 24, 'Expected age 24, got %d.' % age

Now you have a function that can be run by an automated process. Python includes a test runner, 
which is explored shortly. Also, this test covers a couple of different permutations of the function. 
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It certainly does not cover every possible input (it would be impossible to do that), but it provides a 
slightly more complete sanity check.

However, always remember that the tests are not an exhaustive check. They only test the inputs 
and outputs that you provide. For example, this test function says nothing about what would 
happen if the calculate_age_at_wedding function were sent something other than a dictionary, 
or if it were sent a dictionary with the wrong keys, or if datetime objects were used instead of 
date objects, or if you were to send an anniversary date that is earlier than the birth date, or any 
number of other permutations. This is fi ne. It is simply important to understand what the limits of 
your tests are.

The assert Statement
What about the assert statement that the test function is using? Consider what a unit test funda-
mentally is. A unit test is an assertion or a set of assertions. In this case, you assert that if you send a 
properly formatted dictionary with specifi c dates, you get a specifi c integer result.

In Python, assert is a keyword, and assert statements are used almost exclusively for testing 
(although they need not appear exclusively in test code). The assert statement expects the expres-
sion sent to it to evaluate to True. If it does, the assert statement does nothing; if it does not, 
AssertionError is raised. You can optionally provide a custom error message to be raised with the 
AssertionError, as the previous example does.

When writing tests, you want to use AssertionError as the exception to be raised when a test fails, 
either by raising it directly, or (usually) by using the assert statement to assert the test’s pass con-
ditions, because all of the unit testing frameworks will catch the error and handle it appropriately 
when compiling test failures.

UNIT TESTING FRAMEWORKS

Now that you have your test as a function, the next step is to set up a process to run that test (as 
well as any others you may write to test the remainder of the application).

Several unit testing frameworks, such as py.test and nose, are available as third-party packages. 
However, the Python standard library also ships with a quite robust unit testing framework, avail-
able under the unittest module in the standard library.

Consider the testing function from the previous example, but structured to be run by the unittest 
module.

import unittest
from datetime import date

class Tests(unittest.TestCase):
    def test_calculate_age_at_wedding(self):
        """Establish that the `calculate_age_at_wedding` function seems
        to calculate a person's age at his wedding correctly, given
        a dictionary-like object representing a person.
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        """
        # Assert that if the anniversary falls before the birthday
        # in a calendar year, that the calculation is done properly.
        person = {'anniversary': date(2012, 4, 21),
                  'birthday': date(1986, 6, 15)}
        age = calculate_age_at_wedding(person)
        self.assertEqual(age, 25)

        # Assert that if the anniversary falls after the birthday
        # in a calendar year, that the calculation is done properly.
        person = {'anniversary': date(1969, 8, 11),
                  'birthday': date(1945, 2, 15)}
        age = calculate_age_at_wedding(person)
        self.assertEqual(age, 24)

In most ways, this looks the same as what you saw before. However, it has a couple of key differ-
ences. The fi rst difference is that you now have a class, which subclasses unittest.TestCase. The 
unittest module expects to fi nd tests grouped using unittest.TestCase subclasses. Each test 
must be a function whose name begins with test. As a corollary, because the test itself is now a 
method of the class rather than an unbound function, it now has self as an argument.

The other change is that the raw assert statements have been replaced with calls to self.assert
Equal. The unittest.TestCase class provides a number of wrappers around assert that standard-
ize error messages and provide some other boilerplate.

Running Unit Tests
Now it is time to actually run this test within the unittest framework. To do this, save both the 
function and the test class in a single module, such as wedding.py.

The Python interpreter provides a fl ag, -m, which takes a module in the standard library or on 
sys.path, and runs it as a script. The unittest module supports being run in this way, and accepts 
the Python module to be tested. (If you named your module wedding.py, this would be wedding.)

$ python -m unittest wedding
.
----------------------------------------------------------------------
Ran 1 test in 0.000s

OK

What is happening here? The wedding module was loaded, and the unittest module found a 
unittest.TestCase subclass. It instantiated the class and then ran every method beginning with 
the word test, which the test_calculate_age_at_wedding method does.

The unittest output prints a period character (.) for a successful test, or a letter for failures (F), 
errors (E), and a few other cases, such as tests that are intentionally skipped (s). Because there was 
only one test, and it was successful, you see a single . character followed by the concluding output.

Failures
You can observe what happens when a test fails by simply changing the test’s condition so that it 
will intentionally fail.
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To illustrate this, add the following method to your Tests class:

def test_failure_case(self):
    """Assert a wrong age, and fail."""
    person = {'anniversary': date(2012, 4, 21),
              'birthday': date(1986, 6, 15)}
    age = calculate_age_at_wedding(person)
    self.assertEqual(age, 99)

This is a similar test, except that it asserts that the age is 99, which is wrong. Observe what happens 
if you run tests on the module now:

$ python -m unittest wedding
.F
======================================================================
FAIL: test_failure_case (wedding.Tests)
Assert a wrong age, and fail.
----------------------------------------------------------------------
Traceback (most recent call last):
  File "wedding.py", line 50, in test_failure_case
    self.assertEqual(age, 99)
AssertionError: 25 != 99

----------------------------------------------------------------------
Ran 2 tests in 0.000s

FAILED (failures=1)

Now you have two tests. You have the main test from before, which still passes, and a second test 
with a bogus age, which fails.

If you ran the function directly, you would just get a standard traceback when AssertionError is 
raised. However, the unittest module actually catches this error and tracks the failure, and prints 
the output nicely at the end of the test run.

This may seem like an unimportant distinction at this point, but if you have hundreds of tests, this 
difference matters. A Python module will terminate when it comes across the fi rst uncaught excep-
tion, so your test run would stop on the fi rst failure. When you’re using unittest, the tests continue 
to run, and you get all the failures at once at the end.

The unittest output also includes the test function and the beginning of the docstring, so it is easy 
to go fi nd the failing test and investigate, as well as the full traceback, so you still have the same 
insight into the offending code.

Errors
Only a small difference distinguishes an error from a failure. A test that raises AssertionError is 
considered to have failed, whereas a test that raises any exception other than AssertionError is 
considered to be in error.

Consider what would happen if the person variable being tested is an empty dictionary. Add the 
following function to your Tests class in the wedding module:

def test_error_case(self):
    """Attempt to send an empty dict to the function."""
    person = {}
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    age = calculate_age_at_wedding(person)
    self.assertEqual(age, 25)

Now what happens when you run tests?

$ python -m unittest wedding
.EF
======================================================================
ERROR: test_error_case (wedding.Tests)
Attempt to send an empty dict to the function.
----------------------------------------------------------------------
Traceback (most recent call last):
  File "wedding.py", line 55, in test_error_case
    age = calculate_age_at_wedding(person)
  File "wedding.py", line 10, in calculate_age_at_wedding
    anniversary = person['anniversary']
KeyError: 'anniversary'

======================================================================
FAIL: test_failure_case (wedding.Tests)
Assert a wrong age, and fail.
----------------------------------------------------------------------
Traceback (most recent call last):
  File "wedding.py", line 50, in test_failure_case
    self.assertEqual(age, 99)
AssertionError: 25 != 99

----------------------------------------------------------------------
Ran 3 tests in 0.000s

FAILED (failures=1, errors=1)

Now you have three tests. You have the passing and failing test from earlier, and a test that is in error. 
Instead of raising AssertionError, the error case raised KeyError, because the calculate_age_at_
wedding function expected an anniversary key in the dictionary (and the key was not there).

For most practical purposes, you probably will not actually put much stock in the difference 
between a failure and an error. They are simply failing tests that fail in slightly different ways.

Skipped Tests
It is also possible to mark that a test should be skipped under certain situations. For example, say 
that an application is designed to run under Python 2 or Python 3, but a particular test only makes 
sense in one of the two environments. Rather than have the test fail when it should not, it is possible 
to declare that a test should run only under certain conditions.

The unittest module provides skipIf and skipUnless decorators that take an expression. The 
skipIf decorator causes the test to be skipped if the expression it receives evaluates to True, and the 
skipUnless decorator causes the test to be skipped if the expression it receives evaluates to False. 
In addition, both decorators take a second, required argument, which is a string that describes why 
the test was skipped.

To see skipped tests in action, add the following function to your Tests class. (To keep the output 
shown here down to a reasonable size, the failure and error tests have been removed.)
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@unittest.skipIf(True, 'This test was skipped.')
def test_skipped_case(self):
    """Skip this test."""
    pass

This function is decorated with unittest.skipIf. True is a valid expression in Python, and obvi-
ously evaluates to True. Now see what happens when you run the tests:

$ python -m unittest wedding
.s
----------------------------------------------------------------------
Ran 2 tests in 0.000s

OK (skipped=1)

The output for a skipped test is an s, rather than the traditional period character that denotes a test 
that passed. The use of a lowercase letter rather than an uppercase one (as in F and E) signifi es that 
this is not an error condition, and indeed, the complete test run is considered to be a success.

Loading Tests
So far, you have run tests out of a single module, and the tests have lived in the same module where 
the code that it is testing also lives. This is fi ne for a trivial example but entirely unfeasible for a 
large application.

The unittest module understands this, and provides an extensible mechanism for programmati-
cally loading tests from a complete project tree. The default class, which is suitable for most needs, 
is unittest.TestLoader.

If you are just using the default test loading class, which is what you want most of the time, you can 
trigger it by using the word discover instead of the module name to be tested.

$ python -m unittest discover

----------------------------------------------------------------------
Ran 0 tests in 0.000s

OK

Where did your tests go? The test discovery follows certain rules for determining where it goes to 
actually look for tests. By default, it expects all fi les containing tests to be named according to the 
pattern test*.py.

This is what you really want to do anyway. The value of test discovery is that you can separate your 
tests from the rest of your code. So, if you move the passing test itself from the wedding.py fi le to a 
new fi le matching that pattern (for example, test_wedding.py), the test discovery system will fi nd 
it. (Note that you must import the calculate_age_at_wedding function explicitly, because it is not 
in the same module anymore!)

Sure enough, now the test discovery fi nds the tests:

$ python -m unittest discover
.
----------------------------------------------------------------------

mailto:@unittest.skipIf
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Ran 1 test in 0.000s

OK

MOCKING

To make the calculate_age_at_wedding function something that was capable of being easily unit 
tested, recall how you had to remove part of the function. The idea was that you organize your code 
to make that function easily testable by doing a database call elsewhere.

Often, organizing your code in a way that makes it easily testable is the ideal approach to this problem, 
but sometimes it is not possible or wise. Instead of implicitly hand-waving certain functionality by orga-
nizing your code around atomic testing, how do you explicitly hand-wave a segment of tested code?

The answer is mocking. Mocking is the process of declaring within a test that a certain function call 
should be stipulated to give a particular output, and the function call itself should be suppressed. 
Additionally, you can assert that the mocked call that you expect was made in a particular way.

Beginning in Python 3.3, the unittest module ships with unittest.mock, which contains tools 
for mocking. If you are using Python 3.2 or earlier, you can use the mock package, which you can 
download from www.pypi.python.org.

The API between these is identical, but how you import it obviously changes. If you are using 
Python 3.3, you want from unittest import mock; if you are using the installed package, you 
want import mock.

Mocking a Function Call
Consider again the original function for calculate_age_at_wedding, which included a call to 
retrieve a record from an unspecifi ed database. (If you are following along, you should create a 
new fi le.)

def calculate_age_at_wedding(person_id):
    """Calculate the age of a person at his or her wedding, given the
    ID of the person in the database.
    """
    # Get the person from the database, and pull out the birthday
    # and anniversary datetime.date objects.
    person = get_person_from_db(person_id)
    anniversary = person['anniversary']
    birthday = person['birthday']

    # Calculate the age of the person on his or her wedding day.
    age = anniversary.year – birthday.year

    # If the birthday occurs later in the year than the anniversary, then 
    # subtract one from the age.
    if birthday.replace(year=anniversary.year) > anniversary:
        age -= 1

    # Done; return the age.
    return age

http://www.pypi.python.org
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Before, you tested most of this function by actually changing the function itself. You reorganized the 
code around ease of testability. However, you also want to be able to test code where this is either 
impossible or undesirable.

First things fi rst. You still do not actually have a get_person_from_db function, so you want to 
suppress that function call. Therefore, add a function that raises an exception.

def get_person_from_db(person_id):
    raise RuntimeError('The real `get_person_from_db` function '
                       'was called.')

At this point, if you actually try to run the calculate_age_at_wedding function, you will get 
a RuntimeError. This is convenient for this example because it will make it very obvious if your 
mocking does not work. Your test will loudly fail.

Next comes the test. If you just try to run the same test from before, it will fail (with 
RuntimeError). You need a way of getting around the get_person_from_db call. This is where 
mock comes in.

The mock module is essentially a monkey-patching library. It temporarily replaces a variable in a 
given namespace with a special object called a MagicMock, and then returns the variable to its previ-
ous value after the scope of the mock is concluded. The MagicMock object itself is extremely permis-
sive. It accepts (and tracks) basically any call made to it, and returns whatever you tell it.

In this case, you want the get_person_from_db function to be replaced with a MagicMock object 
for the duration of your test.

import unittest
import sys

from datetime import date

# Import mock regardless of whether it is from the standard library
# or from the PyPI package.
try:
    from unittest import mock
except ImportError:
    import mock

class Tests(unittest.TestCase):
    def test_calculate_age_at_wedding(self):
        """Establish that the `calculate_age_at_wedding` function seems
        to calculate a person's age at his wedding correctly, given
        a person ID.
        """
        # Since we are mocking a name in the current module, rather than
        # an imported module (the common case), we need a reference to
        # this module to send to `mock.patch.object`.
        module = sys.modules[__name__]

        with mock.patch.object(module, 'get_person_from_db') as m:
            # Ensure that the get_person_from_db function returns
            # a valid dictionary.
            m.return_value = {'anniversary': date(2012, 4, 21),
                              'birthday': date(1986, 6, 15)}
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            # Assert that that the calculation is done properly.
            age = calculate_age_at_wedding(person_id=42)
            self.assertEqual(age, 25)

The big new thing going on here is the call to mock.patch.object. This is a function that can 
be used either as a context manager or a decorator, and it takes two required arguments: a module 
that contains the callable being mocked, and then the name of the callable as a string. In this 
case, because the function and the test are all contained in a single fi le (which is not what you 
would normally do), you must get a reference to the current module, which is always 
sys.modules[__name__].

The context manager returns a MagicMock object, which is m in the previous example. Before you 
can call the function being tested, however, you must specify what you expect the MagicMock to do. 
In this case, you want it to return a dictionary that approximates a valid record of a person. The 
return_value property of the MagicMock object is what handles this. Setting it means that every 
time the MagicMock is called, it will return that value. If you do not set return_value, another 
MagicMock object is returned.

If you run tests on this module, you will see that the test passes. (Here, the new module is named 
mock_wedding.py.)

$ python -m unittest mock_wedding
.
----------------------------------------------------------------------
Ran 1 test in 0.000s

OK

Asserting Mocked Calls
This test passes, but it is still fundamentally incomplete in one important way. It mocks the function 
call to get_person_from_db, and tests that the function does the right thing with the output.

What the test does not do is actually verify that the baton handoff to the get_person_from_db 
function actually occurred. In some ways, this is redundant. You know the call happened, because 
otherwise you would not have received the return value from the mock object. However, sometimes 
you will mock function calls that do not have a return value.

Fortunately, MagicMock objects track calls made to them. Rather than just spitting out the return 
value and being done, the object stores information about how many times it was called, and the sig-
nature of each call. Finally, MagicMock provides methods to assert that calls occurred in a particular 
fashion.

Probably the most common method you will use for this purpose is MagicMock.assert_called_
once_with. This asserts two things: that the MagicMock was called once and exactly once, and that 
the specifi ed argument signature was used. Consider an augmented test function that ensures that 
the get_person_from_db method was called with the expected person ID:

class Tests(unittest.TestCase):
    def test_calculate_age_at_wedding(self):
        """Establish that the `calculate_age_at_wedding` function seems
        to calculate a person's age at his wedding correctly, given



200 ❘ CHAPTER 11  UNIT TESTING

c11.indd 09/01/2015 Page 200

        a person ID.
        """
        # Since we are mocking a name in the current module, rather than
        # an imported module (the common case), we need a reference to
        # this module to send to `mock.patch.object`.
        module = sys.modules[__name__]

        with mock.patch.object(module, 'get_person_from_db') as m:
            # Ensure that the get_person_from_db function returns
            # a valid dictionary.
            m.return_value = {'anniversary': date(2012, 4, 21),
                              'birthday': date(1986, 6, 15)}

            # Assert that that the calculation is done properly.
            age = calculate_age_at_wedding(person_id=42)
            self.assertEqual(age, 25)

             # Assert that the `get_person_from_db` method was called
            # the way we expect.
            m.assert_called_once_with(42)

The thing that has changed here is that the MagicMock object is now being checked at the end to 
ensure that you got the call to it that you expected. The call signature is simply a single positional 
argument: 42. This is the person ID used in the test (just a few lines earlier). It is sent as a positional 
argument because that is the way the argument is provided in the original function.

    person = get_person_from_db(person_id)

Notice that person_id is provided as a single positional argument, so that is what the MagicMock 
will record.

If you run the test, you will see that it still passes:

$ python -m unittest mock_wedding
.
----------------------------------------------------------------------
Ran 1 test in 0.000s

OK

What happens if the MagicMock’s assertions are incorrect? The tests fail with a useful failure mes-
sage, as you can see by changing the assert_called_once_with argument signature:

$ python -m unittest mock_wedding
F
======================================================================
FAIL: test_calculate_age_at_wedding (wedding.Tests)
Establish that the `calculate_age_at_wedding` function seems
----------------------------------------------------------------------
Traceback (most recent call last):
  File "/Users/luke/Desktop/wiley/wedding.py", line 58, in 
       test_calculate_age_at_wedding
    m.assert_called_once_with(84)
  File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/unittest
       /mock.py", line 771, in assert_called_once_with
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    return self.assert_called_with(*args, **kwargs)
  File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/unittest
       /mock.py", line 760, in assert_called_with
    raise AssertionError(_error_message()) from cause
AssertionError: Expected call: get_person_from_db(84)
Actual call: get_person_from_db(42)

----------------------------------------------------------------------
Ran 1 test in 0.001s

Here you are told which call the MagicMock expected to get, as well as the call it actually received. 
You would get similar errors if there were no call, or more than one call.

The assert_called_once_with method has a close cousin, which is assert_called_with. This 
is identical except for the fact that it does not fail if the MagicMock has been called more than once, 
and it checks the call signature against only the most recent call.

Inspecting Mocks
You can inspect MagicMock objects in several other ways to determine what occurred. You may just 
want to know that it was called, or how many times it was called. You also may want to assert a 
sequence of calls, or only look at part of the call’s signature.

Call Count and Status
A couple of the easiest and most straightforward questions are whether a MagicMock has been 
called, and how many times it has been called.

If you just want to know whether a MagicMock has been called at all, you can check the called 
property, which is set to True the fi rst time that the MagicMock is called.

>>> from unittest import mock
>>> m = mock.MagicMock()
>>> m.called
False
>>> m(foo='bar')
<MagicMock name='mock()' id='4315583152'>
>>> m.called
True

On the other hand, you may also want to know exactly how many times the MagicMock has been 
called. This is available, too, as call_count.

>>> from unittest import mock
>>> m = mock.MagicMock()
>>> m.call_count
0
>>> m(foo='bar')
<MagicMock name='mock()' id='4315615752'>
>>> m.call_count
1
>>> m(spam='eggs')
<MagicMock name='mock()' id='4315615752'>
>>> m.call_count
2
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The MagicMock class does not have built-in methods for asserting the presence of a call or a given 
call count, but the assertEqual and assertTrue methods that are part of unittest.TestCase are 
more than suffi cient for that task.

Multiple Calls
You may also want to assert the composition of multiple calls to a MagicMock in one fell swoop. 
MagicMock objects provide the assert_has_calls method for this purpose.

To use assert_has_calls, you must understand call objects, which are provided as part of the 
mock library. Whenever you make a call to a MagicMock object, it internally creates a call object 
that stores the call signature (and appends it to the mock_calls list on the object). These call 
objects are considered to be equivalent if the signatures match.

>>> from unittest.mock import call
>>> a = call(42)
>>> b = call(42)
>>> c = call('foo')
>>> a is b
False
>>> a == b
True
>>> a == c
False

This is actually how assert_called_once_with and similar methods work under the hood. They 
make a new call object, and then ensure that it is equivalent to the one in the mock_calls list.

The assert_has_calls method takes a list (or other similar object, such as a tuple) of call objects. 
It also accepts an optional keyword argument, any_order, which defaults to False. If this remains 
False, this means that it expects the calls to have occurred in the same sequence that they do in the 
list. If it is set to True, only the presence of each call to the MagicMock is relevant, not the order of 
the calls. 

Here is what assert_has_calls looks like in action:

>>> from unittest.mock import MagicMock, call
>>>
>>> m = MagicMock()
>>> m.call('a')
<MagicMock name='mock.call()' id='4370551920'>
>>> m.call('b')
<MagicMock name='mock.call()' id='4370551920'>
>>> m.call('c')
<MagicMock name='mock.call()' id='4370551920'>
>>> m.call('d')
<MagicMock name='mock.call()' id='4370551920'>
>>> m.assert_has_calls([call.call('b'), call.call('c')])

It is worth noting that although assert_has_calls does expect the calls to occur in order, it does 
not require that you send it the entire list of calls. Having other calls on either end of the list is fi ne.
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Inspecting Calls
Sometimes, you may not want to test the entirety of a call signature. Perhaps it is only important 
that a certain argument be included. This is a little bit more diffi cult to do. There is no ready-made 
method for a call to declare that it matches anything other than a complete call signature.

However, it is possible to inspect the call object itself and look at the arguments sent to it. The way 
this works is that the call class is actually a subclass of tuple, and call objects are tuples with three 
elements, the second and third of which are the call signature.

>>> from unittest.mock import call
>>> c = call('foo', 'bar', spam='eggs')
>>> c[1]
('foo', 'bar')
>>> c[2]
{'spam': 'eggs'}

By inspecting the call object directly, you can get a tuple of the positional arguments and a diction-
ary of the keyword arguments.

This gives you the capability to test only part of a call signature. For example, what if you want to 
ensure that the string bar was one of the arguments given to the call, but you do not care about the 
rest of the arguments?

>>> assert 'bar' in c[1]
>>> assert 'baz' in c[1]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AssertionError
>>> assert c[2]['spam'] == 'eggs'

Once you have access to the positional arguments as a tuple and the keyword arguments as a dic-
tionary, testing for the presence or absence of a single argument is no different than testing for the 
presence of an element in a list or dictionary.

OTHER TESTING TOOLS

Several other testing tools are available that you may want to consider using as you build out a unit 
test suite in your applications.

coverage
How do you actually know what code is being tested? Ideally, you want to test as much of your code 
as possible in each test run, while still maintaining a test suite that runs quickly.

If you want to know just how much of your code your test suite is exercising, you will want to use 
the coverage application, which is available from www.pypi.python.org. Originally written by 
Ned Batchelder, coverage is a tool that keeps track of all of the lines of code in each module that 
run as your tests are running, and provides a report detailing what code did not run. Of course, 
coverage runs on both Python 2 and Python 3.

http://www.pypi.python.org
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The application works by installing a coverage script, and you use coverage run as a substitute 
for python when invoking a Python script of any kind, including your unit test script. The output 
will look fundamentally similar.

$ coverage run -m unittest mock_wedding
.
----------------------------------------------------------------------
Ran 1 test in 0.000s

OK

However, if you look at the directory, you will see that a .coverage fi le was created in the process. 
This fi le contains information about what code in the fi le actually ran.

You can view this information with coverage report.

$ coverage report
Name           Stmts   Miss  Cover
----------------------------------
mock_wedding      22      1    95%

This report shows how many statements ran and how many statements are in the fi le that did not 
run. So, you know that one statement was omitted, but not which one. Adding -m to the command 
adds output showing which lines were skipped:

$ coverage report -m
Name           Stmts   Miss  Cover   Missing
--------------------------------------------
mock_wedding      22      1    95%   24

Now you know that line 24 was the test that did not run. (In the example mock_wedding.py fi le, 
line 24 corresponds to the RuntimeError that is raised if the “real” get_person_from_db function 
was called.)

The coverage application can also write attractive HTML output using the coverage html com-
mand. This highlights in red the lines that did not run. Additionally, if you have a statement with 
multiple branches (such as an if statement), it highlights those in yellow if only one path was taken.

tox
Many Python applications need to run on multiple versions of Python, including both Python 2 and 
Python 3. If you are writing an application that runs in multiple environments (even just multiple 
minor revisions), you want to run your tests against all of those environments.

Attempting to run tests manually across every environment you support is likely to be cumbersome. 
If you need to do this, consider tox. Written by Holger Krekel, tox is a tool that automatically 
 creates virtual environments (using virtualenv) with the appropriate versions of Python (provided 
you have them installed) and runs the tests within those environments.
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Other Test Runners
This chapter has focused primarily on the test runner provided by Python itself, but other alterna-
tives are available. Some, such as nose and py.test, are quite popular, and add numerous features 
and hooks for extensibility.

These libraries are easy to adopt even if you already have a robust unit test suite, because both 
 support using unittest tests out of the box. However, both libraries support other ways of adding 
tests to the pool.

Both of these libraries are available on www.pypi.python.org, and run on Python 2.6 and up.

SUMMARY

Unit testing is a powerful way to ensure that your code remains consistent over time. It is a useful 
way to discover when your code changes, and how to make adjustments accordingly.

This is an important facet of any application. Having a robust testing suite makes it easier to detect 
some bugs and makes you aware when a function’s behavior changes, thus simplifying application 
maintenance.

Chapter 12 examines the optparse and argparse tools for using Python on the command-line 
 interface (CLI). 

http://www.pypi.python.org
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CLI Tools
Python applications come in all sorts of fl avors, including desktop applications, server-side 
applications, scripts, scientifi c computing applications, and much more.

Some Python applications must function with the command-line interface (CLI). They may 
need to ask for input, and receive arguments that are provided when the script is invoked.

This chapter examines optparse and argparse, the two tools that the Python standard 
library provides for writing applications that are run from the CLI.

OPTPARSE
optparse is the older of the two modules provided by Python, and is nominally considered to 
be deprecated as of Python 2.7 (when argparse was introduced). However, optparse is still 
very widely used, and is necessary for any code intended to support Python 2.6, which is still 
quite common in the Python ecosystem.

Essentially, optparse exists to provide a clear and consistent way to read arguments off of the 
command line, including positional arguments, as well as options and switches.

A Simple Argument
optparse is actually quite easy to understand once you look at an example. Consider the 
 following simple Python script that takes an option from the CLI:

import optparse

if __name__ == '__main__':
    parser = optparse.OptionParser()
    options, args = parser.parse_args()

    print(' '.join(args).upper())

This script takes any number of arguments it receives, converts them to all capital letters, and 
prints them back out to the CLI.

$ python echo_upper.py

12
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$ python echo_upper.py foo bar baz
FOO BAR BAZ
$ python echo_upper.py spam
SPAM

The next two sections break down this example.

name  == ' main__'
The line if __name__ == '__main__' may be an unfamiliar idiom if you have not done much 
c ommand-line scripting (or come across it in other use cases). In Python, each module has a 
__name__ attribute, which is always automatically set to the name of the module that is currently 
being executed.

The value __main__ is special. When a module is invoked directly (such as by running it on the 
command line), the __name__ attribute is set to this value.

Why test for this? Nearly every .py fi le in Python is importable as a module, and, therefore, 
could be imported. In CLI scripts, you probably do not want the code to directly run in this case. 
CLI scripts sometimes contain code such as calls to sys.exit() that would terminate the entire 
program. This module’s option and argument-parsing behavior really only makes sense if it is 
invoked directly. Therefore, this type of code should be placed beneath the if __name__ == 
'__main__' test.

Note that there is nothing magic about the if block; it is simply a top-level if statement. Other 
 top-level code will still be executed even if the if test fails. Additionally, note that it is traditional 
that such tests be placed at the bottom of the fi le.

OptionParser
Next, consider the creation of an OptionParser instance, followed by the call to its parse_args 
method. The OptionParser class is the primary class in the optparse module used for taking the 
arguments and options sent to a CLI command, and making sense of them.

The fundamental way that this works is that you tell the OptionParser instance what options you 
expect and know how to address. Options are strings that start with - or --, such as -v or 
--verbose. (You learn more about these shortly.) The call to parse_args iterates over all of the 
options that the parser recognizes, and places them in the fi rst variable that parse_args returns 
(which is named options in the previous example). Any arguments left over are considered to be posi-
tional arguments, and are placed in the second variable (args in the previous example), which is a list.

The previous example uses no options, so everything that the parser receives is considered to be a 
positional argument. The script then takes that list, joins it into a string, converts it to uppercase, 
and prints it.

One thing to note is that any argument that begins with hyphens is expected to be an option, 
and optparse raises an exception if you try to send an option that the parser does not recognize. 
Furthermore, the exception is internally handled within optparse and calls sys.exit, so there is 
no real way to catch these errors yourself.

$ python echo_upper.py --foo
Usage: echo_upper.py [options]

echo_upper.py: error: no such option: --foo
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Options
Positional arguments are usually not the most intuitive way to get information to a script. They are 
reasonable when you have one or two, and the script’s purpose is straightforward. However, as your 
script becomes more customizable, you will generally want to use options.

Options provide the following advantages over positional arguments for many use cases:

 ➤ They can be made (and usually should be made) to be optional. Options can have sensible 
default values that are used when the option is not provided. 

 ➤ Options that also accept values associate a key (the name of the option) with the option 
value, which enhances readability. 

 ➤ Multiple options can be provided in any order.

Types of Options
A CLI script can accept two common types of options. 

One type is sometimes called a fl ag or a switch, and is an option that does not require or accept a 
value along with the option. Essentially, in these cases, it is the presence or absence of the option 
that determines the script behavior.

Two common examples of such switches are --verbose and --quiet (often also provided as -v 
and -q, respectively). The script executes normally if these options are absent, but does something 
different (provides more or less output) if they are present. Note that you generally specify this as 
--quiet, as opposed to --quiet=true or something similar. The value is implied by the presence 
of the switch.

Another type of option is one that does expect a value. Most database clients accept options such 
as --host, --port, and the like. These do not make sense as switches. You do not simply provide 
--host and expect the database client to infer what the actual host is. You must provide the host-
name or IP address that you are connecting to.

Adding Options to OptionParser
Once you have an OptionParser instance, you can add an option to it using the add_option 
method. This comes after the OptionParser instance is instantiated, but before parse_args, 
which is the fi nal step in the chain.

Consider fi rst the addition of a simple switch, which does not actually expect an argument.

import optparse

if __name__ == '__main__':
    parser = optparse.OptionParser()
    parser.add_option('-q', '--quiet',
        action='store_true',
        dest='quiet',
        help='Suppress output.',
    )
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This would add support for a -q and --quiet switch. Note that, in CLI scripts, it is extremely 
 common to have a long-form and short-form version of options, and so optparse supports this 
easily. By providing two different strings as positional arguments to add_option, the add_option 
method understands that they are supposed to be accepted, and that they are aliases of one another.

The action keyword argument is what specifi es that the --quiet fl ag is a fl ag, and does not expect 
a variable. If you leave off the action keyword argument, the option is assumed to expect a value 
(more on that in a moment). Setting action to store_true or store_false means that no value is 
expected, and, if the fl ag is provided at all, the value is True or False, respectively.

The dest keyword argument is what decides the name of the option in Python. The name of this 
particular option within the options variable is quiet. In many cases, you do not have to set this. 
OptionParser infers an appropriate name based on the name of the option itself. However, it is a 
good idea to always set it explicitly for readability and maintainability.

Finally, the help keyword argument sets the help text for this option. It is what a user will see if he 
or she invokes your script with --help. It is wise to always provide this.

It is worth noting that optparse automatically adds a --help option, and handles it automatically. 
If you call a script with only the example option and provide --help, you get useful output.

$ python cli_script.py --help
Usage: cli_script.py [options]

Options:
  -h, --help   show this help message and exit
  -q, --quiet  Suppress output.

Options with Values
In addition to switches, sometimes you need options that actually expect values to be provided along 
with the option. This does add some complexity. The biggest reason for this is that values have types 
in Python, and the CLI does not have a robust concept of types. Essentially, everything is a string.

First, consider an option that accepts a string, such as a --host fl ag that might be sent to a database 
client. This option should probably be optional. The biggest use case for database clients is connect-
ing to databases on the same machine, so localhost makes for an entirely sensible default.

Here is a complete script that does nothing but reprint the host to standard out:

import optparse

if __name__ == '__main__':
    parser = optparse.OptionParser()
    parser.add_option('-H', '--host',
        default='localhost',
        dest='host',
        help='The host to connect to. Defaults to localhost.',
        type=str,
    )
    options, args = parser.parse_args()
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If you call this script with no arguments, you will see that the default of localhost is applicable.

$ python optparse_host.py
The host is localhost.

By adding a --host option, you override this default.

$ python optparse_host.py --host 0.0.0.0
The host is 0.0.0.0.

If you fail to provide an option, optparse will complain.

$ python optparse_host.py --host
Usage: optparse_host.py [options]

optparse_host.py: error: --host option requires an argument

Focus on the call to add_option. Several things are different from your --quiet fl ag. First, you 
omitted the action keyword argument. The default for this (store) simply stores the value pro-
vided. You can specify this manually if you choose to do so.  

Second, you provided a type. The OptionParser instance actually infers this from the type of the 
default value in most cases (although this does not work if your default value is None), so providing 
it is often optional. Explicitly providing it often makes the code easier to read later. The default for 
type is also str. 

Finally, you provided a default. Most options should be optional, which means they must have a 
sensible default. In many cases, this default may be None. In the case of the host value, you chose 
localhost as a sensible default because having your client and server on the same machine is a 
 common use case.

One other thing is worth pointing out explicitly. The way you read the value off of the options vari-
able is not what you might expect—the host value is read as options.host. You may have expected 
the options value to be provided as a dictionary, in which case options['host'] would have 
been correct. However, the options variable is provided using its own special class (called Values), 
and the individual options exist on this object as attributes. Note that, if you want a dictionary, 
options.__dict__ will provide you with the corresponding dictionary.

Non-String Values
What about values that are not strings? For example, continuing the example of a database client 
of some sort, what if the script should accept a port number? Most databases run on a default port 
(PostgreSQL uses 5432, MySQL uses 3306, and so on), but sometimes such services run on alter-
nate ports.

An option for a port looks similar to an option for a host.

    parser.add_option('-p', '--port',
        default=5432,
        dest='port',
        help='The port to connect to. Defaults to 5432.',
        type=int,
    )
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The crucial difference here is that the type is now specifi ed as int. Again, OptionParser would 
infer this from the fact that the default value is the integer 5432.

In this case, OptionParser performs the type conversion for you, and raises an appropriate error if 
it is not able to. Consider a script that takes a host and port, as shown here:

import optparse

if __name__ == '__main__':
    parser = optparse.OptionParser()
    parser.add_option('-H', '--host',
        default='localhost',
        dest='host',
        help='The host to connect to. Defaults to localhost.',
        type=str,
    )
    parser.add_option('-p', '--port',
        default=5432,
        dest='port',
        help='The port to connect to. Defaults to 5432.',
        type=int,
    )
    options, args = parser.parse_args()
    
    print('The host is %s, and the port is %d.' %
          (options.host, options.port))

Again, invoking the script without arguments provides both default values. Because the format 
string uses %d rather than %s, you know that options.port is an integer under the hood.

$ python optparse_host_and_port.py
The host is localhost, and the port is 5432.

If you try to specify a port value that is not an integer, you get an error.

$ python optparse_host_and_port.py --port=foo
Usage: optparse_host_and_port.py [options]

optparse_host_and_port.py: error: option --port: invalid integer value: 'foo'
$ echo $?
2

And, of course, if you specify a valid integer, it overrides the default.

$ python3 optparse_host_and_port.py --port=8000
The host is localhost, and the port is 8000.

Specifying Option Values
Several different idioms exist for how to specify option values on the command line. The optparse 
module attempts to support all of them.
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Short-Form Syntax
Short-form options are options that have one hyphen and a single letter, such as -q, -H, or -p. If the 
option accepts a value (such as -H and -p in the previous example), it must be written immediately 
after the option. There can optionally be a space between the option and the value (-Hlocalhost 
and -H localhost are equivalent), and the value can optionally be enclosed by quotes (-H 
localhost and -H "localhost" are equivalent). However, you cannot use an equal sign 
between the short-form option and the value.

Here are four valid ways to specify an option value using the short-form syntax:

$ python optparse_host_and_port.py -H localhost
The host is localhost, and the port is 5432.
$ python optparse_host_and_port.py -H "localhost"
The host is localhost, and the port is 5432.
$ python optparse_host_and_port.py -Hlocalhost
The host is localhost, and the port is 5432.
$ python optparse_host_and_port.py -H"localhost"
The host is localhost, and the port is 5432.

The use of the equal sign in the short-form syntax causes it to be prepended to the value itself, which 
is not what you want. (Note the = in the output.) For non-string options, you will usually get an 
error when the parser tries and fails to convert the string to the desired type.

$ python optparse_host_and_port.py -H=localhost
The host is =localhost, and the port is 5432.

And, in the world of the fl at-out bizarre, you could have the following:

$ python optparse_host_and_port.py -H="localhost"
The host is =localhost, and the port is 5432.

Long-Form Syntax
For the long-form format (that is, --host instead of -H), the supported permutations are slightly 
different.

There now must be some separator between the option and the option value (unlike -Hlocalhost). 
This makes intuitive sense. If you provided --hostlocalhost, the parser would never be able to 
fi gure out conclusively where the option ended and the value began. The separator can either be a 
space or an equal sign (so, --host=localhost and --host localhost are equivalent). 

Quotes are allowed, but optional (but you will certainly want to use them if the value has spaces).

Here are four valid ways to specify an option value using the long-form syntax:

$ python cli_script.py --host localhost
The host is localhost, and the port is 5432.
$ python cli_script.py --host "localhost"
The host is localhost, and the port is 5432.
$ python cli_script.py --host=localhost
The host is localhost, and the port is 5432.
$ python cli_script.py --host="localhost"
The host is localhost, and the port is 5432.
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Which Syntax Should You Use?
The basic tradeoff between short-form and long-form syntax is that the former is quicker to type on 
the CLI, whereas the latter is more explicit.

When you are writing CLI scripts, consider supporting both a short-form and a long-form syntax, 
especially for options that are going to be used frequently. (For infrequently used options, providing 
only a long-form alias is probably suffi cient.)

When you are invoking CLI scripts, if you are doing so in code that is being committed to version 
control and must be read and maintained over time, consider using only long-form syntax wherever 
it is available. This makes the CLI command easier to intuit for the person reading the code later.

On the other hand, for one-time commands that you are typing out on a prompt, it likely does 
not matter.

Positional Arguments
It is also possible to send positional arguments to optparse. Actually, any argument that is not 
attached to an option will be considered by the parser to be a positional argument, and is sent to the 
args variable that is returned from parser.parse_args().

import optparse

if __name__ == '__main__':
    parser = optparse.OptionParser()
    options, args = parser.parse_args()

    print('The sum of the numbers sent is: %d' %
          sum([int(i) for i in args]))

Any arguments sent to this script are part of the args variable, and the script tries to convert them 
to integers and add them together.

$ python optparse_sum.py 1 2 5
The sum of the numbers sent is: 8

Of course, if you sent an argument that cannot be converted to an integer, you will get an exception.

$ python optparse_sum.py 1 2 foo
Traceback (most recent call last):
  File "optparse_sum.py", line 8, in <module>
    print('The sum of the numbers sent is: %d' % sum([int(i) for i in args]))
ValueError: invalid literal for int() with base 10: 'foo'

Counters
You can use a small number of other types of options besides simple fl ags and direct value storage. 
One type that is infrequently used but is sometimes useful is a counter fl ag.

Most fl ags simply set a Boolean value to True or False, based on the presence or absence of the fl ag. 
A related idiom, however, is to allow specifying a fl ag multiple times to intensify the effect. 
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Consider a -v fl ag that causes a script to be more verbose. Some programs allow -v to be speci-
fi ed repeatedly in order to make the script become even more verbose. For example, a popular 
confi guration tool called Ansible allows you to specify-v up to four times to provide increasingly 
verbose output.

You do this through a different action value that you can provide to add_option. Consider 
this script:

import optparse

if __name__ == '__main__':
    parser = optparse.OptionParser()
    parser.add_option('-v',
        action='count',
        default=0,
        dest='verbosity',
        help='Be more verbose. This flag may be repeated.',
    )
    options, args = parser.parse_args()

    print('The verbosity level is %d, ah ah ah.' % options.verbosity)

Notice that the call to add_option now specifi es action='count'. This means that the value will 
be incremented by one every time the fl ag is sent.

You can invoke the script to easily see this in action.

$ python count_script.py
The verbosity level is 0, ah ah ah.
$ python count_script.py -v
The verbosity level is 1, ah ah ah.
$ python count_script.py -v -v
The verbosity level is 2, ah ah ah.
$ python count_script.py -vvvvvvvvvvv
The verbosity level is 11, ah ah ah.

Notice that you have two valid ways to specify the short-form option in this case: -v -v and -vv 
are equivalent. This is actually true for distinct short-form options as well, provided they do not 
expect a value.

It is also worth noting that explicitly specifying the default value of 0 is important. If you do 
not specify it explicitly, OptionParser uses a default value of None, which is usually not what you 
want. (In this case, the script would raise TypeError when it tries to do the string interpolation on 
the last line.)

Finally, note that if you choose a default value other than 0, the fl ag functions as an increment, not a 
fl at count. So, if your default value is 1, and you provide two -v fl ags, the value would be 3 (not 2).

List Values
Sometimes, you may want to accept multiple values for the same option, and provide them to your 
script as a list. This is fundamentally similar to a count option, except that it takes a value each 
time, rather than simply incrementing an integer variable.
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The following script prints usernames, one at a time:

import optparse

if __name__ == '__main__':
    parser = optparse.OptionParser()
    parser.add_option('-u', '--user',
        action='append',
        default=[],
        dest='users',
        help='The username to be printed. Provide this multiple times to '
             'print the username for multiple users.',
    )
    options, args = parser.parse_args()

    for user in options.users:
        print('Username: %s.' % user)

Running this with no -u or --user options provided generates no output.

$ python echo_usernames.py
$

However, you can provide one or more -u or --user options to the script, and regardless of how 
many, the OptionParser makes them available as a list:

$ python echo_usernames.py -u me
Username: me.
$ python echo_usernames.py -u me -u myself
Username: me.
Username: myself.

Why Use optparse?
Even though it has been deprecated for years, the optparse module is still the most commonly used 
module for parsing options. Any code that must run on Python 2.6 or earlier, or Python 3.0 through 
Python 3.2, must use optparse, because its successor, argparse, is only available in Python 2.7 and 
Python 3.3.

If you are writing code with CLI tools that must work across multiple versions of Python, most 
likely optparse is still going to be the module you should use for several years to come. Similarly, 
because many tools you will be using still rely on optparse, it is important that you be able to read 
code that was designed using it.

On the other hand, be aware that optparse is not receiving future development work, because it is 
still deprecated. Over time, as the window of Python versions you want to support moves, you may 
decide to move work done in optparse over to argparse.

ARGPARSE
The second library that Python provides for parsing CLI arguments and options is called argparse. 
The argparse module is considered to be the successor to optparse (and optparse is offi cially 
deprecated). However, the argparse module is still quite new. It was introduced in Python 3.3 and 
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backported to Python 2.7. Therefore, any code that needs to run on earlier versions still must use 
optparse.

In many ways, argparse is conceptually similar to optparse. The fundamental principles are the 
same. You create a parser specify and options you expect along with types and sensible defaults; 
then a parser parses the things it received from the CLI and groups them accordingly.

The class you instantiate to do parsing in the argparse module is ArgumentParser. Although it 
uses some different syntax than optparse.OptionParser, the principles are quite similar.

The Bare Bones
A basic CLI script that does not support any actual arguments or options now looks like this:

import argparse

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    args = parser.parse_args()

    print('The script ran successfully and did nothing.')

One key difference to note, other than the renamed module and class, is that this parse_args 
method does not return a two-tuple like the optparse equivalent did. Instead, it returns a single 
object that contains both the positional arguments and options read by the parser.

Another difference lies in the way positional arguments are handled. In optparse, you did not 
declare positional arguments. The second variable simply contained whatever was “left over” after 
optparse had parsed the options you told it about. By contrast, argparse is stricter. It expects to 
be told about positional arguments individually, which makes for a more useful help screen, and 
also causes it to raise an error if it receives data it does not expect.

Therefore, unlike the initial optparse example, this code actually raises an error if it receives any 
arguments, rather than throwing them into the “left over” bucket.

$ python argparse_basic.py
The script ran successfully and did nothing.
$ python argparse_basic.py foo
usage: argparse_basic.py [-h]
cli_script.py: error: unrecognized arguments: foo

Arguments and Options
In argparse, you add both positional arguments and options through the add_argument method of 
ArgumentParser objects. The interface for this is now unifi ed, which means that positional argu-
ments in argparse have support for being a type other than str, and for having specifi ed defaults.

Option Flags
The fi rst kind of option is a fl ag, such as -v or --verbose for a verbose mode, or -q or --quiet 
for a mode that suppresses most or all output. These options do not expect a value. The presence 
or absence of the option determines the appropriate Boolean in the parser.
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The syntax for specifying a fl ag looks like this:

parser.add_argument('-q', '--quiet',
    action='store_true',
    dest='quiet',
    help='Suppress output.',
)

If you are familiar with optparse (or read the section on optparse earlier in this chapter), this will 
look very familiar to you. Other than the method name, not much has changed so far.

First, note the action variable. This is set to store_true, which is the reason why the parser will 
not expect a value. Most options do not need an action to be specifi ed (the default is store, which 
stores the value it receives). The specifi cation of store_true or store_false is the most common 
way to indicate that an option is a fl ag and should not accept a value.

The dest keyword argument determines how to look up the parsed value (in this case, True or 
False) on the object you get back when you call parse_args. The string used here will be the 
attribute name on the object. (So, you would look up this one using args.quiet.) In many cases, 
the dest keyword argument is optional. ArgumentParser determines an intuitive name based on 
the name of the option itself. However, it is useful to explicitly provide this for readability and 
maintainability.

The help keyword argument determines what users get if they call your script with -h or --help. 
The ArgumentParser implicitly provides a help screen attached to these switches, so you should 
always specify a help on your arguments.

Alternate Prefi xes
Most CLI scripts use the hyphen (-) character as the prefi x for options, and this is what ArgumentParser 
expects by default. However, some scripts may use different characters. For example, a script that is only 
intended to be run in Windows environments may prefer to use the / character, which is consistent with 
many Windows command-line programs.

You can change which characters are used for prefi xes by providing the prefix_chars keyword 
argument to the ArgumentParser constructor, as shown here:

import argparse

 if __name__ == '__main__':
    parser = argparse.ArgumentParser(prefix_chars='/')
    parser.add_argument('/q', '//quiet',
        action='store_true',
        dest='quiet',
        help='Suppress output.',
    )
    args = parser.parse_args()

    print('Quiet mode is %r.' % args.quiet)

In this example, you changed the prefi x character to /. Note that this also means that the argument 
itself (the one passed to add_argument) must change accordingly.
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Calling this script is still straightforward. You simply must use /q or //quiet (rather than -q or 
--quiet).

$ python argparse_quiet.py
Quiet mode is False.
$ python argparse_quiet.py /q
Quiet mode is True.

Viewing the help refl ects this:

$ python argparse_quiet.py /h
usage: argparse_quiet.py [/h] [/q]

optional arguments:
  /h, //help  show this help message and exit
  /q          Suppress output.

Note that, because you changed the prefi x character to /, the automatically registered help com-
mand is changed along with it.

Options with Values
Options that accept values are fundamentally similar. Consider the following example of a script 
that accepts a host value (such as a database client), translated into argparse:

import argparse

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('-H', '--host',
        default='localhost',
        dest='host',
        help='The host to connect to. Defaults to localhost.',
        type=str,
    )
    args = parser.parse_args()

    print('The host is %s.' % args.host)

Again, if you are already familiar with optparse, you will likely notice just how similar this is. 
The keyword arguments are the same, and they do the same thing.

The important argument to focus on here is type, which controls what Python type the value is 
 ultimately expected to be. It is common for this to be int or float, and a small number of other 
types may also make sense.

Parsing arguments when you use argparse is slightly different from when you use optparse. 
Regardless of whether you use the short-form or the long-form syntax, you can separate the option 
from the value using a space or an equal sign. The short-form syntax (and only the short-form syn-
tax) also supports not separating the value from the option at all. Both the short-form and the long-
form syntax allow quotes around the value.
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Therefore, all of these are equivalent:

$ python argparse_args.py -Hlocalhost
The host is localhost.
$ python argparse_args.py -H"localhost"
The host is localhost.
$ python argparse_args.py -H=localhost
The host is localhost.
$ python argparse_args.py -H="localhost"
The host is localhost.
$ python argparse_args.py -H localhost
The host is localhost.
$ python argparse_args.py -H "localhost"
The host is localhost.
$ python argparse_args.py --host=localhost
The host is localhost.
$ python argparse_args.py --host="localhost"
The host is localhost.
$ python argparse_args.py --host localhost
The host is localhost.
$ python argparse_args.py --host "localhost"
The host is localhost.

Choices
ArgumentParser adds the capability to specify that an option may only be one of an enumerated set 
of choices.

import argparse

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--cheese',
        choices=('american', 'cheddar', 'provolone', 'swiss'),
        default='swiss',
        dest='cheese',
        help='The kind of cheese to use',
    )
    args = parser.parse_args()

    print('You have chosen %s cheese.' % args.cheese)

If you run this script with no arguments, you get the default value as you expect.

$ python argparse_choices.py
You have chosen swiss cheese.

You can also override the default to any of the available choices in the choices tuple.

$ python argparse_choices.py --cheese provolone
You have chosen provolone cheese.

However, if you attempt to provide a value that is not in the list of available choices, you get 
an error.



argparse ❘ 221

c12.indd 09/01/2015 Page 221

$ python argparse_choices.py --cheese pepperjack
usage: argparse_choices.py [-h] [--cheese {american,cheddar,provolone,swiss}]
argparse_choices.py: error: argument --cheese: invalid choice: 'pepperjack' 
     (choose from 'american', 'cheddar', 'provolone', 'swiss')

Accepting Multiple Values
One additional feature in argparse is the capability to specify that an option accepts more than one 
argument. You can set an option to accept an unbound number of arguments, or an exact number. 
You handle this using the nargs keyword argument to add_argument.

The most straightforward use of nargs is to specify that an option takes an exact number of argu-
ments. Consider the following simple script that takes an option that expects exactly two arguments 
rather than one:

import argparse

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--madlib',
        default=['fox', 'dogs'],
        dest='madlib',
        help='Two words to place in the madlib.',
        nargs=2,
    )
    args = parser.parse_args()

    print('The quick brown {0} jumped over the '
          'lazy {1}.'.format(*args.madlib))

Sending an integer to nargs means that the option expects exactly that number of arguments, and 
will return them as a list. (Note that if you specify a nargs value of 1, you still get a list.)

If you omit the --madlib argument, you get the default list specifi ed in the add_argument call.

$ python argparse_multiargs.py
The quick brown fox jumped over the lazy dogs.

Similarly, providing two arguments causes them to be substituted in place of the defaults.

$ python argparse_multiargs.py --madlib pirate ninjas
The quick brown pirate jumped over the lazy ninjas.

However, if you try to provide any number of arguments other than two, the command fails.

$ python argparse_multiargs.py --madlib pirate
usage: argparse_multiargs.py [-h] [--madlib MADLIB MADLIB]
argparse_multiargs.py: error: argument --madlib: expected 2 arguments
$ python argparse_multiargs.py --madlib pirate ninjas cowboy
usage: argparse_multiargs.py [-h] [--madlib MADLIB MADLIB]
argparse_multiargs.py: error: unrecognized arguments: cowboy

In the fi rst case, the --madlib option was only able to consume one argument, and because it 
expected two, it fails. In the second case, the --madlib argument successfully consumes both of the 
arguments it expects, but there is a positional argument left over. The parser does not know what to 
do with that, so it fails out instead.
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You also may want to allow any number of arguments, which you can indicate by providing + or * 
to nargs. The + value indicates that the option expects one or more values to be provided, and 
* indicates that the option expects zero or more values to be provided.

Consider the following simple addition script:

import argparse

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--addends',
        dest='addends',
        help='Integers to provide a sum of',
        nargs='+',
        required=True,
        type=int,
    )
    args = parser.parse_args()

    print('%s = %d' % (
        ' + '.join([str(i) for i in args.addends]),
        sum(args.addends),
    ))

If you run this, you can see it provides the following equation:

$ python argparse_sum.py --addends 1 2 5
1 + 2 + 5 = 8
$ python argparse_sum.py --addends 1 2
1 + 2 = 3

Note that the + value provided to nargs actually means one or more values, not two or more. 
This script would gladly accept only a single argument.

$ python argparse_sum.py --addends 1
1 = 1

Positional Arguments
With argparse (unlike with optparse), you must declare your positional arguments explicitly. If 
you do not, the parser expects to have no arguments left over after it completes parsing, and it raises 
an error if arguments still remain.

The declaration for positional arguments is equivalent to the declaration for options, except that 
the leading hyphen is omitted. As an example, it seems bad form for the --addends option in the 
previous example to be an option at all. Options should be optional.

It is easy to provide the same thing as a positional argument.

import argparse

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
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    parser.add_argument('addends',
        help='Integers to provide a sum of',
        nargs='+',
        type=int,
    )
    args = parser.parse_args()

    print('%s = %d' % (
        ' + '.join([str(i) for i in args.addends]),
        sum(args.addends),
    ))

This is mostly the same, except that the --addends argument has been replaced with addends, 
without the double-hyphen prefi x. This causes the parser to expect a positional argument instead.

Why provide a name for positional arguments? (After all, optparse does not need positional 
argument names,) The answer is that the name you provide is used in the program’s --help output.

$ python cli_script.py --help
usage: cli_script.py [-h] addends [addends ...]

positional arguments:
  addends     Integers to provide a sum of

optional arguments:
  -h, --help  show this help message and exit

Notice that the word addends is used in the usage line near the top of the help. This provides 
slightly more insight into what is being expected. Additionally, unlike in help provided by optparse, 
the positional arguments are documented as part of the help screen.

You can invoke this script the same way, except without the --addends option.

$ python cli_script.py 1 2 5
1 + 2 + 5 = 8

Reading Files
A common need when writing CLI applications is to read fi les. The argparse module provides a 
special class that can be sent to the type keyword argument of add_argument, which is argparse
.FileType.

The argparse.FileType class expects the arguments that would be sent to Python’s open function, 
excluding the fi lename (which is what is being provided by the user invoking the program). If you 
are opening the fi le for reading, this may be nothing. open defaults to opening fi les only for reading. 
However, any arguments after the initial positional argument to open can be provided to FileType, 
and they will be passed on to open.

Consider the following program that may read a confi guration fi le from a non-default location:

import argparse

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
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    parser.add_argument('-c', '--config-file',
        default='/etc/cli_script',
        dest='config',
        help='The configuration file to use.',
        type=argparse.FileType('r')
    )
    args = parser.parse_args()

    print(args.config.read())

This would read from /etc/cli_script by default, but allow you to specify a different fi le to read 
from using the -c or --config-file options. Rather than providing these options as text and forc-
ing you to open the fi le yourself, you will simply be provided with an open fi le object:

$ echo "This is my config file." > foo.txt
$ python cli_script.py --config-file foo.txt
This is my config file.

Note that the fi le is expected to exist. If it does not, you get an error.

$ python cli_script.py --config-file bar.txt
usage: cli_script.py [-h] [-c CONFIG]
cli_script.py: error: argument -c/--config-file: can't open 'bar.txt': 
     [Errno 2] No such file or directory: 'bar.txt'

Why Use argparse?
If you are exclusively using Python 2.7 or Python 3.3 and up, several good reasons exist to use 
argparse rather than optparse. The argparse module supports essentially all of optparse’s fea-
tures, and adds several additional ones, such as multiple arguments, better support for fi les, and more.

Additionally, argparse’s handling of positional arguments is more consistent with its handling of 
options, and results in more robust handling as well as a more useful help output.

The only major drawback of argparse is its absence from older versions of Python. If you still need 
to support Python 2.6 or Python 3.2, you need to stick with optparse for now.

SUMMARY

The optparse and argparse modules provide very good support for reading data from the 
 command line for Python programs that need to do this.

The current transition from optparse to argparse poses a challenge because you may fi nd yourself 
needing to write code around a deprecated module to support versions of Python that are still in 
wide use today. If you do work in this area, you will probably need to remain familiar with both 
modules for some time.

In Chapter 13, you learn about asyncio , a new module in Python 3.4 to support asynchronous work. 
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asyncio
In general, most Python applications are sequential applications. That is, they usually run 
from a defi ned entry point to a defi ned exit point, with each execution being a single process 
from beginning to end.

This stands in contrast to many more asynchronous languages, such as JavaScript and Go. For 
example, JavaScript relies heavily on asynchronous work, with any web requests happening in 
the background being called in a separate thread, and relying on callbacks to run correct func-
tions once data has loaded.

There is no right or wrong answer to whether a language should approach most problems 
sequentially or asynchronously, but cases certainly exist where one model is more useful than 
the other for particular problems. This is where the asyncio module comes in. It makes it easy 
to do asynchronous work in Python when the problem warrants it.

Right now, asyncio is a provisional module. While sweeping, backward-incompatible changes 
are unlikely (because Python shies away from such things once items have been placed in the 
standard library), it is likely that asyncio may undergo signifi cant revision in the next couple 
of Python versions.

The asyncio module was introduced in Python 3.4, and is not available in Python 2. If you 
are on Python 3.3, you can get it from PyPI; it is not yet in the standard library. Therefore, if 
you want to use the features provided by asyncio, you will be limiting yourself to newer 
versions of Python. Similarly, the asyncio module has been under active development over the 
lifetime of Python 3.4, so you will want to be on the newest incremental revision if possible.

Because most Python applications are sequential applications, several concepts may be foreign 
to you if you have not done a reasonable amount of work outside of sequential languages. This 
chapter covers these concepts in detail.

THE EVENT LOOP

The fundamental way that most asynchronous applications work is via an event loop that runs 
in the background. When something needs to run, it is registered to the event loop.

13
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Registering a function to an event loop causes it to be made into a task. The event loop is then 
responsible for running the task as soon as it can get to it. Alternatively, sometimes the event loop is 
told to wait a certain amount of time, and then run the task.

Although you may not be familiar with writing code that uses event loops, you use programs that 
depend on them frequently. Almost any server is an event loop. A database server, for example, sits 
around and waits for connections and queries, and then executes queries as fast as possible. If two 
different connections provide two different queries, it prioritizes and runs both of them. Desktop 
applications are also event-driven, displaying a screen that allows input in various places and 
responding to said inputs. Most video games are also event loops. The game waits for control input 
and takes action based on it.

A Simple Event Loop
In most cases, you do not need to create an event loop object yourself. You can get a BaseEventLoop 
object by using the asyncio.get_event_loop() function. What you will actually get will be a 
subclass; which subclass you get is platform-dependent. You do not need to worry about this imple-
mentation detail too much. The API between all of them is the same. However, a few platform-
dependent limitations exist.

When you fi rst get the loop object, it will not be running.

>>> loop = asyncio.get_event_loop()
>>> loop.is_running()
False

Running the Loop
The following event loop does not have anything registered to it yet, but you can run it anyway:

>>> loop.run_forever()

There is one minor hitch, however. If you ran this, you just lost control of your Python interpreter, 
because the loop is running in it forever. Press Ctrl+C to get your interpreter back. (Of course, this 
will stop the loop.)

Unfortunately, asyncio does not have a “fi re and forget” method to run a loop in a separate thread. 
For most application code, this is actually not a huge hindrance, because you are probably writing 
a server or daemon where the purpose of the program is to run the loop in the foreground and have 
other processes issue commands.

For testing or experimenting, however, this presents a serious challenge, because the majority of 
asyncio methods are not actually thread-safe. For most examples in this chapter, you will get 
around this by simply not running the loop forever.
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Registering Tasks and Running the Loop
Tasks are primarily registered to the loop using call_soon, which operates as a FIFO (“fi rst in, fi rst 
out”) queue. Therefore, most examples in this chapter will simply include a fi nal task that stops the 
loop, as shown here:

>>> import functools
>>> def hello_world():
...     print('Hello world!')
...
>>> def stop_loop(loop):
...     print('Stopping loop.')
...     loop.stop()
...
>>> loop.call_soon(hello_world)
Handle(<function hello_world at 0x1003c0b70>, ())
>>> loop.call_soon(functools.partial(stop_loop, loop))
Handle(functools.partial(<function stop_loop at 0x101ccf268>, 
     <asyncio.unix_events._UnixSelectorEventLoop 
     object at 0x1007399e8>), ())
>>> loop.run_forever()
Hello world!
Stopping loop.
>>> 

In this example, the hello_world function was registered to the loop. Then, the stop_loop func-
tion was also registered. When the loop was started (with loop.run_forever()), it ran both tasks, 
in order. Because the second task stopped the loop, it exited the loop once the task completed.

Delaying Calls
It is also possible to register a task, but indicate that it should not be called until later. You can do 
this using the call_later method, which takes a delay (in number of seconds) as well as the func-
tion to be called.

>>> loop.call_later(10, hello_world)
TimerHandle(60172.411042585, <function hello_world at 0x1003c0b70>, ())
>>> loop.call_later(20, functools.partial(stop_loop, loop))
TimerHandle(60194.829461844, functools.partial(
     <function stop_loop at 0x101ccf268>,
     <asyncio.unix_events._UnixSelectorEventLoop object at 0x1007399e8>), 
     ())
>>> loop.run_forever()

Note that it is possible to have two or more delayed calls come up at the same time. If this happens, 
they may occur in either order.
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Partials
You may have also noticed the use of functools.partial in the previous example. Most 
asyncio methods that take functions only take function objects (or other callables), but not 
arguments to be sent to those functions once they are called. The functools.partial method is a 
solution to that problem. The partial method itself takes the arguments and keyword arguments 
that must be passed to the underlying function when it is called.

For instance, the hello_world function in the previous example is actually entirely unnecessary. It 
is an analogue to functools.partial(print, 'Hello world!'). Therefore, the previous example 
could be written as follows:

>>> import functools
>>> def stop_loop(loop):
...     print('Stopping loop.')
...     loop.stop()
...
>>> loop.call_soon(functools.partial(print, 'Hello world! ')
Handle(functools.partial(<built-in function print>, 'Hello world'), ())
>>> loop.call_soon(functools.partial(stop_loop, loop))
Handle(functools.partial(<function stop_loop at 0x101ccf268>, 
     <asyncio.unix_events._UnixSelectorEventLoop object 
     at 0x1007399e8>), ())
>>> loop.run_forever()
Hello world!
Stopping loop.
>>> 

Why have partials at all? After all, it is usually easy enough to wrap such calls in functions that do 
not require arguments. The answer is in debugging. The partial object knows what it is calling 
and with what arguments. This is represented as data to the partial, and the partial uses that 
data when called to perform the proper function call. By contrast, the hello_world function is 
just that: a function. The function call within it is code. There is no way to easily inspect the 
hello_world function and pull out the underlying call.

You can see this difference by creating a partial and then inspecting its underlying function and 
arguments.

>>> partial = functools.partial(stop_loop, loop)
>>> partial.func
<function stop_loop at 0x10223e488>
>>> partial.args
(<asyncio.unix_events._UnixSelectorEventLoop object at 0x102238b70>,)

Running the Loop until a Task Completes
It is also possible to run the loop until a task completes, as shown here:

>>> @asyncio.coroutine
... def trivial():
...     return 'Hello world!'

mailto:@asyncio.coroutine
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... 
>>> loop.run_until_complete(trivial())
'Hello world!'

In this example, the @asyncio.coroutine decorator transforms this normal Python function into 
a coroutine, which is covered in more detail later. When you call run_until_complete, it regis-
ters the task and then runs the loop only until the task completes. Because it is the only task in the 
queue, it completes and exits the loop, returning the result of that task.

Running a Background Loop
It is possible to run an event loop in the background, using the threading module that is available 
in the Python standard library.

>>> import asyncio
>>> import threading
>>>
>>> def run_loop_forever_in_background(loop):
...     def thread_func(l):
...         asyncio.set_event_loop(l)
...         l.run_forever()
...     thread = threading.Thread(target=thread_func, args=(loop,))
...     thread.start()
...     return thread
...
>>>
>>> loop = asyncio.get_event_loop()
>>> run_loop_forever_in_background(loop)
<Thread(Thread-1, started 4344254464)>
>>>
>>> loop.is_running()
True

Note that this is a useful idiom for getting started, but is almost certainly not what you will want in 
your fi nal application. (For example, you will have a hard time stopping the loop; loop.stop does 
not work anymore.) It is fi ne for learning, though.

This loop is still relatively uninteresting. After all, while it is running, it has nothing to do. You have 
not registered any tasks to it yet. Consider what happens when you register a trivial task to run as 
soon as possible.

>>> loop.call_soon_threadsafe(functools.partial(print, 'Hello world'))
Handle(functools.partial(<built-in function print>, 'Hello world'), ())
>>> Hello world

This output might be a bit confusing. First, you called call_soon_threadsafe. This tells the loop 
to run the given function asynchronously as soon as possible. Note that, in most cases, you will 
simply use the call_soon function, because you will not be running the event loop in a thread.

The call_soon_threadsafe function returns a Handle object. This is an object with one method: 
cancel. It is able to cancel the task entirely if appropriate.
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Next, you have the >>> prompt (suggesting that the interpreter expects input), followed by Hello 
world. That was printed from the previous function call, after the prompt was written to the screen.

Because event loops are not thread safe, the remainder of the examples in this chapter use other 
models to explain the concepts.

COROUTINES

Most functions that are used within asyncio should be coroutines. A coroutine is a special kind 
of function designed to run within an event loop. Additionally, if a coroutine is created but is never 
run, an error will be issued to the logs.

NOTE This discussion documents Python 3.4 specifi cally. Changes are possible 
in Python 3.5.

You can make a function into a coroutine by decorating it with @asyncio.coroutine. Consider this 
example of running a simple coroutine with the event handler’s run_until_complete:

>>> import asyncio
>>> @asyncio.coroutine
... def coro_sum(*args):
...     answer = 0
...     for i in args:
...         answer += i
...     return answer
...
>>> loop = asyncio.get_event_loop()
>>> loop.run_until_complete(coro_sum(1, 2, 3, 4, 5))
15

The coro_sum function created here is no longer a regular function; it is a coroutine, and it is called 
by the event loop. It is worth noting that you can no longer call it the regular way and get what you 
may expect.

>>> coro_sum(1, 2, 3, 4, 5)
<generator object coro at 0x104056e10>

Coroutines are, in fact, special generators that are consumed by the event loop. That is why the 
run_until_complete method is able to take what appears to be a standard function call. The func-
tion is not actually run at that point. The event loop is what consumes the generator and ultimately 
extracts the result.

What actually happens under the hood essentially looks like this:

>>> try:
...     next(coro_sum(1, 2, 3, 4, 5))
... except StopIteration as ex:
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...     ex.value

...
15

The generator does not yield any values. It immediately raises StopIteration. The StopIteration 
exception is given a value, which is the return value of the function. The event loop is then able to 
extract this and handle it appropriately.

Nested Coroutines
Coroutines provide a special mechanism to call other coroutines (or Future instances, as discussed 
shortly) in a fashion that mimics that of sequential programming. By using the yield from state-
ment, a coroutine can run another coroutine, and the statement returns the result. This is one mech-
anism available to write asynchronous code in a sequential manner.

The following simple coroutine calls another coroutine using yield from:

>>> import asyncio
>>> @asyncio.coroutine
... def nested(*args):
...     print('The `nested` function ran with args: %r' % (args,))
...     return [i + 1 for i in args]
...
>>> @asyncio.coroutine
... def outer(*args):
...     print('The `outer` function ran with args: %r' % (args,))
...     answer = yield from nested(*[i * 2 for i in args])
...     return answer
...
>>> loop = asyncio.get_event_loop()
>>> loop.run_until_complete(outer(2, 3, 5, 8))
The `outer` function ran with args: (2, 3, 5, 8)
The `nested` function ran with args: (4, 6, 10, 16)
[5, 7, 11, 17]

Here you have two coroutines, with the outer coroutine calling the nested coroutine using the yield 
from syntax. You can see from the output to standard out that both coroutines run, and the fi nal 
result is returned at the end of outer.

Incidentally, what is happening here under the hood is that the outer coroutine is actually sus-
pended when it encounters the yield from statement. The nested coroutine is then placed on the 
event loop and the event loop runs it. The outer coroutine does not continue until nested com-
pletes and a result is available. 

A couple things are worth noting. First, the yield from statement returns the result of the corou-
tine it runs. That is why you see an assignment to a variable in the example.

Second, why would you not simply call the function directly? This would be fi ne if it were a proce-
dural function, but this is a coroutine. Calling it directly would return a generator rather than the 
value. You could write nested as a standard function, but consider the following situation where 
you would also want to be able to assign it to the event loop directly.
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>>> loop.run_until_complete(nested(5, 10, 15))
The `nested` function ran with args: (5, 10, 15)
[6, 11, 16]

The capability to have a coroutine call another coroutine using yield from addresses this. It 
increases the capability to reuse coroutines.

FUTURES AND TASKS

Because most work using asyncio is done asynchronously, you must contend with how to deal with 
the results of functions that are run in this manner. The yield from statement provides one way to 
do this, but sometimes, for example, you want to run asynchronous functions in parallel.

In sequential programming, return values are straightforward. You run a function, and it returns its 
result. However, in asynchronous programming, while the function returns its result as before, what 
happens to the result then? There is no clear caller to return the result to.

Futures
A mechanism for dealing with this particular challenge is the Future object. Essentially, a Future 
is an object that is told about the status of an asynchronous function. This includes the status of the 
function—whether that function is running, has completed, or was canceled. This also includes the 
result of the function, or, if the function ended by raising an exception, the exception and traceback. 

The Future is a standalone object. It is independent of the actual function that is running. It does 
nothing but store the state and result information.

Tasks
A Task is a subclass of Future, as well as what you will generally be using when programming with 
asyncio. Whenever a coroutine is scheduled on the event loop, that coroutine is wrapped in a Task. 
So, in the previous example, when you called run_until_complete and passed a coroutine, that 
coroutine was wrapped in a Task class and then executed. It was the Task that stored the result and 
handled providing it in the yield from statement.

The run_until_complete method is not the only way (or even the primary way) for a coroutine to 
be wrapped in a class, however. After all, in many applications, your event loop runs forever. How 
do tasks get placed on the event loop in such a system?

The primary way you do this is by using the asyncio.async method. This method will place a 
coroutine on the event loop, and return the associated Task.

NOTE If you are running Python 3.4.4+, use ensure_future rather than 
 asyncio.async. However, if you are running Python 3.4.3, continue to use 
asyncio.
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To demonstrate this, fi rst get the event loop and write a garden-variety coroutine, as shown here:

>>> import asyncio
>>>
>>> @asyncio.coroutine
... def make_tea(variety):
...     print('Now making %s tea.' % variety)
...     asyncio.get_event_loop().stop()
...     return '%s tea' % variety
... 
>>>

This is still a trivial task, but one new thing here that you have not seen yet is that the task actually 
stops the event loop. This is simply a nice workaround to dodge the fact that when you start the 
loop (with run_forever), it will run forever.

Next, register the task with the event loop.

>>> task = asyncio.async(make_tea('chamomile'))

This is all you actually need to do to register the task with the loop, but because the loop is not run-
ning, the task is not going to execute for now. Indeed, you can inspect the task object using the done 
and result methods and see this.

>>> task.done()
False
>>> task.result()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/asyncio/
       futures.py", line 237, in result
    raise InvalidStateError('Result is not ready.')
asyncio.futures.InvalidStateError: Result is not ready.

Next, you must start the loop. It is okay to start the loop with run_forever now; the actual task 
will stop it as soon as the task completes because of the call to loop.stop().

>>> loop = asyncio.get_event_loop()
>>> loop.run_forever()
Now making chamomile tea.
>>>

Sure enough, the loop starts, runs the task, and then immediately stops. Now if you inspect the 
task variable, you will get different results.

>>> task.done()
True
>>> task.result()
'chamomile tea'

Whenever you create a Task object with asyncio.async, you will get a Task object back. You can 
inspect that object at any time to get the status or result of the task.
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CALLBACKS

Another feature of Future objects (and therefore Task objects, because Task subclasses Future) is 
the capability to register callbacks to the Future. A callback is simply a function (or coroutine) that 
should execute once the Future is done, and which receives the Future as an argument.

In some ways, callbacks represent a reversal of the yield from model. When a coroutine uses yield 
from, that coroutine ensures that the nested coroutine runs before or during its execution. When 
you register a callback, you are working in the opposite direction. The callback is being attached to 
the original task, to run after the execution of the task.

You can add a callback to any Future object by using that object’s add_done_callback method. 
Callbacks are expected to take a single argument, which is the Future object itself (which will 
contain the status and result, if applicable, of the underlying task).

Consider the following example of a callback in action:

>>> import asyncio
>>> loop = asyncio.get_event_loop()
>>>
>>> @asyncio.coroutine
... def make_tea(variety):
...     print('Now making %s tea.' % variety)
...     return '%s tea' % variety
...
>>> def confirm_tea(future):
...     print('The %s is made.' % future.result())
...
>>> task = asyncio.async(make_tea('green'))
>>> task.add_done_callback(confirm_tea)
>>>
>>> loop.run_until_complete(task)
Now making green tea.
The green tea is made.
'green tea'

The fi rst thing that is happening is that you again made a make_tea coroutine, identical to the one 
in the previous example, except that this one does not stop the loop.

Next, notice the confirm_tea function. This is a plain function; it is not a coroutine. In fact, you 
cannot send a coroutine as a callback here. It will raise an exception when you run the loop if you 
try. This function receives the Future object (which is the task variable in this case) that it is reg-
istered to once the callback runs. The Future object contains the result of the coroutine—which is 
that is the 'green tea' string in this case.

Finally, notice the call to add_done_callback. This is where the confirm_tea method is assigned 
as a callback to the task. Also, notice that it is assigned to the task (a particular invocation of a 
coroutine), not the coroutine itself. If another task was registered to the loop with asyncio.async 
that called the same coroutine, it would not have this callback.

The output shows that both functions ran, in the order you expected. The return value is the return 
value from make_tea, provided to you because that is how run_until_complete works.
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No Guarantee of Success
There is one important thing to note. Simply because a Future is done does not guarantee that it 
ran successfully. This example simply assumes that future.result() will be populated, but that 
may not be the case. The Task could have ended in an exception, in which case, attempting to access 
future.result() will raise that exception.

Similarly, it is possible to cancel a task (using the Future.cancel() method or by other means). If 
this occurs, the task will be marked Cancelled, and the callbacks will be scheduled. In this case, 
attempting to access future.result() will raise CancelledError.

Under the Hood
Internally, asyncio informs the Future object that it is done. The Future object then takes each of 
the callbacks registered against it and calls call_soon_threadsafe on each of them.

Be aware that there is no guarantee of order when it comes to callbacks. It is entirely possible (and 
fi ne) to register multiple callbacks to the same task. However, you do not have any way of control-
ling which callbacks will be run in which order.

Callbacks with Arguments
One limitation of the callback system is that, as noted, the callback receives the Future as a posi-
tional argument, and accepts no other arguments.

It is possible to send other arguments to a callback through the use of functools.partial. If you 
do this, however, the callback must still accept the Future as a positional argument. In practice, the 
Future is appended to the end of the positional arguments list before the callback is called.

Consider the following case of a callback that expects another argument:

>>> import asyncio
>>> import functools
>>>
>>> loop = asyncio.get_event_loop()
>>>
>>> @asyncio.coroutine
... def make_tea(variety):
...     print('Now making %s tea.' % variety)
...     return '%s tea' % variety
...
>>> def add_ingredient(ingredient, future):
...     print('Now adding %s to the %s.' % (ingredient, future.result()))
...
>>>
>>> task = asyncio.async(make_tea('herbal'))
>>> task.add_done_callback(functools.partial(add_ingredient, 'honey'))
>>>
>>> loop.run_until_complete(task)
Now making herbal tea.
Now adding honey to the herbal tea.
'herbal tea'
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This is mostly similar to the previous example. The only signifi cant difference is in how the callback 
is registered. Instead of passing the function object directly (as you did in the previous example), you 
instantiate a functools.partial object with the positional argument you are sending ('honey').

Again, notice that the add_ingredient function is written to accept two positional arguments, but 
the partial only specifi es one argument. The Future object is sent as the last positional argument 
in cases where a partial is used. The function signature for add_ingredient refl ects this.

TASK AGGREGATION

The asyncio module provides a convenient way to aggregate tasks. You have two major reasons 
to do something like this. The fi rst reason is to take some sort of action once any task in a set of 
tasks has completed. The second reason is to take some sort of action once all tasks in the set have 
completed.

Gathering Tasks
The fi rst mechanism that asyncio provides for this purpose is the gather function. The gather 
function takes a sequence of coroutines or tasks and returns a single task that aggregates all of them 
(wrapping any coroutines it receives in tasks as appropriate).

>>> import asyncio
>>> loop = asyncio.get_event_loop()
>>>
>>> @asyncio.coroutine
... def make_tea(variety):
...     print('Now making %s tea.' % variety)
...     return '%s tea' % variety
...
>>> meta_task = asyncio.gather(
...     make_tea('chamomile'),
...     make_tea('green'),
...     make_tea('herbal')
... )
...
>>> meta_task.done()
False
>>>
>>> loop.run_until_complete(meta_task)
Now making chamomile tea.
Now making herbal tea.
Now making green tea.
['chamomile tea', 'green tea', 'herbal tea']
>>> meta_task.done()
True

In this case, the asyncio.gather function received three coroutine objects. It wrapped them all in 
tasks under the hood, and returned a single task that serves as an aggregation of all three.
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Notice that scheduling the meta_task object effectively schedules the three tasks gathered under-
neath it. Once you run the loop, the three subtasks all run.

In the case of a task created with asyncio.gather, the result is always a list, and that list contains 
the results of the individual tasks that were gathered. The order of the list of results is guaranteed 
to be the same order in which the tasks were gathered (but the tasks are not guaranteed to be run in 
that order). Therefore, the list of strings you got back are in the same order as the registered corou-
tines in the asyncio.gather call.

The asyncio.gather paradigm also provides the opportunity to add a callback to the set of tasks 
as a whole, rather than the individual tasks. What if you only want a callback to run once all of the 
tasks are completed, but it does not matter to you in which order they complete?

>>> import asyncio
>>> loop = asyncio.get_event_loop()
>>>
>>> @asyncio.coroutine
... def make_tea(variety):
...     print('Now making %s tea.' % variety)
...     return '%s tea' % variety
...
>>> def mix(future):
...     print('Mixing the %s together.' % ' and '.join(future.result()))
...
>>> meta_task = asyncio.gather(make_tea('herbal'), make_tea('green'))
>>> meta_task.add_done_callback(mix)
>>>
>>> loop.run_until_complete(meta_task)
Now making green tea.
Now making herbal tea.
Mixing the green tea and herbal tea together.
['green tea', 'herbal tea']

The fi rst thing that happened when you called run_until_complete was that both of the individual 
tasks gathered into meta_task ran, individually. Finally, the mix function ran, only after both of 
the individual tasks had run. This is because the meta_task is not considered to be done until after 
all of its individual tasks are done, so only once both individual tasks complete does it trigger the 
callback.

You can also see that the Future object that the mix function received was meta_task, not the indi-
vidual tasks, and, therefore, its result method returned a list of both of the individual results.

Waiting on Tasks
Another tool that the asyncio module provides is the built-in wait coroutine. The asyncio.wait 
coroutine takes a sequence of coroutines or tasks (wrapping any coroutines in tasks) and returns 
once they are done. Note that the signature here is distinct from asyncio.gather. gather takes 
each coroutine or task as a single positional argument, whereas wait expects a list.
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Additionally, wait accepts a parameter to return when any of its tasks complete, rather than only 
returning when all of them do. Regardless of whether this fl ag is set, the wait method always 
returns a two-tuple, with the fi rst element being the Future objects that have completed, and the 
second element being those that are still pending.

Consider the following example that is similar to how you previously used asyncio.gather:

>>> import asyncio
>>> loop = asyncio.get_event_loop()
>>>
>>> @asyncio.coroutine
... def make_tea(variety):
...     print('Now making %s tea.' % variety)
...     return '%s tea' % variety
...
>>> coro = asyncio.wait([make_tea('chamomile'), make_tea('herbal')])
>>>
>>> loop.run_until_complete(coro)
Now making chamomile tea.
Now making herbal tea.
({Task(<coro>)<result='herbal tea'>, Task(<coro>)<result='chamomile tea'>}, set())

Note a couple of subtle differences here. First, unlike the gather method, the wait method returns 
a coroutine. This has its value; you can use it in a yield from statement, for example.

On the other hand, you are unable to attach callbacks directly to a coroutine returned from wait. If 
you want to do this, you must wrap it in a task using asyncio.async.

Also, the result is different. The asyncio.gather function aggregated the results in a list, and 
returned that. The result for asyncio.wait is a two-tuple containing the actual Future objects 
(which themselves contain their results). Additionally, the Future objects are reorganized. The 
asyncio.wait routine places them into two sets—one set for those that are done, and another set 
for those that are not. Because sets are themselves an unordered structure, that means you must rely 
on the Future objects to piece together which result corresponds to which task.

Timeouts
It is possible to have the asyncio.wait coroutine return when a specifi c amount of time has passed, 
regardless of whether all of the tasks have completed. To do this, you pass the timeout keyword 
argument to asyncio.wait.

>>> import asyncio
>>> loop = asyncio.get_event_loop()
>>>
>>> coro = asyncio.wait([asyncio.sleep(5), asyncio.sleep(1)], timeout=3)
>>> loop.run_until_complete(coro)
({Task(<sleep>)<result=None>}, {Task(<sleep>)<PENDING>})

In this case, you are just using a coroutine provided by the asyncio module: asyncio.sleep. This 
simply waits for a given number of seconds, and then returns None. The timing in this example is set 
up so that one of the tasks (the second one) will complete before the wait function times out, but 
the other will not. 
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The fi rst difference to note is that the second element of the two-tuple now has a task in it; the 
sleep coroutine that failed to complete in time is still pending. The other, however, did complete, 
and has a result (None).

The use of timeout does not necessitate that the entire time period designated by timeout must 
elapse. If all of the tasks complete before time expires, the coroutine will complete immediately.

Waiting on Any Task
One of the biggest features of asyncio.wait is the capability to have the coroutine return 
when any of the Future objects under its care completes. The asyncio.wait function also accepts a 
return_when keyword argument. By sending it a special constant (asyncio.FIRST_COMPLETED), the 
coroutine will complete once any task has fi nished, rather than waiting for every task.

>>> import asyncio
>>> loop = asyncio.get_event_loop()
>>>
>>> coro = asyncio.wait([
...     asyncio.sleep(3),
...     asyncio.sleep(2),
...     asyncio.sleep(1),
... ], return_when=asyncio.FIRST_COMPLETED)
>>>
>>> loop.run_until_complete(coro)
({Task(<sleep>)<result=None>},
 {Task(<sleep>)<PENDING>, Task(<sleep>)<PENDING>})

In this case, the asyncio.wait call is given a list of three asyncio.sleep coroutines, which will 
sleep for 3, 2, and 1 seconds. Once the coroutine is called, it runs all the tasks underneath it. The 
asyncio.sleep coroutine that is only asked to wait for 1 second completes fi rst, which completes 
the wait. Therefore, you get a two-tuple back with one item in the fi rst set (tasks that are complete), 
and two items in the second set (tasks that are still pending).

Waiting on an Exception
It is also possible to have a call to asyncio.wait complete whenever it encounters a task that com-
pleted with an exception, rather than exiting normally. This is a valuable tool in situations where 
you want to trap the exceptional cases as early as possible and deal with them.

You can trigger this behavior using the return_from keyword argument as before, but by sending 
the asyncio.FIRST_EXCEPTION constant instead.

>>> import asyncio
>>> loop = asyncio.get_event_loop()
>>>
>>> @asyncio.coroutine
... def raise_ex_after(seconds):
...     yield from asyncio.sleep(seconds)
...     raise RuntimeError('Raising an exception.')
...
>>> coro = asyncio.wait([
...     asyncio.sleep(1),
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...     raise_ex_after(2),

...     asyncio.sleep(3),

... ], return_when=asyncio.FIRST_EXCEPTION)
>>>
>>> loop.run_until_complete(coro)
({Task(<raise_ex_after>)<exception=RuntimeError('Raising an exception.',)>,
  Task(<sleep>)<result=None>},
 {Task(<sleep>)<PENDING>})

In this case, the asyncio.wait coroutine stopped as soon as a task completed with an exception. 
This means that the 1-second asyncio.sleep completed successfully, and it is in the fi rst set in the 
return value. The raise_ex_after coroutine also completed, so it is in the fi rst set also. However, 
the fact that it raised an exception caused wait to trigger its completion before the 3-second sleep 
could complete, so it is returned in the second (pending) set.

Sometimes, there may not be any task that actually raises an exception (which is usually a conve-
nient case). In this case, the wait completes once all of the tasks have completed as normal.

>>> import asyncio
>>> loop = asyncio.get_event_loop()
>>>
>>> coro = asyncio.wait([
...     asyncio.sleep(1),
...     asyncio.sleep(2),
... ], return_when=asyncio.FIRST_EXCEPTION)
>>>
>>> loop.run_until_complete(coro)
({Task(<sleep>)<result=None>, Task(<sleep>)<result=None>}, set()) 

QUEUES

The asyncio module provides several common patterns that are built upon the fundamental build-
ing blocks of the event loop and Future objects. One of these is a basic queuing system.

A queue is a collection of tasks to be processed by a task runner. The Python ecosystem includes 
several third-party task queue utilities, with the most popular of these probably being celery. This 
is not a fully featured queuing application. Rather, the asyncio module provides simply the funda-
mental queue itself, which application developers can build on top of.

Why is Queue part of asyncio? This Queue class provides methods to be used in a sequential or an 
asynchronous context.

Consider fi rst a very simple example of a Queue in action:

>>> import asyncio
>>> queue = asyncio.Queue()
>>> queue.put_nowait('foo')
>>> queue.qsize()
1
>>> queue.get_nowait()
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'foo'
>>> queue.qsize()
0

In addition to being trivially simple, there is nothing particularly asynchronous going on here. You 
did not even bother to get or run the event loop. This is a very direct FIFO queue.

Note the use of the put_nowait and get_nowait methods. These methods are designed to perform 
the addition or removal of the item to or from the queue immediately. If, for example, you try to call 
get_nowait on an empty queue, you get a QueueEmpty exception.

>>> queue.get_nowait()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/asyncio/
       queues.py", line 206, in get_nowait
    raise QueueEmpty
asyncio.queues.QueueEmpty

The Queue class also provides a method called get. Instead of returning an exception on an empty 
queue, the get method will patiently wait for an item to be added to the queue, and then retrieve it 
from the queue and return it immediately. Unlike get_nowait, this method is a coroutine, and runs 
in an asynchronous context.

>>> import asyncio
>>> loop = asyncio.get_event_loop()
>>> queue = asyncio.Queue()
>>>
>>> queue.put_nowait('foo')
>>> loop.run_until_complete(queue.get())
'foo'

In this case, an item was already on the queue, so the get method still returns immediately. If there 
was not an item on the queue yet, a simple call to loop.run_until_complete would never com-
plete, and block your interpreter.

You can use the timeout parameter in asyncio.wait to see this concept in action, though.

>>> import asyncio
>>> loop = asyncio.get_event_loop()
>>> queue = asyncio.Queue()
>>>
>>> task = asyncio.async(queue.get())
>>> coro = asyncio.wait([task], timeout=1)
>>>
>>> loop.run_until_complete(coro)
(set(), {Task(<get>)<PENDING>})

At this point, there is still nothing on the queue, so the task to get the item off the queue is just con-
tinuing indefi nitely. You also have the task variable, and can inspect its status.

>>> task.done()
False
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Next, place an item on the queue, as shown here:

>>> queue.put_nowait('bar')

You will notice that the task still is not done yet, because the event loop is no longer running. The 
task is still registered, though, so register a callback to stop the loop once it completes, and it is 
possible to start it again.

>>> import functools
>>> def stop(l, future):
...     l.stop()
...
>>> task.add_done_callback(functools.partial(stop, loop))
>>>
>>> loop.run_forever()

Now, because there was an item on the queue, the task is done, and the task’s result is the item on 
the queue ('bar').

>>> task.done()
True
>>> task.result()
'bar'

Maximum Size
It is also possible to give a Queue object a maximum size, by setting the maxsize keyword argument 
when creating the queue.

>>> import asyncio
>>> queue = asyncio.Queue(maxsize=5)

If you do this, the Queue will not allow any more than the maximum number of items onto the 
queue. A call to the put method will simply wait until a previous item is removed, and then (and 
only then) will it place the item on the queue. If you call put_nowait and the queue is full, it will 
raise QueueFull.

SERVERS

One of the most common uses of the asyncio module is to create services that can run as a daemon 
and accept commands. The asyncio module defi nes a Protocol class that is able to fi re appropriate 
events on receiving or losing a connection, and when it receives data.

Additionally, the event loop defi nes a create_server method that opens a socket, allowing data to 
be sent to the event loop and on to the protocol.

Consider a simple server that can do nothing but add numbers and shut itself down.

import asyncio

class Shutdown(Exception):
    pass
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class ServerProtocol(asyncio.Protocol):
    def connection_made(self, transport):
        self.transport = transport
        self.write('Welcome.')

    def data_received(self, data):
        # Sanity check: Do nothing on empty commands.
        if not data:
            return

        # Commands to this server shall be a single word, with
        # space separated arguments.
        message = data.decode('ascii')
        command = message.strip().split(' ')[0].lower()
        args = message.strip().split(' ')[1:]

        # Sanity check: Verify the presence of the appropriate command.
        if not hasattr(self, 'command_%s' % command):
            self.write('Invalid command: %s' % command)
            return

        # Run the appropriate command.
        try:
            return getattr(self, 'command_%s' % command)(*args)
        except Exception as ex:
            self.write('Error: %s\n' % str(ex))

    def write(self, msg_string):
        string += '\n'
        self.transport.write(msg_string.encode('ascii', 'ignore'))

    def command_add(self, *args):
        args = [int(i) for i in args]
        self.write('%d' % sum(args))

    def command_shutdown(self):
        self.write('Okay. Shutting down.')
        raise KeyboardInterrupt

if __name__ == '__main__':
    loop = asyncio.get_event_loop()
    coro = loop.create_server(ServerProtocol, '127.0.0.1', 8000)
    asyncio.async(coro)
    try:
        loop.run_forever()
    except KeyboardInterrupt:
        pass

This is a somewhat long module, but a few details are worth noting. First, the ServerProtocol 
class subclasses asyncio.Protocol. The connection_made and data_received methods are 
defi ned in the superclass, but do nothing. The other three methods are custom.
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Remember that when you make a socket connection between machines, you are essentially always 
sending bytes, not text strings. The write method here does that conversion in one place, rather 
than forcing you to convert to a byte string every time you want to write to the transport.

The guts of this are in the data_received method. It takes a line of data and tries to fi gure out 
what to do with it. It only understands two basic commands, and anything else is an error.

Finally, the block at the end of the fi le actually starts up the server, and runs it against the local 
machine on a particular port. This is all the code you need to start up a server and have it listen for 
commands.

You can verify that the server receives commands by starting it up and then, in another shell win-
dow, using telnet to connect to it.

$ telnet 127.0.0.1 8000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Welcome.
add 3 5
8
make_tea
Invalid command: make_tea
shutdown
Okay. Shutting down.
Connection closed by foreign host.

You have a very simple server. It can accept two commands: add and shutdown. It can provide 
errors if you try to issue a command it does not understand. And, the server is, in fact, able to shut 
itself down.

SUMMARY

Python is, at its core, a sequential language. It is a sequential language that, with asyncio, is getting 
budding asynchronous features built in to the standard library.

One thing that makes asyncio valuable is that it enables you to write code that follows sequen-
tial patterns, but is actually asynchronous under the hood, by using the yield from statement. 
However, if you intend to write an asynchronous application, you still must understand the advan-
tages and disadvantages of this paradigm.

As you have seen, many things are different. You may not always know in what order tasks will run. 
It is possible for tasks to be intentionally canceled. Finally, code may be registered to run using a 
callback system, rather than through direct sequential function calls. All of these things represent a 
break from “normal” Python programming.

Still, if you have a robust Python 3 application and need certain asynchronous elements, asyncio  
may be the right tool for you.

In Chapter 14, you learn about style norms and recommendations in Python. 
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Style
Code is read more often than it is written.

Despite this fact, programmers often write code as if they do not expect to have to maintain it 
or even read it in the future. This leads to code that is incomprehensible when it is read months 
or years later.

Therefore, one of the most important things you can do as a programmer (in any language) is 
to write readable code.

This chapter explores principles for writing readable code, as well as some of the standards 
adopted by the Python community at large for writing code in a consistent manner.

PRINCIPLES

Before discussing specifi c standards that the Python community has adopted, or additional 
recommendations that have been proposed by others, it is important to consider a few over-
arching principles. 

Remember that the purpose of readability standards is to improve readability. The rules exist 
to serve the people reading and writing code, not the other way around.

This section discusses a few principles to keep in mind.

Assume Your Code Will Require Maintenance
It is very easy to believe that the work you are doing at the moment will not require additions 
or maintenance in the future. This is because it is diffi cult to anticipate future needs, and it is 
easy to underestimate your own propensity to introduce bugs. However, very little of the code 
that you write will simply exist untouched into perpetuity.

If you assume that code that you are writing is going to be “a one-off” and something that you 
will not have to read, debug, or amend later, it is frighteningly easy to ignore other principles 
of readable code simply because you believe that “it does not matter this time.”

14
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Therefore, preserve a healthy distrust of any instinct you may have that code you write will not need 
to be maintained. The safe bet is always that you will see that code again. Furthermore, if you do 
not, someone else will.

Be Consistent
The two aspects of consistency are internal consistency and external consistency.

Your code should be as internally consistent as possible. This is true both of style and structure. The 
style should be consistent in that any formatting rules should be followed throughout the project. 
The structure should be consistent in that the same types of code should be organized into the same 
places, so that projects are navigable.

You code should also be externally consistent. Structure your projects and your code similarly to 
how other people do. If a new developer opens up your project, he or she should not react by saying, 
“I have never seen anything like this before.” Community guidelines matter, because they are what 
developers will expect to see when they come to your project. Similarly, and for the same reasons, 
take seriously the standards surrounding how to accomplish common tasks and how to organize 
code when using certain frameworks.

Think About Ontology, Especially with Data
Ontology basically means “the study of being.” In philosophy (where the word is most commonly 
used), ontology is the study of the nature of reality and existence, and is a subset of metaphysics.

When it comes to writing software applications, ontology refers to a focus on what the various 
“things” in your application are. How do you represent your concepts in your database? What about 
your class structure?

What this sort of question ultimately affects is the way you write and structure your code. Do you 
use inheritance or composition to structure the relationship between two classes? In what database 
table does this or that column belong? 

This advice effectively boils down to, “Think before you write.” Specifi cally, think about what the 
objects in your application are, and how they interact with one another. Your application is a world 
where objects and data interact. So, what are the rules by which they work together?

Do Not Repeat Yourself
When writing code, consider situations in which you are reusing a value that could change over 
time. Is that value being used in multiple modules and functions? How much work would it be to 
change it if it became necessary to do so?

The same principle applies to functions. Do you have a common boilerplate that you fi nd yourself 
constantly repeating throughout your application? If the boilerplate is longer than a couple of lines, 
you may want to consider abstracting it out into a function, so that if the need to change it arises, it 
is manageable to do so.
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On the other hand, it is possible to take this principle too far. Not every value needs to be defi ned 
as a constant in a module (and doing so can impair readability and maintainability). Use wise judg-
ment. Consistently be asking the question, “If this changes, how much work would it be to update it 
everywhere?”

Have Your Comments Explain the Story
Your code is a story. It is an explanation of what occurs, from beginning to end, as users inter-
act with your program. The program starts in one location (potentially with some input), moves 
through a series of “choose your own adventure” steps to reach an end point, and then concludes 
(probably with some output).

Consider adopting a commenting style where every few lines of code is preceded by a comment 
block explaining what that code is doing. If your code is a story, your comments are an illumination 
and explanation of that story.

When narrative commenting is done well, a reader can parse the code (for example, when trying to 
troubleshoot a problem or maintain the code) by reading the comments to get the story, then quickly 
zero in on the code that requires maintenance, and only then focus on the vocabulary of the code 
itself.

Narrative commenting also helps explain intent. It helps answer the question, “What did the person 
who wrote this code aim to accomplish?” Occasionally, it will help answer the question, “Why was 
this done this way?” These are questions you naturally ask when you read code, and providing the 
answers to those questions aids in understanding.

Therefore, comments should explain the rationale for anything in the code that is not simple and 
salient. If a somewhat complex algorithm is being used, consider including a link to an article 
explaining the pattern and providing other examples of its use.

Occam’s Razor
The most important principle for writing maintainable code is colloquially known as Occam’s 
Razor: the simplest solution is usually the best one. In his “The Zen of Python” web posting 
(https://www.python.org/dev/peps/pep-0020/), which is a collection of proverbs for program-
ming (for example, type import this in a Python console to read it), Tim Peters includes a similar 
line: “If the implementation is hard to explain, it’s a bad idea.”

This principle is true in both how your code works and how it looks. When it comes to how your 
code works, simple systems are more maintainable. Simplicity of implementation means that you 
are less likely to write esoteric bugs, and that those who come after you to maintain your work 
(including yourself) are more likely to intuitively understand what is happening and be able to add 
to the application without hitting unexpected snags.

As far as how your code looks, remember that, as much as is possible, reading code should be 
about learning the story of what the code is doing, not about parsing the vocabulary. The vocabu-
lary is the means, while the story is the end. It is easy to write rules such as, “Do not use ternary 

https://www.python.org/dev/peps/pep-0020
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operators.” However, following rules you can run through a linter (while valuable) is not a suffi cient 
condition for clarity. Focus on writing and organizing code so that it is as simple as possible.

STANDARDS

The Python community largely follows a style guide known as PEP 8 (https://www.python.org/
dev/peps/pep-0008/), which is written by Guido van Rossum (the creator of Python) and is 
adopted by most major Python projects, including the Python standard library.

The universality of the PEP 8 standard is one of its greatest strengths. It has been adopted by so 
much of the community that you can reasonably expect that most Python code you encounter will 
conform to it. As you write code this way, it will become easier to read code written similarly.

Trivial Rules
Many of the guidelines in PEP 8 are quite straightforward. Highlights include the following:

 ➤ Use four spaces for indentation. Do not use literal tabs (\t).

 ➤ Variables should be spelled with underscores, not camel case (my_var, not myVar). Class 
names start with a capital letter and are in camel case (for example, MyClass).

 ➤ If a variable is intended to be “internal use only,” prefi x it with an underscore.

 ➤ Use a single space around operators (for example, x + y, not x+y), including assignment (z 
= 3, not z=3), except in keyword arguments, in which case, the spaces are omitted.

 ➤ Omit unnecessary whitespace in lists and dictionaries (for example, [1, 1, 2, 3, 5], 
not [ 1, 1, 2, 3, 5 ]).

Read the Python style guide for additional examples and further discussion on these rules.

Documentation Strings
Remember that, in Python, if the fi rst statement in a function or class is a string, that string is auto-
matically assigned to the special __doc__ variable, and is then used if you call help (and in a few 
other cases).

PEP 8 designates that docstrings (as they are colloquially called) should be written as an imperative 
sentence.

"""Do X, Y, and Z, then return the result."""

This is contrasted with writing the docstring as a description, which is frowned upon.

"""Does X, Y, and Z, then returns the result."""

https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
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If the docstring is a single line, follow it with an empty line before the body of the class or function 
begins. If the docstring spans multiple lines, place the closing quotes on their own line in lieu of the 
empty line.

"""Do X, Y, and Z, then call the a() method to transform all the things,
then return the result.
"""

Blank Lines
Blank lines are used for logical segmentation.

PEP 8 designates that two blank lines should separate “top level” classes and function defi nitions in 
a module.

class A(object):
    pass

class B(object):
    pass

PEP 8 also designates that after the top level, class and function defi nitions should be separated by 
one blank line each.

class C(object):
    def foo(self):
        pass

    def bar(self):
        pass

It is acceptable to use single blank lines within functions or other blocks of code to delineate logical 
segments. Consider preceding all such segments with comments explaining the block.

Imports
Python allows both absolute and relative imports. In Python 2, the interpreter will attempt a relative 
import, and then attempt an absolute import if no relative import matches.

In Python 3, relative imports are given a special syntax—a leading period (.) character—and 
“normal” imports only attempt absolute imports. The Python 3 syntax is available starting in 
Python 2.6. Additionally, you can turn off implicit relative imports using from __future__ import 
absolute_import.

You should always stick to absolute imports whenever possible. If you must use a relative import, 
you should use the explicit style. If you are writing code for Python 2.6 and 2.7, consider explicitly 
opting in to the Python 3 behavior.
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When you are importing modules, each module should be given its own line.

import os
import sys

However, if you are importing multiple names from the same module, it is perfectly acceptable to 
group them on the same line.

from datetime import date, datetime, timedelta

Additionally, although PEP 8 does not mandate this, consider keeping imports grouped by the pack-
ages that they come from. Within each group, sort imports by alphabetical order.

Also, when doing imports, do not forget about the ability to alias names that are imported using the 
as keyword.

from foo.bar import really_long_name as name

This often allows you to shorten long or unwieldy names that are going to be repeated often. 
Aliasing is a valuable tool when an import is used frequently, and when the original name is diffi cult 
for whatever reason.

On the other hand, remember that when you do this, you are effectively masking the original name 
within your module, which can reduce clarity if you do it when it is not really necessary. Like any 
tool, use this with discretion.

Variables
As mentioned earlier, variable names are spelled with underscores, not camel case (for example, 
my_var, not myVar). Additionally, it is important that variable names be descriptive.

It is generally not appropriate to use extremely short variable names, although there are situations where 
this is acceptable, such as the iterator variables in loops (for example, for k, v in mydict.items()).

Avoid naming variables after common names already in the Python language, even when the inter-
preter would allow it. You should never name a variable or a function something like sum or print. 
Similarly, avoid type names such as list or dict.

If you must name a variable after a Python type or keyword, the convention is to include a trailing 
underscore; this is explicitly preferable over altering the spelling. For example, if you are passing a 
class to a function, the function argument should be named class_, not klass. (The exception to 
this is class methods, which by convention take cls as their initial argument.)

Comments
Comments should be written in English, using complete sentences, and written in a block above the 
relevant code. You should use correct capitalization, spelling, and grammar.

Also, ensure that comments are kept up to date. If the code changes, the comments may need to 
change along with it. You do not want to end up with a series of comments that actually contradict 
the code, which can easily cause confusion.
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Modules may include a comment header, usually generated by your version-control system, detailing 
the version of that fi le. This can make it easier to see if the fi le has been changed, and is particularly 
useful if you are distributing a module for use by others.

Line Length
The single most controversial (and most often rejected) aspect of the Python style guide is its limita-
tions on line length. PEP 8 requires that lines be no longer than 79 characters, and that docstring 
lines be no longer than 72 characters.

This rule frustrates many developers, who point out that we live in an age of 27-inch monitors and 
widescreen displays. GitHub, a popular website for sharing code, uses a window with a width of 
120 characters.

Proponents point out that many people still use narrower displays or 80-character terminals, or 
simply do not set their code window up to maximize the screen.

There will likely never be harmony on this issue. You should code to the standards of the projects 
you are working on. Regardless of whether you conform to a 79-character standard or some greater 
width, you should know how to wrap code when the situation arises.

The best way to wrap a long single line is by using parentheses, as shown here:

if (really_long_identifier_that_maybe_should_be_shorter and
            other_really_long_identifier_that_maybe_should_be_shorter):
    do_something()

Whenever it is feasible, use this method instead of using a \ character before the line break. Note 
that in cases where an operator such as and is being used, it should appear before the line break if 
possible.

It is also possible to wrap function calls. PEP 8 lists many acceptable ways to do this. The general 
rule to follow is that indentation of the trailing lines should be consistent.

really_long_function_name(
    categories=[
        x.y.COMMON_PHRASES,
        x.y.FONT_PREVIEW_PHRASES,
    ],
    phrase='The quick brown fox jumped over the lazy dogs.',
)

When using line continuation within a function call, list, or dictionary, include a trailing comma on 
the fi nal line.

SUMMARY

 Many times, the person coming along a year later and reading your code will be you. Memories are 
never as good as they intuitively seem to be, and code written without a constant eye to readability 
and maintainability will be naturally diffi cult to read and maintain.
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Throughout this book, you have learned how to use various modules, classes, and structures in the 
Python language. When deciding how to solve a problem, remember that it often takes more skill to 
debug code than it does to write it.

Therefore, aim to have your code be as simple as possible, and as readable as possible. You will 
thank yourself a year from now. Your coworkers and fellow contributors will, too. 
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managing credentials, 103
reading data from credentials database, 104–105

D

data
generators for accessing in pieces, 53–54
generators for computing n pieces, 54
regular expressions. See regular expressions
strings. See strings/string data

data mining, uses of regular expressions, 147
decorators
@abstractmethod, 122–124
arguments, 16–18
call signature is signifi cant, 18–20
@classmethod and @staticmethod, 125–126
decorating classes, 20–22
getting help via @functools.wraps, 10–11
logging, 14–15
order of application, 5–6
output formatting, 12–14
@propertymethod, 124–125
register method as, 117
summary, 25–26
syntax of, 4
type checking, 9–10

type switching, 22–25
understanding, 3–4
user verifi cation with, 11–12
uses of, 6
variable arguments, 15–16
writing, 7–9

_del method, removing class instances, 62–63
_delitem method, working with collections, 76
dic.items, generators in standard library, 50
dict class methods, 182
dictionaries

attribute dictionaries, 104
comparing Python 2 and Python 3, 182
generators in standard library, 50

division operator (/)
comparing Python 2 and Python 3, 176–177
overview of, 69

Django
class declaration, 89–91
HTML form example, 105–106

do not repeat yourself, coding principles, 246
documentation strings (docstrings), coding standards, 248–249
duck typing

subclasses and, 118–119
in type checking, 74

E

encoding
common options, 137–138
compatibility of encoding options, 138
non-ASCII characters, 136–137
specifying fi le encoding, 139–140, 142–143
strict codecs, 143–144
string data in Python, 132–135
Unicode as superset of ASCII, 137

encoding keyword, 139–140
enter method, context managers and, 28–29
_eq method

determining equality, 60
testing equality, 65–67

errors, unit testing, 194–195
event loops

coroutines and, 230–231
delaying function calls, 227
overview of, 225–226
partials, 228
registering tasks and running event loops, 226–227
running background loops, 229–230
running loops until task completion, 228–229
simple example, 226

except keyword, context managers compared with, 
27

exception handling
attribute-based, 35–37
avoiding repetition in, 31
comparing syntax between Python versions, 180–182
context managers in, 29–30
excluding subclasses, 34–35
for particular classes, 33–34
propagating exceptions, 31–32
registering handlers, 144–145
StopIteration exception, 45–47
suppressing exceptions, 32–33, 143–144
waiting on exceptions, 239–240
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execution-time wrapping code – _init method

execution-time wrapping code, with decorators
logging, 14–15
output formatting, 12–14
overview of, 9
preserving help information, 10–11
type checking example, 9–10
user verifi cation, 11–12

exit method
context managers, 28–29
exception handling and, 29–30
exception handling for particular classes, 33–34
propagating exceptions and, 31–32
suppressing exceptions and, 32–33

explicit opt-in, metaclasses and, 94
Extensible Markup Language. See XML (Extensible Markup 

Language)

F

failure, unit testing, 193–194
Fibonacci numbers

generator syntax and, 42–45
infi nite generators and, 54
next function and, 43–45

fi le objects, generators in standard library, 52–53
fi les

reading text fi les in Python 2, 140–141
reading text fi les in Python 3, 139–140
reading textual data from non-fi le sources, 141
reading with argparse module, 223–224
specifying fi le encoding, 142–143

finally keyword, context managers compared with, 27
findall function, re module, 149
finditer function, re module, 149
fl ags

ASCII and Unicode standards and, 163
counter fl ags in optparse module, 214–215
multiple and inline, 165
option fl ags in argparse module, 217–218
overview of, 163
types of, 164–165

fl oat, division operator (/) and, 176–177
_float method, type conversion, 65
for.in loops, generators as alternative to, 42–43
_format method, overloading, 74
formatting, format function, 74
frameworks, for unit testing, 192–193
function methods, comparing Python 2 and Python 3, 183
functions

class factory function, 100–102
for compiled regular expressions, 166–167
context managers. See context managers
for converting byte to text, 132
creating coroutines, 230–231
creating tasks from, 225–226
decorators. See decorators
delaying function calls in event loops, 227
generators. See generators
get_credential_class, 103–105
mocking function calls, 197–199
moved or renamed in Python 3, 185
naming conventions, 111
as objects, 79

functools.partial method, 228

@functools.wraps, decorator for preserving help information, 
10–11

_future module, cross compatibility between Python versions, 
172

Future object
callbacks, 234
running asynchronous functions in parallel, 232
Task subclass of, 232–233

G

garbage collection, 62–63
gather function, in aggregating tasks, 236–237
_ge method, for relative comparison, 67
generators

for accessing data in pieces, 53–54
communicating with, 47–48
for computing data in pieces, 54
coroutines and, 230–231
delegating, 56
generators within generators, 55–56
iterators vs., 49–50
next function, 43–45
as singletons, 54–55
in standard library, 50–53
StopIteration exception, 45–47
summary, 56
syntax of, 41–43
understanding, 41
uses of, 53

_getattr method, working with collections, 76
_getattribute method, working with collections, 76–77
get_credential_class, 103–105
get_credential_form, 105–106
_getitem method, working with collections, 76
group method, match object, 149
grouping
0 group, 159
named groups, 159–160
overview of, 157–159
referencing existing groups, 160–161

_gt method, for relative comparison, 67

H

hashes, overloading _hash method, 73
help, via @functools.wraps, 10–11
HTML

class factory example of HTML form, 105–106
parsing, 161

HTTP, reading textual data from non-fi le sources, 
141

I

imports
absolute and relative in Python versions, 177–178
code style and, 249–250

indentation, Python standards, 248
inheritance

decorator use and, 22
metaclasses, 84–87
preventing automatic, 93–94

_init method
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in-place method – MutableSet

compared with _new method, 83
for object instantiation, 60–62

in-place method, binary operators, 68
_instancecheck method, in type checking, 74
instances/instantiation

class attributes vs. instance attributes, 107–108
creating OptionParser instance, 208
of new class or object, 60, 79–81
type and, 99

integers
division operator (/) and, 176–177
_int method, 65
type conversion, 63

isinstance method, testing against base class, 113–114, 
116

ISO-8859. See latin-1
isolated environment

comparing test environments, 189–190
unit testing in, 188–189

items, generators in standard library, 50
iterators

comparing Python 2 and Python 3, 183–184
generators compared with, 49–50

J

JSON (JavaScript Object Notation)
reading textual data from non-fi le sources, 141
serializing Python output to, 12–14

@json_output decorator
call signature matters, 18–19
decorator arguments, 15–17
how it works, 17–18
serializing Python output to JSON, 12–14

K

keys, generators in standard library, 50
keyword arguments, decorators, 14–15

L

latin-1
as ASCII superset, 131
compatibility of encoding options, 138
ISO-8859 standard, 138
reading text fi les in Python 3, 139–140

_le method, for relative comparison, 67
_len method, overloading, 71–72
line length, code style and, 251
lists

generators and, 41
isinstance for checking variable against, 113–114

@logged decorator, 14–15
logging, decorators, 14–15
lookahead, use in matching, 161–162
_lt method, for relative comparison, 67

M

magic methods. See methods (magic)
maintenance, coding principles, 246
map function, generators in standard library, 51–52
match function, of re module, 148
match objects

lookahead and, 161–162
methods, 149

matching text. See regular expressions
metaclasses

benefi ts of, 94
for class verifi cation, 91–93
comparing syntax between Python versions, 179–180
compatibility across Python versions, 89
for declaring protocols, 120–122
for delineation between class declaration and class structure, 

89–91
inheritance, 84–87
meta-coding and, 95–97
_new method, 83–84
preventing automatic inheritance of class attributes, 93–94
summary, 97
trivial metaclass example, 84
type and, 99
using in Python 2 and Python 3, 87–89
when to use, 89
writing, 83

meta-coding, 95–97
methods (magic)

availability of, 60
binary equality, 65–67
collections, 75–77
comparing Python 2 and Python 3, 182–183
comparison operators, 65
_del method, 62–63
_init method, 61–62
limitations of class methods, 108–109
match objects, 149
_new method, 62
operator overloading, 68–71
overloading, 71–75
overview of, 59
relative comparisons, 67–68
resources for, 77
summary, 77
syntax of, 59–60
type conversion, 63–65

methods, abstract base classes
NotImplementedError method, 

120
register method, 117
single abstract method, 126–127
_subclasshook method of, 117–119

mocking
asserting mocked calls, 199–201
function calls, 197–199
inspecting mocks, 201–203
overview of, 197

modules (standard library)
comparing Python 2 and Python 3, 184–186
decorator module, 6
_future module for compatibility, 172
generator module, 49–53
re module for regular expressions, 148–149, 166–167
six module for compatibility between Python 2 and Python 

3, 136
threading module, 229–230
unittest module, 192–193

MutableMapping, alternatives to collections, 127–128
MutableSequence, alternatives to collections, 127–128
MutableSet, alternatives to collections, 127–128
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narrative commenting – regular expressions

N

narrative commenting, explaining story of code with, 247
_ne method, testing lack of equality, 67
nested coroutines, 231–232
_new method

creating class instances, 62
creating metaclasses, 83
init method compared with, 61, 83–84

next function, generators, 43–45
nose, unit testing frameworks, 192, 205
NotImplementedError method, for declaring protocols, 120

O

objects. See also classes
collections, 75–77
creating class instances, 60–62
destroying class instances, 62–63
_instancecheck method, 74

Occam’s Razor, applying to writing maintainable code, 247
ontology (“think before you write”), coding principles, 246
open function, as context manager, 28
operators

binary operators, 68–69
division operator, 69
overloading, 68–69
unary operators, 70–71

option fl ags, in argparse module, 217–218
OptionParser instance, creating, 208
options

advantages over positional arguments, 209–212
choosing from enumerated sets, 220–221
specifying option values, 212
syntax of, 213–214
that accept values, 219–220

optparse module
advantages of options over positional arguments, 209–212
counter fl ags, 214–215
creating OptionParser instance, 208
listing values, 215–216
overview of, 207–208
reasons for using, 216
sending positional arguments to, 214
specifying option values, 212
syntax of options, 213–214

ord, 132
order of application, decorators, 5–6
output formatting, decorator use in, 12–14
overloading

methods, 71–75
operator overloading, 68–71

P

packages, reorganization in Python 3, 185–186
partials, functools.partial method, 228
patterns

class factories, 99
matching text. See regular expressions
singletons, 110

PEP 8 style guide, for Python standards, 248
pickle module, merging fast modules in Python 3, 184
positional arguments

argparse module, 222–223
option advantages over, 209–212
sending to optparse module, 214

PostgreSQL databases, reading textual data from non-fi le 
sources, 141

prefi xes, changing prefi x characters, 218–219
principles, code style and, 245–248
print function, comparing Python 2 and Python 3, 176
@propertymethod, decorators, 124–125
Protocol class, 242–244
protocols

metaclasses for declaring, 120–122
NotImplementedError method for declaring, 120
value of ABCs in declaring, 122–124

py.test, unit testing frameworks, 192, 205
Python, comparing versions 2 and 3
2to3 tool for sharing source code, 172–174
absolute and relative imports, 177–178
cross compatibility strategies, 171–172
dictionary methods, 182
division operator (/), 176–177
exception syntax, 180–182
function methods, 183
_future module and, 172
iterators, 183–184
metaclass syntax, 179–180
metaclasses, 87–89
print function, 176
reading text fi les, 139–141
removing “old-style” classes, 178–179
six tool for single source compatibility, 136, 174–175
standard library relocations, 184–186
strings and Unicode, 175
strings/string data, 132–136
summary, 186
version detection, 186

Q

queries, running with context managers, 31
queues

maximum size of, 242
of tasks, 240–242

R

range objects, generators in standard library, 49–50
ranges, of character classes

open-ended, 156
overview of, 151
repetition of, 155–157

raw strings, 148–149
re module, for regular expressions, 148
read method, Python 2, 140
re.DEBUG fl ag, for debug mode, 164–165
re.DOTALL fl ag, for matching newline characters, 163–164
register method, decorators, 7–9, 117
regular expressions

. (any) character, 154
basic, 150
beginning/ending strings, 153–154
character classes, 150–151
compiled, 166–167
fl ags, 163–165
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relative comparisons – text/text strings

grouping and, 157–160
lookahead use in matching, 161–162
match objects, 149
negation of character classes, 151–152
optional characters, 154–155
overview of, 147
ranges of character classes, 151
raw strings, 148–149
re module for, 148
referencing existing groups, 160–161
repetition of ranges of characters/character classes, 155–157
shortcuts for character classes, 152–153
substitution, 165–166
summary, 167
uses of, 147–148

relative comparisons, 67–68
relative imports, 177–178, 249–250
re.MULTILINE fl ag, for multiline mode, 164
repetition

avoiding in exception handling, 31
of ranges of characters/character classes, 155–157

_repr method, overloading, 72–73
@requires_user decorator, in user verifi cation, 11–12
re.sub, substitution method for string replacement, 165–166
return statements

generator and, 41–42
iterators and, 45–47

re.VERBOSE fl ag, for verbose mode, 164
reverse method, binary operators, 68
_round method, for numeric values, 75
runtime attributes, of classes, 102–103

S

sanitization of data, decorator use and, 7
search function, of re module, 148
Sequence, alternatives to collections, 127–128
sequences

asynchronous elements. See asyncio module (provisional)
generator syntax and, 42
generators and, 41–42
infi nite, 54

servers, use by asyncio module, 242–244
_setattr method, working with collections, 76
_setitem method, working with collections, 76
singletons

class factories, 109–111
generators as, 54–55

six tool
for compatibility between Python 2 and Python 3, 136, 

174–175
converting metaclass syntax between Python versions, 179–180
version detection, 186

spaces, Python coding standards, 248
standard library. See modules (standard library)
standards, code style, 248
start method, match object, 149
static methods, abstract base classes (ABCs), 125–126
@staticmethod, decorators, 125–126
StopIteration exception, generators, 45–47
str class

comparing Python 2 and Python 3, 175
string data, 132–134
unicode class and, 134–135

strings/string data
characters for beginning/ending strings, 153–154
common encoding options, 137–138
comparing Python 2 and Python 3, 132–136, 175
compatibility of encoding options, 138
with non-ASCII characters, 136–137
overview of, 131
raw strings, 148–149
reading text fi les in Python 2/Python 3, 139–141
reading textual data from non-fi le sources, 141
registering error handlers, 144–145
specifying fi le encoding, 142–143
strict codecs, 143–144
substitution, 165–166
summary, 145
text string vs. byte string, 131–132
type conversion, 63
Unicode as superset of ASCII, 137

style. See code style
_subclasscheck method, in type checking, 74
subclasses

abstract class or static methods, 125–126
adjusting attributes in, 109
creating, 81–82
declaring virtual, 115–116
duck typing, 118–119
exception handling excluding, 34–35
metaclass inheritance and, 86–87
NotImplementedError method for including specifi c 

functionality in, 120
_subclasscheck method, 74
Task subclass of Future, 232–233

_subclasshook method, of ABCMeta metaclass, 117–119
substitution, string replacement via, 165–166
superclasses, declaring, 87
syntax

comparing exception handling between Python versions, 
180–182

comparing metaclasses between Python versions, 179–180
of context managers, 28, 37–38
of decorators, 4
of generators, 41–43
of magic methods, 59–60
of options, 213–214
testing for errors, 187

T

Task class, subclass of Future, 232–233
tasks

aggregating, 236–237
creating, 225–226
queues, 240–242
registering, 226–227
running loops until task completion, 228–229
subclass of Future, 232–233
waiting on, 237–240

testing. See unit testing
text/text strings

character standards, 131
comparing Python 2 and Python 3, 175
converting non-ASCII characters, 136–137
matching text. See regular expressions
reading text fi les in Python 2/Python 3, 139–141
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threading module – zip function

reading textual data from non-fi le sources, 141
regular expressions for direct matching, 149
string data types in Python, 132–133
vs. byte string, 131–132

threading module, running background loops, 229–230
tox tool, in unit testing, 203–204
try keyword, context managers compared with, 27
type

built-in class for creating other classes, 99–100
checking, 74
conversion methods, 63–65
decorator use in type checking, 9–10
directly creating classes, 80
position of type in chain, 82
role of type in chain, 82–83
switching, 22–25

U

unary operators, 70–71
Unicode

benefi ts of strict codecs, 143
character standards, 131
comparing Python 2 and Python 3, 175
compatibility of encoding options, 138
reading text fi les, 139–140
rendering bytes as text, 131–132
specifying fi le encoding, 142–143
string data in Python 2, 134
as superset of ASCII, 137
suppressing errors when encoding text, 143–144
type conversion, 63

unicode class, 175
unit testing

alternative approaches to, 205
assert statement in, 192
asserting mocked calls, 199–201
code function, 191–192
code layout, 190
comparing advantages/disadvantages of test environments, 

189–190
in copied ecosystem, 188
coverage tools, 203–204
errors vs. failures, 194–195
failure of tests, 193–194
frameworks for, 192–193
inspecting mocks, 201–203
in isolated environment, 188–189
loading tests, 196–197
mocking function calls, 197–199
overview of, 187
running tests, 193
skipped tests, 195–196
summary, 205
tox tool in, 203–204

unittest module
errors vs. failures, 194–195
loading tests, 196–197
mocking function calls, 197–199
running tests, 193–194
skipped tests, 195–196

unit testing frameworks, 192–193
urllib module, 185
user verifi cation, decorator use in, 11–12
UTF-8. See also Unicode

benefi ts of strict codecs, 143
compatibility of encoding options, 138
encoding/decoding, 133
specifying fi le encoding, 142–143
suppressing errors when encoding text, 143–144

V

validation, uses of regular expressions, 148
values

accepting multiple, 221–222
generators in standard library, 50
listing, 215–216
numeric methods, 75
options that accept, 219–220
specifying option values, 212

vanilla method, binary operators, 68
variables

code style and, 250
decorator arguments, 15–16
Python standards, 248

verifi cation
class verifi cation, 91–93
user verifi cation, 11–12

version detection, Python 2 and Python 3, 186
virtual environments, tox tool for creating, 204
virtual subclasses, declaring, 115–116

W

wait coroutine, 237–238
whitespace, Python coding standards, 248
with statement, context managers and, 28
wrapping code

with context managers. See context managers
with decorators. See decorators

X

XML (Extensible Markup Language)
caution regarding parsing with regular expressions, 161
reading textual data from non-fi le sources, 141
specifying fi le encoding, 142–143

Xon objects, destruction of class instances and, 63

Y

yield statements
communicating with generators and, 47–48
creating nested coroutines with yield from statement, 

231–232
generator syntax and, 41–42
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“The Zen of Python” (Peters), 247
zip function, generators in standard library, 51
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