
Game 
Development 
with Construct 2

From Design to Realization
—
Lee Stemkoski
Evan Leider



Game Development 
with Construct 2

From Design to Realization

Lee Stemkoski

Evan Leider



Game Development with Construct 2: From Design to Realization

Lee Stemkoski 				    Evan Leider
Garden City, New York			   NY
USA					     USA

ISBN-13 (pbk): 978-1-4842-2783-1 		  ISBN-13 (electronic): 978-1-4842-2784-8
DOI 10.1007/978-1-4842-2784-8

Copyright © 2017 by Lee Stemkoski and Evan Leider

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole 
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical 
way, and transmission or information storage and retrieval, electronic adaptation, computer 
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the 
date of publication, neither the authors nor the editors nor the publisher can accept any legal 
responsibility for any errors or omissions that may be made. The publisher makes no warranty, 
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Pramila Balan
Development Editor: Laura Berendson
Technical Reviewer: Julien Kyatric Fantoni
Coordinating Editor: Prachi Mehta
Copy Editor: Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,  
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, 
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media 
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.
com/rights-permissions. 

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our 
Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is avail-
able to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-
2783-1. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://orders-ny@springer-sbm.com
www.springeronline.com
https://rights@apress.com
www.apress.com/rights-permissions
www.apress.com/rights-permissions
www.apress.com/bulk-sales
www.apress.com/978-1-4842-2783-1
www.apress.com/978-1-4842-2783-1
www.apress.com/source-code


iii

Contents at a Glance

About the Authors���������������������������������������������������������������������������� xiii

About the Technical Reviewer���������������������������������������������������������� xv

Acknowledgments�������������������������������������������������������������������������� xvii

Foreword����������������������������������������������������������������������������������������� xix

Introduction ������������������������������������������������������������������������������������ xxi

■■Chapter 1: Getting Started with Construct 2����������������������������������� 1

■■Chapter 2: Starfish Collector����������������������������������������������������������� 9

■■Chapter 3: Space Rocks����������������������������������������������������������������� 27

■■Chapter 4: Cleanup Challenge������������������������������������������������������� 49

■■Chapter 5: Adding Polish to Your Game����������������������������������������� 65

■■Chapter 6: Plane Dodger���������������������������������������������������������������� 79

■■Chapter 7: Racecar 500����������������������������������������������������������������� 89

■■Chapter 8: Rectangle Destroyer��������������������������������������������������� 103

■■Chapter 9: Spell Shooter�������������������������������������������������������������� 115

■■Chapter 10: Airplane Assault������������������������������������������������������� 131

■■Chapter 11: Tower Defenders������������������������������������������������������ 141

■■Chapter 12: Maze Runman���������������������������������������������������������� 159

■■Chapter 13: Jumping Jack���������������������������������������������������������� 175



■ Contents at a Glance

iv

■■Chapter 14: Treasure Quest��������������������������������������������������������� 197

■■Chapter 15: The Journey Continues�������������������������������������������� 223

■■Appendix A: Game Design Documentation���������������������������������� 231

Index����������������������������������������������������������������������������������������������� 237



v

Contents

About the Authors���������������������������������������������������������������������������� xiii

About the Technical Reviewer���������������������������������������������������������� xv

Acknowledgments�������������������������������������������������������������������������� xvii

Foreword����������������������������������������������������������������������������������������� xix

Introduction ������������������������������������������������������������������������������������ xxi

■■Chapter 1: Getting Started with Construct 2����������������������������������� 1

About the Construct 2 Game Engine�������������������������������������������������������� 2

Downloading and Installing���������������������������������������������������������������������� 2

The User Interface������������������������������������������������������������������������������������ 3

Saving, Previewing, and Exporting Games����������������������������������������������� 7

Summary�������������������������������������������������������������������������������������������������� 8

■■Chapter 2: Starfish Collector����������������������������������������������������������� 9

Project Setup�������������������������������������������������������������������������������������������� 9

Sprites���������������������������������������������������������������������������������������������������� 13

Events����������������������������������������������������������������������������������������������������� 16

Behaviors����������������������������������������������������������������������������������������������� 18

Ending the Game������������������������������������������������������������������������������������ 21

Side Quests�������������������������������������������������������������������������������������������� 22

Solid Objects������������������������������������������������������������������������������������������������������������ 22

Value-Based Animations������������������������������������������������������������������������������������������ 23

On Your Own������������������������������������������������������������������������������������������������������������ 25

Summary������������������������������������������������������������������������������������������������ 25



■ Contents

vi

■■Chapter 3: Space Rocks����������������������������������������������������������������� 27

Introduction�������������������������������������������������������������������������������������������� 27

Spaceship Movement����������������������������������������������������������������������������� 29

Lasers and Rocks����������������������������������������������������������������������������������� 32

Thrusters and Explosions����������������������������������������������������������������������� 34

Teleportation������������������������������������������������������������������������������������������ 38

Winning or Losing the Game������������������������������������������������������������������ 40

Side Quests�������������������������������������������������������������������������������������������� 41

Shields��������������������������������������������������������������������������������������������������������������������� 42

UFOs������������������������������������������������������������������������������������������������������������������������ 43

On Your Own������������������������������������������������������������������������������������������������������������ 46

Summary������������������������������������������������������������������������������������������������ 47

■■Chapter 4: Cleanup Challenge������������������������������������������������������� 49

Backgrounds������������������������������������������������������������������������������������������ 50

Animating the Player������������������������������������������������������������������������������ 52

Cars�������������������������������������������������������������������������������������������������������� 54

Displaying Messages with Text Objects������������������������������������������������� 57

Keeping Score with Global Variables������������������������������������������������������ 60

Side Quests�������������������������������������������������������������������������������������������� 62

Randomization��������������������������������������������������������������������������������������������������������� 62

On Your Own������������������������������������������������������������������������������������������������������������ 63

Summary������������������������������������������������������������������������������������������������ 64

■■Chapter 5: Adding Polish to Your Game����������������������������������������� 65

Adding Animation and Text��������������������������������������������������������������������� 66

Mouse Input and Buttons����������������������������������������������������������������������� 68

Audio������������������������������������������������������������������������������������������������������ 69



■ Contents

vii

Menus���������������������������������������������������������������������������������������������������� 72

Alternative Controls�������������������������������������������������������������������������������� 73

Changing Default Controls��������������������������������������������������������������������������������������� 74

Gamepad Controllers����������������������������������������������������������������������������������������������� 74

Touchscreen Input��������������������������������������������������������������������������������������������������� 76

Summary������������������������������������������������������������������������������������������������ 77

■■Chapter 6: Plane Dodger���������������������������������������������������������������� 79

Background Effects�������������������������������������������������������������������������������� 80

The Player’s Plane���������������������������������������������������������������������������������� 82

Stars and Score�������������������������������������������������������������������������������������� 83

Enemy Planes����������������������������������������������������������������������������������������� 85

Side Quests�������������������������������������������������������������������������������������������� 87

Summary������������������������������������������������������������������������������������������������ 88

■■Chapter 7: Racecar 500����������������������������������������������������������������� 89

Introduction�������������������������������������������������������������������������������������������� 89

Tilemaps and Level Design�������������������������������������������������������������������� 90

Car Mechanics���������������������������������������������������������������������������������������� 94

Race Timer��������������������������������������������������������������������������������������������� 95

Side Quests�������������������������������������������������������������������������������������������� 98

Scenery������������������������������������������������������������������������������������������������������������������� 98

Obstacles����������������������������������������������������������������������������������������������������������������� 99

On Your Own���������������������������������������������������������������������������������������������������������� 100

Summary���������������������������������������������������������������������������������������������� 101

■■Chapter 8: Rectangle Destroyer��������������������������������������������������� 103

Introduction������������������������������������������������������������������������������������������ 103

Paddle, Walls, Bricks, and Balls������������������������������������������������������������ 104

Game Start and End����������������������������������������������������������������������������� 106



■ Contents

viii

Items���������������������������������������������������������������������������������������������������� 108

Items Affecting the Ball����������������������������������������������������������������������������������������� 109

Items Affecting the Paddle������������������������������������������������������������������������������������ 111

Side Quests������������������������������������������������������������������������������������������ 113

Summary���������������������������������������������������������������������������������������������� 114

■■Chapter 9: Spell Shooter�������������������������������������������������������������� 115

Introduction������������������������������������������������������������������������������������������ 115

Player Setup and Mouselook���������������������������������������������������������������� 117

Creatures and Vortices������������������������������������������������������������������������� 118

Instance Variables and Waypoint Logic������������������������������������������������ 119

Spell Shooting�������������������������������������������������������������������������������������� 123

Spell Charge and User Interface����������������������������������������������������������� 124

Score and Game Over��������������������������������������������������������������������������� 126

Side Quests������������������������������������������������������������������������������������������ 127

Adding a Radar������������������������������������������������������������������������������������������������������ 127

On Your Own���������������������������������������������������������������������������������������������������������� 128

Summary���������������������������������������������������������������������������������������������� 129

■■Chapter 10: Airplane Assault������������������������������������������������������� 131

Player, Waypoint, and Enemy Setup����������������������������������������������������� 132

Shooting and Spawning Enemies��������������������������������������������������������� 134

Score, Health, Invincibility, and Game Over������������������������������������������ 136

Side Quests������������������������������������������������������������������������������������������ 138

Endless Vertical Scrolling�������������������������������������������������������������������������������������� 138

On Your Own���������������������������������������������������������������������������������������������������������� 140

Summary���������������������������������������������������������������������������������������������� 140



■ Contents

ix

■■Chapter 11: Tower Defenders������������������������������������������������������ 141

Level Setup������������������������������������������������������������������������������������������� 142

Enemy Movement��������������������������������������������������������������������������������� 144

Cannons and Bullets����������������������������������������������������������������������������� 144

Earning Cash���������������������������������������������������������������������������������������� 147

Cannon Purchase and Placement��������������������������������������������������������� 148

Game Ending and Difficulty Ramp�������������������������������������������������������� 152

Side Quests������������������������������������������������������������������������������������������ 154

Additional Enemy Types����������������������������������������������������������������������������������������� 154

Additional Cannon Types���������������������������������������������������������������������������������������� 155

Time Speed Control����������������������������������������������������������������������������������������������� 155

On Your Own���������������������������������������������������������������������������������������������������������� 156

Summary���������������������������������������������������������������������������������������������� 156

■■Chapter 12: Maze Runman���������������������������������������������������������� 159

Player Setup and Grid-Based Movement��������������������������������������������� 161

Enemies and Intelligent Movement������������������������������������������������������ 166

Collecting Coins����������������������������������������������������������������������������������������������������� 170

Game End�������������������������������������������������������������������������������������������������������������� 172

Side Quests������������������������������������������������������������������������������������������ 173

Adding a Jewel Bonus Item����������������������������������������������������������������������������������� 173

On Your Own���������������������������������������������������������������������������������������������������������� 174

Summary���������������������������������������������������������������������������������������������� 174

■■Chapter 13: Jumping Jack���������������������������������������������������������� 175

Level Design����������������������������������������������������������������������������������������� 176

Player Setup����������������������������������������������������������������������������������������� 177

Ladders and Climbing�������������������������������������������������������������������������� 180



■ Contents

x

Additional Game Objects���������������������������������������������������������������������� 185

Goal Flag���������������������������������������������������������������������������������������������������������������� 185

Jump-Through Platforms��������������������������������������������������������������������������������������� 186

Springboards��������������������������������������������������������������������������������������������������������� 186

Breakable Bricks��������������������������������������������������������������������������������������������������� 187

Coins���������������������������������������������������������������������������������������������������������������������� 189

Keys and Locked Blocks���������������������������������������������������������������������������������������� 190

Enemies������������������������������������������������������������������������������������������������ 191

Side Quests������������������������������������������������������������������������������������������ 195

Summary���������������������������������������������������������������������������������������������� 196

■■Chapter 14: Treasure Quest��������������������������������������������������������� 197

Level Design����������������������������������������������������������������������������������������� 198

Hero Setup������������������������������������������������������������������������������������������� 201

Sword-Fighting Mechanics������������������������������������������������������������������������������������ 203

Multiple Levels������������������������������������������������������������������������������������� 205

User Interface Design��������������������������������������������������������������������������� 208

Status Display�������������������������������������������������������������������������������������������������������� 209

Sign Mechanics����������������������������������������������������������������������������������������������������� 209

Items���������������������������������������������������������������������������������������������������� 211

Hearts�������������������������������������������������������������������������������������������������������������������� 212

Coins���������������������������������������������������������������������������������������������������������������������� 212

Bombs������������������������������������������������������������������������������������������������������������������� 214

The Treasure Chest������������������������������������������������������������������������������������������������ 216

Enemies������������������������������������������������������������������������������������������������ 217

Side Quests������������������������������������������������������������������������������������������ 220

Summary���������������������������������������������������������������������������������������������� 221



■ Contents

xi

■■Chapter 15: The Journey Continues�������������������������������������������� 223

Continue Developing���������������������������������������������������������������������������� 223

Working on Projects���������������������������������������������������������������������������������������������� 223

Obtaining Art Resources���������������������������������������������������������������������������������������� 224

Participating in Game Jams����������������������������������������������������������������������������������� 225

Overcoming Difficulties����������������������������������������������������������������������������������������� 225

Broadening Your Horizons�������������������������������������������������������������������� 226

Playing Different Games���������������������������������������������������������������������������������������� 226

Increasing Your Skill Set���������������������������������������������������������������������������������������� 227

Recommended Reading���������������������������������������������������������������������������������������� 227

Sharing Your Games����������������������������������������������������������������������������� 228

■■Appendix A: Game Design Documentation���������������������������������� 231

Index����������������������������������������������������������������������������������������������� 237



xiii

About the Authors

Lee Stemkoski is a professor of computer science and 
mathematics. He earned his Ph.D. in mathematics from 
Dartmouth College in 2006. He has been teaching at the 
college level since, with an emphasis on Java 
programming, computer graphics, and video game 
development for the past six years. Lee particularly 
enjoys playing classic games released for the Nintendo 
and Super Nintendo Entertainment System consoles. 
He has written another book, Beginning Game 
Development with LibGDX, in addition to many other 
scholarly articles and game development tutorials.

Evan Leider is currently pursuing a B.S. in computer 
and management information systems with a 
specialization in game development, with an expected 
graduation date of 2018. Since 2012, he has been 
using Construct 2 to create his own games. Evan has 
been a teaching assistant in introductory video game 
programming courses for two years, where he helps 
college and high-school students learn how to use 
Construct 2. He enjoys playing video games such as 
Sonic the Hedgehog and Super Smash Brothers.



xv

About the Technical 
Reviewer

Julien Kyatric Fantoni is a game maker and Construct expert. Originally learning coding 
with Visual Basic, PHP, C & C++ with the intent to make games it was only when he found 
Construct that he was able to release his first completed games.

Julien’s an early adopter of Construct and early believer in HTML5. He’s been active 
in Construct 2 community providing tutorials, support and help in the forums and 
other websites. He’s been working and releasing games made during game jams and 
professional advert-games ordered by various media companies like CanalSat, France 2 
or even the music video game “Lazers from my heart” for the band Birdy Nam Nam.

You can find his various works on his website kyatric.com.

http://kyatric.com/


xvii

Acknowledgments

Thanks to the editorial and support staff at Apress, for without their efforts and support 
this book you are reading would not exist.

Thanks to Ashley and Thomas Gullen, the creators of the Construct game engine 
and the founders of Scirra Ltd., whose dedication to bringing game development to the 
masses has had a profound impact and continues to inspire and empower individuals 
across the world.

We would particularly like to thank Julien Fantoni, who is an outstanding technical 
reviewer and made many insightful comments and helpful suggestions on the 
presentation, style, and content of this book. Julien has been helping countless numbers 
of aspiring game developers for years (including the authors of this book!) as a moderator 
on the Scirra online forums. We are honored that he agreed to join us in this endeavor, 
and we have benefitted greatly from his experience and advice.

Finally, a special thanks to our students and readers, past and present, for their 
continuous and infectious enthusiasm. Your passion for game development is what 
inspired us to write this book.



xix

Foreword

At Scirra, we’ve always believed the future of software is on the Web. Everyone wants to 
“put a ding in the universe” (as Steve Jobs said), and using HTML5 to power Construct 
2’s games is our way of trying to do that. While Construct 2 lets you export to a variety 
of platforms, I’ve always thought the Web was the most interesting one: it’s free, it’s 
open, and there are no gatekeepers who will charge you fees or decline your app. Web 
technology is also excellent now, having come on in leaps and bounds since we started in 
2011. New technologies like WebGL 2 and WebAssembly point to a bright future too.

Another goal of mine is to encourage people to be content producers, not just 
consumers. It’s easy to spend hours clicking or swiping through the Web, just reading and 
using what other people have made. That can be interesting, but personally I think it’s far 
more exciting to build things. Building software and games has often had a high barrier 
to entry, and we want to try to make developing and sharing your own games as easy as 
making a presentation. I hope this book helps get you started on the way.

Construct 2 is designed to let your creativity run free. We specifically wanted to avoid 
being a “cookie-cutter” game engine, which basically gives you premade templates that 
you lightly modify. Instead, it provides a series of building blocks to start assembling your 
own unique game from. This book covers a range of game genres and mechanics to help 
you learn how to build something of your own, all built from the common building blocks 
of things such as sprites, behaviors, events, and more.

If you manage to build something and share it with someone else, then we’ll be very 
happy to have helped you be a creator. Persistence can get you a long way too; I started 
with nothing but a laptop in my bedroom, and now we’re a full-fledged business. Who 
knows where you’ll end up if you keep going?

—Ashley Gullen
Founder, Scirra Ltd.

February 2017



xxi

Introduction

Welcome to Game Development with Construct 2!
In this book, you’ll learn how to create video games using the Construct 2 game 

engine, an ideal program for aspiring game developers who have no prior experience, 
as well as experienced game developers looking for a tool to rapidly create prototypes of 
games. The games you will create in this book are inspired by classic arcade games such 
as Asteroids, Frogger, Breakout, and PacMan; general genres such as car racing or tower 
defense games; and console games such as Super Mario Bros. and The Legend of Zelda.

Construct 2 is both user-friendly and powerful. The software has been around for 
more than 5 years, has been downloaded more than 3.5 million times, and has an active 
user community and responsive development team. Games created with Construct 2 can 
be exported to run on a variety of platforms and operating systems, such as web browsers 
(HTML5), Windows, macOS, Linux, Android, and iOS. A free version of Construct 2 is 
available for download and is sufficient for all the game projects contained in this book.

Much like the software itself, this book does not assume you have any prior 
programming or game development experience. Over the course of the book, you will be 
guided in creating a series of 12 different video games of increasing complexity that will 
teach you both the features of the Construct 2 game engine and the game development 
topics and logical programming concepts that will serve you well for software 
development in general.

Thank you for allowing us to be your guides as you begin your journey as a game 
developer. We hope that you find this book both informative and enjoyable and that it 
enables and inspires you to create your own video games to share with the world.



1© Lee Stemkoski and Evan Leider 2017 
L. Stemkoski and E. Leider, Game Development with Construct 2,  
DOI 10.1007/978-1-4842-2784-8_1

CHAPTER 1

Getting Started with 
Construct 2

Welcome to the exciting world of game design and development! In this chapter, you will 
learn all about Construct 2, the program you will be using to develop games throughout 
this book.

Designing video games is an enjoyable and rewarding activity. The process of creating 
video games uses a combination of creative and technical skills, and the end result is 
a game that can provide entertainment to any audience you choose. Whether you are 
creating games as a hobby or as a professional, you need to find the best approach that 
works for you. There are two main approaches to game development: using a traditional 
programming language (such as Java or Python) or using a game engine (a software 
framework that provides the core functionality needed to create a video game). A game 
engine automates common tasks such as displaying graphics and animations, playing 
music and sound effects, and simulating physics. Traditional programming languages 
usually provide more flexibility and customization options than game engines, but to take 
advantage of these features, you must first learn how to program. While game engines 
might have some limitations, this is typically more than compensated for by the benefit of 
speeding up the development process, which means you can devote more time and energy 
on game design and content.

For beginners who want to start creating games right away, using a game engine is 
clearly the better option. As an added bonus, the logical concepts and frameworks you 
learn will help you to understand advanced game engines or programming languages 
more quickly, should you decide to use them in the future. However, even experienced 
programmers will often use game engines for rapid prototyping, which means quickly 
creating a working, preliminary version of a game to test whether the core ideas and 
gameplay mechanics are enjoyable. Once this is established, if you decide that a game 
requires more advanced functionality or graphics beyond what the game engine can 
provide, you could then create the game using the programming language of your choice.



Chapter 1 ■ Getting Started with Construct 2

2

About the Construct 2 Game Engine
The Construct 2 game engine was developed by Scirra, founded by Ashley and Thomas 
Gullen, in 2011. Since then, the software has been regularly updated with new tools 
and capabilities. Of the many game engines available, the following features establish 
Construct 2 as one of the best:

•	 Inexpensive: There is a free edition available, which contains 
nearly all1 the functionality of the full version. The paid personal 
license is reasonably priced, can be used for commercial 
purposes (up to $5,000 revenue), and is valid for the lifetime of 
the software.

•	 Easy to learn: Construct doesn’t require any prior programming 
knowledge. Graphics and sounds are easily added to a game. The 
software has a drag-and-drop interface, it has a visual editor for 
designing the layout of your game, and you can program actions 
by selecting them from lists. There are integrated tools for editing 
images and viewing animations. It is simple to export completed 
games so that they can be shared with others. Most important, 
there is extensive and clearly written help documentation and 
tutorials on the developer web site.

•	 Flexible: It is possible to implement a great variety of classic and 
custom game mechanics and actions, which enables you to create 
games from a variety of genres, such as side-scrolling platformer 
games, top-down adventure games, slow-paced puzzle games, 
and fast-paced physics games.

•	 Active community: Construct has a large number of users; the 
software has been downloaded 3.5 million times. The developers 
regularly update the software with new features, performance 
improvements, and maintenance fixes, and they are responsive 
to the users. There are forums provided for help, discussion, and 
networking. The developers even maintain the Scirra Arcade, an area 
where you can upload your games to share them with the world.

Downloading and Installing
To download the Construct 2 game engine, go to the web site www.scirra.com. Figure 1-1  
shows the web site as of the date of printing. Click the Free Download link and you will be 
brought to another page, where an installation file should automatically download to your 

1The main limitations of the free version are the amount of customized code that can be written  
(100 “events”), no access to tools for debugging and inspecting the performance of the game, and 
limited export options (games can be run in web browsers but not as stand-alone executable files for 
desktop or mobile platforms).

http://www.scirra.com/


Chapter 1 ■ Getting Started with Construct 2

3

computer.2 If the download doesn’t start automatically, there will be a link that you can 
click to manually start the download process. Here, you can also observe that the Construct 
2 game engine is updated frequently when new features are added and software bugs or 
glitches are fixed. These versions are called releases and are numbered in sequence; the 
release number will be indicated near the top of the download page.

Once your download is complete, run the installation file. After accepting the license 
agreement, you can let the installer auto-detect the type of computer you have (a 32-bit 
or 64-bit system) and create a desktop icon if you desire. When the installation is finished, 
launch the program!

The User Interface
When you run Construct 2 for the first time, you should see a screen similar to Figure 1-2.

Figure 1-1.  The Scirra web site, home of the Construct 2 game engine

2Construct will download the latest stable version of the software. If desired, you also have the 
option of manually downloading the most recent “beta” version of the software, which contains the 
newest features but has not been as extensively tested as a stable version and may contain errors.



Chapter 1 ■ Getting Started with Construct 2

4

In the menu bar near the top of the window, click the File menu and select New 
to create a new project. The Select template or example window will appear, as shown 
in Figure 1-3. Template projects have different settings already configured for your 
convenience for a variety of standard game types and genres. However, in this book, you 
will always set up your projects manually. Select the option New empty project and click 
the Open button. Construct will then create an empty project file for you, and a window 
will appear, as in Figure 1-4.

Figure 1-3.  Creating a new (empty) project

Figure 1-2.  The Construct 2 program after starting for the first time



Chapter 1 ■ Getting Started with Construct 2

5

The number of panels and amount of information displayed can be a bit 
overwhelming at first, but as you work through the projects in this book, you will 
quickly become familiar with all the displays and different features that are available. 
In the following text, we will give you a brief overview of the information that each area 
contains. After creating your first game, the various areas will contain information specific 
to your game; for example, Figure 1-5 shows how the Construct window will look after 
completing the Starfish Collector game in Chapter 2.

Figure 1-4.  The Construct 2 window when starting a new project

Figure 1-5.  The Construct 2 window after completing a sample game

http://dx.doi.org/10.1007/978-1-4842-2784-8_2


Chapter 1 ■ Getting Started with Construct 2

6

The large center area in the Construct 2 window is used to display layouts and event 
sheets. A layout is used to arrange all the different graphics and objects in your game, 
such as background images and scenery, characters, enemies, items, points and other text 
information, and so forth. An event sheet contains a list of events, or instructions, for your 
game, such as how the player controls the main character, how game entities interact with 
each other, and so on. You can switch back and forth between layouts and event sheets 
by clicking the colored tabs at the top of this area. To add items or otherwise interact with 
these areas, you can right-click to display a mini-menu of actions available for that area. 
The menu displayed is dependent on where you right-click. Figure 1-6 shows these two 
mini-menus; the layout menu is on the left, and the event sheet menu is on the right.

The area on the left side of the Construct window displays properties, or related 
information, of whatever object is currently selected in the layout area. The contents 
of the Properties panel change automatically whenever you click a new object in the 
layout area. After creating a new project, Construct will display the properties for the 
project itself (such as the name and author of the project and the window size used when 
running the game). Clicking the layout area will cause the Properties panel to display 
properties of the layout (such as the layout size and the name of the associated event 
sheet). Once you learn how to add other objects to the game, such as sprites (which 
represent your in-game entities), clicking these objects within the layout will cause the 
Properties panel to display related information such as their name, position, angle  
(of rotation), and size.

In the upper-right area of the Construct window, there are actually two panels: 
the project panel and the layer panel. You can switch back and forth between them by 
clicking the Projects and Layers tabs near the bottom of this area. The Projects panel 
displays a set of folders that contain all the files and objects used in your game, including 
layouts and event sheets, sprites, the hardware being used for input (keyboard, mouse, 

Figure 1-6.  The layout menu (left) and the event sheet menu (right)



Chapter 1 ■ Getting Started with Construct 2

7

gamepad, or touchscreen), audio files, fonts, icons, and so forth. New layouts and event 
sheets can be created from here, and they can be re-opened from here if they were 
accidentally closed (by clicking the X in the corresponding tab). The Layers panel displays 
a list of layers, which can be created and used to organize the objects in your game  
(for example, background objects and scenery might be grouped into one layer, 
characters and items might be grouped into another layer, and user interface information 
such as points or messages might be grouped into a third layer).

The lower-right area of the Construct window contains the object panel, which 
displays only the objects that are present in the current layout. If a layout contains more 
than one instance of a given object, clicking the name of the object in the object panel 
selects all the instances at the same time, which allows you to change each of their 
corresponding properties at the same time.

As you can see, there is a lot of information displayed in the Construct window. This 
information will be reviewed and discussed in more depth in the chapters that follow. 
With practice, as you create your own games, the user interface will become easier 
to use, and it will become clear how the Construct window setup organizes the game 
development workflow for you.

Saving, Previewing, and Exporting Games
While you are creating games in Construct, always remember to save your work 
regularly. If you click the File menu, you will see two related options: Save As Project 
and Save As Single File. The option Save As Project will create a directory that contains 
all the components of your project, stored as individual files, organized into a series 
of directories. One of the files will have the extension .caproj; this file stores the 
information about the other files needed for your project and can be used to open your 
project in Construct. However, if you want to transfer your project to another directory, 
you must also move all the associated files as well. The option Save As Single File will 
create a single file with the extension .capx; all the components of your project will be 
saved within this file.3 For simplicity and ease of use, in this book we recommend you 
save your projects using the .capx file format. In addition, Construct has the ability to 
automatically save backups of your project at regular intervals. To access this option, click 
the File menu, select the Preferences option, and then select the Autosave tab; from there, 
you can configure the settings as you want.

While you are in the process of creating the game, you will no doubt want to test it 
regularly every time you add a new feature. For instance, you might want to check that the 
player controls work correctly, that the game objects interact with each other as expected, 
or that the difficulty level is well balanced. To do so, Construct provides a feature that lets 
you preview your game, running it in its current state. Along the title bar of the Construct 
window are a number of small buttons that perform commonly needed tasks: Save, Undo, 
Redo, and Run layout (represented with a standard play icon). Clicking the Run layout 
button will run the game, using your default web browser. When you are done playing 
your game, you can simply close the web browser to stop the game.

3The .capx file format is actually a “zip file,” whose contents can be inspected and extracted with 
other programs such as 7Zip or WinZip.



Chapter 1 ■ Getting Started with Construct 2

8

Another outstanding feature provided by the Construct game engine is the ability 
to export your games so that they can be run on many different hardware and software 
platforms (such as the Internet, desktop computers, and mobile devices). The free 
version enables you to export your game to HTML5 format, which runs in web browsers 
(just as the Run layout function does). Upgrading to a paid, personal license will give 
you the ability to export to additional platforms. To export your game, in the File menu, 
select Export Project, and choose the desired format. Exporting to an HTML5 web site 
also creates a directory containing a web page and all the other files needed to run your 
game; if you have a web site, you can upload the contents of this directory to your site and 
anyone with the URL will be able to play your game! Alternatively, if you don’t have your 
own web site, Scirra provides hosting for games made with Construct on its web site, at 
www.scirra.com/arcade/. One of the freely available exporting options, Scirra Arcade, 
will create a file that can then be uploaded; full instructions on how to do so are also 
provided at this web site.

Summary
In this chapter, you learned about game engines in general and the Construct 2 game 
engine in particular, including many of its distinguishing features. You also learned how 
to download and install the software, took a quick tour of the user interface, and got an 
overview of saving, previewing, and exporting your games. In the next chapter, you will 
review and revisit many of these topics in practice, as you jump into creating your first 
game in Construct 2: Starfish Collector.

http://www.scirra.com/arcade/


9© Lee Stemkoski and Evan Leider 2017 
L. Stemkoski and E. Leider, Game Development with Construct 2,  
DOI 10.1007/978-1-4842-2784-8_2

CHAPTER 2

Starfish Collector

In this chapter, you will create your first game with Construct 2, called Starfish Collector, 
shown in Figure 2-1. The player controls a turtle, whose goal is to swim around the ocean 
and collect all the starfish she can see. The game features a top-down perspective, and the 
player moves the turtle using the arrow keys. This chapter assumes no prior knowledge 
and will introduce the fundamental concepts needed to make a game using the Construct 
2 game engine introduced in the previous chapter, such as sprites, events, and behaviors, 
in the context of creating a game.

Project Setup
To begin, download the zip file containing the graphics for this game from the companion 
web site for this book. Extract the files to a folder of your choice; there will be images 
of water, a turtle, a starfish, a rock, and words that say You Win! when the player wins. 
Alternatively, you can use your own images if you desire.

Figure 2-1.  The Starfish Collector game



Chapter 2 ■ Starfish Collector

10

Next, start the Construct program. In the menu bar, select New to create a new 
project. In the window that appears, select the option New empty project and click the 
Open button. Construct will then create an empty project file for you. In the center 
region you will see the game layout. On the left is the Properties panel (which displays 
information about the currently selected object in the layout), on the upper right is the 
project panel (which displays the list of files for your project), and on the lower right is the 
objects panel (which displays a list of object types currently in your layout).

To begin, you will set up the layout. Click anywhere in the layout area, and the 
Properties panel title will change to Layout properties; underneath, it will list the different 
properties of the layout in the left column and their current values or settings in the right 
column, shown on the left side of Figure 2-2 with the default settings. Click in the area 
next to Name, type Main, and press Enter.1 You should see that the name of the layout has 
also changed in the project panel. Similarly, click in the properties area next to Layout 
Size, and enter 800, 600. This sets the layout width to 800 pixels and height to 600 pixels, 
which is a fine size for the game world. When you’ve completed these changes, the 
Properties panel should look like the right side of Figure 2-2.

Figure 2-2.  Layout properties

1Even though this game will have only a single layout, giving objects descriptive names is an 
important habit to develop right away. The importance of naming layouts will be more obvious in 
future projects, when you will have different layouts for menus, game levels, and so forth.



Chapter 2 ■ Starfish Collector

11

Next, you will set up layers on the layout. Layers are used to organize the objects 
in the layout into groups, such as background images, characters and items, and 
user interface (UI) or heads-up display (HUD) information. To see the list of layers, 
underneath the project panel, you will see two tabs: Projects and Layers. Click the Layers 
tab, and the project panel will be replaced with the layer panel. You will see a list that 
contains a single layer, named Layer 0. Click the add button (indicated with a plus icon) 
two times to add two layers; they will be given the default names of Layer 1 and Layer 2. 
To rename a layer, click the layer name in the list to select it and then click the rename 
button (indicated with a pencil icon). Rename Layer 0 to Background, Layer 1 to Main, 
and Layer 2 to UI. When you are finished, the layer panel should look like Figure 2-3. The 
order in which the layer names appear makes a difference; the layer at the bottom of the 
list will have its contents rendered (drawn on the screen) first. Its objects will appear to be 
on the bottom, or below the objects from other layers. Similarly, the layer listed directly 
above the bottom layer will have its objects drawn next, and so on. The layer at the top of 
the list will have its objects drawn last, so this is the best group for user interface–related 
information, such as the player’s score or time remaining, since this data should be 
displayed overlaying the game world.

Figure 2-3.  The layer panel



Chapter 2 ■ Starfish Collector

12

Figure 2-4.  Project properties

The last project setup task you will do is to set some of the project properties. 
This is a place to store information about your game and change settings such as the 
window size and web browser used to preview your game. Click in the layout area, and 
underneath the list of layout properties on the left, you will see a Project Properties row 
next to which there will be underlined blue text (similar in style to a link on a web page) 
that says View, as shown on the left side of Figure 2-4. Click View, and the Properties panel 
will now change and display project properties, as shown on the right side of Figure 2-4. 
Here, you might want to fill in the areas next to Name (which refers to the name of the 
project or game) and Author (your name). Filling in properties such as Email or Website 
is not necessary but can be useful if you plan to share your project file with someone and 
you want to provide a way for them to contact you. Further down in the Properties panel, 
you should change Window Size to 800, 600, just as you did for the Layout Size property 
previously. This is important because the Starfish Collector game world should fill up the 
program window.



Chapter 2 ■ Starfish Collector

13

Sprites
Next, you will add some Sprite objects to your program. A sprite is an image that 
represents an entity in your game world and has associated properties such as position 
(specified using x,y coordinates), angle of rotation (measured in degrees), and size (which 
need not be the same as the size of the original image). To create a sprite, right-click in the 
layout area, and a menu will appear as pictured on the left side of Figure 2-5. Select Insert 
New Object, and a window will appear, as shown on the right side of Figure 2-5. Click the 
Sprite icon; then in the text box at the bottom of the window next to Name when inserted, 
type Background; and finally click the Insert button.

After clicking the Insert button, the mouse pointer icon will change to a crosshair-
style icon, which is used to indicate where you would like to place the Sprite object. You 
can easily change the position of the sprite later, so for now, simply click in the center 
of the layout area. Next, a set of windows as pictured in Figure 2-6 will appear. These 
are the image editor windows. With the tools provided, you could draw an image or set 
up an animation. However, for this project, you will use the graphics provided that you 
downloaded at the beginning of this project. Click the folder icon along the top of the Edit 
Image window, navigate to the folder where you extracted the images from the zip file, 
and select the image named water.jpg. The image will appear in the Edit Image window. 
You don’t need to modify this image in any way, so close the Edit Image window (all the 
other image editor windows will also close automatically), and the sprite will appear in 
the layout area.

Figure 2-5.  Inserting a new Sprite object



Chapter 2 ■ Starfish Collector

14

The background sprite needs to be adjusted so that the water image covers the entire 
layout area. Click the sprite in the layout area to select it; the currently selected sprite is 
indicated by being surrounded by a light blue rectangle. You can reposition the sprite 
by clicking and dragging on the interior region of the sprite. You can resize the sprite 
by clicking and dragging any of the small white squares that appear around the blue 
rectangle when the sprite is selected. You can rotate the sprite by clicking and dragging 
the small white square that is connected to the center point by a line (however, you do 
not need to rotate this particular sprite). You will notice that, as you change the position, 
size, or angle, the corresponding value in the Properties panel will change as well. 
Alternatively, you may set these values by typing them into the Properties panel directly. 
In addition, change the background sprite’s Layer property to the Background layer.

Next, you will repeat this process to add a turtle sprite. As before, right-click in the 
layout area, select Insert New Object, click Sprite, enter the name Turtle, and click the 
Insert button. When the crosshair cursor appears, click anywhere in the layout to select 
an initial position, and in the image editor windows that appear next, select the image 
named turtle.png.2 Close the image editor windows, resize and reposition your turtle 
sprite as desired, and change the Layer property to Main. Finally, repeat this process one 
more time to add a starfish sprite, with the name Starfish, using the image starfish.
png. When you are complete, the layout should look like Figure 2-7.

Figure 2-6.  The image editor

2The turtle image is stored as a PNG file rather than a JPEG file because the PNG file format 
supports transparency while the JPEG file format does not; if the image had been stored as a JPEG 
file, the turtle image would appear on a solid white rectangle.



Chapter 2 ■ Starfish Collector

15

This game would be quite short if there were only one starfish for the turtle to collect, 
and thus you will create some copies of the starfish sprite that you previously created. 
These copies are called instances of the starfish sprite. Every instance of an object has its 
own set of property values that can be adjusted independently of the others. Additional 
instances can be created in multiple ways. One method is to select the sprite you want 
to copy on the layout, press Ctrl+C to copy it, and press Ctrl+V to paste the copy onto the 
layout; the cursor icon will change to a crosshair-style pointer, allowing you to select the 
position of the new instance. An alternative (and slightly quicker) method is to select 
the sprite on the layout, hold down the Ctrl key, and click and drag the selected sprite. 
A new instance of the sprite will be generated on top of the original one, which can then 
be dragged to its new position on the layout. Using either of these methods, create a few 
additional instances of the starfish sprite and position them around the screen. Feel 
free to change their angle and size slightly to add some variation in their appearance. 
Figure 2-8 shows one possible such layout. Once you are finished, it is a good idea to save 
your project.3

Figure 2-7.  The layout window with background, turtle, and starfish sprites added

3In general, you should save your project frequently, such as every few minutes or every time you 
have finished adding a new feature, whichever comes first.



Chapter 2 ■ Starfish Collector

16

Events
Next, you will add some instructions, commonly referred to as code, to your game to make 
it interactive. In the Construct game engine, instructions are called events. Each event 
has two parts: a condition and an action. A condition is a test that the program can check, 
which will be either true or false. An action is something the program can do. Informally, 
events can be thought of as “if-then” statements (instructions that say “If this condition 
is true, then do this action”). Every type of object in Construct has an associated list of 
conditions and actions that you can select from menus when creating events. This is 
convenient compared to traditional programming languages, where programmers need 
to remember and type in the names of each command or function.

The first event you will create will enable the turtle to “collect” the starfish. In many 
video games, the player’s character often collects items by simply coming into contact 
with them, after which the collected item disappears; the gameplay in Starfish Collector 
will be the same. Informally, the event could be phrased as “If the turtle comes into 
contact with the starfish, then remove the starfish from the screen.”

To begin entering this event, click the Event Sheet 1 tab above the layout area, or 
if the tab is not visible, you can click Event Sheet 1 in the project panel on the right. 
The layout will be replaced with an event sheet, which is where all the game events are 
displayed. Next, click the light gray text that says Add event in the event sheet area. A 
window will appear, which asks you to “double-click an object to create a condition from.” 
The condition is that the turtle makes contact with a starfish, and therefore you should 
double-click the Turtle object, as shown in Figure 2-9. A window will then appear that 
contains a list of conditions you can select from, as shown in Figure 2-10.

Figure 2-8.  Layout example with multiple starfish sprites



Chapter 2 ■ Starfish Collector

17

Figure 2-9.  Selecting an object to create a condition from

One of the tricky parts of working with events is determining which of the available 
conditions (or actions) you need. Sometimes the condition you need is phrased with 
words other than those you originally thought of in an informal description. For example, 
there is no condition labeled “comes into contact with,” but underneath the Collisions 
group of conditions there is a condition labeled as on collision with another object, which 
has the same meaning. If you are unsure what a particular condition means, you can 
click it and a short description of the condition will appear at the top of the window. 
Alternatively, you can click the underlined text Help on ‘Sprite’ conditions at the bottom of 
the window and you will be brought to the help documentation for Construct. Since you 
have found the condition you seek, you can double-click this condition (or single-click 
and then click the Next button), and a new window will appear. Such a window will appear 
whenever there is more information that you need to enter; the additional details that you 
need to enter are called parameters, which is why the word parameters appears in the title 
bar of this new window. For this condition, you must enter which type of object you are 
checking for collision with, as different types of object collisions may have different results 

Figure 2-10.  A list of available conditions for the turtle sprite



Chapter 2 ■ Starfish Collector

18

(for example, collisions with an item, an enemy, or a wall all have very different outcomes 
or actions associated with them). Click the <click to choose> button, double-click Starfish 
in the window that appears, and then click the Done button. You are now finished setting 
up the condition for the event, and your event sheet should appear as in Figure 2-11.

To complete this event, you need to specify the action that will take place whenever 
the condition is met; in this case, the starfish should be removed from the game. In the 
event sheet, click the words Add action that appear next to the condition you just created. 
Similar to the process of creating a condition, a window will appear containing the 
different sprites you have added to the project. Double-click the Starfish object. A window 
will appear, containing a list of available actions for the starfish sprite. The Destroy action 
is used to remove an instance of an object from the game entirely; select this action and 
click the Done button. No more windows will appear because there is no additional 
information that needs to be entered. When you are finished, the event should appear as 
in Figure 2-12. Congratulations; you have finished writing your first event in Construct!

Behaviors
The next feature to add is movement for the turtle. In this game, pressing any of the arrow 
keys will move the turtle in that direction: pressing the up arrow key moves the turtle 
toward the top of the screen, pressing the right arrow key moves the turtle toward the 
right side of the screen, and so forth. It is clear how to think of these as if-then statements; 
for example, “If the up arrow key is currently being held down, then move the turtle 
upward.” In terms of events in Construct, the condition is “the up arrow key is being held 
down,” and the action is “move the turtle upward.”

Although you could program these events yourself, it is more efficient to use features 
in the Construct game engine called behaviors. Behaviors are like prewritten collections 
of events that you can attach to a sprite. This saves you, the game developer, the time and 
effort of creating these events yourself. There are currently approximately 25 different 

Figure 2-11.  Condition for the collecting starfish event

Figure 2-12.  Completed event for collecting starfish



Chapter 2 ■ Starfish Collector

19

behaviors available for use; they include many commonly used game mechanics such 
as player controls for movement, visual effects such as fading or flashing, and advanced 
features such as pathfinding and physics simulation.

Next, you will add a behavior to easily control the movement of the turtle. Return 
to the layout, select the Turtle object, and in the Properties panel click the underlined 
blue text labeled Behaviors. The Turtle: Behaviors window will appear, containing a row 
of icons along the top. Click the Add New button (represented with a plus symbol icon), 
and a window of available behaviors will appear, as shown on the left side of Figure 2-13. 
Underneath the Movements group, select the 8 Direction behavior (either by double-
clicking or by clicking once and clicking the Add button). This window will close, and the 
program will return to the Turtle: Behaviors window; the 8 Direction behavior icon should 
now appear in this window.

While you are in the process of adding behaviors, there is a second behavior that is 
helpful for this particular game called Bound to Layout, which will keep the associated 
sprite from moving past the boundaries of the screen. As with all behaviors, you could 
theoretically add this functionality yourself by creating a set of events; in this case, the 
events would be “If the left edge of the turtle sprite moves past the left edge of the layout, 
then move the turtle to the right,” and so forth, for all edges of the turtle. However, once 
again, you will instead add a behavior following the same procedure as before: click the 
button with a plus symbol icon and select the Bound to Layout behavior underneath the 
General group. When you are finished, the Turtle: Behaviors window should appear, as in 
Figure 2-14. Close the Turtle: Behaviors window.

Figure 2-13.  The Add behavior window and Turtle: Behaviors window



Chapter 2 ■ Starfish Collector

20

At this point, you are ready to test your game! Be sure to save your project (as a single 
file, as usual) and then click the Run layout button (represented with the standard play 
icon featuring a right-pointing triangle) in the title bar of the Construct window. Your 
default web browser will open, and your layout should appear. Press the arrow keys, 
and your turtle should move around the screen; notice that the 8 Direction behavior 
also rotates the sprite so that it faces the direction in which it is moving,4 as illustrated in 
Figure 2-15. You can also test the Bound to Layout behavior by trying to move the turtle 
beyond the layout area (the turtle should stop moving forward when it touches an edge 
of the screen). Finally, you can test the event you wrote (for collecting starfish) by moving 
the turtle so that it collides with each starfish; this should cause the starfish to disappear.

Figure 2-14.  The list of behaviors added to the Turtle sprite

Figure 2-15.  Playing the Starfish Collector game in a web browser

4For this feature to work properly, the image used for the sprite must have the character facing to the 
right because the default angle (0 degrees) points in this direction. If you are using a different image 
and this is not the case, the image can be rotated using the tools along the top of the image editor 
window.



Chapter 2 ■ Starfish Collector

21

Ending the Game
After the initial thrill of seeing your game come to life in a web browser and being able 
to play it, your experience may be a bit anticlimactic, since after you collect the starfish, 
nothing happens. The game is presumably finished, but there is no sense of closure. This 
could lead players to confusion (leaving them to think “Is there something left to do?” or 
“Did I do something wrong?”) or even a sense of frustration. To remedy this situation, you 
will now add a game-over message that says You Win! to the game, which will appear after 
the turtle has collected all the starfish.

In the layout area, right-click, select Insert New Object, and add a sprite named 
YouWin. Use the image you-win.png and position this sprite so that it is in the middle of 
the layout. In the Properties panel, there are two properties you need to change. First, set 
the Layer property to UI. As mentioned, this helps keep your project organized and also 
ensures that the sprite will be displayed on top of everything in the layers listed below it: 
Background and Main. Second, change the property Initial Visibility to Invisible. This 
makes the sprite invisible to the player at the start of the game (although you will still be 
able to see it in the layout area); this is important because the player should not see this 
message until the game is over.

Next, you need to add an event that checks whether all the starfish have been 
collected, in which case the YouWin sprite should become visible. Informally, the event 
you will create can be phrased as “If there are zero Starfish sprites left on the layout, then 
make the YouWin sprite visible.” To begin, click the event sheet tab and add a new event. 
The number of starfish currently on the layout is a property of the Starfish object called 
Count. However, to check this value, you will need to use a condition from the System 
group of conditions. In the Add event window, select System (represented with a gear 
icon) and then select the condition named Compare Two Values from the General group. 
A parameters window will appear, which allows you to enter the two values to compare 
and the type of comparison to make (such as equals, less than, or greater than). In the 
first box, type Starfish.Count (notice in particular that there is a period between the 
words Starfish and Count; this tells the program to use the Count variable that belongs to 
the Starfish object, rather than the Count variable of something else, such as the Turtle 
object). Leave the comparison type set as equal to and leave the second value set to 0. 
Click the Done button, and the condition will appear in the event sheet. Finally, click Add 
action next to the condition, then select the YouWin sprite in the Add action window, and 
finally select the action Set Visible from the Appearance group. In the parameters window, 
leave the visibility set to Visible and click the Done button. The event is now complete 
and should appear in the event sheet, as shown in Figure 2-16.

Figure 2-16.  The completed event to display a message at the end of the game

Now is a good time to save and test your project. Maneuver the turtle to collect all the 
starfish and verify that the You Win! message appears after they have all been collected.



Chapter 2 ■ Starfish Collector

22

Side Quests
Although you have now finished implementing the core game mechanics for the Starfish 
Collector game, there are still additional optional features you can add to make the game 
more interesting, challenging, polished, and fun. This section explains how to add these 
features into your game. While they may not be part of the core gameplay, these features 
are highly recommended to increase the quality of the gameplay experience for the future 
players of your game. In particular, you will learn how to add solid obstacles to the game 
world and how to use motion to animate the starfish.

Solid Objects
Games should have well-defined tasks or goals to accomplish and, at the same time, 
obstacles to make it challenging to accomplish these goals. In the Starfish Collector game, 
the turtle encounters no obstacles; she only needs to swim in a straight line from starfish 
to starfish until they are all collected. To make her journey less straightforward, you will 
place some obstacles in her way. You will add some rocks (sprites that use a rock image) 
that behave as solid objects—objects that the turtle cannot move through.

To begin, set the layout property Active layer to Main. Right-click in the layout area, 
select Insert New Object, and add a sprite named Rock. Use the image rock.png and 
position it anywhere on the screen that does not overlap the turtle or any starfish. In the 
Properties panel for the Rock object, click the underlined blue text Behaviors, and, similar 
to the process you used before when adding behaviors to the turtle, add a behavior named 
Solid. Duplicate the Rock object a few times, as you did when creating additional starfish, 
and position the new rocks around the layout, with enough space in between them so that 
the turtle will be able reach each of the starfish. Figure 2-17 shows an example of such an 
arrangement. Save your project, and click the Run layout button in the title bar. Move the 
turtle around the screen using the arrow keys, and you will notice that you can’t move the 
turtle through the rocks; make sure that the player can win the game.

Figure 2-17.  Adding rocks to the game



Chapter 2 ■ Starfish Collector

23

As you navigate the turtle around the rocks, you may have noticed that although 
image files are rectangular, collision boundaries usually are not. It is typically the case in 
video games that if two sprites overlap in transparent areas of their images, this typically 
does not count as a collision. However, checking every pixel of every image for overlap 
with every pixel of every other image takes a great deal of computation and would cause 
your game to run more slowly. Therefore, game engines often use an intermediate 
approach, creating a collision polygon: a shape that estimates the boundaries of the 
object, usually with eight or fewer sides. When you select an image for a sprite, the 
Construct game engine automatically estimates the boundaries that should be used when 
checking for a collision between two objects. To inspect or adjust the collision polygon 
for a sprite, open the image editor (by double-clicking the object), and in the Edit Image 
window, select the icon at the lower left. You will see the collision polygon for the sprite, 
lightly shaded in blue, with blue edges and red vertex points. Figure 2-18 shows the 
collision polygons for the rock and turtle sprites. You can adjust the collision polygon if 
you want by clicking and dragging on any vertex; right-clicking a vertex will bring up a 
menu where vertices can be added or deleted.

Value-Based Animations
In game design, it is good practice to draw the player’s attention to objects with which 
they can interact. One way to do so is with animations, which come in two varieties: 
image-based, where a sequence of images are quickly displayed in sequence to simulate a 
change in appearance, and value-based, where a set of numbers are continually adjusted 
that affect the sprite’s position, rotation, size, and so forth. In this section, you will use 
behaviors to implement value-based animations; image-based animations will be 
covered in a later chapter.

To begin, select the Starfish object from the object panel in the lower-right area of 
the Construct window. It is important to use the object panel so that all instances of the 
starfish are selected so that the changes you are about to make apply to all of them. Add 
two behaviors to the starfish: Rotate and Sine. The Rotate behavior causes a sprite to spin 
by continuously changing the angle property of the sprite. In the Properties panel, under 
the heading Rotate, change Speed to 10; this will cause the angle property to increase 
by 10 degrees every second, resulting in a nice, slow, spinning effect. The Sine behavior 

Figure 2-18.  Viewing the collision polygons for the rock and turtle objects



Chapter 2 ■ Starfish Collector

24

causes a property to oscillate between two values. In the Properties panel, under the 
heading Sine, change Movement to Size (this causes the Size property to be the one 
affected by the Sine behavior), change Period to 2 (this is how many seconds it will take to 
cycle through the values), and change Magnitude to 10 (this is the amount by which the 
starting value of the property will be adjusted). The result should be a subtle, rhythmic, 
pulsing effect as the starfish size increases and decreases by 10 pixels every 2 seconds. 
Figure 2-19 shows the Properties panel with these changes made.

Figure 2-19.  Adjusted values for the Rotate and Sine behavior properties

As you can see when testing your game, when the turtle collides with a starfish, the 
starfish immediately disappears. To present a more sophisticated effect, you will add 
another value-based animation that will cause the starfish to fade out instead of suddenly 
disappearing. Use the object panel to make sure that all starfish instances are selected 
and then add the Fade behavior. The Fade behavior causes a sprite to either fade in or 
fade out by continuously changing the Opacity property, which controls how transparent 
the sprite image is; Opacity values close to 100 are fully visible, while values close to 0 are 
completely transparent (and thus cannot be seen by the player). In the Properties panel, 
under the Fade heading, change Active at start to No (which means that the sprite does 
not start fading out right away), and change Fade out time to 0.2 (which means it will take 
0.2 seconds for the opacity to decrease from 100 to 0). Notice that the Destroy property is 
set to After fade out, which means that when the object has completely faded out, the 
Destroy action will automatically be applied to the sprite, removing it from the game.

Next, you need to adjust one of the game events. Go to the event sheet and locate 
the event with condition Turtle: On Collision with Starfish and action Starfish: Destroy. 
Click the action and press the Delete key; this will cause the action to be removed from 
the game. Click Add action next to the condition, select the Starfish object, and in the list 
of actions select Start Fade from the Fade group. When you are finished, the event should 
appear, as shown in Figure 2-20. Save and test your game to verify that the fade animation 
works as expected.



Chapter 2 ■ Starfish Collector

25

On Your Own
Congratulations on completing the side quests! At this point, you now have a fully 
functional game with some nice extra features. However, you should feel free to continue 
developing this game with the skills you have learned in this chapter. Here are some 
additional ideas of features:

•	 You could create a maze for the turtle to navigate through, by 
making the rocks long and thin to create walls and adding more 
rocks as needed. To give yourself more space to work with in the 
layout, you could make the turtle and starfish sprites smaller.

•	 You could make the starfish move back and forth by adding 
another Sine behavior to the Starfish object, with properties 
configured to adjust the horizontal or vertical position.

•	 You could create new sprites for scenery, such as seaweed 
or coral. You may or may not want to add the solid behavior, 
depending on the type of object they represent.

•	 You could create a new long and thin sprite with both the Solid 
and Rotate behaviors added to it; such a sprite will act like a 
propeller and will push the turtle if it gets close.

•	 You could create a new sprite that serves as an “enemy,” like a 
shark, that will destroy the turtle if there is a collision. In that 
case, you might also want to add another sprite with an image 
containing the words “game over” that are displayed when that 
happens.

Summary
In this chapter, you created your first game in Construct and encountered a lot of 
vocabulary along the way. You learned how to create sprites and adjust their properties, 
such as position, angle, and size, and how to create multiple instances of a given sprite. 
You learned that instructions for your game are specified as events, which can be thought 
of as “if-then” statements. Events consist of conditions and actions; if the conditions are 
true, then the associated actions are performed. You also learned about behaviors, which 
are like collections of events, useful for many common types of games. In particular, you 
worked with the following behaviors: 8 Direction, Bound to Layout, Solid, Rotate, Sine, 
and Fade.

In the next chapter, you will build upon these fundamental skills and create a space-
themed shoot-’em-up game called Space Rocks.

Figure 2-20.  Replacing Destroy with Fade in the event sheet



27© Lee Stemkoski and Evan Leider 2017 
L. Stemkoski and E. Leider, Game Development with Construct 2,  
DOI 10.1007/978-1-4842-2784-8_3

CHAPTER 3

Space Rocks

In this chapter, you will create a space-themed shoot-’em-up game called Space Rocks, 
inspired by the classic arcade game Asteroids, shown in Figure 3-1.

Introduction
In Space Rocks, the player controls a spaceship, whose goal is to fly around and shoot 
lasers to destroy asteroids that are floating across the screen. The player must also take 
care that the spaceship does not get hit by asteroids, as they can damage or destroy 
the spaceship. The game world space uses wraparound, which means that when an 
object moves past one edge of the screen, it reappears on the other side. The player 
uses the keyboard to control the spaceship, which may turn left or right, move forward 

Figure 3-1.  The Space Rocks game



Chapter 3 ■ Space Rocks

28

in the direction it is currently facing,1 and fire lasers. The spaceship also has the ability 
to teleport to a random location on the screen, which can be useful to escape from an 
imminent collision with an asteroid but also involves a certain amount of risk, as it is 
possible that the spaceship will appear in the path of another asteroid (or even worse, 
appear within an asteroid). This game also features animations and visual special effects, 
such as rocket thruster fire and explosions. As extra optional features, you will learn how 
to add shields to provide limited protection to the ship and to add UFOs that randomly 
spawn and present another obstacle for the player to avoid.

This chapter assumes you have mastered the material in the previous chapter. In 
particular, you should be able to change layout and project properties, add layers to 
a layout, add sprites and adjust their properties, add behaviors to a sprite, and create 
events with given conditions and actions. In this chapter, you will learn about some new 
behaviors, animations, and functions for events.

To begin, download the zip file containing the graphics for this chapter from the 
book web site. In the layout properties, set the layout Name to Main, set Size to 800, 600, 
and set up the three layers named Background, Main, and UI as you did for the Starfish 
Collector game. In the project properties, change the window Size to 800, 600 (and 
change the Name and Author properties as you like). In the layout area, create a sprite 
named OuterSpace, using the image space.jpg, and position and resize the sprite so that 
it covers the entire layout area. Change the Layer property so that the OuterSpace sprite is 
on the Background layer. Your layout should look like Figure 3-2: an image of outer space.

Figure 3-2.  Layout with the outer space background sprite added

1This control scheme has a significant difference from the control scheme from the previous game. 
In Space Rocks, the control scheme is relative to the character’s (in this case, the spaceship’s) 
viewpoint. In contrast, the Starfish Collector game featured a control scheme that was relative to the 
player’s viewpoint. For example, pressing the up arrow key moved the turtle toward the top of the 
screen, regardless of what direction the turtle was facing. Using a control scheme relative to the 
character can provide a more immersive gameplay experience for the player.



Chapter 3 ■ Space Rocks

29

Spaceship Movement
The next step is to add the player’s character: the spaceship. To begin, change the active 
layer in the layer panel to Main. Create a sprite named Spaceship using the image file 
spaceship.png. Position it near the center of the layout. Your first goal is to set up events 
for spaceship movement, as described in the introduction of the chapter. However, unlike 
the situation for the Starfish Collector game, there are no preconfigured behaviors that 
will create the precise style of movement for this game. Therefore, in this section, you will 
set up some events for customized movement.

Right-click in the layout area and select Insert New Object. In the window that 
appears, underneath the Input heading, select Keyboard and press the Insert button  
(you do not need to rename the Keyboard object). The Keyboard object provides you with 
the ability to check any keyboard key and determine whether it was just pressed, whether 
it is currently being held down, and whether it was just released. (You didn’t need to add 
a Keyboard object in the previous project because the 8-Direction behavior automatically 
checks for keyboard input.)

The first event you will add will be, informally, “If the left arrow key is held down, 
then turn the spaceship counterclockwise 2 degrees.” There are two subtle points to this 
event that are worth noting before you continue. First, the condition checks whether the 
key is being held down; this will be true (and the event action will repeat) as long as the 
player is holding down the key (in contrast to on key pressed, which registers as true only 
at the first instant when a particular key is pressed). Second, the action of rotating by 2 
degrees will take place 60 times per second,2 so the rate of rotation is actually 120 degrees 
per second; since there are 360 degrees in a full rotation, the spaceship will be able to spin 
around completely once every 3 seconds.

To add the event, click the Event Sheet tab, and click Add Event. In the window  
that appears, select the Keyboard object and then select the condition Key is down, as 
shown on the left side of Figure 3-3. A new window will appear containing a button 
labeled <click to choose>. Click this button, and another window will appear, asking 
you to press a key. Press the left arrow key on your keyboard, and the name of the key 
pressed will appear in a text box in this window. When you are finished, click the OK 
button, and you will be returned to the previous window, where you can click the Done 
button. Then, in the event sheet, click Add Action next to the condition you just created. 
Select the Spaceship object and then select the action Rotate Counter-Clockwise from 
the Angle group, as shown on the right side of Figure 3-3. A window will appear where 
you can type the number of degrees to rotate; enter 2 and then click the Done button. 
This completes the event that will enable the player to rotate the spaceship to the left.

2This assumes your game is running at a rate of 60 frames per second (FPS), which should be the 
case for nearly all computers running this program. For more complicated games involving large 
amounts of high-resolution graphics and complicated code, the rate at which the program runs could 
be slower, and you would need to take the possibility into account when writing the event. This 
issue will be discussed at length in future chapters.



Chapter 3 ■ Space Rocks

30

Figure 3-4.  Completed events for rotating the spaceship left and right

Figure 3-3.  The lists of conditions and actions for rotating the spaceship

Next, you will add an event that lets the player turn the ship to the right; informally, this 
event is “If the right arrow key is held down, then turn the spaceship clockwise 2 degrees.” 
The steps for adding this event are nearly identical to those listed earlier, with only two 
differences: first, when selecting the key in the condition, you should press the right arrow 
key, and second, when creating the spaceship action, you should select Rotate Clockwise 
from the list of actions. When completed, these two events should look like Figure 3-4.

Now that your spaceship can turn left and right, the next step is to create events 
to handle forward motion. While creating actions in the past, you may have noticed 
some actions in the Size & Position group that may be applicable, such as Move Forward 
and Move at Angle. However, in this game, the movement is more subtle: when the 
player presses the key to activate the spaceship’s thrusters, this should cause the 
spaceship to accelerate forward, in other words, to slowly increase its speed up to some 
maximum value. Furthermore, when the player releases this key, the spaceship does not 
immediately stop; instead, it continues to drift in the same direction, at the same speed. 
This makes sense in this context because in outerspace there are no opposing forces 
(such as friction) to slow down the spaceship. The only way for the player to reduce the 
speed of the spaceship is to rotate the spaceship in the opposite direction and activate the 
thrusters to counteract the acceleration.

To accomplish this style of movement, you will create the event “If the up arrow 
key is held down, then accelerate the spaceship at a rate3 of 100, in the direction that the 
spaceship is facing.” Acceleration is not a property available to sprite objects by default, 

3Since acceleration represents the change in velocity, the units for the rate of acceleration are pixels 
per second. If the rate of acceleration is 100, this means that during every second the velocity will 
increase by 100 pixels per second.



Chapter 3 ■ Space Rocks

31

so to create this action, you will first add a behavior that provides this functionality. 
Select the Spaceship object in the layout, and add the behavior called Custom Movement. 
Then, in the event sheet, create a new event, selecting the Keyboard object and the 
condition Key is down, and select the Up arrow key. Next, add an action to this event, 
selecting the Spaceship object and the action Accelerate toward angle in the group Custom 
Movement: Velocity. A window will appear where you can enter values for this action. 
In the Acceleration text box, enter 100. In the Angle text box, enter Spaceship.Angle. In 
particular, do not forget the period between the words Spaceship and Angle; the period 
indicates that the program should use the value of the Angle property that belongs to 
the Spaceship object (as opposed to the Angle property of other game objects). When 
finished, your event should appear as in Figure 3-5.

Another gameplay mechanic that you can easily add at this time is wraparound; 
when the spaceship moves past one edge of the screen, it should reenter the screen at 
the opposite edge, as if the edges were connected. To implement this feature, select the 
Spaceship object, and add the Wrap behavior.

Now is a good time to save and test your project. After saving (as usual, a single .capx 
file is the preferred format), click the Run layout button in the title bar of the Construct 
window. Make sure that the left and right arrow keys rotate the spaceship left and right, 
respectively, and that the up arrow key accelerates the spaceship forward in whatever 
direction it is currently facing. As you are testing the controls, you might notice that you 
can continue to accelerate the spaceship to ludicrous speeds, which could cause the 
spaceship to flicker or move so quickly it appears to be in multiple places at once. We will 
address this issue by creating an event that forces the spaceship speed to be less than a 
certain amount.

The next event will cap the spaceship speed at 200 pixels per second and can be 
phrased as “If the spaceship’s speed is greater than 200, then set the spaceship’s speed to 
200.” In the event sheet, add a new event. Select the Spaceship object and the condition 
Compare Speed from the group Custom Movement; in the parameters window that 
appears, change Comparison to Greater Than, and change the value of Speed to 200. Add 
an action to this event, selecting the Spaceship object and the action Set Speed from the 
group Custom Movement: Velocity; in the parameters window that appears, change the 
value of Speed to 200, and click the Done button. When you are finished, the event should 
appear as in Figure 3-6. Save and test your project to verify that the event is working as 
expected.

Figure 3-5.  The completed event for accelerating the spaceship forward

Figure 3-6.  The completed event for capping the spaceship’s speed



Chapter 3 ■ Space Rocks

32

Lasers and Rocks
In this section, you will create additional game objects for the Space Rocks game: lasers that 
the spaceship can fire and asteroids that the player will attempt to shoot with the lasers.

In the layout area, insert a new object: a sprite that you name Laser. Position it above 
the layout, in the gray margin area (off-screen), and use the image file named laser.png; 
adjust the size if necessary. As it turns out, most of the functionality of the Laser object can 
be implemented by behaviors. First, add the behavior named Bullet. The Bullet behavior 
makes objects move in a straight line. After this behavior is added, you will see in the 
Properties panel that the default speed is 400 pixels per second; you may adjust this value 
later if you want. Also, add the Wrap behavior since a laser that moves past one edge of the 
screen should reappear on the opposite side, as is the case with the spaceship. Next, add 
the behavior named Fade. The Fade behavior makes objects fade in or fade out after an 
optional time delay and can be set to automatically destroy objects after they have faded 
out. You want to use this behavior, because otherwise the lasers will cycle around the screen 
forever until they hit something. In the Properties panel underneath the Fade group, change 
Wait Time to 1, change Fade Out Time to 0.5, and leave Destroy set to After Fade Out.

Next, you will add an event to shoot lasers: “If the spacebar is pressed, then the 
spaceship creates a laser.” To begin, add a new event to the event sheet. For the condition, 
select the Keyboard object and the condition On Key Pressed. As with the previous 
keyboard conditions, you need to specify a key; following the same procedure as before, 
select the space bar key. This condition will be true only when the key is first pressed; 
every time the spacebar is pressed, only one laser should be fired.4 Next, add an action to 
this event; select the Spaceship object, and select the action Spawn Another Object. (In 
game development, creating an object during gameplay is called spawning an object.) 
In the parameters window that appears, click the button labeled <click to choose> and 
select the Laser object; in the Layer text box, enter "Main" (including the quotes). Click 
the Done button, and your event is complete; it should appear as shown in Figure 3-7. 
It is worth noting that you did not need to set the position or angle of the spawned laser 
because these values are automatically set to match the values of the object that does the 
spawning (in this case, the spaceship). Now is another good time to save and test your 
game. In particular, when playing your game, make sure that pressing the spacebar fires 
one laser, and verify that the laser wraps around the screen and fades out after a short 
interval. If any of these features aren’t working as expected, double-check that the correct 
behaviors have been added, that any property values discussed have been set correctly, 
and that the events appear exactly as shown in this section.

Figure 3-7.  The completed event to shoot lasers

4If you had instead selected the condition On Key Down, the condition would be true for as long as 
the spacebar is being held down and would result in a continuous stream of laser fire. For the Space 
Rocks game, using this condition would make the game too easy, but this is a cool effect to keep in 
mind for other games you might make in the future.



Chapter 3 ■ Space Rocks

33

Now that you have lasers to shoot, it is time to add something to shoot at: asteroids. 
To begin, in the layout area, insert a new object: a sprite that you name Asteroid. 
Position it anywhere on the screen, and use the image file named rock.png; adjust the 
size if necessary. As was the case with the laser, most of the functionality of the rocks 
can be implemented by behaviors. First, add the Solid behavior. Next, add the Bullet 
behavior; in the Properties panel, change Speed to 100 and change Bounce Off Solids to 
Yes; this will make the asteroids bounce off each other as they move across the screen 
(later, you will create additional instances of asteroids, after these properties are set). 
Next, add the Wrap behavior to be consistent with the spaceship and lasers. Finally, you 
want the asteroids to appear as though they are spinning around in space. To this end, 
add the Rotate behavior. You will now also need to change the bullet behavior property 
Set Angle to No. If set to Yes, the bullet behavior moves the object in the direction of the 
sprite’s angle. However, you want the bullet motion to be independent of the sprite angle 
(the asteroid is traveling in a straight line while the image spins), so you must change the 
Set Angle value to No. After all these behaviors are added and the properties are changed, 
duplicate the Asteroid object a few times and position the copies around the screen, far 
away from the spaceship. To add some variety to their appearances, you can make small 
adjustments to the size or angle for individual instances. When you are finished, your 
layout should appear similar to Figure 3-8. Save and test your project, and make sure 
that the rocks move as expected.

To add interactivity between the game objects, you will now create some additional 
events. In particular, the spaceship should be destroyed when it is hit by an asteroid, and 
an asteroid should be destroyed when it is hit by a laser. The first event can be expressed 
as “If an asteroid collides with the spaceship, destroy the spaceship.” To implement this, 
add a new event. Select the Asteroid object and the condition On Collision with Another 
Object; in the parameters window, select the Spaceship object. Add an action to this 

Figure 3-8.  The Space Rocks layout after adding rocks



Chapter 3 ■ Space Rocks

34

event; select the Spaceship object and the action Destroy. When completed, your event 
should appear as shown at the top of Figure 3-9. The second event is “If a laser collides 
with an asteroid, then destroy the asteroid and destroy the laser.” Implementing this is 
similar to the previous event. One change is that the condition is between a laser and an 
asteroid. The slightly trickier difference is that there are two actions associated to this 
event. After adding the first action (to destroy the asteroid), click Add action under the 
previous action. This enables you to add a second action to the event; when the condition 
is true, both actions will occur. When completed, this event should appear as shown 
at the bottom of Figure 3-9. As usual (after adding new events), now is a good time to 
save and test your game. You may find that you need to adjust the position, angle, size, 
or speed of the rocks to achieve good gameplay balance; ideally, the game should be 
challenging but winnable.

Thrusters and Explosions
At this point, you have implemented the fundamental game mechanics of the Space 
Rocks game. This section is dedicated to visual feedback, which is important in providing 
a quality gameplay experience for the player. The two features you will implement 
include a thruster effect, which will be visible whenever the spaceship is accelerating, and 
an animated explosion, which will appear whenever an object is destroyed.

First, you’ll add the thruster effect. In the layout area, add a new sprite named Fire 
using the image fire.png. Position and resize this sprite so it appears to be coming from 
the spaceship, as shown in Figure 3-10. Add the Pin behavior. The Pin behavior is used to 
“attach” one sprite to another; when a sprite moves or rotates, any sprites pinned to it will 
move or rotate in the same way, as if the sprites were a single unit.

Figure 3-9.  Collision events

Figure 3-10.  Relative position of the spaceship and fire sprites



Chapter 3 ■ Space Rocks

35

To specify the object to which the fire should be pinned, you need to set up an event. 
This event needs to take place exactly once, as soon as the game starts, as in “If the layout 
just started, then the Fire object will pin itself to the spaceship.” In the event sheet, add 
a new event. Select the System object and the condition On Start of Layout (which was 
designed to be used for exactly such a situation). Add an action, select the Fire object, 
and select the action Pin to Object; in the parameters window that appears, select the 
Spaceship object. The fire should exist only as long as the spaceship exists, so you also 
need to add an action to the event where an asteroid collides with the spaceship; in this 
case, the fire also needs to be destroyed. When you are finished, these events should 
appear as shown in Figure 3-11. Save and test your game; the Fire object and Spaceship 
object should move around the screen as a single unit. However, the Fire object is 
currently always visible, while the desired effect is that the fire be visible only when the 
spaceship is accelerating. This issue will be fixed next.

The Fire object should not be visible when the game starts, and thus you should 
select the Fire object in the layout and set the property Initial Visibility to Invisible. 
Next, you need to set up a pair of events to control the visibility of the fire: when 
accelerating, the fire should be visible, and when not accelerating, the fire should be 
invisible. Recall that acceleration occurs when the up arrow key is being held down, and 
there is already an event in place with this condition. Therefore, you only need add a new 
action to this particular preexisting event, so click Add action directly underneath the 
spaceship acceleration action. In the window that appears, select the Fire object, and the 
Set Visible action from the Appearance group. In the parameters window that appears, 
leave the visibility set to the default value of Visible, and click the Done button. With this 
addition, the event will now appear as in the top part of Figure 3-12.

To make the fire invisible, the event should be “If it is not true that the up arrow 
key is held down, then the Fire object will set its visibility to invisible.” You may have 
observed that, in general, conditions in Construct are phrased in a positive manner; they 
each check whether some condition is happening rather than if some condition is not 
happening. In cases such as these when the negation of a condition needs to be checked, 
Construct provides you with the ability to invert any given condition. An inverted 
condition is true exactly when the original condition is not true. Thus, to implement 
the event described earlier, begin by creating a new event with the Keyboard condition 
Key is Down, and via the parameters window, select Up arrow key, as you have before. 
When you are finished and the condition is displayed in the event sheet, right-click the 
condition and a list of options will appear. From this list, select Invert, and a red X will 
appear in the condition, indicating that it has been inverted. Inverting can be thought 
of as inserting the phrase “It is not the case that…” into the description of the condition. 

Figure 3-11.  The added action Destroy and completed event to activate the pin behavior



Chapter 3 ■ Space Rocks

36

Then, add an action to this event; select the Fire object and the Set Visible action, and 
in the parameters window, change the setting to Invisible. When you are finished, the 
event will appear as in the bottom part of Figure 3-12. As usual, save and test your game; 
make sure that the fire is visible only when you are pressing the up arrow.

Next, you will add a visual explosion effect that will appear when certain objects are 
destroyed. Unlike the value-based animations from the previous chapter, which involved 
objects rotating or changing their size, this will be your first image-based animation, 
which rapidly displays a sequence of images, similar to the way a movie works. In 
particular, you will be using the image file explosion.png, shown in Figure 3-13, which 
actually contains a series of smaller images (referred to as the frames of the animation) 
arranged in a rectangular grid. Such an image is referred to as a sprite sheet or a sprite 
strip. If these particular images are displayed one after the other, then it will appear as an 
explosion that starts out bright, changes color from yellow to orange to red, and finally 
darkens and fades out as smoke.

Figure 3-13.  Spritesheet used for an explosion special effect

Figure 3-12.  Events for setting the visibility of the Fire object



Chapter 3 ■ Space Rocks

37

To begin, add a new sprite named Explosion to the main layer of the layout. When 
the set of image editor windows appear, instead of using the large main Edit Image 
window, you will focus on the window called Animation frames. Right-click in this 
window, and in the menu that appears, hover over the selection Import Frames and then 
click the option From Sprite Strip. Select the image explosion.png, and then a window 
will appear titled Import Sprite Strip. This window is used to specify how many subimages 
are contained in the sprite strip image. In this case, the grid of images contains six images 
in each row, so enter 6 for the number of horizontal images, and there are six rows total, 
so enter 6 for the number of vertical images. Also, select the Replace Entire Existing 
Animation check box, as you do not want to save the default blank image provided by 
the image editor. Click the OK button, and when the confirmation dialog appears, click 
OK; you really do want to replace the current animation. After a moment, you should see 
the individual frames appear in the Animation frames window (you may need to use the 
scroll bar to see them all), as shown in Figure 3-14. Frames can be rearranged by using 
the mouse to drag and drop, and individual frames can be deleted by right-clicking the 
frame and selecting Delete; however, you do not need to do either of these at this time. To 
preview the animation, locate the image editor window titled Animations; this contains 
a list of animations stored for this object and should currently contain only one item, 
named Default. Right-click the name of the animation and select Preview, and a small 
window will appear and display what will appear to be a very slow and choppy animation. 
To remedy this, click the name of the animation, and the Properties panel should display 
a short list of animation-related properties. The property Speed represents how many 
frames are displayed each second; change this value to 20 and then watch the preview 
again to see a smoother and faster animation. When you are finished, close the image 
editor windows.

Next, in the layout, position the Explosion sprite so that it is in the gray margin area. 
This is so that the initial explosion occurs off-screen and is not visible to the player.5 Next, 
you will add actions to preexisting events where explosions should occur. In the event 

Figure 3-14.  The Animation frames window after importing a sprite strip

5You may wonder why you don’t simply set the initial visibility of the Explosion object to invisible, 
as you did for the Fire object. This is because, if you set this explosion instance to be invisible by 
default, then all the explosions that will be spawned later will also be invisible by default, and you 
would have to include an extra action to make them visible after they are created. Dragging the 
initial explosion off-screen is an easy way to avoid this extra code.



Chapter 3 ■ Space Rocks

38

sheet, you will add another action to the event involving the spaceship being destroyed. 
Click Add Action directly below this action, select the Spaceship object, select the action 
Spawn Another Object, and in the parameters window choose the Explosion object and 
spawn it on the Main layer. Similarly, add yet another action to the event involving an 
asteroid being destroyed: click Add Action, select the Asteroid object, select the Spawn 
action, choose the Explosion object, and set it to appear on the Main layer. Finally, you 
need to add an event that removes the Explosion sprite from the layout after its animation 
is finished. Otherwise, all the explosions that are spawned will remain in computer 
memory (even though they are invisible), potentially resulting in a slower frame rate as 
the game progresses. Add a new event, selecting the Explosion object and the condition 
On Any Finished from the Animation group. For the corresponding action, select the 
Explosion object and the Destroy action. When you are finished, the updated events and 
the new event should appear as in Figure 3-15. Save and test your game, and watch the 
explosions appear when the lasers collide with the asteroids (or when an asteroid collides 
with the spaceship).

Teleportation
Another game mechanic mentioned at the beginning of this chapter is the ability of the 
spaceship to teleport to a random location on the screen, a potentially risky method of 
escape from imminent collision with an asteroid. You will also provide visual feedback in 
the form of an animated special effect that appears at the original position and the new 
position of the spaceship, as shown in Figure 3-16.

Figure 3-15.  Events related to explosions



Chapter 3 ■ Space Rocks

39

First, you will create an animated sprite representing the special effect. In the layout, 
create a new sprite named Warp, positioned in the margins of the layout area. Since you 
are creating an animated sprite, the following process will be similar to the process for 
creating the explosion animation. When the image editor windows open, right-click in 
the Animation frames window, and select Import from sprite strip. Select the image file 
warp.png, and in the window that appears, enter 8 for horizontal cells, 4 for vertical cells, 
and check the box to replace the existing animation. Click Default in the window titled 
Animation, and in the Properties panel, change Speed to 16 and change Loop to Yes; this 
means the animation frames will be displayed in a cycle, returning to the first frame after 
the last frame is displayed. When completed, also add the Fade behavior to the Warp 
sprite. This will fade out the Warp sprite over the course of one second, and because the 
Fade property Destroy is set to After Fade Out by default, you don’t need to add an event 
to destroy it as you did with the Explosion sprite.

The event that you will create next is “If the X key is pressed, then the spaceship will 
spawn a Warp object, the spaceship will move to a random position, and the spaceship 
will spawn a (second) Warp object.” To begin, create a new event with the keyboard 
condition On Key Pressed. In the parameter window, press the X key (or any other unused 
key of your choice). Add an action to this event, selecting the Spaceship object, select the 
action Spawn Another Object, and select the Warp object. Then add a second action to 
this event, selecting the Spaceship object and the action Set Position in the Size & Position 
group. In the parameters window that appears, there are text boxes where you can specify 
the x and y coordinates of the spaceship. However, you don’t want to enter just a number 
in these areas because then the spaceship would always move to that particular location 
and the teleporting would not be random.

Figure 3-16.  Warp effects appearing after ship teleportation



Chapter 3 ■ Space Rocks

40

Fortunately, the Construct game engine does not limit you to just entering numbers; 
you can enter expressions, which are combinations of values, operations, and functions. 
In particular, functions are used to transform input values into output values according to 
a built-in formula or procedure. When entering functions into Construct, the name of the 
function is written first, followed by parentheses; the input appears between the parentheses, 
and if there are multiple input values, they are separated by commas. Here’s an example:

•	 The round function transforms the number 3.8 into the number 4; 
this would be entered as round(3.8).

•	 The sqrt (“square root”) function transforms the number 25 into 
the number 5; this would be entered as sqrt(25).

•	 The max (“maximum”) function takes two numbers as inputs and 
yields the larger of the two input values as the output value.  
For example, max(9, 7) would be equal to 9.

•	 The random function takes two numbers as inputs and yields 
as output a randomly generated decimal value between these 
values. Unlike most other functions, every time this function  
is used, you could get a different number. For instance,  
random(10, 20) could yield the output value 14.5337, but the 
next time it is used, it could yield 19.0042.

For this game, it is the last of these functions mentioned that you will use. Since 
the layout size is 800 pixels wide, the value of X could be anything between 0 and 800. 
Returning your attention to the parameters window, enter the expression random(0, 800) 
in the X text box. Similarly, since the height of the layout is 600 pixels, enter random(0, 
600) in the text box next to Y, and click the Done button. Finally, add a third action to this 
event, identical to the first: select the Spaceship object, select the Spawn Another Object 
action, and select the Warp object. Since actions are activated in sequence, from top to 
bottom, the second Warp object will be created by the spaceship after it has moved to its 
new position on the layout. When you are finished, the event will appear as in  
Figure 3-17. Save your game, play it to test the teleportation mechanic, and verify that it 
sends the spaceship to random positions and that the Warp objects appear as expected.

Winning or Losing the Game
Finally, you will implement some messages that inform the player that the game is over 
and whether they have won or lost the game. It is important to provide a sense of closure, 
as discussed in the previous chapter. The events will also be similar to those in the 
previous chapter: if there are no asteroids left, then a Congratulations! message appears; 
if there is no spaceship left, then a Game Over message appears.

Figure 3-17.  Event for the teleport game mechanic



Chapter 3 ■ Space Rocks

41

To begin, create a sprite named MessageWin using the image file message-win.
png. Position it in the center of the layout, change its Layer property to UI, and change 
its Initial Visibility property to Invisible. Repeat this process to create a sprite named 
MessageLose using the image file message-lose.png. Like before, center it in the layout, 
set its layer to UI, and make it invisible. Next, add an event with the System condition 
Compare Two Values; in the parameters window, enter Asteroid.Count as the first 
value, Equal to as the comparison, and 0 as the second value. Add an action for this 
event, selecting the MessageWin object and the Set Visible action, with the parameter 
Visible. Finally, add one more event with the System condition Compare Two Values; 
in the parameters window, enter Spaceship.Count for the first value, Equal to for 
the comparison, and 0 for the second value. Add an action to this event that sets the 
MessageLose object’s visibility to visible. When you are finished, your events should 
appear as in Figure 3-18. Save and test your game, and verify that you can both win and 
lose and that the correct message appears in each situation, as shown on the left and right 
sides of Figure 3-19. If so, congratulations!

Side Quests
At this point, you have finished implementing the core mechanics for the Space Rocks 
game: the controls work as desired; the spaceship, asteroids, and lasers interact with each 
other; there are some special effects to give visual feedback to the player; the spaceship 
is able to teleport at random; and there are win and lose conditions for the game. This 
section will explain how to implement some optional features to improve the gameplay 
experience. First, in the current version of the game, the spaceship is destroyed after a 

Figure 3-18.  Events for displaying the win and lose messages

Figure 3-19.  Winning the game (left) and losing the game (right)



Chapter 3 ■ Space Rocks

42

single collision; to add some balance to the game, you will add protective shields around 
the spaceship, which enable it to withstand multiple hits. Second, you will create some 
unpredictability by adding some enemy characters in the form of unidentified flying 
objects (UFOs), which will appear periodically at random locations and move across the 
screen in a wave pattern, adding some extra challenge.

Shields
To begin, create a new sprite named Shields, using the image file shields.png. Add the 
Pin behavior and the Solid behavior. Position the shield sprite so that it is centered on the 
spaceship. Just as with the Fire object previously, you need to configure the Pin behavior, 
attaching the sprite to another object, using an event. In the event sheet, locate the event 
you previously created with the System condition On Start of Layout. Add another action to 
this event, selecting the Shields object and the Pin action, and in the parameters window, 
select the Spaceship object. Collision with the shields should also stop the spaceship from 
moving. To implement this feature, create a new event. Specifically, for the condition, 
select the Asteroid object and the condition On collision with. In the parameters window, 
select the Shields object; for the action, select the Spaceship object and the action Stop 
from the Custom Movement: Velocity group. When you are finished, the modified event 
and new event should appear as shown in Figure 3-20. Save and run your game, and you 
should see that as you move the spaceship around, the asteroids bounce right off the 
shields, and since the shield sprite is larger and completely surrounds the spaceship sprite, 
this prevents any asteroids from hitting the spaceship at all.

At this point, the shields are overpowered, in the sense that it is impossible for the 
player to lose (unless they randomly teleport into an asteroid). What the game needs now 
is a way to “damage” the shields: after a certain number of collisions, the shields should 
be destroyed, and furthermore, it is desirable for the player to have visual feedback 
indicating that the shields have been damaged.

One way to accomplish both of these goals simultaneously is to use the opacity of 
the shields as a measure of the “health” of the shields.6 The initial value of the opacity 
is 100; every time there is a collision, this value will decrease by a fixed amount. If the 
value becomes zero, then the shields will be destroyed, and the ship may be destroyed on 
collision with an asteroid.

Figure 3-20.  Events involving the shield sprite

6In a future chapter, you will learn a more common approach to this problem: how create a 
customized property, called an instance variable, which can be used to store this information.



Chapter 3 ■ Space Rocks

43

To set this up, find the event you previously created with the condition that an 
asteroid collides with the shields. Add an action to this event, selecting the Shields object 
and the Set Opacity action; in the parameters window, enter Shields.Opacity - 25. This 
will set the new value of the shield’s opacity to the previous value of the shield’s opacity 
minus 25. Thus, after four collisions, the opacity will be zero. At this time, you must specify 
that the shield object should be destroyed (otherwise it will continue to cause asteroids 
to bounce off, even though it can’t be seen). To accomplish this, add a new event. For the 
condition, select the Shields object and the Compare opacity condition; in the parameters 
window, change the comparison to less or equal, and the value to 0. For the action, 
select the Shields object and the Destroy action. When you are finished, the events should 
appear as in Figure 3-21. Save and test your game to verify the shields work as expected.

UFOs
In this side quest, you will add a regularly spawning enemy. This enemy will be passive. 
It won’t react to the player in any way; it has no abilities other than moving across the 
screen. The enemy will spawn at a random location beyond the left side of the layout and 
move to the right in a wave pattern. This movement style will add an extra challenge to 
the game because it will be more difficult to avoid and shoot these objects. When adding 
a new character or object to a game, there are many aspects that you will need to decide 
on. In addition to movement patterns, you also need to decide whether the character has 
any abilities, how the character interacts with every other object in the game, how the 
character could affect the win/lose conditions, and what happens to the character when 
the game is over. In what follows, each of these issues will be addressed.

First, add a new sprite called UFO with the image ufo.png, and place it in the margin 
area beyond the right edge of the layout. Add the Bullet behavior to the UFO sprite, and 
in the Properties panel, change Speed to 125. Also add the Sine behavior, set Movement 
to Vertical, set Period to 1, and set Magnitude to 25. This will cause the UFO to move as 
described earlier, in a wavelike pattern.

Next, you will add functionality for causing UFOs to spawn on the left side of the 
screen and self-destruct beyond the right side. Add a new sprite named SpawnPoint; this 
will be placed off-screen and will be used to spawn new instances of the UFO sprite. The 
image you use for the SpawnPoint sprite is irrelevant since this object will never be seen 
by the player, so use the image editor tools such as the paintbrush or bucket to draw or fill 
in the image area with a solid color of your choice. Since you don’t really need a 250-by-
250-pixel image for this sprite, use the Resize tool in the image editor to change the size 
of the image to 32-by-32 pixels. When you are finished, close the image editor window 
and position the sprite in the margin area directly to the left of the layout. Your layout 
(including margins) should appear similar to Figure 3-22.

Figure 3-21.  Events for damaging and destroying the shields



Chapter 3 ■ Space Rocks

44

In the event sheet, create a new event. For the condition, select the System object, 
and from the Time group, select the Every X Seconds condition. In the parameters 
window, enter 5 for the interval, and click the Done button. This condition will be true 
exactly once every 5 seconds. Next, you will add some actions to randomly reposition 
the SpawnPoint object and have it spawn a UFO. Click Add action next to the condition, 
select the SpawnPoint object, and from the Size & Position group select Set Y. In the 
parameters window, enter random(100, 500). This is similar to what you entered 
previously when creating the teleportation events, except you are changing only the Y 
coordinate (the vertical position) because SpawnPoint needs to remain to the left of the 
layout. Also, the random number will be between 100 and 500 (rather than spanning 
the full range of the height, between 0 to 600) so that the UFO doesn’t spawn too close 
to the top or bottom edge of the layout. Add another action to this event, once again 
selecting the SpawnPoint object. From the list of actions, select Spawn another object, 
and in the parameters window, select the UFO object. Finally, you need another event 
that will remove the UFOs from the game once they have passed beyond the right edge 
of the layout. Add a new event, selecting the UFO object, and from the list of conditions, 
select Compare X from the Size & Position group. In the parameters window, change 
Comparison to Greater Than, and change X to 900. Add an action to this event, select 
the UFO object, and select Destroy from the list of actions. When you are finished, these 
events should appear as in Figure 3-23. Save and test your game, making sure that UFOs 
spawn as frequently as expected and move across the screen as described earlier.

Figure 3-22.  Layout area with UFO and SpawnPoint placed in margins



Chapter 3 ■ Space Rocks

45

Next, you have to determine how UFOs will interact with each of the onscreen 
objects. Here is one possible set of interactions:

•	 When a UFO collides with an asteroid, the UFO is destroyed.

•	 When a UFO collides with a laser, both the laser and the UFO are 
destroyed.

•	 When a UFO collides with the spaceship, both the spaceship and 
the UFO are destroyed.

•	 When a UFO collides with the shields, the UFO is destroyed, and 
the shield opacity decreases by 25.

In addition, whenever a UFO is destroyed, an explosion effect will be spawned at 
the location of the UFO. These events are similar to those you have created before. Try 
to create these events on your own (rereading the process from earlier to refresh your 
memory, if necessary). When you are finished, the events should appear as in Figure 3-24.

Figure 3-23.  Events for spawning and destroying the UFOs

Figure 3-24.  Events related to UFO collisions



Chapter 3 ■ Space Rocks

46

Finally, you need to consider what happens to the UFOs at the end of the game, 
planning for all possible circumstances. In particular, with the addition of the UFO 
objects, it is actually possible to trigger both the win and lose conditions at the same time! 
For example, the player may have lost their shields and then destroyed all the asteroids 
while a UFO is still on the screen, and then the spaceship might crash into the UFO. To 
avoid this possibility, the SpawnPoint and UFO objects should be destroyed if the player 
wins the game. (This isn’t as important if the player loses the game, but you could also set 
up similar events for that situation as well, if you choose.) In addition, you will have the 
UFOs spawn warp effects so that they don’t just suddenly vanish.

In the event sheet, locate the event that contains the win condition: when the 
asteroid count is equal to 0. Add a series of actions to this event: the SpawnPoint should 
be destroyed, UFOs should spawn Warp objects, and UFOs should be destroyed. When 
you are finished, this modified event should appear as in Figure 3-25. If there are no UFOs 
on the screen at the end of the game, then this action will simply have no effect. Similarly, 
after destroying the SpawnPoint object, the previously created event that spawns UFOs 
every 5 seconds will no longer have any effect.

Congratulations on completing the side quests! Your game now includes the core 
mechanics as well as some extra features that will make it even more enjoyable for 
players.

On Your Own
As always, you can (and should!) continue to experiment with your game to make it even 
better. For example, it is a good idea to find other people to test your game to get a sense 
of the difficulty level (is it too easy or too hard?). By this point in time, you have played 
and tested your game so much, you will probably find it easier than the average player, 
and therefore seeking out others to get feedback from a fresh viewpoint is an important 
step in the game development process. To improve the balance of your game, there are 
many objects and parameters you could adjust. As an example, for the asteroids, you 
could change their speed, size, their initial positions, the total number in the game, and 
so on. You could add some more randomness to the game by changing the angle of the 
asteroids to a random number (between 0 and 360). You could change the strength of 
the shields by changing the value at which the opacity decreases after a collision; a value 
of 50 would weaken the shields (they would take only 2 hits), while a value of 10 would 
strengthen the shields (they could withstand 10 hits). You could increase or decrease the 

Figure 3-25.  Modified “you win” event



Chapter 3 ■ Space Rocks

47

rate at which UFOs are spawned or change their speed or movement pattern. Also, keep 
in mind that you can change many of these together to maintain the overall balance; for 
example, you could make the asteroids smaller and faster so that they are more difficult to 
hit but compensate for the increased difficulty by making the shields stronger.

In addition, you can try experimenting with adding new objects or gameplay 
mechanics. For example, you could add a sprite that resembles a small moon, add 
the Solid behavior, and place it in the middle of the layout. If you do so, you will have 
to determine how it interacts with all the other objects. It could provide shelter from 
the asteroids coming from one direction, but what should happen if the ship crashes 
into the moon? As another example, you could introduce a new sprite that acts as a 
powerup (using an image of your choice) that recharges your shields (by increasing their 
opacity) when the spaceship comes into contact with it. Perhaps these powerups could 
be spawned when a UFO is destroyed by a laser? These are just a few ideas to get you 
thinking; the actual possibilities are endless. Have fun!

Summary
In this chapter, you learned about some new behaviors (Wrap, Custom Movement, Bullet, 
and Pin). You created image-based animations from spritesheets. It is important to 
provide visual feedback to the player, and you saw many ways this can be done (in this 
game, with the Explosion, Fire, and Warp effects). You also used the random function in 
events to add a bit of unpredictability to your game.

In the next chapter, you will continue to build upon these skills and create a  
top-down collection game called Cleanup Challenge.



49© Lee Stemkoski and Evan Leider 2017 
L. Stemkoski and E. Leider, Game Development with Construct 2,  
DOI 10.1007/978-1-4842-2784-8_4

CHAPTER 4

Cleanup Challenge

In this chapter, you will be creating a top-down collection game called Cleanup 
Challenge, inspired by the classic arcade game Frogger, shown in Figure 4-1.

In Cleanup Challenge, the player controls a character (who we will call “the 
cleaner”), whose goal is to collect pieces of trash scattered around a roadway and return 
them to a trash can on the opposite side, which ends the game. At the same time, cars are 
racing across the street, which runs horizontally across the screen. If the person gets hit 
by a car, the game is over and no points are awarded. The player must strategically decide 
which pieces of trash they will be able to recover. This is made more challenging by slight 
variations in the speed of the cars that race past. At the beginning of the game, the trash is 

Figure 4-1.  The Cleanup Challenge game



Chapter 4 ■ Cleanup Challenge

50

randomly scattered across the screen, which adds to the replayability value. The cleaner 
has eight-direction movement, controlled by the arrow keys, and collects trash by coming 
into contact with it.

This chapter assumes that you have mastered the material from the previous two 
chapters. In particular, this project requires you to be familiar with using the 8-Direction, 
Bound to Layout, Bullet, and Fade behaviors, creating image-based animations, writing 
events with inverted conditions or multiple actions, and using the random function. New 
topics that will be introduced in this chapter include using the layout grid, creating Tiled 
Background objects, creating Text objects to display words on the screen, and creating 
customize variables to store values (such as scores).

Starting in this chapter, we will begin to use a shorter, more efficient description of 
events. In previous chapters, for example, the process for creating a condition may have 
been described as follows: “For the condition, select the System object, and from the 
group called Time, choose the condition Every X Seconds; in the parameters window next 
to Interval, enter the value 5.” Since you are now experienced with this process, we will 
now phrase this more briefly as “Create the condition System - Time: Every X Seconds, 
and set Interval to 5.” In general, condition descriptions will follow the format “add Object 
Name - Group Name: Condition Name, and set Parameter Name to Value.” Actions will be 
written in a similar way.

To begin, download the zip file containing the graphics for this chapter from the 
book web site. In the layout properties, set the layout Name to Main, and set Layout Size to 
640, 640. As you have in previous projects, set up three layers named Background, Main, 
and UI. In the project properties, change the property Window Size to 640, 640 (and 
change the Name and Author properties as you like).

Backgrounds
In this section, you will set up a series of background images so that the background of 
the game appears as in Figure 4-2. In this game, aligning and spacing the graphics are 
important, so you will use the built-in grid tool to help snap things into place. Click the 
View tab near the top of the Construct window, and click the Snap to grid and Show grid 
check boxes. Since the size is set to 32-by-32, every time you move or resize an object, it 
will automatically round the corresponding value to the nearest multiple of 32. This will 
be convenient as you will need to position the following objects right next to each other.



Chapter 4 ■ Cleanup Challenge

51

In previous projects, you have used a single sprite object for a background image. 
You may have noticed that when resizing a sprite, the image stretches or shrinks to fit 
the dimensions that you choose. For this project, you will use a different object to create 
backgrounds: a TiledBackground object. The major difference between these two types 
of objects is that a TiledBackground object will not resize its image. Instead, if the object 
is larger than the original image, then the image will be repeated until it reaches the 
size of the object; if the object is smaller than the original image, then the image will be 
cropped to the dimensions of the object. This is particularly useful when using seamless 
background images, which are images that line up visually when placed side by side with 
copies of themselves.

Next, you will add a series of TiledBackground objects to your layout to create the 
background. In the layout properties, change Active layer to Background so that all the 
objects you are about to add will be placed in the Background layer. In the layout, create a 
TiledBackground object and name it Grass, using the image grass.jpg. Change the size 
to 640 by 128, which will be easy to do with the mouse, since you activated the layout grid 
options earlier; this size corresponds to the width of the layout and a height of four boxes 
(since 4 times 32 equals 128). Place this object at the bottom of the layout. Create another 
TiledBackground object named Road, using the image road.jpg, with a size of 640 by 256, 
and align it next to the Grass object. Create another instance of the Grass object (so it 
will also be 640 by 128), and position it so that it is aligned with the other side of the Road 
object. Finally, create another TiledBackground object named Stone, using the image 
stone.jpg, with a size of 640 by 128, and position it along the top of the layout; this should 
cover the remaining area in the layout. Also, add the Solid behavior to the Stone object; 
this will stop the player character from walking in this area (because this is where you will 
place the user interface text later in this chapter).

Figure 4-2.  Background images: stone, grass, road, and more grass



Chapter 4 ■ Cleanup Challenge

52

Next, you will set up the dashed yellow lines that mark the separate lanes of the 
road. Create a new TiledBackground object and name it DashedLines, using the image 
yellow-dash.png. Using the Properties panel, change Size to 640, 8. You need to use 
the Properties panel in this case because Snap to Grid has been activated, but 8 is not a 
multiple of 32. (Alternatively, if you prefer to use the mouse, you can hold down the Alt 
key while clicking and dragging an object, which disables the Snap to Grid functionality 
as long as it is being held down.) Change Opacity of DashedLines to 50. Make two more 
instances of this object, and position all three of these DashedLines objects so they appear 
to divide the road into four equally spaced lanes. Once your layout resembles Figure 4-2, 
save your project, and you are ready to proceed to the next section.

Animating the Player
Previous games have simply rotated the player character to face the direction in which 
they were moving. In this project, you will use animations instead of a single image for 
the character, and furthermore, you will set up the project to display a different animation 
depending on which direction the character is moving (north, south, east, or west), 
similar to the style used in classic top-down adventure and RPG games like The Legend 
of Zelda and Final Fantasy. The spritesheet1 you will use is shown in Figure 4-3. Notice 
that this spritesheet contains the animation frames of a character walking in all four 
directions. The first row contains the frames for walking south, the second row contains 
frames for walking west, and so forth.

In the layout, set the active layer to Main so that newly added objects are 
automatically placed on that layer. Create a new sprite, named Cleaner. In the image 
editor, right-click in the Animation frames window, move the mouse to Import Frames, 
select From Sprite Strip, and then select the image cleaner.png. This image contains 
three frames in each row and four images in each column, so in the Import Sprite Strip 

Figure 4-3.  The spritesheet for the main character

1Thanks to Andrew Viola for providing the graphics for this and other player characters in the book.



Chapter 4 ■ Cleanup Challenge

53

window, enter 3 next to Number of horizontal cells and enter 4 next to Number of vertical 
cells. Check the Replace entire existing animation box (to remove the initial blank frame). 
Twelve frames should appear in the Animation frames window, as shown in Figure 4-4.

However, not all of these frames will be used in each animation. In what follows, you 
will use this animation as a base to create four animations in total, one corresponding to 
each direction. First, in the Animations window, click Default (the name of the current 
animation), and in the Properties panel on the left, change Speed to 6, change Loop to Yes, 
and change Ping-Pong to Yes. Then, in the Animations window, right-click the Default 
animation, and in the context menu that appears, select Duplicate. Repeat this two more 
times so that you have a total of four animations appearing in the list. Then, right-click the 
first animation, select Rename, and enter South as the new name. Repeat this process for 
the other animations in the list, naming them West, East, and North, respectively. When 
you are finished, this window should appear, as shown on the left side of Figure 4-5. 
Next, select the animation named South in the list, and in the Animation frames window, 
click each frame that does not correspond to the character walking south (those initially 
numbered 3 through 11), and press the Delete key. When you are finished, this window 
should appear as shown on the right side of Figure 4-5. Right-click the South animation 
from the Animations window, and select Preview to see how it looks; feel free to adjust 
the speed if you want. Then repeat this process for the West, East, and North animations, 
deleting the frames not required within each of the animations. When you’re finished, 
close the image editor windows.

Figure 4-4.  Animation frames for the main character, after initial import

Figure 4-5.  Animations list and animation frames for the South animation



Chapter 4 ■ Cleanup Challenge

54

In the layout area, change the Cleaner sprite property Size to 48,48 and position it in 
the center of the lower grass area. (Since Snap to grid is currently active and the desired 
size is not a multiple of 32, it is simpler to change these values in the Properties panel.) 
Add the behavior 8-Direction, and change the properties Max Speed to 80 and Set Angle 
to No. (This stops the sprite image from being rotated in the direction it is moving; the 
animations will handle that effect.) Also add the behavior Bound to Layout. Finally, add 
the behavior Fade, and change Active at start to No.

Next, you will create some events that will change the Cleaner’s animation to one 
of the four animations you just set up, depending on which key is pressed. First, add a 
Keyboard object to the project. In the event sheet, create a new event with condition 
Keyboard - On Key Pressed, with Key set to Down Arrow. In this event, add the action 
Cleaner - Animations: Set Animation, and in the parameters window, enter "South" 
(including the quotation marks; make sure that your capitalization matches the name you 
entered in the Animations window earlier). Repeat this process three times, creating three 
more events so that pressing the left arrow key corresponds to setting the West animation, 
pressing the right arrow key corresponds to setting the East animation, and pressing the 
up arrow key corresponds to setting the North animation. You should also set up your 
game so that the character’s animation stops when the character is not moving. To do so, 
create a new event with the condition Cleaner - 8-Direction: Is Moving, and in the event 
sheet, right-click and invert the condition. Then add the action Cleaner - Animation: Stop. 
When you are finished with these events, your event sheet should appear as in Figure 4-6.  
Save and test your project, and verify that when you hold each of the arrow keys, the 
cleaner moves in the corresponding direction and features the correct animation, and 
when you let go of the arrow keys and the character comes to a stop, the animation 
should stop as well.

Cars
In this section, you will add some cars for the cleaner to dodge on the way across the road; 
the cars will vary in their appearance and speed. To begin, create a new sprite named Car. 
In the image editor main window, select any one of the car images that you downloaded 

Figure 4-6.  Events for controlling the Cleaner character’s animation



Chapter 4 ■ Cleanup Challenge

55

in the beginning of the chapter. In the Animations list window, right-click Default, select 
Rename, and enter Car1 as the new name.2 Right-click in this window again and select 
Add animation. Name this animation Car2, and add an image of a car with a different 
color. Add two more animations in this way, once again with different images; name them 
Car3 and Car4. When you are finished, close the image editor windows.

In the layout, add the Bullet behavior to the Car object, and change Speed to 200. 
Create three more instances of the Car object, and place one in each lane of the road area. 
In the first and third lanes, position the cars on the left side. In the second and fourth 
lanes, position the cars on the right side, and set their Angle to 180 (so that they are facing 
to the left).

Select the Car object in the first lane. In the Properties panel, near the bottom of 
the list (you may need to scroll down), find the property called Initial animation. Next 
to this property, you will see the word Default, which means that the sprite will initially 
display the animation named Default (or, if there is no animation with that name, it will 
display the first animation in the list). Change the text to Car1. Then, for the Car in the 
second lane, change the Initial animation property to Car2. Similarly, change the initial 
animations of the cars in the third and fourth lanes to Car3 and Car4. When you are 
finished, your layout should appear similar to Figure 4-7 (except the colors of your cars 
may be different). If you save and test the game, the cars should move in straight lines, 
eventually moving past the edges of the screen.

Next, there should appear to be a continuous stream of cars traveling along the 
road. One way to accomplish this would be to add the Wrap behavior to the Car object, 
but that will in fact be too limiting for our purposes. We want to add some variation to 

Figure 4-7.  The layout with cars added

2Even if you are using only a single image for a sprite, it is treated as an animation with just one 
frame (and therefore, properties such as Speed and Loop will have no effect on how it is displayed).



Chapter 4 ■ Cleanup Challenge

56

the gameplay by changing the properties of each Car object after it leaves the screen and 
before it reappears on the other side. Using the Wrap behavior and a fixed speed would 
result in behavior that is too predictable, and once the user sees the pattern in the car 
movements, it would make the game easier (possibly too easy). It also breaks the sense of 
immersion, since real car drivers would not act so predictably. Therefore, in this section, 
you will create some events that produce an effect similar to the Wrap behavior and, 
at the same time, allow you to modify the properties of a car (such as its speed) once 
it goes past the edges of the screen. To accomplish this, you will next add a new sprite, 
positioned off-screen, that will serve as a trigger for these actions.

Create a sprite named CarWarp. The image is irrelevant since the object stays  
off-screen, so you can use the paint tools (like the fill bucket or paintbrush) to color in 
the provided blank image however you want. When you are done, close the image editor 
windows, and change the size of CarWarp to 32,32. Create three more copies of this 
object, and position them in the margins of the layout, one in the path of each car (at the 
opposite end from where they start), at least one car length beyond the edge. There needs 
to be enough distance so that the Car objects will not collide with the CarWarp objects 
until the cars are completely past the edges of the layout. The positioning should be 
similar to Figure 4-8.

In the event sheet, create a new event with the condition Car - Collisions: On Collision 
With Another Object, and select the CarWarp object. The first action will re-create the 
warplike behavior and place the car past the edge on the opposite side of the screen. 
Unfortunately, there is no “move backward” action listed, but you can still make it work 
with the actions available. For this event, add the action Car - Size & Position: Move forward, 
and set Distance to -900 (if a distance is negative, then the object will move backward). 
Then, in the same event, add the action Car - Bullet: Set Speed, and set the speed to 
random(200, 400), which will select a random number in that range for the new speed. 
When you are finished, the events should appear as in Figure 4-9. Test your game to verify 

Figure 4-8.  The CarWarp objects and their position relative to the Car objects



Chapter 4 ■ Cleanup Challenge

57

that the cars do in fact continue to reappear on the other side of the screen, traveling at 
different speeds each time.

Displaying Messages with Text Objects
Next, you will set up win and lose conditions and display this information on the screen 
using a new type of object: a Text object. Text objects can display any message you choose 
and can change their contents while the game is running, so they are more flexible than 
using sprites that contain images of words (which you have used in the games from the 
previous two chapters). To begin, right-click in the layout area, select Insert new object, 
and click Text once (and not Text box) from the available choices; for the name, enter 
TextGameOver, and click the Insert button. Once on the layout, you will be changing 
many properties of the TextGameOver object. First, change Layer to UI, change Size to 
640, 64, and position it over the bottom half of the Stone object. To make the displayed 
text easier to see, in the Properties panel, locate the property named Font, and double-
click the name of the font next to it. A dialog window will appear, listing the names and 
variations of all the fonts installed on your computer, as shown in Figure 4-10. Here, keep 
the default Font set to Arial, change Font style to Bold, change Size3 to 28, and click the 
OK button. Next, click the Horizontal alignment property, and from the drop-down menu 
that appears on the right, select Center. Repeat this process with the Vertical alignment 
property, changing its value to Center as well. Now you should see that the text is nicely 
centered in its box. If you want, you can also click the Color property, and in the drop-
down menu that appears on the right, you can select from many different colors. If you 
choose to change the color, be sure to pick a color that can be easily seen against the 
background color. Finally, set Initial Visibility to Invisible. When you are finished, the 
top part of your layout should appear similar to Figure 4-11.

Figure 4-9.  An event for a wraplike behavior

3If you change the size to a different value and the text suddenly disappears in the layout area, this is 
usually because the font size is too large or there is too much text to be displayed in the given area. 
This problem can be remedied by either choosing a smaller font size or making the Text object 
larger.



Chapter 4 ■ Cleanup Challenge

58

The lose condition, as you may have guessed, will be when a car collides with the 
cleaner. The win condition will be when the cleaner reaches a trash can on the other 
side of the road, which you will now set up. Add a new sprite, named TrashCan, using the 
image trashcan.png. Set its Layer property to Main. Change its size to 38,48, and position 
it in the center of the topmost Grass background.

Next, you will set up the events for winning and losing the game, each of which will 
cause a different message to appear in the Text object. When the game is over, you will 
also make the cleaner fade out and freeze the cleaner in place (it shouldn’t move while it 
is fading) by disabling user input for the cleaner.

In the event sheet, create a new event with the condition Cleaner - Collisions: On 
Collision With Another Object, and select the TrashCan object. Then, add the following 
actions to this event:

•	 Add TextGameOver - Appearance: Set Visible, and set Visibility to 
Visible.

•	 Add TextGameOver - Text: Set Text, and next to Text, type "You 
Win" (including the quotation marks).

Figure 4-10.  Font selection window for the Text object

Figure 4-11.  Displaying customized text on the layout



Chapter 4 ■ Cleanup Challenge

59

•	 Add Cleaner - Fade: Start Fade.

•	 Add Cleaner - 8-Direction: Set Enabled, and set State to Disabled.

When you are finished, this event will appear as shown in Figure 4-12. Save and test 
your project to make sure the You Win message appears as expected when the Cleaner 
touches the trash can.

It is particularly important to understand the use of the quotation marks in the Set 
Text action. Quotation marks are used to specify a literal expression, in a similar way to 
how they are used in everyday language. For example, if you were asked to write down 
the name of this book, you would write Game Development with Construct 2. However, 
if you were asked to write down “the name of this book”, the quotation marks indicate 
that you should repeat those words exactly; you would write the name of this book. The 
same situation arises when using the Set Text action: using quotation marks will cause 
that exact text to appear; if no quotation marks are used, the Construct game engine 
will assume that whatever you entered is an object property or a variable and will try to 
determine its value. If there is no property or variable, Construct will display a pop-up 
message that either says Unknown expression or Syntax error, as shown in Figure 4-13.

Figure 4-12.  Event for the win condition

Figure 4-13.  What could happen when a parameter is mistyped



Chapter 4 ■ Cleanup Challenge

60

Next, you will add the event corresponding to the lose condition for the game. In 
the event sheet, create a new event with the condition Car - Collisions: On Collision With 
Another Object, and select the Cleaner object. Then, add the following actions to this 
event:

•	 Add TextGameOver - Appearance: Set Visible, and set Visibility to 
Visible.

•	 Add TextGameOver - Text: Set Text, and next to Text, type  
"You Lose".

•	 Add Cleaner - Fade: Start Fade.

•	 Add Cleaner - 8-Direction: Set Enabled, and set State to Disabled.

This event should appear as shown in Figure 4-14. Save and test your project to verify 
that the You Lose message appears as expected.

Keeping Score with Global Variables
Players are used to having some way to evaluate their performance, such as points 
earned, time to completion, or some type of ranking system (such as from 1 to 3 stars or a 
grade from A to F). In this section, you will add another gameplay mechanic: the cleaner 
will fulfill the duties for which he was named by picking up pieces of trash that have been 
scattered around the area. To keep track of how well you are doing, you will program the 
game to keep track of how many pieces of trash have been collected by creating and using 
a new variable.

A variable is a name that corresponds to stored data (such as a number) that can be 
changed (or is able to vary, which is why it’s called a variable). In algebra, single letters 
such as x and y are often used as variable names; in different math problems, these letters 
may have different values. When writing programs, you will typically use words that 
describe the type of information being stored to avoid confusion. For example, a variable 
named t might store time information or temperature information; it is difficult to tell out 
of context. When creating programs, use time or temp as the variable name, instead of t, to 
avoid ambiguity or confusion.

In the previous projects, you already encountered many variables, such as position, 
angle, size, and so forth. These correspond to values associated with sprites that you 
are able to change. Because each instance of a sprite object contains its own set of these 
variables, whose values can be set independently from the variables belonging to other 
objects, these are called instance variables. In this chapter, you are going to create a 
different type of variable, called a global variable, which is not associated to any particular 

Figure 4-14.  Event for the lose condition



Chapter 4 ■ Cleanup Challenge

61

instance. In Construct, a global variable is a variable defined in the event sheet, and it can 
easily be accessed, modified, and used by all the objects or events in the game.

To begin, in the event sheet, right-click in the margin area and select Add global 
variable from the menu that appears. A window titled New global variable will appear, 
where you can configure its properties. Next to Name, type Score. Leave Type set to 
Number, and leave Initial Value set to 0. Next to Description, type number of pieces of 
trash collected. Although entering a description of a variable is optional and has no 
effect on the game itself, it is a good habit to develop and will help you remember what 
the purpose of the variable is in the future. When you are finished, click the OK button.

Next, you will set up a text object that displays the value of the Score variable. In the 
layout, create a new Text object named TextScore. Change its properties (Layer, Size, 
Font, Horizontal Alignment, Vertical Alignment, and Color) to the same values that you 
used for the TextGameOver object in the previous section. Also, for the Text property, 
enter Trash Collected: 0. Reposition this object so that it is aligned with the top half of 
the Stone object. When you are finished, this area should appear as shown in Figure 4-15.

Next, you will set up objects and events that affect and display the score. In the 
layout, create a new sprite called Trash, using the image trash.png. Make sure that its 
Layer property is set to Main, and change its size to 38,38. Duplicate this object nine times 
(for a total of ten trash objects), reposition these objects so that they are appear scattered 
around the grass and road areas, and rotate each by different amounts so that there is 
some variation in their appearance.

Since the Trash objects were the most recent additions to the Main layer, they will 
appear to be above the Car objects. It would look strange in the game if the cars were to 
drive underneath pieces of trash. To address this issue, you need to change the z-order 
of the Trash objects, which controls the order in which the graphics are rendered on 
each layer. Since you want the trash to appear as though it is underneath the cars (and 
the cleaner), they need to be moved to the bottom of the layer. To accomplish this, click 
Trash in the Objects panel in the lower-right region of the Construct window so that all 
instances of Trash objects are selected at the same time. Next, right-click any of the Trash 
instances in the layout, and from the menu that pops up, select Z-Order and then Send 
to Bottom of Layer. Since all instances were selected, this change will be applied to each 
of them, and in the game they will appear under the cars. Notice that the trash was not 
moved underneath the Grass or Road objects; that is because the background objects 
are on a completely separate layer (which illustrates another advantage to keeping game 
objects organized with layers).

Figure 4-15.  The user interface area with more text added



Chapter 4 ■ Cleanup Challenge

62

Next, you need to add an event that enables the cleaner to collect the trash objects, 
updates the Score variable, and displays the updated information in the Text object. In 
the event sheet, create a new event with the condition Cleaner - Collision: On Collision 
With, and select the Trash object. Add the action Trash - Misc: Destroy. Also add the 
action System - Global and Local Variables: Add to, and in the parameters window, leave 
Variable set to Score and Value set to 1. Finally, add the action TextScore - Text: Set Text, 
and enter the text "Trash Collected: " & Score. Here, the text that is being displayed is 
a combination of a literal expression (which appears between the quotation marks) and 
a variable (Score), which appears without quotation marks and therefore will be replaced 
by its value when the game is running. The ampersand character (&) is used to combine 
text with variables or other expressions. When you are finished, this event should appear 
as shown in Figure 4-16. Save and test your project to check that the cleaner can in fact 
collect the trash and that the score increases and is displayed correctly.

Congratulations! You have now finished implementing the core mechanics of the 
Cleanup Challenge game.

Side Quests
In this optional section, you will learn how to add some randomization to your game to 
improve both the variation of graphics and the gameplay, followed by some suggested 
additional features for you to ponder.

Randomization
First, you will add some randomization to the initial positions of the Trash objects. For the 
trash to appear near the road and not too close to the edges of the screen, the x coordinate 
should be somewhere between 40 and 600, and the y coordinate should be somewhere 
between 256 and 512. With this in mind, create a new event with the condition System 
- Start & End: On Start of Layout and the action Trash - Size & Position: Set Position. For 
the x value, enter random(40, 600), and for the y value, enter random(256, 512). When 
finished, the event should appear as in the bottom part of Figure 4-17. Save and run 
your program; click the Refresh button in your web browser to restart the game, and you 
should see that each time the game loads, the trash pieces appear in different locations.

Figure 4-16.  An event for increasing and displaying the player’s score



Chapter 4 ■ Cleanup Challenge

63

Next, you will add some randomization to the car graphics. As it stands, the same 
color car will continue to reappear in each lane. It is possible to randomly select among 
the graphics stored in the car object, thanks to the naming convention you used when 
setting up the animations earlier. Remember that the names of the car animations are 
Car1, Car2, Car3, and Car4. The idea will be to randomly choose one of the numbers, 
either 1, 2, 3, or 4, and combine that number with the text Car to get the name of the 
animation to set. The random selection will be made with a function named choose, 
explained next. Locate the event with the condition that a Car object collides with a 
CarWarp object. Add another action to this event: Car - Animations: Set Animation. Set 
the value of Animation to "Car" & choose(1,2,3,4). When finished, the event should 
appear as in the top part of Figure 4-17. Save and test the game, and verify that the image 
of each car randomly changes each time it reappears (although it is possible that the 
same image could be randomly selected multiple times in a row).

The choose function provides a way to randomly select among a given set of values 
(numbers or text); the inputs of the function represent the different possible choices, 
one of which will be randomly selected each time the action occurs. Alternatively, 
instead of "Car" & choose(1, 2, 3, 4), you could instead enter choose("Car1", 
"Car2", "Car3", "Car4"), which will have the same effect. One of the great things about 
computer programming is that there are usually many ways to approach and solve a 
problem!

You may have been surprised that we didn’t recommend that you use the function 
random(1, 4) to create a random number in this case. This is because the random function 
actually returns a random decimal value, which would then need to be rounded to a whole 
number in order to correspond to an actual animation name (since there are no animations 
named Car2.71828, for example). Thus, the expression round(random(1, 4)) produces a 
result closer to what is actually desired. However, this approach is still not precisely correct 
because not all numbers will appear equally likely; in this interval, it is more likely that a 
number will be closer to 2 or 3 than it will be to 1 or 4. (However, this problem can also be 
fixed. Can you see how?) Because of these unexpected complexities, the choose function is 
an easier approach for this particular situation.

On Your Own
Now is a good time to find someone to test your game to get a fresh perspective on the 
difficulty level of your game. If it is too difficult, you could reduce the speed of the cars 
or increase the speed of the player. You could add even more paper to collect, which will 
help the game last longer.

You could display the total time the player has been playing the game. Construct has 
a predefined variable called time that is automatically updated to contain the amount 

Figure 4-17.  Events involving randomization



Chapter 4 ■ Cleanup Challenge

64

of time that has passed since the game started. You would need to create a new Text 
object to display this information. If so, you may want to use the condition Player - Size 
& Position: Is On Screen so that the timer appears to stop once the cleaner disappears 
(which signals the end of the game), and when creating the action for setting the 
displayed text, use the round function to round the time variable to the nearest second 
(otherwise, a ludicrous number of decimal places will appear on the screen).

You could add some fading effects by adding the Fade behavior to various objects. 
For example, you could make the paper fade out when it is collected, replacing the  
Trash - Destroy action with a Trash - Start Fade action. You could make the TextGameOver 
object fade in when the game is over.

Summary
In this chapter, you learned about some new object types: TiledBackground and Text. You 
created a sprite that contained multiple animations and events that switched between 
these animations as needed. You also learned how to use variables to keep track of 
changing values and how to display these values on the screen using the Text object.

In the next chapter, you will learn how to add additional polish to your previous 
games, in the form of menu screens, audio (sound effects and background music), and 
alternative sources of input.



65© Lee Stemkoski and Evan Leider 2017 
L. Stemkoski and E. Leider, Game Development with Construct 2,  
DOI 10.1007/978-1-4842-2784-8_5

CHAPTER 5

Adding Polish to Your Game

Whenever you learn new techniques in game development, it is good practice to 
revisit earlier game projects looking for opportunities to apply your newfound 
knowledge. Perhaps there are additional gameplay mechanics or features you  
could implement or improved graphics or effects to add. In this chapter, you will 
begin by revisiting your first game project, Starfish Collector, and add an image-based 
animation and text that displays your progress. Then, you will learn some new  
general techniques and features that can be used in all your past and future game 
projects: adding buttons to the user interface, adding audio (sound effects and 
background music), adding menu systems (such as a start menu and an instructions 
screen), and adding alternative control schemes. Figure 5-1 illustrates some of these 
additions.

Figure 5-1.  Menu for Starfish Collector (left) and improved user interface (right)

To begin, open the .capx file from the Starfish Collector project, and download the 
zip file containing the additional assets from the book web site for this chapter. Some of 
these new files include animation frames for the turtle, images of various buttons  
(some with text and some with graphics), and audio files.



Chapter 5 ■ Adding Polish to Your Game

66

Adding Animation and Text
First, you will change the single image currently used for the turtle into an image-based 
animation. As it turns out, the image you used previously for the Turtle sprite is actually 
the first frame of an animation. Unlike previous animations, however, the images are 
not contained within a single sprite sheet; they are in separate files. In the object panel, 
right-click the Turtle object and select Edit animations to open the image editor windows. 
In the Animation frames window, right-click and select Import Frames… and then select 
From Files. From the Open window, you can select multiple images at once, as follows: 
in this window, click the image file turtle-2.png, then hold down the Ctrl key, and 
continue to click the remaining image files in sequence (from turtle-3.png through 
turtle-6.png). In total, five files should appear selected in this window, and all the file 
names will appear in the text box at the bottom of this window, as shown in Figure 5-2. 
Then click the Open button, and you should see a total of six images in the Animation 
frames window. Set the Animation property Speed to 12 and Loop to Yes and then close 
the image editor windows.

Next, you need to create a pair of events to pause the animation from playing 
when the turtle stops moving and to resume the animation when the turtle begins 
moving. Sprites have some animation-related actions that can be used to start and stop 
animations, but these have the unfortunate effect of changing the current animation 
frame if not used properly, so instead you will change the animation speed to pause and 
resume it. Create a new event with the condition Turtle - 8-Direction: Is moving, invert 
the condition, add the action Turtle - Animation: Set Speed, and set Speed to 0. Add 

Figure 5-2.  Selecting multiple image files for an animation



Chapter 5 ■ Adding Polish to Your Game

67

another event with the condition Turtle - 8-Direction: Is moving, add the action Turtle - 
Animation: Set Speed, and set Speed to 12. When finished, your events should appear as 
in Figure 5-3. Save your project and run the layout to verify that the turtle’s animation 
appears as described earlier.

Next, you will create a Text object for the user interface that displays the number of 
starfish remaining for the player to collect. Create a new Text object named TextStarfish. 
Change the Layer property to UI, set the alignment properties so that the text is centered, 
and change Text to Starfish Left: N (where you should replace N with however many 
starfish you have at the beginning of your game). To more closely align with the visual 
theme of this game, change Font to Comic Sans MS, change the font Style to Bold, and 
change the font Size to 36. Increase the size of the Text object so that all the text appears 
on a single line. Change the font color to a dark blue. Position the Text object in the center 
near the top of the layout; it should appear as in Figure 5-4.

You don’t need to create a variable to keep track of how many starfish are remaining 
since this information is stored in Starfish.Count. You do, however, need an event 
to update the text itself; the text needs to be set to "Starfish Left: " & Starfish.
Count. However, the placement of this action requires careful consideration. In the past, 
you would update a Text object immediately after the associated variable was changed; 
these actions would be part of the same event. In this case, the timing of certain actions 
can cause unexpected results because the action that destroys a sprite does not actually 
remove the object from the game until after the event. (This can be useful in certain cases, 
such as having an asteroid that was just destroyed spawn an explosion in the next action.) 
In the current situation, this means the value of Starfish.Count does not change until 

Figure 5-3.  Events to pause and resume the Turtle animation

Figure 5-4.  Adding a text display to the layout



Chapter 5 ■ Adding Polish to Your Game

68

later, so updating the text must take place in a later event. To implement this, create a 
new event with the condition System - Every tick, add the action TextStarfish - Text: Set 
Text, and enter "Starfish Left: " & Starfish.Count. The completed event should 
appear as in Figure 5-5. Save your project and run the layout to verify that the text display 
changes as expected.

Mouse Input and Buttons
Next, you will create some buttons that can be used to pause and resume the game. The 
buttons will be activated by clicking them with the mouse. To provide visual feedback to 
the player, buttons will appear slightly transparent when pressing a button would have 
no effect (such as pressing the pause button while the game is already paused). To begin, 
create a new Sprite1 object named ButtonPause, using the image pause.png. Create 
another Sprite object named ButtonResume, using the image play.png, and set its Opacity 
to 50. Place these two buttons in the upper-right corner of the layout, where, ideally, they 
will not obstruct any of the game objects (starfish or rocks), as shown in Figure 5-6. To 
get mouse input, a Mouse object must be added to the project (similar to the Keyboard 
object). Right-click in the layout area, and in the Add New Object window select Mouse.

Pausing the game can be accomplished by setting one of the system properties called 
the time scale, which controls the rate at which time is processed by the Construct game 
engine. The default time scale value is 1. Setting it to 2 would cause animations to display 
twice as quickly, objects to move twice as fast, and so on. Setting the time scale to 0.5 
would cause these features to occur at half-speed. Setting it to 0 freezes these features, 
which effectively pauses the game, as nothing will occur in the game world (although 
Construct will still respond to input such as key presses and mouse clicks). First, you 

Figure 5-5.  Event for updating the text display

Figure 5-6.  Placement of pause and resume buttons

1You may have noticed that there is a Button object you aren’t using. The reason is that using sprites 
gives you more flexibility with images and appearance than the Button object, and it is simple to 
create the same buttonlike functionality with events.



Chapter 5 ■ Adding Polish to Your Game

69

will set up the pause feature. Create a new event with the condition Mouse - On object 
clicked, and select the ButtonPause object. The parameter Mouse button lets you select a 
particular mouse button (left, middle, or right), while Click type lets you specify whether 
the user needs to single-click or double-click; in general, you will leave these values set 
to their defaults (left mouse button and click). You also have the option to select which 
mouse button. Add the following three actions:

•	 Add System - Set time scale, and enter 0.

•	 Add ButtonPause - Set opacity, and enter 50.

•	 Add ButtonResume - Set opacity, and enter 100.

Next, you will set up the resume feature; the event is quite similar. Once again, create 
a new event with the condition Mouse - On object clicked, and select the ButtonResume 
object. Add the same three actions as before, but with different parameter values: the 
time scale should be set to 1, the ButtonPause Opacity should be set to 100, and the 
ButtonResume Opacity should be set to 50. When finished, these events should appear 
as in Figure 5-7. Save your project and run the layout to verify that the pause and resume 
buttons work as expected (you should see the starfish stop and start moving).

Audio
Audio is an important component that you should add to each game. Background 
music or ambient sounds (such as rushing water or city traffic) can be effective at setting 
the tone or mood of the game, while sound effects can provide another form of player 
feedback; all these aspects work together to increase the sense of immersion and provide 
a more complete and engaging player experience.

The Construct game engine classifies audio into two categories: sounds and music. 
Sounds are downloaded completely before playing and typically consist of short audio 
files used for sound effects, such as laser blasts or explosions. Music is not downloaded 
before playing; rather, it is streamed, or played while being downloaded. Large audio  
files, such as background music or ambient sounds, typically fall into this category.  

Figure 5-7.  Events for pausing and resuming the game



Chapter 5 ■ Adding Polish to Your Game

70

Construct supports many different audio file formats, but different web browsers and 
operating systems require different formats. When sounds are imported into Construct, 
the software will attempt to convert the files into multiple formats when possible. For 
cross-platform compatibility, you may want to consider the Waveform audio format 
(indicated by the .wav extension) for sound files and the Ogg Vorbis audio format 
(indicated by the .ogg extension) for music files. In particular, the popular MP3 file 
format may not play correctly in many browsers. However, there are many free programs 
and online services that can be used to convert audio files to a format of your choice; you 
can find them easily with an Internet search.

In the game Starfish Collector, you will add two audio elements: some background 
music and a sound effect of a water drop that will play every time a starfish is collected. 
To begin, in the Projects panel in the upper-right area of the Construct window, right-click 
the Sounds folder, select the option Import Sounds from the pop-up menu that appears, 
and select the file Water_Drop.wav from the assets you downloaded at the beginning of 
the chapter. Then a window titled Import audio files will appear; click the Import button, 
and after the text Successfully imported appears, click the OK button. Next, right-click the 
Music folder, select the option Import Music, and follow the same process as earlier to 
import the file Master_of_the_Feast.ogg.2

Next, in the layout area, right-click, select Add new object, and then select the Audio 
object. Just as importing the Keyboard and Mouse objects enables you to use these objects 
in the event sheet, the Audio object enables you to play sounds, and it even contains 
advanced functionality such as effects that modify the sound being played. This chapter 
covers only basic audio functionality, but you should feel free to experiment with the 
available features.

In the event sheet, locate the event with the condition where the turtle collides with 
a starfish. To this event, add the action Audio - General: Play, and in the parameters 
window, set Audio file to Water_Drop, and set Loop to not looping. Next, create a new 
event with the condition System - Start & End: On start of layout, add the action  
Audio - General: Play, set Audio file to Master_of_the_Feast, and set Loop to looping. 
When you are finished, these events should appear as in Figure 5-8. Save your project and 
run the layout to verify that the background music plays when the game starts and that 
the sound effect plays whenever the turtle collides with a starfish.

Figure 5-8.  Events for playing audio files

2The soundtrack Master of the Feast was composed by Kevin MacLeod and is licensed under the 
Creative Commons: By Attribution 3.0 License. This, and many other high-quality soundtracks, can 
be downloaded from incompetech.com.



Chapter 5 ■ Adding Polish to Your Game

71

Finally, you will add some buttons onto the layout that enable the player to mute 
or unmute the sounds being played. To begin, create two new sprites: one named 
ButtonMute with the image audio-off.png and the other named ButtonUnmute with the 
image audio-on.png and Opacity set to 50. Position them in the top-left corner of the 
layout, symmetrically opposite from the pause and resume buttons you created earlier, as 
shown in Figure 5-9.

In the event sheet, create a new event with the condition Mouse - On object clicked, 
and set Object clicked to ButtonMute. Add the following three actions:

•	 Add Audio - General: Set silent, and change Mode to silent.

•	 Add ButtonMute - Set opacity, and enter 50.

•	 Add ButtonUnmute - Set opacity, and enter 100.

The process for setting up the unmute button is similar. Once again, create a new 
event with the condition Mouse - On object clicked, and select the ButtonUnmute object. 
Add the same three actions as before, but with different parameter values: the silent 
mode should be set to not silent, the ButtonMute opacity should be set to 100, and the 
ButtonUnmute opacity should be set to 50. When finished, these events should appear as 
in Figure 5-10. Save your project and run the layout to verify that these new buttons work 
as expected.

Figure 5-9.  Adding audio buttons to the layout (whole set)

Figure 5-10.  Events for muting audio playback



Chapter 5 ■ Adding Polish to Your Game

72

Menus
Menu screens are fundamental in video game development to create a complete user 
experience. When running game software, there should be a main menu or “splash 
screen” that gives the player time to prepare before jumping into the game. Additional 
screens are often used to display the backstory, user controls, in-game items, goals and 
objects, and credits for the designers, artists, and programmers who developed the 
game. In this section, you will add a main menu and an instructions screen, as shown 
in Figure 5-11. This requires the creation of new layouts and event sheets, buttons to 
navigate between the layouts, and events with actions to switch between layouts when a 
button is clicked.

To begin, in the Projects panel in the upper-right region of the Construct window, 
right-click the Layouts folder, and select Add layout from the menu that appears.  
A window will appear asking if you want to create a new event sheet for this layout. While 
not strictly necessary (different layouts can use the same event sheets), it is simpler to 
organize your code and keep game events and menu events separate. Click Add event sheet, 
and then you will see that a new layout has appeared in the Layouts folder; in addition, a 
new event sheet has appeared in the Event sheets folder. Rename the newly created layout 
to Start, and rename the newly created event sheet to Menu Events. To be consistent 
with naming, you might want to change the name of your original layout to Game and 
the name of your original event sheet to Game Events. Then right-click the Layout folder 
again, and add another layout, but this time, click the button labeled Don't add event 
sheet. Rename this layout to Help.

Open the Start layout in the layout area, and change Layout Size to 800, 600. To create 
a new instance of the Background object for this layout, in the Projects panel, select the 
Background object from the Object types folder and then click and drag it to the layout 
area. Resize and reposition the Background object so that it completely covers the layout. 
Also, set its Opacity to 50; this will reduce the contrast in the image, making it easier to 
distinguish the user interface elements. Next, create three new sprites: one named Title 
with the image title.png, one named ButtonStart with the image button-start.png, 
and one named ButtonHelp with the image button-help.png. Arrange these elements as 
shown on the left side of Figure 5-11.

Figure 5-11.  Start menu (left) and instructions screen (right)



Chapter 5 ■ Adding Polish to Your Game

73

Next, open the Help layout in the layout area, and change the layout size and add the 
background as you did for the Start layout previously. Click in the margins of the layout 
area so that the Properties panel displays layout properties, and set Event sheet to Menu 
Events. Also, create new instances of the Title and ButtonStart objects by dragging them 
onto the layout from the Projects panel. Create a new sprite named ButtonBack with the 
image button-back.png. Next, create a new Text object named TextInstructions, with 
Text set to Use the arrow keys to move the turtle. To keep with the visual theme 
of the game, change the font to a larger, bold Comic Sans, and set the color to a dark 
blue. When you are happy with the style, create another instance of the Text object, and 
change the text of this new object to read Collect all the starfish to win the game. 
Arrange these elements as shown on the right side of Figure 5-11.

Finally, you need to create events that enable the user to navigate through the 
menus. Double-click the Menu Events event sheet in the project panel to open it in 
the editor, add a new event with condition Mouse - On object clicked, and select the 
ButtonStart object. Add the action System - General: Go to layout, and select the layout 
named Game. Repeat this process to create two more events: clicking the ButtonHelp 
object should go to the layout named Help, and clicking the ButtonBack object should go 
to the layout named Start. When you are finished, these events should appear as shown 
in Figure 5-12. In the project properties, set First layout to Start. Then, save your project, 
and while the Start menu is displayed in the layout area,3 run the layout and test that the 
buttons work as expected, allowing you to navigate between the different screens.

Alternative Controls
Many game enthusiasts have their own preferred way to interact with a game; some prefer 
keyboard and mouse controls, while others prefer gamepad controllers, and still others 
enjoy touchscreen-style games. In this section, you will learn how to implement each of 
these features.

Figure 5-12.  Events for navigating between menu and game screens

3Although you set the First layout property to be the Start menu, this setting applies only after the 
game has been exported. When testing your game using the Run layout button, Construct will 
always load the current (or most recently) displayed layout in the layout area.



Chapter 5 ■ Adding Polish to Your Game

74

Changing Default Controls
In the Starfish Collector game, the default controls are the arrow keys. If you want, you 
can disable the default key setup and use other keys to trigger the 8-Direction actions. 
Here, you will configure the W/A/S/D keys4 to take the place of the up/left/down/right 
arrow keys, a popular setup with many gamers. To begin, add a Keyboard object to 
the project. Then select the Turtle object, and in the Properties panel, underneath the 
8-Direction group, change Default controls to No. Next, in the Game Events event sheet, 
create a new event with the condition Keyboard - Key is Down, set Key to W, add the action 
Turtle - 8-Direction: Simulate Control, and select Up from the list. Create additional 
similar events for the remaining keys and associated controls. When you are finished, 
these events should appear as in Figure 5-13. Test your game to make sure that this new 
control setup works.

Gamepad Controllers
Another option for controlling your characters is to use a gamepad controller, such 
as the Xbox 360 or the Logitech F310 gamepads, as shown in Figure 5-14. Construct 2 
uses web browsers to run your game, and many of these (such as Google Chrome and 
Mozilla Firefox) automatically support gamepad input without any special configuration 
required. To add gamepad support to your game, right-click in the layout area, select 
Insert new object, and choose the Gamepad object. Then, in the event sheet, you will 
have access to a variety of gamepad-related conditions that can, for example, determine 
whether gamepads are connected or whether buttons were just pressed or are being held 
down (similar to the conditions provided by the Keyboard object).

Figure 5-13.  Events for changing the 8-Direction controls

4While using the W/A/S/D keys for directional movement is a standard practice on QWERTY-style 
keyboards, it is important to remember that not all keyboards have the same arrangement of keys. 
For example, the AZERTY-style keyboard positions the W key in a different location, making 
W/A/S/D controls counterintuitive. When developing for an international audience, this should be 
taken into consideration; a different key selection (such as E/S/D/F) is more globally accessible.



Chapter 5 ■ Adding Polish to Your Game

75

One possibility is to use the D-pad to control the turtle. The events for this are 
straightforward: there is a Gamepad object condition named Is button down, and in the 
parameters window, you would leave Gamepad set to 0 (this refers to the first gamepad 
connected) and set Button to one of the buttons listed. The associated action would be 
Turtle - 8-Direction: Simulate control, as described in the previous section. However, in 
this section, you will instead use the analog joysticks on the gamepad to control the turtle. 
This is often a preferable setup because it gives the player fine-grained control over their 
character’s movement. Any direction can be selected, and the speed of the character can 
be dependent on how far from the center the joystick is pressed (pressing the joystick all 
the way to the edge results in full speed).

However, analog joystick controls are slightly more complex to set up than button 
press controls. Each joystick measures how much the player is pressing in along each of 
the coordinate directions: the x-axis (horizontal) and the y-axis (vertical). These inputs 
are represented as percentages, which can then be used to set the velocity in the X and Y 
directions (called the Vector X and Vector Y properties in Construct). To get these values, 
you use a function belonging to the Gamepad object called Axis. Just as you use the dot 
notation to access a property belonging to an object (such as Turtle.Angle), you do the 
same for functions (although this situation occurs far less frequently), so this function is 
entered as Gamepad.Axis. This function has two inputs. The first input is the ID number 
of the gamepad (the first gamepad has ID 0, the second gamepad has ID 1, and so forth). 
The second input is a code for the joystick (left or right) to check on the controller and 
which axis (x or y) to check. The codes are as follows:

•	 0 for left joystick, x-axis

•	 1 for left joystick, y-axis

•	 2 for right joystick, x-axis

•	 3 for right joystick, y-axis

So, for example, if there is only one gamepad (the ID is 0) and the player is using the 
left joystick, you can determine the percentages to which they are being pressed with the 
expression Gamepad.Axis(0,0) for the x-axis and the expression Gamepad.Axis(0,1) for 
the y-axis. The values returned by these functions are numbers in the range from -100 to 
100, so in practice you will divide them by 100 (to convert them to a fraction) and then 
multiply the result by the maximum possible speed of the object.

Figure 5-14.  Xbox (left) and Logitech (right) gamepad controllers



Chapter 5 ■ Adding Polish to Your Game

76

To enable gamepad controls for the turtle, create a new event with the condition 
Gamepad - Gamepad: Has gamepads. Add the action Turtle - 8-Direction: Set vector X, and 
enter Gamepad.Axis(0,0) / 100 * 200. Add another action similar to the first, which 
instead sets the 8-Direction vector Y and replaces Gamepad.Axis(0,0) with Gamepad.
Axis(0,1). When you are finished, the events should appear as in Figure 5-15. Save your 
project, connect a gamepad controller to your computer, and run the layout. Once the 
game starts, you may have to press a button (any button will do) on your gamepad so that 
the web browser recognizes that a gamepad is connected. Test the joystick controls and 
verify that the turtle moves as expected.

If you want, you can add events to the Game Events and Menu Events event sheets 
that allow the player to use the gamepad to interact with the user interface buttons 
by pressing buttons on the gamepad. Some button associations are standard, such 
as pressing the gamepad start button to begin or pause the game and pressing the 
gamepad back button to return to the main menu. For less obvious button associations 
(for example, determining the gamepad button used to mute the audio), one standard 
practice is to place small images of gamepad buttons near or slightly overlapping the 
onscreen buttons, as shown in Figure 5-16. This is an optional feature that you can 
implement if you want; for your convenience, images of gamepad buttons have been 
included in the assets provided for this chapter.

Touchscreen Input
The final alternative control scheme we will discuss in this chapter is the use of 
touchscreen controls. From a technical standpoint, implementing touchscreen controls 
is straightforward. Sprites containing images representing buttons or keyboard keys can 
be created, there is a Touch object that can be used to detect when objects are touched 
(similar to the conditions provided by the Mouse object), and you can use actions that 
simulate eight-direction controls. In addition, if you configure touch controls and run the 

Figure 5-16.  Using images to indicate gamepad controls for the user interface

Figure 5-15.  Events for gamepad controls (if gamepad is connected)



Chapter 5 ■ Adding Polish to Your Game

77

game on a desktop computer, the mouse input will be used to emulate touch input, which 
is convenient for testing purposes. From a design standpoint, however, the layout of the 
touchscreen controls is quite complex. The images used need to be relatively large (64 
pixels or greater) so that they are easy to press on devices with small screens. The main 
problem is the obstruction of the game world since the controls can overlap in-game 
objects, as shown in Figure 5-17. Making the controls partially transparent does not fully 
address this problem since the player’s fingers will still be covering part of the screen. 
Solid objects could be placed under the user controls to prohibit game world objects from 
entering this area, but for games with large worlds that involve scrolling the window, this 
approach can also be complicated to implement. A thorough discussion of this topic at 
this time would take us too far afield, so it is left as a design issue for you to ponder in your 
future game projects.

Summary
In this chapter, you learned many techniques for making your games more polished and 
professional: adding audio (sound effects and background music), creating additional 
layouts to serve as menus, and implementing alternative controls for your games. At this 
point, it would be excellent practice for you to revisit your game projects from earlier 
chapters (Space Rocks and Cleanup Challenge) and try your hand at implementing the 
features described in this chapter for those games. In the next chapter, you return to 
creating new games and creating your first side-scrolling game: Plane Dodger.

Figure 5-17.  Game world objects obstructed by onscreen controls



79© Lee Stemkoski and Evan Leider 2017 
L. Stemkoski and E. Leider, Game Development with Construct 2,  
DOI 10.1007/978-1-4842-2784-8_6

CHAPTER 6

Plane Dodger

In this chapter, you will create a game called Plane Dodger, an endless side-scrolling 
game, inspired by the modern smartphone game Flappy Bird, shown in Figure 6-1.

In Plane Dodger, the player controls a green plane (which we will simply refer to as 
“the plane”), whose goal is to collect stars that fly across the sky while dodging the red 
enemy planes that periodically appear. The stars and enemies appear at random heights 
in the sky, traveling across the screen from right to left. As time passes, the rate at which 
the enemies are spawned, as well as the speed of the enemies, will gradually increase, up 

Figure 6-1.  The Plane Dodger game



Chapter 6 ■ Plane Dodger

80

to a certain limit. Since this game is endless, the player’s goal is to collect as many stars as 
possible before crashing into another plane, which ends the game.

The player controls the plane by pressing a single key, which gives the plane a boost 
of speed upward. However, gravity is constantly pulling the plane downward. While it 
appears that the plane is flying from left to right, this is actually a visual illusion created by 
scrolling backgrounds (explained in the next section); in reality, the player’s movement is 
restricted to a single column. The user interface is designed to be simple and minimal, so 
as to not distract the player from the fast-paced action of the game itself.

As usual, this game relies upon material from the previous chapters. In particular, 
you should be familiar with using the Bullet behavior, creating animations, creating 
(global) variables, and using Text objects. Topics such as creating menus, adding sound 
effects, and using alternative control systems are also useful for adding polish to your 
game, but since these features are not part of the core mechanics, they will appear in 
the “Side Quests” section (but that does not make them any less important). The new 
material introduced in this chapter includes topics such as adding scrolling backgrounds 
and parallax, using gravity, and creating difficulty ramps.

To begin, download the zip file containing the graphics for this chapter from the book 
web site. In the layout properties, set the layout Name to Main, and set Size to 600, 800. As 
you have in previous projects, set up three layers named Background, Main, and UI. In the 
project properties, change the window Size to 600, 800 (and change the Name and Author 
properties as you like).

Background Effects
In this section, you will set up an “infinite scrolling” effect with background images. Since 
image files cannot actually have infinite size, there is a technique used to create the illusion 
of an infinite background. The idea is to use a seamless image for the background so that 
when two copies of the image are placed side by side, the image appears continuous. Both 
images will scroll to the left at the same rate, and once one moves off-screen to the left, it 
will be shifted to the right, on the opposite side of the layout, as illustrated in Figure 6-2.

Figure 6-2.  Two copies of a background image (dashed border), moving past layout (solid 
border)



Chapter 6 ■ Plane Dodger

81

First, you will create the background objects. In the layout properties, change Active 
layer to Background. Add a new sprite called Sky, using the image sky.png. Its size 
should be 600 by 800 pixels, the same size as the layout. This object needs to be precisely 
centered on the layout, so using the Properties panel, set the position to 300,400. Add 
the Bullet behavior, change Speed to 50, and change Set angle to No (because this object 
should not be rotated). Unfortunately, the angle of motion for the Bullet behavior cannot 
be set via the Properties panel, so this will be specified by an event instead. In the event 
sheet, create a new event with the condition System - Start & End: On Start of Layout, add 
the action Sky - Bullet: Set angle of motion, and set Angle to 180. Create a duplicate of the 
Sky instance, and in the Properties panel, set Position to 900,400 so that it is precisely 
aligned to the right of the previously created Sky object.

Next, you will create the event that causes a Sky object to shift to the right after 
it moves off-screen to the left. Create another event with the condition Sky - Size & 
Position: Is on-screen. When finished, right-click this condition in the event sheet and 
select Invert from the menu that appears. Right-click the condition again, select Add 
another condition, and create the condition Sky - Size & Position: Compare X, changing 
Comparison to less than and the X coordinate to 0. Finally, add the action Sky - Size & 
Position: Move at angle, with Angle set to 0 and Distance set to 2 * Sky.Width. When you 
are finished, these events should appear as in Figure 6-3. Save and test your project; the 
background image should appear to scroll forever, with no noticeable gap between the 
two images.

Once the Sky sprites are configured, the next task is to set up the ground sprites, 
which follows the same procedure as before. Create a new sprite named Ground, using the 
image ground.png, which has size 600 by 80 pixels. Position it at 300,760. Add the Bullet 
behavior, change Speed to 200, and change Set angle to No. Duplicate the Ground object, 
and position the second one at 900,760. At this point, your layout should appear as in 
Figure 6-4; in particular, one of the Sky and one of the Ground objects will be positioned 
in the margin area, directly to the right of the layout, whose boundaries are indicated by a 
black border.

Figure 6-3.  Sky initialization and scrolling events



Chapter 6 ■ Plane Dodger

82

In the event with the condition On start of layout, add a second action to set the 
Ground object’s angle of motion to 180. Finally, create a new event that causes the 
Ground object to shift after it moves off-screen, just as you did previously for the Sky 
object. When completed, these events will appear as shown in Figure 6-5. Save and test 
to verify that the ground scrolls as expected. By setting the distant scenery (the clouds 
and mountains) to scroll more slowly than the nearby scenery (the ground), it creates an 
illusion of depth referred to as parallax.

The Player’s Plane
In this section, you will set up the plane that the player controls. In the layout, change 
Active layer to Main so that newly added objects are placed on this layer. Create a new 
sprite named Player. This object has an animation whose images are stored in separate 
files, so in the Animation frames window, right-click, select Import Frames, and then select 
From Files. Use the images planeGreen0.png, planeGreen1.png, and planeGreen2.png,  

Figure 6-4.  The layout with Sky and Ground objects added

Figure 6-5.  Ground initialization and scrolling events



Chapter 6 ■ Plane Dodger

83

and delete the initial blank animation frame. For the animation properties, set Speed to  
8, Loop to Yes, and Ping-pong to Yes. Position the Player object at 100,300. This plane will 
only move up and down; a boost of speed upward will be applied when the player taps a 
key, and the force of gravity will constantly be pulling the plane downward, both of which 
can be achieved using the Bullet behavior. Add the Bullet behavior to the Player object, 
and set Speed to 0, set Gravity to 600, and change Set angle to No, as the plane should 
always face to the right, regardless of whether it is moving up or down. Also, add the 
behavior Bound to Layout; this will stop the plane from moving off-screen.

Next, the plane needs to be stopped from passing through the ground. Your first 
instinct might be to add the Solid behavior to the Ground object, but unfortunately this 
won’t work. By default, objects with the Bullet behavior pass through objects with the Solid 
behavior, unless the property Bounce off solids is set to Yes, in which case it bounces, which 
is also not the desired effect. (Presumably, the Bullet behavior was designed this way 
because in real life, projectiles either bounce or are destroyed upon impact with a wall.) 
Also, it is not enough to set the plane’s speed to zero on collision with the ground because 
gravity will still apply and will eventually pull the plane through. The simplest solution is to 
disable the Bullet behavior when the plane hits the ground and then re-activate (or enable) 
the behavior when the player taps a key. When tapping a key, the plane will be moved 
upward, by setting the angle of motion to 270 degrees with a speed of 300. To begin, add 
a Keyboard object to your project. Then, in the event sheet, create a new event with the 
condition Keyboard - Keyboard: On Key Pressed, and select the Space key. Then, add the 
following three Player - Bullet actions to this event: add Set angle of motion, and set Angle 
to 270; add Set speed, and set Speed to 300; and add Set Enabled, and set State to Enabled. 
Create another event, with the condition Player - Collisions: On Collision with another 
object, and select Ground. To this event, add the action Player - Bullet: Set Enabled, and set 
State to Disabled. When finished, these events should appear as in Figure 6-6. Save and 
test your game; check that pressing the spacebar moves the plane upward and that the 
plane stops moving at the top of the screen and when it touches the ground.

Stars and Score
In this section, you will add stars to the game for the player to collect, a global variable to 
keep track of the number of stars collected, and a Text object to display this information. 
To begin, in the event sheet, right-click and add a global variable; set Name to Score, Type 
to Number, Initial Value to 0, and Description to Number of stars collected.

Figure 6-6.  Events for controlling player plane movement



Chapter 6 ■ Plane Dodger

84

Next, in the layout, add a new sprite named Star with the image star.png. Add the 
Bullet behavior, with Speed set to 200 (to match the Ground speed) and Set angle set to No. 
Also, to draw the player’s attention to these objects (so they aren’t considered as part of 
the scenery), you will set up some value-based animations. Add the behavior Rotate, with 
Speed set to 30. Also add the Sine behavior, with Movement set to Size, Period set to 1, and 
Magnitude set to 8. While in the layout, add a Text object named TextScore. Set its Text 
property to 0, showing the initial score. Also, set its Layer to UI, make the text box large, 
set the alignment properties so that the text is centered, and change the font size so that 
it is easy to read (such as Arial, size 48). Optionally, to make the text appear to “pop out” 
of the screen, there is a simple way to create a drop shadow effect. Make sure that the Text 
color is set to black and then duplicate the Text object. Change the color of this new text 
object to white, and position it so that it is a few pixels above and to the left of the black 
text. Since the black text was created before the white text, it will appear underneath the 
white text, creating a nice effect, as shown in Figure 6-7.

Now you will set up three events related to Star objects: one event to generate the 
stars, one event for when the player collects a star, and one event for when the player 
misses a star and it moves off-screen to the left.

First, create a new event with the condition System - Time: Every X seconds, and  
set Interval to 2. Add a second condition to this event called Player - Size & Position: Is 
on-screen; the purpose of this second condition is to stop the stars from spawning once 
the player has lost the game and been destroyed. Next, you will add an action that spawns 
additional instances of the Star sprite beyond the right edge of the layout. Sprites can be 
spawned from other sprites, or they can be spawned from the System object; the latter 
is the approach you will take here. In this event, add the action System - General: Create 
Object. In the parameters window, set Object to create to Star, set Layer to "Main" (with 
the quotation marks), set X to 700, and set Y to random(100,700). Recall that angles of 
motion need to be set by actions, so add another action called Star - Bullet: Set angle of 
motion, and set Angle to 180.

Next, you will create the event that handles what happens when the player collides 
with a star, which is that the star is destroyed, a point is added to the Score variable, and 
the Text object displaying the score value is updated. Create a new event with condition 
Player - Collisions: On collision with another object, and select Star. Add three actions to 
this event.

•	 Add Star - Misc: Destroy.

•	 Add System - Global & local variables: Add to, and set Variable to 
Score and Value to 1.

Figure 6-7.  Drop shadow effect created with a duplicated Text object



Chapter 6 ■ Plane Dodger

85

•	 Add TextScore - Text: Set Text, and next to Text, enter Score 
(without quotation marks so that the value of the variable is 
displayed, not the word itself).

Finally, you will create the event that destroys a star once it moves off-screen to the 
left. It is important to specify the side since stars are created off-screen to the right and 
you don’t want them destroyed in that situation. Create a new event with the condition 
Star - Size & Position: Is on-screen, and invert the condition on the event sheet. Also add 
the condition Star - Size & Position: Compare X, change Comparison to Less Than, and 
set the X coordinate to 0. Finally, add the action Star - Misc: Destroy.

When you have completed these three events, they should appear as in Figure 6-8. 
Save and test your game to verify that stars do in fact appear onscreen every 2 seconds 
and travel to the left and that when the player collides with a star, the star disappears and 
the score display is updated correctly.

Enemy Planes
In this section, you will add enemy planes to introduce an element of challenge. As 
an added level of sophistication, you will also create a set of variables that causes the 
overall difficulty to increase as time passes. The rate at which enemies spawn and their 
movement speed will both slowly increase. This is known as a difficulty ramp and is 
useful in keeping players challenged and interested in the game; as they play more and 
their skills increase, they will be able to play the game for longer periods of time and 
attain higher scores. To begin, in the event sheet, create a global variable; set Name to 
SpawnRate, set Type to Number, set Initial value to 2, and for Description enter Seconds 
until next enemy spawns. Next, create another global variable; set Name to EnemySpeed, 
set Type to Number, set Initial value to 300, and for Description enter Used when setting 
speed of newly created enemy planes.

In the layout, create a new sprite named Enemy. Setting up its graphics is completely 
analogous to the process used for the player plane. In the Animation frames window, 
import the image files for the red, left-facing plane, and set the animation properties 
Speed to 8, Loop to Yes, and Ping-pong to Yes. Position the Enemy plane off-screen, in the 
margin area above the layout. Add the Bullet behavior, and change Set angle to No.

Figure 6-8.  Events related to Star objects



Chapter 6 ■ Plane Dodger

86

Next, you will add a total of five enemy-related events to the event sheet. Three of 
these events will be quite similar to the star-related events you previously created: an 
event to spawn new instances, an event to handle collision with the player, and an event 
to destroy objects that pass beyond the left edge of the screen. Every time a new enemy 
is spawned, the values of the variables SpawnRate and EnemySpeed will be adjusted; 
the remaining two events will guarantee that the values of these variables stay within a 
reasonable range.

In the event sheet, create a new event with the condition System - Time: Every X seconds, 
and set Interval to SpawnRate. Add another condition called Player - Size & Position: Is 
on-screen. When the game is over and the player is destroyed, this event will no longer 
activate. Next, add the following actions:

•	 Add System - General: Create object, and in the parameters 
window, set Object to create to Enemy, set Layer to "Main", set X to 
700, and set Y to random(100,700).

•	 Add Enemy - Bullet: Set angle of motion, and set Angle to 180.

•	 Add Enemy - Bullet: Set speed, and set Speed to EnemySpeed.

Updating the associated variable values requires two more actions to be added to 
this event.

•	 Add System - Global & local variables: Add to. For Variable, select 
EnemySpeed, and for Value, enter 10.

•	 Add System - Global & local variables: Subtract from. For Variable, 
select SpawnRate, and for Value, enter 0.05.

Next, you will create two new events even more similar to the previous star-related 
events. Create a new event with a condition that checks whether the player has collided 
with an enemy and a corresponding action that destroys the player object. Create another 
new event with two conditions that check whether the enemy is not onscreen and that 
compare the x value to check whether it is less than zero; also add a corresponding action 
that destroys the enemy object.

Finally, you need to set reasonable limits on the values of the variables. You 
previously implemented a similar feature in the Space Rocks game in an event that 
checked the speed of the player’s spaceship; if the speed was greater than 200, the speed 
was set equal to 200, which effectively became a speed limit for the spaceship. You will 
create two similar events in your current game. The first of these events will set a bound 
on how quickly enemy planes can spawn; if the value of SpawnRate gets too close to 0, 
then there will be a near-continuous stream of enemy planes appearing, which would be 
impossible to dodge (thus making the game unfair and frustrating for the player). To solve 
this problem, you will set a lower limit of 0.5 for SpawnRate. To accomplish this, create 
a new event with the condition System - Global & local: Compare variable, changing 
Variable to SpawnRate, Comparison to less than and Value to 0.5. Then create the action 
System: Global and local variables: Set value, changing Variable to SpawnRate and Value 
to 0.5. Once you are finished, create a similar event that checks whether the EnemySpeed 
variable is greater than 800 and, if it is, then sets the value of EnemySpeed to 800.



Chapter 6 ■ Plane Dodger

87

When you are finished, the enemy-related events should appear as in Figure 6-9. 
Save and test your game, making sure that the enemies become faster and appear more 
frequently as time goes on.

When you have reached this point, congratulations! You have implemented the core 
mechanics of the Plane Dodger game.

Side Quests
There are many features you could consider to add polish to this project. For example, 
you could add the following:

•	 Animated effects for when stars are collected or the player’s plane 
is destroyed (two spritesheets you could use for this purpose, 
sparkle.png and explosion.png, are included)

•	 Background music

•	 Sound effects that play when a star is collected or when the 
player’s plane explodes

•	 Alternative controls, allowing the player to use a mouse button 
click instead of (or in addition to) a keyboard press to control the 
plane

•	 Another layout that serves as a start menu

•	 Objects that appear when the player is destroyed, such as a “game 
over” message and a button that restarts the layout so that the 
player can play again

Figure 6-9.  Events related to Enemy objects



Chapter 6 ■ Plane Dodger

88

At a more advanced level, you might want to experiment with different gameplay 
mechanics. The following are some ideas:

•	 Replace the Player object’s Bullet behavior with the 8-Direction 
behavior.

•	 Add a Sine behavior (with vertical displacement) to the Enemy 
objects to produce a more complex movement pattern.

•	 Add some form of shield or barrier object to the Player object 
(similar to the Space Rocks game) so that the Player object can 
withstand multiple hits.

•	 Similar to the star objects, create different collectible objects 
with different amounts of points (such objects could have greater 
speed or different movement patterns).

•	 Implement an item (such as an “electromagnetic pulse”) that 
can be used once to destroy all enemy planes on the screen as an 
emergency measure.

Summary
In this chapter, you learned how to create an “endless” game, using scrolling backgrounds 
to create the illusion of continuous movement. Since this was your first game with a 
side-view perspective, you used the gravity property of the bullet behavior. To keep the 
gameplay from becoming monotonous, you also implemented a difficulty ramp to make 
the game more challenging as time progresses. Finally, you were presented with a great 
variety of aesthetic and gameplay modifications to consider in the “Side Quests” section.

In the next chapter, you will return to a top-down perspective as you create a  
car-racing game, Racecar 500.



89© Lee Stemkoski and Evan Leider 2017 
L. Stemkoski and E. Leider, Game Development with Construct 2,  
DOI 10.1007/978-1-4842-2784-8_7

CHAPTER 7

Racecar 500

In this chapter, you will create a game called Racecar 500, a top-down racing game, as 
shown in Figure 7-1.

Introduction
In Racecar 500, the player controls a car, whose goal is to drive around a racetrack in 
the fastest time possible, while maneuvering around obstacles that may slow down or 
randomly change the direction of the player. The racetrack itself is larger than the game 
window, so only part of the track is visible at any time; the window remains centered on 
the car at all times.

The player controls the car using the arrow keys. Specifically, the up arrow key 
accelerates the car, the left and right arrow keys turn the car in its respective directions, and 
the down arrow key decelerates the car (and will eventually cause the car to travel in reverse 
if held down long enough). The user interface displays the total race time (in seconds), 

Figure 7-1.  The Racecar 500 game



Chapter 7 ■ Racecar 500

90

which begins once the car starts moving, and ends when the car crosses the finish line, 
displayed as a checkerboard pattern on the racetrack.

For this chapter, you should be familiar with sprites, text objects, and global 
variables. The Car behavior will be introduced as a basis for the movement described 
earlier. Since the game world (layout size) is larger than the window size, the Scroll to 
behavior will be introduced. To create a customized image for the track, the Tilemap 
object will also be introduced.

To begin, download the zip file containing the graphics for this chapter from the 
book web site. In the layout properties, set the layout Name to Game, and set Size to 2048, 
1536. As you have in previous projects, set up three layers named Background, Main, 
and UI. In the project properties, change Window Size to 800, 600; the reason for these 
particular numbers will be explained in the next section.

Tilemaps and Level Design
To create a custom background image, you will use a tilemap. A tilemap is an arrangement 
of rectangular images, called tiles, that represent small areas of the game world. This is 
particularly useful for background images or level designs with lots of similar areas or 
repeated graphics. Tilemaps can be used for games with a top-down perspective or for 
side-scrolling platformer-style games, such as the classic Nintendo games The Legend 
of Zelda and Super Mario Bros. In your current project, the racetrack can be constructed 
from straight and curved segments of road and grassy areas; Figure 7-2 shows the set of 
tiles you will be using. Typically, all these images are packed into a single image file called 
a tileset, similar to how a spritesheet contains multiple images corresponding to animation 
frames for a sprite.

These tiles can be arranged in many ways to create all types of road configurations, 
such as corners and loops, as illustrated in Figure 7-3, where spacing has been added to 
make the individual tiles more distinguishable.

Figure 7-2.  Tiles for creating a racetrack



Chapter 7 ■ Racecar 500

91

To begin working with tilemaps in Construct, make sure that the active layer is set 
to Background, and in the layout, right-click and add a new Tilemap object. A crosshair 
cursor will appear (similar to when you add sprites); click anywhere in the layout 
(where you click is irrelevant, as the tilemap will be automatically sized and positioned 
to cover the entire layout). When the image editor window appears, open the image 
road-tileset.png, and close the image editor window. A new panel will be added to 
the Construct window, called the Tilemap panel, as shown in Figure 7-4. Depending on 
your window setup, it may appear as a tab in a preexisting panel (typically alongside the 
Objects panel). If you are unable to see it, in the View tab area, make sure that the Tilemap 
Bar check box is selected. You may want to adjust the panel borders so that there is more 
room available to see the tileset image, or you may use the scrollbars in the Tilemap panel 
to view the different areas in the image.

Figure 7-3.  A basic racetrack loop created with the tiles from Figure 7-2



Chapter 7 ■ Racecar 500

92

Before working with the tilemap, there are a few properties to be changed in the 
Properties panel. By default, the tiles in a tileset are assumed to be 32 pixels by 32 pixels. 
In this project, however, the tiles are significantly larger (128 pixels by 128 pixels) to 
accommodate the car sprite that will be added later. With the tilemap object selected, 
in the Properties panel, change Tile width to 128 and change Tile height to 128. This 
particular tile size also influences the choice of layout size (2048 by 1536). Since a tilemap 
adjusts its size to match the size of the layout, it is important that the layout width and 
height be multiples of the tile width and height; otherwise, there will be an area on the 
bottom or right borders of the tilemap where tiles cannot be placed because there is not 
enough space. The layout size in this project was chosen to fit exactly 16 tiles along the 
width and 12 tiles along the height of the tilemap.

To create your tilemap, click the pencil tool icon in the Tilemap panel, which enables 
you to draw tiles onto the tilemap. Next, click a tile in the panel; your selection will be 
indicated by a light blue rectangle being drawn over the tile. Hover the mouse over the 
tilemap in the layout area, and a translucent image of the tile will be displayed in the 
square above which the mouse is hovering. Click to create a copy of the selected image 
there. To draw multiple copies of a tile quickly (such as the grass tile, which will be used 
for large sections of the background), click the rectangle tool icon and then click and drag 
the tilemap to specify a rectangular region, which will be filled with copies of the selected 
tile. To remove a tile from the tilemap, you can select the eraser tool icon or simply right-
click when the pencil tool is active. Experiment with the placement of tiles and design 
your own racetrack; make it as simple or as complex as you like. One possible racetrack is 
shown in Figure 7-5, but yours need not look exactly like this.

Figure 7-4.  The Tilemap panel



Chapter 7 ■ Racecar 500

93

Finally, you want the grassy areas of each tile to act as solid objects or barriers to 
stop the car from driving off the paved sections of the racetrack. To this end, add the Solid 
behavior to the tilemap object. However, the collision polygon (first discussed in Chapter 2)  
of each tile is set by default to be a square that completely covers the tile. Therefore, you 
need to adjust the collision polygons for individual tiles so that the polygon covers only the 
grassy area in each tile. To begin, in the Tilemap panel, double-click a tile (or single-click 
a tile and select the polygon tool icon) to open the collision polygon window. The vertices 
of the polygon will appear as red squares, connected by blue edges. The adjustments to be 
made are as follows:

•	 For the solid grass tiles, no adjustments need to be made.

•	 For the four straight road tiles (half grass and half road), two 
vertices can be moved so that the rectangle covers only the  
grass area.

•	 For the four tiles containing a small quarter-circle of grass, the 
existing vertices can be rearranged to form a diamond shape that 
covers the grass fairly well and will be sufficiently accurate during 
gameplay.

•	 For the four tiles containing a large arc of grass, two new vertices 
will need to be added (twice you will need to right-click any vertex 
and select Add point; each newly created vertex will be added at 
the midpoint of the adjacent edge in the clockwise direction). The 
six vertices can then be rearranged to cover the grass area.

Figure 7-5.  A possible racetrack design using the provided tileset

http://dx.doi.org/10.1007/978-1-4842-2784-8_2


Chapter 7 ■ Racecar 500

94

Figure 7-6 shows sample vertex arrangements for the collision polygons.

While working with the tileset, you may have noticed that there is no tile containing 
only pavement and no grass. This is because such a tile should have no solid areas, but 
it is impossible to remove or disable collisions for individual tiles. Even attempting to 
shrink a collision polygon to a single point will still result in collisions at that point, which 
may surprise, confuse, or possibly frustrate a player who is not expecting it. If you decide 
that your track design absolutely requires collision-free tiles, one workaround is to not 
place a tile at that position and, in the layout, create a sprite with the image road.jpg and 
position it so that it exactly covers the missing tile area.

Now that you are done working with the tilemap, select the cursor tool icon from the 
Tilemap panel. This tool lets you reposition the tilemap, although you won’t do so here. 
We recommend making this tool active to avoid accidentally drawing or erasing tiles from 
the tilemap. To further avoid accidentally selecting or altering the finished tilemap, in the 
layer panel click the lock icon next to the Background layer. This freezes all objects in that 
layer; they cannot be selected on the layout again unless the lock icon is clicked again and 
returned to the unlocked image.

Car Mechanics
In this section, you will set up the Car sprite and configure how it is controlled by the 
player. Make sure that the active layer is set to Main, and add a new Sprite object named 
Car with the image car-red.png. Position the car on a paved area of the track where you 
would like the race to begin. Add the behavior Car; this adds carlike steering controls to 
this sprite, as described at the beginning of this chapter. There are many properties that 
can be changed, such as Max speed (which controls how fast the car can move) and Steer 
speed (which controls how quickly the car can turn, in degrees per second). Also, add 
the behavior Scroll to to the car; this keeps the window centered on the car as it moves 
around the game world. Save and test your game, and feel free to experiment with the 
values of the Car behavior properties.

Just as is the case with driving a real car, the Car behavior permits the sprite to be 
turned only while it is moving; while it is not moving, the left and right arrow keys will 
have no effect. This may be unexpected or difficult for some players. If you want the car to 
always be able to turn, add a Keyboard object to the project, and implement the following 

Figure 7-6.  Recommended collision polygons for different tile types



Chapter 7 ■ Racecar 500

95

(optional) events. Create an event with the condition Keyboard - Key is Down, select the 
Left arrow key, add the action Car - Angle: Rotate counter-clockwise, and enter 0.5 degrees. 
Create a similar event with the condition that the right arrow key is down and the action 
rotates the car angle clockwise by 0.5 degrees. The events will appear as in Figure 7-7. If you 
do decide to add these events, then the steering becomes very sensitive; you may want to 
reduce the Car behavior property Steer speed to 150 to compensate for this.

Race Timer
In this section, you will set up a timer that displays how long the player has been racing. 
This requires some new ideas to not scroll the user interface layer, to start and stop the 
timer at the appropriate times, and to prevent the player from simply driving backward to 
trigger the race end condition early.

First, add a new Text object named TextTimer to the project. Place it on the UI layer, 
and position it in the upper-left corner of the layout. As the car moves around the layout, 
different parts of the game world become visible; however, the contents of the UI layer 
should stay fixed in place. To configure this setting, click the UI layer in the layer panel, 
and set the layer property Parallax to 0,0. This indicates that the corresponding layer 
should not scroll at all. Select the TextTimer object again, and change the default text to 
Time: 0.00. To make the text easier to read, change the font to Arial, bold, size 24. The 
black font color shows up well on the grass, but it would be hard to read when it appears 
above the dark-colored pavement. You could try to find a single color that contrasts well 
with all possible backgrounds, but it is far more effective to use the drop shadow effect 
discussed in the previous chapter. Create another TextTimer instance, move it a few pixels 
up and to the left, and then change the font color to white. At this point, the instances 
should appear as shown in Figure 7-8.

Figure 7-7.  Events for additional car rotation control

Figure 7-8.  Text object to display race time with drop shadow effect applied



Chapter 7 ■ Racecar 500

96

Next, you will add a finish line, which signals the end of the race when the car 
reaches it. Change the active layer to Main (this will be the active layer for the rest of 
the chapter). Add a new sprite named FinishLine with the image file checkboard.png. 
Position this at the “end” of the race track; if the track is a loop, this is typically behind 
where the car starts. The finish line fits best on a straight, horizontal part of track. Resize 
it if desired. Change the opacity to 60, and the transparency will make it appear as though 
it is painted onto the track. Also, since the FinishLine sprite was added to the Main layer 
after the Car sprite, FinishLine will be drawn on top of the car; to remedy this, right-click 
the car and select Z-Order - Send to top of layer.

With the finish line in place, you are ready to add the events to keep track of and 
display the elapsed time. In the event sheet, add a global variable named RaceTime 
with an initial value of 0; this will keep track of how much time has elapsed since the 
car first moved. However, this variable should be incremented only during the race 
and not before or after the race. To keep track of which of these three states the game 
is currently in (before race, during race, and after race), create another global variable 
named RaceState with an initial value of 0. The value 0 will indicate the race has not yet 
started, the value 1 will indicate the race is in progress (and the RaceTime variable should 
be incremented and the text display updated), and the value 2 indicates the race has 
finished. Add the Keyboard object if you have not done so already. Then you will create 
the following events:

•	 An event is needed to detect the start of the race. Create a new 
event with the condition Keyboard - On key pressed, and select 
the Up arrow key. Add the condition System - Compare variable, 
checking whether RaceState equals 0. The event action to add is 
System - Variable: Set value; set RaceState equal to 1.

•	 An event is needed to update the timer and text display when  
the race is in progress. Create a new event with the condition 
System - Compare variable, and check whether RaceState  
equals 1. There are two actions for this event. The first action to 
add is System - Variable: Add to. Add to the variable RaceTime the 
value dt (which stores the amount of time that has passed since 
the last update/last tick). The second action to add is TextTimer -  
Text: Set text. Set it to "Time: " & round(RaceTime * 100) / 
100. This mathematical expression is used to round the value of 
RaceTime to two decimal places.

•	 An event is needed to detect the end of the race. Create a new 
event with the condition Car - On collision with, and select 
FinishLine. The corresponding action is System - Variable: Set 
value. Set RaceState equal to 2.



Chapter 7 ■ Racecar 500

97

When completed, the events should appear as in Figure 7-9.

Finally, you may have noticed that there is an easy way to “cheat” this game and 
trigger the end of the race earlier than expected. Instead of going around the track as 
intended, you can move forward a little bit and then move in reverse directly over the 
finish line, thus ending the race. To stop players from doing this, you will set up a “one-way 
gate” mechanic using an extra sprite and two additional events. Create a new sprite named 
Gate with the image gate.png (although it is the size of the sprite and not the image used 
that will be important, as you will soon see). Position the Gate sprite directly adjacent to 
the FinishLine sprite on the side closest to the car, as shown in Figure 7-10, and set the 
Initial Visibility property to Invisible. When making precise adjustments in the layout, 
it may help to zoom in or zoom out, either via the controls on the View tab or by holding 
down the Ctrl key and scrolling the mouse wheel.

Figure 7-9.  Events for determining the state of the race

Figure 7-10.  The finish line, gate, and car positions on the race track



Chapter 7 ■ Racecar 500

98

Add the Solid behavior to the Gate sprite. The idea is to “open the gate” (disable the 
Solid behavior) when the car is on (overlaps) the finish line. To accomplish this, create a 
new event with the condition Car - Is overlapping another object, and select FinishLine. 
The action is Gate - Solid: Set Enabled; choose Disabled. Finally, “closing the gate” (enable 
the Solid behavior) once the car moves past requires one additional event. Create an 
event with two conditions: for Car - Is overlapping another object, select FinishLine, and 
invert the condition. For Car - Is overlapping another object, select Gate, and invert this 
condition. Add the action Gate - Solid: Set Enabled, and choose Enabled. When finished, 
these events should appear as in Figure 7-11. Save and test your project, and make sure 
that you can pass the finish line in only one direction, as intended.

At this point, you have implemented all the basic mechanics for a racing game. 
Congratulations!

Side Quests
As usual, after completing the core mechanics for a game, many optional features remain 
to be added.

Scenery
Although the player’s attention will be mostly focused on the road, it would be nice to 
add some scenery to the grassy areas. Included in the graphics collection for this chapter 
are some basic images (bushes and trees) that you could use to create sprites for this 
purpose; for variety, you could create additional instances of these objects and resize 
them. Alternatively, you could search the Internet for related graphics (more plants, 
rocks, ponds, etc.) and use them as desired (but for commercial or professional projects, 
you would need to pay attention to the licenses of the files used).

For a neat cloud/foglike environmental effect, create a sprite named Cloud with the 
included image cloud.png. Add the Bullet and Wrap behaviors, change Opacity to 80 and 
Bullet Speed to 50, create a few duplicates spaced out across the layout, and make small 
changes in each instance’s Angle and Size properties for variety. When you start the game, 
it will appear as though there are clouds or fog drifting over the track.

Figure 7-12 illustrates what a track could look like after these scenic elements have 
been added.

Figure 7-11.  Events for a one-way gate mechanic



Chapter 7 ■ Racecar 500

99

Obstacles
To break up the monotony of driving on an empty road, you can add a variety of obstacles. 
In this section, you will add wooden crates, which reduce your speed (and shatter) when 
hit, and oil slicks, which randomly change your direction while you are driving over them.

First, add a new sprite named Crate with the image crate.png. Resize the crate so it 
takes up less than half the width of the road (ideally it should be possible to drive around 
it). Also, add a sprite named CrateFragments with the image crate-fragments.png; 
resize it similarly, add the Fade behavior, change the fade property Wait time to 1, and 
move it into the layout margins. Add an event with the condition Car - On collision with 
another object, and select Crate. Add the following four actions to this event:

•	 Add Car - Car: Set speed, and enter Self.Car.Speed / 2  
(this reduces the car’s speed by half on impact).

•	 Add Crate - Spawn another object, select CrateFragments, and 
enter layer "Main".

•	 Add Crate - Destroy.

•	 Add CrateFragments - Z-Order: Move to bottom (so that the car 
appears on top of the fragments).

Figure 7-12.  Racetrack layout with scenery elements added



Chapter 7 ■ Racecar 500

100

The completed events for the Crate obstacle appear in the top part of Figure 7-13.

Finally, add a new sprite named OilSlick with the image oil-slick.png and resize 
it as you did the crate. Also, since the OilSlick and Crate sprites were added to the Main 
layer after the Car sprite, right-click these objects in the Objects panel and select Z-Order 
- Send to bottom of layer. Create an event with two conditions; add Car - Is overlapping 
another object, and select OilSlick. Then add System - Compare two values, checking 
whether random(0,100) is less than 50. The associated action is Car - Car: Simulate 
Control; select Steer left. Create another event identical to this one, but change the 
simulated control to Steer right. When the car drives over an oil slick, these two events will 
randomly steer the car to the left and right. Sometimes both the random conditions will 
be true and the motions will cancel each other out, but just as often the car will randomly 
veer to one side or the other. The completed events for the OilSlick obstacle appear in the 
bottom part of Figure 7-13.

On Your Own
There are many more features you could add on your own. You could add more 
complicated obstacles, such as obstacles that move (via the Sine behavior). Alternatively, in 
contrast to the obstacles discussed earlier, you could consider adding items (or powerups) 
that have a positive effect on the player, such as a Boost item that instantly sets the Car’s 
speed to its Max Speed value or a SpeedUp item that permanently increases Max Speed that 
the car can attain. You could add a variable that serves as a lap counter and end the game 
only once three (or some fixed number) of laps have been completed. You could display a 
“Congratulations!” message on the screen once the game is over, or you could display one 
of a number of messages (such as “Good,” “Great,” or “Excellent”) depending on the total 
time to complete the race (you will no doubt have to practice repeatedly to determine what 
qualifies each level of performance). You could add multiple tracks on different layouts, 
progressing from one to the next after each race is finished. Finally, don’t forget about 
basics such as audio and menus, as these features give your game a polished, professional 
presentation.

Figure 7-13.  Complete events for the Crate and OilSlick obstacles



Chapter 7 ■ Racecar 500

101

Summary
In this chapter, you created a top-down racing game. You learned how to use the Tilemap 
object and the Car and Scroll to behaviors. You learned how to set parallax to fix the UI 
layer in place when the game world size is larger than the window size. Along the way, 
you learned tricks and techniques that may be useful in future projects, such as keeping 
track of gameplay time, using variables to track the current state of the game, rounding 
a value to a fixed number of decimal places, and creating a one-way gate mechanic. The 
“Side Quests” section discussed extra features such as scenery, obstacles, and powerups.

In the next chapter, you’ll switch gears from racing games to a classic arcade-style 
brick-breaking game.



103© Lee Stemkoski and Evan Leider 2017 
L. Stemkoski and E. Leider, Game Development with Construct 2,  
DOI 10.1007/978-1-4842-2784-8_8

CHAPTER 8

Rectangle Destroyer

In this chapter, you will create a game called Rectangle Destroyer, a side-perspective 
physics-based action game shown in Figure 8-1 and inspired by arcade classics such as 
Breakout and Arkanoid.

Introduction
In Rectangle Destroyer, the player controls a paddle that moves from side to side, which 
is used to bounce balls into rectangular “bricks” and thereby destroy them. The goal is to 
destroy all the rectangles on the screen. Occasionally, a destroyed brick will release an 
item that may either aid or hinder the player by changing parts of the gameplay, such as 
paddle size, ball speed, and so forth. If the ball falls past the paddle and below the bottom 

Figure 8-1.  The Rectangle Destroyer game



Chapter 8 ■ Rectangle Destroyer

104

edge of the screen, then the ball is lost. The player has multiple balls in reserve; once 
these run out, the game is over.

The controls and user interface are simple and minimalistic. The paddle is controlled 
by moving the mouse left and right, and items are collected by “catching” them, which 
happens when they collide with the paddle. The user interface displays the player’s score 
and the number of balls left in reserve. Some of the powerup items will also cause a 
change in appearance of the ball or the paddle.

The main material that will be required from earlier chapters includes the Sprite, 
TiledBackground, and Mouse objects; the Solid, Bullet, Fade, and Pin behaviors; the 
random function; and global variables. You will use animations to store the different 
images corresponding to the different types of items and for the different appearances 
of the ball and paddle. You will learn about the choose function, which makes it easy to 
randomly select a word (or a number) from the given inputs.

To begin, download the zip file containing the graphics for this chapter from the 
book web site. In the layout properties, set the layout Name to Main, and set Size to 600, 
800. As you have in previous projects, set up three layers named Background, Main, and 
UI. In the project properties, change the window Size to 600, 800. Set the layout’s Active 
layer to Background. Add a TiledBackground object named Background using the image 
background.png, and resize it so it covers the entire layout area. Lock the layer when you 
are finished and then set the layout’s Active layer to Main.

Paddle, Walls, Bricks, and Balls
In this section, you will create most of the game objects and the events that describe how 
they interact.

Add a new sprite named Paddle with the image paddle.png, and position it near the 
bottom of the layout. Add the behaviors Solid and Bound to the layout. In most breakout 
games, hitting the ball with the left side of the paddle causes the ball to bounce to the left, 
and hitting the ball with the right side causes it to bounce to the right; therefore, you need 
to adjust the collision polygon of the paddle object so that it resembles a dome shape, 
as shown in Figure 8-2. Next, add a Mouse object to the project (which will be used for 
controlling the paddle). In the event sheet, create a new event with the condition System: 
Every tick, add the action Paddle: Set X, and enter Mouse.X. The event will appear as in 
Figure 8-3.

Figure 8-2.  The collision polygon for paddle (dome)



Chapter 8 ■ Rectangle Destroyer

105

Next, create a TiledBackground object named Wall with the image white-pixels.
png. Add the Solid behavior. Create two more instances of the Wall object, and position 
the three wall instances so that they border the left, right, and top edges of the layout, 
as shown earlier in Figure 8-1. In particular, you will want to make the top Wall instance 
thick enough so that there is room to display text on it later.

Add a sprite called Brick using the image brick-red.png (located in the Bricks 
folder of the assets archive), and in the Animations window, rename the animation to 
red. Create a new animation named blue, using the image brick-blue.png. Repeat 
this process as many times you like to add as many different brick colors as desired 
(eight different-colored brick images are provided with the downloads for this chapter; 
additional brick colors can easily be created with graphics editing software). When you 
are finished, close the image editor windows. Next, add the Solid and Fade behaviors. In 
the Properties panel, change the fade property Active at start to No, and change Fade out 
time to 0.25. You will no doubt want to create many new instances of the Brick object 
(since a game with only one brick to destroy would be far too short), but before you do, 
you may want to activate the grid options in Construct, as you did when creating the 
Cleanup Challenge game in Chapter 4. To do so, in the View tab, select the Snap to grid 
and Show grid check boxes; you should also change the grid width and height to 8, as this 
will create a finer grid and allow for more precise adjustment. Finally, create some new 
instances of the Brick object, and align them in rows near the top of the layout. You can 
change the colors of the individual bricks by typing in the animation names (that you set 
up previously) in the Properties panel, next to Initial animation.

Add a sprite called Ball using the image ball-normal.png. Add the behaviors Bullet 
(changing the properties Speed to 300, Gravity to 8, and Bounce off solids to Yes), Solid, 
and Destroy outside layout. Position the ball right above the paddle, and set the property 
Angle to 280 so that the ball initially moves upward and slightly to the right, toward the 
bricks. Create a new event with the condition Ball - On collision with, and select Brick. 
Then add the actions Brick - Fade: Start fade and Brick - Solid: Set enabled, and select 
Disabled. This event is shown in Figure 8-3.

Finally, you will add some basic scorekeeping functionality to the project. In the 
layout, create a new Text object named TextScore with the Text property set to Score: 0 
and with a large, easily readable font. Set its Layer to UI and position the Text object above 
the Wall object in the top-left area of the layout. In the event sheet, create a new global 
variable named Score with an initial value of 0. In the event sheet, create an event with 
the condition Brick - On destroyed; then add the action System - Variable: Add to, adding 
100 to Score. Locate the event with the condition System - Every tick, and add the action 
TextScore - Set text, setting it to "Score: " & Score. These events are also shown in 
Figure 8-3. When you are finished, be sure to save and test your project, making sure that 
the paddle moves with the mouse; the ball bounces off the paddle, walls, and bricks; the 
bricks fade out when hit; and the score increases each time. Now is a good time to save 
and test your project.

http://dx.doi.org/10.1007/978-1-4842-2784-8_4


Chapter 8 ■ Rectangle Destroyer

106

Game Start and End
Currently, when the game loads, the ball immediately launches into the air and gameplay 
begins. The next addition to this game will be to add functionality to avoid this sudden 
start and give the player a chance to aim the ball before it is released. First, add a sprite 
named MessageStart with the image message-start.png. Set the layer to UI and center 
it on the layout. Add the behavior Pin to the Ball object. In the event sheet, add a new 
event with the condition System - On start of layout, add the action Ball - Pin to object, and 
select Paddle with mode Position Only. Also add another action called Ball - Bullet: Set 
enabled, and select Disabled. Add another event with two conditions: Mouse - On any click 
and MessageStart - Is Visible. Then add these three actions: Ball - Unpin, Ball - Bullet: Set 
enabled (select Enabled), and MessageStart - Set Visible (select Invisible). The events will 
appear as in Figure 8-4. Save and test your project. When the game starts, the ball should 
move with the paddle, and when a mouse button is clicked, the ball should be released 
and launch up toward the bricks.

Now that you’ve improved the beginning of the game, it’s time to pay similar 
attention to when a ball is lost (when it falls off-screen) and the ending of the game. Add 
two new sprites: one named MessageEnd with the image message-end.png and the other 
named MessageWin with the image message-win.png. Position both of these objects in 

Figure 8-4.  Events for launching the ball at the beginning of the game

Figure 8-3.  Basic events for paddle, ball, and bricks



Chapter 8 ■ Rectangle Destroyer

107

the center of the layout, set their layers to UI, and set Initial Visibility to Invisible. Also, 
create a new Text object named TextReserve with Text set to Balls left: 2, the same 
font settings as the TextScore object, and positioned in the top-right area of the layout. 
In the event sheet, create a new global variable named Reserve with an initial value of 
2. Next, locate the event with the condition Every tick, and to this event add the action 
TextReserve - Text: Set text to "Balls left: " & Reserve.

Next, you need to create the events that handle what happens when there are no balls 
on the screen. You will use the condition Ball.Count = 0 rather than Ball - On destroyed 
in case there are multiple balls on the screen (as may happen with a multiball powerup, 
discussed later); the following actions should take place only when there are no balls left 
on the screen. When this occurs, there are two possibilities to handle, each of which has 
different corresponding actions. Either there are balls left in reserve, in which case a new 
ball needs to be spawned, positioned correctly, and so on, or there are no balls left in 
reserve, in which case the “game over” message should become visible. There are at least 
three ways to set up the events for these conditions; we’ll discuss each of these in turn.

The first possible arrangement is to have two separate events: the first with 
conditions Ball.Count = 0 and Reserve > 0 and the second with conditions Ball.Count = 0 
and Reserve = 0. This approach feels slightly redundant because of the repeated condition 
Ball.Count = 0. To eliminate the repetition, you can use a feature in Construct called 
subevents. A subevent is an event that appears indented underneath another event (which 
is called its parent event); the subevent conditions are checked only if their parent event’s 
conditions are true. Therefore, another (and somewhat better) possible arrangement 
is to have an event with the condition Ball.Count = 0, and then two subevents, one with 
the condition Reserve > 0 and the other with the condition Reserve = 0. However, for this 
particular game, this approach will have another issue, which is that the actions associated 
to Reserve > 0 include decreasing the Reserve count by 1, so if the value of Reserve was 
initially 1, then both of the subevents would activate, and the game would end (which 
should not be the case). To avoid this scenario, you will use another feature in Construct, 
and that is a System condition called Else. An event with the Else condition will be true and 
run its actions only if the condition of the previous event was false. (For those familiar with 
traditional programming languages, this is similar to if-else statements.) Thus, the final 
arrangement of events that will be considered (and the one that you will implement) is to 
use subevents and replace the Reserve = 0 condition with an Else condition.

At this point, you will now create the conditions for the events in the style described 
earlier and add the actions afterward. In the event sheet, create a new event with the 
condition System - Compare two values, setting it to check whether Ball.Count is equal to 0. 
To create a subevent, right-click the area in the event to the left of the condition, and from 
the pop-up menu that appears, select Add and then Add sub-event (or use the keyboard 
shortcut key S). The add condition window will appear; add the condition System - Compare 
variable, and set it to check whether Reserve is greater than 0. Once again, right-click the 
Ball.Count = 0 event to create another subevent, this time with the condition System - Else. 
For the subevent with the condition Reserve > 0, add the following actions:

•	 Add System - Variables: Subtract from, subtracting 1 from Reserve.

•	 Add System - Create Object, creating a Ball object on the Main 
layer, with X coordinate Paddle.X and Y coordinate Paddle.Y - 24 
(the coordinates position the ball directly above the center of  
the paddle).



Chapter 8 ■ Rectangle Destroyer

108

•	 Add Ball - Angle: Set angle, and set it to 280 degrees.

•	 Add MessageStart - Set visible, and set it to Visible.

•	 Add Ball - Pin to object, and select Paddle with mode Position 
Only.

•	 Add Ball - Bullet: Set enabled, and select Disabled.

In particular, notice that these last two actions are the same that appear in the layout 
start event, which effectively attaches the ball to the paddle and freezes it in place until the 
player clicks a mouse button. For the event with the condition System - Else, add the action 
MessageEnd - Set Visible, and select Visible. In contrast, to congratulate the user upon 
destroying all bricks, create a new event with the condition System - Compare two values, 
and set it to check whether Brick.Count is equal to 0; add the action MessageWin - Set Visible, 
and select Visible. In addition, you need to make sure that the win and lose messages cannot 
appear on the screen at the same time; to the Else condition, add the inverted condition 
MessageWin - Is visible, and to the Brick.Count equals 0 condition, add the inverted 
condition MessageLose - Is visible. These events and subevents should appear as shown in 
Figure 8-5; notice in particular that the subevents appear indented underneath their parent 
event. Also add an action to the Every tick event that sets the text of TextReserve to Balls 
left: " & Reserve. Save and test your work; let the balls fall past the paddle and check 
whether the reserve ball functionality works as expected.

Items
In this section, we will discuss a variety of items that are randomly released when bricks 
are destroyed. These items move downward toward the bottom of the screen, and if 
caught by the player, they can affect gameplay in a variety of ways. Some items will 
increase the size of the paddle or the speed of the ball. Other items will give game objects 
abilities. For example, the ball may be able to cause explosions that destroy nearby 
bricks, or the paddle may be able to fire laser beams (for a limited time) that destroy 

Figure 8-5.  Event and subevents for when balls are lost and winning the game



Chapter 8 ■ Rectangle Destroyer

109

individual bricks. Other standard items spawn additional balls on the screen or add extra 
reserve balls. Having a great variety of gameplay-changing items is important in a game 
such as this, because without them, the gameplay would quickly become monotonous 
and dull.

In what follows, you will implement the items listed earlier; additional item ideas 
will be discussed in the “Side Quests” section later in this chapter. To begin, create a 
new sprite called Item with the image item-blank.png (from the Items folder in the 
assets archive). Change the size to 48,48, position the sprite outside the layout, add the 
behaviors Destroy outside layout and Bullet, and change the Bullet properties Speed to 
200 and Set angle to No. For each type of item you create, a new animation will be added 
to the Item sprite. When an item is generated, one of the animations will be randomly 
selected, and when the paddle collides with an Item sprite, the name of the animation 
will be used to determine the effect the item will have. In the event sheet, locate the 
event with the condition Brick - On destroyed, and create a subevent for this event 
with the condition System - Compare two values, checking whether random(0, 100) 
is less than 50. Add the actions Brick - Spawn another object, spawning an Item object 
on the Main layer, and Item - Bullet: Set angle of motion, setting it to 90 degrees (this is 
in the downward direction). Later, after you have added item types, you will add one 
more action to this event that will randomly set the animation. Create a new event with 
condition Paddle - On collision with, and select Item; add the action Item - Destroy. For 
each new item type you add to the game, you will add a subevent to this event, which 
determines how gameplay is affected.

Items Affecting the Ball
First, you will implement a variety of items that affect the ball, in order of increasing 
complexity. The corresponding events will be shown in Figure 8-6 at the end of this 
section.

The simplest ball-related item adds 1 to the reserve ball count variable. Add a new 
animation to the Item object named BallExtra, using the image ball-extra.png. In 
the subevent that spawns items (under Brick - On destroyed), add the action Item - Set 
animation, and enter "BallExtra". Then, in the event with the condition where the 
Paddle collides with an Item, add a subevent with the condition Item - Animation: Is 
playing, and for the animation name, enter "BallExtra" (remembering that the spelling 
and capitalization has to match the animation name exactly). Then add the action 
System - Variables: Add to and add 1 to Reserve. Save and run your game; when a brick is 
destroyed, there will be a 50 percent chance that an item is spawned, and when you collect 
it, you should see in the user interface that the reserve ball count has increased by 1. You 
have now created your first item!

The next simplest items to implement change the speed of the ball. Add two new 
animations to the Item object: one named BallSpeedUp, using the image ball-speed-
up.png, and the other named BallSpeedDown, using the image ball-speed-down.png. 
Now there are a total of three animations to choose from when an item is spawned. 
To randomly choose one of the animations, you will use the choose function, which 
can take any number of inputs and which randomly selects one of them. Double-click 
the action that sets the Item animation to edit the action, and replace the text with 
choose("BallExtra", "BallSpeedUp", "BallSpeedDown"). Now, each time an item is 



Chapter 8 ■ Rectangle Destroyer

110

spawned, one of these three animations will be randomly selected and set for the item 
object.1 In the Paddle collision with Item event, add a subevent with the condition  
Item - Animation: Is playing, and for the animation name, enter "BallSpeedUp". Next add 
the action Ball - Bullet: Set speed, and enter Ball.Bullet.Speed * 1.25. This will cause 
the ball to speed up by 25 percent. Add another subevent that checks whether the Item 
animation BallSpeedDown is playing, and as before, add an action that changes the ball’s 
speed, this time entering Ball.Bullet.Speed * 0.80, which reduces the speed of the 
ball by 20 percent (which cancels out a 25 percent increase from a BallSpeedUp item).  
As usual, save and test your game to verify that these new powerups work as intended.

Next, you will add the MultiBall item, which creates an additional ball on screen. 
Add a new animation to the Item object called MultiBall, with the image ball-spawn.
png. Adjust the action that sets the Item animation so that the MultiBall animation may 
be selected. In the Paddle collision with Item event, add a subevent that checks whether 
the Item animation MultiBall is playing, and add the action Ball - Spawn another object, 
and select Ball. This will have the effect that every ball that is currently on the screen 
will spawn another ball, effectively doubling the number of balls currently in play. This 
can rapidly lead to many balls on screen, and too many balls may cause the game to lag. 
For this reason, or for other gameplay considerations, you may want to add a second 
condition to this subevent called System - Pick random instance, and select the Ball 
object. This will cause the action to apply to only one of the balls onscreen, and thus the 
total number of balls would increase only by 1 when this item is collected.

Finally, you will implement the ability for the ball to create explosions that destroy 
multiple bricks. When the ball has this ability, it will be indicated by changing the color of 
the ball to orange; similarly, other ball abilities could be indicated by using additional colors. 
Add a new animation to the Ball object named Orange with the image ball-orange.png. 
Add a new sprite named Explosion with the image explosion.png. Add the behavior Fade, 
change the property Fade out time to 0.25, and move the Explosion object into the margin 
area of the layout. Add a new animation to the Item object called FireBall, with the image 
ball-fire.png. Edit the action that sets the Item animation so that the FireBall animation 
may be selected. In the Paddle collision with Item event, add a subevent that checks 
whether the Item animation FireBall is playing, and add the action Ball - Set animation to 
"Orange". Finally, you will need two new events to activate the effect. First, create an event 
with two conditions; specifically, add Ball - On collision with, selecting Brick, and then add 
Ball - Animation: Is playing, entering "Orange". To this event, add the action Brick - Spawn 
another object, and select Explosion on layer Main. Second, create an event with condition 
Explosion - Is overlapping another object, select Brick, and add the action Brick - Destroy.

When you are finished adding all the content described in this section, the 
corresponding events should appear as shown in Figure 8-6.

1Later, when you have added many item types and you want to test only the most recently added 
type, you can change this line to just the name of the new animation, which guarantees that 
particular type will be spawned. When the final version of the game is ready, you can then change 
this to choose between all the item types you have added.



Chapter 8 ■ Rectangle Destroyer

111

Items Affecting the Paddle
Here, you will implement a variety of items that affect the paddle. As in the previous 
section, the corresponding events will be shown at the end, in Figure 8-7.

The simplest paddle-related items change the size of the paddle and are quite 
similar to the items that change the speed of the ball. Add two new animations to the 
Item object: one named PaddleExpand, using the image paddle-expand.png, the other 
named PaddleShrink, with the image named paddle-shrink.png. Adjust the action that 
sets the Item animation so that these new animations may be selected. In the Paddle 
collision with Item event, you will add two new subevents. The first subevent should 
check whether the Item animation PaddleExpand is playing and that the associated 
action is Paddle - Set width set to Paddle.Width * 1.25. The second subevent should 
check whether the Item animation PaddleShrink is playing and that the associated action 
is Paddle - Set width set to Paddle.Width * 0.80.

Finally, you will add the ability for the paddle to shoot lasers that can destroy bricks; 
however, since this ability will make the game easy, the ability will be active for only  
5 seconds. First, add a new animation to the Item object named PaddleLaser with the 
image paddle-laser.png. Then, add a new Sprite object to the game named Laser with 
the image laser-red.png, change its size to 90,30, position it off-screen, and add the 
behaviors Bullet and Destroy outside layout. Next, add a new animation to the Paddle 

Figure 8-6.  Events for items that affect the ball



Chapter 8 ■ Rectangle Destroyer

112

object named Red using the image paddle-red.png, and apply the same collision polygon 
settings as you did for the original paddle image. Now you are ready to set up the events 
that implement this ability. Adjust the action that sets the Item animation so that this 
new animation may be selected. In Paddle collision with Item event, add a subevent that 
checks whether the Item animation PaddleLaser is playing, and add the following three 
actions:

•	 Add the action Paddle - Set animation to "Red". 

•	 Add the action System - Wait, and enter 5 seconds.

•	 Add the action Paddle - Set animation to "Default". 

The System - Wait action is particularly useful here because it sets up a delay until 
the next action in the event is performed (but there is no effect on other events). Create 
a new event with two conditions: first add Mouse - On any click and then add Paddle - 
Animation: Is playing, entering "Red". Add the action Paddle - Spawn another object, and 
select Laser on layer Main. Next, add the action Laser - Z Order: Move to bottom (so it 
appears underneath the paddle and behind the walls). Next, add the action Laser - Bullet: 
Set angle of motion, setting it to -90 degrees (this is in the upward direction). Finally, 
create an event with the condition Laser - On collision with another object, select Brick, 
and add these actions: Brick - Start fade; Brick - Solid: Set enabled (select Disabled); and 
Laser - Destroy. 

When you are finished adding all the content described in this section, the 
corresponding events should appear as shown in Figure 8-7. As usual, save and test your 
project to verify that the newly added item types work as expected.



Chapter 8 ■ Rectangle Destroyer

113

At this point, you have implemented all the basic mechanics for Rectangle Destroyer. 
Congratulations!

Side Quests
As usual, many of the standard features should be added to the game at this point: 
menus, audio, pause functionality, and so on. You could change the layout of the bricks 
to an interesting geometric pattern or even make the level resemble pixel art! You could 
also implement multiple levels; once all the bricks in a level are destroyed, the next level 
could be loaded. You could add a timer to the game, displayed in the user interface, and 
award the players a bonus at the end of the level depending on how quickly they destroy 
all the bricks. You could add a difficulty ramp, adding a small value to the ball speed every 
tick, so that the balls speed up slightly over time. You could add solid nonbrick obstacles 
to the level; you might even consider adding movement to these objects, with either the 
Sine or Rotate behavior. You might want to reset the ball to its original animation after a 

Figure 8-7.  Events for items that affect the paddle



Chapter 8 ■ Rectangle Destroyer

114

certain amount of time to limit the power of the fireball item. You will also probably want 
to adjust the drop rate of the items (as 50 percent is rather high).

Most interestingly from a gameplay perspective, you could create even more types 
of items. Here, we list some ideas for you to consider, of varying difficulty to implement. 
Most of these will require you to design and create your own item graphic; you can use 
the image file item-blank.png as a starting point.

•	 Gain additional points.

•	 Destroy a random brick. The simplest way to do this is by using 
the System condition Pick random instance.

•	 Change the size of the ball, either smaller or larger. This is 
probably easiest to accomplish by adding new small and large 
animation images to the Ball object.

•	 Make the ball “heavy” for 10 seconds. To do so, you could set the 
ball gravity to 200, use the System - Wait action, and then set the 
ball gravity back to 8.

•	 “Freeze” the paddle for 5 seconds. To implement this, add a new 
animation image (named Freeze) to the paddle, and then to the 
paddle movement event add the condition Paddle - Animation: Is 
playing, enter "Freeze", and invert the condition.

•	 Give the paddle free movement for 10 seconds. To implement this, 
add another new animation image to the Paddle (named Free). 
Then add an event that checks whether this animation is playing 
and, if so, sets the position of the paddle to Mouse.X and Mouse.Y. 
After the System - Wait action, be sure to include an action that 
sets the Y position of the paddle back to its original value.

•	 Add a “safety net” along the bottom edge of the screen in the form 
of a solid object that is destroyed after it is hit; such an object will 
save a ball from falling off-screen once.

•	 Lose all reserve balls and destroy the paddle (thus causing the 
player to lose the game).

Summary
In this chapter, you created the game Rectangle Destroyer. You used animations to create 
multiple versions of objects (the Item object) and to indicate the current state or abilities 
of objects (the Ball and Paddle objects). Most important from a game design perspective, 
you spent a significant amount of time implementing items that alter the gameplay, 
which keeps the player experience changing and interesting.

In the next chapter, instead of destroying bricks with balls, you will destroy creatures 
with spells, as you create the top-down game Spell Shooter.



115© Lee Stemkoski and Evan Leider 2017 
L. Stemkoski and E. Leider, Game Development with Construct 2,  
DOI 10.1007/978-1-4842-2784-8_9

CHAPTER 9

Spell Shooter

In this chapter, you will be creating a top-down shooter game called Spell Shooter, shown 
in Figure 9-1, inspired by classic top-down shooters such as Gauntlet.

Introduction
In Spell Shooter, the player controls a wizard whose goal is to use his magical powers to 
banish evil creatures. The wizard shoots magical balls of energy, and if a creature is hit, 
that creature is destroyed. After a shot is fired, there is a “recharging period,” which is a 
1-second delay until the next shot is able to be fired; this gameplay mechanic is used to 
motivate players to carefully line up their shots. (If there were no such limitation in  
place, the average player might instead simply fire shots as quickly as possible,  
hoping that some will hit their target.) The creatures randomly run between smokelike 
vortices, where they will hide for a short amount of time before running to the next.  

Figure 9-1.  The Spell Shooter game



Chapter 9 ■ Spell Shooter

116

The game world is large, and the player will most likely need to move around the area 
to locate some of the creatures. (To reduce this difficulty, one of the optional side quests 
explains how to implement a creature-locating compass spell.) Once the creatures are all 
destroyed, the player wins the game.

The wizard has eight-direction movement, controlled by the keyboard; for the 
convenience of the player, either the arrow keys or the W/A/S/D keys (or the E/S/D/F 
keys, for an international audience) can be used. Shots are aimed using the mouse and 
fired by clicking a mouse button. The user interface contains a progress bar that indicates 
when it is possible to fire the next shot. There is also a text display that shows how many 
creatures are left in the area. The optional compass spell, mentioned earlier, is activated 
when the spacebar is pressed, and a directional indicator fades in and out around the 
player.

This project uses many behaviors: 8-Direction, Scroll to, Bound to layout, Bullet, 
Destroy outside layout, Fade, and Sine. Animations will be created from individual image 
files, as well as from spritesheets. Functions used include random, floor, and choose. 
New material includes the game mechanic of using the mouse to aim the player, creating 
variables for instances (as opposed to global variables), and the logic involved in making 
sprites navigate along a path.

To begin, download the zip file containing the graphics for this chapter from the 
book web site. In the layout properties, set the layout Name to Main, and set Size to 1600, 
1200. As you have in previous projects, set up three layers named Background, Main, and 
UI. In the project properties, change the window Size to 800, 600 (and change the Name 
and Author properties as you like). Since the game world (layout size) is larger than the 
window size, it is important to stop the UI layer from scrolling off-screen (as you did in 
Chapter 7), and therefore you need to change the UI layer property Parallax to 0,0. In the 
layout area, create a TiledBackground named Background, using the image background.
jpg, and position and resize the object so that it covers the entire layout area. Change its 
Layer property to Background. Your layout should appear as shown in Figure 9-2.

Figure 9-2.  The starting layout with a TiledBackground

http://dx.doi.org/10.1007/978-1-4842-2784-8_7


Chapter 9 ■ Spell Shooter

117

Player Setup and Mouselook
In this section, you will set up the wizard object and the mouse-based controls for 
aiming. In the layout, set the active layer to Main. Create a new sprite named Wizard. In 
the Animation frames image editor window, right-click and select the option to import 
animation frames from individual files (as you did in Chapter 5). Add the image files 
wizard-1.png, wizard-2.png, and wizard-3.png and delete the default empty frame. 
Change the animation properties Speed to 8, Loop to Yes, and Ping-Pong to Yes. When 
you’re finished, close the image editor windows. In the layout area, change the wizard 
Size to 48,48, and position it in the center of the layout. Add the behavior 8-Direction and 
change the property Set angle to No. (This will be particularly important, as the wizard 
should be able to move in one direction while facing a different direction.) Also add the 
behaviors Scroll to and Bound to layout.

Next, you will create some events that enable the player to use the W/A/S/D keys 
for movement, if desired, just as you did in Chapter 5. First, add a Keyboard object to 
the project. In the event sheet, create a new event with the condition Keyboard - Key 
is Down, and set Key to W. Add the action Wizard - 8-Direction: Simulate Control, and 
select Up from the list. Create additional events for the remaining keys and associated 
controls. When you are finished, these events should appear as in Figure 9-3. Test your 
game to check that when you hold each of the W/A/S/D keys, the wizard moves in the 
corresponding direction.

As it stands, the wizard’s animation continues, even when the wizard is not 
moving. Next, you will create events to start and stop the wizard animation at the 
appropriate times. First, create a new event with the condition Wizard - 8-Direction: Is 
moving, and add the action Wizard - Set animation, with Animation set to "Default". 
Next, you need to stop the animation when the wizard is not moving. You could do 
this with an event that has an inverted Is moving condition, as you did in Chapter 4, 
but instead, you will use the newly learned Else condition, which has the same effect 
in this situation. Create a new event with the condition System - Else, and add the 
action Wizard - Animation: Stop. Since the Else event is directly below the Is moving 
event, this event will activate exactly when the wizard is not moving. These events are 
also shown in Figure 9-3.

Finally, you will implement the game mechanic that causes the wizard to face in 
the direction of the mouse; this is often referred to as mouselook. This control scheme is 
common in first-person and top-down shooter games. First, add a Mouse object to the 
project. In the event sheet, create a new event with the condition System - Every tick, and 
then add the action Wizard - Rotate toward position, setting Degrees to 10,1 setting X to 
Mouse.X, and setting Y to Mouse.Y. When you are finished, this event should appear as 
in Figure 9-3. Save and test your game to check that when you move your mouse cursor 
around the game’s window, the wizard rotates and faces toward the location of the mouse 
cursor.

1Setting Degrees to 10 will result in a rotation rate of 600 degrees per second, provided that the 
program is running at 60 frames per second. To achieve more consistent performance across 
computers with lower frame rates, you could instead set this value to 600 * dt.

http://dx.doi.org/10.1007/978-1-4842-2784-8_5
http://dx.doi.org/10.1007/978-1-4842-2784-8_5
http://dx.doi.org/10.1007/978-1-4842-2784-8_4


Chapter 9 ■ Spell Shooter

118

Creatures and Vortices
In this section, you will add the enemy creatures that the wizard is attempting to destroy 
and the vortices that these creatures run between (although the actually movement won’t 
be implemented until the following section).

In the layout, create a new sprite named Creature. In the Animation frames window, 
import the frames from the sprite strip named monster.png, which has eight horizontal 
cells and one vertical cell. The animation frames need to be facing right to be aligned 
with the default angle of motion for the Bullet behavior, so the frames must be rotated to 
the right. To rotate all the animation frames by 90 degrees clockwise at once, hold Shift 
on your keyboard, and click the Rotate 90° clockwise button at the top of the Edit image 
window, as displayed in Figure 9-4. Each Creature frame should now be facing right. Set 
the animation properties Speed to 12, Loop to Yes, and Ping-pong to Yes. When you are 
finished, close the image editor. Add the Bullet behavior and change Speed to 300. Also, 
add the Fade behavior and set Active at start to No.

Figure 9-4.  Rotating the animation frames in the image editor

Figure 9-3.  Events for changing the 8-Direction controls, wizard animation playback, and 
mouselook



Chapter 9 ■ Spell Shooter

119

Next, create a new sprite named Vortex. These sprites will be the locations that the 
Creatures move toward. In the Animation frames window, import the frames from the 
sprite strip named smoke.png, which has six horizontal cells and five vertical cells. Set the 
animation properties Speed to 30 and Loop to Yes. When you are finished, close the image 
editor. In the layout, change the size of the Vortex object to 160,160, and add the behavior 
Sine to the Vortex sprite. In the Sine behavior properties, set Movement to Size, Period to 
4, and Magnitude to 32. This will give the Vortex sprite a pulsing effect.

Create five additional instances each of the Creature and Vortex objects, and spread 
them across the layout, as shown in Figure 9-5.

Instance Variables and Waypoint Logic
Next, you will set up the project so that the creatures randomly move between the 
vortices. For this to work, there needs to be a way to distinguish between the instances of 
the Vortex object and for each creature to keep track of which vortex it should be moving 
toward. Variables are an ideal way to store this information. Each instance needs to store 
its own related data, however, and thus global variables are not an optimal way to keep 
track of this information. Instead, Construct 2 allows you to create instance variables, 
which are variables that are associated to an object, where each instance can store and 
access its own values. Each instance effectively has its own copy of the variable, which it 
can then change at will. In what follows, you will create an instance variable for the Vortex 
objects named ID, which will serve as a unique identifier, and an instance variable for 
the Creature objects named Target, which will store the ID number of the vortex toward 
which it will be moving.

First, click the Vortex object in the object panel, and in the Properties panel, click 
the blue text Instance variables. The Vortex: Instance variables window will appear, 
containing space for local values to be stored, shown on the left side of Figure 9-6. Add 
a new instance variable by clicking the + icon. Name it ID, set Type to Number, set Initial 

Figure 9-5.  Creature and Vortex instances spaced around the layout



Chapter 9 ■ Spell Shooter

120

value to 0, and set Description to Unique identification number. Click OK and return 
to the layout editor. Your new instance variable should appear as shown on the right side 
of Figure 9-6. Click the Creature object in the object panel, repeat this process to create 
an instance variable named Target, and set Description to ID of the Vortex to move 
towards.

In the layout editor, you can now set the value of the ID variables for the vortex 
instances (the creatures’ target values will be set with an event described in a later 
section). Click a single vortex in the layout, and in the Properties panel, set the value of 
ID to 0. Click a different vortex, and set its ID value to 1. Repeat this process for each of 
the vortices in the layout until they each have one of the numbers from 0 to 5, as shown 
in Figure 9-7 (where text has been added in the figure to show the values for each 
instance).

Figure 9-6.  Adding a new instance variable to the Vortex object

Figure 9-7.  Setting up the ID instance variable for the vortices



Chapter 9 ■ Spell Shooter

121

Next, you will randomly set the Target values of the creatures at the beginning of 
the game. You could use the System condition On start of layout, but instead you will 
use the creature condition On created; this activates immediately for any creatures that 
are present at the beginning of the game and has the added advantage that if creatures 
are created later, their target values will also be set by this event. Create an event with 
the condition Creature - On created, and add the action Creature - Instance variables: 
Set value. Then set Instance variable to Target and Value to floor(random(Vortex.
Count)). The floor function is used to round a decimal number to the nearest integer 
less than the number; for example, the expression floor(3.85) yields the number 3. It is 
necessary to round the random number since the vortex IDs are whole numbers, but the 
random function results in decimal values. Rounding down is important here since the 
largest vortex ID number will be one less than the total number of vortices, as the vortex 
numbering began at zero. When finished, this event should appear as in Figure 9-8.

You will also need to create an event that rotates a creature toward its intended target 
vortex. You will use the Rotate towards position action, just as you did for rotating the wizard 
toward the mouse position. However, identifying the associated pairs of creatures and vortices 
is somewhat complicated and requires understanding of the Construct event “filter” system.

In general, actions are applied to the set of instances that meet the criteria specified 
in the condition (or conditions), and in particular, if there are no restrictions in the 
conditions, then all the instances will be affected at the same time. This fact was implicit 
and straightforward in earlier projects, but because of the complexity of this project, a 
more detailed discussion is in order.

At first thought, the correct condition to use for this event appears to be Creature - 
Compare instance variable, while checking whether Target is equal to Vortex.ID. However, 
this condition is insufficient. When the condition is being checked, the Construct software 
checks each creature instance one by one, selects the subset of creature instances (which is 
called filtering) whose Target variables matches the expression Vortex.ID, and then applies 
the corresponding action (or actions) to this subset. What is unclear is which Vortex 
instance’s ID is being used for each of these comparisons. To clarify and correct the logic of 
this condition, you will use a System condition called For each, which effectively repeats an 
event once for each instance of the object.

With this understanding, you are ready to proceed. Create a new event with  
the condition System - Loops: For Each, and select Creature. Add the condition  
Vortex - Compare instance variable, and check whether ID is equal to Creature.Target. 
Finally, add the action Creature - Rotate toward position, set Degrees to 10, set X to 
Vortex.X, and set Y to Vortex.Y. The event should appear as shown in Figure 9-9.

Figure 9-8.  Event to give creatures random starting targets

Figure 9-9.  Event to set the creatures to rotate toward Vortex objects



Chapter 9 ■ Spell Shooter

122

Next, you will implement a set of actions that occur when each creature reaches 
its intended destination. The creatures should hide (turn invisible) and stop moving 
for a random amount of time, select a new target vortex, and then become visible and 
start moving again. Create a new event with the condition Creature - On collision with 
another object, and select Vortex. To verify that the creature has collided with its actual 
target (rather than a vortex that was simply in the way), you will add a second condition 
called Vortex - Compare instance variable, and (as before) check whether ID is equal to 
Creature.Target. Next, add the following actions:

•	 Add Creature - Set visible, and set Visibility to Invisible.

•	 Add Creature - Bullet: Set speed, and set Speed to 0.

•	 Add System - Variables: Add to. For Variable, select Target, and for 
Value, enter choose(1,2).

•	 Add System - Wait, and set Seconds to random(1,3).2

•	 Add Creature - Set visible, and set Visibility to Visible.

•	 Add Creature - Bullet: Set speed, and set Speed to 300.

Note that some randomness was included when selecting the next target: by 
randomly choosing 1 or 2, the creature may either go to the next vortex in the sequence 
or go to the one after that. However, there are a limited number of possible target values; 
once the target value reaches the total number of vortices (Vortex.Count), the target 
number should “wrap around” and be reset to 0 or 1. To set this up, add a subevent with 
the condition Creature - Instance variables: Compare value, and check whether Target is 
greater than or equal to Vortex.Count. Then, add the action Creature - Instance variables: 
Set value, and set Target to choose(0,1). When you are finished, the events should 
appear as shown in Figure 9-10. Save and test your project, making sure that the enemies 
move randomly, as expected.

Figure 9-10.  The events that will cause the creatures to move and hide along a random path

2There is an alternative and more robust approach to queuing future actions for an object using the 
Timer object, which will be introduced in the next chapter.



Chapter 9 ■ Spell Shooter

123

Spell Shooting
In this section, you will create the spell-related game mechanics: the wizard will shoot a 
spell when a mouse button is clicked, and if the spell hits a creature, the creature will be 
destroyed. You will also implement the spell-charging delay described in the introduction 
of the chapter, as well as the charge progress bar and enemy count displayed in the user 
interface.

First, you need to add the spell object. Add a new sprite named Spell; in the 
Animation frames window, import animation frames from the sprite strip named 
swirling-yellow.png, which consists of four rows and five columns. Set the animation 
properties Speed to 30 and Loop to Yes. Close the image editor, and position the spell in 
the margins of the layout. Add the behavior Bullet, and change the bullet property Speed 
to 600. Also add the behavior Destroy outside layout. In the event sheet, create a new 
event with the condition Mouse - On click (keeping the default properties), add the action 
Wizard - Spawn another object, set Object to Spell, and set Layer to "Main". This event is 
shown in Figure 9-11.

Next, you will enable the player to destroy the creatures when they are hit by a spell. 
A sparklike special effect will be added as the creature fades out of existence. Add a 
new sprite named Spark; in the Animation frames window, add animation frames from 
the sprite strip named spark.png, which consists of four rows and four columns. Set 
the animation properties Speed to 16 and Loop to Yes. Close the image editor, position 
the spark in the margins of the layout, and add the behavior Fade (keeping the default 
properties). In the event sheet, create a new event with the condition Spell - On collision 
with another object, and select Creature. Also add the condition Creature - Is visible. Next, 
add the following actions:

•	 Add Creature - Spawn another object, set Object to Spark, and set 
Layer to "Main".

•	 Add Spell - Destroy.

•	 Add Creature - Bullet: Set enabled, and choose Disabled.

•	 Add Creature - Start fade.

This event is also shown in Figure 9-11. Save your project and run the layout; test that 
the wizard is able to shoot spells and that when they collide with a creature, a spark effect 
is generated, while the creature stops and fades away with the spark.

Figure 9-11.  Events related to casting spells



Chapter 9 ■ Spell Shooter

124

Spell Charge and User Interface
In this section, you will implement the spell-charging game mechanic and begin 
creating the user interface. After firing a spell, a bar graphic that indicates the amount 
of charge will shrink, and after it regrows to its normal size, the wizard will be able to 
shoot another spell.

First, add a new Text object named TextCharge to the project. Place it on the UI 
layer, and position it in the bottom-left corner of the game window (as indicated by the 
dashed lines in the layout). Since this object will be the label for the charge bar, change 
the default text to Charge:. To make the text easier to read, change the font to Arial, bold, 
size 24. By adding the drop shadow effect from previous chapters, the text will be easier to 
see with contrasting backgrounds. Duplicate the TextCharge object, move it a few pixels 
down and to the right, and then change the font color to yellow to match the Spell object 
and create a coordinated color scheme.

Next, add a new Sprite object named Chargeometer with the image chargeometer.
png. When the chargeometer grows, it should grow from left to right. This can be 
accomplished by changing the width of the object, but first one modification must be 
made. When sprites are rotated or scaled, it is with respect to a special point called the 
origin; by default, this point is located at the center of the sprite. This makes sense for 
most situations because objects typically rotate around their center (rather than around 
a corner) or grow equally in all directions from the center. Since we want the sprite to 
grow from left to right, the origin point location must be changed. Double-click the 
chargeometer to open the image editor windows, and click the second icon from the 
bottom to open the Image Points window. Here, right-click the list entry named Origin, 
and in the pop-up window, click Quick assign and then Left, as shown in Figure 9-12. You 
should see the Origin point moved to the left of the image.

Figure 9-12.  Editing the Origin point location in the image points menu



Chapter 9 ■ Spell Shooter

125

When you are finished, close the image editor. Place the Chargeometer object on the 
UI layer, and position it in the bottom-left area of the game window, directly to the right 
of the TextCharge object from earlier. Your TextCharge and Chargeometer objects should 
appear as shown in Figure 9-13.

For the chargeometer to return to its original width after being shrunk, its original 
size needs to be stored in a variable for later reference. Here, you can use a global variable 
(since there is only one instance of the chargeometer), but in theory, you could choose to 
use an instance variable instead. In the event sheet, right-click and add a global variable; 
set Name to OriginalWidth, with Initial Value set to 0. The value can be set when the 
game begins; create a new event with the condition System - On start of layout. Then 
create the action System - Variables: Set value, and set OriginalWidth to Chargeometer.
Width.

Implementing the charging functionality requires a variety of additions to pre-
existing events as well as the creation of entirely new events. First, to drain the charge, 
locate the event where the spell is spawned, and add the action Chargeometer - Set 
width, setting it to 0. To prevent the wizard from firing again before the charging 
period is finished, in the same event as before, add the condition Chargeometer - 
Compare width, and check whether it is equal to OriginalWidth. To continuously 
recharge the bar, you need to add a small fraction of its original width back during 
every tick. Since there is no Add width action, you can instead use the Set width 
action, setting the width to its current value plus a fraction of its original width. The 
fractional value you will use is the built-in Construct expression dt, which stands for 
“delta time” and stores the amount of time that passes during every tick. Typically, 
video games run at 60 frames per second, which means that each tick takes 1/60 
of a second, and this is the value of dt. (The value of dt is automatically adjusted 
for games that run at slower rates.) Adding 1/60 of the width of the chargeometer 
back at a rate of 60 times per second means that the chargeometer will be restored 
to its original width in exactly one second. To set this up, locate the event with the 
condition Every tick, and to this event add the action Chargeometer - Set width, set 
to Chargeometer.Width + OriginalWidth * dt. Finally, to stop the charge bar 
from growing too large (larger than its original size), you need one more event. 
Create a new event with the condition Chargeometer - Compare width, and check 
whether it is greater than OriginalWidth; add the action Chargeometer - Set width, 
and set it to OriginalWidth. When you are finished, these events should appear as 
shown in Figure 9-14. Save and test your project to check that when you shoot, the 
chargeometer drains and recharges and that you can’t shoot again until the bar has 
returned to its original size.

Figure 9-13.  The TextCharge and Chargeometer objects in the layout



Chapter 9 ■ Spell Shooter

126

Score and Game Over
Currently, the wizard is able to shoot spells and destroy creatures. In this section, you will 
improve the user interface so that it keeps players aware of their progress: a Text object 
that displays the number of creatures remaining to destroy, and a “you win” message that 
appears once all the creatures have been destroyed.

First, add a new Sprite object named MessageWin with the image YouWin.png. 
Position it in the center of the game window, set its Layer to UI, and set Initial Visibility 
to Invisible. Also, add a new Text object named TextScore to the project. Set Layer to 
UI, and position it in the bottom-right corner of the game window. Change its default 
text to Creatures Remaining: 0, and change the font to Arial, bold, size 24. Set the 
Horizontal alignment property to Right. Duplicate the object, move it a few pixels down 
and to the right, and set the font color to red to match the creatures. The area of the 
layout corresponding to the game window (the top-left region) should appear similar to 
Figure 9-15.

Figure 9-15.  The new user interface in the layout

Figure 9-14.  Events for draining and recharging the chargeometer



Chapter 9 ■ Spell Shooter

127

Next, locate the event with the condition Every tick, and add the action TextScore - Set 
text, set to "Creatures Remaining: " & Creature.Count. To configure the win message, 
create a new event with the condition System - Compare two values, set to check whether 
Creature.Count is equal to 0, and add the action MessageWin - Set visible. The events should 
appear as shown in Figure 9-16. Save and test your project; make sure that TextScore updates 
correctly and that your win message appears when you have destroyed all the creatures.

Congratulations! You have now finished implementing the core mechanics of the 
Spell Shooter game.

Side Quests
In this optional section, you will learn how to add a compass-like mechanic to your game 
to assist the player in locating creatures that are off-screen, as well as some suggested 
additional features to explore.

Adding a Radar
Currently, the player must move around the layout to find creatures. In this section, you 
will create a compass display that is pinned to the player and appears for a brief time 
when the player presses the spacebar. The compass image contains an arrow that will 
point in the direction of the nearest creature. Using this feature will simplify the game for 
the player, possibly reducing any feeling of frustration from the difficulty of locating the 
quick and randomly moving creatures.

First, add a new Sprite object named Compass with the image compass.png. Position 
it directly centered on the wizard, as shown in Figure 9-17. Add the behavior Fade, and 
change the properties Active at start to No and Destroy to No. Also add the behavior Pin.

Figure 9-16.  Events for updating the score and displaying the win message

Figure 9-17.  The compass object centered on the wizard



Chapter 9 ■ Spell Shooter

128

For the compass to fade in and out correctly, set its Opacity to 0, but don’t do this 
until after you have positioned the compass correctly (because you won’t be able to 
see it on the layout after you change this property). In addition, to pin the compass to 
the wizard, locate the event with the condition On start of layout, and add the action 
Compass - Pin to another object, setting Pin to to Wizard and setting Mode to Position 
only. Setting the mode correctly is particularly important in this case since you want the 
compass to be able to rotate independently from the wizard.

There is a condition you have not previously used before called Pick nearest/furthest. 
This condition selects a particular instance of an object based on its distance from a given 
point. Create a new event with the condition Creature - Size & Position: Pick nearest/furthest, 
set Which to nearest, and set X to Wizard.X and Y to Wizard.Y. Then add the action Compass 
- Rotate toward position, set Degrees to 10, set X to Creature.X, and set Y to Creature.Y.

Now that the compass rotation is configured, you are ready to create the event to 
display it. Keep in mind that, for the compass to work properly, it should be usable when 
there is at least one creature remaining. Create a new event with the condition Keyboard - 
On key pressed, and select the Space key. Add another condition called System - Compare 
two values, and set it to check whether Creature.Count is greater than 0. Add the action 
Compass - Set opacity to 100 and the action Compass - Start fade. The events should 
appear as shown in Figure 9-18.

On Your Own
You can add plenty of other additions and features to Spell Shooter. As usual, it would be 
wise to add polish to this game with standard features such as menus, audio, and pause 
functionality. To add to the difficulty level, you could add a lose condition: the player may 
lose the game if the wizard gets hit by creatures a given number of times. Also, keep in 
mind what you learned in Chapter 8 when designing Rectangle Destroyer. You are now 
able to add spawnable items to any of your previous games! Such an item could be set 
to appear once every 10 seconds at a random position on the layout and fade out after 5 
seconds have passed.

Here are some item ideas that would work well in Spell Shooter:

•	 “SpeedUp” and “SpeedDown” items or obstacles that affect the 
wizard or creatures’ speeds as you did in the previous chapter

•	 “Shrink” item that shrinks creatures, making them harder to 
vanquish

Figure 9-18.  Events for rotating and displaying the compass

http://dx.doi.org/10.1007/978-1-4842-2784-8_8


Chapter 9 ■ Spell Shooter

129

•	 “Burst” spell item that shoots three spells at once

•	 “Rapid” spell that takes less time to recharge

•	 “CreatureNest” item that spawns more creatures if you touch 
them

You could also add a countdown timer, which adds a sense of urgency to the player’s 
quest to destroy all the creatures, and if the player doesn’t destroy all the creatures within 
the time limit, the player loses the game. With a timer in place, a ranking or rating system 
could be added that evaluates the player’s performance depending on how quickly the 
wizard vanquished the creatures.

Summary
In this chapter, you created the game Spell Shooter. You learned how to implement the 
mouselook game mechanic and combined it with traditional W/A/S/D-style controls to 
give the player the ability to shoot while moving around the screen. To create random 
movement patterns, you learned how to use instance variables and waypoint logic, 
together with the random and choose functions. To create more balanced gameplay, you 
implemented a rechargeable shooting mechanic. You also added a rotating compass 
feature to assist the player in locating difficult-to-find creatures. The “Side Quests” section 
discussed extra features such as a lose condition, items, a timer, and a rating system.

In the next chapter, you will leave the magical world of spells and creatures and 
instead shoot at enemy planes flying over the ocean as you create the game Airplane 
Assault.



131© Lee Stemkoski and Evan Leider 2017 
L. Stemkoski and E. Leider, Game Development with Construct 2,  
DOI 10.1007/978-1-4842-2784-8_10

CHAPTER 10

Airplane Assault

In this chapter, you will be creating another top-down shooter game called Airplane 
Assault, shown in Figure 10-1, that was inspired by the classic survival-based game 1942.

In Airplane Assault, the player controls a plane whose goal is to destroy as many 
enemy planes as possible for points. The player’s plane shoots small bullets, and if an 
enemy is hit, that enemy is destroyed. In contrast to Spell Shooter, the player will have 
a limited amount of health, which is reduced when hit by an enemy plane bullet. If the 
player’s health reaches zero, then the plane will be destroyed, and the game will be over. 
During gameplay, enemies will spawn every few seconds, move in a random pattern 
between waypoints, and face and attack the player with their own bullets. The player will 
need to move around the screen to line up shots and avoid enemy bullets at the same 
time. This game is endless; the implicit goal of the player is to earn a high score.

Figure 10-1.  The Airplane Assault game



Chapter 10 ■ Airplane Assault

132

The player plane has eight-direction movement, controlled by the arrow keys. Shots 
are fired by pressing the spacebar. The user interface contains two Text objects that 
display the player’s current health points and score.

This chapter assumes you are familiar with the Sprite, TiledBackground, Text, and 
Keyboard objects; the 8-Direction, Bound to layout, Bullet, and Destroy outside layout 
behaviors; animations; global and instance variables; and the functions random, floor, 
and choose. The Flash behavior will be introduced to give the player a moment of 
invincibility after being hit. The Timer behavior will also be introduced to enable enemy 
planes to periodically fire at the player. You will learn about the angle function, which 
makes it easy to determine the angle between two objects or locations. Instance variables 
will be used in a new way: to add health points to objects.

To begin, download the zip file containing the graphics for this chapter from the 
book web site. In the layout properties, set the layout Name to Game, and set Size to 
800, 800. As you have in previous projects, set up three layers named Background, 
Main, and UI. In the project properties, change the window Size to 800, 800. Add a 
TiledBackground object named Water using the image water.png, and resize it so it 
covers the entire layout area.

Player, Waypoint, and Enemy Setup
In this section, you will add the player plane object, the enemy planes that the player 
must shoot, and the Waypoint objects that determine the path that the enemy planes 
follow. In the layout, set the active layer to Main. Create a new sprite named Player, 
with the image player.png, and position it near the bottom of the layout. Change its 
Angle property to 270, and position it in the lower center of the layout. Add the behavior 
8-Direction and change the property Set angle to No. (The player will face only upward 
during gameplay.) Also add the behavior Bound to layout.

Next, add a new sprite named Waypoint. This Waypoint object will be almost 
identical to the Vortex waypoint from the Spell Shooter game, except in Airplane Assault 
the waypoints will be invisible in the final version. Since a graphic isn’t needed, use the 
image editor tools such as the bucket or paintbrush to fill the image area with a solid color. 
Change the size of the sprite to 32-by-32 pixels. When you are finished, close the image 
editor windows. Create another new sprite named Enemy, with the image enemy-plane.png. 
Add the Bullet behavior, and change the properties Speed to 200 and Set angle to No, since 
the enemies will be facing the player rather than their direction of movement. Create five 
additional instances of the Waypoint sprite and two additional instances of the Enemy sprite, 
organizing them in the layout, as shown in Figure 10-2.

Add an instance variable named ID to the Waypoint object, set Type to Number, Initial 
value to 0, and Description to Unique identification number. Then, to the Enemy 
object, add an instance variable named Target, set Type to Number, set Initial value to 0, 
and set Description to ID of the Waypoint to move towards. In the layout editor, click 
a single waypoint in the layout, and in the Properties panel, set the value of ID to 0. Click 
another waypoint and set its ID value to 1. Repeat this for each waypoint in the layout 
until they each have one of the numbers from 0 to 5 (each number occurring exactly 
once), as shown in Figure 10-2.



Chapter 10 ■ Airplane Assault

133

Next, you will randomly set the Target values of the enemy airplanes at the beginning 
of the game as you did in Spell Shooter with the event condition On created. First, in the 
event sheet, create an event with the condition Enemy - On created, and set the action 
Enemy - Variables: Set value. Then set Instance variable to Target, and set Value to 
floor(random(Waypoint.Count)).

You will now create movement events that rotate and move enemies toward their 
intended target waypoints, with the For Each and ID comparison conditions. Create a 
new event with the condition System - Loops: For Each, and select Enemy. Add another 
condition called Waypoint - Compare instance variable, and check whether the ID is 
equal to Enemy.Target. In Spell Shooter, you used the Rotate towards position action 
to rotate sprite images toward vortex waypoints and also to move them toward these 
waypoints using the Bullet behavior (in that project, the Bullet property Set angle was 
set to Yes). In Airplane Assault, the enemy plane sprite images will rotate to face the 
player while they are moving in a different direction toward waypoints. To accomplish 
this, you will use two actions: Rotate towards position and Bullet: Set angle of motion. 
With Set angle of motion, you will use the angle function, which takes as input the X and 
Y coordinates of two locations (a total of four inputs altogether) and returns the angle 
between those locations. Add the action Enemy - Rotate toward position, set Degrees to 10, 
set X to Player.X, and set Y to Player.Y. Add another action Enemy - Set angle of motion, 
and set Angle to angle( Enemy.X, Enemy.Y, Waypoint.X, Waypoint.Y ).

Next, you will add the events for when an enemy reaches its destination, at which 
point they should select their next target (which should involve some randomness). 
Create a new event with the condition Enemy - On collision with another object, and 
select Waypoint. To verify that the enemy has collided with its actual target, add a second 
condition called Waypoint - Compare instance variable, and again check whether the ID 

Figure 10-2.  The player, enemies, and waypoints with IDs in the layout



Chapter 10 ■ Airplane Assault

134

is equal to Enemy.Target. Add the action Enemy - Variables: Add to. For Variable, select 
Target, and for Value enter choose(1, 2).

You also need to make sure that the value of the Target variable does not exceed 
the total number of waypoints (Waypoint.Count). Add a subevent with the condition 
Enemy - Compare instance variable, and check whether Target is greater than or equal 
to Waypoint.Count. Then, add the action Enemy - Variables: Set value, and set Target to 
choose(0,1).

When you are finished adding all the content described in this section, the 
corresponding events should appear as shown in Figure 10-3. Save and test your project. 
Make sure you can move your player with the arrow keys and that the enemies move 
randomly while facing the player.

Shooting and Spawning Enemies
In this section, you will add bullets for the player and enemies to shoot at each other and 
explosions that appear when they hit. You will also add random enemy spawning as well 
as configure the Timer behavior to set up a randomly periodic event that causes enemy 
planes to shoot.

First, in the layout, now that you have verified the enemy movement between 
waypoints works as expected, you no longer need to see the waypoints on the screen; 
click the Waypoint object in the object panel (so that all instances are selected) and 
set Initial visibility to Invisible. Next, create a Keyboard object. Then add two new 
sprites: one named PlayerBullet with the image bullet-gold.png and another named 
EnemyBullet with bullet-silver.png. Add the Bullet and Destroy Outside Layout 
behaviors to both. Position the bullets in the margins of the layout. Add another new 
sprite named Explosion; in the Animation frames window, import animation frames 
from the sprite strip named explode-animation.png, which consists of four rows and 
four columns. Set the animation properties Speed to 30, and set Loop to No. Close the 
image editor and position the explosion in the layout margins.

In the event sheet, create a new event with the condition Keyboard - On key 
pressed, and select the Space key. Add the action Player - Spawn another object, select 
PlayerBullet, and set Layer to "Main". Next, create a new event with the condition 
PlayerBullet - On collision with another object, and select Enemy. Add the following three 
actions: PlayerBullet - Destroy, Enemy - Spawn another object to spawn an Explosion 

Figure 10-3.  Events to set the enemies to rotate toward waypoints



Chapter 10 ■ Airplane Assault

135

object on the Main layer, and Enemy - Destroy. To remove explosions from the game once 
their animations are complete, create one more event with the condition Explosion - 
Animations: On any finished, and add the action Explosion - Destroy.

Since randomness adds to the challenge and replayability factor of this game, you 
will add periodically spawning enemies at random positions above the layout. In addition, 
you will implement a random shooting rate to prevent enemies from shooting at the same 
time; having enemies act differently from each other adds to the realism of the game.

To do this, you will use the Timer behavior, a new action named Start timer, 
and a new condition named On timer. The Start timer action determines when the 
corresponding On timer condition will register as true; both the condition and the action 
contain a Tag parameter, which is used to set up the association by giving these the same 
value. The Start time condition contains two additional parameters: Duration, which is 
used to specify how much time will pass until the On timer condition is first activated, and 
Type, which can be set to Once (which activates the condition one time) or Regular (will 
periodically activate the condition). In this game, every time an enemy spawns, it will start 
a timer called Shoot, which will repeat at a random rate, between 0.5 and 1.0 seconds. 
When an enemy’s On timer condition activates, it will shoot a bullet toward the player.

In the layout, select the Enemy object, and add the behavior Timer. Then, move the 
enemy objects into the margins above the layout. In the event sheet, create a new event with 
the condition System - Every X seconds, and set Interval to 1. Add the action System - Create 
object, set Object to Enemy, set Layer to "Main", set X to random(100, 700), and set Y to -100. 
In the event with the condition Enemy - On created, add the action Enemy - Start timer, set 
Duration to 0.5 + random( 0.5 ), set Type to Regular, and set Tag to "Shoot". Next, create 
a new event with the condition Enemy - On timer and set Tag to "Shoot". Then add the 
action Enemy - Spawn another object to spawn an EnemyBullet object on the Main layer.

When you are finished adding all the content described in this section, the 
corresponding events should appear as shown in Figure 10-4. Save and test your project. 
Make sure you can shoot bullets with the spacebar key to destroy enemies and that 
enemies are shooting toward you at random rates.

Figure 10-4.  Events for shooting and spawning more enemies



Chapter 10 ■ Airplane Assault

136

Score, Health, Invincibility, and Game Over
In this section, you will implement player health and invincibility game mechanics, create 
the scoring system and user interface, and add the “game over” message that appears 
when the player runs out of health. After the player is hit by an enemy bullet, the player 
will lose one health point, and a Text object will update to indicate the player’s current 
health.

First, add a new Text object named TextScore to the project. Set its Layer to UI, 
and position it in the bottom-left corner of the game window. Change the default text to 
Score: 0. To make the text easier to read, change the font to Arial, bold, size 24, and set 
the font color to black. Add another new Text object named TextHP to the project. Set its 
Layer to UI, and position it in the bottom-right corner of the game window. Change its 
default text to HP: 0, and change the font to Arial, bold, size 24. Also set the Horizontal 
alignment property to Right.

You will add health points as an instance variable to the player object since they are 
associated to a value intrinsic to the player, in contrast to the score, which is associated to 
the game as a whole. Add an instance variable named HP to the Player object, set Type to 
Number, Initial value to 10, and Description to Player health points. In the event sheet, 
create a new global variable named Score with the initial value 0. Then create an event 
with condition Enemy - On destroyed and action System - Variable: Add to, adding 100 to 
Score. Create another event with the condition System - Every tick and the two actions 
TextScore - Set text to "Score: " & Score and TextHP - Set text to "HP: " & Player.HP.

When an enemy bullet collides with the player and the player is not currently 
invincible (which occurs for a brief period after having been damaged), a small explosion 
should appear to indicate the damage, the player’s health should decrease by 1, and 
the player sprite should flash for 1 second to indicate invincibility. To implement the 
invincibility feature, you will use the Flash behavior, a new action called Flash, and a 
new condition called Is flashing. The action Flash will then cause the object associated 
to alternate between visible and invisible at a specified rate. The visibility duration is 
specified by the On time parameter, the invisibility duration by the Off time parameter, and 
the overall effect duration (how long the entire flash sequence should last) by the Duration 
parameter. You can use the Is flashing condition to check whether the player is flashing 
and thus whether the player should be able to take damage at that particular time.

To implement this, add the Flash behavior to the Player object. In the event sheet, 
create a new event with the condition EnemyBullet - On collision with another object, and 
select Player. Add another condition Player - Is flashing. When finished, right-click this 
condition in the event sheet, and select Invert from the menu that appears. Then add the 
following actions:

•	 Add EnemyBullet - Destroy.

•	 Add Player - Spawn another object, and spawn an Explosion 
object on the Main layer.

•	 Add Player - Variables: Subtract from. For Variable, select HP, and 
for Value, enter 1.

•	 Add Enemy - Flash. For On time and Off time, enter 0.1, and for 
Duration enter 1.



Chapter 10 ■ Airplane Assault

137

Finally, you will implement the “game over” functionality. In the layout, add a 
new sprite named GameOver with the image gameover.png. Positon it in the center of 
the layout, set its Layer to UI, and set Initial Visibility to Invisible. When the player’s 
health reaches 0 (or below), the “game over” message will be displayed, the player will be 
destroyed, and a giant explosion will appear (many times larger than the default size). In 
addition, enemies should stop spawning, and any remaining enemies will rotate toward 
and fly off the bottom of the layout (since there is no player object remaining to shoot 
at). For the enemies to rotate and move differently, the For each event that currently 
rotates and moves enemies should be restricted to work only while the player exists (or 
is onscreen); otherwise, they will interfere with the “game over” sequence of movements 
discussed earlier. In the event sheet, locate the For each event, and add the condition 
Player - Is on-screen. Also, add this condition to the Every 1 second event to stop enemy 
planes from spawning after the player is destroyed. Then create a new event with the 
condition Player - Compare instance variable, and check whether HP is less than or equal 
to 0. Then add the following actions:

•	 Add GameOver - Set visible, and set it to Visible.

•	 Add Player - Spawn another object, and spawn an Explosion 
object on the Main layer.

•	 Add Explosion - Set scale, and set it to 8.

•	 Add Player - Destroy.

•	 Add Enemy - Angle: Set angle, and set Angle to 90 degrees.

•	 Add Enemy - Bullet: Set angle of motion, and set Angle to 90 
degrees.

When you are finished adding all the content described in this section, the 
corresponding events should appear as shown in Figure 10-5. Save and test your project. 
Make sure you receive points for destroying enemies and that you can lose health and 
flash upon taking damage. Also test that when you run out of health, the game ends 
properly.



Chapter 10 ■ Airplane Assault

138

Congratulations! You have now finished implementing the core mechanics of the 
Airplane Assault game.

Side Quests
In this optional section, you will add endless vertical scrolling along the vertical axis to 
your water background, similar to the effect from the Plane Dodger game, with a few key 
differences. This will add a sense of global movement to the gameplay. A list of suggested 
additional features will also be presented for your consideration.

Endless Vertical Scrolling
First, in the layout, for the Background sprite, change the Position property to 0, 0, and 
set Size to 800, 800. Add the Bullet behavior, change Speed to 200, and change Set angle 
to No (because this object should not be rotated). Create another instance of Background, 
and set its Position to 0, -800. The layout should appear as shown in Figure 10-6.

Figure 10-5.  Events for score, player health, and game over



Chapter 10 ■ Airplane Assault

139

In the event sheet, create a new event with the condition System - On start of layout, 
add the action Water - Set angle of motion, and set Angle to 90. Next, you will create the 
event that shifts Background above the layout after it moves off-screen on the bottom. 
Create another event with the condition Water - Size & Position: Is on-screen. When 
finished, right-click this condition in the event sheet and select Invert from the menu that 
appears. Add the condition Water - Compare Y, and check whether the Y coordinate is 
greater than 800. Finally, add the action Water - Move at angle, with Angle set to 270 and 
Distance set to 2 * Water.Height. When you are finished, these events should appear as 
in Figure 10-7. Save and test your project; the background image should appear to scroll 
forever, with no noticeable gap between the two images.

Figure 10-6.  The layout adjusted for endless vertical scrolling

Figure 10-7.  Events for endless vertical scrolling



Chapter 10 ■ Airplane Assault

140

On Your Own
Airplane Assault is a great starting point for applying many features and items you have 
learned so far. Adding menus, audio, and pause functionality would certainly give this 
game a more polished presentation. To make the game a bit more difficult, you could add 
enemy health points. To do this, you could add a health point instance variable to the 
enemy and, in the Enemy - On collision with PlayerBullet event, replace the Destroy action 
with one that subtracts a health point instead. You could then add an event for when 
the Enemy’s health is less than or equal to 0 and proceed to destroy them as you used to 
do. You could also add falling obstacles and items that positively or negatively affect the 
player’s characteristics such as speed.

Here, we list some other ideas of varying difficulty to implement:

•	 Adjusting the player’s collision polygon to be smaller (thus 
increasing their chances of survival)

•	 Adding analog gamepad support (discussed in Chapter 5)

•	 Gaining additional points from a “Bonus Points” item

•	 Adding an item to increase the player’s health points

•	 Adding a dangerous, instant destruction item that would destroy 
the player on contact

•	 Adding an explosive bullet to shoot and explode after a delay, 
with range damage

•	 Implementing SpawnRate and EnemySpeed variables from Plane 
Dodger for difficulty ramp

Summary
In this chapter, you created the game Airplane Assault. You used the Timer behavior to 
implement time-based, repeated enemy shooting with a random interval. To give the 
player multiple chances to battle, you learned how to add health points and how to use 
the Flash behavior to add invincibility. In the “Side Quests” section, you added endless 
vertical scrolling to the background for a more immersive experience. The “Side Quests” 
section also discussed other additions including enemy health points, analog gamepad 
support, items, and a difficulty ramp.

In the next chapter, you will continue fighting a stream of enemies, this time via 
ground-based turrets, as you create the game Tower Defenders.

http://dx.doi.org/10.1007/978-1-4842-2784-8_5


141© Lee Stemkoski and Evan Leider 2017 
L. Stemkoski and E. Leider, Game Development with Construct 2,  
DOI 10.1007/978-1-4842-2784-8_11

CHAPTER 11

Tower Defenders

In this chapter, you’ll create Tower Defenders, a top-view game where the player places 
various towers to defend a base from attacking enemies, as shown in Figure 11-1.

In Tower Defenders, the player places cannons (or other defensive structures) 
alongside a road, which automatically attack enemies traveling along the road toward the 
player’s base. Destroying enemies increases the player’s resources (or “cash”), which can 
then be used to purchase additional turrets. As time progresses, enemies spawn more 
frequently, and more difficult enemies may appear. Every time an enemy reaches the 
player’s base, the base loses one health point; if all health points are lost, the game is over. 
Since an unlimited number of enemies can spawn, the ultimate goal of the player is to 
survive as long as possible.

Since cannons have a limited field of view, turret placement is important in this 
game; the player should choose locations within the range of as much road area as 
possible, but at the same time, it is important to fit as many turrets as possible in the 

Figure 11-1.  The Tower Defenders game



Chapter 11 ■ Tower Defenders

142

available area. Cash management is also a key feature in this game: the player must 
decide which type of cannons to invest in. Less expensive cannons are generally less 
powerful; they may have weaker bullets, may have a smaller range, or may take longer 
between shots, compared to more expensive turrets.

In developing this game, a significant amount of time will be spent on the user 
interface. In addition to text displays, there are also clickable buttons that enable the 
player to purchase new cannons. Once a cannon is purchased, there will be a colored disk 
centered on the mouse that indicates the range of the turret and whether it may be placed 
at the current mouse location.

This game will make use of Sprite, TiledBackground, Text, and Mouse objects; global 
and instance variables; subevents; else conditions; and the waypoint-based logic from 
previous chapters. You will learn how to use the Turret behavior, which rotates an object 
toward a preset target and fires bullets at regular intervals. You will also implement a 
shoplike game mechanic to purchase cannons. To place the purchased cannons, you will 
learn how to implement a mouse-based drag-and-drop mechanic. You will also learn 
how to create “or” condition blocks to reduce redundant sets of conditions.

To begin, download the zip file containing the graphics for this chapter from the 
book web site. In the layout properties, set the layout Name to Main, and set Size to 800, 
600. As you have in previous projects, set up three layers named Background, Main, and 
UI. In the project properties, change the window Size to 800, 600. Also, on the View tab 
select the View grid and Snap to grid check boxes.

Level Setup
In this section, you will set up the level and create a path for the enemies to follow. 
First, create a TiledBackground named BackgroundUI, with the image white-pixels.
png. Change its size to 192,608, and position it on the left side of the layout. Then, in the 
Background layer, create a TiledBackground named BackgroundDirt, with the image 
dirt.png; change its size to 608,608, and position it on the right side of the screen so 
that it fills the remaining area in the layout. Finally, create a TiledBackground named 
Road with the image road.png; this object will be used to create the path along which the 
enemies will move. Create multiple instances of the Road object and position them to 
form a road from the top edge of the dirt area to another edge; make sure the road is  
64 pixels (2 squares) wide at all times. Figure 11-2 shows one possible road configuration.



Chapter 11 ■ Tower Defenders

143

Next, you’ll need to configure the spawn point and waypoints that the enemy objects 
will follow. Set the layout’s active layer to Main. Create a new sprite named SpawnPoint; 
draw any image you like in the image editor (as it won’t be visible while the game is being 
played), resize it to 32,32, and place it in the margin of the layout by the beginning of 
the road. Create a new sprite named Waypoint (again, with a drawn image), and create 
an instance variable with Name set to ID, Type set to Number, Initial value set to 0, and 
Description set to Unique identification number. Create additional instances of this 
object, place one in the center of each corner of the road, and place one beyond the end 
of the road in the margins of the layout. Change the values of the instance variables of the 
Waypoint objects so that they start at 0 and increase by 1 at each corner. When finished, 
change the size of the Waypoint objects to 8,8. Figure 11-3 illustrates the placement and 
numbering of the waypoints for the road configuration in Figure 11-2.

Figure 11-2.  Setup for the background graphics and the road

Figure 11-3.  Waypoint positions and numbering



Chapter 11 ■ Tower Defenders

144

Enemy Movement
In this section, you will add enemies that will follow the path indicated by the waypoints. 
In contrast to previous chapters, when the enemy arrives at a waypoint, its current Target 
value will be increased by 1 (rather than by a random value). In addition, a new enemy 
will spawn every second. Also, as each enemy is created, its angle should be adjusted to 
move downward.

First, create a new sprite named Enemy, with the image truck.png, and change the 
name of the animation to Truck. Close the image editor window and change the property 
Angle to 90. Place it above the SpawnPoint object in the margin of the layout. Add the Bullet 
behavior, and change Speed to 200. Add an instance variable named Target, set Type to 
Number, set Initial value to 0, and set Description to ID of the Waypoint to move towards.

Movement along the waypoints is handled by two events. First, create an event, add the 
condition System - For Each, and select Enemy. Then add the condition Waypoint - Compare 
instance variable, and check whether ID is equal to Enemy.Target. Add the action Enemy 
- Rotate toward position, set Degrees to 15, set X to Waypoint.X, and set Y to Waypoint.Y. 
Second, create another event, and first add the condition Enemy - On collision with another 
object, and select Waypoint. Then add the condition Waypoint - Compare instance variable, 
and again check whether ID is equal to Enemy.Target. Add the action Enemy - Variables: 
Add to, select Target, and enter 1. Finally, to periodically spawn enemies, create another 
event with the condition System - Every X seconds, and for Interval, enter 5. Add the action 
SpawnPoint - Spawn another object, and select Enemy. In addition, add the action Enemy 
- Set angle, and set Angle to 90 degrees. When you are finished, the enemy-related events 
should appear as in Figure 11-4. Save and test your project, making sure that the enemies 
spawn and move along the path until the end and then move outside the layout. Once you 
have verified that everything works as expected, click the Waypoint object in the object 
panel (so that all instances are selected) and set Initial visibility to Invisible. Note that the 
enemies aren’t automatically destroyed when they move off-screen; this will be addressed 
later in the chapter when you add the player’s base.

Cannons and Bullets
You are now ready to implement cannons, most of whose functionality will be handled 
by the Turret behavior. Add a new Sprite object named Cannon with the image turret-
light.png. Rename the animation to Light. Adjust the collision polygon to form a box 
around the base of the Cannon object, and adjust the origin image point so that it is in the 
middle of the base, as shown in Figure 11-5.

Figure 11-4.  Events for enemy movement and spawning



Chapter 11 ■ Tower Defenders

145

When you are finished, close the image editor windows. Position the cannon on the 
dirt, near a corner of the road. Add the behavior Turret. The Turret behavior will give 
the cannon the ability to aim at enemies and shoot bullets, which need to be set up now 
as well. Create another new sprite named Missile with the image message.png, add the 
behavior Bullet and the behavior Destroy outside layout, and position the sprite in the 
margin area. Select the Cannon object again. The Turret behavior properties that you 
need to adjust are explained and their new values are given in the following list:

•	 Range: This is how close enemies must be to be detected. Set this 
to 100.

•	 Rotate Speed: This is how quickly the cannon can rotate (in 
degrees per second) toward its target. Set this to 360.

•	 Predictive aim: When set to No, the turret will rotate toward the 
target’s current position; when set to Yes, the turret will rotate to a 
position ahead of the current target, taking into account the speed 
of the turret projectile and the speed and direction of the target. 
(However, the turret may still miss its intended target if the target 
changes direction suddenly.) Set this to Yes.

•	 Projectile speed: This value is used as described earlier when 
Predictive aim is set to Yes. In general, this should be set to the 
speed of the projectile objects that the turret will spawn.  
Set this to 400.

You will now set up instance variables to add health to enemies and a power level 
(which indicates the amount of damage inflicted on contact) to the missiles, which will be 
set by the cannons. Select the Enemy object, add an instance variable named HP, set Type 
to Number, set Initial value to 2, and set Description to Enemy health points. Then select 
the Cannon object, add an instance variable named Power, set Type to Number, set Initial 
value to 1, and set Description to Used to set Missile Power. Then, select the Missile 
object, add an instance variable named Power, set Type to Number, set Initial value to 1, 
and set Description to Value to subtract from enemy HP.

The objects that the cannon will target and the projectiles that the cannon will fire are 
specified with events. Create a new event with the condition System - On start of layout, 
add the action Cannon - Turret: Add object to target, and select Enemy. Add another event 
with the condition Cannon - Turret: On shoot, add the action Cannon - Spawn another 
object (select Missile), add the action Missile - Instance variables: Set value, and set Power 

Figure 11-5.  Collision polygon for the Cannon sprite



Chapter 11 ■ Tower Defenders

146

to Cannon.Power. These events, as well as the following events described in this section, 
should appear as shown in Figure 11-6.

To make it easier for the player to see when an enemy has been damaged, you will 
add an animated explosion effect. Add a new sprite named Explosion; in the Animation 
frames window, import animation frames from the sprite strip named explosion.png, 
which consists of six rows and six columns. Set the animation property Speed to 60 and 
Loop to No. Close the image editor and position the explosion sprite in the layout margins.

To make the missiles damage the enemies as described earlier, create a new event 
with the condition Missile - On collision with another object, and select Enemy. Then add 
the following actions:

•	 Add Enemy - Variables: Subtract from, select HP, and for Value 
enter Missile.Power.

•	 Add Missile - Spawn another object, and select Explosion.

•	 Add Explosion - Set size, and set both Width and Height to 32.

•	 Add Missile - Destroy.

To destroy enemies whose health has reached 0, create a new event with the 
condition Enemy - Compare instance variable, and check whether HP is less than or equal 
to 0. Then add the following actions:

•	 Add Enemy - Spawn another object, and select Explosion.

•	 Add Explosion - Set size, and set both Width and Height to 64.

•	 Add Enemy - Destroy.

Finally, two more events will complete this section. First, explosions whose 
animations are complete should be removed from the layout, so create an event with 
the condition Explosion - On any animation finished and the action Explosion - Destroy. 
Second, missiles should not appear in the area of the layout corresponding to the user 
interface, so create an event with the condition Missile - On collision with another object, 
select BackgroundUI, and add the action Missile - Destroy. Figure 11-6 shows the events 
described in this section.



Chapter 11 ■ Tower Defenders

147

Earning Cash
Next, you will begin to implement the cash mechanic that will be used for purchasing 
additional cannons later, which will become important as the enemy spawn rate 
increases (which will be implemented later). To begin, in the event sheet, create a new 
global variable named Cash with initial value 0, and for Description enter Used to buy 
cannons. To help distinguish the user interface area from the gameplay area, you will add 
a decorative logo. Create a new sprite named Logo with the image tower-defenders-
title.png, set its size to 192,32, and position it on top of BackgroundUI, in the top-
left area of the layout, as shown in Figure 11-1. Then create a new Text object named 
TextCash, and set its position to 0, 96. Change its default text to Cash: $0; set the font to 
Arial, bold, size 22; and set the font color to green. Also set both the Horizontal alignment 
and Vertical alignment properties to Center. 

Select the Enemy object, add an instance variable named Cash, set Type to Number, 
set Initial value to 4, and set Description to Cash added when destroyed. In the event 
sheet, locate the Enemy.HP <= 0 event, and add the action System - Variables: Add to, 
adding the value Enemy.Cash to the Cash variable. Create a new event with the condition 
System - Every tick and action TextCash - Set text to "Cash: $" & Cash. The events in this 
section should appear as shown in Figure 11-7.

Figure 11-6.  Events for cannon setup and enemy health



Chapter 11 ■ Tower Defenders

148

Cannon Purchase and Placement
In this section, you will add a shoplike mechanic to enable the player to purchase 
additional cannons. You will add a button-style object to the user interface, which the 
player clicks to make a purchase. You will also implement drag-and-drop functionality that 
allows the player to select a position for the cannon after it is purchased. At the same time, 
you will also create events that prevent the player from placing a newly purchased cannon 
in a prohibited area (overlapping the road, another cannon, or the user interface itself).

The purchasing buttons will created from a combination of a Sprite object and a 
Text object to avoid having to create new sprite images with prerendered text for each 
individual button. Add a new sprite named PurchaseButton with the image button.
png. Position it in the center of the BackgroundUI, and set its size to 160,128. Add two 
instance variables, one named Type (with Type set to Text, Initial value set to Light, and 
Description set to Cannon animation name) and the other named Price (with Type set to 
Number, Initial value set to 15, and Description set to Cash needed to purchase cannon). 
Next, add a new Text object named TextPrice, and position it on the purchase button. 
Change its default text to Light Cannon $15; set the font to Arial, bold, size 16; and set 
its font color to green. Also set both the Horizontal alignment and Vertical alignment 
properties to Center. You may want to resize the Text object so that each word appears on 
a separate line. The user interface should appear in the layout as shown in Figure 11-8.

Figure 11-8.  Adding a button to the user interface

Figure 11-7.  Events for earning and displaying cash



Chapter 11 ■ Tower Defenders

149

The next mechanic to implement is cannon spawning and placement. The cannon 
being dragged will be set to the position of the mouse (similar to the paddle movement 
in the Rectangle Destroyer game), but because there are typically multiple cannons 
onscreen, the correct one needs to be uniquely identified. For this purpose, select the 
Cannon object, and add a new instance variable named Dragging, set Type to Number, set 
Initial value to 0, and set Description to 0 = Fixed in place, 1 = Dragging.

You will next set up a translucent circle that appears when a cannon is purchased, 
which serves two purposes: the size of the circle indicates the range of the cannon, and 
the color of the circle indicates whether the cannon may be placed at the current mouse 
position (green for “yes” and red for “no”). Create a new sprite named Circle with the 
image circle-green.png, and change the name of the animation to Green. Add a new 
animation named Red, using the image circle-red.png. Close the image editor, and 
set the properties Layer to UI, Opacity to 50, and Initial visibility to Invisible. Since 
the circle indicator will be visible only while the player is in the process of placing the 
cannon, the circle’s visibility can be used in one of the conditions that check whether 
the player is currently able to purchase a cannon (the player cannot purchase another 
cannon while in the process of placing one).

With these steps completed, you are now ready to create the event that enables the 
player to purchase a cannon. To begin, add the Mouse object to the project. In the event 
sheet, create a new event with the following conditions:

•	 Add Mouse - On object clicked, and select PurchaseButton.

•	 Add Global and Local Variables - Compare variable, and check 
whether Cash is greater than or equal to PurchaseButton.Price.

•	 Add Circle - Is Visible; this condition needs to be inverted.

Next, add the following actions to the event:

•	 Add System - Variables: Subtract from, select Cash, and for Value 
enter PurchaseButton.Price.

•	 Add PurchaseButton - Spawn another object, select Cannon, and 
set Layer to "UI".

•	 Add Cannon - Set animation, and enter PurchaseButton.Type.

•	 Add Cannon - Variables: Set value, select Dragging, and for Value 
enter 1.

•	 Add Cannon - Turret: Set enabled, and select Disabled.

•	 Add Circle - Set size, and set both Width and Height to Cannon.
Turret.Range * 2.

•	 Add Circle - Set visible, set to Visible.



Chapter 11 ■ Tower Defenders

150

This event appears in Figure 11-9.

The next event to create implements the drag mechanic, which sets the purchased 
cannon (and the indicator circle) to the position of the mouse. While this is happening, 
the color of the circle needs to change depending on whether the cannon can be placed 
in the current position. The cannon may not be placed if it overlaps the road, the user 
interface, or another cannon. The first two of these conditions are straightforward to 
check, but the third is not, because of the way conditions “filter” the set of instances 
under consideration. It may seem like you should be able to simply check this with 
a pair of conditions: Cannon - Compare instance variable (check whether Dragging 
equals 1) and Cannon - Is overlapping another object (select Cannon). However, after 
the first condition is evaluated, only those cannons whose Dragging variable equals 1 
will be considered when checking the second condition, which is not what you need to 
happen. To avoid these complexities, a new sprite will be introduced to indicate the areas 
currently occupied by cannons. 

Create a new sprite named Taken, fill in the sprite with any color, close the image 
editor, and set Initial visibility to Invisible. Resize and position the sprite so that it 
exactly covers the cannon currently placed on the layout. In the event sheet, create a 
new event with the condition Cannon - Compare instance variable (and check whether 
Dragging equals 1). Add the action Cannon - Set position, setting X and Y to Mouse.X and 
Mouse.Y, respectively, and add the action Circle - Set position to another object, selecting 
Cannon. To this event, add a subevent with the condition Cannon - Is overlapping another 
object, select BackgroundUI, add the action Circle - Set animation, and enter "Red". Next, 
you could create additional events with similar conditions to check the other overlap 
cases, but since each one of these events would contain the same action, it is more 
efficient to use an “or” block, in which case only one of the listed conditions needs to be 
true to activate the actions. To make this event an “or” block, right-click the area in the 
event to the left of the condition, and from the pop-up menu that appears, select Make 
'Or' block. Add the condition Cannon - Is overlapping another object, and select Road; 
then add the condition Cannon - Is overlapping another object, and select Taken. You will 
notice that the word or appears between the conditions you have added. Finally, add a 
second subevent to this event, with the condition System - Else. Then add the action  
Circle - Set animation, and enter "Green". This event should appear as in Figure 11-10.

Figure 11-9.  Event for purchasing cannons



Chapter 11 ■ Tower Defenders

151

Finally, you need to implement the drop mechanic. Thanks to your previous work, 
this step is relatively straightforward since the color of the circle indicates whether the 
cannon may be placed. There are a few actions that you need to remember: enable the 
Turret behavior, and then set the Dragging variable to 0, make the Circle invisible, and 
spawn a Taken instance to mark the selected location as unavailable in future cannon 
placements. Create a new event with the following conditions:

•	 Add Mouse - On click (keep the default properties).

•	 Add Cannon - Variables: Compare value, set to check whether 
Dragging is equal to 1.

•	 Add Circle - Animation: Is playing, set to check whether Green is 
playing.

Then add the following actions:

•	 Add Cannon - Move to layer, and enter "Main".

•	 Add Cannon - Variables: Set value, select Dragging, and for Value 
enter 0.

•	 Add Cannon - Turret: Set enabled, and select Enabled.

•	 Add Cannon - Spawn another object, and select Taken.

•	 Add Circle - Set visible, set to Invisible.

This event should appear as shown in Figure 11-11.

Figure 11-10.  Event for dragging cannons and updating the circular placement indicator

Figure 11-11.  Event for placing cannons



Chapter 11 ■ Tower Defenders

152

To add a bit of polish, you can change the mouse cursor when it is hovering over a 
button to a different icon, which will help the player notice that the objects can be clicked. 
To add this feature, create a new event with the condition Mouse - Cursor is over object, 
and select the PurchaseButton. Add the action Mouse - Set cursor style, and select Hand. 
Create another event with the condition System - Else, add the action Mouse - Set cursor 
style, and select Normal. When you are finished, the cursor style events should appear as 
shown in Figure 11-12.

At this point, if you haven’t done so recently, you should certainly save your game 
and test the purchasing mechanic and the drag-and-drop functionality. To speed up the 
testing project, you should change the initial value of the global variable Cash to a large 
number (so that you don’t have to wait to earn money to make purchases); just remember 
to set it back to the original value when you’re done testing!

Game Ending and Difficulty Ramp
In this section, you will add the Base object that the player will defend from incoming 
enemies. The base will be placed at the end of the road path and will have a limited 
number of health points, which will be displayed in the user interface. Every enemy that 
reaches the base will reduce the base’s health by 1, and when its health reaches 0, the 
game is over. To keep the game challenging, a difficulty ramp will be added to increase 
the enemy spawning rate, similar to the implementation from the Plane Dodger game.

To begin, in the layout, add a new Sprite object named Base with the image base.
png, and position it at the end of the path made by the road. To the Base object, add an 
instance variable named HP, set Type to Number, set Initial value to 10, and set Description 
to Health points. Next, add a new Text object named TextBaseHP, and set its position 
to 0, 64. Change its default text to Base HP: 10; set the font to Arial, bold, size 22; set 
the font color to red, and set the Horizontal alignment to Center. Add another new sprite 
named GameOver with the image game-over.png. Position it in the center of the game 
area, set its Layer to UI, and set Initial Visibility to Invisible. Next, in the event sheet, 
locate the Every tick event and add the action TextBaseHP - Set text to "Base HP: " & Base.
HP. Then, create a new event with the condition Enemy - On collision with another object, 
and select Base. Then add the following actions:

•	 Add Enemy - Spawn another object, and select Explosion.

•	 Add Explosion - Set size, set to a Width of 64 and Height of 64.

•	 Add Enemy - Destroy.

•	 Add Base - Spawn another object, and select Explosion.

Figure 11-12.  Events for setting mouse cursor style



Chapter 11 ■ Tower Defenders

153

•	 Add Explosion - Set size, set to a Width of 128 and Height of 128.

•	 Add Base - Variables: Subtract from, select HP, and for Value enter 1.

To destroy the base when it runs out of health, create a new event with the condition 
Base - Compare instance variable, and check whether HP is less than or equal to 0. Then 
add the following actions:

•	 Add GameOver - Set visible, set to Visible.

•	 Add SpawnPoint - Destroy.

•	 Add Base - Destroy.

When you are finished, the base-related and “game over” events should appear as 
shown in Figure 11-13. Save and test your project. Make sure that enemies damage the 
base and that when the base runs out of health, the game ends.

As the game stands, enemies spawn at a constant interval, and this game is trivially 
easy once a few turrets are in place. To increase the challenge, you will create and use a 
global variable named SpawnRate to adjust this rate. First, in the event sheet, create a new 
global variable named SpawnRate with an initial value of 5, and for Description, enter 
Seconds until next enemy spawns. Locate the Every 1 seconds event, double-click its 
condition, and change Interval to SpawnRate. Then, create a new event with the condition 
System - Every X seconds, and for Interval enter 5. Add the condition System - Variables: 
Compare variable, set to check whether SpawnRate is greater than or equal to 0.50. Then 
add the action System - Variables: Subtract from. For Variable select SpawnRate, and set 
Value to 0.25. The difficulty ramp events should appear as shown in Figure 11-14. Save 
and test your project. Make sure that enemies spawn at a gradual and increasing rate, and 
notice the game’s new difficulty.

Figure 11-13.  Events for “game over”



Chapter 11 ■ Tower Defenders

154

Congratulations! You have now finished implementing the core mechanics of the 
Tower Defenders game.

Side Quests
In this optional section, you will add an additional, stronger enemy type for more 
variation and game difficulty. To give the player the element of choice, you will add a 
new, more expensive yet powerful cannon type to assist the player in dire situations. You 
will also implement time speed control buttons in the user interface to enable players to 
pause, play, and fast-forward gameplay. You will also explore other suggested features.

Additional Enemy Types
Currently, the enemies are all similar in appearance and health. In this section, you will 
create an additional Tank enemy type. To accomplish this, you will add a new animation 
to the existing Enemy object. The new Tank enemy will have a one in five chance of 
appearing. As soon it does, its health instance variable will be adjusted to have an extra 
health point, its Cash variable will be set to 6 for a higher reward, and its speed will be a 
bit slower than the average enemy truck.

First, in the layout, to the Enemy sprite, create a new animation named Tank, 
using the image tank.png. Then in the event sheet, locate the event where enemies are 
spawned. To this event, add a subevent with the condition System - Compare two values, 
set to check whether random(0, 100) is less than or equal to 20. Then add the following 
actions:

•	 Add Enemy - Set animation, and enter "Tank".

•	 Add Enemy - Variables: Set value, select HP, and for Value enter 3.

•	 Add Enemy - Variables: Set value, select Cash, and for Value enter 6.

•	 Enemy - Bullet: Set speed, and enter 180.

When you are finished, these events should appear as in Figure 11-15. Save and test 
your project. Make sure that every once in a while, a slower and stronger enemy Tank 
appears, rewarding you with more cash upon its destruction.

Figure 11-14.  Events for difficulty ramp



Chapter 11 ■ Tower Defenders

155

Additional Cannon Types
In the game’s current state, the player has one choice in terms of cannon purchase. In 
this section, you will add a new Heavy cannon choice that will be more expensive, will 
be stronger, and will have more range than the current Light cannon. Create another 
instance of the PurchaseButton object, position it below the original, set its Type 
variable to Heavy, and set its Price variable to 20. Then create another instance of the 
TextPrice object, change its default text to Heavy Cannon $20, and position it on the new 
PurchaseButton. At this point, your user interface should resemble the one shown at 
this beginning of this chapter, in Figure 11-1. Next, double-click the Cannon sprite, and 
create a new animation named Heavy, using the image turret-heavy.png. When you are 
finished, close the image editor windows.

The purchase event must be adjusted to coordinate the values and properties of 
the cannon based on its type. In particular, you will increase the power of the heavy 
cannon type (which is reasonable, given its higher cost). Locate the event containing the 
condition where the PurchaseButton is clicked, and add a subevent with the condition 
Cannon - Animation: Is playing, set to check whether Heavy is playing. Then, add the 
action Cannon - Variables: Set value, select Power, and for Value enter 2. When you are 
finished, the subevent should appear as in Figure 11-16. Save and test your project; you 
should now be able purchase and place stronger “heavy cannons” for a cost of $20.

Time Speed Control
In this section, you will implement time speed control buttons that enable players to 
pause or speed up the game. These buttons will all be created in similar fashion to the 
buttons created in Chapter 5. To begin, in the layout, create three new sprites, with the 
names ButtonPlay, ButtonPause, and ButtonFast, using the images button-play.png, 
button-pause.png, and button-fast.png, respectively. Change the size of each of these 
sprites to 60, 60 and arrange them near the bottom of the BackgroundUI object. Then, 
in the event sheet, create a new event with the condition Mouse - On object clicked, and 
select the ButtonPause. Add the action System - Set time scale, and enter 0. Create two 

Figure 11-15.  Events for adding a Tank enemy type

Figure 11-16.  Subevent for configuring the heavy cannon type

http://dx.doi.org/10.1007/978-1-4842-2784-8_5


Chapter 11 ■ Tower Defenders

156

more similar events, but for clicking the ButtonPlay and ButtonFast objects and setting 
the timescales to 1 and 1.5, respectively. When you are finished, the time speed control 
events should appear as in Figure 11-17. Save and test your project. You should be able to 
pause, play, and speed up the game. Notice during speedup, enemies spawn faster, which 
adds a layer of difficulty.

On Your Own
As usual, you should add menus and audio to this project. With the dynamic shoplike 
mechanic and customizable variables you have created in Tower Defenders, there is 
plenty of room for possible additions and features. You could create new cannon types 
with different speeds, firing rates, range, and power; you will have to take all these 
features into account when selecting the price for each new cannon type to keep the 
gameplay balanced.

Another addition you could consider is a Land Mine object. Such an object would 
be very different from cannons and would not involve the turret behavior at all; such an 
object should be able to be placed only on the road (and not overlapping dirt or walls). 
When an enemy collides with it, it should do a great deal of damage to the enemy, but the 
land mine itself should also be destroyed. The logic for purchase and placement would be 
similar to that for cannons, but it will require its own set of events because of the different 
overlapping conditions. You will have to determine a fair cost for the Land Mine object 
that takes into account its power but also the fact that it can be used only one time.

Another possible addition you could add are upgrade buttons. These buttons could 
trigger actions that will increase cannon range of sight or decrease the rate of fire time for 
the cannons. Their cost should be typically high. (You will need to store these adjusted 
values in global variables, update all the currently existing turret properties, and use the 
global variables when initializing newly created turrets.)

Summary
In this chapter, you created the game Tower Defenders. You were introduced to the Turret 
behavior to implement dynamic aiming and firing cannon objects. You then learned how 
to create a game economy, which fueled a shoplike mechanic for purchasing additional 

Figure 11-17.  Events for time speed control



Chapter 11 ■ Tower Defenders

157

cannons. In doing this, you learned how to add buttons and how to implement drag-
and-drop mechanics to place cannons on the playing field. You also learned how to use 
the “or” block feature to reduce event redundancy. The “Side Quests” section discussed 
potential game additions including implementing more enemy types, more turret types, 
and speed control buttons for the user interface.

In the next chapter, instead of destroying enemies that travel across the screen, you 
will focus on avoiding enemies as you run around a maze while collecting coins, as you 
create a game called Maze Runman.



159© Lee Stemkoski and Evan Leider 2017 
L. Stemkoski and E. Leider, Game Development with Construct 2,  
DOI 10.1007/978-1-4842-2784-8_12

CHAPTER 12

Maze Runman

In this chapter, you’ll create Maze Runman, a top-down collection game where the player 
maneuvers around a maze trying to collect coins while avoiding being caught by ghosts, 
as shown in Figure 12-1.

In Maze Runman, the player controls a character, named Runman, whose goal is to 
collect all the coins scattered around a haunted maze. Three ghosts will move around the 
maze; two of them will chase Runman, while the third will wander around at random. 
If Runman is hit by a ghost, the game is over. The player must plan their route carefully, 
keep an eye on the ghosts, and be ready to change their route quickly.

Figure 12-1.  The Maze Runman game



Chapter 12 ■ Maze Runman

160

Runman can travel in four directions, and movement is controlled by the arrow 
keys. Coins are collected on contact. This chapter assumes you are familiar with using 
the Sprite, TiledBackground, Keyboard, and Tilemap objects; using the Bullet, Timer, 
and Fade behaviors; creating image-based animations; and using the floor and 
random functions. In this chapter, you will learn how to implement precise grid-aligned 
movement with the Bullet behavior. You will also learn about the Array object, a data 
structure that will be used to store the possible directions in which each ghost may 
move. There will also be a discussion about how to create “intelligent” ghosts, which 
will appear to respond to the player’s movement and, at times, may even seem to be 
setting up “ambushes” for the player. Since the logic underlying the game mechanics in 
this chapter is quite complex, you will also learn how to create groups in the event sheet 
to keep the events more clearly organized. Also in this chapter, conditions and actions 
will be expressed more briefly than in previous chapters: event group headings will be 
included only occasionally to avoid confusion, and if a condition or action requires only 
one parameter, it will be given in parentheses. 

To begin, download the zip file containing the graphics for this chapter from the 
book web site. In the View tab, select the Snap to grid and Show grid check boxes, and set 
the grid width and grid height both to 16. Set both the layout size and the window size to 
480, 480. As you have in previous projects, set up three layers named Background, Main, 
and UI. In the Background layer, add a TiledBackground object named Background with 
the image dirt.png. Resize and position this object so that it covers the entire layout. 
Then add a TileMap object named Walls with the image wall-tileset.png. These tiles 
are 32-by-32 pixels, so the default properties for the tilemap do not need adjustment. 
Using the Tilemap editor, design a mazelike level using any arrangement you like, 
provided that the layout is surrounded by a wall (which will prevent Runman and the 
ghosts from moving off-screen), and make sure that there are no dead-end paths (these 
would interfere with the ghost movement events, as will be explained later). Figure 12-2  
shows one possible level design; this figure displays a 32-by-32 grid to more clearly 
illustrate the tiles used in creating the level. When you are finished, click the selection tool 
in the Tilemap panel, and lock the Background layer via the Layer panel.



Chapter 12 ■ Maze Runman

161

Player Setup and Grid-Based Movement
In this section, you will set up the Runman character and grid-based movement. The 
process for setting up the Runman sprite’s animations is identical to how you set up 
the Cleaner sprite’s animations in the Cleanup Challenge game in Chapter 4. To begin, 
set the active layer to Main, and create a new sprite named Runman; in the Animation 
frames window, load the spritesheet general48.png (with three horizontal cells and four 
vertical cells), and set the Animation properties Speed to 6, Loop to Yes, and Ping-pong 
to Yes. Then duplicate this animation three times so that there are four animations in 
total. Next, rename the animations to South, West, East, and North. Select the animation 
named South in the list; in the Animation frames window, click each frame that does 
not correspond to the character walking south (those initially numbered 3 through 11); 
and press the Delete key. Repeat this process for the West, East, and North animations, 
deleting the frames not required within each of the animations.

Next, you need to adjust the sprite’s collision polygon to a smaller shape and adjust the 
sprite’s origin to be aligned with the grid. These adjustments must be applied to all frames 
of all animations for consistency and to prevent glitches. Select the South animation, and 
adjust the collision polygon (adding and repositioning vertices as necessary) until it is 

Figure 12-2.  Background and tilemap maze setup

http://dx.doi.org/10.1007/978-1-4842-2784-8_4


Chapter 12 ■ Maze Runman

162

roughly circular, as illustrated in Figure 12-3. After this adjustment, right-click the polygon 
and select Apply to all animations. Next, in the Image points window, adjust the origin 
image point using the Quick-assign tool (as you did with the Chargeometer object in the 
Spell Shooter game in Chapter 9) so that the origin point is at the bottom-left corner of the 
sprite, also shown in Figure 12-3. After this adjustment, right-click the Origin in the Image 
points window, and select Apply to all animations. When you are finished, close the image 
editor windows. Change the size of the sprite to 32,32, and position it at any open grid 
square except for those with an adjacent wall on the right.

The next mechanic you will implement is grid-based movement: the characters in 
this game can move only in straight lines in four directions (north, south, east, and west) 
and can change directions only from the center of each grid square. Determining when 
a character has reached the center of a grid square is difficult since character positions 
are updated only 60 times per second, and because of the automatic approximation of 
decimal values by computers, the exact coordinates might not be obtained. To overcome 
this dilemma, you will use a formula from physics: speed = distance/time. You will know 
both the speed (it will be set to 100 pixels/second) and the distance between tiles  
(32 pixels). Therefore, you can use this formula to calculate how long it will take a 
character to travel from one grid square to the next since the formula can be rewritten 
as time = distance/speed. A timer will be set up to go off regularly at this time interval, 
and on the corresponding tick (and only then), the character will have the opportunity to 
change direction. At the same time, the character might not be located at the exact center 
of a tile when the timer goes off (because of the aforementioned rounding errors), so the 
character’s position will also be adjusted at this instant, as shown in Figure 12-4, to avoid 
accumulating errors that could result in glitches at a later time.

Figure 12-4.  Adjusting Runman’s position to be centered in a grid square

Figure 12-3.  The Player sprite’s circular collision polygon

http://dx.doi.org/10.1007/978-1-4842-2784-8_9


Chapter 12 ■ Maze Runman

163

To begin, select the Runman object and add the behaviors Bullet and Timer. Set the 
Bullet properties Speed to 100 and Set angle to No. Also, since Runman will move to the 
right by default, in the Properties panel change Initial animation to East. (Incidentally, 
this is also why you avoided placing Runman with a wall directly to his right.) In what 
follows, you will use groups to keep sets of events organized and easy to locate in the 
event sheet. Groups are basically headers that display a line of text; events are added to 
a group by adding them as subevents to the group, just as you would add a subevent to 
another event. In the event sheet, right-click in the margins, select Add group, and set 
Name to Player Movement. To this group, add an event with the condition System - On 
start of layout. In accordance with the formula discussed earlier, add the action Runman - 
Timer - Start timer, set Duration to 32/100, set Type to Regular, and set Tag to "Grid".

The next event to be added will realign Runman to the center of the grid square 
to which he is closest. Since the grid square positions are located at multiples of 32, 
Runman’s X and Y position should be set to the nearest multiple of 32 whenever the timer 
activates. To determine which multiple of 32 is closest, you can divide the current position 
by 32, round it to the closest whole number, and then multiply it by 32. For example, given 
the number 95, the closest multiple of 32 is 96 = 3 * 32. The key part in this calculation is 
figuring out the multiplier, which is 3 in this case. We know that 96 / 32 is exactly 3, while 
95 / 32 is 2.96875, which is only approximately 3. Using the round function converts this 
approximate decimal into the desired exact value 3, and then you can simply multiply 
this by 32 to get the position to which Runman should be adjusted. To implement this 
calculation in the event sheet, in the Player Movement group, add a subevent with 
condition Runman - On timer, and set Tag to "Grid". Add the action Runman - Set X, 
setting X to round( Runman.X / 32 ) * 32, and add the action Runman - Set Y, setting Y 
to round( Runman.Y / 32 ) * 32. When you are finished, the events should appear as in 
Figure 12-5.

Next, you will implement events that enable the player to change Runman’s 
direction, provided that no walls are blocking the way. This type of check is called 
preventative collision detection, meaning that rather than waiting for a collision to happen 
(and responding accordingly), you will check to see whether the player is holding down 
an arrow key corresponding to a direction in which a tile exists; if so, Runman will be 
prevented from moving in that direction in the first place. Potential collisions such as 
these can be detected with a condition named Is overlapping at offset. To begin, in the 
layout, add a Keyboard object. Then, in the event sheet, add a subevent to the On timer 
event you created previously. Create two conditions for this new event: Keyboard - Key is 
down (Right arrow) and the inverted condition Runman - Is overlapping at offset (Walls, 
at an Offset X of 32 and an Offset Y of 0). Add two actions to this event: Runman - Bullet: 
Set angle of motion (0) and Runman - Set Animation ("East"). Next, you will create three 

Figure 12-5.  The Player Movement group and events for grid alignment



Chapter 12 ■ Maze Runman

164

more subevents in the On timer event with the same conditions and actions, but with the 
parameter values changed as follows:

•	 Check whether the player is holding down the left arrow key and 
for an overlap at the values Offset X of -32 and Offset Y of 0; set the 
angle of motion to 180 and the animation to "West".

•	 Check whether the player is holding down the up arrow key and 
for an overlap at the values Offset X of 0 and Offset Y of -32; set the 
angle of motion to -90 and the animation to "North".

•	 Check whether the player is holding down the down arrow key 
and for an overlap at the values Offset X of 0 and Offset Y of 32; set 
the angle of motion to 90 and the animation to "South".

When you are finished, these events should appear as in Figure 12-6.

At this point, Runman can move freely throughout the level and stays aligned with a 
grid. However, the wall tiles you added in the tilemap do not currently function as walls; 
Runman can travel right through them. To get the precisely desired effect, you will not 
add the Solid behavior; instead, you will create another set of events to implement this 
feature. These events will check the direction in which Runman is traveling (by checking 
the name of the currently playing animation), and if there is a wall ahead, Runman’s 
movement, animation, and timer will all be stopped. If the player presses a key while 
Runman is not moving (indicated by a speed of 0), then his speed will be restored to its 
original value, the On timer event will be activated again immediately, and the recurring 
timer will be set up again.

To start implementing these features, add a new subevent to the On timer event, with 
two conditions: Runman - Animation: Is playing ("East") and Runman - Is overlapping 
another object (Walls, with Offset X set to 32 and Offset Y set to 0). To this event, add three 
actions: Runman - Bullet: Set speed (0), Runman - Animation: Stop, and Runman - Timer: 

Figure 12-6.  Events for player movement and animation



Chapter 12 ■ Maze Runman

165

Stop timer ("Grid"). Next, you will create three more subevents in the On timer event 
with the same conditions and actions, but with the parameter values of the conditions 
changed as follows:

•	 Check whether the West animation is playing and for overlap at 
Offset X of -32 and Offset Y of 0.

•	 Check whether the North animation is playing and for overlap at 
Offset X of 0 and Offset Y of -32.

•	 Check whether the South animation is playing and for overlap at 
Offset X of 0 and Offset Y of 32.

You will also need an event as described earlier that starts Runman moving again 
after he has stopped. Create a new subevent in the Player Movement group (but it should 
not be a subevent of the On timer event) with the condition Keyboard - On any key 
pressed and the condition Runman - Bullet: Compare speed (0). Add the three actions 
Runman - Bullet: Set speed (100), Runman - Timer: Start timer (Duration set to 0, Type set 
to Once, Tag set to "Restart"), and Runman - Timer: Start timer (Duration set to 32/100, 
Type set to Regular, Tag set to "Grid"). The extra Restart timer needs to be created to 
activate the On timer event again right away (the Grid timer cannot be used for both 
these purposes at the same time). Finally, the On timer event needs to be adjusted so that 
either of the named timers can activate it; to this end, right-click the event, select Make 
"or" block, and then add a second condition called Timer - On Timer ("Restart"). When 
you are finished, these events should appear as in Figure 12-7. Save the project and 
preview your game to make sure that the movement works as expected and that Runman 
is blocked by the walls.



Chapter 12 ■ Maze Runman

166

Enemies and Intelligent Movement
In this section, you will implement enemy ghosts with intelligent movement patterns that 
will chase the player around the maze. These ghosts will also be subject to grid-based 
movement; the implementation will be similar to the previous section but simpler, as the 
ghosts will not stop moving. To begin, create a new sprite named Ghost; in the Animation 
frames window, load the spritesheet ghost.png (three horizontal cells and one vertical 
cell), and set the Animation properties Speed to 6, Loop to Yes, and Ping-pong to Yes. 
As you did with the Runman sprite, adjust the collision polygon shape and origin image 
point, as shown in Figure 12-8, and after each of these changes, select the right-click 
menu option Apply to whole animation. When you are finished, close the image editor 
windows. Change the size to 28,28, add the Bullet and Timer behaviors, set Bullet Speed 
to 90 (so it is just a bit slower than Runman), and change Set angle to No. Create two more 
instances of the Ghost object, and position them each on an empty tile space (but not 
with a wall directly to the right, as before).

Figure 12-7.  Events for tilemap wall functionality



Chapter 12 ■ Maze Runman

167

In the event sheet, right-click and create a new group named Ghost Movement. In this 
group, create an event with the condition System - On start of layout, and add the action Ghost 
- Timer: Start Timer (with Duration set to 32/90, Type set to Regular, and Tag set to "Grid"). 
Then create an event with the condition Ghost - On Timer ("Grid") and the condition System 
- For Each (Ghost). Add the action Ghost - Set X, setting X to round( Ghost.X / 32 ) * 32, 
and add the action Ghost - Set Y, setting Y to round( Ghost.Y / 32 ) * 32.

Before creating any more events, it is necessary to introduce a new feature of Construct: 
the Array object. Arrays are “data structures” that can be used to store a list (or a grid) of 
values. Here, arrays will be used to store the directions of movement available to each ghost 
each time they reach the next grid square, and one of the stored directions will be selected 
according to the programmed pattern for each ghost. To begin, in the layout, add a new 
object, an Array object named Directions, and then return to the event sheet.

In the Ghost - On timer event, add an action called Directions - Set Size, and set Width 
to 0, Height to 1, and Depth to 1. Since you are interested only in storing a list of values  
(as opposed to a 2D or 3D grid of values), Height and Depth should always be set to 1. The 
width refers to the number of values being stored in the list, and setting it to 0 effectively 
“resets” or “clears out” the list, preparing it for reuse when analyzing the options for each 
of the ghosts.

Next, you will add values to the array, corresponding to the angles of movement 
for the available directions. One of the requirements for a direction to be considered 
available is that there must be no overlap with a wall in that direction. Additionally, 
ghosts are not permitted to reverse direction because otherwise ghosts would behave 
erratically, hovering back and forth between positions as they attempt to align themselves 
horizontally or vertically with Runman. Directions satisfying these conditions are added, 
or “pushed,” onto the array. For example, if there is no wall to the right (offset (32,0)) and 
the ghost is not moving to the left (motion angle 180), then moving to the right is a valid 
option, and the corresponding angle (0) will be added to the array. To implement this, 
create a subevent to the Ghost - On timer event, with the inverted condition Ghost - Is 
overlapping at offset (Walls, Offset X set to 32, Offset Y set to 0) and the condition System - 
Compare two values (check whether Ghost.Bullet.AngleOfMotion is not equal to 180). Add 
the action Directions - Manipulation - Push (set Where to Back, Value to 0, and Axis to X). 

Figure 12-8.  The Ghost sprite’s collision polygon



Chapter 12 ■ Maze Runman

168

Create three more events with the same conditions and actions, with the parameter values 
changed as follows:

•	 If there is no overlap at offset (-32, 0) and the angle of motion is 
not 0, then push 180 onto the array.

•	 If there is no overlap at offset (0, -32) and the angle of motion is 
not 90, then push -90 onto the array.

•	 If there is no overlap at offset (0, 32) and the angle of motion is not 
-90, then push 90 onto the array.

When you are finished, the Ghost Movement group should appear as in Figure 12-9.

Before adding the events that correspond to the different movement patterns that the 
ghosts will follow, you need to add an instance variable to the ghosts to distinguish between 
them. Select the ghost object, and add an instance variable named Pattern, with Type set 
to text, Value set to Vertical, and Description set to Vertical, Horizontal, or Random. 
Then, select an instance of one of the ghosts, set its Pattern variable to Horizontal, and 
select another one and set its Pattern variable to Random so that each of the three ghosts 
has a different value. When changing direction, the ghost with Pattern set to Vertical 
will choose to move either north or south, depending on whether Runman is located to 
the north or south of the ghost (and provided the ghost is currently able to move in 
that particular direction). If this ghost has the same Y coordinate as Runman, then it will 
choose to move either east or west, following similar criteria. The ghost with Pattern set to 
Horizontal follows similar logic but prioritizes moving east or west, while the ghost with 
Pattern set to Random will simply choose one of its currently available directions at random.

Before implementing these movement patterns, you will set up a “default” direction 
for the ghosts to follow, in case no good option is available (where “good” is defined 
from the perspective of the ghosts, as a direction that moves them closer to Runman). 

Figure 12-9.  Events for ghost grid alignment and adding available directions to the array



Chapter 12 ■ Maze Runman

169

Add a subevent to the Ghost - On timer event, with the condition System - Every tick and 
the action Ghost - Bullet: Set angle of motion, set to Directions.At(0). The Array action 
At retrieves a value stored in the array at a given position (or index); array positions are 
numbered starting with 0 (a standard convention in computer science).

Next, you will implement the vertical pattern of movement described earlier. To 
the Ghost - On timer event, add a subevent with the condition Ghost - Compare instance 
variable (check whether Pattern is equal to "Vertical"). To this event, you will add a 
set of four subevents that compare the position of the ghost to Runman, and if a good 
move exists in the array of directions, then the ghost’s angle of motion will be changed 
to that value. For example, if the ghost’s X coordinate is less than Runman’s X coordinate 
(Runman is to the right of the ghost) and the angle 0 is currently in the Directions array 
(indicating that the ghost is able to move to the right), then the ghost angle of motion 
will be set to 0. Similar events will be created for the other possible directions. It should 
be noted here that events that appear later in this list correspond to the movements 
that will take priority because their actions can override previous actions; it is as if these 
later events “have the final word” in what happens in the game. Create a new subevent 
with the condition Ghost - Compare X (check whether it is less than Runman.X) and the 
condition Directions - Contains value (0), and add the action Ghost - Bullet: Set angle 
of motion (0). Create three more subevents with the same conditions and actions, but 
change the parameter values as follows:

•	 Check whether the ghost X value is greater than Runman.X and 
whether Directions contains the value 180, and set the angle of 
motion to 180.

•	 Check whether the ghost Y value is less than Runman.Y and 
whether Directions contains the value 90, and set the angle of 
motion to 90.

•	 Check whether the ghost Y value is greater than Runman.Y and 
whether Directions contains the value -90, and set the angle of 
motion to -90.

When you are finished, the events should appear as in Figure 12-10.

Figure 12-10.  Events for vertical pattern ghost movement



Chapter 12 ■ Maze Runman

170

The events controlling the ghost following the horizontal pattern are extremely 
similar to the previous events. Copy and paste the event with the condition Pattern = 
"Vertical" and its subevents. In the new copy of the events, edit the condition to check 
whether Pattern is equal to "Horizontal", and click and drag to rearrange the subevents 
so that the events comparing the X values appear last, as shown in Figure 12-11. Finally, 
to implement the random movement pattern, you will need to write only a single event. 
Add a new event with the condition Ghost - Compare instance variable, and check 
whether Pattern is equal to "Random". For the action, you need to generate a random 
number between 0 and the width of (number of elements in) the Directions array, use the 
floor function to truncate the decimal digits (since array positions are whole numbers), 
and extract the array element at that position. This is accomplished by adding the action 
Ghost - Bullet: Set angle of motion, set to Directions.At(floor(random(Directions.
Width))). When finished, these events should appear as shown in Figure 12-11. Save and 
test your project, and verify that all three ghosts move in different patterns, as expected. 
(To check an individual pattern more easily, you could delete the other ghost instances 
temporarily and simply add them back to the project later.)

Collecting Coins
In this section, you will add coins for the player to collect while moving around the maze. 
These coins will give the player points that will be added to their score. To begin, create 
a new sprite named Coin with the image coin.png, and position it in any open path grid 
square. You should create additional coin instances to fill all open grid locations (those 
not occupied by the player, ghost, or walls). When finished, select the Coin object in 
the object panel (so that all instances are selected); then right-click in the layout area, 
and select Z-Order - Send to bottom of layer. This makes the Runman and the ghosts 
appear on top of the coins, rather than underneath them (which would look strange). 
To keep track of points earned, in the event sheet, add a global variable named Score 
with an initial value of 0. To display this value on the user interface, create a new Text 
object named TextScore, set its Layer to UI, and position it in the top-center of the game 
window, over the top bounding wall. Change the default text to Score: 0. Change the 

Figure 12-11.  Events for horizontal and random pattern ghost movement



Chapter 12 ■ Maze Runman

171

font to Arial, bold, size 14, and change the font color to a bright yellow (since it matches 
the color of the coins and is also easily visible against the dark wall). Your user interface 
and style of coin placement should be similar to example layout shown in Figure 12-12.

You can now set up the corresponding events for collecting coins and updating the 
text displayed. First, in the event sheet, right-click the empty area in the event sheet to 
create a new group named Coin Events. Next, to this group, add a new subevent with 
the condition Runman - On collision with another object (Coin), add the action System - 
Variables: Add to (add 10 to Score), and add the action Coin - Destroy. Add another event 
to this group, with the condition System - Every tick and the action TextScore - Set text 
("Score: " & Score). When finished, these events should appear as in Figure 12-13.

Figure 12-12.  The user interface and coin placement in the layout

Figure 12-13.  Events for collecting coins



Chapter 12 ■ Maze Runman

172

Game End
In this section, you will implement end-of-game conditions that indicate whether the 
player has lost or won. When the game has ended, the player and ghosts’ movement 
will be stopped, and then they will all fade away. To begin, in the layout, to the Runman 
object, add the behavior Fade, and set Active at start to No. Then, click Ghost in the object 
panel (so all instances are selected) and similarly add the Fade behavior, and set Active at 
start to No. Create two new sprites: one named MessageLose using the image text-lose.
png and one named MessageWin using the image text-win.png. Set their Layer properties 
to UI, set Size to 416 by 64, set “Initial visibility” to Invisible, and center both within 
the window bounds. Next, you will add the “game over” sequence event that will fade the 
player and the ghosts upon player collision with a ghost. Since you will want to fade away 
all ghosts in the game, not just the one filtered by the collision condition, you will add an 
additional System condition called Pick all to reset the event’s filter for the ghosts so that 
the actions are applied to all ghosts (not just the one that collided with the player). First, 
in the event sheet, right-click the empty area in the event sheet to create a new group 
named Game End. To this group, add a new subevent, add the condition Runman - On 
collision with another object (Ghost), and add the condition System - Pick all (Ghost). Add 
the following actions:

•	 MessageLose - Set visible (Visible)

•	 Runman - Bullet: Set enabled (Disable)

•	 Runman - Start fade

•	 Ghost - Bullet: Set enabled (Disable)

•	 Ghost - Start fade

You will now add the winning sequence event, which will occur when all coins 
have been collected (or equivalently, when no coins remain). To the Game End group, 
add another subevent called System - Compare two values (check if Coin.Count is equal 
to 0); then add the same actions as in the previous event, but change MessageLose to 
MessageWin in this new event. The “game end” events should appear as in Figure 12-14.



Chapter 12 ■ Maze Runman

173

Congratulations! You have now finished implementing the core mechanics of the 
game Maze Runman.

Side Quests
In this optional section, you will add a special collectable jewel item that will repeatedly 
spawn at a specified location for the player to collect, giving the player repeated chances 
for extra points. Additional features will also be suggested at the end of this section.

Adding a Jewel Bonus Item
To add more variety to the maze, you will add a special collectable jewel item that will 
repeatedly spawn at a specified location (designated by a SpawnPoint sprite), and on 
collection, the jewel should grant the player a bonus of 100 points. To begin, add a new 
sprite named JewelSpawn with any drawn image (this sprite will be invisible during 
gameplay), and resize it to 32, 32. Find a location of a coin in the middle of the maze, 
delete that particular coin instance, and position the JewelSpawn at that location. Then, 
set Initial visibility to Invisible. Next, add a new sprite named Jewel, with the image 
jewel.png, and position it in the layout margins. Add the Fade behavior to the jewel, and 
set Wait time to 9. Every 20 seconds a jewel should spawn, and the player will have 10 
seconds to collect it before it disappears. In the event sheet, create a new group named 
Jewel Events. To this group, add a new event with the condition System - Every X seconds 
(20) and the action JewelSpawn - Spawn another object (Jewel). Add another event to 
this group with the condition Runman - On collision with another object (Jewel); add the 
action System - Variables: Add to (add 100 to Score), and add the action Jewel - Destroy. 
When you are finished, the events should appear as in Figure 12-15.

Figure 12-14.  Events for the end of the game



Chapter 12 ■ Maze Runman

174

On Your Own
As usual, you should add menus, pause functionality, and audio to the Maze Runman 
game. You could add more maze levels, each with a new, different design. After all the 
coins have been collected in a level, you could use the System - Go to layout action to 
start the next level; the score will be preserved since it is stored in a global variable. You 
could implement a global variable called Level to keep track of what level you are on and 
display it on the user interface. As you reach a new level, you could make the player and 
ghosts have higher speeds to ramp up the difficulty. In addition, to compensate for this 
higher difficulty, more points could be awarded for collecting coins in higher levels.

You could design and create more types of enemies besides ghosts. For example, you 
could create a Spider enemy, whose movement (limited to either vertical or horizontal) 
is controlled by the Sine behavior; its position and magnitude (a multiple of 32) would 
have to be determined and set manually for each instance to prevent it from appearing to 
move through walls. You could also add different types of jewel that appear at the spawn 
point (randomly selected by the choose function, similar to the Item objects from the 
Rectangle Destroyer game), with each jewel worth different point values. You could even 
implement a “runaway” moving jewel, controlled by a similar set of events as the ghosts, 
with the comparisons reversed so that the jewel moves away from Runman instead of 
toward him. This jewel could be set to disappear after a certain time interval, adding to 
the challenge. If the player catches this jewel, then the player should earn a great number 
of points.

Summary
In this chapter, you created the game Maze Runman. By using a tilemap, you created a 
maze for the player to strategically navigate, while collecting coins and avoiding ghosts. 
You learned how to implement precise grid-based movement by combining the Bullet 
and Timer behaviors. You were introduced to the Array object, which helped you store 
multiple values. By accessing the array data, you created events that simulated intelligent 
behavior for the ghosts and created variations on their movement patterns. Throughout 
the chapter, you organized events by using groups in the event sheet. The “Side Quests” 
section discussed how to create a regularly reappearing jewel for bonus points and 
suggested a variety of other features you could add to your game.

In the next chapter, you’ll create another game where the player collects coins and 
dodges enemies: a side-view, platformer-style game called Jumping Jack.

Figure 12-15.  Events for the bonus jewel item



175© Lee Stemkoski and Evan Leider 2017 
L. Stemkoski and E. Leider, Game Development with Construct 2,  
DOI 10.1007/978-1-4842-2784-8_13

CHAPTER 13

Jumping Jack

In this chapter, you will create a side-perspective platform-style game called Jumping 
Jack, shown in Figure 13-1, inspired by classic arcade and console games such as Super 
Mario Bros.

In Jumping Jack, the player controls Jack the Koala, whose goal is to navigate a level, 
collecting coins and dodging or defeating enemies along the way, until he reaches the flag 
at the end of the level. Enemies come in two varieties: the flying type, which fly back and 

Figure 13-1.  The Jumping Jack game



Chapter 13 ■ Jumping Jack

176

forth between two given points, and the ground type, which move along the ground and 
reverse direction whenever they encounter a wall. Enemies can be destroyed by jumping 
on top of them, but otherwise they damage the player on contact. After being hit three 
times, the player loses the game. The environment itself contains a variety of interactive 
elements, such as ladders that can be climbed, springboards that launch the koala into 
the air, platforms that can be jumped through from underneath, brick blocks that can 
be destroyed by colliding with them from underneath, and keys that can be collected 
to allow the koala to pass through locked blocks. The “Side Quests” section describes 
additional potential features such as adding a countdown timer.

The player controls the koala using the arrow keys to walk and climb ladders and 
using the spacebar to jump. The user interface displays the number of coins collected, 
the health of the koala, and whether any keys have been collected. This project uses the 
Tilemap, Sprite, TiledBackgrounds, and Keyboard objects, and it uses the behaviors Scroll 
to, Pin, Fade, Bullet, Solid, and Flash. The koala character uses a new behavior called 
Platform for standard platform controls, as well as the 8-Direction behavior for climbing 
ladders. The behavior JumpThru is introduced to create a special type of one-way solid. 
The Function object will be introduced to avoid repeating code, and the Particle object 
will be introduced for a brick-breaking visual effect.

To begin, download the assets for this chapter from the book web site. Set the layout 
size to 1600, 640 and the window size to 800, 640. On the View tab, select the Snap to 
grid and Show grid check boxes, and set the grid width and grid height both to 16. Add 
three additional layers to your project (for a total of four layers), naming them Background, 
Map, Main, and UI. The reason for using four layers in this project (as opposed to three, as 
you have in previous projects) is that the background image needs to scroll more slowly 
than the tilemap for a parallax effect (as in the Plane Dodger game in Chapter 6), so it 
must be in a separate layer. At the same time, to avoid accidentally selecting or modifying 
the tilemap once it is complete (as discussed when developing the Racecar 500 game in 
Chapter 7), the tilemap should be in its own layer so that it can be locked later. For the 
Background layer, set Parallax to 50, 0; this will cause the Background layer to scroll at 
half the speed as the Map and Main layers while the player navigates the level. For the UI 
layer, set Parallax to 0,0; this will fix the UI in place, as desired.

Level Design
In this section, you will set up a basic level. In the Background layer, add a 
TiledBackground object named Background with the image background.png. Resize and 
position this object so that it covers the entire layout. In the Map layer, add a TileMap 
object named Map with the image platform-tiles.png. These tiles are 32-by-32 pixels, 
so the default properties for the tilemap do not need to be adjusted. However, you should 
adjust the collision polygons for the nonsquare tiles, as you did for the Racecar 500 game 
in Chapter 7. In the layout, add some ground tiles across the bottom of the map. Also, 
create some walls (at least six blocks high) on each side to stop the player from falling off 
the sides of the level. (Alternatively, you could create invisible solid objects to place at 
either end to serve the same purpose.) Feel free to add a staircase or two in the middle for 
variety and perhaps some floating platforms. Many other objects will be added later in the 
chapter, so do not feel compelled to fill the tilemap at this time; leave plenty of open space 
available. When you are finished, the layout should appear similar in style to Figure 13-2. 

http://dx.doi.org/10.1007/978-1-4842-2784-8_6
http://dx.doi.org/10.1007/978-1-4842-2784-8_7
http://dx.doi.org/10.1007/978-1-4842-2784-8_7


Chapter 13 ■ Jumping Jack

177

When you are finished, add the Solid behavior to the tilemap, click the selection tool in 
the Tilemap panel, and lock the Background and Tilemap layers.

Player Setup
The next goal is to set up the koala character that the player controls. Set the active layer 
to Main, and add a new sprite named Koala. In the image editor, set up the following 
animations with the given names, images from the koala folder, and animation properties 
(when applicable):

•	 Name: Stand. Image: stand.png.

•	 Name: Jump. Image: jump.png.

•	 Name: Walk. Images: walk-1.png, walk-2.png, walk3.png. Set 
Speed to 6, Loop to Yes, and Ping-pong to Yes.

•	 Name: Climb. Images: climb-1.png, climb-2.png. Set Speed to 6 
and Loop to Yes.

When you are finished, you need to adjust the collision polygon so that it is 
consistent across all frames of all animations; otherwise, strange glitches may occur. 
Select the Stand animation, and adjust the collision polygon (deleting and repositioning 
vertices as necessary) until it is a rectangle, somewhat thinner than the image itself, as 
illustrated in Figure 13-3. Make sure that the left and right sides of the collision polygon 
are perfectly vertical. For precise measurements, when a vertex is selected, its coordinates 
are displayed at the bottom of the image editor window, and its position can be adjusted 
pixel by pixel with the arrow keys. When you are finished, right-click the polygon, and in 
the menu that appears, select Apply to all animations.

Figure 13-2.  Background and basic tilemap setup



Chapter 13 ■ Jumping Jack

178

For the Koala object, set Size to 32,50, and add the behaviors Platform, Scroll to, and 
8-Direction. The Platform behavior handles walking and jumping. However, the ability 
to climb ladders must be managed separately. For example, when climbing a ladder, 
gravity does not affect the player, and the player can also move up and down. This can be 
efficiently handled by using two behaviors, enabling one and disabling the other when 
appropriate. Set the Platform properties Max speed to 120 and Default controls to No. Set 
the 8-Direction properties Max speed to 120, Set angle to No, and Initial state to Disabled. 
There are no conditions that check whether these behaviors are enabled, so you will store 
this information with an instance variable. Add an instance variable and set Name to 
State, Type to Text, Initial value to Normal, and Description to Normal or Climbing.

The reason you disabled the default Platform controls is that you will reserve the up 
and down arrow keys for climbing, and the spacebar (or another key of your choice) can 
be used for jumping. Next, you will implement these alternative controls. At the same 
time, you will use the Appearance: Set mirrored action to reflect the sprite image so that 
the koala is facing in the direction that it is moving. In the layout, add a Keyboard object 
and then open the event sheet. Because of the large number of events in this project, you 
will use groups to keep your events organized. In the event sheet, add a group named 
Player Movement, and add the following subevents in this group (be sure to use the 
Platform action Simulate control, not the 8-Direction action):

•	 Add the condition Keyboard - Key is down (Left arrow), add the 
action Koala - Platform: Simulate control (Left), and add the 
action Koala - Appearance: Set mirrored (Mirrored).

•	 Add the condition Keyboard - Key is down (Right arrow), add the 
action Koala - Platform: Simulate control (Right), and add the 
action Koala - Appearance: Set mirrored (Not Mirrored).

•	 Add the condition Keyboard - On key pressed (Space), and add the 
action Koala - Platform: Simulate control (Jump).

Figure 13-3.  Collision polygon for the Koala sprite



Chapter 13 ■ Jumping Jack

179

The completed events should appear as shown in Figure 13-4.

This is a good point to save and test your game. At this point, check that the controls 
move the koala as expected and that the screen scrolls along with the koala (and the 
background scrolls at half-speed). The koala should face the direction it is moving in, but 
the animations have not been activated yet; you set these up (except for climbing) next. 
As you will see, the Platform behavior has a great number of conditions that check the 
movement and surroundings of the object, and these are quite useful for activating the 
correct animation.

In the event sheet, add a new group named Player Animation. In this group, add a 
subevent with the condition Koala - Compare instance variable, and check whether State 
equals Normal. Create three subevents to this condition as follows:

•	 Add the condition Koala - Platform: Is on floor, add the inverted 
condition Koala - Platform: Is moving, and add the action  
Koala - Set Animation ("Stand").

•	 Add the condition Koala - Platform: Is on floor, add the condition 
Koala - Platform: Is moving, and add the action Koala - Set 
Animation ("Walk").

•	 Add the inverted condition Koala - Platform: Is on floor, and add 
the action Koala - Set Animation ("Jump").

The completed events should appear as in Figure 13-5. Once again, save and test 
your game and confirm that the animations appear as expected.

Figure 13-4.  Player movement events



Chapter 13 ■ Jumping Jack

180

Ladders and Climbing
In this section, you will implement the ladder-climbing mechanic. This is complicated 
because of the need to switch between two different behaviors, determine the different 
conditions in which the player will want the koala to start or stop climbing, and handle 
the animations. To reduce the repetition of particular sets of actions, you will also learn 
how to use the Function object. To start, create a new TiledBackground object named 
Ladder, using the image ladder.png. You are using a TiledBackground rather than a 
Sprite object so that the pattern of rungs repeats as you resize the object. Resize and 
position the Ladder object so that it is 32 pixels wide and so it reaches from the ground to 
the top of one of your tilemap platforms, as shown in Figure 13-6. Also, add the behavior 
Jump-thru to the ladder. This behavior allows other objects to pass though from below, 
but not from above, a mechanic that is used in many platform-style games.

Figure 13-6.  Setting up a ladder next to a tilemap platform

Figure 13-5.  Player animation events

When switching from the platform behavior to the 8-Direction behavior for climbing, 
two of the required actions are to disable the Platform behavior and to enable the 
8-Direction behavior. In addition, the koala’s State variable should be set to keep track 
of the control scheme being activated (in this case, "Climbing"). One subtle point that 
needs to be taken into account is the koala’s motion at the moment when a movement 



Chapter 13 ■ Jumping Jack

181

behavior is disabled. Both the Platform and 8-Direction variables independently keep 
track of the koala’s velocity in the X and Y directions in variables named VectorX and 
VectorY. Whenever you disable a behavior, you should set both of these values to 0. 
Otherwise, when the behavior is reenabled later, these variables will be restored to their 
original values at the moment the behavior was disabled, causing unexpected motion in 
some direction.

As will be discussed later, you will see that there multiple combinations of conditions 
for which the koala should start climbing or stop climbing. To avoid entering the same 
set of actions repeatedly, you will use the Function object. The Function object has many 
uses, one of which is to activate another event in the event sheet. In the layout, add the 
Function object to the project. Much like the Keyboard or Audio object, this does not add 
anything to the layout, but it enables extra conditions and actions in the event sheet. In 
the event sheet, in the Player Movement group, add a new subevent with the condition 
Function - On Function, and set Name to "ClimbStart". This event can be activated at a 
later time by a Function object action named Call function, as you will see. Next, add the 
following actions to the event you just created:

•	 Koala - Platform: Set enabled (Disabled)

•	 Koala - Platform: Set Vector X (0)

•	 Koala - Platform: Set Vector Y (0)

•	 Koala - 8-Direction: Set enabled (Enabled)

•	 Koala - Instance variables: Set value, with State set to "Climbing"

Add another subevent in this group, again with the condition Function - On 
Function, but this time set Name to "ClimbStop". Add the following set of actions, which 
closely correspond to the set of actions earlier:

•	 Koala - 8-Direction: Set enabled (Disabled)

•	 Koala - 8-Direction: Set Vector X (0)

•	 Koala - 8-Direction: Set Vector Y (0)

•	 Koala - Platform: Set enabled (Enabled)

•	 Koala - Instance variables: Set value, with State set to "Normal"

When you are finished, the events should appear as in Figure 13-7. You can save your 
project, but there is nothing new to test at this time, as no other events have activated 
these functions yet.



Chapter 13 ■ Jumping Jack

182

Next, we will discuss the conditions for which one of these functions should be 
activated. The most obvious cases are that when the koala is overlapping a ladder and 
the player presses either the up arrow or down arrow key, the ClimbStart event should 
be called, and whenever the koala is not overlapping a ladder, then the ClimbStop event 
should be called. However, there are two subtle additional scenarios to consider. First, if 
the koala is climbing down and reaches the ground, then the player probably wants the 
koala to stop climbing. If the koala is standing on top of the ladder and the player presses 
down, then the player probably wants to start climbing.

The logical difficulty with checking these last two scenarios is that they both involve 
the area directly below the koala’s feet. The most straightforward way to be able to check 
these conditions is to create a sprite that serves as a “sensor” for this area, as follows. 
Create a new sprite named Below, and use the image editor drawing tools to fill in the 
box with a solid color and draw a letter B. When you are finished, close the image editor 
windows, change the property Size to 24,18, and set Initial visibility to Invisible. 
Position the sprite so that it appears a few pixels below the bottom of the Koala sprite, as 
shown in Figure 13-8 (you may need to temporarily disable the Snap to grid option to line 
it up accurately, or press the Alt key while dragging to ignore the grid positioning). Add 
the Pin behavior to the Below object. To active the Pin object, in the event sheet, create a 
new event with the condition System - On start of layout, and add the action Below - Pin 
to object (Koala). In addition, since the ladder was added after the koala, the koala will 
appear underneath the ladder. To remedy this, add a section action to the event: Koala - Z 
Order: Move to top. This event should appear as in Figure 13-9.

Figure 13-7.  Functions that switch the Platform and 8-Direction behaviors



Chapter 13 ■ Jumping Jack

183

Now you are ready to add the events that activate and deactivate the climbing 
behavior. In the group Player Movement, add the following five subevents, which are also 
shown in Figure 13-10:

•	 Add the condition Keyboard - On key pressed (Up arrow), add the 
condition Koala - Is overlapping another object (Ladder), and add 
the action Function - Call function ("ClimbStart").

•	 Add the condition Keyboard - On key pressed (Down arrow), add 
the condition Koala - Is overlapping another object (Ladder), and 
add the action Function - Call function ("ClimbStart").

•	 Add the inverted condition Koala - Is overlapping another 
object (Ladder), and add the action Function - Call function 
("ClimbStop").

•	 Add the condition Keyboard - Key is down (Down arrow), add the 
condition Below - Is overlapping another object (Map), add the 
inverted condition Below - Is overlapping another object (Ladder), 
and add the action Function - Call function ("ClimbStop").

•	 Add the condition Keyboard - On key pressed (Down arrow), add 
the condition Below - Is overlapping another object (Ladder), add 
the inverted condition Below - Is overlapping another object (Map), 
add the action Function - Call function ("ClimbStart"), and add 
the action Koala - Move at angle, with Angle set to 90 and Distance 
set to 2.

Figure 13-8.  Placement of the Below sprite

Figure 13-9.  Events to activate on start of layout



Chapter 13 ■ Jumping Jack

184

In the last two events listed, the overlapping map conditions are present to stop the 
koala from trying to start climbing when the solid tilemap is in the way and to stop the 
koala from falling off the ladder too soon in the situation where the bottom of the ladder 
is not next to solid tiles from the tilemap. In addition, the extra action in the last event is 
necessary because the Jump-thru behavior on the ladder prevents the koala from passing 
through it from above, so an initial adjustment is required. Finally, in some platform 
games, pressing the jump button also causes the player to stop climbing and “fall down” 
(return to the Platform controls); you can add this feature as a sixth event if desired.

Although you could test the climbing mechanic at this time, the koala would appear 
strange while climbing because the events that activate the climb animation have not 
yet been set up; this will be your next step. In the Player Animation group, add a new 
subevent with the condition Koala - Compare instance variable, and check whether State 
equals "Climbing". Create two subevents to this condition as follows:

•	 Add the condition Koala - 8-Direction: Is moving, and add the 
action Koala - Set Animation ("Climb").

•	 Add the condition System - Else, and add the action  
Koala - Animation: Stop.

Figure 13-11 shows these events. Now is an excellent time to save and test your game 
and verify that the climbing mechanic works as desired. However, when climbing up the 
ladder, the player will have to be careful to align the koala so that its head does not hit 
a tilemap tile while climbing, which, having the Solid behavior, would prevent further 
movement. Try every combination of movement that can trigger these events: standing 
on the ground and climbing up the ladder, standing on top of the ladder and climbing 
down, climbing the ladder starting from midjump, falling off the ladder by climbing to 
either side, and so on.

Figure 13-10.  Events to activate and deactivate climbing



Chapter 13 ■ Jumping Jack

185

Overall, climbing ladders is a difficult and complicated mechanic to implement well, 
so congratulations on completing this section!

Additional Game Objects
In this section, you will create a variety of objects for the koala to interact with, which will 
make the gameplay much more interesting. In particular, you will add a flag (which it is 
the koala’s goal to reach), platforms that can be jumped through, coins to collect along 
the way, springboards that launch the koala into the air, bricks that can be broken, coins 
to collect along the way, and keys that let the koala pass through locked blocks. Although 
many of these objects could be considered optional, it is worth implementing them all to 
learn how the game mechanics work, and later you can make a final decision on which 
of these to include. To keep your code organized, in the event sheet, create a new group 
named Object Interaction. All the events you create in the following sections should be 
subevents in this group unless stated otherwise.

Goal Flag
The player needs to have a goal; in this game, you will create a flag that the koala is trying 
to reach. Create a new sprite named Flag; in the Animation frames window, load the 
spritesheet flag.png (two horizontal cells and one vertical cell), and set the Animation 
properties Speed to 5 and Loop to Yes. Make sure the Flag object is on the Main layer, and 
place it near the end of your level. Create another new sprite, named MessageComplete, 
using the image message-complete.png. Place it on the UI layer; to center it in the 
window, make its X coordinate 400 (since a sprite’s location is measured from its center 
by default and the window is 800 pixels wide). Its Y coordinate can be anything you 
want, although you should avoid overlapping the other elements on the UI layer. Set the 
property Initial visibility to Invisible. Then, in the event sheet, add a new event with the 
condition Koala - On collision with another object (Flag), add the action Koala - destroy, 
and add the action MessageComplete - Set visible (Visible). Figure 13-12 shows this event.

Figure 13-11.  Events to activate the climbing animation

Figure 13-12.  Event to display a message after reaching the goal



Chapter 13 ■ Jumping Jack

186

Jump-Through Platforms
Jump-through platforms are a common feature in many platform-style games; in some, 
they are used as an alternative to ladders that enable the player to reach higher areas in 
the level. Since the Construct game engine provides a Jump-thru behavior (which you 
have used previously in the section on ladder mechanics), this is fairly straightforward. 
Recall that the Jump-thru behavior enables an object to act as a solid from above, while 
enabling the player to move (or jump) through it from below. In the layout, create a new 
TiledBackground object named Platform using the image log-bridge.png. You are using 
a TiledBackground object instead of a Sprite object so that the image repeats, similar to 
the Ladder object. Add the Jump-thru behavior. In the layout, change the height of your 
platform to 16 pixels, but make the width anything you like.

Optionally, you may want to give the players the ability to jump down through 
platforms, which is conveniently an action provided with the Platform behavior. An 
intuitive control scheme to activate jumping down is when the koala is standing on a 
platform and the player presses the jump button while holding the down arrow key. To 
configure this event, locate the event in the Player Movement group that contains the 
action Platform - Simulate control (Jump). To this event, add a subevent with the condition 
Keyboard - Key is down (Down arrow) and the condition Koala: Compare instance variable 
(check whether State is equal to "Normal"). Then add the action Koala - Platform: Fall 
through. Figure 13-13 shows this subevent.

Another optional feature to add to the platform objects is movement, which is most 
easily accomplished by adding the Sine behavior and setting the Sine property Movement 
property to Horizontal or Vertical. To make each platform move a greater distance, 
you can increase the value of the Magnitude property, but you will need to increase the 
Period property by the same factor if you want to keep the same speed of movement. If 
you add the Sine behavior but you still want some platforms to remain stationary, set their 
Magnitude value to 0.

Springboards
With the default Platform behavior property values, the koala can jump to a height of 
nearly five (32-pixel) tiles. To overcome walls or other barriers higher than this, you could 
design a route involving ladders or platforms. To add some variety, you could also create a 
springboard, which is an object that launches a character into the air when the character 
lands on it. To implement this, create a new sprite named Springboard; in the Animation 
frames window, load the spritesheet springboard.png (three horizontal cells and one 
vertical cell), and set the Animation properties Speed to 8, Loop to Yes, and Ping-pong to 
Yes. Adjust the collision polygon for each frame of the animation to fit the image displayed 

Figure 13-13.  Event for jumping down through Platform objects



Chapter 13 ■ Jumping Jack

187

in each frame. In the event sheet, create a new event with the condition Below - On 
collision with another object (Springboard), and add the action Koala - Platform: Set Vector 
Y (-1000). Vector Y indicates motion in the vertical axis; the negative value indicates the 
upward direction. Figure 13-14 shows this event. Feel free to experiment with the value of 
Vector Y until you are satisfied with the jump height.

Breakable Bricks
Destructible objects are another type of classic platform game objects. In this section, you 
will implement breakable bricks, which can be destroyed by the koala if he jumps into 
them from underneath or, equivalently, if the area above the koala collides with the brick. 
To detect collisions in this area, you will create another sprite (named Above) that will be 
invisible and pinned to the koala, similar to the Below sprite. To provide visual feedback to 
the player when the brick is destroyed, you will create an animated effect that resembles 
brick fragments falling down. Since it is difficult to find a spritesheet with this particular 
sequence of images, you will learn how to simulate this effect with a Particle object.

First, create a new sprite named Brick using the image brick.png. Open the 
collision polygon editor, right-click to bring up the corresponding menu, and select Set to 
bounding box. This is important to keep the koala from “snagging” or getting caught on 
the corners if he were to walk across the top of a row of bricks. Create a few new instances 
of this object, and position them around the level within the jumping range of the koala.

Create a new sprite named Above; use the image editor drawing tools to fill in the 
box with a solid color and draw a letter A. When you are finished, close the image editor 
windows, change the size to 16,16, and set Initial visibility to Invisible. Position this 
sprite above the head of the koala sprite. Add the Pin behavior. In the event sheet, locate 
the On start of layout event, and add the action Above - Pin to object (Koala).

Next, you will set up a Particle object. Particle objects generate particle systems, 
which are large numbers of copies of a single small image (each of which is called a 
particle) that move independently to simulate visual effects; these are often used to create 
animations of smoke, fire, star fields, and so forth. There are a great number of properties 
that can be configured for the Particle object, only some of which will be discussed in 
the text that follows. In the layout, create a new Particle object named Fragments; in 
the image editor, open the image fragment.png. Close the image editor, and position 
the fragments object in the left margin of the layout area. The relevant particle object 
properties that you need to modify are briefly defined, and their values should be set as 
listed here:

•	 Type: This can be Continuous (to create a constant spray of 
particles over a period of time) or One-shot (which generates a  
set number of particles at a single instant in time); set this to  
One-shot.

Figure 13-14.  Event to implement a springboard game mechanic



Chapter 13 ■ Jumping Jack

188

•	 Rate: If Type is set to Continuous, this represents the number of 
particles generated per second. If Type is set to One-shot, this 
represents the total number of particles generated. Set this to 6.

•	 Spray cone: This represents the range of directions (specified in 
degrees) in which the particles can be fired; the angle of motion 
for each particle will be a random number between 0 and this 
number. Set this to 120.

•	 Speed: This is how fast the particles move initially; set this to 300.

•	 Size: This is the initial size of the particles; set this to 16.

•	 Gravity: This represents the downward acceleration of the 
particles. For consistency, this value should match the value for 
the platform behavior, so you should set this to 1500.

•	 Acceleration: This represents the change in speed per second; this 
is not needed for the intended effect, so set this to 0.

•	 Speed randomizer: This specifies a random adjustment to the 
speed of the particles; since this is also unnecessary for this effect, 
set this to 0 as well.

•	 Destroy mode: This determines when the particle will be 
destroyed: after fading out, after a certain amount of time passes, 
or after the particles stop moving. Set this to Timeout expired.

•	 Timeout: This is the time in seconds until the particles will be 
destroyed; set this to 3 (so that the particles will have enough time 
to fall past the bottom edge of the layout).

Finally, you can set up the event that enables the koala to destroy the bricks. In the 
event sheet, create a new event with the condition Above - On collision with another 
object (Brick), and add the following three actions:

•	 Add Brick - Spawn another object (Fragments, on the "Main" 
layer).

•	 Add Fragments - Set angle (270) so that the particle spray cone 
direction faces upward.

•	 Add Brick - Destroy.

When finished, this event should appear as in Figure 13-15.

Figure 13-15.  Event to create breakable bricks with a particle effect



Chapter 13 ■ Jumping Jack

189

Coins
A standard feature in many platformer games is the ability to collect some type of object, 
such as coins. They may be worth a certain number of points, or collecting a certain 
number may yield some type of award to the player, such as an extra life. Players can 
use them as a benchmark of their skill and have the personal goal of collecting more 
than their personal best, with the ultimate goal of collecting them all. As they have the 
potential to serve so many purposes, you will learn how to implement collectible coin 
objects in this game.

To begin, create a new sprite named Coin, and in the image editor Animation frames 
window, load the spritesheet coin.png (six horizontal cells and one vertical cell). Set the 
Animation properties Speed to 8 and Loop to Yes. Close the image editor windows, and 
in the layout, change the property Size to 24,24. Create a few additional instances of the 
Coin object. To keep track of the number of coins collected by the koala, add an instance 
variable to the koala named Coins with an initial value of 0. To display this value on the 
user interface, create a new Text object named TextCoins with Text set to 0, and change 
the font to Arial, bold, size 36. Change the font color to a golden yellow to match the coins 
themselves. For visual simplicity, instead of displaying the word Coins in the Text object, 
you will add an icon to the UI instead. Create a new sprite named IconCoin with the 
image icon-coin.png. Make sure that TextCoins and IconCoin are both on the UI layer, 
and position them in the upper-left area of the layout, with the icon to the left of the text. 
(Figure 13-18 shows how they will be positioned, after you have added some other user 
interface elements later.) The final addition to the layout will be a sparkle animation that 
will appear every time a coin is collected; this gives visual feedback to the player. On the 
Main layer, create a new sprite named Sparkle, and in the image editor Animation frames 
window, load the spritesheet from the sparkle folder named sparkle-yellow.png  
(four horizontal cells and eight vertical cells). Set the animation property Speed to 60.

With these objects added, you can now set up the corresponding events. First, create 
a new event with the condition Koala - On collision with another object (Coin), and add 
these three actions: Koala - Instance variables: Add to (add 1 to Coins), Coin - Spawn 
another object (Sparkle, on layer "Main"), and Coin - Destroy. Create another event with 
the condition Sparkle - Animation: On any finished, and add the action Sparkle - Destroy. 
Finally, create an event with the condition System - Every tick, and add the action TextCoins - 
Set Text (Koala.Coins). When finished, these events should appear as in Figure 13-16.

Figure 13-16.  Events related to the coin-collecting mechanic



Chapter 13 ■ Jumping Jack

190

Keys and Locked Blocks
A feature common in many genres of games are locked doors, which are obstacles in 
the level that require the player to obtain a key in order to pass. Locks temporarily block 
further progress and can be used to help guide the player through a level, motivating the 
player to more fully explore a level to locate and obtain the necessary key. In this game, 
the locked doors will be solid-colored blocks (with a keyhole), and if the player obtains 
the correspondingly colored key, these blocks will unlock (disappear) on contact. There 
will be an icon in the user interface whose appearance changes once the player has 
obtained the key. To keep track of whether the player has collected a key (or any other 
objects), one often uses a variable, but for simplicity in this project, you will use the 
UI icon animation name for this purpose. As with the coins earlier, you will also create 
another colored sparkle effect to provide visual feedback when the player has collected 
the key.

To begin, create a new sprite named KeyBlue with the image key-blue.png. (For 
organizational purposes, you will find this image, as well as the other key-related images, 
in the key folder.) Close the image editor, change the size to 32,32, and position the key 
somewhere easily accessible in your layout. Create a new sprite named LockBlue with 
the image lock-blue.png. Just as you did for the Brick objects earlier (and for the same 
reasons), you need to adjust the collision polygon of the LockBlue object so that it is set 
to the bounding box. Once this is done, close the image editor, and change the brick size 
to 32,32. Add the behaviors Solid and Fade, and change the properties Active at start to 
No and Fade out time to 0.25. Create a new sprite named IconKeyBlue with the image 
key-blue-icon-0.png; this will be the default image displayed on the user interface. Add 
another animation named Collected, with the image key-blue-icon-1.png; this will 
be shown after the key is collected. Make sure that IconKeyBlue is on the UI layer, and 
position it in the layout near the upper-right area of the window bounds (indicated by a 
dashed line, shown in Figure 13-18). Finally, add a new animation to the Sparkle object 
named Blue using the spritesheet sparkle-blue.png and using the same settings as 
when you created the original sparkle animation.

You will set up two events for this mechanic, one for collecting the key and the other 
for removing the locks. First, create a new event with the condition Koala - On collision 
with (KeyBlue). Although only two actions are strictly necessary (destroying the key and 
updating the corresponding icon image), you will implement additional actions for visual 
feedback and to draw the player’s attention to the changed state of the UI icon. Add the 
following actions:

•	 KeyBlue - Spawn another object (Sparkle on layer "Main")

•	 Sparkle - Set animation ("Blue")

•	 KeyBlue - Destroy

•	 System - Wait (1 second)

•	 IconKeyBlue - Spawn another object (Sparkle on layer "UI")

•	 Sparkle - Set animation ("Blue")

•	 IconKeyBlue - Set animation ("Collected")



Chapter 13 ■ Jumping Jack

191

Create another event with the condition Koala - On collision with another object 
(LockBlue) and the condition IconKeyBlue - Animation: Is playing ("Collected"); add 
the action LockBlue - Start Fade and the action LockBlue - Solid: Set enabled (Disabled). 
When you are finished, these two events should appear as shown in Figure 13-17.

If you want, you can create additional colored locks and keys, where each key 
unlocks the blocks of the same color, using the same setup as described earlier. 
Additional images for this purpose (keys, locks, icons, and sparkle effects) are included in 
the graphics collection for this chapter.

Enemies
In this section, you will implement two different types of enemy creatures to provide a 
more active challenge for the player. The first enemy will be an airborne creature named 
Fly that flies (as the name implies) back and forth between two locations using the 
waypoint-style mechanics used in the Spell Shooter and Airplane Assault games, but with 
no randomness included. The second enemy will be a ground-based creature named 
Slime that is subject to gravity (just as the koala is) and moves across the ground until 
encountering a wall, at which point it turns around and moves in the opposite direction. 
Both types of enemy have many features in common: they will use an instance variable to 
keep track of their current travel direction, they can both be destroyed if the koala jumps 
on top of them, and they both damage the koala if he collides with them in any other 
manner.

Before implementing the enemies themselves, you will set up the health mechanic 
for the player. Select the Koala object, and add a new instance variable named Health 
with an initial value of 3. To display this value on the user interface, create a new Text 
object named TextHealth with Text set to 3, and change the font to Arial, bold, size 36. 
Change the font color to red. As before with the coins, you will add an icon to the user 
interface instead of displaying the word Health. Create a new sprite named IconHeart 
with the image icon-heart.png. Make sure that TextHealth and IconHeart are both 
on the UI layer, and position them in the upper-central area of the layout, between the 
coin and key display. At this point, the user interface is complete and should resemble 

Figure 13-17.  Events related to the key and lock mechanic



Chapter 13 ■ Jumping Jack

192

Figure 13-18. Add the Flash behavior to the koala; this will be used for a temporary 
invincibility mechanic when the koala is damaged, similar to the setup for the plane in 
the Airplane Assault game. Finally, in the event with the condition System - Every tick,  
add the action TextHealth - Set text (Koala.Health).

Next, you will implement the fly enemy. Create a new sprite named Fly, and in the 
image editor Animation frames window, load the spritesheet fly.png (two horizontal 
cells and one vertical cell). Set the animation properties Speed to 8 and Loop to Yes. Close 
the image editor. Add the Bullet behavior, set Speed to 100, and set Set angle to No. Add 
an instance variable named Direction, of type Text, with an initial value of Left and 
description Left or Right. Next, create a new sprite named FlyPoint, using the image 
editor tools to fill in the background, draw the letter F, and change the size to 32-by-32 
pixels. Add an instance variable to this object named Move, of type Text, with an initial 
value of Left and a description of Used to set Fly Direction to Left or Right. 
Change the property Initial visibility to Invisible. In the layout, create another instance 
of the FlyPoint object, and change its Move value to Right. In the layout, arrange the Fly 
object and the two FlyPoint objects in a horizontal line. The FlyPoint object with Move 
set to Right should be on the left, the Fly object should be in the center, the FlyPoint 
object with Move set to Left should be on the right, and about 100 pixels of space should 
separate each of these objects.

Now you will set up the events for fly movement, which are based on logic similar to 
waypoints from earlier chapters. The idea is that if Direction is set to Left, then the sprite 
image should face to the left and the angle of motion should be set to 180; corresponding 
actions occur when Direction is set to Right. Whenever a Fly object collides with a 
FlyPoint object, the Fly’s Direction variable should be set to the FlyPoint’s Move variable. 
(This is why the FlyPoint on the left side has its Move variable set to Right, because that is 
the new direction that the Fly should begin moving in after it collides with the FlyPoint.) 
In turn, the angle of motion of the Fly object will be set according to the value of its Move 
variable. To keep your events organized, start by creating a new group named Enemies; 
the events in this section should be added as subevents to this group unless stated 
otherwise. Create a new event with the condition Fly - Compare instance variable, and 
check whether Direction is equal to "Left". Add the action Fly - Appearance: Set Mirrored 
(Mirrored), and add the action Fly - Bullet: Set angle of motion (180). Create another new 
event with the same set of conditions and actions, but change the parameters to check 
whether Direction is equal to "Right", set the mirroring to Not mirrored, and set the 
angle of motion to 0. Figure 13-19 shows these events.

There are two events needed for interaction between the Fly and Koala objects. If 
the koala lands on top of the fly, the fly should be destroyed, and the koala bounces off 
by a small amount. Any other collision between the koala and fly will damage the koala, 
causing the koala to lose one health point and to flash for two seconds, during which 

Figure 13-18.  The final layout of icons and text in the user interface area



Chapter 13 ■ Jumping Jack

193

period the koala cannot take additional damage. Create a new event with the condition 
Below - On collision with another object (Fly) and the condition Koala - Platform: Is 
falling. Add the action Fly - Destroy and the action Koala - Platform: Set Vector Y (-400). 
Create another new event with the condition Koala - On collision with another object 
(Fly), and add the inverted condition Koala - Is flashing. Add the action Koala - Instance 
variables: Subtract from (subtract 1 from Health) and the action Koala - Flash (change 
Duration to 2 seconds). These events are also shown in Figure 13-19.

Next, you will set up the Slime enemy. Create a new sprite named Slime, and in the 
image editor Animation frames window, load the spritesheet slime.png (two horizontal 
cells and one vertical cell). Set the animation property Speed to 4 and Loop to Yes. Close 
the image editor. Add the Platform behavior, and set Max speed to 60 and Default controls 
to No. Add an instance variable named Direction, of type Text, with an initial value of 
Left and a description of Left or Right. Since the Platform behavior has conditions that 
check for walls to the left or right, it is not necessary to create an object analogous to the 
FlyPoint object to detect when the slime needs to change direction.

The slime movement events are analogous to the fly movement events, except that 
instead of setting the bullet angle of motion, you will simulate the platform control in 
the corresponding direction. Changing the value of the Direction variable will occur 
when the slime is next to a wall. The events that result in the slime being destroyed or the 
koala taking damage are identical to the corresponding events for the fly, except that the 
references to the Fly object are replaced with the Slime object. To begin implementing 
these features, create a new event with the condition Slime - Compare instance variable, 
and check whether Direction is equal to "Left". Add the action Slime - Appearance: Set 
Mirrored (Mirrored), and add the action Slime - Platform: Simulate control (Left). Create 
another new event with the same set of conditions and actions, but change the parameters 
to check whether Direction is equal to "Right", set the mirroring to Not mirrored, and set 

Figure 13-19.  Events related to the Fly enemy



Chapter 13 ■ Jumping Jack

194

the simulated control to Right. Next, create an event with the condition Slime - Platform: 
Is by wall (left), add the action Slime - Instance variables: Set value, and set Direction 
to "Right". Create another event with the same condition and action, but change the 
parameters to check whether there is a wall to the right, in which case the value of 
Direction should be set to "Left".

Finally, you will create the events that handle interaction between the koala and the 
slime. Since these events are so similar to the events for the Fly object, the quickest way 
to create them is to copy and paste a new copy of each of the corresponding fly-related 
events. Select the new copies of the events (clicking the area to the left of the condition 
to ensure all the conditions and actions are selected), right-click to bring up a menu, and 
select the Replace object; select Fly in the first window that appears, and select Slime in 
the next window that appears. You should see that all the references to the fly have been 
replaced by references to the slime. When you are finished, these events should appear as 
in Figure 13-20.

Finally, there needs to be a “game over” message that appears when the koala’s 
health reaches 0. Create a new sprite named MessageGameOver using the image message-
game-over.png. Set its Layer to UI, set Initial visibility to Invisible, and center it within 
the window bounds, as you did for the MessageComplete object earlier in the chapter. 
Then add the event Koala - Compare instance variable to check whether Health is less or 
equal than 0, and add the action Koala - Destroy and the action MessageGameOver - Set 
visibility (Visible). This event is shown in Figure 13-21.

Figure 13-20.  Events related to the Slime enemy



Chapter 13 ■ Jumping Jack

195

At this point, you now have a complete platformer game, with a great variety of 
obstacles, enemies, and win and lose conditions. This is the longest and most complex 
project you have encountered in this book thus far, so congratulations for reaching this 
point!

Side Quests
With the number of features you have added to this project, the first improvement you may 
want to consider is designing an interesting level, combining the features in various ways. 
You could create a mazelike level where the player has to search for a key to unlock a group 
of blocks surrounding the goal flag. You could add difficult jumps requiring great precision 
or many enemies for an extra challenge. You could add scenic elements (such as clouds 
and bushes) to the level, similar to the recommendation from the Racecar 500 game.

Pits are a feature that many platform games add; pits are holes in the ground that 
cause the player to lose if they fall through. Your instinct may be to add the Destroy 
outside layout behavior to the koala. However, this would have the unfortunate side effect 
of also destroying the player if they jumped above the top edge of the layout, which could 
easily happen, depending on your particular level design. If you want to implement this 
gameplay mechanic, one approach is to a new sprite named Pit, resizing it to be longer 
than the entire map and placing it in the margins of the layout, about 100 pixels below the 
bottom edge of the level. Create a corresponding event that checks whether the koala has 
collided with the Pit sprite and, if so, sets the koala’s health to 0. At that point, the “game 
over” event will handle displaying the MessageGameOver object.

Another item you could add is a heart item that adds one to the koala’s health when 
it is collected. You could set up a heartbeat-like pulsing animation with the Sine behavior 
set to change the size of the object. A few heart items could be strategically placed around 
the level in difficult-to-reach locations, or they could be occasionally spawned when an 
enemy is destroyed, similar to the item-spawning mechanic from the Rectangle Destroyer 
game. Locate the event where an enemy is destroyed, and create a subevent with a 
condition that compares a randomly generated number to a fixed number.

Currently, only enemies cause the koala to lose health points. You could add an 
environmental hazard, such as spikes, that damage the player on collision. Since you 
don’t want the player to be able to walk through the spikes, you probably want to add the 
Solid behavior to the sprite. However, to stop the player from simply walking across the 
spikes damage-free after the first collision, you may instead want to replace the collision 
condition with checking for overlap with the Below sprite (which is sufficient if the spikes 
can only be fallen onto from above).

To add a sense of tension, you may want to consider adding a countdown timer, 
analogous to the timer you added in the Racecar 500 game; if the time reaches 0, then 
the player instantly loses the game. With this addition, you could also consider adding 

Figure 13-21.  Event to display the “game over” message



Chapter 13 ■ Jumping Jack

196

a Clock item, which adds to the total time remaining, thus making it easier to complete 
the level in time. The Clock item also opens up a possibility for a particularly challenging 
level design: you could design a level and initially set the timer to an amount that is 
insufficient to complete the level, thus forcing the player to pick up one or more Clock 
items along the way.

Finally, a common feature in many platform-style games are item blocks, which 
typically contain coins (or could contain other items such as hearts, keys, clocks, etc.) that 
are spawned when the block is hit from below. The blocks typically have two animations: 
a flashing animation, such as the one generated by the spritesheet shown on the left 
side of Figure 13-22, and an empty image, as shown on the right side of Figure 13-22. 
The event condition to set up is similar to the condition for breaking bricks: the Above 
sprite should collide with the item block, and you will also need to add the condition that 
checks whether the flashing animation is playing. The associated actions would be for the 
system to spawn an object directly above the item box (similar to the paddle spawning 
a ball in the Rectangle Destroyer game), and the item box should set its animation to 
the blank image. To be able to spawn different types of items, additional item block 
objects could be created (using the same animations, so as to not give away anything to 
the player), or if you want to have only one item block object, a random number could 
be generated to determine what is spawned, or an instance variable could be used to 
determine which time of item to spawn.

These are just a few ideas to get you started; many more possibilities exist. Feel free 
to experiment and test your creations. Most important, have fun!

Summary
In this chapter, you created the platform-style game Jumping Jack. This game built on 
concepts and skills from most of the previous projects. Two new behaviors were introduced: 
Platform for standard platform controls and Jump-Thru for solidlike objects that characters 
can move or jump through from underneath. The Function object was introduced to 
reduce repeated code, and the Particle object was introduced to create an animated effect 
based on a single small image. Ladder-climbing mechanics were implemented, and many 
interactive objects were added to the level. Enemies with different movement patterns were 
also created to add an active challenge for the player. Finally, a great number of ideas for 
additional features were suggested in the “Side Quests” section.

In the next chapter, you will create the final game project in this book: Treasure 
Quest, a top-down perspective adventure game, inspired by the classic console game The 
Legend of Zelda.

Figure 13-22.  Item block graphics: a flashing block animation (left) and an empty block 
image (right)



197© Lee Stemkoski and Evan Leider 2017 
L. Stemkoski and E. Leider, Game Development with Construct 2,  
DOI 10.1007/978-1-4842-2784-8_14

CHAPTER 14

Treasure Quest

In this chapter, you will create a top-down adventure-style game named Treasure Quest, 
shown in Figure 14-1, inspired by classic games such as The Legend of Zelda.

Figure 14-1.  The Treasure Quest game

In Treasure Quest, the player controls a character named Hero whose goal is to find 
and collect the treasure chest. Along the way, there will be obstacles such as rocks that 
block the hero’s progress and enemies that attack the hero. The hero has a sword, which 
can be swung to destroy enemies (or any bushes that block the hero’s path). Coins are 
sometimes dropped by defeated enemies (or can be found hidden around the level), and 



Chapter 14 ■ Treasure Quest

198

they can be used to purchase objects such as hearts (which restore a health point) or 
bomb bags (which contain a number of bombs, which can then be used to destroy rocks). 
There are three varieties of enemies: one that flies randomly through the air, one that 
moves randomly on the ground, and one that actively seeks out and chases the hero. In 
this project, the game world is spread out across multiple layouts.

The player moves the hero with the arrow keys, swings the sword with the spacebar 
key, and places bombs with the B key (after they are obtained). For simplicity, the 
purchasing mechanic is handled by placing items behind doors that open (disappear) on 
contact if the hero has enough coins. The user interface displays the hero’s health and the 
number of coins and bombs currently held. Because of the complexity of this game, a sign 
object is introduced; if the hero touches the sign, the corresponding message is displayed 
on the user interface. This can be used to inform the player of the control scheme, 
to explain game mechanics (for example, how doors work), to provide navigational 
information (for example, “the bomb shop is to the south”), to give the player hints about 
how to complete the level, and so forth.

The chapter assumes familiarity with most of the topics presented in earlier 
chapters, including most types of objects, behaviors (8-Direction, Solid, Bullet, Fade, 
Rotate, Flash, Timer), instance and global variables, and functions. In the event sheet, 
groups, subevents, and “or” blocks will be used frequently. The Line of sight and Persist 
behaviors will be introduced, as well as the Global property for objects and layers, which 
enables them to continue existing when switching to a new layout (which is particularly 
important for the hero and the user interface). Many new mechanics will be introduced, 
such as switching between layouts and creating an “item shop.” Since you have gained 
great experience in using Construct by this point, the style in this chapter is less guided 
and emphasizes game design concepts rather than the details of setting up events 
(although the events will be fully displayed in the chapter figures, as usual).

To begin, download the assets for this chapter from the book web site. Set the layout 
size to 960, 960 and the window size to 480, 480. Change the layout name to Field and 
the event sheet name to Game Events. In the View tab, select the Snap to grid and Show 
grid check boxes, and set the grid width and grid height both to 16. Add three additional 
layers to your project (for a total of four layers), and name them Map, Walls, Main, and UI. 
For the UI layer, set Parallax to 0,0; this will fix the UI in place, as desired.

Level Design
In this section, you will set up the level, using a tilemap for the background image. Unlike 
some of the previous projects (such as Racecar 500 and Jumping Jack), you will not add 
the Solid behavior to the tilemap. Instead, you will create wall sprites, which will be 
invisible and have the Solid behavior attached; instances will be placed over tiles that 
correspond to impassable barriers (such as fences or mountains). Also, when designing 
each level, the top 64 pixels of the layout should be reserved for the user interface area, so 
this area should be filled with a barrier of some sort. After setting up the tilemap, you will 
also create sprite objects for trees, bushes, and rocks (to which interactivity will be added 
later).



Chapter 14 ■ Treasure Quest

199

To begin, add a Tilemap object named World to the Map layer of the layout, 
using the tileset image adventure-tileset.png. These tiles are 32-by-32 pixels, so no 
properties need to be changed. Design a level using these tiles. For variety, there are lots 
of variations of grass tiles. Create a border around the perimeter of the layout. Figure 14-2 
shows one such layout, which contains a grassy field with some dirt paths leading to two 
mountains, one of which contains a cave entrance (which will actually lead the player to 
a new screen), while the other has a ladder leading up the side to the top (which will be 
a good location to place the treasure chest, as you will see later). Figure 14-2 is displayed 
using a 32-by-32 grid to make the tile selection more apparent. When you are finished, 
click the Tilemap panel, click on the Select Tool, and then lock the Map layer.

Figure 14-2.  Tilemap for a sample level

Next, you will create wall objects that specify the solid parts of the level. Make the 
Walls layer active in the layout, and add a new sprite named Wall. Draw anything you like 
in the image editor. Close the image editor, set Opacity to 50 (to make it easier to position 
in the layout), and set Initial visibility to Invisible. Add the Solid behavior. Then, create 
as many additional instances as necessary, resizing and positioning each one, until the 
tiles corresponding to solid objects are all covered, such as the fence and mountainside 
(but not the ladder or cave entrance!) tiles. When you are finished, the wall layout 
corresponding to Figure 14-2 would look similar to Figure 14-3, for example; a diamond 



Chapter 14 ■ Treasure Quest

200

pattern was drawn on the Wall sprites to make them easier to see in the diagram. When 
you are finished, lock the Walls layer, and uncheck the box next to the layer name so that 
the objects in this layer are no longer visible (even at 50 percent opacity, they can be 
distracting).

Next, make the Main layer active in the layout. Create three new sprites named Tree, 
Bush, and Rock, using the images tree.png, bush.png, and rock.png, respectively. Check 
their collision polygons, and adjust them if desired. Add the Solid behavior to each of 
these objects. Add the Fade behavior to the Bush object, and change Fade out time to 0.25 
and Active at start to No. Create multiple instances of each of these objects, and position 
them throughout the level. Change the size of individual tree instances for variety, if 
desired. When finished, the layout corresponding to Figure 14-2 could look similar to 
Figure 14-4, for example. Later in this chapter, you will add interactivity to some of these 
objects: bushes will be able to be destroyed by the hero’s sword, and rocks will be able to 
be destroyed with bombs.

Figure 14-3.  The wall objects added to the layout



Chapter 14 ■ Treasure Quest

201

Hero Setup
First, you will set up the hero character, just as you did for the Cleanup Challenge and 
Maze Runman games. Create a new sprite named Hero; in the Animation frames window, 
load the spritesheet general48.png (three horizontal cells and four vertical cells), and set 
the Animation properties Speed to 6, Loop to Yes, and Ping-pong to Yes. Then duplicate 
this animation three times so that there are four animations total. Next, rename the 
animations to South, West, East, and North. Select the animation named South in the 
list, and in the “Animation frames” window, click each frame that does not correspond to 
the character walking south (those initially numbered 3 through 11), and press the Delete 
key. Repeat this process for the West, East, and North animations, deleting the frames 
not required within each of the animations. Next, adjust the sprite’s collision polygon 
to a smaller circular shape (as shown in Figure 14-5), right-click the polygon, and select 
Apply to all animations. Close the image editor, and change the size of the sprite to 32,32. 
Add the behaviors Bound to layout, Scroll to, and 8-Direction; change the 8-Direction 
properties Speed to 120 and Set angle to No.

Figure 14-4.  Adding trees, bushes, and rocks to the layout



Chapter 14 ■ Treasure Quest

202

Next, you will set up some events to set the correct hero animation, but instead of 
relying on key press conditions, as you did in previous projects, here you will use the 
angle of motion to select the correct angle. For convenience, you will convert this value to 
the nearest multiple of 90 (similar to the calculations in Maze Runman) and store it in an 
instance variable. Also, as was the case in the Maze Runman game, angles of motion are 
measured in the range from -180 to 180 (in contrast to the sprite object’s Angle property, 
which uses the range from 0 to 360). Therefore, the angles -180, -90, 0, 90, and 180 will 
correspond to the directions West, North, East, South, and West, respectively.1

Select the Hero sprite, and add an instance variable named AnimAngle with an  
initial value of 90. In the event sheet, create a group named Hero Animation. To this  
group, add a subevent that checks whether the hero is moving (via the 8-Direction  
condition), in which case the Hero instance variable AnimAngle should be set to  
round( Hero.8Direction.MovingAngle / 90 ) * 90, which calculates the nearest 
multiple of 90. Then add four subevents to this event, each of which will compare 
the value of the hero’s AnimAngle variable and, depending on the result, will set the 
Hero animation accordingly. If AnimAngle is equal to 90, for example, the animation 
name should be set to "South". Similarly, the value 0 corresponds to "East", and -90 
corresponds to "North". Since "West" has two corresponding values, set the condition 
to an “or” block, and check whether AnimAngle is equal to 180 or whether AnimAngle 
is equal to -180. Finally, add another subevent to the group (not a subevent of the 
event currently numbered as 2) with the System condition Else, in which case the Hero 
animation should be stopped. Note that this event corresponds to when the Hero – Is 
moving condition is false, and the left edges of these conditions should line up in the 
event sheet. When you are finished, these events should appear as in Figure 14-6.

Figure 14-5.  Collision polygon for the Hero sprite

1Note that the direction West has two corresponding angles; because of the cyclic nature of angle 
measurement, no matter what range of values is used, two different multiples of 90 (the minimum 
and maximum values in the range) will end up corresponding to a single direction.



Chapter 14 ■ Treasure Quest

203

Sword-Fighting Mechanics
A separate sprite will be created for the sword. The goal is that when the player presses 
the attack key, a sword will be spawned (at the correct position and angle), it will rotate 
(to give the appearance that the hero is swinging it), and then it will be destroyed. 
(Presumably, the hero is extremely quick at sheathing and unsheathing his sword.) For 
simplicity, the hero will not move while swinging the sword.2

To begin, add a new sprite named Sword with the image sword.png. In the image 
editor, set the origin of the sword to the point on the sword handle where it should appear 
held by the hero, and apply the change to all animations. You may want to consider 
setting the collision polygon so that it is set to the bounding box of the image to make 
it easier for the player to hit moving targets. Close the image editor, change the size of 
the sprite to 32,12, and position it outside the layout. Add the behaviors Destroy outside 
layout and Rotate. For this game, the goal is for the sword to swing through 180 degrees 
in 0.25 seconds; therefore, set the rotation speed to 720 (since one-fourth of 720 is 180). 
Since the midpoint of the sword’s swing should be aligned with the direction the hero is 
facing, after the sword is spawned, you will have to subtract half the range of the sword 
swing from the direction the hero is facing, as you will see later.

When spawning a sprite, the default setting is for the origin of the new sprite to be 
aligned with the origin of the sprite that is spawning it. However, it would be best if the 
handle of the sword spawned in the location of the hero’s hand (we will assume the hero 
is right-handed in this game). To accomplish this, you will create another image point  
for each animation, indicating the position of the hero’s right hand in each case.  
Double-click the hero to open the image editor windows, and select the South animation. 

Figure 14-6.  Events for setting the Hero animation

2To implement this, you would need to consider adding the Pin behavior to keep the sword in the 
correct position relative to the hero, as well as some events to adjust the anchor point and z-order of 
the sword in the case that the hero changes direction suddenly.



Chapter 14 ■ Treasure Quest

204

Open the image points menu, click the plus icon to add a new image point, and then click 
in the position indicated in Figure 14-7 to set the location of the image point. In the list of 
image points, right-click Imagepoint 1 and select Apply to whole animation (otherwise, 
the other frames of the South animation would not have such a point set, which would 
cause inconsistencies in where the sword will be spawned). Repeat this process, 
adding image points for the North, East, and West animations in the locations shown in 
Figure 14-7. When you are finished, close the image editor windows.

Now you are ready to create the events related to sword-swinging. In the layout, 
add a Keyboard object to the project. In the event sheet, add a new group called Sword 
Mechanics. To this group, add an event that checks whether the spacebar has been 
pressed and uses a System condition to check whether Sword.Count is equal to 0  
(which will prevent multiple sword instances from being onscreen at the same time). 
Create actions for the following set of tasks:

•	 The hero’s movement should stop, and the 8-Direction behavior 
should be disabled.

•	 The hero should spawn a sword on the Main layer, at image point 1.

•	 The sword’s angle should be set to Hero.AnimAngle - 90 degrees.

•	 Wait for 0.25 seconds (the duration of the sword swing).

•	 Destroy the sword, and reenable the 8-Direction behavior.

Figure 14-7.  Positions for new image points to indicate sword spawn location



Chapter 14 ■ Treasure Quest

205

Figure 14-8.  Events for swinging the sword and destroying bushes

Multiple Levels
Next, you will set up the ability for the hero to move between multiple screens. To begin, 
you will set up a second level. In the projects panel, right-click the layout folder and add 
a new layout, but do not create a new event sheet. Once the layout is created, change the 
name to Cave, set the size to 480,480 (which is smaller than the field but matches the 
window size exactly), and set up the layers and grid options just as you did for the Field 
layout. Click the Cave layout, and in the Properties panel, set the layout property’s Event 
sheet (which is currently set to none) to Game Events. Set the active layer to Map, open the 
project panel again, and drag World (the tilemap object) onto the layout area. This will 
create a copy of the preexisting tilemap. Resize this to fit the layout, and draw a simple, 
empty, cavelike interior, as shown in Figure 14-9, making sure to leave a gap (some dirt 
tiles) in the bottom area where the hero will be able to exit, and an empty 64-pixel high 
region across the top, where the user interface will eventually be displayed. Lock the Map 

In addition, since the hero is presumably right-handed, the hero needs to appear above 
the sword if he is facing north or west, so add an event that checks either whether the hero’s 
North or West animation is playing, in which case the hero should be moved to the top of 
the layer. Finally, add an event that checks whether the sword has collided with the bush, in 
which case start the bush fade-out process. When the events in this section are finished, they 
should appear as shown in Figure 14-8.



Chapter 14 ■ Treasure Quest

206

layer, and set the active layer to Walls. From the project panel, drag a Wall object onto the 
layout, positioning it over tiles that should be considered solid. Duplicate this object, and 
repeat this process until the wall tiles are all covered by Wall objects, just as you did when 
designing the previous layout. When finished, lock the Map layer, and set the active layer 
to Main.

Next, you will implement the layout-switching mechanic using a pair of sprite 
objects named Spawn and Portal. When the hero collides with a portal, a new layout will 
be loaded, and the hero will be positioned at a particular spawn instance, both of whose 
names are stored in instance variables of the Portal object.

Return to the Field layout. Create a new sprite named Spawn; in the image editor, 
fill in the area with a solid color and draw a letter S. Close the image editor windows, set 
Size to 32,32, and set Initial visibility to Invisible. Add an instance variable called Name 
of type Text with an initial value of Start. Similarly, create another new sprite named 
Portal, drawing an image of a letter P in the image editor and setting it to be initially 
invisible. (Setting the portal size is not as important here; spawn instances should be the 
size of the hero, while portal sizes may vary.) Add two instance variables to the Portal 
object, one named Layout of type Text with an initial value if Field and the other named 
Spawn of type Text with an initial value of Start. In the Field layout, place the Spawn 
object at a position where you want the hero to be when the game starts. Place the Portal 
object over the entrance to the cave, and change its Layout variable to Cave and its Spawn 
variable to Entrance.

Figure 14-9.  Initial design for the Cave layout



Chapter 14 ■ Treasure Quest

207

Next, create another spawn instance, and place it a bit below the entrance to the cave 
(making sure the two objects do not overlap, which could cause the hero to immediately 
warp to another layout), and change its Name variable to CaveExit. Switch to the Cave 
layout, and from the project panel, drag an instance of the Portal object and an instance 
of the Spawn object onto the layout. Position the Spawn instance above the cave exit, and 
change its Name variable to Entrance (to match the Spawn variable of the portal from 
the previous layout). Position the Portal instance along the bottom edge of the cave exit, 
and change its Layout variable to Field and its Spawn variable to CaveExit (to match 
the Name variable of the spawn instance by the cave in the previous layout). Figure 14-10 
shows the positions of these Portal and Spawn objects.

Now you will set up the events that control this game mechanic. In the event 
sheet, add a global variable named SpawnLocation with an initial value of Start. This 
is necessary to store the name of the spawn instance that the hero should be moved to 
when switching between layouts. In particular, if you were to create an event with an 
action that switches the layout, followed by an action that moves the player to the new 
spawn point, it would not work properly since the new layout isn’t loaded until after the 
event is finished (and thus the spawn point you seek is not yet available).

Next, select the Hero object, and change the Global property to Yes. The result of 
changing this property is that the Hero instance will not be destroyed when switching to 
the new layout; it will still be present after the next layout loads. This is important because 
every layout requires an instance of the Hero object, and it is preferable to share the same 
instance between them so that any instance variables you may set up for the hero will 
preserve their values when layouts are switched. Finally, in the event sheet, create a new 
group called Portal and Spawn. Add an event that checks whether the hero has collided 
with a portal, in which case the global variable SpawnLocation should be set to Portal.
Spawn, and then the layout should be changed with the action System - Go to layout (by 
name), entering Portal.Layout. Create a second event with the System condition On 
start of layout and with the Spawn condition that checks for the instance whose Name 
variable is equal to the global variable SpawnLocation. To this event, add an action that 
sets the hero to the location of the Spawn object. When you are finished, these events 
should appear as shown in Figure 14-11.

Figure 14-10.  Placement of the Portal and Spawn instances in the field layout (left) and 
Cave layout (right)



Chapter 14 ■ Treasure Quest

208

When testing these new features, make sure the Field layout is displayed when 
clicking the Run layout icon so that the field level is displayed first. If you run the project 
while the Cave layout is displayed, the cave level will be loaded first instead, and since 
there is no hero instance available, you will not be able to test any of the features.

User Interface Design
In this section, you will set up the various elements of the user interface. There are three 
main features that the user interface will support: a display of the hero’s status (health 
remaining, coins collected, and bombs available), win and lose message graphics, and an 
area that displays the text written on signs (which is an object that you will create later).

To begin, in the Field layout, set the active layer to UI. In the Layers panel, select the 
UI layer, and change the property Global to Yes. The effect of this setting is similar to the 
effect of the Global setting of the Hero object; the objects contained in the global layer 
will not be destroyed when switching to another layout, provided that the layout contains 
a layer with the same name. (This will be apparent only while the game is running, 
however.) If you switch to the Cave layout and select its UI layer, you will see that its 
Global property has been automatically changed to (Yes, overridden), which indicates 
that this layer will in fact receive copies of the objects in the Field layout’s UI layer. For the 
Global property to work correctly, it is important that the layout containing the Global 
layer is loaded before any other layouts that also contain this layer.

Create two new sprites, one named MessageWin with the image file message-win.
png and the other named MessageLose with the image file message-lose.png. Resize both 
of these sprites so that their width is less than 400 (so they fit within the window), and 
change their height proportionately. To horizontally center these sprites in the window 
(which is 480 pixels wide), change their position so that their X coordinate is 240. Set their 
Initial visibility to invisible. The events that cause these objects to appear will be added 
later in the chapter, as they require additional objects to be created.

Figure 14-11.  Events for switching layouts with the Portal and Spawn objects



Chapter 14 ■ Treasure Quest

209

Status Display
The player will want to be aware of three quantities at all times: the hero’s health, the 
number of coins the hero has collected, and the number of bombs the hero has available 
to use. Although the coin and bomb objects have not yet been added, you can still set 
up the corresponding variables and text displays at this time. Select the Hero object, and 
add three new instance variables: Health, Coins, and Bombs. Each of these will store a 
number; the initial values should be set to 3, 0, and 0, respectively. Create a new sprite 
named BackgroundUI, and in the image editor, fill it with a dark gray color. Change the 
size to 480-by-64 pixels, and position it in the top-left corner of the layout. (This is why 
you needed to fill the top 64-pixel area of each layout with a solid barrier; this part of the 
map will always be obscured by the user interface.) Next, create three new Text objects, 
named TextHealth, TextCoins, and TextBombs; set their font to Arial, bold, size 18; set 
their font colors to pink, light yellow, and light gray, respectively; and set their initial 
text properties to "Health: 3", "Coins: 0", and "Bombs: 0", respectively. Resize and 
position these objects on the BackgroundUI object, equally spaced from each other, as 
shown in Figure 14-12. In the event sheet, create a new group named User Interface. 
To this group, add an event with the condition System - Every tick, and add actions that 
set the text of the three text objects TextHealth, TextCoins, and TextBombs to "Health: " 
& Hero.Health, "Coins: " & Hero.Coins, and "Bombs: " & Hero.Bombs, respectively. 
Figure 14-13 shows this event.

Sign Mechanics
Signs, which have the ability to display text to the player, can serve a variety of purposes 
and have the potential to greatly improve the overall gameplay experience. Signs can help 
the player navigate the game world, introduce new game mechanics, provide clues, or 
remind the player of the control scheme. In this section, you will create a sign object for 
the game world that the hero can interact with and will create a corresponding display in 

Figure 14-12.  Positioning of Text objects in the status display area of the user interface

Figure 14-13.  Group and event for updating user interface text



Chapter 14 ■ Treasure Quest

210

Figure 14-14.  Positioning of the sign text display in the user interface

the user interface that displays the sign message. To keep the player controls as simple as 
possible, the sign text will be displayed whenever the hero collides with a sign (in contrast 
to requiring the user to press a button to read the sign), and the sign text display will be 
hidden once the hero moves a few pixels away from the corresponding sign.

Since the UI layer is currently active, you will add the display objects first. In the Field 
layout, add a new sprite named BackgroundMessage using the image file background-
message.png. Change its size to 400,160, and position it toward the bottom of the user 
interface area. Next, add a Text object named TextMessage, and change the font to Arial, 
bold, size 18. Position and resize the Text object so that it nearly fills the same area as the 
BackgroundMessage object. Then, for the initial text, enter the word test 20 to 30 times; 
this is simply to give you an idea of how much text this object can display in the given area 
at the current font size (which can be adjusted as desired). Set the initial visibility of both 
these objects to Invisible. Figure 14-14 illustrates the position of these new objects, with 
the other UI components included for reference.

Next, you will add the sign with which the hero can interact. In the layout, set the 
active layer to Main, and create a new sprite named Sign with the image sign.png. 
Change its size to 32,32, add the behavior Solid, and add an instance variable named 
Message of type Text with the initial value This is a sign.



Chapter 14 ■ Treasure Quest

211

In the event sheet, you will create two events: one for displaying this message  
in the user interface and one for hiding the display objects once the hero moves far 
enough away from the sign. In the User Interface group, create a new event that checks 
whether the hero has collided with a sign, in which case the BackgroundMessage and 
TextMessage objects should become visible and the TextMessage object should have its  
text set to Sign.Message. The event to “turn off” the display is a bit more complicated,  
as it needs to measure the distance between the player and the correct instance of the  
sign (as many games may contain more than one sign per layout). In particular, when  
the player is next to the sign, the distance between their center points will be about 32  
pixels (the size of most of the game objects); you will hide the display elements once the  
hero moves an additional 4 pixels away or, in other words, once the distance becomes 
greater than 36. The distance between two points can be calculated using the function 
distance, which takes four inputs: the X and Y coordinates of the two points between  
which the distance is being measured (similar to the inputs of the angle function). With 
this in mind, create a new event that checks whether TextMessage is visible. Add a second 
condition that checks whether the Sign instance variable Message is equal to TextMessage.
Text (this selects the correct sign instance in case of multiple signs being present). Add 
a third condition with the System condition Compare two values, and check whether 
distance (Hero.X, Hero.Y, Sign.X, Sign.Y) is greater than 36. To this event, add actions that 
set BackgroundMessage and TextMessage to be invisible. When you are finished, these 
events should appear as shown in Figure 14-15.

Items
In this section, you will create the items referenced by the text displays in the user 
interface, as well as related objects used to implement the corresponding game 
mechanics. These objects and their purpose are as follows:

•	 Heart: Restores the hero’s health

•	 Bomb: Destroys rocks (and enemies, which will be added later)

•	 Explosion An animated effect that appears after the bomb 
explodes

•	 Bomb bag: Increases the hero’s bomb count

Figure 14-15.  Events for the user interface displays



Chapter 14 ■ Treasure Quest

212

•	 Coin: Used to purchase hearts and bomb bags; there are different 
types, which have different values

•	 Coin door: The hero may pass if he has enough coins; can be used 
to implement a shop mechanic

•	 Treasure chest: The ultimate item the hero is trying to collect

Hearts
Hearts are the simplest item to implement. In the layout, make sure the active layer is 
set to Main, and then create a new sprite named Heart with the image heart.png. In the 
event sheet, create a new group named Items. Add an event to this group that checks 
whether the hero has collided with a heart, in which case the hero’s instance variable 
Health should be increased by 1, and the heart instance should be destroyed.  
Figure 14-16 shows this event.

Coins
Next, you will add coins. There will be three different variations: copper, silver, and gold, 
with values 1, 5, and 20, respectively. In the layout, add an object named Coin with the 
image coin-copper.png. Change the name of the animation to Coin1. Add two more 
animations, with the names Coin5 and Coin20, with image files coin-silver.png and 
coin-gold.png, respectively. Close the image editor windows. Add an instance variable 
named Value of type Number with a default value of 1. In the event sheet Item group, 
create a new event with the Every tick condition that sets the Coin animation name to 
"Coin" & Coin.Value; this will set the correct image for the coin, depending on its value 
(provided it is 1, 5, or 20). Create another event that checks whether the hero has collided 
with a coin, in which case the hero’s instance variable Coins should be increased by Coin.
Value, and the coin instance should be destroyed.

Figure 14-16.  Event for collecting the Heart object



Chapter 14 ■ Treasure Quest

213

Coins are “spent” by the hero when he passes through doors, which have an 
associated cost. Just as there are variations in the coin image and value, there will be 
variations in the door image and cost. In the layout, add an object named CoinDoor with 
the image door-05.png. Change the animation name to Door5. Add another animation 
with the name Door25 and the image door-25.png. Close the image editor windows. 
Add an instance variable named Cost of type Number with a default value of 5. Also add 
the behavior Solid. In the event sheet, add an action to the Every tick event, and set the 
CoinDoor animation name to "Door" & CoinDoor.Cost. Create a new event with that 
checks whether the hero has collided with a door and also checks whether the hero’s 
instance variable Coins is greater than or equal to CoinDoor.Cost (to make sure the hero 
has enough coins). The associated actions are to subtract DoorCoin.Cost from the hero’s 
Coins variable and to destroy the door. Figure 14-17 shows these events.

You are now ready set up the Cave layout to function as an item shop. Switch to 
the Cave layout, unlock the Map and Walls layers (if they were previously locked), and 
edit the tilemap to add two borders surrounding rectangular areas, each containing a 
single gap for a CoinDoor object in the front, as shown in Figure 14-18. Add instances of 
the solid Wall object covering the newly added tiles so that the hero is prevented from 
simply moving through them. Add CoinDoor instances to each of the gaps; change the left 
door’s Cost variable to 5 and the right door’s Cost variable to 25. In the center of the left 
rectangle, add a heart instance. Later, after creating the BombBag object, you will add it to 
the center of the right rectangle. Next, you will add a few signs to explain this room to the 
player. Near the left door, add a sign with its Message variable set to Hearts restore one 
health. Near the right door, add a sign with Message set to Bomb bags contain 4 bombs. 
Use with the B key. In the center of the screen, closer to the door, add a sign with Message 
set to Doors will open if you have enough coins. You may even want to consider 
placing a sign near the cave entrance on the Field layout, with its Message set to Item 
shop. To simplify testing the shop mechanic, you may want to add a few coin instances 
close to the hero, with their Value variable set to 20.

Figure 14-17.  Events for Coin and CoinDoor objects



Chapter 14 ■ Treasure Quest

214

You will notice that if you open a door and collect an item and then leave and return 
to the layout, the door and item will have respawned. For item shops (which typically 
appear to carry an infinite stock of items in most games), this is ideal. However, for items 
such as coins, this is probably not desirable, because the player could repeatedly exit and 
reenter a layout and collect the respawned coins, making them trivially easy to acquire 
(rather than as a well-earned reward for exploration or combat). To remedy this situation, 
you may want to consider adding the Persist behavior to the Coin object. Among the 
effects of this behavior are that once an instance is destroyed, it will not be re-created if 
the layout is reloaded. (In addition, the property values of a persistent object are stored in 
memory and not reset to their default values when the layout is reloaded.) In theory, you 
could consider adding this behavior to other objects (such as bushes, rocks, or enemies), 
but do not add it to any type of item being sold by the shop, or else the player will not be 
able to purchase the item a second time (at least, not at that location).

Bombs
It is now time to add bombs. In the layout, create a new sprite named BombBag with image 
bomb-bag.png. Change its size to 32,32. Place an instance of this object in the empty 
rectangular area in the Cave layout’s item shop. In the event sheet Item group, create a 
new event that checks whether the hero has collided with a bomb bag, in which case the 
hero’s instance variable Bombs should be increased by 4, and the bomb bag instance 
should be destroyed.

Next, in the layout, create a new sprite named Bomb. In the Animation frames 
window, import frames from the sprite sheet bomb-flash.png (which contains eight cells 
horizontally and six cells vertically), and set the animation speed to 8. Since there are 
48 frames altogether, this speed means it will take 6 seconds for the animation to finish. 
Close the image editor windows, change the size of the sprite to 24,24, and move it to the 
layout margins. Create another new sprite, named Explosion. In the Animation frames 

Figure 14-18.  Tilemap design for an item shop mechanic



Chapter 14 ■ Treasure Quest

215

window, import frames from the sprite sheet explosion.png (which contains six cells 
both horizontally and vertically), and set its animation speed to 36. Adjust the collision 
polygon of one of the frames containing the largest image (such as frame 10) to a circular 
shape, and apply the change to the whole animation. Close the image editor windows, 
change the sprite size to 96,96, and move it into the layout margins. Add the Fade 
behavior (and leave the associated properties at their default values).

Finally, you will add the events for the bomb mechanics. In the event sheet, create a 
new event that checks whether the B key was pressed and also whether the hero’s Bombs 
variable is greater than or equal to 1. When this occurs, you should subtract 1 from the 
hero’s Bombs variable, the hero should spawn a bomb on the Main layer at image point 
1 (which is also used when swinging the sword), and the hero sprite needs to be moved 
to the top of the layer (so that the bomb appears underneath the hero). Create another 
event that checks whether the bomb’s animation is finished, and if so, the bomb should 
spawn an Explosion object on the Main layer, and the bomb should be destroyed. Contact 
with the Explosion object will be used for damage and destruction purposes; create two 
new events that check whether the explosion has collided with the bush or the rock, and 
destroy the corresponding object. Finally, create an event that destroys the Explosion 
object when its animation is finished. Figure 14-19 shows the events described in this 
section.

Figure 14-19.  Events involving bombs and related objects



Chapter 14 ■ Treasure Quest

216

The Treasure Chest
The goal in Treasure Quest is, as the title indicates, to obtain the treasure, which you will 
implement in this section. In the layout, create a new sprite named Chest with the image 
treasure-chest.png. Choose a strategic location to place the chest in the layout that will 
present a challenge to the player. For example, Figure 14-20 shows the chest placed on 
top of a mountain, which will be accessible only after destroying the rock at the base of 
the ladder, which requires the hero to purchase a bomb bag at the item shop, which in 
turn requires that coins be collected (and in the next section, you will implement enemies 
that drop coins when they are defeated).

The event corresponding to the end of game mechanic is fairly straightforward. 
Create a new event that checks whether the hero has collided with the chest, in which 
case you could add 500 to the hero’s Coins variable, destroy the chest, make the win 
message visible, and destroy the lose message (so that the win and lose messages cannot 
be on the screen at the same time). Figure 14-21 shows this event.

Figure 14-20.  A possible location for the treasure chest

Figure 14-21.  The event for collecting the treasure chest and winning the game



Chapter 14 ■ Treasure Quest

217

Enemies
At this point, you have a variety of components in place that will enable you to design an 
intricate level. However, there are no active antagonists in your game yet, and all that the 
hero’s sword does at this point is destroy bushes. If your goal was to create a game called 
Adventures in Landscaping, then you could stop here. However, it will be assumed that 
you want to create more interesting opponents for the hero to fight. In this section, you 
will create three different types of enemies, shown in Figure 14-22.

•	 Righter, which moves randomly along the ground either north, 
south, east, or west, changing direction every few seconds

•	 Flyer, which flies above the ground (and is not affected by solid 
objects), moves in any direction, and changes direction frequently

•	 Seeker, which moves randomly along the ground as Righter does, 
but if it is able to see the hero (provided that no solid objects are 
blocking the line of view), then it chases the hero

Enemies will do a single point of damage to the hero’s health (causing the hero to 
enter a flashing, invincible state for a few seconds), while enemies themselves can be 
destroyed by a single sword hit or bomb explosion. To manage the different types of 
enemies, a single Enemy sprite will be created, and one animation will correspond to 
each of the types.3 All the behaviors needed by any type of enemy will need to be added 
to this one base object and adjusted for each instance, depending on the animation 
displayed.

To begin, create a new sprite named Enemy. Rename the animation to Righter,  
and load the image file enemy-righter.png. Create two new animations named Flyer 
and Seeker, loading animation frames from the sprite sheets enemy-flyer.png and 
enemy-seeker.png, respectively (each of which contains four cells horizontally and one 
cell vertically); change the two animations’ properties Speed to 8 and Loop to Yes.  
Close the image editor windows, and resize the sprite to 32 by 32.

Figure 14-22.  Three types of enemies: Righter, Flyer, and Seeker

3There is a much better way to accomplish the same goal using a feature in Construct 2 called 
Families, but it is available only in the paid, licensed version of the software. Since the projects in 
this book are all designed to be created with the free version of Construct 2, we will use the “single 
object, multiple animations” approach here.



Chapter 14 ■ Treasure Quest

218

Add the behaviors Bound to layout, Timer, Bullet, Sine, and Line of Sight. Create two 
more instances of the Enemy object so that there are a total of three. Among those three, 
change the Initial animation property so that one is Righter, one is Flyer, and one is 
Seeker. You will next customize the properties of each of these enemies, and if you want 
to create another enemy of a particular type later, duplicate the instance corresponding to 
the enemy type you want to add.

First, select the Righter enemy. The Sine behavior is used to animate this enemy type 
with a pulsing effect (but not the others, so this behavior will be disabled for the other 
enemy types later). Set the Sine behavior properties Movement to Size, Period to 0.5, and 
Magnitude to 4; then set the Bullet behavior properties Speed to 50, Bounce off solids to 
Yes, and Set angle to No.

Next, select the Flyer enemy. Change the Sine behavior property Active at start to No. 
Set the Bullet behavior properties Speed to 80, Bounce off solids to No, and Set angle to No. 
Since the bullet behavior is unaffected by solid objects, this will present the illusion of the 
enemy flying above the world.

Finally, select the Seeker enemy. Change the Sine behavior property Active at start 
to No. Set the Bullet behavior properties Speed to 110, Bounce off solids to Yes, and Set 
angle to Yes. This enemy will make use of the Line of Sight behavior to check whether the 
hero can be seen by the enemy. The Line of Sight properties define the area in which the 
enemy can detect (or “see”) other objects. Change the property Range to 240; this is how 
far away the enemy can detect other objects. Change the property Cone of view to 160; 
this is the angular range (in degrees, around the direction in which the enemy is facing) 
where other objects can be detected.

Now you will set up timers for each of the enemy types, which will cause them to 
change direction periodically. In the event sheet, create a new group called Enemies, and 
add an event with the condition On start of layout. Add three subevents to this event, 
which check whether the Enemy animation name Righter, Flyer, or Seeker is playing, and 
in each case start a timer with the Turn tag to repeat regularly, every 3, 1, or 3 seconds, 
respectively. Create another event in the Enemies group that checks whether the Enemy 
timer tagged as Turn has activated, and as before, create three subevents to this event 
to check for each of the possible Enemy animation names. For the Righter and Seeker 
enemy types, add the action to set their bullet angles of motion to choose(-90, 0, 90, 
180); for the Flyer enemy type, set the bullet angle of motion to random(-180, 180). 
Finally, the Seeker enemy should select a random direction only if it cannot see the hero, 
so to the seeker event, add a second condition of Enemy - Has line of sight to another 
object (Hero), and invert it. Then add another event to the Enemies group (but not as 
a subevent to the On timer event) that checks whether an enemy is playing the Seeker 
animation and also whether the enemy has a line of sight to the player, in which case 
it should set the enemy’s bullet angle of motion to the expression angle( Enemy.X, 
Enemy.Y, Hero.X, Hero.Y ); this will cause the Seeker to pursue the hero, until the hero 
gets hit or runs out of sight behind a solid object. Figure 14-23 shows these events.



Chapter 14 ■ Treasure Quest

219

Next, you will set up the interaction between the hero and the enemies: enemies 
colliding with the hero damage the hero, while swords or bomb explosions colliding with 
an enemy destroy the enemy (which then drops a coin). First, you will add an animated 
smoke effect that will appear when an enemy is destroyed. Create a new sprite named 
Smoke; in the Animation frames window, load the sprite sheet smoke.png (which has six 
cells both horizontally and vertically). Set the animation speed property to 72 (so the 
animation will be finished in 0.5 seconds). Close the image editor, change the sprite size 
to 48,48, add the Fade behavior, and change the fade out time to 0.5 seconds (to match 
the animation time).

In the event sheet Enemies group, create a new event that checks whether the sword 
or an explosion has collided with an enemy, in which case the enemy should spawn a 
coin (whose Value variable should be set to 1 as a default), the enemy should spawn 
a smoke object, and the enemy should be destroyed. Occasionally, the enemy should 
drop a silver or gold coin, so to this event you will add a pair of subevents that generate 
a random number and, if it falls in a certain range, change the value of the coin object. 
For the first of these, use the system condition Compare two values, and check whether 
random(0, 100) is less than 20, in which case the coin should have its Value set to 5.  
For the second subevent, check whether random(0, 100) is less than 5, in which case the 
coin Value should be set to 20.

Figure 14-23.  Events for enemy movement for each of the three enemy types



Chapter 14 ■ Treasure Quest

220

Finally, to damage the player (and implement the temporary invincibility mechanic), 
add the Flash behavior to the Hero object. In the event sheet Enemies group, create a 
new event that checks whether an enemy has collided with the hero and also checks 
that the hero is not flashing, in which case the hero should flash for 2 seconds and the 
hero’s Health variable should be decreased by 1. Add another event that checks whether 
the hero’s Health variable is less than or equal to 0, in which case the hero should be 
destroyed, the lose message should become visible, and the win message should be 
destroyed. These events should appear as shown in Figure 14-24.

At this point, you have finished implementing all the features of the Treasure Quest 
game. Congratulations!

Side Quests
Even though Treasure Quest was one of the largest projects in this book, there are 
a myriad of features that could still be implemented, many of which have no doubt 
occurred to you while working through the project. You could redesign the game 
presented in this chapter or create more layouts and connect them with portals and 
spawn points. You could develop new items such as arrows that attack enemies from a 
distance, torches that can be used to burn down wooden barriers, or a portable bridge 

Figure 14-24.  Events for enemy and hero interaction



Chapter 14 ■ Treasure Quest

221

that can be used to cross small streams. You could add different types of enemies that 
fire projectiles at you or environmental hazards, such as spikes that damage the hero on 
contact. You could have alternative goals to win the game, such as clearing out all the 
enemies from an area or defeating a large boss-type enemy that has many health points 
of its own. The possibilities are endless, and with the skills you have developed, you are 
ready to create them on your own!

Summary
In this final project, you applied the skills that you have developed from previous projects 
to create the complex adventure-style game Treasure Quest, which featured multiple 
interconnected layouts, various items for the player to use, an in-game “item shop” 
mechanic, and enemies with greatly different movement patterns. You learned about the 
behaviors Line of sight and Persist and about the Global property for objects and layers, 
which preserved them across layouts. Congratulations on reaching this point and having 
successfully created a great variety of video games! In the next and final chapter of this 
book, you will read a variety of advice for continuing on in game development.



223© Lee Stemkoski and Evan Leider 2017 
L. Stemkoski and E. Leider, Game Development with Construct 2,  
DOI 10.1007/978-1-4842-2784-8_15

CHAPTER 15

The Journey Continues

In this final chapter, we’ll present a variety of steps you could consider as you continue 
on in game development. Among these, we’ll discuss working on additional projects, 
learning skills in related areas, and bringing your games to a wider audience. Along the 
way, we’ll present lists of resources of all types and general advice for many situations.

Continue Developing
In this section, we’ll begin by talking about how you could refine your current projects 
and start working on new projects, either on your own or as part of a game jam event. 
We’ll provide a list of online resources where you can obtain art assets to help you 
along the way. Finally, we’ll give a healthy dose of advice for overcoming the inevitable 
obstacles that will arise.

Working on Projects
Ideally, you’ve been working through all the project examples in this book. Many of the 
projects presented have concluded with a section titled “On Your Own”; you should try to 
complete as many of these suggestions as you can; this is vital to your growth as a game 
developer because you learn by doing, especially by figuring things out independently. 
After each of the projects is functional, you should always experiment, create your own 
additions, and try your own variations. Make sure you understand the purpose of each 
event and how they fit together as a unified whole.

After you’ve extracted as much knowledge and experience from this book as you 
feel is possible, it’s time to strike out on your own and start creating your own games. To 
start, we recommend you continue creating games inspired by arcade-era classics, since 
these games usually have simple and straightforward mechanics that will still provide 
great development experience. Some particular recommendations of games to look into 
include Space Invaders, Missile Command, Joust, and Bubble Bobble. While these games 
may appear simplistic at first, each has interesting subtleties that will exercise your game 
development skills. While doing this, we advise creating a physical list identifying and 
prioritizing the game-specific features you’ll be working on: the particular game mechanics, 
level design, user interface, and artistic style, in roughly this order. For example, if your 
main character is a winged archer, don’t worry about the color of their belt until after the 



Chapter 15 ■ The Journey Continues

224

character is able to fly and shoot arrows. (In fact, it is common practice for developers to 
use simple colored polygon shapes during the game mechanic phase of development.) 
Don’t worry if you’re not an artist; there are many web sites with freely available video game 
graphics, and there are many artists in the community looking for collaborators. Finally, 
once you’re comfortable with your skills and abilities, it’s time to develop your own original 
game concept or join a team working on a game and lend your skills.

Obtaining Art Resources
Although this has not been the focus of this book, every game benefits from quality 
graphics and audio. We recommend the following web sites for obtaining artistic 
resources. Most of these web sites have both free and paid options, while others are 
driven by user donations.

•	 Kenney Game Assets: http://kenney.nl/ Created by Kenney 
Vleugels, this site features more than 18,000 art assets that can 
be useful in many genres. In this book, assets from this site were 
featured in most of the games you created.

•	 Game Art Guppy: www.gameartguppy.com/ Created by Vicki 
Wenderlich, this site contains a collection of high-quality art crafted 
especially for independent game developers. In this book, the koala 
character from the Jumping Jack game was obtained from this site.

•	 OpenGameArt: http://opengameart.org This is a repository for 
all types of media (2D and 3D graphics, as well as sound effects 
and music). Contributions are community driven. Licensing 
details and conditions are determined by the individual creators.

•	 The Spriter’s Resource: www.spriters-resource.com/ This features a 
nearly comprehensive set of game art assets from many game console 
systems throughout history. Because of copyright restrictions, however, 
these assets cannot be used in published or commercial games.

•	 CoolText: http://cooltext.com This is a free text art graphics 
generator that can be useful for creating graphics for title screens 
as well as text and buttons for user interfaces.

•	 Textures: http://textures.com This site offers images of many 
types of materials, both natural and constructed.

•	 BFXR: www.bfxr.net/ This resource randomly generates a wide 
range of retro-style sound effects for use in games.

•	 FreeSound: www.freesound.org/ This is a collaborative database of 
Creative Commons–licensed sounds, organized into packs and also 
grouped by tags.

•	 Incompetech: http://incompetech.com/ Created by Kevin Macleod, this 
web site features a collection of royalty-free original music compositions 
that can be searched by genre, tempo, feel, or instrumentation. In this 
book, the background music for the game Starfish Collector (in Chapter 5),  
called “Master of the Feast,” was obtained from this collection.

http://kenney.nl/
http://www.gameartguppy.com/
http://opengameart.org/
http://www.spriters-resource.com/
http://cooltext.com/
http://textures.com/
http://www.bfxr.net/
http://www.freesound.org/
http://incompetech.com/
http://dx.doi.org/10.1007/978-1-4842-2784-8_5


Chapter 15 ■ The Journey Continues

225

Participating in Game Jams
One way to gain valuable game development experience is to participate in a game jam. 
A game jam is a gathering of game developers for the challenge of designing and creating 
a game in a short time span, typically about 48 hours. Participants may be programmers, 
artists, writers, or others with related skills. Because of the time limit, these events require 
rapid prototyping and development skills, and they encourage participants to focus on 
creativity, core mechanics, and bringing a project to completion (or at least a playable 
state). Individuals often take part in these events for the express purpose of increasing 
their skills in these areas. In addition, many game jams select a theme that must be 
incorporated by all games developed at the event. The themes are usually announced at 
the start of each event to discourage advanced planning and to encourage creativity.

Although some game jams have panels of judges and declare one or more winners, 
these events are typically informal and friendly, and they give participants the chance to 
connect with each other and provide a sense of community. Some events may be held at 
one or more physical locations. Some events may have no central location; developers 
work in areas of their own choosing (but are still held to the same time and schedule 
restrictions). The following are some notable long-running game jam events:

•	 Global Game Jam: http://globalgamejam.org/ This is the largest 
game jam in the world. It’s an international event that takes place 
once each year, typically at the end of January. This is not an 
online event; on-site participation is required, and for this reason 
there are typically hundreds of physical locations (“jam sites”) 
around the world where individuals can attend.

•	 Ludum Dare: http://ludumdare.com/ Major events are held 
three times a year, and minor (“mini”) events are held during the 
months when there is not a major event. Some participants attend 
gatherings at various sites, but most developers work from their 
own locations.

•	 One Game A Month: www.onegameamonth.com/ As the name 
suggests, these game jams are held monthly. The rules are 
particularly relaxed, and each jam takes place over the course 
of the entire month, so as to provide maximum flexibility to 
participants. The web site is extremely gamified and awards 
“experience points” for completing various objectives, which 
can be a great source of motivation. The organizer is Christer 
Kaitila, who has also written a book called The Game Jam Survival 
Guide, which discusses these events in great detail and provides a 
plethora of advice on how to have a successful experience.

Overcoming Difficulties
On your journey as a game developer, you will stumble at times. Everyone does. Perhaps 
you can’t figure out how to start implementing a particular game mechanic. Perhaps your 
game entities are behaving in strange and unexpected ways. Whatever your difficulty may 

http://globalgamejam.org/
http://ludumdare.com/
http://www.onegameamonth.com/


Chapter 15 ■ The Journey Continues

226

be, don’t give up! Spend some time wrestling with the problem. Try different conditions 
or actions. Try to implement simpler ideas first, and test your project as often as possible 
to pinpoint exactly which addition has caused problems. Don’t give up; remember that 
the process of overcoming difficulties helps you grow as a game developer.

However, also remember that balance is key in development (just as it is in games). 
Yes, it is valuable to learn how to fix your projects, but if any particular problem persists 
for a long time, take a break before you become overly frustrated or discouraged. Keep 
things in perspective: it probably wouldn’t be worth spending five straight hours trying 
to figure out why your platformer character gets stuck or glitches through a tilemap, 
for example. In such a situation, spend some time away from your computer—take a 
walk, think about something else, and come back to your problem later with a refreshed 
outlook.

After making a sincere effort to resolve any difficulties yourself, if you are still stuck, 
don’t despair. There is a vibrant and active community of fellow game developers and 
enthusiasts out there that may be able to be of assistance. The Scirra forums are an 
excellent place to ask for help. Start by searching these sites to see whether someone 
has asked the same or a similar question in the “How do I…” FAQ. If not, then you can 
create a post to ask your question. Make sure you clearly describe what you are trying 
to do, and include details about what you have tried, what has worked, and what hasn’t. 
Including a .capx file of your attempt can be very helpful in case you are only able to 
implement part of a feature or to demonstrate what isn’t working in your project. Most of 
all, be polite and patient. The people who frequent these forums usually do so voluntarily 
and provide general assistance out of a sense of community. It’s perfectly normal that a 
posted question might not generate a response for 48 hours or more. (In the meantime, 
be active in the community and see whether anyone has posted any questions that you 
might be able to answer; helping others will also help you develop a deeper knowledge of 
Construct.) Whenever someone responds to your question, be sure to acknowledge them; 
if they suggest a course of action, write a follow-up post as to whether it worked. And 
finally, if you turn out to be the person to resolve your own question or decide to proceed 
in a completely different direction to circumvent the problem altogether, you should post 
that information as well, to provide future readers a sense of closure.

Broadening Your Horizons
In addition to increasing your depth of knowledge and programming proficiency, you 
should devote time to developing a breadth of knowledge in game-related areas, which 
will have a positive impact on the quality of the games you produce. We briefly mention a 
few ways to work toward this goal in the following text.

Playing Different Games
Most game enthusiasts have a favorite genre. Some people spend most of their time 
playing first-person shooters, others prefer to devote their time to role-playing games, and 
so forth. As a game developer, you should consider playing games from as wide a range 
as you can, including action, adventure, puzzle, strategy, role-playing, sports, simulation, 
storytelling, and so forth. At the same time, try games from various time periods  



Chapter 15 ■ The Journey Continues

227

(from classic to modern) and from different size developers (from large professional 
companies to smaller studios to independent gamemakers and game jam competitors). 
Even if you don’t find a particular game or genre compelling, you will grow as a developer 
if you spend some time playing such games, especially when you do so with a developer’s 
mind-set. Try to understand why people like a given game. Examine each game’s level 
progression, gameplay balance, narrative and character development, artistic style, and 
interface design. Keep an eye out for what makes each game innovative or unique. Try to 
mentally place yourself in the role of the original game developers who created the game, 
think about possible reasons why they might have made the decisions they did, and 
ponder whether you might have done the same or branched out in a different direction.

Increasing Your Skill Set
While you continue to develop games, you should also consider broadening your overall 
skill set. A solid set of programming skills is highly desirable, but game developers 
(especially those working independently or in small studios) often need to be a jack-of-
all-trades, especially in the areas of graphics and audio. To get started in these areas, we 
recommend the following software and tutorials:

•	 Inkscape: http://inkscape.org/ This is software for creating 
vector graphics, freely available. The web site contains a list of 
high-quality tutorials for all skill levels. Most relevant to our 
interests, however, is a set of game art tutorials written by Chris 
Hildenbrand, available at http://2d-game-art-tutorials.zeef.
com/chris.hildenbrand.

•	 Audacity: http://audacityteam.org/ This is a multitrack audio 
editor and recorder, freely available. The Audacity manual 
contains an extensive list of tutorials that will teach you all sorts of 
useful recording and editing skills.

Recommended Reading
In addition to broadening your skill set, it is also worthwhile to broaden your knowledge 
base. There are a variety of books available on topics related to game development that 
will help you do exactly that. Of course, there are far too many to list here, and no doubt 
we have omitted a number of high-quality titles. Nonetheless, we have listed a few 
representative samples from across a range of fields, with a cross section of topics, to give 
you an indication of what’s available out there: game design, literary aspects, history, and 
social impact.

•	 Fundamentals of Game Design, 3rd edition, by Ernest Adams 
(New Riders, 2013). This book discusses a variety of topics such 
as concept development, gameplay design, core mechanics, user 
interfaces, storytelling, and balancing; exercises, worksheets, and 
case studies are also included.

http://inkscape.org/
http://2d-game-art-tutorials.zeef.com/chris.hildenbrand
http://2d-game-art-tutorials.zeef.com/chris.hildenbrand
http://audacityteam.org/


Chapter 15 ■ The Journey Continues

228

•	 The Ultimate Guide to Video Game Writing and Design, by Flint 
Dille and John Zuur Platten (Lone Eagle, 2008). Topics covered 
include integrating story elements into a game, writing a game 
script, creating design documentation, the creative process, team 
dynamics, and business considerations.

•	 Vintage Games: An Insider Look at the History of Grand Theft 
Auto, Super Mario, and the Most Influential Games of All Time,  
by Bill Loguidice and Matt Barton (Focal Press, 2009).  
This book explores the history of some of the most influential 
video games of all time, with a particular focus on their 
development, critical reception, and impact on the industry.

•	 Reality Is Broken: Why Games Make Us Better and How They Can 
Change the World, by Jane McGonigal (Penguin Books, 2011). 
In this book, the author discusses theories from psychology, 
cognitive science, sociology, and philosophy in the context 
of game playing, and explains how games can make us more 
productive and change the world for the better.

It is also useful to stay abreast of current news and developments in the game 
industry, as well as to hear the opinions, approaches, struggles, and successes of your 
fellow game developers. For these purposes, there is no better alternative to following 
blogs. We list some particularly substantial sites, each of which features regular blog 
postings (as well as additional useful information and resources).

•	 Gamasutra: www.gamasutra.com/ This web site is devoted to the 
art and business of making games, which, among other resources, 
contains curated lists of blog postings that touch on all aspects of 
the industry.

•	 GameDev.net: www.gamedev.net This is a resource for developers 
of all fields and expertise, containing articles and tutorials on 
technical, creative, and business aspects on game development.

•	 Hooby Game Dev: www.hobbygamedev.com/ Maintained by Chris 
DeLeon (a professional video game developer, author, and 
instructor), this regularly updated web site contains articles, 
advice, tutorials, case studies, interviews, and more.

Sharing Your Games
Once you have designed and created some games of your own, you should consider 
sharing them with others. After all, games are meant to be played! This process will 
require you to export your games to a playable format and find an audience of eager game 
enthusiasts, both of which we discuss here.

Construct 2 features many ways to share your games. The easiest approach, which is 
included with the free version of the software, is to select Export from the File menu and 
convert your game to HTML5 format. The exporter will create a directory containing an 

http://www.gamasutra.com/
http://www.gamedev.net/
http://www.hobbygamedev.com/


Chapter 15 ■ The Journey Continues

229

HTML file, store all the images, and convert all the events into JavaScript code for you; the 
files can be uploaded to a web site (either your own personal web site or web sites such 
as those listed in the following text) and played online. There are other export formats 
available (for platforms such as desktop computers and smartphones), but access to 
these exporter options will require you to purchase a personal license for the software, 
which may be a good investment by this point!

One of the greatest joys of being a game developer is when others play your games. 
Even if a project is unfinished, having people playtest your game and provide feedback 
can help your creations to reach even greater heights and attract an even larger audience. 
Scirra provides web hosting services specifically for games created with Construct 2 
on its site. In addition, there are many other web sites that support independent game 
developers and provide forums where you can share your work with the community. We 
list some of these here, and note that some of these web sites (such as Itch.io, IndieDB, 
and GameJolt) will also provide you with the ability to upload your games onto their 
servers after you register for an account.

•	 Scirra Arcade: www.scirra.com/arcade/

•	 Itch.io: www.itch.io

•	 IndieDB: www.indiedb.com/

•	 GameJolt: http://gamejolt.com/

•	 GameDev.net: www.gamedev.net/

•	 The Independent Games Source (TIGSource): www.tigsource.com/

•	 Indie Gamer forums: http://forums.indiegamer.com/

If you post a game to one of these sources, while you’re waiting to hear people’s 
opinion on your work, you should strive to be an active participant in their forums. Try a 
few games and provide feedback to your fellow developers. We all benefit from a vibrant 
game development community, so be sure to join in and be a part of it!

With that final piece of advice, we come to the end of our journey together through 
this book. We hope, however, your journey as a game developer will continue. May you 
have good fortune on all your future endeavors!

http://www.scirra.com/arcade/
http://www.itch.io/
http://www.indiedb.com/
http://gamejolt.com/
http://www.gamedev.net/
http://www.tigsource.com/
http://forums.indiegamer.com/


231© Lee Stemkoski and Evan Leider 2017 
L. Stemkoski and E. Leider, Game Development with Construct 2,  
DOI 10.1007/978-1-4842-2784-8

APPENDIX A

Game Design Documentation

While you will learn many technical and practical aspects of game development as you 
work through the example projects in this book, it is equally important to have a solid 
foundation in the theoretical aspects of game design. The first effort to create a framework 
for these concepts was discussed in a paper published by Robin Hunicke, Marc LeBlanc, 
and Robert Zubek in 2004.1 In it, they proposed the Mechanics-Dynamics-Aesthetics 
(MDA) framework, which provides a useful way to categorize the components of a game.

They defined Mechanics as the formal rules of the game, expressed at the level of 
data structures and algorithms, Dynamics as the interaction between the player and the 
game mechanics while the game is in progress, and Aesthetics as the emotional responses 
experienced by players as they interact with the game. Since then, other frameworks  
have been proposed, each of which provides a different way of analyzing games.  
A popular example is Jesse Schell’s Elemental Tetrad,2 which consists of Mechanics, 
Story, Aesthetics, and Technology (where aesthetics is defined more broadly than in the 
original MDA framework). Frameworks such as these are valuable tools to help people 
consistently and fully analyze games. Players can use frameworks to better understand 
and express what they enjoy about particular games. Developers can use the formal 
structure to help them create a more cohesive design and to organize and document the 
development process; explaining how to write such documentation is the goal of this 
appendix.

A game design document (GDD) serves as the blueprint or master plan for creating 
a game: it describes the overall vision of a game, as well as the details (often based on 
a game design framework such as MDA). Practical aspects are also included, such as a 
schedule that lists when certain features will be completed, a list of team members and 
responsibilities, and plans for testing and releasing the game. A GDD can provide clarity 
and focus, while serving as a guide and a reference to the person or people working on 
the game. To be most effective, the GDD should be as complete as possible before the 
development process begins. Depending on the flexibility of the developers, a certain 
amount of modification may be permitted over the course of development, and various 
adjustments may need to be made after collecting feedback from gameplay testing.

1Hunicke, LeBlanc, and Zubek. “MDA: A Formal Approach to Game Design and Research.” 
Proceedings of the Nineteenth National Conference on Artificial Intelligence, 2004.
2Schell. The Art of Game Design: A Book of Lenses. CRC Press, 2008.



Appendix A ■ Game Design Documentation

232

There is no one standard format for game design documents; an Internet search will 
provide many templates for a variety of development scenarios. GDD templates often 
contain a bulleted list of topics or questions for your consideration (when applicable). In 
what follows, we present a similar list of questions for you to ponder as you design your 
own games; the scope of these questions is particularly good for individual developers 
or small teams working on projects with game engine software such as Construct 2. By 
recording detailed responses to the following queries, you will effectively create your own 
game design document to help guide you through the development process.

	 1.	 Overall vision.

	 a.	� Write a short paragraph (three to six sentences) 
explaining your game. (This is sometimes called the 
elevator pitch: a short summary used to quickly and 
simply describe an idea or product during a 30-second 
elevator ride.)

	 b.	� How would you describe the genre(s)? Is it single-
player or multiplayer (and if the latter, cooperative or 
competitive)?

	 c.	� What is the target audience? Include demographics (the 
age, interests, and game experience of potential players), 
the game platform (desktop, console, or smartphone), 
and any special equipment required (such as gamepads).

	 d.	� Why will people want to play this game? What features 
distinguish this game from similar titles? What is the 
hook that will get people interested at first, how will the 
game keep people interested, and what makes it fun? 

	 2.	 Mechanics: the rules of the game world. (Note that the 
following questions are phrased in terms of the game’s 
main character, as distinguished from the player, since the 
player is the focus of the section on dynamics. However, if 
no such character exists, the player can be considered as the 
character.)

	 a.	� What are the character’s goals? These may be divided 
into short-term, medium-term, and long-term goals.

	 b.	� What abilities does the character have? This should 
include any action the character is capable of 
performing, such as moving, attacking, defending, 
collecting items, interacting with the environment, and 
so forth. Describe the abilities or actions in detail; for 
example, how high can the character jump? Can the 
character both walk and run?



Appendix A ■ Game Design Documentation

233

	 c.	� What obstacles or difficulties will the character face? 
Some obstacles are active (such as enemies, projectiles, 
or traps) and should be described in detail (how they 
affect the player, their location, their movement patterns, 
and so forth). Other obstacles are passive (such as 
doors that need to be unlocked, mazes that need to be 
navigated, puzzles that need to be solved, or time limits 
that need to be to beat). How can the character overcome 
these obstacles (items, weapons, spells, quick reflexes)?

	 d.	� What items can the character obtain? What are their 
effects, where are they obtained, and how frequently do 
they appear?

	 e.	� What resources must be managed (such as health, 
money, energy, and experience)? How are these 
resources obtained and used? Are they limited?

	 f.	� Describe the game world environment. How large is 
the world (relative to the screen)? Are there multiple 
rooms or regions? Is the gameplay linear or open? In 
other words, is there a strictly linear progression of levels 
or tasks to complete, or can the character select levels, 
explore the world, and complete quests at will?

	 3.	 Dynamics: the interaction between the player and the game 
mechanics.

	 a.	� What hardware is required by the game (keyboard, 
mouse, speakers, gamepad, touchscreen)? Which keys/
buttons are used, and what are their effects? How is 
the player informed of the control scheme (a separate 
manual document, game menus, tutorials, or in-game 
signs)?

	 b.	� What type of proficiency will the player need to develop 
to become proficient at the game? Are there any complex 
actions that can be created from combinations of basic 
game mechanics? Do the game mechanics or game world 
environment directly or indirectly encourage the player 
to develop or discourage any particular play strategies? 
Does the player’s performance affect the gameplay 
mechanics (as in feedback loops)?

	 c.	� What gameplay data is displayed during the game (such 
as points, health, items collected, time remaining)? 
Where is this information displayed on the screen? How 
is the information conveyed (text, icons, charts, status 
bars)?



Appendix A ■ Game Design Documentation

234

	 d.	� What menus, screens, or overlays will there be (title 
screen, help/instructions, credits, game over)? How does 
the player switch between screens, and which screens 
can be accessed from each other?

	 e.	� How does the player interact with the game at the 
software level (pause, quit, restart, control volume)?

	 4.	 Aesthetics: the visual, audio, narrative, and psychological 
aspects of the game; these are the elements that most directly 
affect the player’s experience.

	 a.	� Describe the style and feel of the game. Does the 
game take place in a world that is rural, technological, 
or magical? Does the game world feel cluttered or 
sparse, ordered or chaotic, geometric or organic? Is the 
mood lighthearted or serious? Is the pace relaxing or 
frenetic? All the aesthetic elements discussed should 
work together and contribute to create a coherent and 
cohesive theme.

	 b.	� Does the game use pixel art, line art, or realistic graphics? 
Are the colors bright or dark, varied or monochromatic, 
shiny or dull? Will there be value-based or image-based 
animations? Are there any special effects? Create a list of 
graphics you will need.

	 c.	� What style of background music or ambient sounds 
will the game use? What sound effects will be used 
for character actions or for interactions with enemies, 
objects, and the environment? Will there be sound effects 
corresponding to interactions with the user interface? 
List all the music and sounds you will need.

	 d.	� What is the relevant backstory for the game? What is the 
character’s motivation for pursuing their goal? Will there 
be a plot or storyline that unfolds as the player progresses 
through the game? 

	 e.	� What emotional state(s) does the game try to provoke: 
happiness, excitement, calm, surprise, pride, sadness, 
tension, fear, frustration?

	 f.	� What makes the game “fun”? Some players may enjoy the 
graphics, music, story, or emotions evoked by the game. 
Other features players might enjoy include the following:

	 i.	� Fantasy (simulating experiences one doesn’t have in 
real life)

	 ii.	� Role-playing (identifying with a character)



Appendix A ■ Game Design Documentation

235

	 iii.	� Competition (against other players or against 
records previously set by oneself)

	 iv.	� Cooperation (working with others toward a common 
goal)

	 v.	� Compassion (providing assistance or rescuing 
others)

	 vi.	� Discovery (finding objects or exploring a world)

	 vii.	� Overcoming challenges (such as defeating enemies 
or solving puzzles)

	 viii.	� Collection (including game items or badges/
trophies for achievements)

	 ix.	� Social aspects (both within the game and the 
communities that form around the game)

	 5.	 Development.

	 a.	� If working with a group: list the team members, and 
list their roles (game designer, programmer, illustrator, 
animator, composer, sound editor, writer, manager, etc.), 
responsibilities, and skills.

	 b.	� What equipment will you need for this project? Include 
both hardware and software that will be needed 
for content creation (graphics and audio), game 
development, and playtesting.

	 c.	� What are the tasks that need to be accomplished to create 
this game? Estimate the time required for each task, 
the estimated completion date, and the team member 
responsible; then estimate the priority of each feature (in 
case some features need to be eliminated because of time 
constraints or unexpected circumstances).

	 d.	� What points in the development process are suitable for 
playtesting? How will you find people to playtest your 
game? What specific kinds of feedback are you interested 
in gathering? (For example, you could ask how clear the 
goals are, how easy or intuitive the controls are, how 
balanced the difficulty level is, and which parts of the 
game were most or least enjoyable.) Finally, how will 
you collect this information (such as a questionnaire or a 
brief discussion)?

	 e.	� What are your plans for dissemination? Do you have 
plans to promote this game through social media, forum 
postings, gameplay videos, or advertisements?



237© Lee Stemkoski and Evan Leider 2017 
L. Stemkoski and E. Leider, Game Development with Construct 2,  
DOI 10.1007/978-1-4842-2784-8

�       � A, B
Airplane assault

eight-direction movement, 132
endless vertical scrolling, 138–139
features, 140
line up shots and enemy bullets, 131
player, waypoint and enemy  

setup, 132–133
score, health, invincibility and  

game over, 136–138
shooting and spawning enemies, 

134–135
shoots small bullets, 131

Alternative controls
changing default controls, 74
gamepad controllers, 75–76
touchscreen input, 76–77

Art resources, 224
Audio

ButtonMute, 71
ButtonPause, 68–69
ButtonResume, 68–69
classification, 69–70
elements, 70

�       � C
Cleanup challenge

background images, 50–52
cars

bullet behavior, 55
CarWarp object, 56
initial animation, 55

global variable, 60–62
player, 52–54

randomization, 62–63
Text objects, 57–60

Creature-compare instance  
variable, 121

Construct 2
downloading and installing, 2
export, 7
features, 2
preview, 7
programming skills, 227–228
save, 7
sharing, 228–229
user interface, 3–5, 7

Custom Movement, 31

�       � D
Difficulty ramp, 85

�       � E, F
Enemy planes

difficulty ramp, 85
SpawnRate, 86–87

�       � G
Game design document (GDD)

aesthetics, 234–235
development, 235
dynamics, 233–234
mechanics, 232–233
overall vision, 232

Game jams, 225
Gamepad.Axis, 75
Global variables, 60–62

Index



■ INDEX

238

�       � H
Hero animation

animation frames, 201
collision polygon, 202
sword-fighting mechanics, 203–205

�       � I
Image-based animation, 23
Instance variables, 60, 119
Items

ball, 109–111
paddle, 111–113

�       � J, K
Jumping Jack

breakable bricks, 187–188
coins, 189
creation, 175
enemies

Fly and Koala objects, 192–193
game over, 195
item block graphics, 196
slime movement events, 193–194
types, 191
UI layer, 191

goal flag, 185
jump-through platforms, 186
keys and locked blocks, 190–191
ladders and climbing (see  

Ladders-climbing mechanic)
level design, 176–177
object interaction, 185
player setup, 177–180
springboards, 187

�       � L
Ladders-climbing mechanic

activation and  
deactivation, 184–185

function object, 181–182
player movement, 183
tilemap platform, 180

�       � M, N, O
Maze Runman games

background and tilemap  
maze setup, 161

bonus jewel item events, 173–174
coin events, 171
directions and movement, 160
end-of-game conditions, 172–173
enemies and intelligent movement

data structures, 167
default direction, set up, 168
ghost grid alignment  

events, 168
ghost sprite’s collision  

polygon, 167
horizontal and random pattern 

ghost movement events, 170
parameter values, 168
subevents, parameter  

values, 169
on timer event, 167
vertical pattern ghost  

movement, events, 169
events, collecting coins, 171
floor and random functions, 160
image-based animations, 160
player setup and grid-based 

movement
adjusting Runman’s position,  

grid square, 162
player movement and  

animation, 164
player movement group and  

grid alignment, 163
preventative collision  

detection, 163
sprite’s collision polygon, 161
tilemap wall functionality, 166
on timer event, 164

tilemap panel, 160
user interface and coin  

placement, 171
Mechanics-dynamics-aesthetics  

(MDA) framework, 231

�       � P, Q
Plane Dodger

background effects, 80–82
creation, 79
enemy planes, 85–87
features, 87–88
player, 82, 83
score, 83–85
star, 83–85

Player’s plane, 82–83



■ INDEX

239

�       � R
Racecar 500

car behavior properties, 94–95
creation, 89
obstacles, 99–100
race time (see Race timer)
scenery, 98
tilemap (see Tilemaps)

Race timer
invisible, 97
keyboard object, 96
Text object, 95
UI layer and position, 95

Rectangle Destroyer
background, 104
balls, 104–105
bricks, 104–105
creation, 103
features, 113–114
items (see Items)
MessageEnd, 106
MessageStart, 106
MessageWin, 106
paddle, 104–105
walls, 104–105

�       � S
Space rocks

collision events, 34
lasers, 32
layout properties, 28
shields, 42
spaceship movement, 29–31
thruster effect (see  

Thrusters and explosions,  
space rocks)

UFOs, 43–45
winning/losing, 40

Spaceship movement
acceleration, 31
capping, 31
conditions and actions, 30
rotation, 30

Spell Shooter
adding radar, 127–128
creatures and vortices, 118–119
8-Direction, 116
events, casting spells, 123
features, 128
gauntlet, 115

instance variables and  
waypoint logic

creatures random starting  
targets, 121

events, move and hide  
creatures, 122

ID instance variable, 120
rotate toward Vortex objects, 

creatures, 121
Vortex object, 119–120

player setup and mouse-based 
controls, 117

recharging period, 115
score and game over, 126
spell charge and user interface, 124, 126
TiledBackground, 116
user interface, 116
W/A/S/D keys, 116

Sprites
image editor, 14
instances, 15
layouts, 14–16
object creation, 13
properties, 13

Starfish Collector
animation and text, 66–68
audio, 69–71
behaviors, 18–20
ButtonPause, 68–69
ButtonResume, 68–69
creation, 9
events, 16–18
layer panel, 11
layout properties, 10
menus, 72–73
project properties, 12
solid objects, 22–23
sprite objects (see Sprites)
value-based animations, 23–24

�       � T
Teleportation

expressions, 40
mechanic, 40
warp effects, 38–39

Text objects, 57–60
Thrusters and explosions,  

space rocks
events, 38
features, 34
fire object, 34–36



■ INDEX

240

Tilemaps
collision polygons, 94
panel, 91–92
racetrack, 90
road configurations, 90

Tower defenders
cannon purchase and  

placement, 148–151
cannons and bullets, 144–146
destroying enemies, 141
earning cash, 147
enemy movement, 144
game ending and difficulty  

ramp, 152–153
level setup, 142–143
side quests

cannon types, 155
dynamic shoplike mechanic and 

customizable variables, 156
enemy types, 154–155
time speed control, 155–156

turret placement, 141
Treasure Quest

creation, 197
enemies

hero interaction, 219–220
types, 217–219

Hero setup (see Hero animation)
items

bombs, 214–215
coins, 212–214

hearts, 212
treasure chest, 216

portal and spawn  
instances, 207

tilemap, 199
UI (see User interface design)
wall object, 200, 206

�       � U
Unidentified flying objects (UFOs)

collisions, 45
destroy, 45
SpawnPoint, 44

User interface design
layout, 6
properties, 6
sign mechanics, 209–211
status display, 209
template projects, 4–5

�       � V
Value-based animations, 23–24
Vortex-compare instance  

variable, 122

�       � W, X, Y, Z
Waypoint-compare instance  

variable, 133


	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: Getting Started with Construct 2
	About the Construct 2 Game Engine
	Downloading and Installing
	The User Interface
	Saving, Previewing, and Exporting Games
	Summary

	Chapter 2: Starfish Collector
	Project Setup
	Sprites
	Events
	Behaviors
	Ending the Game
	Side Quests
	Solid Objects
	Value-Based Animations
	On Your Own

	Summary

	Chapter 3: Space Rocks
	Introduction
	Spaceship Movement
	Lasers and Rocks
	Thrusters and Explosions
	Teleportation
	Winning or Losing the Game
	Side Quests
	Shields
	UFOs
	On Your Own

	Summary

	Chapter 4: Cleanup Challenge
	Backgrounds
	Animating the Player
	Cars
	Displaying Messages with Text Objects
	Keeping Score with Global Variables
	Side Quests
	Randomization
	On Your Own

	Summary

	Chapter 5: Adding Polish to Your Game
	Adding Animation and Text
	Mouse Input and Buttons
	Audio
	Menus
	Alternative Controls
	Changing Default Controls
	Gamepad Controllers
	Touchscreen Input

	Summary

	Chapter 6: Plane Dodger
	Background Effects
	The Player’s Plane
	Stars and Score
	Enemy Planes
	Side Quests
	Summary

	Chapter 7: Racecar 500
	Introduction
	Tilemaps and Level Design
	Car Mechanics
	Race Timer
	Side Quests
	Scenery
	Obstacles
	On Your Own

	Summary

	Chapter 8: Rectangle Destroyer
	Introduction
	Paddle, Walls, Bricks, and Balls
	Game Start and End
	Items
	Items Affecting the Ball
	Items Affecting the Paddle

	Side Quests
	Summary

	Chapter 9: Spell Shooter
	Introduction
	Player Setup and Mouselook
	Creatures and Vortices
	Instance Variables and Waypoint Logic
	Spell Shooting
	Spell Charge and User Interface
	Score and Game Over
	Side Quests
	Adding a Radar
	On Your Own

	Summary

	Chapter 10: Airplane Assault
	Player, Waypoint, and Enemy Setup
	Shooting and Spawning Enemies
	Score, Health, Invincibility, and Game Over
	Side Quests
	Endless Vertical Scrolling
	On Your Own

	Summary

	Chapter 11: Tower Defenders
	Level Setup
	Enemy Movement
	Cannons and Bullets
	Earning Cash
	Cannon Purchase and Placement
	Game Ending and Difficulty Ramp
	Side Quests
	Additional Enemy Types
	Additional Cannon Types
	Time Speed Control
	On Your Own

	Summary

	Chapter 12: Maze Runman
	Player Setup and Grid-Based Movement
	Enemies and Intelligent Movement
	Collecting Coins
	Game End

	Side Quests
	Adding a Jewel Bonus Item
	On Your Own

	Summary

	Chapter 13: Jumping Jack
	Level Design
	Player Setup
	Ladders and Climbing
	Additional Game Objects
	Goal Flag
	Jump-Through Platforms
	Springboards
	Breakable Bricks
	Coins
	Keys and Locked Blocks

	Enemies
	Side Quests
	Summary

	Chapter 14: Treasure Quest
	Level Design
	Hero Setup
	Sword-Fighting Mechanics

	Multiple Levels
	User Interface Design
	Status Display
	Sign Mechanics

	Items
	Hearts
	Coins
	Bombs
	The Treasure Chest

	Enemies
	Side Quests
	Summary

	Chapter 15: The Journey Continues
	Continue Developing
	Working on Projects
	Obtaining Art Resources
	Participating in Game Jams
	Overcoming Difficulties

	Broadening Your Horizons
	Playing Different Games
	Increasing Your Skill Set
	Recommended Reading

	Sharing Your Games

	Appendix A: Game Design Documentation
	Index



