e p—

Game
Development
with Construct 2

From Design to Realization

Lee Stemkoski
Evan Leider

ApPress’

Game Development
with Construct 2

Lee Stemkoski
Evan Leider

Apress-

Game Development with Construct 2: From Design to Realization

Lee Stemkoski Evan Leider

Garden City, New York NY

USA USA

ISBN-13 (pbk): 978-1-4842-2783-1 ISBN-13 (electronic): 978-1-4842-2784-8

DOI10.1007/978-1-4842-2784-8
Copyright © 2017 by Lee Stemkoski and Evan Leider

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the

date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Pramila Balan
Development Editor: Laura Berendson
Technical Reviewer: Julien Kyatric Fantoni
Coordinating Editor: Prachi Mehta
Copy Editor: Kim Wimpsett
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,

LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is avail-
able to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-
2783-1. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://orders-ny@springer-sbm.com
www.springeronline.com
https://rights@apress.com
www.apress.com/rights-permissions
www.apress.com/rights-permissions
www.apress.com/bulk-sales
www.apress.com/978-1-4842-2783-1
www.apress.com/978-1-4842-2783-1
www.apress.com/source-code

Contents at a Glance

About the Authors..........cccnvmmmmmmmmmms s —————— Xiii
About the Technical REVIEWETccucessssmssmssssssssssssssssssssssssnssssssans Xv
Acknowledgments........ccceunsssssssmssnnmmmsssssssssssssnnsssssssssssssssssssessssnns XVii
FOrewordccouveemmsmsmmsmmsssmmsssmsssssssssmssssssssnssssssssnssnsnsmssnnnsnsnnsnsnnnnns Xix
INtroductionccccmmeemmmsnmmmssnmssnmssn———————————————— xxi
Chapter 1: Getting Started with Construct 2cccevvnnnneeennnnnnnns 1
Chapter 2: Starfish Collectorccccussemnrrssssnnnnnsssssnsssssssssnsssssnns 9
Chapter 3: Space ROCKS........cccrrusssmmmmmmssssnnnmsssssnsnssssssssssssssssssssssnns 27
Chapter 4: Cleanup Challengecccccusuemnmmssssnnnmsssssnssssssssssnssssnns 49
Chapter 5: Adding Polish to Your Game.......c...cccrnnssnnnnsnssssnnnnnssnns 65
Chapter 6: Plane Dodger........cuucermssanmmsssnsssssnsssssnsssssnnssssanssssanssssnns 79
Chapter 7: Racecar 500ccccuusnmmnmmmsssnnnmmssssssnsnsssssssssssssnssssssnns 89
Chapter 8: Rectangle DeStroyer........ccccumeeenmmssssennsmsssssnnssssssnnnnnss 103
Chapter 9: Spell Shooter.........ccccunemmmmmmisemnmmmsesnmmseasmssamm. 115
Chapter 10: Airplane Assault..........ccccusemmmssenmsssenmsssssssssssssssansess 131
Chapter 11: Tower Defendersuuseeeeernmmnssssssssnsssssnnmssssssssnnnnnnns 141
Chapter 12: Maze RUNMaNccuseeemmmmsssemnmmsssssssnnssssssssnsssssssnnns 159
Chapter 13: Jumping Jackcccusemrmssenmmssenmmsssnsssssnsssssssesssnsessnns 175

iii

CONTENTS AT A GLANCE

Chapter 14: Treasure Questccccvrnsmrmssnmmssnsmsssssmsssssssssnsssnns 197
Chapter 15: The Journey Continues........cccvnnseenmmssssnsnssssssnnnssnsns 223
Appendix A: Game Design Documentationccccuseennnssssnnnnn 231
INA@X..eiiiissnnnnnnsssnnnnnsssnnnsnssssnnnsnssssnnnssssssnnnnessssnnnsnssssnnnnssssnnnnnnsssnnns 237

iv

Contents

About the AuthorsS..........ccccsmmsemmmmsmmmmmsmmssms s —————— xiii
About the Technical REVIEWETccusseessssansssssnsssssnsssssnsssssnsssssnsssssns Xv
Acknowledgments........cccccunnmmsmmmmmmmmmmmssssssssssssnseessssssssssssssnnesssnnns Xvii
FOr@WOrdcccussemmssensssnmssanmssansssnssssssssnssssnsssansssnsssnnsnsnssssnsnsnnsnsnnnnns Xix
Introductionccconmmmnemmmisnnmss s —————————— XXi
Chapter 1: Getting Started with Construct 2ccccenrnisnennnnnsnnns 1
About the Construct 2 Game ENgineccccoceeevereresessessseesessessessennns 2
Downloading and Installing...........ccccverrerrensersensenses s sneeens 2
The USer INTrface..........cccvrrnererrcnerscse s 3
Saving, Previewing, and Exporting GAmesccecvververrersersessessessessenens 7
SUMMAIY ... sa e a e s sae s sae e e a e s e e nnean 8
Chapter 2: Starfish Collectorccccerrrinnnmmmmnssmssssnmmmsmmsssssssss 9
ProjeCt SEIUP.....coeerere e 9
03] 4] (- S SSRS SO SSSRSTIN 13
EVENTS.....ooee s 16
BENAVIOIScvecrreece st 18
Ending the GAME ... 21
Side QUESLEScovierrcrrcrisr s 22
SOl ODJECTS.....viveeererreeerir e 22
Value-Based ANIMALiONS...........coeceeeerererererererereresenes 23

0TI 01T 0 25
SUMMANY ..ottt snssn s e s sn s nssn e nn e sn e snesn e nnnsnnnan 25

vi

CONTENTS

Chapter 3: Space ROCKS......cccusemrmssanmmssansmsssnsssssnsssssnsssssnssssssnsssnnnes 27
INErOAUCHION ... 27
Spaceship MovEmMENT ... e 29
Lasers and ROCKS ... 32
Thrusters and EXplOSIONS.........ccccvvrrerrerseriensensessessesses s 34
Teleportationcccvcevevierre e 38
Winning or Losing the GAMEccovcerernieneserecs e 40
Side QUESLESccererrrereere e 41

SRIBIUS ... s 42

UFDS covvuuereesesssessssssssssssssssesssssssssssssssssessssssssssssssssssesss 43

ON YOUE QW .t e 46
SUMMANY ... sa s 47
Chapter 4: Cleanup Challengecccccusseemmmsssssnnnmsssssssssssssssnsssssnnns 49
BacCKQrouNdsccccevcereererneree e ssne s sse e s sne s sne s s snenne s 50
Animating the PIAYErcoeeeeeeeceecre e 52
£ 54
Displaying Messages with Text ObJectscccvvvrrrrrerrerrersersensersencenaes 57
Keeping Score with Global Variables.........ccccooeenierncriennscnscesenenennns 60
Side QUESLEScererrrrreirr e 62

RaNAOmIzZation..........ccccoeriierenirire e 62

ON YOUE QW .t e 63
SUMMANY ... sa s 64
Chapter 5: Adding Polish to Your Game..........ccceussssemnnmssssnnnnnsssnnns 65
Adding Animation and TeXt.........ccceeerrrrrrnnnrnsr s 66
Mouse Input and BUttonscccoeeeeercsens s 68
o N 69

CONTENTS

MEBNUS......ceiiriirirrst s 72
Alternative CONtroIS........coccoeeererereresereseseres s ses e ses e sessenens 73

Changing Default CoNtrolS.........ccccvirerrnneserrs s sessns 74

GAMEPAA CONIONIEISceveeereeerreerre e s e sse s sa e s e sae e s ae e sre e sae e s e saeneens 74

TOUCNSCIEEN INPUL ...t 76
1T LS 77
Chapter 6: Plane Dodgerc.cccuussmmmsssnsmsssnssssssssssssnsssssnssssnnssssanss 79
Background EffeCts........cccvvrrrreriensnsinsersis s sne s 80
The Player’s Plane...........cccocvverirneninseersensee s s e sse s s sne s 82
STArS aNd SCOTE.....covvcerercerr e 83
Enemy Planes..........ccocerercnircinenir st 85
Side QUESTS ... s 87
SUMMAIY ...t s 88
Chapter 7: Racecar 500..........ccummmmmmmmmsmmmmmmmmmmmsssssssssssssssssssssssnns 89
INErOAUCHION ... 89
Tilemaps and Level DESIgN.........cccvcceermriersnmsesessesesessesss e sesessessssensens 90
Car MECRANICS........coeereererereres e 94
RACE TIME ... 95
Side QUESESecevrerrerrerresr e r e 98

SCBIMEBIY....ecueeirerreeeresssse e e se e e s e ss e e e s se e e e s se et e s e s e e s e Re e e e s Re e e e nans 98

ODSTACIES ...t 99

ON YOUF QW ...ttt nn s 100
SUMMANY ...t 101
Chapter 8: Rectangle DeStroyer.......c.ccuummmmmssssnnnmmssssnnnssssssnsnsasns 103
INEPOAUCTION ... 103
Paddle, Walls, Bricks, and Balls............cccccvrerrenrienniersessses e ssseessenns 104
Game Start and Endcocoviiiennicrnrenne s 106

vii

CONTENTS

REMS e —————————— 108
Items Affecting the Ballcccveeeervererieresere v s s ere s s e e e s sasenees 109
Items Affecting the Paddle..........ccccevverervererrerereresererereres e reesesaesesseseseresseses 111

Side QUESTScovreerrreerese s 113

SUMMANY ...t e 114

Chapter 9: Spell ShooOter..........cccuumrmismrmssnsmssnsssssnsesssnsssssnssssnns 115

INEFOAUCHION ... 115

Player Setup and MouselooK...........ccoevrererrerrerrersensersesses s sessenens 117

Creatures and VOrtiCEScvvererrnseneressesessssese s sas e sessssesnnnes 118

Instance Variables and Waypoint LOGICccceevverrerrereescercessessesennne 119

Spell SROOLINGeevererer e ————— 123

Spell Charge and User Interface...........ccceerersrsersessessesses s sesses s 124

Score and GAme QVET.........cooccereeerserrenesesesse s sessesnes 126

Side QUESTES ... 127
DY [0 T3 o W =T T P 127
ON YOUP QW .ottt se e e e se e e e e e e e e e e e e e e e sesesesesesesesesenesenenens 128

ST 11 4P 129

Chapter 10: Airplane Assault.........cccceinnmmmnnnnessnnnnmmmmmsssssssms 131

Player, Waypoint, and Enemy Setupcccccvvevririecricnnsnesniesnecnnens 132

Shooting and Spawning Enemies.........c.ccccvvvvrcrvrcensessessessessessensenns 134

Score, Health, Invincibility, and Game OVer.........c.ccccvvrverrerrerrersensenne 136

Side QUESTScovreecrrrce e 138
Endless Vertical SCrollingcocococenenenensnsnssesessssssssse s sssssens 138
ON YOUE OWN .ttt se e se e sssssess e e e e s s s ssssssssssssssssssssssssssssnsssssnens 140

1141] 4P S 140

viii

CONTENTS

Chapter 11: Tower Defendersccccvssemmnnnssssnnnnmssssnsssssssssssnnns 141
LeVel SETUP.....cccceeecerer e e 142
Enemy Movement...........coo i 144
Cannons and BUIIETS............ccceierererencnrre e 144
Earning Cashcccvvvvrvncnsrr st 147
Cannon Purchase and Placement.............cccorvnrnsenensscnesssesesnseens 148
Game Ending and Difficulty Ramp..........ccccorvernriennsnesrernsececenens 152
Side QUESLESccviererrrerisere s 154
Additional ENEMY TYPES.....coceererecrererreesesirsse e se s sss s sessssssssesnns 154
Additional Cannon TYPES........ceuruererererrererererreesesesssesese s s s sesssssssnns 155
Time SPeed CONTIOl ..o 155
0L (1T 01 TR 156
1111 1P S 156
Chapter 12: Maze RUNMANcovveemmmmmmmesssssssssssnsnssssssssssssssnnsnsnss 159
Player Setup and Grid-Based Movementccocvvvvrvrvnvensencnnnnn, 161
Enemies and Intelligent Movement...........ccccocrercrescnsessessessee e 166
0] =T (1 00 170
0201 0= oo 172
Side QUESLEScovicrerrreise e 173
Adding a Jewel BonuS IHem..........ccorieerieerrecer e 173
0L (1T 01 OO 174
1111] 1P S 174
Chapter 13: Jumping Jackccucemmmmmsssnnmmmssssssnmssssssssssssssssnnnns 175
(3L I DT o RS 176
Player SETUDcceerireeirere e 177
Ladders and Climbingccccoeeeeererenere e sse s ses s snenas 180

ix

CONTENTS

Additional Game ODJECESccevvvrrrrerrr s 185
[T V- T 185
Jump-Through PIatforms..........ceevrcerrrerrsre et s e sesasenaens 186
SPHNGDOAIASc.veeeeeeereeerererrererreres e raeserae s e e s e ras e sae e sae e sae e s e ra s e saesesae e nseensenes 186
Breakable BriCKScccocoeeeerereeeeseee e 187
COIMS...eeererererererereseseresenesenenesenessnenesenenesssesenesensnens 189
KeyS and LOCKE BIOCKScuueesneesseessneesssssessssssssesssssssssssssssssssssssssssssssssssssssans 190

12T 1= 191

Side QUESTESoeeerererer s 195

31141 4P 196

Chapter 14: Treasure Questccccvvnrmrmismmmssssmsssssssssssssssenne 197

YL I DT o 198

HEr0 SETUP ..ot 201
Sword-Fighting Mechanics..........ccuvvnrnnrnnn e 203

MUIIPIE LEVEIS ...ttt 205

User Interface DeSign........ccocvevrrerrerrennen s e e se e sesens 208
LU] o] 209
100 1 0 209

1 (5] 3 211
HEAMS ... e 212
[0 OO PSR R 212
BOMDS.....oe e —————————— 214
The Treasure CheSt ... 216

ENBMIES......ceeeeceer et 217

Side QUESLESveereeercrreererrr e 220

T 1111 SRS 221

CONTENTS

Chapter 15: The Journey Continues........cccevusssemnnrsssssnssssssssnsssnsns 223
Continue DeVelopingccoceeeereerreresere s e sse e sne e snesnesnesns e nas 223
WOrKiNg 0N PrOJECTS......ccueuecererecereresreesesesss e enns 223
0Dbtaining Art RESOUICEScocrvrueeerereeeesesrse e se s se s ssssens 224
Participating in GAME JAMS..........ccccoiriercrerrescrir e 225
Overcoming DiffiCUIIESccocourueeercrreec s 225
Broadening YOur HOMZONScccvvrvennennensesses s ses e e 226
Playing Different GAMESccceerererererererererereressersesersesessesessesasessssessssesasenaes 226
Increasing YOUr SKill Set.........cccoecerevrerere e res e se e res e seesesaenenaes 227
Recommended REadiNg.........cccvrvereerereererererererereesersesersesessesessesessessssessssesseenaes 227
Sharing YOUr GAMES.........c.cceerrrermnenesessesss e ses e ssssesessssessesessessssesnes 228
Appendix A: Game Design Documentationcccccuseennrnsssnnnnn 231
INA@X..uueeiiisennsssnnnssssnnsssanssssanssssanssssanssssanssssansssssnnssssnnsnssnnsnssnnnnssnnnss 237

xi

About the Authors

Lee Stemkoski is a professor of computer science and
mathematics. He earned his Ph.D. in mathematics from
Dartmouth College in 2006. He has been teaching at the
college level since, with an emphasis on Java
programming, computer graphics, and video game
development for the past six years. Lee particularly
enjoys playing classic games released for the Nintendo
and Super Nintendo Entertainment System consoles.
He has written another book, Beginning Game
Development with LibGDX, in addition to many other
scholarly articles and game development tutorials.

Evan Leider is currently pursuing a B.S. in computer
and management information systems with a
specialization in game development, with an expected
graduation date of 2018. Since 2012, he has been
using Construct 2 to create his own games. Evan has
been a teaching assistant in introductory video game
programming courses for two years, where he helps
college and high-school students learn how to use
Construct 2. He enjoys playing video games such as
Sonic the Hedgehog and Super Smash Brothers.

xiii

About the Technical
Reviewer

Julien Kyatric Fantoni is a game maker and Construct expert. Originally learning coding
with Visual Basic, PHP, C & C++ with the intent to make games it was only when he found
Construct that he was able to release his first completed games.

Julien’s an early adopter of Construct and early believer in HTML5. He’s been active
in Construct 2 community providing tutorials, support and help in the forums and
other websites. He’s been working and releasing games made during game jams and
professional advert-games ordered by various media companies like CanalSat, France 2
or even the music video game “Lazers from my heart” for the band Birdy Nam Nam.

You can find his various works on his website kyatric.com.

XV

http://kyatric.com/

Acknowledgments

Thanks to the editorial and support staff at Apress, for without their efforts and support
this book you are reading would not exist.

Thanks to Ashley and Thomas Gullen, the creators of the Construct game engine
and the founders of Scirra Ltd., whose dedication to bringing game development to the
masses has had a profound impact and continues to inspire and empower individuals
across the world.

We would particularly like to thank Julien Fantoni, who is an outstanding technical
reviewer and made many insightful comments and helpful suggestions on the
presentation, style, and content of this book. Julien has been helping countless numbers
of aspiring game developers for years (including the authors of this book!) as a moderator
on the Scirra online forums. We are honored that he agreed to join us in this endeavor,
and we have benefitted greatly from his experience and advice.

Finally, a special thanks to our students and readers, past and present, for their
continuous and infectious enthusiasm. Your passion for game development is what
inspired us to write this book.

xvii

Foreword

At Scirra, we've always believed the future of software is on the Web. Everyone wants to
“put a ding in the universe” (as Steve Jobs said), and using HTMLS5 to power Construct
2’s games is our way of trying to do that. While Construct 2 lets you export to a variety

of platforms, I've always thought the Web was the most interesting one: it’s free, it's

open, and there are no gatekeepers who will charge you fees or decline your app. Web
technology is also excellent now, having come on in leaps and bounds since we started in
2011. New technologies like WebGL 2 and WebAssembly point to a bright future too.

Another goal of mine is to encourage people to be content producers, not just
consumers. It’s easy to spend hours clicking or swiping through the Web, just reading and
using what other people have made. That can be interesting, but personally I think it’s far
more exciting to build things. Building software and games has often had a high barrier
to entry, and we want to try to make developing and sharing your own games as easy as
making a presentation. I hope this book helps get you started on the way.

Construct 2 is designed to let your creativity run free. We specifically wanted to avoid
being a “cookie-cutter” game engine, which basically gives you premade templates that
you lightly modify. Instead, it provides a series of building blocks to start assembling your
own unique game from. This book covers a range of game genres and mechanics to help
you learn how to build something of your own, all built from the common building blocks
of things such as sprites, behaviors, events, and more.

If you manage to build something and share it with someone else, then we’ll be very
happy to have helped you be a creator. Persistence can get you a long way too; I started
with nothing but a laptop in my bedroom, and now we’re a full-fledged business. Who
knows where you'll end up if you keep going?

—Ashley Gullen
Founder, Scirra Ltd.
February 2017

Xix

Introduction

Welcome to Game Development with Construct 2!

In this book, you'll learn how to create video games using the Construct 2 game
engine, an ideal program for aspiring game developers who have no prior experience,
as well as experienced game developers looking for a tool to rapidly create prototypes of
games. The games you will create in this book are inspired by classic arcade games such
as Asteroids, Frogger, Breakout, and PacMan; general genres such as car racing or tower
defense games; and console games such as Super Mario Bros. and The Legend of Zelda.

Construct 2 is both user-friendly and powerful. The software has been around for
more than 5 years, has been downloaded more than 3.5 million times, and has an active
user community and responsive development team. Games created with Construct 2 can
be exported to run on a variety of platforms and operating systems, such as web browsers
(HTML5), Windows, macOS, Linux, Android, and iOS. A free version of Construct 2 is
available for download and is sufficient for all the game projects contained in this book.

Much like the software itself, this book does not assume you have any prior
programming or game development experience. Over the course of the book, you will be
guided in creating a series of 12 different video games of increasing complexity that will
teach you both the features of the Construct 2 game engine and the game development
topics and logical programming concepts that will serve you well for software
development in general.

Thank you for allowing us to be your guides as you begin your journey as a game
developer. We hope that you find this book both informative and enjoyable and that it
enables and inspires you to create your own video games to share with the world.

xxi

CHAPTER 1

Getting Started with
Construct 2

Welcome to the exciting world of game design and development! In this chapter, you will
learn all about Construct 2, the program you will be using to develop games throughout
this book.

Designing video games is an enjoyable and rewarding activity. The process of creating
video games uses a combination of creative and technical skills, and the end result is
a game that can provide entertainment to any audience you choose. Whether you are
creating games as a hobby or as a professional, you need to find the best approach that
works for you. There are two main approaches to game development: using a traditional
programming language (such as Java or Python) or using a game engine (a software
framework that provides the core functionality needed to create a video game). A game
engine automates common tasks such as displaying graphics and animations, playing
music and sound effects, and simulating physics. Traditional programming languages
usually provide more flexibility and customization options than game engines, but to take
advantage of these features, you must first learn how to program. While game engines
might have some limitations, this is typically more than compensated for by the benefit of
speeding up the development process, which means you can devote more time and energy
on game design and content.

For beginners who want to start creating games right away, using a game engine is
clearly the better option. As an added bonus, the logical concepts and frameworks you
learn will help you to understand advanced game engines or programming languages
more quickly, should you decide to use them in the future. However, even experienced
programmers will often use game engines for rapid prototyping, which means quickly
creating a working, preliminary version of a game to test whether the core ideas and
gameplay mechanics are enjoyable. Once this is established, if you decide that a game
requires more advanced functionality or graphics beyond what the game engine can
provide, you could then create the game using the programming language of your choice.

© Lee Stemkoski and Evan Leider 2017 1
L. Stemkoski and E. Leider, Game Development with Construct 2,
DOI 10.1007/978-1-4842-2784-8_1

CHAPTER 1 " GETTING STARTED WITH CONSTRUCT 2

About the Construct 2 Game Engine

The Construct 2 game engine was developed by Scirra, founded by Ashley and Thomas
Gullen, in 2011. Since then, the software has been regularly updated with new tools
and capabilities. Of the many game engines available, the following features establish
Construct 2 as one of the best:

e Inexpensive: There is a free edition available, which contains
nearly all' the functionality of the full version. The paid personal
license is reasonably priced, can be used for commercial
purposes (up to $5,000 revenue), and is valid for the lifetime of
the software.

e Easy to learn: Construct doesn’t require any prior programming
knowledge. Graphics and sounds are easily added to a game. The
software has a drag-and-drop interface, it has a visual editor for
designing the layout of your game, and you can program actions
by selecting them from lists. There are integrated tools for editing
images and viewing animations. It is simple to export completed
games so that they can be shared with others. Most important,
there is extensive and clearly written help documentation and
tutorials on the developer web site.

e Flexible: It is possible to implement a great variety of classic and
custom game mechanics and actions, which enables you to create
games from a variety of genres, such as side-scrolling platformer
games, top-down adventure games, slow-paced puzzle games,
and fast-paced physics games.

e Active community: Construct has a large number of users; the
software has been downloaded 3.5 million times. The developers
regularly update the software with new features, performance
improvements, and maintenance fixes, and they are responsive
to the users. There are forums provided for help, discussion, and
networking. The developers even maintain the Scirra Arcade, an area
where you can upload your games to share them with the world.

Downloading and Installing

To download the Construct 2 game engine, go to the web site www.scirra.com. Figure 1-1
shows the web site as of the date of printing. Click the Free Download link and you will be
brought to another page, where an installation file should automatically download to your

'The main limitations of the free version are the amount of customized code that can be written
(100 “events”), no access to tools for debugging and inspecting the performance of the game, and
limited export options (games can be run in web browsers but not as stand-alone executable files for
desktop or mobile platforms).

http://www.scirra.com/

CHAPTER 1 * GETTING STARTED WITH CONSTRUCT 2

computer.” If the download doesn’t start automatically, there will be a link that you can
click to manually start the download process. Here, you can also observe that the Construct
2 game engine is updated frequently when new features are added and software bugs or
glitches are fixed. These versions are called releases and are numbered in sequence; the
release number will be indicated near the top of the download page.

O SCIRRA = A .o [B

Construct 2 Manual Tutorials Register or Login

Create Games

EASILY

Construct 2 ets YOU

Buy Now

I Free Download b

Or learn more about Construct 2

Figure 1-1. The Scirra web site, home of the Construct 2 game engine

Once your download is complete, run the installation file. After accepting the license
agreement, you can let the installer auto-detect the type of computer you have (a 32-bit
or 64-bit system) and create a desktop icon if you desire. When the installation is finished,
launch the program!

The User Interface

When you run Construct 2 for the first time, you should see a screen similar to Figure 1-2.

2Construct will download the latest stable version of the software. If desired, you also have the
option of manually downloading the most recent “beta” version of the software, which contains the
newest features but has not been as extensively tested as a stable version and may contain errors.

CHAPTER 1 " GETTING STARTED WITH CONSTRUCT 2

@B -~-Q G- Construct 2 - Start page : o

e [T—
| Prepeties ax

= A
= I

w Projects

Projects | Layers

Objects

sart Recent Projscts Usatul Links
[o Progest @ Fatamtravipangese s () Vasua
B O Prest i Ttwristy

L e -
Project Examples @ SsaceRseis.can o s
(@ Seace Blasier @ Pachasciam raa
3 Ghent srete B semcac Stay up 1o date
[R — o Tp—— ﬂm s&

(D) 851 Sartan Coeete

ed cag
V| Objects| Tiemap
| Ready Mo active layer Mause Zoom

Figure 1-2. The Construct 2 program after starting for the first time

In the menu bar near the top of the window, click the File menu and select New
to create a new project. The Select template or example window will appear, as shown
in Figure 1-3. Template projects have different settings already configured for your

convenience for a variety of standard game types and genres. However, in this book, you
will always set up your projects manually. Select the option New empty project and click

the Open button. Construct will then create an empty project file for you, and a window

will appear, as in Figure 1-4.

F- Nl ahds I 0 o= Select templale or example
Sedect a template to start with of an example to open: o}
Recent Projects
New New empty project

h | D New (Ctrl+N)
en...
Qpen | Create a new project MNew retro style project

Create a platform-neutral project with sattings and objects suited to retro style

games (such as phedlated rather than smooth scaling).

New empty SO landscape 4:3 project
Create a rew emply project with a standard definition 4:3 landscape screen.

New empty SO portrait 4:3
Create a new empty project with a standard definition 4:3 portralt screen.

New empty SD landscape 16:9 project

Mew empty 5D portrait 16:9
Craate a new emply project with a standard definition 16:9 portrait screen.

Sstore @Help (@ About hie - opm'.\ /| Ol

Create a new emply project with a standard definition 16:9 landscape screen.

Figure 1-3. Creating a new (empty) project

CHAPTER 1 * GETTING STARTED WITH CONSTRUCT 2

- Do - - £ Comtua 2 - Layout 1 - o x
Home View Bt 0
Properties FE | layetl x| Dttt] - Lajn ax
B A+ LETS
= Abeut - =E L o
Hame e project
ersicn 1000
Dumcriprion
L] oLy
Ao
tmad
Wabsne gt
© Prsject wetting:
Fest Loyt [

3 WedowSize 54,430 Frojects. Layors
= Configusation Settings Dot ax

Loader sayle Cemntmnt 2 splash
FPreload sounds s -
[> [Cojects Thernap
ooty | Eomizo Active Layer: Layer © Mogser (S50, 3250, 8 Zoows 109%

Figure 1-4. The Construct 2 window when starting a new project

The number of panels and amount of information displayed can be a bit
overwhelming at first, but as you work through the projects in this book, you will
quickly become familiar with all the displays and different features that are available.
In the following text, we will give you a brief overview of the information that each area
contains. After creating your first game, the various areas will contain information specific
to your game; for example, Figure 1-5 shows how the Construct window will look after
completing the Starfish Collector game in Chapter 2.

@ Be-~n-QiFs Construct 2 - StarfishCollector.capx - Main = [m] ®
Home View Events :0
Properties n | Eventh - Projects ax
=2 ~ v [Starfish Collector” ~
I= Object type properties ~ [Layeuts
Harme Turtle 1 Main
Phugin Sprite ¥ [Event sheets.
uin 1 5 vent sheet 1
Global No ~ [Obiject types
& Common = :ﬂ"_‘:‘"“
:;’:L r“n Hr Sarfish w
Opacity 100
i Position 400, 3005
i Size 100,93
£ Instance variables
Add / edit Instance variables
E Behaviors
1] BDirection
Maxspeed 200
Ready | Apprax. downkoad: 110 ki y user 3.9 mb Events: 2 Acth [434.4,3287,0) Zoom: 65%

Figure 1-5. The Construct 2 window after completing a sample game

http://dx.doi.org/10.1007/978-1-4842-2784-8_2

CHAPTER 1 " GETTING STARTED WITH CONSTRUCT 2

The large center area in the Construct 2 window is used to display layouts and event
sheets. A layout is used to arrange all the different graphics and objects in your game,
such as background images and scenery, characters, enemies, items, points and other text
information, and so forth. An event sheet contains a list of events, or instructions, for your
game, such as how the player controls the main character, how game entities interact with
each other, and so on. You can switch back and forth between layouts and event sheets
by clicking the colored tabs at the top of this area. To add items or otherwise interact with
these areas, you can right-click to display a mini-menu of actions available for that area.
The menu displayed is dependent on where you right-click. Figure 1-6 shows these two
mini-menus; the layout menu is on the left, and the event sheet menu is on the right.

Insert new object B8 Add event

9 Add comment

sh Add gr

== Add group

% Add global variable

. =k

7 Order » :=| Include event sheet
Align 4 e Help on event sheets

Edit event sheet

i

@ Hep

Figure 1-6. The layout menu (left) and the event sheet menu (right)

The area on the left side of the Construct window displays properties, or related
information, of whatever object is currently selected in the layout area. The contents
of the Properties panel change automatically whenever you click a new object in the
layout area. After creating a new project, Construct will display the properties for the
project itself (such as the name and author of the project and the window size used when
running the game). Clicking the layout area will cause the Properties panel to display
properties of the layout (such as the layout size and the name of the associated event
sheet). Once you learn how to add other objects to the game, such as sprites (which
represent your in-game entities), clicking these objects within the layout will cause the
Properties panel to display related information such as their name, position, angle
(of rotation), and size.

In the upper-right area of the Construct window, there are actually two panels:
the project panel and the layer panel. You can switch back and forth between them by
clicking the Projects and Layers tabs near the bottom of this area. The Projects panel
displays a set of folders that contain all the files and objects used in your game, including
layouts and event sheets, sprites, the hardware being used for input (keyboard, mouse,

CHAPTER 1 * GETTING STARTED WITH CONSTRUCT 2

gamepad, or touchscreen), audio files, fonts, icons, and so forth. New layouts and event
sheets can be created from here, and they can be re-opened from here if they were
accidentally closed (by clicking the X in the corresponding tab). The Layers panel displays
a list of layers, which can be created and used to organize the objects in your game

(for example, background objects and scenery might be grouped into one layer,
characters and items might be grouped into another layer, and user interface information
such as points or messages might be grouped into a third layer).

The lower-right area of the Construct window contains the object panel, which
displays only the objects that are present in the current layout. If a layout contains more
than one instance of a given object, clicking the name of the object in the object panel
selects all the instances at the same time, which allows you to change each of their
corresponding properties at the same time.

Asyou can seeg, there is a lot of information displayed in the Construct window. This
information will be reviewed and discussed in more depth in the chapters that follow.
With practice, as you create your own games, the user interface will become easier
to use, and it will become clear how the Construct window setup organizes the game
development workflow for you.

Saving, Previewing, and Exporting Games

While you are creating games in Construct, always remember to save your work
regularly. If you click the File menu, you will see two related options: Save As Project

and Save As Single File. The option Save As Project will create a directory that contains
all the components of your project, stored as individual files, organized into a series

of directories. One of the files will have the extension . caproj; this file stores the
information about the other files needed for your project and can be used to open your
project in Construct. However, if you want to transfer your project to another directory,
you must also move all the associated files as well. The option Save As Single File will
create a single file with the extension . capx; all the components of your project will be
saved within this file.> For simplicity and ease of use, in this book we recommend you
save your projects using the . capx file format. In addition, Construct has the ability to
automatically save backups of your project at regular intervals. To access this option, click
the File menu, select the Preferences option, and then select the Autosave tab; from there,
you can configure the settings as you want.

While you are in the process of creating the game, you will no doubt want to test it
regularly every time you add a new feature. For instance, you might want to check that the
player controls work correctly, that the game objects interact with each other as expected,
or that the difficulty level is well balanced. To do so, Construct provides a feature that lets
you preview your game, running it in its current state. Along the title bar of the Construct
window are a number of small buttons that perform commonly needed tasks: Save, Undo,
Redo, and Run layout (represented with a standard play icon). Clicking the Run layout
button will run the game, using your default web browser. When you are done playing
your game, you can simply close the web browser to stop the game.

3The .capx file format is actually a “zip file,” whose contents can be inspected and extracted with
other programs such as 7Zip or WinZip.

CHAPTER 1 " GETTING STARTED WITH CONSTRUCT 2

Another outstanding feature provided by the Construct game engine is the ability
to export your games so that they can be run on many different hardware and software
platforms (such as the Internet, desktop computers, and mobile devices). The free
version enables you to export your game to HTML5 format, which runs in web browsers
(just as the Run layout function does). Upgrading to a paid, personal license will give
you the ability to export to additional platforms. To export your game, in the File menu,
select Export Project, and choose the desired format. Exporting to an HTML5 web site
also creates a directory containing a web page and all the other files needed to run your
game; if you have a web site, you can upload the contents of this directory to your site and
anyone with the URL will be able to play your game! Alternatively, if you don’t have your
own web site, Scirra provides hosting for games made with Construct on its web site, at
www.scirra.com/arcade/. One of the freely available exporting options, Scirra Arcade,
will create a file that can then be uploaded; full instructions on how to do so are also
provided at this web site.

Summary

In this chapter, you learned about game engines in general and the Construct 2 game
engine in particular, including many of its distinguishing features. You also learned how
to download and install the software, took a quick tour of the user interface, and got an
overview of saving, previewing, and exporting your games. In the next chapter, you will
review and revisit many of these topics in practice, as you jump into creating your first
game in Construct 2: Starfish Collector.

http://www.scirra.com/arcade/

CHAPTER 2

Starfish Collector

In this chapter, you will create your first game with Construct 2, called Starfish Collector,
shown in Figure 2-1. The player controls a turtle, whose goal is to swim around the ocean
and collect all the starfish she can see. The game features a top-down perspective, and the
player moves the turtle using the arrow keys. This chapter assumes no prior knowledge
and will introduce the fundamental concepts needed to make a game using the Construct
2 game engine introduced in the previous chapter, such as sprites, events, and behaviors,
in the context of creating a game.

Figure 2-1. The Starfish Collector game

Project Setup

To begin, download the zip file containing the graphics for this game from the companion
web site for this book. Extract the files to a folder of your choice; there will be images

of water, a turtle, a starfish, a rock, and words that say You Win! when the player wins.
Alternatively, you can use your own images if you desire.

© Lee Stemkoski and Evan Leider 2017 9
L. Stemkoski and E. Leider, Game Development with Construct 2,
DOI 10.1007/978-1-4842-2784-8_2

CHAPTER 2 * STARFISH COLLECTOR

Next, start the Construct program. In the menu bar, select New to create a new
project. In the window that appears, select the option New empty project and click the
Open button. Construct will then create an empty project file for you. In the center
region you will see the game layout. On the left is the Properties panel (which displays
information about the currently selected object in the layout), on the upper right is the
project panel (which displays the list of files for your project), and on the lower right is the
objects panel (which displays a list of object types currently in your layout).

To begin, you will set up the layout. Click anywhere in the layout area, and the
Properties panel title will change to Layout properties; underneath, it will list the different
properties of the layout in the left column and their current values or settings in the right
column, shown on the left side of Figure 2-2 with the default settings. Click in the area
next to Name, type Main, and press Enter.! You should see that the name of the layout has
also changed in the project panel. Similarly, click in the properties area next to Layout
Size, and enter 800, 600. This sets the layout width to 800 pixels and height to 600 pixels,
which is a fine size for the game world. When you've completed these changes, the
Properties panel should look like the right side of Figure 2-2.

Properties o X Properties aXx
22 =zl
Layout properties Layout properties
Name Layout 1 Name Main
Event sheet Event sheet 1 Event sheet Event sheet 1
Active layer Layer O Active layer Main
Unbounded scrol... No Unbounded scrol... No
+H Layout Size L:} 1708, 960 + Layout Size R} 800, 600
+ Margins 500, 500 H Margins 500, 500
1 Effects =] Effects
Add / edit Effects Add / edit Effects
Project Properties View Project Properties View
More information Help More information Help

Figure 2-2. Layout properties

'Even though this game will have only a single layout, giving objects descriptive names is an
important habit to develop right away. The importance of naming layouts will be more obvious in
future projects, when you will have different layouts for menus, game levels, and so forth.

10

CHAPTER 2 * STARFISH COLLECTOR

Next, you will set up layers on the layout. Layers are used to organize the objects
in the layout into groups, such as background images, characters and items, and
user interface (UI) or heads-up display (HUD) information. To see the list of layers,
underneath the project panel, you will see two tabs: Projects and Layers. Click the Layers
tab, and the project panel will be replaced with the layer panel. You will see a list that
contains a single layer, named Layer 0. Click the add button (indicated with a plus icon)
two times to add two layers; they will be given the default names of Layer 1 and Layer 2.
To rename a layer, click the layer name in the list to select it and then click the rename
button (indicated with a pencil icon). Rename Layer 0 to Background, Layer I to Main,
and Layer 2 to UL. When you are finished, the layer panel should look like Figure 2-3. The
order in which the layer names appear makes a difference; the layer at the bottom of the
list will have its contents rendered (drawn on the screen) first. Its objects will appear to be
on the bottom, or below the objects from other layers. Similarly, the layer listed directly
above the bottom layer will have its objects drawn next, and so on. The layer at the top of
the list will have its objects drawn last, so this is the best group for user interface-related
information, such as the player’s score or time remaining, since this data should be
displayed overlaying the game world.

Layers o X
+eoB8 /710 ¢

Mau 2

[& main 1

Ma Background 0

Projects Luye's[-._

Figure 2-3. The layer panel

11

CHAPTER 2 * STARFISH COLLECTOR

The last project setup task you will do is to set some of the project properties.
This is a place to store information about your game and change settings such as the
window size and web browser used to preview your game. Click in the layout area, and
underneath the list of layout properties on the left, you will see a Project Properties row
next to which there will be underlined blue text (similar in style to a link on a web page)
that says View, as shown on the left side of Figure 2-4. Click View, and the Properties panel
will now change and display project properties, as shown on the right side of Figure 2-4.
Here, you might want to fill in the areas next to Name (which refers to the name of the
project or game) and Author (your name). Filling in properties such as Email or Website
is not necessary but can be useful if you plan to share your project file with someone and
you want to provide a way for them to contact you. Further down in the Properties panel,
you should change Window Size to 800, 600, just as you did for the Layout Size property
previously. This is important because the Starfish Collector game world should fill up the
program window.

Properties o x Properties o X
=2l =2
Layout properties About =
Name Main Name Starfish Collector
Event sheet Event sheet 1 Version 1.0.0.0
Active layer Background Description
Unbounded scrol... No D com.mycompany...
+ Layout Size 800, 600 Author
H Margins 500, 500 Email
Effects Website http://
Add / edit Effects = Project settings
Project Properties View First layout (default)
More information Help Use loader layout No
Pixel rounding Off
Preview effects Yes
H Window Size 800, 600

- Configuration Settings

Figure 2-4. Project properties

12

CHAPTER 2 * STARFISH COLLECTOR

Sprites

Next, you will add some Sprite objects to your program. A sprite is an image that
represents an entity in your game world and has associated properties such as position
(specified using x,y coordinates), angle of rotation (measured in degrees), and size (which
need not be the same as the size of the original image). To create a sprite, right-click in the
layout area, and a menu will appear as pictured on the left side of Figure 2-5. Select Insert
New Object, and a window will appear, as shown on the right side of Figure 2-5. Click the
Sprite icon; then in the text box at the bottom of the window next to Name when inserted,
type Background; and finally click the Insert button.

Insert new object Dﬁ‘ Insert New Object
Double-dick a plugin to create a new object type from: 2
General ~
= ~ ©
im - e v #Zh iTi
- G-patch Function Partides Shadow Sprite Text
Light
Z Order b
aE
Align » " Ea
Tiled Tilemap
Background
— i 2 Input
=S| Edit event sheet P ;
A = ® i
Gamepad Keyboard Mouse Touch

Name when inserted: | Backgreund

Description: An animated object that is the building blodk of most projeds. -
ite!

More help on *

e Help Help . InserlL:__| Cancel

Figure 2-5. Inserting a new Sprite object

After clicking the Insert button, the mouse pointer icon will change to a crosshair-
style icon, which is used to indicate where you would like to place the Sprite object. You
can easily change the position of the sprite later, so for now, simply click in the center
of the layout area. Next, a set of windows as pictured in Figure 2-6 will appear. These
are the image editor windows. With the tools provided, you could draw an image or set
up an animation. However, for this project, you will use the graphics provided that you
downloaded at the beginning of this project. Click the folder icon along the top of the Edit
Image window, navigate to the folder where you extracted the images from the zip file,
and select the image named water. jpg. The image will appear in the Edit Image window.
You don’t need to modify this image in any way, so close the Edit Image window (all the
other image editor windows will also close automatically), and the sprite will appear in
the layout area.

13

CHAPTER 2 * STARFISH COLLECTOR

G BAe-w-D: Construct 2 - Main
e i) Bt : 9
[r— "% Main > | Evpot shest 1 | | reects 2%
il [y Starfish Collectar*
P e, v i Lsyests
Speed 5 CT
lop No v [y bvent shoets
Fegeet count 1 o et shebit 1
Repaat to] = ™ = . . £t tpes
Pegrinirg o OwBGReLCc XD ++2C q s QaQ @ sckgpnd
Mo iedoamation Helg | Coi" Falere u] s 10 T ardeess [T [smootn o
s
&
i A EREIEEE
s
e
o
{#%
| P ks
(e P ==
et 3 4 L
| |o | e
[T 100% Mcuse 314, 138 250 750 PHG-12
aphalzm E
G

|< 3 Wojects | Thoman

Eaady et 0 Active layer: Liyws 0 Mowie: (10, 2000, 8 Zocen: 100%

Figure 2-6. The image editor

The background sprite needs to be adjusted so that the water image covers the entire
layout area. Click the sprite in the layout area to select it; the currently selected sprite is
indicated by being surrounded by a light blue rectangle. You can reposition the sprite
by clicking and dragging on the interior region of the sprite. You can resize the sprite
by clicking and dragging any of the small white squares that appear around the blue
rectangle when the sprite is selected. You can rotate the sprite by clicking and dragging
the small white square that is connected to the center point by a line (however, you do
not need to rotate this particular sprite). You will notice that, as you change the position,
size, or angle, the corresponding value in the Properties panel will change as well.
Alternatively, you may set these values by typing them into the Properties panel directly.
In addition, change the background sprite’s Layer property to the Background layer.

Next, you will repeat this process to add a turtle sprite. As before, right-click in the
layout area, select Insert New Object, click Sprite, enter the name Turtle, and click the
Insert button. When the crosshair cursor appears, click anywhere in the layout to select
an initial position, and in the image editor windows that appear next, select the image
named turtle.png.? Close the image editor windows, resize and reposition your turtle
sprite as desired, and change the Layer property to Main. Finally, repeat this process one
more time to add a starfish sprite, with the name Starfish, using the image starfish.
png. When you are complete, the layout should look like Figure 2-7.

2The turtle image is stored as a PNG file rather than a JPEG file because the PNG file format
supports transparency while the JPEG file format does not, if the image had been stored as a JPEG
file, the turtle image would appear on a solid white rectangle.

14

CHAPTER 2 * STARFISH COLLECTOR

Figure 2-7. The layout window with background, turtle, and starfish sprites added

This game would be quite short if there were only one starfish for the turtle to collect,
and thus you will create some copies of the starfish sprite that you previously created.
These copies are called instances of the starfish sprite. Every instance of an object has its
own set of property values that can be adjusted independently of the others. Additional
instances can be created in multiple ways. One method is to select the sprite you want
to copy on the layout, press Ctrl+C to copy it, and press Ctrl+V to paste the copy onto the
layout; the cursor icon will change to a crosshair-style pointer, allowing you to select the
position of the new instance. An alternative (and slightly quicker) method is to select
the sprite on the layout, hold down the Ctrlkey, and click and drag the selected sprite.

A new instance of the sprite will be generated on top of the original one, which can then
be dragged to its new position on the layout. Using either of these methods, create a few
additional instances of the starfish sprite and position them around the screen. Feel

free to change their angle and size slightly to add some variation in their appearance.
Figure 2-8 shows one possible such layout. Once you are finished, it is a good idea to save
your project.?

’In general, you should save your project frequently, such as every few minutes or every time you
have finished adding a new feature, whichever comes first.

15

CHAPTER 2 * STARFISH COLLECTOR

< »

Figure 2-8. Layout example with multiple starfish sprites

Events

Next, you will add some instructions, commonly referred to as code, to your game to make
it interactive. In the Construct game engine, instructions are called events. Each event
has two parts: a condition and an action. A condition is a test that the program can check,
which will be either true or false. An action is something the program can do. Informally,
events can be thought of as “if-then” statements (instructions that say “If this condition
is true, then do this action”). Every type of object in Construct has an associated list of
conditions and actions that you can select from menus when creating events. This is
convenient compared to traditional programming languages, where programmers need
to remember and type in the names of each command or function.

The first event you will create will enable the turtle to “collect” the starfish. In many
video games, the player’s character often collects items by simply coming into contact
with them, after which the collected item disappears; the gameplay in Starfish Collector
will be the same. Informally, the event could be phrased as “If the turtle comes into
contact with the starfish, then remove the starfish from the screen.”

To begin entering this event, click the Event Sheet 1 tab above the layout area, or
if the tab is not visible, you can click Event Sheet 1 in the project panel on the right.

The layout will be replaced with an event sheet, which is where all the game events are
displayed. Next, click the light gray text that says Add event in the event sheet area. A
window will appear, which asks you to “double-click an object to create a condition from.”
The condition is that the turtle makes contact with a starfish, and therefore you should
double-click the Turtle object, as shown in Figure 2-9. A window will then appear that
contains a list of conditions you can select from, as shown in Figure 2-10.

16

CHAPTER 2 * STARFISH COLLECTOR

Add event
Double-dick an object to create a condition from: jolll
\h-"\. *
-/\'u(_
System Background Starfish Turtle
Cancel Help Back Next|

Figure 2-9. Selecting an object to create a condition from

Add event
Triggered when the object collides with another object. ol
[Appearance ~
- Compare opacity a1s flipped
15 mirrored 15 visible
Collisions
- Collisions enabled s overlapping another object
15 overlapping at offset 7% On collision with another object
Instance variables
U Compare instance variable ¥ Is boolean instance variable set
¥ Pick highest/lowest v
Cancel Help on 'Sprite’ conditions Back | Next L
b

Figure 2-10. A list of available conditions for the turtle sprite

One of the tricky parts of working with events is determining which of the available
conditions (or actions) you need. Sometimes the condition you need is phrased with
words other than those you originally thought of in an informal description. For example,
there is no condition labeled “comes into contact with,” but underneath the Collisions
group of conditions there is a condition labeled as or collision with another object, which
has the same meaning. If you are unsure what a particular condition means, you can
click it and a short description of the condition will appear at the top of the window.
Alternatively, you can click the underlined text Help on ‘Sprite’ conditions at the bottom of
the window and you will be brought to the help documentation for Construct. Since you
have found the condition you seek, you can double-click this condition (or single-click
and then click the Next button), and a new window will appear. Such a window will appear
whenever there is more information that you need to enter; the additional details that you
need to enter are called parameters, which is why the word parameters appears in the title
bar of this new window. For this condition, you must enter which type of object you are
checking for collision with, as different types of object collisions may have different results

17

CHAPTER 2 * STARFISH COLLECTOR

(for example, collisions with an item, an enemy, or a wall all have very different outcomes
or actions associated with them). Click the <click to choose> button, double-click Starfish

in the window that appears, and then click the Done button. You are now finished setting

up the condition for the event, and your event sheet should appear as in Figure 2-11.

Main~ Event sheet 1 -

=5 m-Turtle On collision with - Starfish L

Figure 2-11. Condition for the collecting starfish event

To complete this event, you need to specify the action that will take place whenever
the condition is met; in this case, the starfish should be removed from the game. In the
event sheet, click the words Add action that appear next to the condition you just created.
Similar to the process of creating a condition, a window will appear containing the
different sprites you have added to the project. Double-click the Starfish object. A window
will appear, containing a list of available actions for the starfish sprite. The Destroy action
is used to remove an instance of an object from the game entirely; select this action and
click the Done button. No more windows will appear because there is no additional
information that needs to be entered. When you are finished, the event should appear as
in Figure 2-12. Congratulations; you have finished writing your first event in Construct!

Main Event sheet 1 -

1 = uTurtle On collision with g Starfish #r Starfish Destroy L

Figure 2-12. Completed event for collecting starfish

Behaviors

The next feature to add is movement for the turtle. In this game, pressing any of the arrow
keys will move the turtle in that direction: pressing the up arrow key moves the turtle
toward the top of the screen, pressing the right arrow key moves the turtle toward the
right side of the screen, and so forth. It is clear how to think of these as if-then statements;
for example, “If the up arrow key is currently being held down, then move the turtle
upward.” In terms of events in Construct, the condition is “the up arrow key is being held
down,” and the action is “move the turtle upward.”

Although you could program these events yourself, it is more efficient to use features
in the Construct game engine called behaviors. Behaviors are like prewritten collections
of events that you can attach to a sprite. This saves you, the game developer, the time and
effort of creating these events yourself. There are currently approximately 25 different

18

CHAPTER 2 * STARFISH COLLECTOR

behaviors available for use; they include many commonly used game mechanics such
as player controls for movement, visual effects such as fading or flashing, and advanced
features such as pathfinding and physics simulation.

Next, you will add a behavior to easily control the movement of the turtle. Return
to the layout, select the Turtle object, and in the Properties panel click the underlined
blue text labeled Behaviors. The Turtle: Behaviors window will appear, containing a row
of icons along the top. Click the Add New button (represented with a plus symbol icon),
and a window of available behaviors will appear, as shown on the left side of Figure 2-13.
Underneath the Movements group, select the 8 Direction behavior (either by double-
clicking or by clicking once and clicking the Add button). This window will close, and the
program will return to the Turtle: Behaviors window; the 8 Direction behavior icon should
now appear in this window.

Add behavior Turtle: Behaviors n
Double-dick a behavior to add: 2 +/70¢3
Name Type
General i ':i:'SO.re(tlon [8 Direction
B | 4 "
b B O » W O 7 ‘
Anchor Bound to Destroy Drag & Dvop Fade Flash
lanyout outsi...
v o
3 X ® 0 B
Line Cf Sight Pin Seroll To Timer Wrap

Movements

e Als L) A '
e 4 s x iH)
B Direction Bullet Car Custom Pathfinding Physics
Maovement v

Moves an object up, down, left, right and on diagonals.

Help [Add N | canca

Figure 2-13. The Add behavior window and Turtle: Behaviors window

While you are in the process of adding behaviors, there is a second behavior that is
helpful for this particular game called Bound to Layout, which will keep the associated
sprite from moving past the boundaries of the screen. As with all behaviors, you could
theoretically add this functionality yourself by creating a set of events; in this case, the
events would be “If the left edge of the turtle sprite moves past the left edge of the layout,
then move the turtle to the right,” and so forth, for all edges of the turtle. However, once
again, you will instead add a behavior following the same procedure as before: click the
button with a plus symbol icon and select the Bound to Layout behavior underneath the
General group. When you are finished, the Turtle: Behaviors window should appear, as in
Figure 2-14. Close the Turtle: Behaviors window.

19

CHAPTER 2 * STARFISH COLLECTOR

Turtle: Behaviors n
EXAEE NS

Name Type

‘< ;f'SDirection 8 Direction

[751

EBoundT olayout Bound to layout b

Figure 2-14. The list of behaviors added to the Turtle sprite

At this point, you are ready to test your game! Be sure to save your project (as a single
file, as usual) and then click the Run layout button (represented with the standard play
icon featuring a right-pointing triangle) in the title bar of the Construct window. Your
default web browser will open, and your layout should appear. Press the arrow keys,
and your turtle should move around the screen; notice that the 8 Direction behavior
also rotates the sprite so that it faces the direction in which it is moving,* as illustrated in
Figure 2-15. You can also test the Bound to Layout behavior by trying to move the turtle
beyond the layout area (the turtle should stop moving forward when it touches an edge
of the screen). Finally, you can test the event you wrote (for collecting starfish) by moving
the turtle so that it collides with each starfish; this should cause the starfish to disappear.

Figure 2-15. Playing the Starfish Collector game in a web browser

“For this feature to work properly, the image used for the sprite must have the character facing to the
right because the default angle (0 degrees) points in this direction. If you are using a different image
and this is not the case, the image can be rotated using the tools along the top of the image editor
window.

20

CHAPTER 2 * STARFISH COLLECTOR

Ending the Game

After the initial thrill of seeing your game come to life in a web browser and being able

to play it, your experience may be a bit anticlimactic, since after you collect the starfish,
nothing happens. The game is presumably finished, but there is no sense of closure. This
could lead players to confusion (leaving them to think “Is there something left to do?” or
“Did I do something wrong?”) or even a sense of frustration. To remedy this situation, you
will now add a game-over message that says You Win! to the game, which will appear after
the turtle has collected all the starfish.

In the layout area, right-click, select Insert New Object, and add a sprite named
YouWin. Use the image you-win.png and position this sprite so that it is in the middle of
the layout. In the Properties panel, there are two properties you need to change. First, set
the Layer property to UI. As mentioned, this helps keep your project organized and also
ensures that the sprite will be displayed on top of everything in the layers listed below it:
Background and Main. Second, change the property Initial Visibility to Invisible. This
makes the sprite invisible to the player at the start of the game (although you will still be
able to see it in the layout area); this is important because the player should not see this
message until the game is over.

Next, you need to add an event that checks whether all the starfish have been
collected, in which case the YouWin sprite should become visible. Informally, the event
you will create can be phrased as “If there are zero Starfish sprites left on the layout, then
make the YouWin sprite visible.” To begin, click the event sheet tab and add a new event.
The number of starfish currently on the layout is a property of the Starfish object called
Count. However, to check this value, you will need to use a condition from the System
group of conditions. In the Add event window, select System (represented with a gear
icon) and then select the condition named Compare Two Values from the General group.
A parameters window will appear, which allows you to enter the two values to compare
and the type of comparison to make (such as equals, less than, or greater than). In the
first box, type Starfish.Count (notice in particular that there is a period between the
words Starfish and Count; this tells the program to use the Count variable that belongs to
the Starfish object, rather than the Count variable of something else, such as the Turtle
object). Leave the comparison type set as equal to and leave the second value set to 0.
Click the Done button, and the condition will appear in the event sheet. Finally, click Add
action next to the condition, then select the YouWin sprite in the Add action window, and
finally select the action Set Visible from the Appearance group. In the parameters window,
leave the visibility set to Visible and click the Dore button. The event is now complete
and should appear in the event sheet, as shown in Figure 2-16.

2 £E System Starfish.Count = 0 == YouWin Set Visible

Figure 2-16. The completed event to display a message at the end of the game

Now is a good time to save and test your project. Maneuver the turtle to collect all the
starfish and verify that the You Win! message appears after they have all been collected.

21

CHAPTER 2 * STARFISH COLLECTOR

Side Quests

Although you have now finished implementing the core game mechanics for the Starfish
Collector game, there are still additional optional features you can add to make the game
more interesting, challenging, polished, and fun. This section explains how to add these
features into your game. While they may not be part of the core gameplay, these features
are highly recommended to increase the quality of the gameplay experience for the future
players of your game. In particular, you will learn how to add solid obstacles to the game
world and how to use motion to animate the starfish.

Solid Objects

Games should have well-defined tasks or goals to accomplish and, at the same time,
obstacles to make it challenging to accomplish these goals. In the Starfish Collector game,
the turtle encounters no obstacles; she only needs to swim in a straight line from starfish
to starfish until they are all collected. To make her journey less straightforward, you will
place some obstacles in her way. You will add some rocks (sprites that use a rock image)
that behave as solid objects—obijects that the turtle cannot move through.

To begin, set the layout property Active layer to Main. Right-click in the layout area,
select Insert New Object, and add a sprite named Rock. Use the image rock.png and
position it anywhere on the screen that does not overlap the turtle or any starfish. In the
Properties panel for the Rock object, click the underlined blue text Behaviors, and, similar
to the process you used before when adding behaviors to the turtle, add a behavior named
Solid. Duplicate the Rock object a few times, as you did when creating additional starfish,
and position the new rocks around the layout, with enough space in between them so that
the turtle will be able reach each of the starfish. Figure 2-17 shows an example of such an
arrangement. Save your project, and click the Run layout button in the title bar. Move the
turtle around the screen using the arrow keys, and you will notice that you can’t move the
turtle through the rocks; make sure that the player can win the game.

Figure 2-17. Adding rocks to the game

22

CHAPTER 2 * STARFISH COLLECTOR

As you navigate the turtle around the rocks, you may have noticed that although
image files are rectangular, collision boundaries usually are not. It is typically the case in
video games that if two sprites overlap in transparent areas of their images, this typically
does not count as a collision. However, checking every pixel of every image for overlap
with every pixel of every other image takes a great deal of computation and would cause
your game to run more slowly. Therefore, game engines often use an intermediate
approach, creating a collision polygon: a shape that estimates the boundaries of the
object, usually with eight or fewer sides. When you select an image for a sprite, the
Construct game engine automatically estimates the boundaries that should be used when
checking for a collision between two objects. To inspect or adjust the collision polygon
for a sprite, open the image editor (by double-clicking the object), and in the Edit Image
window, select the icon at the lower left. You will see the collision polygon for the sprite,
lightly shaded in blue, with blue edges and red vertex points. Figure 2-18 shows the
collision polygons for the rock and turtle sprites. You can adjust the collision polygon if
you want by clicking and dragging on any vertex; right-clicking a vertex will bring up a
menu where vertices can be added or deleted.

Edit image: Rock (Default, frame 0) x & Eciit image: Turthe (Dalault. frame 0)

OwBREFT XD+ F2CcB7sQQQ @ DwBReFse XD +F2¢ 07 Q@aQQ @

(| x 20 ¥ ¥ (20 ¥ x50 5 ¥[s =
& &

rd &

Fd 7

s b

(=] o

(5] [

rd Vd

@ &

cl el

200 {3 Set collision polygon | 400 5 100 PhG-32 200 € Set colfvion poly 100 % 33 PNG-32

Figure 2-18. Viewing the collision polygons for the rock and turtle objects

Value-Based Animations

In game design, it is good practice to draw the player’s attention to objects with which
they can interact. One way to do so is with animations, which come in two varieties:
image-based, where a sequence of images are quickly displayed in sequence to simulate a
change in appearance, and value-based, where a set of numbers are continually adjusted
that affect the sprite’s position, rotation, size, and so forth. In this section, you will use
behaviors to implement value-based animations; image-based animations will be
covered in a later chapter.

To begin, select the Starfish object from the object panel in the lower-right area of
the Construct window. It is important to use the object panel so that all instances of the
starfish are selected so that the changes you are about to make apply to all of them. Add
two behaviors to the starfish: Rotate and Sine. The Rotate behavior causes a sprite to spin
by continuously changing the angle property of the sprite. In the Properties panel, under
the heading Rotate, change Speed to 10; this will cause the angle property to increase
by 10 degrees every second, resulting in a nice, slow, spinning effect. The Sine behavior

23

CHAPTER 2 * STARFISH COLLECTOR

causes a property to oscillate between two values. In the Properties panel, under the
heading Sine, change Movement to Size (this causes the Size property to be the one
affected by the Sine behavior), change Period to 2 (this is how many seconds it will take to
cycle through the values), and change Magnitude to 10 (this is the amount by which the
starting value of the property will be adjusted). The result should be a subtle, rhythmic,
pulsing effect as the starfish size increases and decreases by 10 pixels every 2 seconds.
Figure 2-19 shows the Properties panel with these changes made.

Behaviors
Rotate
Speed _ 10
Acceleration [\i' 0
Sine

Active on start Yes

Movement Size
Wave Sine
Period 2
Period random 0

Period offset 0
Period offset ... 0
Magnitude 10
Magnitude ra... 0

Add / edit Behaviors

Figure 2-19. Adjusted values for the Rotate and Sine behavior properties

As you can see when testing your game, when the turtle collides with a starfish, the
starfish immediately disappears. To present a more sophisticated effect, you will add
another value-based animation that will cause the starfish to fade out instead of suddenly
disappearing. Use the object panel to make sure that all starfish instances are selected
and then add the Fade behavior. The Fade behavior causes a sprite to either fade in or
fade out by continuously changing the Opacity property, which controls how transparent
the sprite image is; Opacity values close to 100 are fully visible, while values close to 0 are
completely transparent (and thus cannot be seen by the player). In the Properties panel,
under the Fade heading, change Active at start to No (which means that the sprite does
not start fading out right away), and change Fade out time to 0.2 (which means it will take
0.2 seconds for the opacity to decrease from 100 to 0). Notice that the Destroy property is
setto After fade out, which means that when the object has completely faded out, the
Destroy action will automatically be applied to the sprite, removing it from the game.

Next, you need to adjust one of the game events. Go to the event sheet and locate
the event with condition Turtle: On Collision with Starfish and action Starfish: Destroy.
Click the action and press the Delete key; this will cause the action to be removed from
the game. Click Add action next to the condition, select the Starfish object, and in the list
of actions select Start Fade from the Fade group. When you are finished, the event should
appear, as shown in Figure 2-20. Save and test your game to verify that the fade animation
works as expected.

24

CHAPTER 2 * STARFISH COLLECTOR

1 = mTurtle On collision with 4 Starfish Starfish L Fade: start fadr'[

Figure 2-20. Replacing Destroy with Fade in the event sheet

On Your Own

Congratulations on completing the side quests! At this point, you now have a fully
functional game with some nice extra features. However, you should feel free to continue
developing this game with the skills you have learned in this chapter. Here are some
additional ideas of features:

* You could create a maze for the turtle to navigate through, by
making the rocks long and thin to create walls and adding more
rocks as needed. To give yourself more space to work with in the
layout, you could make the turtle and starfish sprites smaller.

¢ You could make the starfish move back and forth by adding
another Sine behavior to the Starfish object, with properties
configured to adjust the horizontal or vertical position.

* You could create new sprites for scenery, such as seaweed
or coral. You may or may not want to add the solid behavior,
depending on the type of object they represent.

¢ You could create a new long and thin sprite with both the Solid
and Rotate behaviors added to it; such a sprite will act like a
propeller and will push the turtle if it gets close.

e You could create a new sprite that serves as an “enemy,” like a
shark, that will destroy the turtle if there is a collision. In that
case, you might also want to add another sprite with an image
containing the words “game over” that are displayed when that
happens.

Summary

In this chapter, you created your first game in Construct and encountered a lot of
vocabulary along the way. You learned how to create sprites and adjust their properties,
such as position, angle, and size, and how to create multiple instances of a given sprite.
You learned that instructions for your game are specified as events, which can be thought
of as “if-then” statements. Events consist of conditions and actions; if the conditions are
true, then the associated actions are performed. You also learned about behaviors, which
are like collections of events, useful for many common types of games. In particular, you
worked with the following behaviors: 8 Direction, Bound to Layout, Solid, Rotate, Sine,
and Fade.

In the next chapter, you will build upon these fundamental skills and create a space-
themed shoot-'em-up game called Space Rocks.

25

CHAPTER 3

Space Rocks

In this chapter, you will create a space-themed shoot-"em-up game called Space Rocks,
inspired by the classic arcade game Asteroids, shown in Figure 3-1.

Figure 3-1. The Space Rocks game

Introduction

In Space Rocks, the player controls a spaceship, whose goal is to fly around and shoot
lasers to destroy asteroids that are floating across the screen. The player must also take
care that the spaceship does not get hit by asteroids, as they can damage or destroy
the spaceship. The game world space uses wraparound, which means that when an
object moves past one edge of the screen, it reappears on the other side. The player
uses the keyboard to control the spaceship, which may turn left or right, move forward

© Lee Stemkoski and Evan Leider 2017
L. Stemkoski and E. Leider, Game Development with Construct 2,
DOI 10.1007/978-1-4842-2784-8_3

CHAPTER 3 ' SPACE ROCKS

in the direction it is currently facing,' and fire lasers. The spaceship also has the ability

to teleport to a random location on the screen, which can be useful to escape from an
imminent collision with an asteroid but also involves a certain amount of risk, as it is
possible that the spaceship will appear in the path of another asteroid (or even worse,
appear within an asteroid). This game also features animations and visual special effects,
such as rocket thruster fire and explosions. As extra optional features, you will learn how
to add shields to provide limited protection to the ship and to add UFOs that randomly
spawn and present another obstacle for the player to avoid.

This chapter assumes you have mastered the material in the previous chapter. In
particular, you should be able to change layout and project properties, add layers to
a layout, add sprites and adjust their properties, add behaviors to a sprite, and create
events with given conditions and actions. In this chapter, you will learn about some new
behaviors, animations, and functions for events.

To begin, download the zip file containing the graphics for this chapter from the
book web site. In the layout properties, set the layout Name to Main, set Size to 800, 600,
and set up the three layers named Background, Main, and UI as you did for the Starfish
Collector game. In the project properties, change the window Size to 800, 600 (and
change the Name and Author properties as you like). In the layout area, create a sprite
named OuterSpace, using the image space. jpg, and position and resize the sprite so that
it covers the entire layout area. Change the Layer property so that the OuterSpace sprite is
on the Background layer. Your layout should look like Figure 3-2: an image of outer space.

Figure 3-2. Layout with the outer space background sprite added

IThis control scheme has a significant difference from the control scheme from the previous game.
In Space Rocks, the control scheme is relative to the character’s (in this case, the spaceship’s)
viewpoint. In contrast, the Starfish Collector game featured a control scheme that was relative to the
player’s viewpoint. For example, pressing the up arrow key moved the turtle toward the top of the
screen, regardless of what direction the turtle was facing. Using a control scheme relative to the
character can provide a more immersive gameplay experience for the player.

28

CHAPTER 3 " SPACE ROCKS

Spaceship Movement

The next step is to add the player’s character: the spaceship. To begin, change the active
layer in the layer panel to Main. Create a sprite named Spaceship using the image file
spaceship.png. Position it near the center of the layout. Your first goal is to set up events
for spaceship movement, as described in the introduction of the chapter. However, unlike
the situation for the Starfish Collector game, there are no preconfigured behaviors that
will create the precise style of movement for this game. Therefore, in this section, you will
set up some events for customized movement.

Right-click in the layout area and select Insert New Object. In the window that
appears, underneath the Input heading, select Keyboard and press the Insert button
(you do not need to rename the Keyboard object). The Keyboard object provides you with
the ability to check any keyboard key and determine whether it was just pressed, whether
itis currently being held down, and whether it was just released. (You didn’t need to add
a Keyboard object in the previous project because the 8-Direction behavior automatically
checks for keyboard input.)

The first event you will add will be, informally, “If the left arrow key is held down,
then turn the spaceship counterclockwise 2 degrees.” There are two subtle points to this
event that are worth noting before you continue. First, the condition checks whether the
key is being held down; this will be true (and the event action will repeat) as long as the
player is holding down the key (in contrast to on key pressed, which registers as true only
at the first instant when a particular key is pressed). Second, the action of rotating by 2
degrees will take place 60 times per second,’ so the rate of rotation is actually 120 degrees
per second; since there are 360 degrees in a full rotation, the spaceship will be able to spin
around completely once every 3 seconds.

To add the event, click the Event Sheet tab, and click Add Event. In the window
that appears, select the Keyboard object and then select the condition Key is down, as
shown on the left side of Figure 3-3. A new window will appear containing a button
labeled <click to choose>. Click this button, and another window will appear, asking
you to press a key. Press the left arrow key on your keyboard, and the name of the key
pressed will appear in a text box in this window. When you are finished, click the OK
button, and you will be returned to the previous window, where you can click the Done
button. Then, in the event sheet, click Add Action next to the condition you just created.
Select the Spaceship object and then select the action Rotate Counter-Clockwise from
the Angle group, as shown on the right side of Figure 3-3. A window will appear where
you can type the number of degrees to rotate; enter 2 and then click the Done button.
This completes the event that will enable the player to rotate the spaceship to the left.

This assumes your game is running at a rate of 60 frames per second (FPS), which should be the
case for nearly all computers running this program. For more complicated games involving large
amounts of high-resolution graphics and complicated code, the rate at which the program runs could
be slower, and you would need to take the possibility into account when writing the event. This
issue will be discussed at length in future chapters.

29

CHAPTER 3 " SPACE ROCKS

Edit condition Add action

Test f & keyboard key Is currently held down. o Retate the objects angle counter-clockwise by & o
number of degrees.

Key codes Angle Lo
= Key code Is down EH0n key code pressed = Rotate docomse = Rotate counter-chockwise
SHOn key eode released = Rotate teward angle = Rotate toward positicn

- Get angle ~ Seb angle toward position

Keyboard
i Key is down ER0n any key pressed Animations
S On any kiry relesed 50N key pressad <. St aninmiation & et frame
% On key released - Sei repeat-to frame = Set spead

= Start = Slop

Cancel Help on Kevhoard concions Back Next I | Cancel Hp oo Sooite’ actions Back Heaxt ;. \
Figure 3-3. The lists of conditions and actions for rotating the spaceship

Next, you will add an event that lets the player turn the ship to the right; informally, this
event is “If the right arrow key is held down, then turn the spaceship clockwise 2 degrees.”
The steps for adding this event are nearly identical to those listed earlier, with only two
differences: first, when selecting the key in the condition, you should press the right arrow
key, and second, when creating the spaceship action, you should select Rotate Clockwise
from the list of actions. When completed, these two events should look like Figure 3-4.

1 & Keyboard Left arrow is down = Spaceship Rotate 2 degrees counter-clockwise

2 & Keyboard Right arrow is down 4= Spaceship Rotate 2 degrees clockwise

Figure 3-4. Completed events for rotating the spaceship left and right

Now that your spaceship can turn left and right, the next step is to create events
to handle forward motion. While creating actions in the past, you may have noticed
some actions in the Size & Position group that may be applicable, such as Move Forward
and Move at Angle. However, in this game, the movement is more subtle: when the
player presses the key to activate the spaceship’s thrusters, this should cause the
spaceship to accelerate forward, in other words, to slowly increase its speed up to some
maximum value. Furthermore, when the player releases this key, the spaceship does not
immediately stop; instead, it continues to drift in the same direction, at the same speed.
This makes sense in this context because in outerspace there are no opposing forces
(such as friction) to slow down the spaceship. The only way for the player to reduce the
speed of the spaceship is to rotate the spaceship in the opposite direction and activate the
thrusters to counteract the acceleration.

To accomplish this style of movement, you will create the event “If the up arrow
key is held down, then accelerate the spaceship at a rate® of 100, in the direction that the
spaceship is facing” Acceleration is not a property available to sprite objects by default,

3Since acceleration represents the change in velocity, the units for the rate of acceleration are pixels
per second. If the rate of acceleration is 100, this means that during every second the velocity will
increase by 100 pixels per second.

30

CHAPTER 3 " SPACE ROCKS

so to create this action, you will first add a behavior that provides this functionality.
Select the Spaceship object in the layout, and add the behavior called Custom Movement.
Then, in the event sheet, create a new event, selecting the Keyboard object and the
condition Key is down, and select the Up arrow key. Next, add an action to this event,
selecting the Spaceship object and the action Accelerate toward angle in the group Custom
Movement: Velocity. A window will appear where you can enter values for this action.

In the Acceleration text box, enter 100. In the Angle text box, enter Spaceship.Angle. In
particular, do not forget the period between the words Spaceship and Angle; the period
indicates that the program should use the value of the Angle property that belongs to

the Spaceship object (as opposed to the Angle property of other game objects). When
finished, your event should appear as in Figure 3-5.

FHKeyboard Up arrow is down = Spaceship = Accelerate ﬁ CustomMovement 700 at angle Spaceship Angle

Figure 3-5. The completed event for accelerating the spaceship forward

Another gameplay mechanic that you can easily add at this time is wraparound;
when the spaceship moves past one edge of the screen, it should reenter the screen at
the opposite edge, as if the edges were connected. To implement this feature, select the
Spaceship object, and add the Wrap behavior.

Now is a good time to save and test your project. After saving (as usual, a single . capx
file is the preferred format), click the Run layout button in the title bar of the Construct
window. Make sure that the left and right arrow keys rotate the spaceship left and right,
respectively, and that the up arrow key accelerates the spaceship forward in whatever
direction it is currently facing. As you are testing the controls, you might notice that you
can continue to accelerate the spaceship to ludicrous speeds, which could cause the
spaceship to flicker or move so quickly it appears to be in multiple places at once. We will
address this issue by creating an event that forces the spaceship speed to be less than a
certain amount.

The next event will cap the spaceship speed at 200 pixels per second and can be
phrased as “If the spaceship’s speed is greater than 200, then set the spaceship’s speed to
200.” In the event sheet, add a new event. Select the Spaceship object and the condition
Compare Speed from the group Custom Movement; in the parameters window that
appears, change Comparison to Greater Than, and change the value of Speed to 200. Add
an action to this event, selecting the Spaceship object and the action Set Speed from the
group Custom Movement: Velocity; in the parameters window that appears, change the
value of Speed to 200, and click the Done button. When you are finished, the event should
appear as in Figure 3-6. Save and test your project to verify that the event is working as
expected.

4 = Spaceship x CustomMovement Overall speed > 200 = Spaceship = Set x CustomMovement Overall speed to 200

Figure 3-6. The completed event for capping the spaceship’s speed

31

CHAPTER 3 ' SPACE ROCKS

Lasers and Rocks

In this section, you will create additional game objects for the Space Rocks game: lasers that
the spaceship can fire and asteroids that the player will attempt to shoot with the lasers.

In the layout area, insert a new object: a sprite that you name Laser. Position it above
the layout, in the gray margin area (off-screen), and use the image file named laser.png;
adjust the size if necessary. As it turns out, most of the functionality of the Laser object can
be implemented by behaviors. First, add the behavior named Bullet. The Bullet behavior
makes objects move in a straight line. After this behavior is added, you will see in the
Properties panel that the default speed is 400 pixels per second; you may adjust this value
later if you want. Also, add the Wrap behavior since a laser that moves past one edge of the
screen should reappear on the opposite side, as is the case with the spaceship. Next, add
the behavior named Fade. The Fade behavior makes objects fade in or fade out after an
optional time delay and can be set to automatically destroy objects after they have faded
out. You want to use this behavior, because otherwise the lasers will cycle around the screen
forever until they hit something. In the Properties panel underneath the Fade group, change
Wait Time to 1, change Fade Out Timeto 0.5, and leave Destroy setto After Fade Out.

Next, you will add an event to shoot lasers: “If the spacebar is pressed, then the
spaceship creates a laser” To begin, add a new event to the event sheet. For the condition,
select the Keyboard object and the condition On Key Pressed. As with the previous
keyboard conditions, you need to specify a key; following the same procedure as before,
select the space bar key. This condition will be true only when the key is first pressed;
every time the spacebar is pressed, only one laser should be fired.* Next, add an action to
this event; select the Spaceship object, and select the action Spawn Another Object. (In
game development, creating an object during gameplay is called spawning an object.)

In the parameters window that appears, click the button labeled <click to choose> and
select the Laser object; in the Layer text box, enter "Main" (including the quotes). Click
the Dore button, and your event is complete; it should appear as shown in Figure 3-7.

It is worth noting that you did not need to set the position or angle of the spawned laser
because these values are automatically set to match the values of the object that does the
spawning (in this case, the spaceship). Now is another good time to save and test your
game. In particular, when playing your game, make sure that pressing the spacebar fires
one laser, and verify that the laser wraps around the screen and fades out after a short
interval. If any of these features aren’t working as expected, double-check that the correct
behaviors have been added, that any property values discussed have been set correctly,
and that the events appear exactly as shown in this section.

5 = Keyboard On Space pressed = Spaceship Spawn — Laser on layer *Main® (image point 0)

Figure 3-7. The completed event to shoot lasers

“If you had instead selected the condition On Key Down, the condition would be true for as long as

the spacebar is being held down and would result in a continuous stream of laser fire. For the Space
Rocks game, using this condition would make the game too easy, but this is a cool effect to keep in
mind for other games you might make in the future.

32

CHAPTER 3 " SPACE ROCKS

Now that you have lasers to shoot, it is time to add something to shoot at: asteroids.
To begin, in the layout area, insert a new object: a sprite that you name Asteroid.
Position it anywhere on the screen, and use the image file named rock. png; adjust the
size if necessary. As was the case with the laser, most of the functionality of the rocks
can be implemented by behaviors. First, add the Solid behavior. Next, add the Bullet
behavior; in the Properties panel, change Speed to 100 and change Bounce Off Solids to
Yes; this will make the asteroids bounce off each other as they move across the screen
(later, you will create additional instances of asteroids, after these properties are set).
Next, add the Wrap behavior to be consistent with the spaceship and lasers. Finally, you
want the asteroids to appear as though they are spinning around in space. To this end,
add the Rotate behavior. You will now also need to change the bullet behavior property
Set Angle to No. If set to Yes, the bullet behavior moves the object in the direction of the
sprite’s angle. However, you want the bullet motion to be independent of the sprite angle
(the asteroid is traveling in a straight line while the image spins), so you must change the
Set Angle value to No. After all these behaviors are added and the properties are changed,
duplicate the Asteroid object a few times and position the copies around the screen, far
away from the spaceship. To add some variety to their appearances, you can make small
adjustments to the size or angle for individual instances. When you are finished, your
layout should appear similar to Figure 3-8. Save and test your project, and make sure
that the rocks move as expected.

Figure 3-8. The Space Rocks layout after adding rocks

To add interactivity between the game objects, you will now create some additional
events. In particular, the spaceship should be destroyed when it is hit by an asteroid, and
an asteroid should be destroyed when it is hit by a laser. The first event can be expressed
as “If an asteroid collides with the spaceship, destroy the spaceship.” To implement this,
add a new event. Select the Asteroid object and the condition On Collision with Another
Object; in the parameters window, select the Spaceship object. Add an action to this

33

CHAPTER 3 ' SPACE ROCKS

event; select the Spaceship object and the action Destroy. When completed, your event
should appear as shown at the top of Figure 3-9. The second event is “If a laser collides
with an asteroid, then destroy the asteroid and destroy the laser” Implementing this is
similar to the previous event. One change is that the condition is between a laser and an
asteroid. The slightly trickier difference is that there are two actions associated to this
event. After adding the first action (to destroy the asteroid), click Add action under the
previous action. This enables you to add a second action to the event; when the condition
is true, both actions will occur. When completed, this event should appear as shown

at the bottom of Figure 3-9. As usual (after adding new events), now is a good time to
save and test your game. You may find that you need to adjust the position, angle, size,
or speed of the rocks to achieve good gameplay balance; ideally, the game should be
challenging but winnable.

& = @) Asteroid On collision with < Spaceship = Spaceship | Destroy
7= —Laser On collision with (@} Asteroid @ Astercid Destroy
—Laser Destroy

Figure 3-9. Collision events

Thrusters and Explosions

At this point, you have implemented the fundamental game mechanics of the Space
Rocks game. This section is dedicated to visual feedback, which is important in providing
a quality gameplay experience for the player. The two features you will implement
include a thruster effect, which will be visible whenever the spaceship is accelerating, and
an animated explosion, which will appear whenever an object is destroyed.

First, you'll add the thruster effect. In the layout area, add a new sprite named Fire
using the image fire.png. Position and resize this sprite so it appears to be coming from
the spaceship, as shown in Figure 3-10. Add the Pin behavior. The Pin behavior is used to
“attach” one sprite to another; when a sprite moves or rotates, any sprites pinned to it will
move or rotate in the same way, as if the sprites were a single unit.

Figure 3-10. Relative position of the spaceship and fire sprites

34

CHAPTER 3 " SPACE ROCKS

To specify the object to which the fire should be pinned, you need to set up an event.
This event needs to take place exactly once, as soon as the game starts, as in “If the layout
just started, then the Fire object will pin itself to the spaceship.” In the event sheet, add
anew event. Select the System object and the condition On Start of Layout (which was
designed to be used for exactly such a situation). Add an action, select the Fire object,
and select the action Pin to Object; in the parameters window that appears, select the
Spaceship object. The fire should exist only as long as the spaceship exists, so you also
need to add an action to the event where an asteroid collides with the spaceship; in this
case, the fire also needs to be destroyed. When you are finished, these events should
appear as shown in Figure 3-11. Save and test your game; the Fire object and Spaceship
object should move around the screen as a single unit. However, the Fire object is
currently always visible, while the desired effect is that the fire be visible only when the
spaceship is accelerating. This issue will be fixed next.

6 = @ Asteroid On collision with <= Spaceship = Spaceship Destroy
B Fire Destroy
8 = L system On start of layout B Fire A Pin Pin to % Spaceship (Position & angle)

Figure 3-11. The added action Destroy and completed event to activate the pin behavior

The Fire object should not be visible when the game starts, and thus you should
select the Fire object in the layout and set the property Initial Visibility to Invisible.
Next, you need to set up a pair of events to control the visibility of the fire: when
accelerating, the fire should be visible, and when not accelerating, the fire should be
invisible. Recall that acceleration occurs when the up arrow key is being held down, and
there is already an event in place with this condition. Therefore, you only need add a new
action to this particular preexisting event, so click Add action directly underneath the
spaceship acceleration action. In the window that appears, select the Fire object, and the
Set Visible action from the Appearance group. In the parameters window that appears,
leave the visibility set to the default value of Visible, and click the Done button. With this
addition, the event will now appear as in the top part of Figure 3-12.

To make the fire invisible, the event should be “If it is not true that the up arrow
key is held down, then the Fire object will set its visibility to invisible.” You may have
observed that, in general, conditions in Construct are phrased in a positive manner; they
each check whether some condition is happening rather than if some condition is not
happening. In cases such as these when the negation of a condition needs to be checked,
Construct provides you with the ability to invert any given condition. An inverted
condition is true exactly when the original condition is not true. Thus, to implement
the event described earlier, begin by creating a new event with the Keyboard condition
Key is Down, and via the parameters window, select Up arrow key, as you have before.
When you are finished and the condition is displayed in the event sheet, right-click the
condition and a list of options will appear. From this list, select Invert, and a red X will
appear in the condition, indicating that it has been inverted. Inverting can be thought
of as inserting the phrase “It is not the case that...” into the description of the condition.

35

CHAPTER 3 " SPACE ROCKS

Then, add an action to this event; select the Fire object and the Set Visible action, and

in the parameters window, change the setting to Invisible. When you are finished, the
event will appear as in the bottom part of Figure 3-12. As usual, save and test your game;
make sure that the fire is visible only when you are pressing the up arrow.

3 FBKeyboard Up arrow is down & Spaceship | Accelerate 7= CustomMovement 100 at angle Spaceship.Angle
B Fire Set Visible
9 @ @Keyboard = X Up arrow is down B Fire Set Invisible

Figure 3-12. Events for setting the visibility of the Fire object

Next, you will add a visual explosion effect that will appear when certain objects are
destroyed. Unlike the value-based animations from the previous chapter, which involved
objects rotating or changing their size, this will be your first image-based animation,
which rapidly displays a sequence of images, similar to the way a movie works. In
particular, you will be using the image file explosion.png, shown in Figure 3-13, which
actually contains a series of smaller images (referred to as the frames of the animation)
arranged in a rectangular grid. Such an image is referred to as a sprite sheet or a sprite
strip. If these particular images are displayed one after the other, then it will appear as an
explosion that starts out bright, changes color from yellow to orange to red, and finally
darkens and fades out as smoke.

SO0 Se
X X X B R
900 OCS
L B B R

Figure 3-13. Spritesheet used for an explosion special effect

36

CHAPTER 3 " SPACE ROCKS

To begin, add a new sprite named Explosion to the main layer of the layout. When
the set of image editor windows appear, instead of using the large main Edit Image
window, you will focus on the window called Animation frames. Right-click in this
window, and in the menu that appears, hover over the selection Import Frames and then
click the option From Sprite Strip. Select the image explosion.png, and then a window
will appear titled Import Sprite Strip. This window is used to specify how many subimages
are contained in the sprite strip image. In this case, the grid of images contains six images
in each row, so enter 6 for the number of horizontal images, and there are six rows total,
so enter 6 for the number of vertical images. Also, select the Replace Entire Existing
Animation check box, as you do not want to save the default blank image provided by
the image editor. Click the OK button, and when the confirmation dialog appears, click
OK; you really do want to replace the current animation. After a moment, you should see
the individual frames appear in the Animation frames window (you may need to use the
scroll bar to see them all), as shown in Figure 3-14. Frames can be rearranged by using
the mouse to drag and drop, and individual frames can be deleted by right-clicking the
frame and selecting Delete; however, you do not need to do either of these at this time. To
preview the animation, locate the image editor window titled Animations; this contains
a list of animations stored for this object and should currently contain only one item,
named Default. Right-click the name of the animation and select Preview, and a small
window will appear and display what will appear to be a very slow and choppy animation.
To remedy this, click the name of the animation, and the Properties panel should display
a short list of animation-related properties. The property Speed represents how many
frames are displayed each second; change this value to 20 and then watch the preview
again to see a smoother and faster animation. When you are finished, close the image
editor windows.

Animation frames (36) n
~

0 1 2 3 4 5
W

Figure 3-14. The Animation frames window after importing a sprite strip

Next, in the layout, position the Explosion sprite so that it is in the gray margin area.
This is so that the initial explosion occurs off-screen and is not visible to the player.® Next,
you will add actions to preexisting events where explosions should occur. In the event

*You may wonder why you don’t simply set the initial visibility of the Explosion object to invisible,
as you did for the Fire object. This is because, if you set this explosion instance to be invisible by
default, then all the explosions that will be spawned later will also be invisible by default, and you
would have to include an extra action to make them visible after they are created. Dragging the
initial explosion off-screen is an easy way to avoid this extra code.

37

CHAPTER 3 " SPACE ROCKS

sheet, you will add another action to the event involving the spaceship being destroyed.
Click Add Action directly below this action, select the Spaceship object, select the action
Spawn Another Object, and in the parameters window choose the Explosion object and
spawn it on the Main layer. Similarly, add yet another action to the event involving an
asteroid being destroyed: click Add Action, select the Asteroid object, select the Spawn
action, choose the Explosion object, and set it to appear on the Main layer. Finally, you
need to add an event that removes the Explosion sprite from the layout after its animation
is finished. Otherwise, all the explosions that are spawned will remain in computer
memory (even though they are invisible), potentially resulting in a slower frame rate as
the game progresses. Add a new event, selecting the Explosion object and the condition
On Any Finished from the Animation group. For the corresponding action, select the
Explosion object and the Destroy action. When you are finished, the updated events and
the new event should appear as in Figure 3-15. Save and test your game, and watch the
explosions appear when the lasers collide with the asteroids (or when an asteroid collides
with the spaceship).

6 '-Q.A«'.P:oid On collision with & Spaceship = Spaceship Spawn Explosion on layer "Main™ (image point 0)
== Spaceship Destroy
B Fire Destroy

7 =—Laser On collision with ()} Asteroid @ ~steroid Spawn Explosion on layer "Main”™ (imag,
.r‘\stero d Destroy
—Laser Destroy

10 = - Explosion On any animation finished Explosion Destroy

Figure 3-15. Events related to explosions

Teleportation

Another game mechanic mentioned at the beginning of this chapter is the ability of the
spaceship to teleport to a random location on the screen, a potentially risky method of
escape from imminent collision with an asteroid. You will also provide visual feedback in
the form of an animated special effect that appears at the original position and the new
position of the spaceship, as shown in Figure 3-16.

38

CHAPTER 3 " SPACE ROCKS

Figure 3-16. Warp effects appearing after ship teleportation

First, you will create an animated sprite representing the special effect. In the layout,
create a new sprite named Warp, positioned in the margins of the layout area. Since you
are creating an animated sprite, the following process will be similar to the process for
creating the explosion animation. When the image editor windows open, right-click in
the Animation frames window, and select Import from sprite strip. Select the image file
warp.png, and in the window that appears, enter 8 for horizontal cells, 4 for vertical cells,
and check the box to replace the existing animation. Click Default in the window titled
Animation, and in the Properties panel, change Speed to 16 and change Loop to Yes; this
means the animation frames will be displayed in a cycle, returning to the first frame after
the last frame is displayed. When completed, also add the Fade behavior to the Warp
sprite. This will fade out the Warp sprite over the course of one second, and because the
Fade property Destroy is set to After Fade Out by default, you don’t need to add an event
to destroy it as you did with the Explosion sprite.

The event that you will create next is “If the X key is pressed, then the spaceship will
spawn a Warp object, the spaceship will move to a random position, and the spaceship
will spawn a (second) Warp object.” To begin, create a new event with the keyboard
condition On Key Pressed. In the parameter window, press the X key (or any other unused
key of your choice). Add an action to this event, selecting the Spaceship object, select the
action Spawn Another Object, and select the Warp object. Then add a second action to
this event, selecting the Spaceship object and the action Set Position in the Size & Position
group. In the parameters window that appears, there are text boxes where you can specify
the x and y coordinates of the spaceship. However, you don’t want to enter just a number
in these areas because then the spaceship would always move to that particular location
and the teleporting would not be random.

39

CHAPTER 3 ' SPACE ROCKS

Fortunately, the Construct game engine does not limit you to just entering numbers;
you can enter expressions, which are combinations of values, operations, and functions.
In particular, functions are used to transform input values into output values according to
a built-in formula or procedure. When entering functions into Construct, the name of the
function is written first, followed by parentheses; the input appears between the parentheses,
and if there are multiple input values, they are separated by commas. Here’s an example:

e The round function transforms the number 3.8 into the number 4;
this would be entered as round(3.8).

e The sqrt (“square root”) function transforms the number 25 into
the number 5; this would be entered as sqrt(25).

e The max (“maximum”) function takes two numbers as inputs and
yields the larger of the two input values as the output value.
For example, max(9, 7) would be equal to 9.

e The random function takes two numbers as inputs and yields
as output a randomly generated decimal value between these
values. Unlike most other functions, every time this function
is used, you could get a different number. For instance,
random(10, 20) could yield the output value 14.5337, but the
next time it is used, it could yield 19.0042.

For this game, it is the last of these functions mentioned that you will use. Since
the layout size is 800 pixels wide, the value of X could be anything between 0 and 800.
Returning your attention to the parameters window, enter the expression random(0, 800)
in the X text box. Similarly, since the height of the layout is 600 pixels, enter random(0,
600) in the text box next to Y, and click the Done button. Finally, add a third action to this
event, identical to the first: select the Spaceship object, select the Spawn Another Object
action, and select the Warp object. Since actions are activated in sequence, from top to
bottom, the second Warp object will be created by the spaceship after it has moved to its
new position on the layout. When you are finished, the event will appear as in
Figure 3-17. Save your game, play it to test the teleportation mechanic, and verify that it
sends the spaceship to random positions and that the Warp objects appear as expected.

11 =EEKeyboard | On X pressed = Spaceship = Spawn Warp on layer 0 (image point 0)
& Spaceship Set position to (random(0, 800), random(0, 600))

= Spaceship Spawn Warp cn layer 0 (image point ()

Figure 3-17. Event for the teleport game mechanic

Winning or Losing the Game

Finally, you will implement some messages that inform the player that the game is over
and whether they have won or lost the game. It is important to provide a sense of closure,
as discussed in the previous chapter. The events will also be similar to those in the
previous chapter: if there are no asteroids left, then a Congratulations! message appears;
if there is no spaceship left, then a Game Over message appears.

40

CHAPTER 3 " SPACE ROCKS

To begin, create a sprite named Messagelin using the image file message-win.
png. Position it in the center of the layout, change its Layer property to UL, and change
its Initial Visibility property to Invisible. Repeat this process to create a sprite named
Messagelose using the image file message-1lose.png. Like before, center it in the layout,
set its layer to UI, and make it invisible. Next, add an event with the System condition
Compare Two Values; in the parameters window, enter Asteroid. Count as the first
value, Equal to as the comparison, and 0 as the second value. Add an action for this
event, selecting the MessageWin object and the Set Visible action, with the parameter
Visible. Finally, add one more event with the System condition Compare Two Values;
in the parameters window, enter Spaceship.Count for the first value, Equal to for
the comparison, and 0 for the second value. Add an action to this event that sets the
MessageLose object’s visibility to visible. When you are finished, your events should
appear as in Figure 3-18. Save and test your game, and verify that you can both win and
lose and that the correct message appears in each situation, as shown on the left and right
sides of Figure 3-19. If so, congratulations!

12 ﬁS\;stem Asteroid.Count = 0 —MessageWin Set Visible

13 -ﬁSystem Spaceship.Count = 0 —=Messagelose Set Visible

Figure 3-18. Events for displaying the win and lose messages

v

- Congratulations! = W Galne Over

Figure 3-19. Winning the game (left) and losing the game (right)

Side Quests

At this point, you have finished implementing the core mechanics for the Space Rocks
game: the controls work as desired; the spaceship, asteroids, and lasers interact with each
other; there are some special effects to give visual feedback to the player; the spaceship

is able to teleport at random; and there are win and lose conditions for the game. This
section will explain how to implement some optional features to improve the gameplay
experience. First, in the current version of the game, the spaceship is destroyed after a

41

CHAPTER 3 " SPACE ROCKS

single collision; to add some balance to the game, you will add protective shields around
the spaceship, which enable it to withstand multiple hits. Second, you will create some
unpredictability by adding some enemy characters in the form of unidentified flying
objects (UFOs), which will appear periodically at random locations and move across the
screen in a wave pattern, adding some extra challenge.

Shields

To begin, create a new sprite named Shields, using the image file shields.png. Add the
Pin behavior and the Solid behavior. Position the shield sprite so that it is centered on the
spaceship. Just as with the Fire object previously, you need to configure the Pin behavior,
attaching the sprite to another object, using an event. In the event sheet, locate the event
you previously created with the System condition On Start of Layout. Add another action to
this event, selecting the Shields object and the Pin action, and in the parameters window,
select the Spaceship object. Collision with the shields should also stop the spaceship from
moving. To implement this feature, create a new event. Specifically, for the condition,
select the Asteroid object and the condition On collision with. In the parameters window,
select the Shields object; for the action, select the Spaceship object and the action Stop
from the Custom Movement: Velocity group. When you are finished, the modified event
and new event should appear as shown in Figure 3-20. Save and run your game, and you
should see that as you move the spaceship around, the asteroids bounce right off the
shields, and since the shield sprite is larger and completely surrounds the spaceship sprite,
this prevents any asteroids from hitting the spaceship at all.

8 = L System On start of layout = Fire 5 Pin Pin to % Spaceship (Position & angle)
& Shields 3 Pin Pin to - Spaceship (Position & angle)
14 FD.Asteroid On collision with & Shields & Spaceship | Stop ¥ CustomMovement

Figure 3-20. Events involving the shield sprite

At this point, the shields are overpowered, in the sense that it is impossible for the
player to lose (unless they randomly teleport into an asteroid). What the game needs now
is a way to “damage” the shields: after a certain number of collisions, the shields should
be destroyed, and furthermore, it is desirable for the player to have visual feedback
indicating that the shields have been damaged.

One way to accomplish both of these goals simultaneously is to use the opacity of
the shields as a measure of the “health” of the shields.® The initial value of the opacity
is 100; every time there is a collision, this value will decrease by a fixed amount. If the
value becomes zero, then the shields will be destroyed, and the ship may be destroyed on
collision with an asteroid.

SIn a future chapter, you will learn a more common approach to this problem: how create a
customized property, called an instance variable, which can be used to store this information.

42

CHAPTER 3 " SPACE ROCKS

To set this up, find the event you previously created with the condition that an
asteroid collides with the shields. Add an action to this event, selecting the Shields object
and the Set Opacity action; in the parameters window, enter Shields.Opacity - 25. This
will set the new value of the shield’s opacity to the previous value of the shield’s opacity
minus 25. Thus, after four collisions, the opacity will be zero. At this time, you must specify
that the shield object should be destroyed (otherwise it will continue to cause asteroids
to bounce off, even though it can’t be seen). To accomplish this, add a new event. For the
condition, select the Shields object and the Compare opacity condition; in the parameters
window, change the comparison to less or equal, and the value to 0. For the action,
select the Shields object and the Destroy action. When you are finished, the events should
appear as in Figure 3-21. Save and test your game to verify the shields work as expected.

14 é.Astersid On collision with & Shields = Spaceship Stop }ECustomMouement
@ Shields Set opacity to Shields.Opacity - 25
15 & Shields Opacity < 0 & Shields Destroy

Figure 3-21. Events for damaging and destroying the shields

UFOs

In this side quest, you will add a regularly spawning enemy. This enemy will be passive.
It won't react to the player in any way; it has no abilities other than moving across the
screen. The enemy will spawn at a random location beyond the left side of the layout and
move to the right in a wave pattern. This movement style will add an extra challenge to
the game because it will be more difficult to avoid and shoot these objects. When adding
a new character or object to a game, there are many aspects that you will need to decide
on. In addition to movement patterns, you also need to decide whether the character has
any abilities, how the character interacts with every other object in the game, how the
character could affect the win/lose conditions, and what happens to the character when
the game is over. In what follows, each of these issues will be addressed.

First, add a new sprite called UFO with the image ufo.png, and place it in the margin
area beyond the right edge of the layout. Add the Bullet behavior to the UFO sprite, and
in the Properties panel, change Speed to 125. Also add the Sine behavior, set Movement
to Vertical, set Period to 1, and set Magnitude to 25. This will cause the UFO to move as
described earlier, in a wavelike pattern.

Next, you will add functionality for causing UFOs to spawn on the left side of the
screen and self-destruct beyond the right side. Add a new sprite named SpawnPoint; this
will be placed off-screen and will be used to spawn new instances of the UFO sprite. The
image you use for the SpawnPoint sprite is irrelevant since this object will never be seen
by the player, so use the image editor tools such as the paintbrush or bucket to draw or fill
in the image area with a solid color of your choice. Since you don’t really need a 250-by-
250-pixel image for this sprite, use the Resize tool in the image editor to change the size
of the image to 32-by-32 pixels. When you are finished, close the image editor window
and position the sprite in the margin area directly to the left of the layout. Your layout
(including margins) should appear similar to Figure 3-22.

43

CHAPTER 3 ' SPACE ROCKS

Figure 3-22. Layout area with UFO and SpawnPoint placed in margins

In the event sheet, create a new event. For the condition, select the System object,
and from the Time group, select the Every X Seconds condition. In the parameters
window, enter 5 for the interval, and click the Done button. This condition will be true
exactly once every 5 seconds. Next, you will add some actions to randomly reposition
the SpawnPoint object and have it spawn a UFO. Click Add action next to the condition,
select the SpawnPoint object, and from the Size & Position group select Set Y. In the
parameters window, enter random(100, 500). This is similar to what you entered
previously when creating the teleportation events, except you are changing only the Y
coordinate (the vertical position) because SpawnPoint needs to remain to the left of the
layout. Also, the random number will be between 100 and 500 (rather than spanning
the full range of the height, between 0 to 600) so that the UFO doesn’t spawn too close
to the top or bottom edge of the layout. Add another action to this event, once again
selecting the SpawnPoint object. From the list of actions, select Spawn another object,
and in the parameters window, select the UFO object. Finally, you need another event
that will remove the UFOs from the game once they have passed beyond the right edge
of the layout. Add a new event, selecting the UFO object, and from the list of conditions,
select Compare X from the Size & Position group. In the parameters window, change
Comparison to Greater Than, and change X to 900. Add an action to this event, select
the UFO object, and select Destroy from the list of actions. When you are finished, these
events should appear as in Figure 3-23. Save and test your game, making sure that UFOs
spawn as frequently as expected and move across the screen as described earlier.

44

CHAPTER 3 " SPACE ROCKS

16 ﬁSystel‘n Every 5 seconds SpawnPuint Set Y to random({100, 500)
Hispawnpoint = Spawn ‘@ UFO on layer "Main" (image point 0)

17 @® UFO X > 900 ® UFO Destroy

Figure 3-23. Events for spawning and destroying the UFOs

Next, you have to determine how UFOs will interact with each of the onscreen
objects. Here is one possible set of interactions:

e When a UFO collides with an asteroid, the UFO is destroyed.

e When a UFO collides with a laser, both the laser and the UFO are
destroyed.

e When a UFO collides with the spaceship, both the spaceship and
the UFO are destroyed.

e When a UFO collides with the shields, the UFO is destroyed, and
the shield opacity decreases by 25.

In addition, whenever a UFO is destroyed, an explosion effect will be spawned at
the location of the UFO. These events are similar to those you have created before. Try
to create these events on your own (rereading the process from earlier to refresh your
memory, if necessary). When you are finished, the events should appear as in Figure 3-24.

18 =@ UFO On collision with .Astemid ® UFO Spawn Explosion on layer *Main® (image point 0)
@ UFO Destroy

19 =@ UFO On collision with — Laser ® UFO Spawn Explosion on layer *Main® (image point 0)
= Laser Destroy
@® Uro Destroy

20 =@ UFO On collision with &= Spaceship @ UFO Spawn Explosion on layer "Main® (image point 0)

& Spaceship | Destroy

® UFO Destroy

21 =@ UFO On collision with (@ Shields @® UFO Spawn Explosion on layer "Main® (image point 0)
@ UFO Destroy
& Shields Set opacity to Shields. Opacity - 25

Figure 3-24. Events related to UFO collisions

45

CHAPTER 3 ' SPACE ROCKS

Finally, you need to consider what happens to the UFOs at the end of the game,
planning for all possible circumstances. In particular, with the addition of the UFO
objects, it is actually possible to trigger both the win and lose conditions at the same time!
For example, the player may have lost their shields and then destroyed all the asteroids
while a UFO is still on the screen, and then the spaceship might crash into the UFO. To
avoid this possibility, the SpawnPoint and UFO objects should be destroyed if the player
wins the game. (This isn’t as important if the player loses the game, but you could also set
up similar events for that situation as well, if you choose.) In addition, you will have the
UFOs spawn warp effects so that they don’t just suddenly vanish.

In the event sheet, locate the event that contains the win condition: when the
asteroid count is equal to 0. Add a series of actions to this event: the SpawnPoint should
be destroyed, UFOs should spawn Warp objects, and UFOs should be destroyed. When
you are finished, this modified event should appear as in Figure 3-25. If there are no UFOs
on the screen at the end of the game, then this action will simply have no effect. Similarly,
after destroying the SpawnPoint object, the previously created event that spawns UFOs
every 5 seconds will no longer have any effect.

12 &kSystem Asteroid.Count = 0 —MessageWin = Set Visible
Eispawnpoint Destroy
@& UFO Spawn Warp on layer 0 (image point 0)
& Uro Destroy

Figure 3-25. Modified “you win” event

Congratulations on completing the side quests! Your game now includes the core
mechanics as well as some extra features that will make it even more enjoyable for
players.

On Your Own

As always, you can (and should!) continue to experiment with your game to make it even
better. For example, it is a good idea to find other people to test your game to get a sense
of the difficulty level (is it too easy or too hard?). By this point in time, you have played
and tested your game so much, you will probably find it easier than the average player,
and therefore seeking out others to get feedback from a fresh viewpoint is an important
step in the game development process. To improve the balance of your game, there are
many objects and parameters you could adjust. As an example, for the asteroids, you
could change their speed, size, their initial positions, the total number in the game, and
so on. You could add some more randomness to the game by changing the angle of the
asteroids to a random number (between 0 and 360). You could change the strength of
the shields by changing the value at which the opacity decreases after a collision; a value
of 50 would weaken the shields (they would take only 2 hits), while a value of 10 would
strengthen the shields (they could withstand 10 hits). You could increase or decrease the

46

CHAPTER 3 " SPACE ROCKS

rate at which UFOs are spawned or change their speed or movement pattern. Also, keep
in mind that you can change many of these together to maintain the overall balance; for
example, you could make the asteroids smaller and faster so that they are more difficult to
hit but compensate for the increased difficulty by making the shields stronger.

In addition, you can try experimenting with adding new objects or gameplay
mechanics. For example, you could add a sprite that resembles a small moon, add
the Solid behavior, and place it in the middle of the layout. If you do so, you will have
to determine how it interacts with all the other objects. It could provide shelter from
the asteroids coming from one direction, but what should happen if the ship crashes
into the moon? As another example, you could introduce a new sprite that acts as a
powerup (using an image of your choice) that recharges your shields (by increasing their
opacity) when the spaceship comes into contact with it. Perhaps these powerups could
be spawned when a UFO is destroyed by a laser? These are just a few ideas to get you
thinking; the actual possibilities are endless. Have fun!

Summary

In this chapter, you learned about some new behaviors (Wrap, Custom Movement, Bullet,
and Pin). You created image-based animations from spritesheets. It is important to
provide visual feedback to the player, and you saw many ways this can be done (in this
game, with the Explosion, Fire, and Warp effects). You also used the random function in
events to add a bit of unpredictability to your game.

In the next chapter, you will continue to build upon these skills and create a
top-down collection game called Cleanup Challenge.

47

CHAPTER 4

Cleanup Challenge

In this chapter, you will be creating a top-down collection game called Cleanup
Challenge, inspired by the classic arcade game Frogger, shown in Figure 4-1.

Figure 4-1. The Cleanup Challenge game

In Cleanup Challengg, the player controls a character (who we will call “the
cleaner”), whose goal is to collect pieces of trash scattered around a roadway and return
them to a trash can on the opposite side, which ends the game. At the same time, cars are
racing across the street, which runs horizontally across the screen. If the person gets hit
by a car, the game is over and no points are awarded. The player must strategically decide
which pieces of trash they will be able to recover. This is made more challenging by slight
variations in the speed of the cars that race past. At the beginning of the game, the trash is

© Lee Stemkoski and Evan Leider 2017 49
L. Stemkoski and E. Leider, Game Development with Construct 2,
DOI 10.1007/978-1-4842-2784-8_4

CHAPTER 4 ' CLEANUP CHALLENGE

randomly scattered across the screen, which adds to the replayability value. The cleaner
has eight-direction movement, controlled by the arrow keys, and collects trash by coming
into contact with it.

This chapter assumes that you have mastered the material from the previous two
chapters. In particular, this project requires you to be familiar with using the 8-Direction,
Bound to Layout, Bullet, and Fade behaviors, creating image-based animations, writing
events with inverted conditions or multiple actions, and using the random function. New
topics that will be introduced in this chapter include using the layout grid, creating Tiled
Background objects, creating Text objects to display words on the screen, and creating
customize variables to store values (such as scores).

Starting in this chapter, we will begin to use a shorter, more efficient description of
events. In previous chapters, for example, the process for creating a condition may have
been described as follows: “For the condition, select the System object, and from the
group called Time, choose the condition Every X Seconds; in the parameters window next
to Interval, enter the value 5.” Since you are now experienced with this process, we will
now phrase this more briefly as “Create the condition System - Time: Every X Seconds,
and set Interval to 5 In general, condition descriptions will follow the format “add Object
Name - Group Name: Condition Name, and set Parameter Name to Value!” Actions will be
written in a similar way.

To begin, download the zip file containing the graphics for this chapter from the
book web site. In the layout properties, set the layout Name to Main, and set Layout Size to
640, 640. As you have in previous projects, set up three layers named Background, Main,
and UI. In the project properties, change the property Window Size to 640, 640 (and
change the Name and Author properties as you like).

Backgrounds

In this section, you will set up a series of background images so that the background of
the game appears as in Figure 4-2. In this game, aligning and spacing the graphics are
important, so you will use the built-in grid tool to help snap things into place. Click the
View tab near the top of the Construct window, and click the Snap to grid and Show grid
check boxes. Since the size is set to 32-by-32, every time you move or resize an object, it
will automatically round the corresponding value to the nearest multiple of 32. This will
be convenient as you will need to position the following objects right next to each other.

50

CHAPTER 4 " CLEANUP CHALLENGE

Figure 4-2. Background images: stone, grass, road, and more grass

In previous projects, you have used a single sprite object for a background image.
You may have noticed that when resizing a sprite, the image stretches or shrinks to fit
the dimensions that you choose. For this project, you will use a different object to create
backgrounds: a TiledBackground object. The major difference between these two types
of objects is that a TiledBackground object will not resize its image. Instead, if the object
is larger than the original image, then the image will be repeated until it reaches the
size of the object; if the object is smaller than the original image, then the image will be
cropped to the dimensions of the object. This is particularly useful when using seamless
background images, which are images that line up visually when placed side by side with
copies of themselves.

Next, you will add a series of TiledBackground objects to your layout to create the
background. In the layout properties, change Active layer to Background so that all the
objects you are about to add will be placed in the Background layer. In the layout, create a
TiledBackground object and name it Grass, using the image grass. jpg. Change the size
to 640 by 128, which will be easy to do with the mouse, since you activated the layout grid
options earlier; this size corresponds to the width of the layout and a height of four boxes
(since 4 times 32 equals 128). Place this object at the bottom of the layout. Create another
TiledBackground object named Road, using the image road. jpg, with a size of 640 by 256,
and align it next to the Grass object. Create another instance of the Grass object (so it
will also be 640 by 128), and position it so that it is aligned with the other side of the Road
object. Finally, create another TiledBackground object named Stone, using the image
stone. jpg, with a size of 640 by 128, and position it along the top of the layout; this should
cover the remaining area in the layout. Also, add the Solid behavior to the Stone object;
this will stop the player character from walking in this area (because this is where you will
place the user interface text later in this chapter).

51

CHAPTER 4 ' CLEANUP CHALLENGE

Next, you will set up the dashed yellow lines that mark the separate lanes of the
road. Create a new TiledBackground object and name it DashedLines, using the image
yellow-dash.png. Using the Properties panel, change Size to 640, 8.You need to use
the Properties panel in this case because Snap to Grid has been activated, but 8 is not a
multiple of 32. (Alternatively, if you prefer to use the mouse, you can hold down the Alt
key while clicking and dragging an object, which disables the Snap to Grid functionality
as long as it is being held down.) Change Opacity of DashedLines to 50. Make two more
instances of this object, and position all three of these DashedLines objects so they appear
to divide the road into four equally spaced lanes. Once your layout resembles Figure 4-2,
save your project, and you are ready to proceed to the next section.

Animating the Player

Previous games have simply rotated the player character to face the direction in which
they were moving. In this project, you will use animations instead of a single image for
the character, and furthermore, you will set up the project to display a different animation
depending on which direction the character is moving (north, south, east, or west),
similar to the style used in classic top-down adventure and RPG games like The Legend
of Zelda and Final Fantasy. The spritesheet' you will use is shown in Figure 4-3. Notice
that this spritesheet contains the animation frames of a character walking in all four
directions. The first row contains the frames for walking south, the second row contains
frames for walking west, and so forth.

Figure 4-3. The spritesheet for the main character

In the layout, set the active layer to Main so that newly added objects are
automatically placed on that layer. Create a new sprite, named Cleaner. In the image
editor, right-click in the Animation frames window, move the mouse to Import Frames,
select From Sprite Strip, and then select the image cleaner.png. This image contains
three frames in each row and four images in each column, so in the Import Sprite Strip

'Thanks to Andrew Viola for providing the graphics for this and other player characters in the book.

52

CHAPTER 4 " CLEANUP CHALLENGE

window, enter 3 next to Number of horizontal cells and enter 4 next to Number of vertical
cells. Check the Replace entire existing animation box (to remove the initial blank frame).
Twelve frames should appear in the Animation frames window, as shown in Figure 4-4.

Animation frames (12) n
L8] Led = 2 § 2
0 1 2 3 4 5

4 ¢ L 4 e 2 L

6 74 8 9 10 11

Figure 4-4. Animation frames for the main character, after initial import

However, not all of these frames will be used in each animation. In what follows, you
will use this animation as a base to create four animations in total, one corresponding to
each direction. First, in the Animations window, click Default (the name of the current
animation), and in the Properties panel on the left, change Speed to 6, change Loop to Yes,
and change Ping-Pongto Yes. Then, in the Animations window, right-click the Default
animation, and in the context menu that appears, select Duplicate. Repeat this two more
times so that you have a total of four animations appearing in the list. Then, right-click the
first animation, select Rename, and enter South as the new name. Repeat this process for
the other animations in the list, naming them West, East, and North, respectively. When
you are finished, this window should appear, as shown on the left side of Figure 4-5.

Next, select the animation named South in the list, and in the Animation frames window,
click each frame that does not correspond to the character walking south (those initially
numbered 3 through 11), and press the Delete key. When you are finished, this window
should appear as shown on the right side of Figure 4-5. Right-click the South animation
from the Animations window, and select Preview to see how it looks; feel free to adjust
the speed if you want. Then repeat this process for the West, East, and North animations,
deleting the frames not required within each of the animations. When you're finished,
close the image editor windows.

Animations u Animation frames (3) n

e 8 8 @

L East 0 1 2
L North

Figure 4-5. Animations list and animation frames for the South animation

53

CHAPTER 4 ' CLEANUP CHALLENGE

In the layout area, change the Cleaner sprite property Size to 48,48 and position it in
the center of the lower grass area. (Since Snap fo grid is currently active and the desired
size is not a multiple of 32, it is simpler to change these values in the Properties panel.)
Add the behavior 8-Direction, and change the properties Max Speed to 80 and Set Angle
to No. (This stops the sprite image from being rotated in the direction it is moving; the
animations will handle that effect.) Also add the behavior Bound to Layout. Finally, add
the behavior Fade, and change Active at start to No.

Next, you will create some events that will change the Cleaner’s animation to one
of the four animations you just set up, depending on which key is pressed. First, add a
Keyboard object to the project. In the event sheet, create a new event with condition
Keyboard - On Key Pressed, with Key set to Down Arrow. In this event, add the action
Cleaner - Animations: Set Animation, and in the parameters window, enter "South"
(including the quotation marks; make sure that your capitalization matches the name you
entered in the Animations window earlier). Repeat this process three times, creating three
more events so that pressing the left arrow key corresponds to setting the West animation,
pressing the right arrow key corresponds to setting the East animation, and pressing the
up arrow key corresponds to setting the North animation. You should also set up your
game so that the character’s animation stops when the character is not moving. To do so,
create a new event with the condition Cleaner - 8-Direction: Is Moving, and in the event
sheet, right-click and invert the condition. Then add the action Cleaner - Animation: Stop.
When you are finished with these events, your event sheet should appear as in Figure 4-6.
Save and test your project, and verify that when you hold each of the arrow keys, the
cleaner moves in the corresponding direction and features the correct animation, and
when you let go of the arrow keys and the character comes to a stop, the animation
should stop as well.

1 = E&Keyboard On Down arrow pressed £} Cleaner | Set animation to "South*” (play from beginning)

2 = Keyboard On Left arrow pressed Q Cleaner Set animation to “West" (play from beginning)
3 =& Keyboard On Right arrow pressed Q Cleaner Set animation to "East" (play from beginning)

4 =p & Keyboard On Up arrow pressed g Cleaner Set animation to "North" (play from beginning)
5 @‘ Cleaner x ::EE 8Direction is moving @ Cleaner Stop animation

Figure 4-6. Events for controlling the Cleaner character’s animation

Cars

In this section, you will add some cars for the cleaner to dodge on the way across the road;
the cars will vary in their appearance and speed. To begin, create a new sprite named Car.
In the image editor main window, select any one of the car images that you downloaded

54

CHAPTER 4 " CLEANUP CHALLENGE

in the beginning of the chapter. In the Animations list window, right-click Default, select
Rename, and enter Car1 as the new name.? Right-click in this window again and select
Add animation. Name this animation Car2, and add an image of a car with a different
color. Add two more animations in this way, once again with different images; name them
Car3 and Car4. When you are finished, close the image editor windows.

In the layout, add the Bullet behavior to the Car object, and change Speed to 200.
Create three more instances of the Car object, and place one in each lane of the road area.
In the first and third lanes, position the cars on the left side. In the second and fourth
lanes, position the cars on the right side, and set their Angle to 180 (so that they are facing
to the left).

Select the Car object in the first lane. In the Properties panel, near the bottom of
the list (you may need to scroll down), find the property called Initial animation. Next
to this property, you will see the word Default, which means that the sprite will initially
display the animation named Default (or, if there is no animation with that name, it will
display the first animation in the list). Change the text to Car1. Then, for the Car in the
second lane, change the Initial animation property to Car2. Similarly, change the initial
animations of the cars in the third and fourth lanes to Car3 and Car4. When you are
finished, your layout should appear similar to Figure 4-7 (except the colors of your cars
may be different). If you save and test the game, the cars should move in straight lines,
eventually moving past the edges of the screen.

Figure 4-7. The layout with cars added

Next, there should appear to be a continuous stream of cars traveling along the
road. One way to accomplish this would be to add the Wrap behavior to the Car object,
but that will in fact be too limiting for our purposes. We want to add some variation to

2Even if you are using only a single image for a sprite, it is treated as an animation with just one
frame (and therefore, properties such as Speed and Loop will have no effect on how it is displayed).

55

CHAPTER 4 ' CLEANUP CHALLENGE

the gameplay by changing the properties of each Car object after it leaves the screen and
before it reappears on the other side. Using the Wrap behavior and a fixed speed would
result in behavior that is too predictable, and once the user sees the pattern in the car
movements, it would make the game easier (possibly too easy). It also breaks the sense of
immersion, since real car drivers would not act so predictably. Therefore, in this section,
you will create some events that produce an effect similar to the Wrap behavior and,

at the same time, allow you to modify the properties of a car (such as its speed) once

it goes past the edges of the screen. To accomplish this, you will next add a new sprite,
positioned off-screen, that will serve as a trigger for these actions.

Create a sprite named CarWarp. The image is irrelevant since the object stays
off-screen, so you can use the paint tools (like the fill bucket or paintbrush) to color in
the provided blank image however you want. When you are done, close the image editor
windows, and change the size of CarWarp to 32,32. Create three more copies of this
object, and position them in the margins of the layout, one in the path of each car (at the
opposite end from where they start), at least one car length beyond the edge. There needs
to be enough distance so that the Car objects will not collide with the CarWarp objects
until the cars are completely past the edges of the layout. The positioning should be
similar to Figure 4-8.

Cw
Cw
Cw

Cw

Figure 4-8. The CarWarp objects and their position relative to the Car objects

In the event sheet, create a new event with the condition Car - Collisions: On Collision
With Another Object, and select the CarWarp object. The first action will re-create the
warplike behavior and place the car past the edge on the opposite side of the screen.
Unfortunately, there is no “move backward” action listed, but you can still make it work
with the actions available. For this event, add the action Car - Size & Position: Move forward,
and set Distance to -900 (if a distance is negative, then the object will move backward).
Then, in the same event, add the action Car - Bullet: Set Speed, and set the speed to
random(200, 400), which will select a random number in that range for the new speed.
When you are finished, the events should appear as in Figure 4-9. Test your game to verify

56

CHAPTER 4 " CLEANUP CHALLENGE

that the cars do in fact continue to reappear on the other side of the screen, traveling at
different speeds each time.

6 = EmCar On collision with €W CarWarp B Car Move forward -900 pixels

B Car Set 5’ Bullet speed to random (200, 400)

Figure 4-9. An event for a wraplike behavior

Displaying Messages with Text Objects

Next, you will set up win and lose conditions and display this information on the screen
using a new type of object: a Text object. Text objects can display any message you choose
and can change their contents while the game is running, so they are more flexible than
using sprites that contain images of words (which you have used in the games from the
previous two chapters). To begin, right-click in the layout area, select Insert new object,
and click Text once (and not Text box) from the available choices; for the name, enter
TextGameOver, and click the Insert button. Once on the layout, you will be changing
many properties of the TextGameOver object. First, change Layer to UI, change Size to
640, 64, and position it over the bottom half of the Stone object. To make the displayed
text easier to see, in the Properties panel, locate the property named Font, and double-
click the name of the font next to it. A dialog window will appear, listing the names and
variations of all the fonts installed on your computer, as shown in Figure 4-10. Here, keep
the default Font set to Arial, change Font style to Bold, change Size® to 28, and click the
OK button. Next, click the Horizontal alignment property, and from the drop-down menu
that appears on the right, select Center. Repeat this process with the Vertical alignment
property, changing its value to Center as well. Now you should see that the text is nicely
centered in its box. If you want, you can also click the Color property, and in the drop-
down menu that appears on the right, you can select from many different colors. If you
choose to change the color, be sure to pick a color that can be easily seen against the
background color. Finally, set Initial Visibility to Invisible. When you are finished, the
top part of your layout should appear similar to Figure 4-11.

3If you change the size to a different value and the text suddenly disappears in the layout area, this is
usually because the font size is too large or there is too much text to be displayed in the given area.
This problem can be remedied by either choosing a smaller font size or making the Text object
larger.

57

CHAPTER 4 ' CLEANUP CHALLENGE

Font X
Font: Font style: Size:
Avial Bold | B oK}
A A | [Reguiar al 22 A o -
Arial MT Sk Narrow Bold 24 Cancel
Arial Rounded MT Narrow Bold Italic 26
Asial Unicode MS Bod [NNINOS |
Augusta Bold ltalic 36
Balloata Black 48
BankBGoTHic LT BT Vv | |Black Oblique ~ |72 b
Sample
AaBbYy:
Script:
[Westerrl i]

Figure 4-10. Font selection window for the Text object

Figure 4-11. Displaying customized text on the layout

The lose condition, as you may have guessed, will be when a car collides with the
cleaner. The win condition will be when the cleaner reaches a trash can on the other
side of the road, which you will now set up. Add a new sprite, named TrashCan, using the
image trashcan.png. Set its Layer property to Main. Change its size to 38,48, and position
itin the center of the topmost Grass background.

Next, you will set up the events for winning and losing the game, each of which will
cause a different message to appear in the Text object. When the game is over, you will
also make the cleaner fade out and freeze the cleaner in place (it shouldn’t move while it
is fading) by disabling user input for the cleaner.

In the event sheet, create a new event with the condition Cleaner - Collisions: On
Collision With Another Object, and select the TrashCan object. Then, add the following
actions to this event:

e Add TextGameOver - Appearance: Set Visible, and set Visibility to
Visible.

e Add TextGameOver - Text: Set Text, and next to Text, type "You
Win" (including the quotation marks).

58

CHAPTER 4 " CLEANUP CHALLENGE

e Add Cleaner - Fade: Start Fade.
e Add Cleaner - 8-Direction: Set Enabled, and set State to Disabled.

When you are finished, this event will appear as shown in Figure 4-12. Save and test
your project to make sure the You Win message appears as expected when the Cleaner
touches the trash can.

7. = 9 Cleaner | On collision with j TrashCan (T} TextGameOver Set Visible

i T ;TextGameOver Set text to “You Win"
£ Cleaner I | Fade: start fade
£ Cleaner Set £33 8Direction Disabled

Figure 4-12. Event for the win condition

It is particularly important to understand the use of the quotation marks in the Set
Text action. Quotation marks are used to specify a literal expression, in a similar way to
how they are used in everyday language. For example, if you were asked to write down
the name of this book, you would write Game Development with Construct 2. However,
if you were asked to write down “the name of this book’, the quotation marks indicate
that you should repeat those words exactly; you would write the name of this book. The
same situation arises when using the Set Text action: using quotation marks will cause
that exact text to appear; if no quotation marks are used, the Construct game engine
will assume that whatever you entered is an object property or a variable and will try to
determine its value. If there is no property or variable, Construct will display a pop-up
message that either says Unknown expression or Syntax error, as shown in Figure 4-13.

Parameters for TextGameOver: Set text

Enter the text to set the object's content to.

Text Yﬂ |E
N

1. Syntax error
Expression appears to end before here - are
you missing something before it? Ltsh

Cancel Help on exp

Figure 4-13. What could happen when a parameter is mistyped

59

CHAPTER 4 ' CLEANUP CHALLENGE

Next, you will add the event corresponding to the lose condition for the game. In
the event sheet, create a new event with the condition Car - Collisions: On Collision With
Another Object, and select the Cleaner object. Then, add the following actions to this
event:

e Add TextGameQuver - Appearance: Set Visible, and set Visibility to
Visible.

e Add TextGameQuver - Text: Set Text, and next to Text, type
"You Lose".

e Add Cleaner - Fade: Start Fade.
e Add Cleaner - 8-Direction: Set Enabled, and set State to Disabled.

This event should appear as shown in Figure 4-14. Save and test your project to verify
that the You Lose message appears as expected.

8 =>EECar On collision with & Cleaner {TiTextGameOver Set Visible
i T; TextGameOver Set text to "You Lose”
£ Cleaner |] Fade: start fade
£ Cleaner Set £33 8Direction Disabled

Figure 4-14. Event for the lose condition

Keeping Score with Global Variables

Players are used to having some way to evaluate their performance, such as points
earned, time to completion, or some type of ranking system (such as from 1 to 3 stars or a
grade from A to F). In this section, you will add another gameplay mechanic: the cleaner
will fulfill the duties for which he was named by picking up pieces of trash that have been
scattered around the area. To keep track of how well you are doing, you will program the
game to keep track of how many pieces of trash have been collected by creating and using
anew variable.

A variable is a name that corresponds to stored data (such as a number) that can be
changed (or is able to vary, which is why it’s called a variable). In algebra, single letters
such as x and y are often used as variable names; in different math problems, these letters
may have different values. When writing programs, you will typically use words that
describe the type of information being stored to avoid confusion. For example, a variable
named ¢ might store time information or temperature information; it is difficult to tell out
of context. When creating programs, use time or temp as the variable name, instead of £, to
avoid ambiguity or confusion.

In the previous projects, you already encountered many variables, such as position,
angle, size, and so forth. These correspond to values associated with sprites that you
are able to change. Because each instance of a sprite object contains its own set of these
variables, whose values can be set independently from the variables belonging to other
objects, these are called instance variables. In this chapter, you are going to create a
different type of variable, called a global variable, which is not associated to any particular

60

CHAPTER 4 " CLEANUP CHALLENGE

instance. In Construct, a global variable is a variable defined in the event sheet, and it can
easily be accessed, modified, and used by all the objects or events in the game.

To begin, in the event sheet, right-click in the margin area and select Add global
variable from the menu that appears. A window titled New global variable will appear,
where you can configure its properties. Next to Name, type Score. Leave Type set to
Number, and leave Initial Value set to 0. Next to Description, type number of pieces of
trash collected. Although entering a description of a variable is optional and has no
effect on the game itself, it is a good habit to develop and will help you remember what
the purpose of the variable is in the future. When you are finished, click the OK button.

Next, you will set up a text object that displays the value of the Score variable. In the
layout, create a new Text object named TextScore. Change its properties (Layer, Size,
Font, Horizontal Alignment, Vertical Alignment, and Color) to the same values that you
used for the TextGameOver object in the previous section. Also, for the Text property,
enter Trash Collected: 0.Reposition this object so that it is aligned with the top half of
the Stone object. When you are finished, this area should appear as shown in Figure 4-15.

Figure 4-15. The user interface area with more text added

Next, you will set up objects and events that affect and display the score. In the
layout, create a new sprite called Trash, using the image trash.png. Make sure that its
Layer property is set to Main, and change its size to 38, 38. Duplicate this object nine times
(for a total of ten trash objects), reposition these objects so that they are appear scattered
around the grass and road areas, and rotate each by different amounts so that there is
some variation in their appearance.

Since the Trash objects were the most recent additions to the Main layer, they will
appear to be above the Car objects. It would look strange in the game if the cars were to
drive underneath pieces of trash. To address this issue, you need to change the z-order
of the Trash objects, which controls the order in which the graphics are rendered on
each layer. Since you want the trash to appear as though it is underneath the cars (and
the cleaner), they need to be moved to the bottom of the layer. To accomplish this, click
Trash in the Objects panel in the lower-right region of the Construct window so that all
instances of Trash objects are selected at the same time. Next, right-click any of the Trash
instances in the layout, and from the menu that pops up, select Z-Order and then Send
to Bottom of Layer. Since all instances were selected, this change will be applied to each
of them, and in the game they will appear under the cars. Notice that the trash was not
moved underneath the Grass or Road objects; that is because the background objects
are on a completely separate layer (which illustrates another advantage to keeping game
objects organized with layers).

61

CHAPTER 4 ' CLEANUP CHALLENGE

Next, you need to add an event that enables the cleaner to collect the trash objects,
updates the Score variable, and displays the updated information in the Text object. In
the event sheet, create a new event with the condition Cleaner - Collision: On Collision
With, and select the Trash object. Add the action Trash - Misc: Destroy. Also add the
action System - Global and Local Variables: Add to, and in the parameters window, leave
Variable set to Score and Value set to 1. Finally, add the action TextScore - Text: Set Text,
and enter the text "Trash Collected: " & Score. Here, the text that is being displayed is
a combination of a literal expression (which appears between the quotation marks) and
a variable (Score), which appears without quotation marks and therefore will be replaced
by its value when the game is running. The ampersand character (&) is used to combine
text with variables or other expressions. When you are finished, this event should appear
as shown in Figure 4-16. Save and test your project to check that the cleaner can in fact
collect the trash and that the score increases and is displayed correctly.

9 I=C."QCIEWN?I On collision with & Trash ,&.';Trash Destroy
£k System Add 7 to Score
{T!TextScore Set text to “Trash Collected: * & Score

Figure 4-16. An event for increasing and displaying the player’s score

Congratulations! You have now finished implementing the core mechanics of the
Cleanup Challenge game.

Side Quests

In this optional section, you will learn how to add some randomization to your game to
improve both the variation of graphics and the gameplay, followed by some suggested
additional features for you to ponder.

Randomization

First, you will add some randomization to the initial positions of the Trash objects. For the
trash to appear near the road and not too close to the edges of the screen, the x coordinate
should be somewhere between 40 and 600, and the y coordinate should be somewhere
between 256 and 512. With this in mind, create a new event with the condition System

- Start & End: On Start of Layout and the action Trash - Size & Position: Set Position. For
the x value, enter random(40, 600), and for the y value, enter random(256, 512). When
finished, the event should appear as in the bottom part of Figure 4-17. Save and run

your program; click the Refresh button in your web browser to restart the game, and you
should see that each time the game loads, the trash pieces appear in different locations.

62

CHAPTER 4 " CLEANUP CHALLENGE

6 = ERCar On collision with W CarWarp . Car Move forward -900 pixels

- Car set ¢ Bullet speed to random(200, 400)

E.Car Set animation to "Car” & choose(1,2,3,4) (play from beginning)
0 = ﬁ- System On start of layout g Trash Set position to (random{40, 600), random{256, 512))

Figure 4-17. Events involving randomization

Next, you will add some randomization to the car graphics. As it stands, the same
color car will continue to reappear in each lane. It is possible to randomly select among
the graphics stored in the car object, thanks to the naming convention you used when
setting up the animations earlier. Remember that the names of the car animations are
Carl, Car2, Car3, and Car4. The idea will be to randomly choose one of the numbers,
either 1, 2, 3, or 4, and combine that number with the text Car to get the name of the
animation to set. The random selection will be made with a function named choose,
explained next. Locate the event with the condition that a Car object collides with a
CarWarp object. Add another action to this event: Car - Animations: Set Animation. Set
the value of Animationto "Car" & choose(1,2,3,4). When finished, the event should
appear as in the top part of Figure 4-17. Save and test the game, and verify that the image
of each car randomly changes each time it reappears (although it is possible that the
same image could be randomly selected multiple times in a row).

The choose function provides a way to randomly select among a given set of values
(numbers or text); the inputs of the function represent the different possible choices,
one of which will be randomly selected each time the action occurs. Alternatively,
instead of "Car" & choose(1, 2, 3, 4),you could instead enter choose("Car1",
"Car2", "Car3", "Car4"), which will have the same effect. One of the great things about
computer programming is that there are usually many ways to approach and solve a
problem!

You may have been surprised that we didn’t recommend that you use the function
random(1, 4) to create a random number in this case. This is because the random function
actually returns a random decimal value, which would then need to be rounded to a whole
number in order to correspond to an actual animation name (since there are no animations
named Car2.71828, for example). Thus, the expression round(random(1, 4)) produces a
result closer to what is actually desired. However, this approach is still not precisely correct
because not all numbers will appear equally likely; in this interval, it is more likely that a
number will be closer to 2 or 3 than it will be to 1 or 4. (However, this problem can also be
fixed. Can you see how?) Because of these unexpected complexities, the choose function is
an easier approach for this particular situation.

On Your Own

Now is a good time to find someone to test your game to get a fresh perspective on the
difficulty level of your game. If it is too difficult, you could reduce the speed of the cars
or increase the speed of the player. You could add even more paper to collect, which will
help the game last longer.

You could display the total time the player has been playing the game. Construct has
a predefined variable called time that is automatically updated to contain the amount

63

CHAPTER 4 ' CLEANUP CHALLENGE

of time that has passed since the game started. You would need to create a new Text
object to display this information. If so, you may want to use the condition Player - Size
& Position: Is On Screen so that the timer appears to stop once the cleaner disappears
(which signals the end of the game), and when creating the action for setting the
displayed text, use the round function to round the time variable to the nearest second
(otherwise, a ludicrous number of decimal places will appear on the screen).

You could add some fading effects by adding the Fade behavior to various objects.
For example, you could make the paper fade out when it is collected, replacing the
Trash - Destroy action with a Trash - Start Fade action. You could make the TextGameOver
object fade in when the game is over.

Summary

In this chapter, you learned about some new object types: TiledBackground and Text. You
created a sprite that contained multiple animations and events that switched between
these animations as needed. You also learned how to use variables to keep track of
changing values and how to display these values on the screen using the Text object.

In the next chapter, you will learn how to add additional polish to your previous
games, in the form of menu screens, audio (sound effects and background music), and
alternative sources of input.

64

CHAPTER 5

Adding Polish to Your Game/

Whenever you learn new techniques in game development, it is good practice to
revisit earlier game projects looking for opportunities to apply your newfound
knowledge. Perhaps there are additional gameplay mechanics or features you

could implement or improved graphics or effects to add. In this chapter, you will
begin by revisiting your first game project, Starfish Collector, and add an image-based
animation and text that displays your progress. Then, you will learn some new
general techniques and features that can be used in all your past and future game
projects: adding buttons to the user interface, adding audio (sound effects and
background music), adding menu systems (such as a start menu and an instructions
screen), and adding alternative control schemes. Figure 5-1 illustrates some of these
additions.

Figure 5-1. Menu for Starfish Collector (left) and improved user interface (right)

To begin, open the . capx file from the Starfish Collector project, and download the
zip file containing the additional assets from the book web site for this chapter. Some of
these new files include animation frames for the turtle, images of various buttons
(some with text and some with graphics), and audio files.

© Lee Stemkoski and Evan Leider 2017 65
L. Stemkoski and E. Leider, Game Development with Construct 2,
DOI 10.1007/978-1-4842-2784-8_5

CHAPTER 5 " ADDING POLISH TO YOUR GAME

Adding Animation and Text

First, you will change the single image currently used for the turtle into an image-based
animation. As it turns out, the image you used previously for the Turtle sprite is actually
the first frame of an animation. Unlike previous animations, however, the images are
not contained within a single sprite sheet; they are in separate files. In the object panel,
right-click the Turtle object and select Edit animations to open the image editor windows.
In the Animation frames window, right-click and select Import Frames... and then select
From Files. From the Open window, you can select multiple images at once, as follows:
in this window, click the image file turtle-2.png, then hold down the Ctrl key, and
continue to click the remaining image files in sequence (from turtle-3.png through
turtle-6.png). In total, five files should appear selected in this window, and all the file
names will appear in the text box at the bottom of this window, as shown in Figure 5-2.
Then click the Open button, and you should see a total of six images in the Animation
Jframes window. Set the Animation property Speed to 12 and Loop to Yes and then close
the image editor windows.

[
| = Open “
[T « Ch0S-Adding Polish » Game Images v O earch Game Image »
Organize = New folder = - [7]
i = it -~
| Favarites
! Il Deskacp
| dowosss ﬁ 9 p
¥ Dropbox .
[& v
pause.png play.png right.png rockpng
.! & This PC o]
[J Desktop
I Documents 3
| 3 Downloads L _\' ‘r_ gt F TSV
b s gL Gues g)
E Pictures starfish.png starfish-collector. turtle-1.png urtie-2png
Vi png
B Videos e 7 7 ol
% Local Disk (C)
% Math&Computer
Wi & v & &
v turtle-3.png turtle-4.png turtle-5.png turtle-6png v

File name: “turtle-6.png™ “turtle-2.png” “turtie-3png” “turtle-4pne v | All supported farmats (“pnc

Open Cancel

Figure 5-2. Selecting multiple image files for an animation

Next, you need to create a pair of events to pause the animation from playing
when the turtle stops moving and to resume the animation when the turtle begins
moving. Sprites have some animation-related actions that can be used to start and stop
animations, but these have the unfortunate effect of changing the current animation
frame if not used properly, so instead you will change the animation speed to pause and
resume it. Create a new event with the condition Turtle - 8-Direction: Is moving, invert
the condition, add the action Turtle - Animation: Set Speed, and set Speed to 0. Add

66

CHAPTER 5 " ADDING POLISH TO YOUR GAME

another event with the condition Turtle - 8-Direction: Is moving, add the action Turtle -
Animation: Set Speed, and set Speed to 12. When finished, your events should appear as
in Figure 5-3. Save your project and run the layout to verify that the turtle’s animation
appears as described earlier.

3 mkTurtle | X 57 8Direction is moving WTurtle Set animation speed to 0

4 wkTurtle | $e38Direction is moving - Turtle Set animation speed to 12

Figure 5-3. Events to pause and resume the Turtle animation

Next, you will create a Text object for the user interface that displays the number of
starfish remaining for the player to collect. Create a new Text object named TextStarfish.
Change the Layer property to UI, set the alignment properties so that the text is centered,
and change Textto Starfish Left: N(where you should replace N with however many
starfish you have at the beginning of your game). To more closely align with the visual
theme of this game, change Font to Comic Sans MS, change the font Style to Bold, and
change the font Size to 36. Increase the size of the Text object so that all the text appears
on a single line. Change the font color to a dark blue. Position the Text object in the center
near the top of the layout; it should appear as in Figure 5-4.

Figure 5-4. Adding a text display to the layout

You don’t need to create a variable to keep track of how many starfish are remaining
since this information is stored in Starfish.Count. You do, however, need an event
to update the text itself; the text needs to be set to "Starfish Left: " & Starfish.
Count. However, the placement of this action requires careful consideration. In the past,
you would update a Text object immediately after the associated variable was changed;
these actions would be part of the same event. In this case, the timing of certain actions
can cause unexpected results because the action that destroys a sprite does not actually
remove the object from the game until after the event. (This can be useful in certain cases,
such as having an asteroid that was just destroyed spawn an explosion in the next action.)
In the current situation, this means the value of Starfish.Count does not change until

67

CHAPTER 5 " ADDING POLISH TO YOUR GAME

later, so updating the text must take place in a later event. To implement this, create a
new event with the condition System - Every tick, add the action TextStarfish - Text: Set
Text, and enter "Starfish Left: " & Starfish.Count. The completed event should
appear as in Figure 5-5. Save your project and run the layout to verify that the text display
changes as expected.

5 System Every tick iTiTextStarfish Set text to "Starfish Left: " & Starfish.Count
s ry L]

Figure 5-5. Event for updating the text display

Mouse Input and Buttons

Next, you will create some buttons that can be used to pause and resume the game. The
buttons will be activated by clicking them with the mouse. To provide visual feedback to
the player, buttons will appear slightly transparent when pressing a button would have

no effect (such as pressing the pause button while the game is already paused). To begin,
create a new Sprite' object named ButtonPause, using the image pause.png. Create
another Sprite object named ButtonResume, using the image play.png, and set its Opacity
to 50. Place these two buttons in the upper-right corner of the layout, where, ideally, they
will not obstruct any of the game objects (starfish or rocks), as shown in Figure 5-6. To

get mouse input, a Mouse object must be added to the project (similar to the Keyboard
object). Right-click in the layout area, and in the Add New Object window select Mouse.

Figure 5-6. Placement of pause and resume buttons

Pausing the game can be accomplished by setting one of the system properties called
the time scale, which controls the rate at which time is processed by the Construct game
engine. The default time scale value is 1. Setting it to 2 would cause animations to display
twice as quickly, objects to move twice as fast, and so on. Setting the time scale to 0.5
would cause these features to occur at half-speed. Setting it to 0 freezes these features,
which effectively pauses the game, as nothing will occur in the game world (although
Construct will still respond to input such as key presses and mouse clicks). First, you

'You may have noticed that there is a Button object you aren’t using. The reason is that using sprites
gives you more flexibility with images and appearance than the Button object, and it is simple to
create the same buttonlike functionality with events.

68

CHAPTER 5 " ADDING POLISH TO YOUR GAME

will set up the pause feature. Create a new event with the condition Mouse - On object
clicked, and select the ButtonPause object. The parameter Mouse button lets you select a
particular mouse button (left, middle, or right), while Click type lets you specify whether
the user needs to single-click or double-click; in general, you will leave these values set
to their defaults (left mouse button and click). You also have the option to select which
mouse button. Add the following three actions:

e Add System - Set time scale, and enter 0.
e Add ButtonPause - Set opacity, and enter 50.
e Add ButtonResume - Set opacity, and enter 100.

Next, you will set up the resume feature; the event is quite similar. Once again, create
anew event with the condition Mouse - On object clicked, and select the ButtonResume
object. Add the same three actions as before, but with different parameter values: the
time scale should be set to 1, the ButtonPause Opacity should be set to 100, and the
ButtonResume Opacity should be set to 50. When finished, these events should appear
as in Figure 5-7. Save your project and run the layout to verify that the pause and resume
buttons work as expected (you should see the starfish stop and start moving).

6 % (5] Mouse | On Left button Clicked on & System Set time scale to 0
@ ButtonPause @ sButtonPause | Set opacity to 50
@ ButtonResume = Set opacity to 700
| (¥) Mouse | On Left button Clicked on & System Set time scale to 7
Q ButtonResume

@ ButtonpPause Set opacity to 700

) ButtonResume | Set opacity to 50

Figure 5-7. Events for pausing and resuming the game

Audio

Audio is an important component that you should add to each game. Background

music or ambient sounds (such as rushing water or city traffic) can be effective at setting
the tone or mood of the game, while sound effects can provide another form of player
feedback; all these aspects work together to increase the sense of immersion and provide
a more complete and engaging player experience.

The Construct game engine classifies audio into two categories: sounds and music.
Sounds are downloaded completely before playing and typically consist of short audio
files used for sound effects, such as laser blasts or explosions. Music is not downloaded
before playing; rather, it is streamed, or played while being downloaded. Large audio
files, such as background music or ambient sounds, typically fall into this category.

69

CHAPTER 5 " ADDING POLISH TO YOUR GAME

Construct supports many different audio file formats, but different web browsers and
operating systems require different formats. When sounds are imported into Construct,
the software will attempt to convert the files into multiple formats when possible. For
cross-platform compatibility, you may want to consider the Waveform audio format
(indicated by the .wav extension) for sound files and the Ogg Vorbis audio format
(indicated by the .ogg extension) for music files. In particular, the popular MP3 file
format may not play correctly in many browsers. However, there are many free programs
and online services that can be used to convert audio files to a format of your choice; you
can find them easily with an Internet search.

In the game Starfish Collector, you will add two audio elements: some background
music and a sound effect of a water drop that will play every time a starfish is collected.
To begin, in the Projects panel in the upper-right area of the Construct window, right-click
the Sounds folder, select the option Import Sounds from the pop-up menu that appears,
and select the file Water_Drop.wav from the assets you downloaded at the beginning of
the chapter. Then a window titled Import audio files will appear; click the Import button,
and after the text Successfully imported appears, click the OK button. Next, right-click the
Music folder, select the option Import Music, and follow the same process as earlier to
import the file Master_of the Feast.ogg.?

Next, in the layout area, right-click, select Add new object, and then select the Audio
object. Just as importing the Keyboard and Mouse objects enables you to use these objects
in the event sheet, the Audio object enables you to play sounds, and it even contains
advanced functionality such as effects that modify the sound being played. This chapter
covers only basic audio functionality, but you should feel free to experiment with the
available features.

In the event sheet, locate the event with the condition where the turtle collides with
a starfish. To this event, add the action Audio - General: Play, and in the parameters
window, set Audio file to Water_Drop, and set Loop to not looping. Next, create a new
event with the condition System - Start & End: On start of layout, add the action
Audio - General: Play, set Audio fileto Master _of_the Feast, and set Loop to looping.
When you are finished, these events should appear as in Figure 5-8. Save your project and
run the layout to verify that the background music plays when the game starts and that
the sound effect plays whenever the turtle collides with a starfish.

. = wTurtle On collision with i Starfish U Fade: start fade
: Starfish 5 E . -
o) Audio Play Water_Drop not looping at volume 0 dB (tag ™)
8 = ¥FSystem On start of layout of)) Audio Play Master_of_the_Feast looping at volume 0 dB (tag "*)

Figure 5-8. Events for playing audio files

The soundtrack Master of the Feast was composed by Kevin MacLeod and is licensed under the
Creative Commons: By Attribution 3.0 License. This, and many other high-quality soundtracks, can
be downloaded from incompetech.com.

70

CHAPTER 5 " ADDING POLISH TO YOUR GAME

Finally, you will add some buttons onto the layout that enable the player to mute
or unmute the sounds being played. To begin, create two new sprites: one named
ButtonMute with the image audio-off.png and the other named ButtonUnmute with the
image audio-on.png and Opacity set to 50. Position them in the top-left corner of the
layout, symmetrically opposite from the pause and resume buttons you created earlier, as
shown in Figure 5-9.

Figure 5-9. Adding audio buttons to the layout (whole set)

In the event sheet, create a new event with the condition Mouse - On object clicked,
and set Object clicked to ButtonMute. Add the following three actions:

e Add Audio - General: Set silent, and change Mode to silent.
e Add ButtonMute - Set opacity, and enter 50.
e Add ButtonUnmute - Set opacity, and enter 100.

The process for setting up the unmute button is similar. Once again, create a new
event with the condition Mouse - On object clicked, and select the ButtonUnmute object.
Add the same three actions as before, but with different parameter values: the silent
mode should be set to not silent, the ButtonMute opacity should be set to 100, and the
ButtonUnmute opacity should be set to 50. When finished, these events should appear as
in Figure 5-10. Save your project and run the layout to verify that these new buttons work
as expected.

9 # (Y] Mouse On Left button Clicked on) Audio Set silent
ButtonMut -
© ButtonMute D ButtonMute | Set opacity to 50
0 ButtonUnmute = Set opacity to 700
ol® (¥) Mouse | On Left button Clicked on) Audio Set not silent
Q ButtonUnmute

D suttonMute | Set opacity to 700
0 ButtonUnmute = Set opacity to 50

Figure 5-10. Events for muting audio playback

71

CHAPTER 5 " ADDING POLISH TO YOUR GAME

Menus

Menu screens are fundamental in video game development to create a complete user
experience. When running game software, there should be a main menu or “splash
screen” that gives the player time to prepare before jumping into the game. Additional
screens are often used to display the backstory, user controls, in-game items, goals and
objects, and credits for the designers, artists, and programmers who developed the
game. In this section, you will add a main menu and an instructions screen, as shown
in Figure 5-11. This requires the creation of new layouts and event sheets, buttons to
navigate between the layouts, and events with actions to switch between layouts when a
button is clicked.

SHoREISH
LU ¥ @ Use the arrow keys to move the turtle.

Collect all the starfish to win the gamel

oroer| [wew | |sroer| | ook

Figure 5-11. Start menu (left) and instructions screen (right)

To begin, in the Projects panel in the upper-right region of the Construct window,
right-click the Layouts folder, and select Add layout from the menu that appears.
A window will appear asking if you want to create a new event sheet for this layout. While
not strictly necessary (different layouts can use the same event sheets), it is simpler to
organize your code and keep game events and menu events separate. Click Add event sheet,
and then you will see that a new layout has appeared in the Layouts folder; in addition, a
new event sheet has appeared in the Event sheets folder. Rename the newly created layout
to Start, and rename the newly created event sheet to Menu Events. To be consistent
with naming, you might want to change the name of your original layout to Game and
the name of your original event sheet to Game Events. Then right-click the Layout folder
again, and add another layout, but this time, click the button labeled Don't add event
sheet. Rename this layout to Help.

Open the Start layout in the layout area, and change Layout Size to 800, 600. To create
a new instance of the Background object for this layout, in the Projects panel, select the
Background object from the Object types folder and then click and drag it to the layout
area. Resize and reposition the Background object so that it completely covers the layout.
Also, set its Opacity to 50; this will reduce the contrast in the image, making it easier to
distinguish the user interface elements. Next, create three new sprites: one named Title
with the image title.png, one named ButtonStart with the image button-start.png,
and one named ButtonHelp with the image button-help.png. Arrange these elements as
shown on the left side of Figure 5-11.

72

CHAPTER 5 " ADDING POLISH TO YOUR GAME

Next, open the Help layout in the layout area, and change the layout size and add the
background as you did for the Start layout previously. Click in the margins of the layout
area so that the Properties panel displays layout properties, and set Event sheet to Menu
Events. Also, create new instances of the Title and ButtonStart objects by dragging them
onto the layout from the Projects panel. Create a new sprite named ButtonBack with the
image button-back.png. Next, create a new Text object named TextInstructions, with
Textsetto Use the arrow keys to move the turtle. To keep with the visual theme
of the game, change the font to a larger, bold Comic Sans, and set the color to a dark
blue. When you are happy with the style, create another instance of the Text object, and
change the text of this new object to read Collect all the starfish to win the game.
Arrange these elements as shown on the right side of Figure 5-11.

Finally, you need to create events that enable the user to navigate through the
menus. Double-click the Menu Events event sheet in the project panel to open it in
the editor, add a new event with condition Mouse - On object clicked, and select the
ButtonStart object. Add the action System - General: Go to layout, and select the layout
named Game. Repeat this process to create two more events: clicking the ButtonHelp
object should go to the layout named Help, and clicking the ButtonBack object should go
to the layout named Start. When you are finished, these events should appear as shown
in Figure 5-12. In the project properties, set First layout to Start. Then, save your project,
and while the Start menu is displayed in the layout area,® run the layout and test that the
buttons work as expected, allowing you to navigate between the different screens.

= (¥ Mouse On Left button Clicked 4 System Go to Game
on == ButtonStart
2 = () Mouse On Left button Clicked % System Go to Help
on = ButtonHelp
3 = @] Mouse On Left button Clicked ﬁSystem Go to Start

on == ButtonBack

Figure 5-12. Events for navigating between menu and game screens

Alternative Controls

Many game enthusiasts have their own preferred way to interact with a game; some prefer
keyboard and mouse controls, while others prefer gamepad controllers, and still others
enjoy touchscreen-style games. In this section, you will learn how to implement each of
these features.

3Although you set the First layout property to be the Start menu, this setting applies only after the
game has been exported. When testing your game using the Run layout button, Construct will
always load the current (or most recently) displayed layout in the layout area.

73

CHAPTER 5 " ADDING POLISH TO YOUR GAME

Changing Default Controls

In the Starfish Collector game, the default controls are the arrow keys. If you want, you
can disable the default key setup and use other keys to trigger the 8-Direction actions.
Here, you will configure the W/A/S/D keys* to take the place of the up/left/down/right
arrow keys, a popular setup with many gamers. To begin, add a Keyboard object to

the project. Then select the Turtle object, and in the Properties panel, underneath the
8-Direction group, change Default controls to No. Next, in the Game Events event sheet,
create a new event with the condition Keyboard - Key is Down, set Key to W, add the action
Turtle - 8-Direction: Simulate Control, and select Up from the list. Create additional
similar events for the remaining keys and associated controls. When you are finished,
these events should appear as in Figure 5-13. Test your game to make sure that this new
control setup works.

1 Keyboard = W is down - Turtle Simulate fi& 8Direction pressing Up
12 = Keyboard | S is down - Turtle Simulate ii& 8Direction pressing Down
13 EKeyboard @ A is down & Turtle Simulate §#7 8Direction pressing Left
14 Keyboard D is down W-Turtle Simulate ﬁf; 8Direction pressing Right

Figure 5-13. Events for changing the 8-Direction controls

Gamepad Controllers

Another option for controlling your characters is to use a gamepad controller, such

as the Xbox 360 or the Logitech F310 gamepads, as shown in Figure 5-14. Construct 2
uses web browsers to run your game, and many of these (such as Google Chrome and
Mozilla Firefox) automatically support gamepad input without any special configuration
required. To add gamepad support to your game, right-click in the layout area, select
Insert new object, and choose the Gamepad object. Then, in the event sheet, you will
have access to a variety of gamepad-related conditions that can, for example, determine
whether gamepads are connected or whether buttons were just pressed or are being held
down (similar to the conditions provided by the Keyboard object).

“While using the W/A/S/D keys for directional movement is a standard practice on QWERTY-style
keyboards, it is important to remember that not all keyboards have the same arrangement of keys.
For example, the AZERTY-style keyboard positions the W key in a different location, making
‘W/A/S/D controls counterintuitive. When developing for an international audience, this should be
taken into consideration; a different key selection (such as E/S/D/F) is more globally accessible.

74

CHAPTER 5 " ADDING POLISH TO YOUR GAME

Figure 5-14. Xbox (left) and Logitech (right) gamepad controllers

One possibility is to use the D-pad to control the turtle. The events for this are
straightforward: there is a Gamepad object condition named Is button down, and in the
parameters window, you would leave Gamepad set to 0 (this refers to the first gamepad
connected) and set Button to one of the buttons listed. The associated action would be
Turtle - 8-Direction: Simulate control, as described in the previous section. However, in
this section, you will instead use the analog joysticks on the gamepad to control the turtle.
This is often a preferable setup because it gives the player fine-grained control over their
character’s movement. Any direction can be selected, and the speed of the character can
be dependent on how far from the center the joystick is pressed (pressing the joystick all
the way to the edge results in full speed).

However, analog joystick controls are slightly more complex to set up than button
press controls. Each joystick measures how much the player is pressing in along each of
the coordinate directions: the x-axis (horizontal) and the y-axis (vertical). These inputs
are represented as percentages, which can then be used to set the velocity in the X and Y
directions (called the Vector X and Vector Y properties in Construct). To get these values,
you use a function belonging to the Gamepad object called Axis. Just as you use the dot
notation to access a property belonging to an object (such as Turtle.Angle), you do the
same for functions (although this situation occurs far less frequently), so this function is
entered as Gamepad.Axis. This function has two inputs. The first input is the ID number
of the gamepad (the first gamepad has ID 0, the second gamepad has ID 1, and so forth).
The second input is a code for the joystick (left or right) to check on the controller and
which axis (x or y) to check. The codes are as follows:

o 0 for left joystick, x-axis
e 1 for leftjoystick, y-axis
e 2 forrightjoystick, x-axis
e 3 forrightjoystick, y-axis

So, for example, if there is only one gamepad (the ID is 0) and the player is using the
left joystick, you can determine the percentages to which they are being pressed with the
expression Gamepad.Axis(0,0) for the x-axis and the expression Gamepad.Axis(0,1) for
the y-axis. The values returned by these functions are numbers in the range from -100 to
100, so in practice you will divide them by 100 (to convert them to a fraction) and then
multiply the result by the maximum possible speed of the object.

75

CHAPTER 5 " ADDING POLISH TO YOUR GAME

To enable gamepad controls for the turtle, create a new event with the condition
Gamepad - Gamepad: Has gamepads. Add the action Turtle - 8-Direction: Set vector X, and
enter Gamepad.Axis(0,0) / 100 * 200.Add another action similar to the first, which
instead sets the 8-Direction vector Y and replaces Gamepad.Axis(0,0) with Gamepad.
Axis(0,1). When you are finished, the events should appear as in Figure 5-15. Save your
project, connect a gamepad controller to your computer, and run the layout. Once the
game starts, you may have to press a button (any button will do) on your gamepad so that
the web browser recognizes that a gamepad is connected. Test the joystick controls and
verify that the turtle moves as expected.

. % Gamepad | Has - Turtle Set 527 BDirection vector X to Gamepad.Axis(0,0) / 100 * 200

d e i
JAM=Racs m-Turtle Set ge7 8Direction vector Y to Gamepad.Axis(0,1) / 100 * 200

Figure 5-15. Events for gamepad controls (if gamepad is connected)

If you want, you can add events to the Game Events and Menu Events event sheets
that allow the player to use the gamepad to interact with the user interface buttons
by pressing buttons on the gamepad. Some button associations are standard, such
as pressing the gamepad start button to begin or pause the game and pressing the
gamepad back button to return to the main menu. For less obvious button associations
(for example, determining the gamepad button used to mute the audio), one standard
practice is to place small images of gamepad buttons near or slightly overlapping the
onscreen buttons, as shown in Figure 5-16. This is an optional feature that you can
implement if you want; for your convenience, images of gamepad buttons have been
included in the assets provided for this chapter.

Figure 5-16. Using images to indicate gamepad controls for the user interface

Touchscreen Input

The final alternative control scheme we will discuss in this chapter is the use of
touchscreen controls. From a technical standpoint, implementing touchscreen controls
is straightforward. Sprites containing images representing buttons or keyboard keys can
be created, there is a Touch object that can be used to detect when objects are touched
(similar to the conditions provided by the Mouse object), and you can use actions that
simulate eight-direction controls. In addition, if you configure touch controls and run the

76

CHAPTER 5 " ADDING POLISH TO YOUR GAME

game on a desktop computer, the mouse input will be used to emulate touch input, which
is convenient for testing purposes. From a design standpoint, however, the layout of the
touchscreen controls is quite complex. The images used need to be relatively large (64
pixels or greater) so that they are easy to press on devices with small screens. The main
problem is the obstruction of the game world since the controls can overlap in-game
objects, as shown in Figure 5-17. Making the controls partially transparent does not fully
address this problem since the player’s fingers will still be covering part of the screen.
Solid objects could be placed under the user controls to prohibit game world objects from
entering this area, but for games with large worlds that involve scrolling the window, this
approach can also be complicated to implement. A thorough discussion of this topic at
this time would take us too far afield, so it is left as a design issue for you to ponder in your
future game projects.

Figure 5-17. Game world objects obstructed by onscreen controls

Summary

In this chapter, you learned many techniques for making your games more polished and
professional: adding audio (sound effects and background music), creating additional
layouts to serve as menus, and implementing alternative controls for your games. At this
point, it would be excellent practice for you to revisit your game projects from earlier
chapters (Space Rocks and Cleanup Challenge) and try your hand at implementing the
features described in this chapter for those games. In the next chapter, you return to
creating new games and creating your first side-scrolling game: Plane Dodger.

77

CHAPTER 6

Plane Dodger

In this chapter, you will create a game called Plane Dodger, an endless side-scrolling
game, inspired by the modern smartphone game Flappy Bird, shown in Figure 6-1.

Figure 6-1. The Plane Dodger game

In Plane Dodger, the player controls a green plane (which we will simply refer to as
“the plane”), whose goal is to collect stars that fly across the sky while dodging the red
enemy planes that periodically appear. The stars and enemies appear at random heights
in the sky, traveling across the screen from right to left. As time passes, the rate at which
the enemies are spawned, as well as the speed of the enemies, will gradually increase, up

© Lee Stemkoski and Evan Leider 2017 79
L. Stemkoski and E. Leider, Game Development with Construct 2,
DOI 10.1007/978-1-4842-2784-8_6

CHAPTER 6 ' PLANE DODGER

to a certain limit. Since this game is endless, the player’s goal is to collect as many stars as
possible before crashing into another plane, which ends the game.

The player controls the plane by pressing a single key, which gives the plane a boost
of speed upward. However, gravity is constantly pulling the plane downward. While it
appears that the plane is flying from left to right, this is actually a visual illusion created by
scrolling backgrounds (explained in the next section); in reality, the player’s movement is
restricted to a single column. The user interface is designed to be simple and minimal, so
as to not distract the player from the fast-paced action of the game itself.

As usual, this game relies upon material from the previous chapters. In particular,
you should be familiar with using the Bullet behavior, creating animations, creating
(global) variables, and using Text objects. Topics such as creating menus, adding sound
effects, and using alternative control systems are also useful for adding polish to your
game, but since these features are not part of the core mechanics, they will appear in
the “Side Quests” section (but that does not make them any less important). The new
material introduced in this chapter includes topics such as adding scrolling backgrounds
and parallax, using gravity, and creating difficulty ramps.

To begin, download the zip file containing the graphics for this chapter from the book
web site. In the layout properties, set the layout Name to Main, and set Size to 600, 800. As
you have in previous projects, set up three layers named Background, Main, and UI. In the
project properties, change the window Size to 600, 800 (and change the Name and Author
properties as you like).

Background Effects

In this section, you will set up an “infinite scrolling” effect with background images. Since
image files cannot actually have infinite size, there is a technique used to create the illusion
of an infinite background. The idea is to use a seamless image for the background so that
when two copies of the image are placed side by side, the image appears continuous. Both
images will scroll to the left at the same rate, and once one moves off-screen to the left, it
will be shifted to the right, on the opposite side of the layout, as illustrated in Figure 6-2.

‘ 1 2

Figure 6-2. Two copies of a background image (dashed border), moving past layout (solid
border)

80

CHAPTER 6 ' PLANE DODGER

First, you will create the background objects. In the layout properties, change Active
layer to Background. Add a new sprite called Sky, using the image sky.png. Its size
should be 600 by 800 pixels, the same size as the layout. This object needs to be precisely
centered on the layout, so using the Properties panel, set the position to 300,400. Add
the Bullet behavior, change Speed to 50, and change Set angle to No (because this object
should not be rotated). Unfortunately, the angle of motion for the Bullet behavior cannot
be set via the Properties panel, so this will be specified by an event instead. In the event
sheet, create a new event with the condition System - Start & End: On Start of Layout, add
the action Sky - Bullet: Set angle of motion, and set Angle to 180. Create a duplicate of the
Sky instance, and in the Properties panel, set Position to 900,400 so that it is precisely
aligned to the right of the previously created Sky object.

Next, you will create the event that causes a Sky object to shift to the right after
it moves off-screen to the left. Create another event with the condition Sky - Size &
Position: Is on-screen. When finished, right-click this condition in the event sheet and
select Invert from the menu that appears. Right-click the condition again, select Add
another condition, and create the condition Sky - Size & Position: Compare X, changing
Comparison to less than and the X coordinate to 0. Finally, add the action Sky - Size &
Position: Move at angle, with Angle set to 0 and Distance setto 2 * Sky.Width. When you
are finished, these events should appear as in Figure 6-3. Save and test your project; the
background image should appear to scroll forever, with no noticeable gap between the
two images.

1 -@-&System On start of layout : Sky Set ¢ Bullet angle of motion to 780 degrees
- - * - P
> m Sky X Is on-screen s Sky Move 2 * Sky.Width pixels at angle 0
M sy X<0

Figure 6-3. Sky initialization and scrolling events

Once the Sky sprites are configured, the next task is to set up the ground sprites,
which follows the same procedure as before. Create a new sprite named Ground, using the
image ground. png, which has size 600 by 80 pixels. Position it at 300, 760. Add the Bullet
behavior, change Speed to 200, and change Set angle to No. Duplicate the Ground object,
and position the second one at 900, 760. At this point, your layout should appear as in
Figure 6-4; in particular, one of the Sky and one of the Ground objects will be positioned
in the margin area, directly to the right of the layout, whose boundaries are indicated by a
black border.

81

CHAPTER 6 ' PLANE DODGER

Figure 6-4. The layout with Sky and Ground objects added

In the event with the condition On start of layout, add a second action to set the
Ground object’s angle of motion to 180. Finally, create a new event that causes the
Ground object to shift after it moves off-screen, just as you did previously for the Sky
object. When completed, these events will appear as shown in Figure 6-5. Save and test
to verify that the ground scrolls as expected. By setting the distant scenery (the clouds
and mountains) to scroll more slowly than the nearby scenery (the ground), it creates an
illusion of depth referred to as parallax.

1 -iﬁ-System On start of layout : Sky Set I Bullet angle of motion to 180 degrees
—Ground | Set ¢” Bullet angle of motion to 180 degrees

; E Sky 1s on-screen P Sky Move 2 * Sky.Width pixels at angle 0

M Sky X<0

—Ground | X Is on-screen =—Ground | Move 2 * Ground.Width pixels at angle 0
: ——Ground X <0

Figure 6-5. Ground initialization and scrolling events

The Player’s Plane

In this section, you will set up the plane that the player controls. In the layout, change
Active layer to Main so that newly added objects are placed on this layer. Create a new
sprite named Player. This object has an animation whose images are stored in separate
files, so in the Animation frames window, right-click, select Import Frames, and then select
From Files. Use the images planeGreen0.png, planeGreen1.png, and planeGreen2.png,

82

CHAPTER 6 ' PLANE DODGER

and delete the initial blank animation frame. For the animation properties, set Speed to

8, Loop to Yes, and Ping-pong to Yes. Position the Player object at 100, 300. This plane will
only move up and down; a boost of speed upward will be applied when the player taps a
key, and the force of gravity will constantly be pulling the plane downward, both of which
can be achieved using the Bullet behavior. Add the Bullet behavior to the Player object,
and set Speed to 0, set Gravity to 600, and change Set angle to No, as the plane should
always face to the right, regardless of whether it is moving up or down. Also, add the
behavior Bound to Layout; this will stop the plane from moving off-screen.

Next, the plane needs to be stopped from passing through the ground. Your first
instinct might be to add the Solid behavior to the Ground object, but unfortunately this
won’t work. By default, objects with the Bullet behavior pass through objects with the Solid
behavior, unless the property Bounce off solids is set to Yes, in which case it bounces, which
is also not the desired effect. (Presumably, the Bullet behavior was designed this way
because in real life, projectiles either bounce or are destroyed upon impact with a wall.)
Also, it is not enough to set the plane’s speed to zero on collision with the ground because
gravity will still apply and will eventually pull the plane through. The simplest solution is to
disable the Bullet behavior when the plane hits the ground and then re-activate (or enable)
the behavior when the player taps a key. When tapping a key, the plane will be moved
upward, by setting the angle of motion to 270 degrees with a speed of 300. To begin, add
a Keyboard object to your project. Then, in the event sheet, create a new event with the
condition Keyboard - Keyboard: On Key Pressed, and select the Space key. Then, add the
following three Player - Bullet actions to this event: add Set angle of motion, and set Angle
to 270; add Set speed, and set Speed to 300; and add Set Enabled, and set State to Enabled.
Create another event, with the condition Player - Collisions: On Collision with another
object, and select Ground. To this event, add the action Player - Bullet: Set Enabled, and set
State to Disabled. When finished, these events should appear as in Figure 6-6. Save and
test your game; check that pressing the spacebar moves the plane upward and that the
plane stops moving at the top of the screen and when it touches the ground.

4 =pEKeyboa... On Space pressed ZiPlayer | Set ¢ Bullet angle of motion to 270 degrees
ZiPlayer | Set ¢ Bullet speed to 300
SiPlayer | Set ¢ Bullet Enabled

=p IPlayer | On collision with ZiPlayer Set ¢° Bullet Disabled

5
Ground

Figure 6-6. Events for controlling player plane movement

Stars and Score

In this section, you will add stars to the game for the player to collect, a global variable to
keep track of the number of stars collected, and a Text object to display this information.
To begin, in the event sheet, right-click and add a global variable; set Name to Score, Type
to Numbez, Initial Value to 0, and Description to Number of stars collected.

83

CHAPTER 6 ' PLANE DODGER

Next, in the layout, add a new sprite named Star with the image star.png. Add the
Bullet behavior, with Speed set to 200 (to match the Ground speed) and Set angle set to No.
Also, to draw the player’s attention to these objects (so they aren’t considered as part of
the scenery), you will set up some value-based animations. Add the behavior Rotate, with
Speed set to 30. Also add the Sine behavior, with Movement set to Size, Period set to 1, and
Magnitude set to 8. While in the layout, add a Text object named TextScore. Set its Text
property to 0, showing the initial score. Also, set its Layer to UI, make the text box large,
set the alignment properties so that the text is centered, and change the font size so that
itis easy to read (such as Arial, size 48). Optionally, to make the text appear to “pop out”
of the screen, there is a simple way to create a drop shadow effect. Make sure that the Text
color is set to black and then duplicate the Text object. Change the color of this new text
object to white, and position it so that it is a few pixels above and to the left of the black
text. Since the black text was created before the white text, it will appear underneath the
white text, creating a nice effect, as shown in Figure 6-7.

Text

Figure 6-7. Drop shadow effect created with a duplicated Text object

Now you will set up three events related to Star objects: one event to generate the
stars, one event for when the player collects a star, and one event for when the player
misses a star and it moves off-screen to the left.

First, create a new event with the condition System - Time: Every X seconds, and
set Interval to 2. Add a second condition to this event called Player - Size & Position: Is
on-screen; the purpose of this second condition is to stop the stars from spawning once
the player has lost the game and been destroyed. Next, you will add an action that spawns
additional instances of the Star sprite beyond the right edge of the layout. Sprites can be
spawned from other sprites, or they can be spawned from the System object; the latter
is the approach you will take here. In this event, add the action System - General: Create
Object. In the parameters window, set Object to create to Star, set Layer to "Main" (with
the quotation marks), set X to 700, and set Y to random(100, 700). Recall that angles of
motion need to be set by actions, so add another action called Star - Bullet: Set angle of
motion, and set Angle to 180.

Next, you will create the event that handles what happens when the player collides
with a star, which is that the star is destroyed, a point is added to the Score variable, and
the Text object displaying the score value is updated. Create a new event with condition
Player - Collisions: On collision with another object, and select Star. Add three actions to
this event.

e Add Star - Misc: Destroy.

e Add System - Global & local variables: Add to, and set Variable to
Score and Value to 1.

84

CHAPTER 6 ' PLANE DODGER

e Add TextScore - Text: Set Text, and next to Text, enter Score
(without quotation marks so that the value of the variable is
displayed, not the word itself).

Finally, you will create the event that destroys a star once it moves off-screen to the
left. It is important to specify the side since stars are created off-screen to the right and
you don’t want them destroyed in that situation. Create a new event with the condition
Star - Size & Position: Is on-screen, and invert the condition on the event sheet. Also add
the condition Star - Size & Position: Compare X, change Comparison to Less Than, and
set the X coordinate to 0. Finally, add the action Star - Misc: Destroy.

When you have completed these three events, they should appear as in Figure 6-8.
Save and test your game to verify that stars do in fact appear onscreen every 2 seconds
and travel to the left and that when the player collides with a star, the star disappears and
the score display is updated correctly.

$ksystem | Every 2 seconds ¥ system Create object {7 Star on layer "Main™ at (700, random{100, 700))
el Player 5 on-screen .7 Star Set 4’ Bullet angle of motion to 180 degrees
7 =S Player On collision with 7 Star 07 Star Destroy
-ﬁSy‘s‘.e:n Add 7 to Score

[TiTextScore | Set text to Score

7 Star X s on-screen 1.7 Star Destroy

7 Star X<0

Figure 6-8. Events related to Star objects

Enemy Planes

In this section, you will add enemy planes to introduce an element of challenge. As

an added level of sophistication, you will also create a set of variables that causes the
overall difficulty to increase as time passes. The rate at which enemies spawn and their
movement speed will both slowly increase. This is known as a difficulty ramp and is
useful in keeping players challenged and interested in the game; as they play more and
their skills increase, they will be able to play the game for longer periods of time and
attain higher scores. To begin, in the event sheet, create a global variable; set Name to
SpawnRate, set Type to Number, set Initial value to 2, and for Description enter Seconds
until next enemy spawns. Next, create another global variable; set Name to EnemySpeed,
set Type to Number, set Initial value to 300, and for Description enter Used when setting
speed of newly created enemy planes.

In the layout, create a new sprite named Enemy. Setting up its graphics is completely
analogous to the process used for the player plane. In the Animation frames window,
import the image files for the red, left-facing plane, and set the animation properties
Speed to 8, Loop to Yes, and Ping-pongto Yes. Position the Enemy plane off-screen, in the
margin area above the layout. Add the Bullet behavior, and change Set angle to No.

85

CHAPTER 6 ' PLANE DODGER

Next, you will add a total of five enemy-related events to the event sheet. Three of
these events will be quite similar to the star-related events you previously created: an
event to spawn new instances, an event to handle collision with the player, and an event
to destroy objects that pass beyond the left edge of the screen. Every time a new enemy
is spawned, the values of the variables SpawnRate and EnemySpeed will be adjusted;
the remaining two events will guarantee that the values of these variables stay within a
reasonable range.

In the event sheet, create a new event with the condition System - Time: Every X seconds,
and set Interval to SpawnRate. Add another condition called Player - Size & Position: Is
on-screen. When the game is over and the player is destroyed, this event will no longer
activate. Next, add the following actions:

e Add System - General: Create object, and in the parameters
window, set Object to create to Enemy, set Layer to "Main", set X to
700, and set Y to random(100,700).

e Add Enemy - Bullet: Set angle of motion, and set Angle to 180.
e Add Enemy - Bullet: Set speed, and set Speed to EnemySpeed.

Updating the associated variable values requires two more actions to be added to
this event.

e Add System - Global & local variables: Add to. For Variable, select
EnemySpeed, and for Value, enter 10.

e Add System - Global & local variables: Subtract from. For Variable,
select SpawnRate, and for Value, enter 0.05.

Next, you will create two new events even more similar to the previous star-related
events. Create a new event with a condition that checks whether the player has collided
with an enemy and a corresponding action that destroys the player object. Create another
new event with two conditions that check whether the enemy is not onscreen and that
compare the x value to check whether it is less than zero; also add a corresponding action
that destroys the enemy object.

Finally, you need to set reasonable limits on the values of the variables. You
previously implemented a similar feature in the Space Rocks game in an event that
checked the speed of the player’s spaceship; if the speed was greater than 200, the speed
was set equal to 200, which effectively became a speed limit for the spaceship. You will
create two similar events in your current game. The first of these events will set a bound
on how quickly enemy planes can spawn; if the value of SpawnRate gets too close to 0,
then there will be a near-continuous stream of enemy planes appearing, which would be
impossible to dodge (thus making the game unfair and frustrating for the player). To solve
this problem, you will set a lower limit of 0.5 for SpawnRate. To accomplish this, create
a new event with the condition System - Global & local: Compare variable, changing
Variable to SpawnRate, Comparison to less than and Valueto 0.5. Then create the action
System: Global and local variables: Set value, changing Variable to SpawnRate and Value
to 0.5. Once you are finished, create a similar event that checks whether the EnemySpeed
variable is greater than 800 and, if it is, then sets the value of EnemySpeed to 800.

86

When you are finished, the enemy-related events should appear as in Figure 6-9.

CHAPTER 6 ' PLANE DODGER

Save and test your game, making sure that the enemies become faster and appear more
frequently as time goes on.

ﬁSystem

9iPlayer
10 | = G Enemy

¥ Enemy
1

¥ Enemy
12 $Esystem
13 ﬁ System

Figure 6-9.

Every SpawnRate seconds -n- System Create object g Enemy on layer "Main" at (700, random({100, 700))

Is on-screen ;{Fne:ny Set 7 Bullet angle of motion to 180 degrees
?Lne.‘n',' Set @’ Bullet speed to EnemySpeed
K system Add 10 to EnemySpeed

#hystem Subtract 0.05 from SpawnRate

On collision with 51 Player B Player Destroy

X Is on-screen @Enemy | Destroy

X<0

SpawnRate < 0.5 -n- System Set SpawnRate to 0.5
EnemySpeed > 500 ﬁs‘fstem Set EnemySpeed to 800

Events related to Enemy objects

When you have reached this point, congratulations! You have implemented the core
mechanics of the Plane Dodger game.

Side Quests

There are many features you could consider to add polish to this project. For example,

you could add the following:

Animated effects for when stars are collected or the player’s plane
is destroyed (two spritesheets you could use for this purpose,
sparkle.png and explosion.png, are included)

Background music

Sound effects that play when a star is collected or when the
player’s plane explodes

Alternative controls, allowing the player to use a mouse button
click instead of (or in addition to) a keyboard press to control the
plane

Another layout that serves as a start menu

Objects that appear when the player is destroyed, such as a “game
over” message and a button that restarts the layout so that the
player can play again

87

CHAPTER 6 ' PLANE DODGER

At a more advanced level, you might want to experiment with different gameplay
mechanics. The following are some ideas:

Replace the Player object’s Bullet behavior with the 8-Direction
behavior.

Add a Sine behavior (with vertical displacement) to the Enemy
objects to produce a more complex movement pattern.

Add some form of shield or barrier object to the Player object
(similar to the Space Rocks game) so that the Player object can
withstand multiple hits.

Similar to the star objects, create different collectible objects
with different amounts of points (such objects could have greater
speed or different movement patterns).

Implement an item (such as an “electromagnetic pulse”) that
can be used once to destroy all enemy planes on the screen as an
emergency measure.

Summary

In this chapter, you learned how to create an “endless” game, using scrolling backgrounds
to create the illusion of continuous movement. Since this was your first game with a
side-view perspective, you used the gravity property of the bullet behavior. To keep the
gameplay from becoming monotonous, you also implemented a difficulty ramp to make
the game more challenging as time progresses. Finally, you were presented with a great
variety of aesthetic and gameplay modifications to consider in the “Side Quests” section.
In the next chapter, you will return to a top-down perspective as you create a
car-racing game, Racecar 500.

88

CHAPTER 7

Racecar 500

In this chapter, you will create a game called Racecar 500, a top-down racing game, as
shown in Figure 7-1.

Time: 217

Figure 7-1. The Racecar 500 game

Introduction

In Racecar 500, the player controls a car, whose goal is to drive around a racetrack in
the fastest time possible, while maneuvering around obstacles that may slow down or
randomly change the direction of the player. The racetrack itself is larger than the game
window, so only part of the track is visible at any time; the window remains centered on
the car at all times.

The player controls the car using the arrow keys. Specifically, the up arrow key
accelerates the car, the left and right arrow keys turn the car in its respective directions, and
the down arrow key decelerates the car (and will eventually cause the car to travel in reverse
ifheld down long enough). The user interface displays the total race time (in seconds),

© Lee Stemkoski and Evan Leider 2017 89
L. Stemkoski and E. Leider, Game Development with Construct 2,
DOI 10.1007/978-1-4842-2784-8_7

CHAPTER 7 " RACECAR 500

which begins once the car starts moving, and ends when the car crosses the finish line,
displayed as a checkerboard pattern on the racetrack.

For this chapter, you should be familiar with sprites, text objects, and global
variables. The Car behavior will be introduced as a basis for the movement described
earlier. Since the game world (layout size) is larger than the window size, the Scroll to
behavior will be introduced. To create a customized image for the track, the Tilemap
object will also be introduced.

To begin, download the zip file containing the graphics for this chapter from the
book web site. In the layout properties, set the layout Name to Game, and set Size to 2048,
1536. As you have in previous projects, set up three layers named Background, Main,
and UI. In the project properties, change Window Size to 800, 600; the reason for these
particular numbers will be explained in the next section.

Tilemaps and Level Design

To create a custom background image, you will use a tilemap. A tilemap is an arrangement
of rectangular images, called tiles, that represent small areas of the game world. This is
particularly useful for background images or level designs with lots of similar areas or
repeated graphics. Tilemaps can be used for games with a top-down perspective or for
side-scrolling platformer-style games, such as the classic Nintendo games The Legend

of Zelda and Super Mario Bros. In your current project, the racetrack can be constructed
from straight and curved segments of road and grassy areas; Figure 7-2 shows the set of
tiles you will be using. Typically, all these images are packed into a single image file called
a tileset, similar to how a spritesheet contains multiple images corresponding to animation
frames for a sprite.

Figure 7-2. Tiles for creating a racetrack

These tiles can be arranged in many ways to create all types of road configurations,
such as corners and loops, as illustrated in Figure 7-3, where spacing has been added to
make the individual tiles more distinguishable.

90

CHAPTER 7 " RACECAR 500

Figure 7-3. A basic racetrack loop created with the tiles from Figure 7-2

To begin working with tilemaps in Construct, make sure that the active layer is set
to Background, and in the layout, right-click and add a new Tilemap object. A crosshair
cursor will appear (similar to when you add sprites); click anywhere in the layout
(where you click is irrelevant, as the tilemap will be automatically sized and positioned
to cover the entire layout). When the image editor window appears, open the image
road-tileset.png, and close the image editor window. A new panel will be added to
the Construct window, called the Tilemap panel, as shown in Figure 7-4. Depending on
your window setup, it may appear as a tab in a preexisting panel (typically alongside the
Objects panel). If you are unable to see it, in the View tab area, make sure that the Tilemap
Bar check box is selected. You may want to adjust the panel borders so that there is more
room available to see the tileset image, or you may use the scrollbars in the Tilemap panel
to view the different areas in the image.

91

CHAPTER 7 " RACECAR 500

Tilemap: Tilemap UID 0 o X

RZODL I $02C BB

< >
Obijects | Tilemap: Tilemap UID 0

Figure 7-4. The Tilemap panel

Before working with the tilemap, there are a few properties to be changed in the
Properties panel. By default, the tiles in a tileset are assumed to be 32 pixels by 32 pixels.
In this project, however, the tiles are significantly larger (128 pixels by 128 pixels) to
accommodate the car sprite that will be added later. With the tilemap object selected,
in the Properties panel, change Tile width to 128 and change Tile height to 128. This
particular tile size also influences the choice of layout size (2048 by 1536). Since a tilemap
adjusts its size to match the size of the layout, it is important that the layout width and
height be multiples of the tile width and height; otherwise, there will be an area on the
bottom or right borders of the tilemap where tiles cannot be placed because there is not
enough space. The layout size in this project was chosen to fit exactly 16 tiles along the
width and 12 tiles along the height of the tilemap.

To create your tilemap, click the pencil tool icon in the Tilemap panel, which enables
you to draw tiles onto the tilemap. Next, click a tile in the panel; your selection will be
indicated by a light blue rectangle being drawn over the tile. Hover the mouse over the
tilemap in the layout area, and a translucent image of the tile will be displayed in the
square above which the mouse is hovering. Click to create a copy of the selected image
there. To draw multiple copies of a tile quickly (such as the grass tile, which will be used
for large sections of the background), click the rectangle tool icon and then click and drag
the tilemap to specify a rectangular region, which will be filled with copies of the selected
tile. To remove a tile from the tilemap, you can select the eraser tool icon or simply right-
click when the pencil tool is active. Experiment with the placement of tiles and design
your own racetrack; make it as simple or as complex as you like. One possible racetrack is
shown in Figure 7-5, but yours need not look exactly like this.

92

CHAPTER 7 " RACECAR 500

Figure 7-5. A possible racetrack design using the provided tileset

Finally, you want the grassy areas of each tile to act as solid objects or barriers to
stop the car from driving off the paved sections of the racetrack. To this end, add the Solid
behavior to the tilemap object. However, the collision polygon (first discussed in Chapter 2)
of each tile is set by default to be a square that completely covers the tile. Therefore, you
need to adjust the collision polygons for individual tiles so that the polygon covers only the
grassy area in each tile. To begin, in the Tilemap panel, double-click a tile (or single-click
a tile and select the polygon tool icon) to open the collision polygon window. The vertices
of the polygon will appear as red squares, connected by blue edges. The adjustments to be
made are as follows:

e For the solid grass tiles, no adjustments need to be made.

e For the four straight road tiles (half grass and half road), two
vertices can be moved so that the rectangle covers only the
grass area.

e For the four tiles containing a small quarter-circle of grass, the
existing vertices can be rearranged to form a diamond shape that
covers the grass fairly well and will be sufficiently accurate during
gameplay.

e For the four tiles containing a large arc of grass, two new vertices
will need to be added (twice you will need to right-click any vertex
and select Add point; each newly created vertex will be added at
the midpoint of the adjacent edge in the clockwise direction). The
six vertices can then be rearranged to cover the grass area.

93

http://dx.doi.org/10.1007/978-1-4842-2784-8_2

CHAPTER 7 " RACECAR 500

Figure 7-6 shows sample vertex arrangements for the collision polygons.

Figure 7-6. Recommended collision polygons for different tile types

While working with the tileset, you may have noticed that there is no tile containing
only pavement and no grass. This is because such a tile should have no solid areas, but
itis impossible to remove or disable collisions for individual tiles. Even attempting to
shrink a collision polygon to a single point will still result in collisions at that point, which
may surprise, confuse, or possibly frustrate a player who is not expecting it. If you decide
that your track design absolutely requires collision-free tiles, one workaround is to not
place a tile at that position and, in the layout, create a sprite with the image road. jpg and
position it so that it exactly covers the missing tile area.

Now that you are done working with the tilemap, select the cursor tool icon from the
Tilemap panel. This tool lets you reposition the tilemap, although you won’t do so here.
We recommend making this tool active to avoid accidentally drawing or erasing tiles from
the tilemap. To further avoid accidentally selecting or altering the finished tilemap, in the
layer panel click the lock icon next to the Background layer. This freezes all objects in that
layer; they cannot be selected on the layout again unless the lock icon is clicked again and
returned to the unlocked image.

Car Mechanics

In this section, you will set up the Car sprite and configure how it is controlled by the
player. Make sure that the active layer is set to Main, and add a new Sprite object named
Car with the image car-red.png. Position the car on a paved area of the track where you
would like the race to begin. Add the behavior Car; this adds carlike steering controls to
this sprite, as described at the beginning of this chapter. There are many properties that
can be changed, such as Max speed (which controls how fast the car can move) and Steer
speed (which controls how quickly the car can turn, in degrees per second). Also, add
the behavior Scroll to to the car; this keeps the window centered on the car as it moves
around the game world. Save and test your game, and feel free to experiment with the
values of the Car behavior properties.

Just as is the case with driving a real car, the Car behavior permits the sprite to be
turned only while it is moving; while it is not moving, the left and right arrow keys will
have no effect. This may be unexpected or difficult for some players. If you want the car to
always be able to turn, add a Keyboard object to the project, and implement the following

94

CHAPTER 7 " RACECAR 500

(optional) events. Create an event with the condition Keyboard - Key is Down, select the
Left arrow key, add the action Car - Angle: Rotate counter-clockwise, and enter 0.5 degrees.
Create a similar event with the condition that the right arrow key is down and the action
rotates the car angle clockwise by 0.5 degrees. The events will appear as in Figure 7-7. If you
do decide to add these events, then the steering becomes very sensitive; you may want to
reduce the Car behavior property Steer speed to 150 to compensate for this.

1 F&Keyboard Left arrow is down B Car Rotate 0.5 degrees counter-clockwise

2 P Keyboard Right arrow is down EECar Rotate 0.5 degrees clockwise

Figure 7-7. Events for additional car rotation control

Race Timer

In this section, you will set up a timer that displays how long the player has been racing.
This requires some new ideas to not scroll the user interface layer, to start and stop the
timer at the appropriate times, and to prevent the player from simply driving backward to
trigger the race end condition early.

First, add a new Text object named TextTimer to the project. Place it on the Ul layer,
and position it in the upper-left corner of the layout. As the car moves around the layout,
different parts of the game world become visible; however, the contents of the Ul layer
should stay fixed in place. To configure this setting, click the Ul layer in the layer panel,
and set the layer property Parallax to 0,0. This indicates that the corresponding layer
should not scroll at all. Select the TextTimer object again, and change the default text to
Time: 0.00. To make the text easier to read, change the font to Arial, bold, size 24. The
black font color shows up well on the grass, but it would be hard to read when it appears
above the dark-colored pavement. You could try to find a single color that contrasts well
with all possible backgrounds, but it is far more effective to use the drop shadow effect
discussed in the previous chapter. Create another TextTimer instance, move it a few pixels
up and to the left, and then change the font color to white. At this point, the instances
should appear as shown in Figure 7-8.

Time: 0.00

Figure 7-8. Text object to display race time with drop shadow effect applied

95

CHAPTER 7 " RACECAR 500

Next, you will add a finish line, which signals the end of the race when the car
reaches it. Change the active layer to Main (this will be the active layer for the rest of
the chapter). Add a new sprite named FinishLine with the image file checkboard.png.
Position this at the “end” of the race track; if the track is a loop, this is typically behind
where the car starts. The finish line fits best on a straight, horizontal part of track. Resize
it if desired. Change the opacity to 60, and the transparency will make it appear as though
it is painted onto the track. Also, since the FinishLine sprite was added to the Main layer
after the Car sprite, FinishLine will be drawn on top of the car; to remedy this, right-click
the car and select Z-Order - Send to top of layer.

With the finish line in place, you are ready to add the events to keep track of and
display the elapsed time. In the event sheet, add a global variable named RaceTime
with an initial value of 0; this will keep track of how much time has elapsed since the
car first moved. However, this variable should be incremented only during the race
and not before or after the race. To keep track of which of these three states the game
is currently in (before race, during race, and after race), create another global variable
named RaceState with an initial value of 0. The value 0 will indicate the race has not yet
started, the value 1 will indicate the race is in progress (and the RaceTime variable should
be incremented and the text display updated), and the value 2 indicates the race has
finished. Add the Keyboard object if you have not done so already. Then you will create
the following events:

¢ Aneventisneeded to detect the start of the race. Create a new
event with the condition Keyboard - On key pressed, and select
the Up arrow key. Add the condition System - Compare variable,
checking whether RaceState equals 0. The event action to add is
System - Variable: Set value; set RaceState equal to 1.

e Aneventisneeded to update the timer and text display when
the race is in progress. Create a new event with the condition
System - Compare variable, and check whether RaceState
equals 1. There are two actions for this event. The first action to
add is System - Variable: Add to. Add to the variable RaceTime the
value dt (which stores the amount of time that has passed since
the last update/last tick). The second action to add is TextTimer -
Text: Set text. Setitto "Time: " & round(RaceTime * 100) /
100. This mathematical expression is used to round the value of
RaceTime to two decimal places.

e Aneventis needed to detect the end of the race. Create a new
event with the condition Car - On collision with, and select
FinishLine. The corresponding action is System - Variable: Set
value. Set RaceState equal to 2.

96

CHAPTER 7 " RACECAR 500

When completed, the events should appear as in Figure 7-9.

=& On Up arrow pressed LESystem Set RaceState to 7
£F RaceState = 0

4 % Racestate - 1 Lksystem Add dt to RaceTime

{T}TextTimer Set text to “Time: * & round(RaceTime * 100) / 100

5 =@l On collision with ﬁ FinishLine % System Set RaceState to 2

Figure 7-9. Events for determining the state of the race

Finally, you may have noticed that there is an easy way to “cheat” this game and
trigger the end of the race earlier than expected. Instead of going around the track as
intended, you can move forward a little bit and then move in reverse directly over the
finish line, thus ending the race. To stop players from doing this, you will set up a “one-way
gate” mechanic using an extra sprite and two additional events. Create a new sprite named
Gate with the image gate. png (although it is the size of the sprite and not the image used
that will be important, as you will soon see). Position the Gate sprite directly adjacent to
the FinishLine sprite on the side closest to the car, as shown in Figure 7-10, and set the
Initial Visibility property to Invisible. When making precise adjustments in the layout,
it may help to zoom in or zoom out, either via the controls on the View tab or by holding
down the Ctrl key and scrolling the mouse wheel.

Gate

.O

Figure 7-10. The finish line, gate, and car positions on the race track

97

CHAPTER 7 " RACECAR 500

Add the Solid behavior to the Gate sprite. The idea is to “open the gate” (disable the
Solid behavior) when the car is on (overlaps) the finish line. To accomplish this, create a
new event with the condition Car - Is overlapping another object, and select FinishLine.
The action is Gate - Solid: Set Enabled; choose Disabled. Finally, “closing the gate” (enable
the Solid behavior) once the car moves past requires one additional event. Create an
event with two conditions: for Car - Is overlapping another object, select FinishLine, and
invert the condition. For Car - Is overlapping another object, select Gate, and invert this
condition. Add the action Gate - Solid: Set Enabled, and choose Enabled. When finished,
these events should appear as in Figure 7-11. Save and test your project, and make sure
that you can pass the finish line in only one direction, as intended.

6 EECar Is overlapping § FinishLine Gate | Set i Solid Disabled

mmCar X Isoverlapping # FinishLine Gate | Set i Solid Enabled
mmCar X Is overlapping | Gate

Figure 7-11. Events for a one-way gate mechanic

At this point, you have implemented all the basic mechanics for a racing game.
Congratulations!

Side Quests

As usual, after completing the core mechanics for a game, many optional features remain
to be added.

Scenery

Although the player’s attention will be mostly focused on the road, it would be nice to
add some scenery to the grassy areas. Included in the graphics collection for this chapter
are some basic images (bushes and trees) that you could use to create sprites for this
purpose; for variety, you could create additional instances of these objects and resize
them. Alternatively, you could search the Internet for related graphics (more plants,
rocks, ponds, etc.) and use them as desired (but for commercial or professional projects,
you would need to pay attention to the licenses of the files used).

For a neat cloud/foglike environmental effect, create a sprite named Cloud with the
included image cloud. png. Add the Bullet and Wrap behaviors, change Opacity to 80 and
Bullet Speed to 50, create a few duplicates spaced out across the layout, and make small
changes in each instance’s Angle and Size properties for variety. When you start the game,
it will appear as though there are clouds or fog drifting over the track.

Figure 7-12 illustrates what a track could look like after these scenic elements have
been added.

98

CHAPTER 7 " RACECAR 500

Time: 0.00

Figure 7-12. Racetrack layout with scenery elements added

Obstacles

To break up the monotony of driving on an empty road, you can add a variety of obstacles.
In this section, you will add wooden crates, which reduce your speed (and shatter) when
hit, and oil slicks, which randomly change your direction while you are driving over them.

First, add a new sprite named Crate with the image crate.png. Resize the crate so it
takes up less than half the width of the road (ideally it should be possible to drive around
it). Also, add a sprite named CrateFragments with the image crate-fragments.png;
resize it similarly, add the Fade behavior, change the fade property Wait time to 1, and
move it into the layout margins. Add an event with the condition Car - On collision with
another object, and select Crate. Add the following four actions to this event:

e Add Car - Car: Set speed, and enter Self.Car.Speed / 2
(this reduces the car’s speed by half on impact).

e Add Crate - Spawn another object, select CrateFragments, and
enter layer "Main".

e Add Crate - Destroy.

e Add CrateFragments - Z-Order: Move to bottom (so that the car
appears on top of the fragments).

99

CHAPTER 7 " RACECAR 500

The completed events for the Crate obstacle appear in the top part of Figure 7-13.

8 =pEECar On collision with .Crate . Car Set animation speed to Self.Car.Speed / 2
.Crate Spawn ¥ CrateFragments on layer "Main" (image point 0)
.(.'rate Destroy
¥ CrateFra... Move to bottom of layer
5 ECar Is overlapping .Diislick W Car Simulate }1: Car pressing Steer left
-*'Systcrn random({0, 100) < 50
B Car Is overlapping ¢} OilSlick EEICar Simulate }{& Car pressing Steer right

% System | random(0, 100) < 50

Figure 7-13. Complete events for the Crate and OilSlick obstacles

Finally, add a new sprite named 0i1S1ick with the image 0il-slick.png and resize
it as you did the crate. Also, since the OilSlick and Crate sprites were added to the Main
layer after the Car sprite, right-click these objects in the Objects panel and select Z-Order
- Send to bottom of layer. Create an event with two conditions; add Car - Is overlapping
another object, and select OilSlick. Then add System - Compare two values, checking
whether random(0,100) is less than 50. The associated action is Car - Car: Simulate
Control; select Steer left. Create another event identical to this one, but change the
simulated control to Steer right. When the car drives over an oil slick, these two events will
randomly steer the car to the left and right. Sometimes both the random conditions will
be true and the motions will cancel each other out, but just as often the car will randomly
veer to one side or the other. The completed events for the OilSlick obstacle appear in the
bottom part of Figure 7-13.

On Your Own

There are many more features you could add on your own. You could add more
complicated obstacles, such as obstacles that move (via the Sine behavior). Alternatively, in
contrast to the obstacles discussed earlier, you could consider adding items (or powerups)
that have a positive effect on the player, such as a Boost item that instantly sets the Car’s
speed to its Max Speed value or a SpeedUp item that permanently increases Max Speed that
the car can attain. You could add a variable that serves as a lap counter and end the game
only once three (or some fixed number) of laps have been completed. You could display a
“Congratulations!” message on the screen once the game is over, or you could display one
of a number of messages (such as “Good,” “Great,” or “Excellent”) depending on the total
time to complete the race (you will no doubt have to practice repeatedly to determine what
qualifies each level of performance). You could add multiple tracks on different layouts,
progressing from one to the next after each race is finished. Finally, don’t forget about
basics such as audio and menus, as these features give your game a polished, professional
presentation.

100

CHAPTER 7 " RACECAR 500

Summary

In this chapter, you created a top-down racing game. You learned how to use the Tilemap
object and the Car and Scroll to behaviors. You learned how to set parallax to fix the UI
layer in place when the game world size is larger than the window size. Along the way,
you learned tricks and techniques that may be useful in future projects, such as keeping
track of gameplay time, using variables to track the current state of the game, rounding
a value to a fixed number of decimal places, and creating a one-way gate mechanic. The
“Side Quests” section discussed extra features such as scenery, obstacles, and powerups.
In the next chapter, you'll switch gears from racing games to a classic arcade-style
brick-breaking game.

101

CHAPTER 8

Rectangle Destroyer

In this chapter, you will create a game called Rectangle Destroyer, a side-perspective
physics-based action game shown in Figure 8-1 and inspired by arcade classics such as
Breakout and Arkanoid.

Score: 800 Balls left: 2

Figure 8-1. The Rectangle Destroyer game

Introduction

In Rectangle Destroyer, the player controls a paddle that moves from side to side, which
is used to bounce balls into rectangular “bricks” and thereby destroy them. The goal is to
destroy all the rectangles on the screen. Occasionally, a destroyed brick will release an
item that may either aid or hinder the player by changing parts of the gameplay, such as
paddle size, ball speed, and so forth. If the ball falls past the paddle and below the bottom

© Lee Stemkoski and Evan Leider 2017 103
L. Stemkoski and E. Leider, Game Development with Construct 2,
DOI 10.1007/978-1-4842-2784-8_8

CHAPTER 8 " RECTANGLE DESTROYER

edge of the screen, then the ball is lost. The player has multiple balls in reserve; once
these run out, the game is over.

The controls and user interface are simple and minimalistic. The paddle is controlled
by moving the mouse left and right, and items are collected by “catching” them, which
happens when they collide with the paddle. The user interface displays the player’s score
and the number of balls left in reserve. Some of the powerup items will also cause a
change in appearance of the ball or the paddle.

The main material that will be required from earlier chapters includes the Sprite,
TiledBackground, and Mouse objects; the Solid, Bullet, Fade, and Pin behaviors; the
random function; and global variables. You will use animations to store the different
images corresponding to the different types of items and for the different appearances
of the ball and paddle. You will learn about the choose function, which makes it easy to
randomly select a word (or a number) from the given inputs.

To begin, download the zip file containing the graphics for this chapter from the
book web site. In the layout properties, set the layout Name to Main, and set Size to 600,
800. As you have in previous projects, set up three layers named Background, Main, and
UI. In the project properties, change the window Size to 600, 800. Set the layout’s Active
layer to Background. Add a TiledBackground object named Background using the image
background.png, and resize it so it covers the entire layout area. Lock the layer when you
are finished and then set the layout’s Active layer to Main.

Paddle, Walls, Bricks, and Balls

In this section, you will create most of the game objects and the events that describe how
they interact.

Add a new sprite named Paddle with the image paddle.png, and position it near the
bottom of the layout. Add the behaviors Solid and Bound to the layout. In most breakout
games, hitting the ball with the left side of the paddle causes the ball to bounce to the left,
and hitting the ball with the right side causes it to bounce to the right; therefore, you need
to adjust the collision polygon of the paddle object so that it resembles a dome shape,
as shown in Figure 8-2. Next, add a Mouse object to the project (which will be used for
controlling the paddle). In the event sheet, create a new event with the condition System:
Every tick, add the action Paddle: Set X, and enter Mouse.X. The event will appear as in
Figure 8-3.

Figure 8-2. The collision polygon for paddle (dome)

104

CHAPTER 8 " RECTANGLE DESTROYER

Next, create a TiledBackground object named Wall with the image white-pixels.
png. Add the Solid behavior. Create two more instances of the Wall object, and position
the three wall instances so that they border the left, right, and top edges of the layout,
as shown earlier in Figure 8-1. In particular, you will want to make the top Wall instance
thick enough so that there is room to display text on it later.

Add a sprite called Brick using the image brick-red.png (located in the Bricks
folder of the assets archive), and in the Animations window, rename the animation to
red. Create a new animation named blue, using the image brick-blue.png. Repeat
this process as many times you like to add as many different brick colors as desired
(eight different-colored brick images are provided with the downloads for this chapter;
additional brick colors can easily be created with graphics editing software). When you
are finished, close the image editor windows. Next, add the Solid and Fade behaviors. In
the Properties panel, change the fade property Active at start to No, and change Fade out
time to 0.25. You will no doubt want to create many new instances of the Brick object
(since a game with only one brick to destroy would be far too short), but before you do,
you may want to activate the grid options in Construct, as you did when creating the
Cleanup Challenge game in Chapter 4. To do so, in the View tab, select the Snap to grid
and Show grid check boxes; you should also change the grid width and height to 8, as this
will create a finer grid and allow for more precise adjustment. Finally, create some new
instances of the Brick object, and align them in rows near the top of the layout. You can
change the colors of the individual bricks by typing in the animation names (that you set
up previously) in the Properties panel, next to Initial animation.

Add a sprite called Ball using the image ball-normal.png. Add the behaviors Bullet
(changing the properties Speed to 300, Gravity to 8, and Bounce off solids to Yes), Solid,
and Destroy outside layout. Position the ball right above the paddle, and set the property
Angle to 280 so that the ball initially moves upward and slightly to the right, toward the
bricks. Create a new event with the condition Ball - On collision with, and select Brick.
Then add the actions Brick - Fade: Start fade and Brick - Solid: Set enabled, and select
Disabled. This event is shown in Figure 8-3.

Finally, you will add some basic scorekeeping functionality to the project. In the
layout, create a new Text object named TextScore with the Text property set to Score: 0
and with a large, easily readable font. Set its Layer to UI and position the Text object above
the Wall object in the top-left area of the layout. In the event sheet, create a new global
variable named Score with an initial value of 0. In the event sheet, create an event with
the condition Brick - On destroyed; then add the action System - Variable: Add to, adding
100 to Score. Locate the event with the condition System - Every tick, and add the action
TextScore - Set text, setting it to "Score: " & Score. These events are also shown in
Figure 8-3. When you are finished, be sure to save and test your project, making sure that
the paddle moves with the mouse; the ball bounces off the paddle, walls, and bricks; the
bricks fade out when hit; and the score increases each time. Now is a good time to save
and test your project.

105

http://dx.doi.org/10.1007/978-1-4842-2784-8_4

CHAPTER 8 " RECTANGLE DESTROYER

1. %kSystem Every tick ==Paddle | Set X to Mouse.X

1 TextScore Set text to "Score: * & Score

2 = Q Ball On collision with EEBrick B Brick [L] Fade: start fade
B Brick Set i Solid Disabled
3 = EBrick On destroyed #System Add 700 to Score

Figure 8-3. Basic events for paddle, ball, and bricks

Game Start and End

Currently, when the game loads, the ball immediately launches into the air and gameplay
begins. The next addition to this game will be to add functionality to avoid this sudden
start and give the player a chance to aim the ball before it is released. First, add a sprite
named MessageStart with the image message-start.png. Set the layer to UI and center

it on the layout. Add the behavior Pin to the Ball object. In the event sheet, add a new
event with the condition System - On start of layout, add the action Ball - Pin to object, and
select Paddle with mode Position Only. Also add another action called Ball - Bullet: Set
enabled, and select Disabled. Add another event with two conditions: Mouse - On any click
and MessageStart - Is Visible. Then add these three actions: Ball - Unpin, Ball - Bullet: Set
enabled (select Enabled), and MessageStart - Set Visible (select Invisible). The events will
appear as in Figure 8-4. Save and test your project. When the game starts, the ball should
move with the paddle, and when a mouse button is clicked, the ball should be released
and launch up toward the bricks.

5 = LF System On start of layout = Q Ball ¢ Pin Pin to == Paddle (Position only)
Q 8all Set ¢ Bullet Disabled
= @ Mouse On any click Q Ball s Pin Unpin
6
~=MessageStart | |s visible Q Ball Set é Bullet Enabled

--=-MessageStart | Set Invisible

Figure 8-4. Events for launching the ball at the beginning of the game

Now that you've improved the beginning of the game, it’s time to pay similar
attention to when a ball is lost (when it falls off-screen) and the ending of the game. Add
two new sprites: one named MessageEnd with the image message-end. png and the other
named MessageWin with the image message-win.png. Position both of these objects in

106

CHAPTER 8 " RECTANGLE DESTROYER

the center of the layout, set their layers to UI, and set Initial Visibility to Invisible. Also,
create a new Text object named TextReserve with Text set to Balls left: 2, the same
font settings as the TextScore object, and positioned in the top-right area of the layout.
In the event sheet, create a new global variable named Reserve with an initial value of
2. Next, locate the event with the condition Every tick, and to this event add the action
TextReserve - Text: Set textto "Balls left: " & Reserve.

Next, you need to create the events that handle what happens when there are no balls
on the screen. You will use the condition Ball. Count = O rather than Ball - On destroyed
in case there are multiple balls on the screen (as may happen with a multiball powerup,
discussed later); the following actions should take place only when there are no balls left
on the screen. When this occurs, there are two possibilities to handle, each of which has
different corresponding actions. Either there are balls left in reserve, in which case a new
ball needs to be spawned, positioned correctly, and so on, or there are no balls left in
reserve, in which case the “game over” message should become visible. There are at least
three ways to set up the events for these conditions; we’ll discuss each of these in turn.

The first possible arrangement is to have two separate events: the first with
conditions Ball. Count = 0 and Reserve > 0 and the second with conditions Ball. Count = 0
and Reserve = 0. This approach feels slightly redundant because of the repeated condition
Ball.Count = 0. To eliminate the repetition, you can use a feature in Construct called
subevents. A subevent is an event that appears indented underneath another event (which
is called its parent event); the subevent conditions are checked only if their parent event’s
conditions are true. Therefore, another (and somewhat better) possible arrangement
is to have an event with the condition Ball. Count = 0, and then two subevents, one with
the condition Reserve > 0 and the other with the condition Reserve = 0. However, for this
particular game, this approach will have another issue, which is that the actions associated
to Reserve > 0 include decreasing the Reserve count by 1, so if the value of Reserve was
initially 1, then both of the subevents would activate, and the game would end (which
should not be the case). To avoid this scenario, you will use another feature in Construct,
and that is a System condition called Else. An event with the Else condition will be true and
run its actions only if the condition of the previous event was false. (For those familiar with
traditional programming languages, this is similar to if-else statements.) Thus, the final
arrangement of events that will be considered (and the one that you will implement) is to
use subevents and replace the Reserve = 0 condition with an Else condition.

At this point, you will now create the conditions for the events in the style described
earlier and add the actions afterward. In the event sheet, create a new event with the
condition System - Compare two values, setting it to check whether Ball. Count is equal to 0.
To create a subevent, right-click the area in the event to the left of the condition, and from
the pop-up menu that appears, select Add and then Add sub-event (or use the keyboard
shortcut key S). The add condition window will appear; add the condition System - Compare
variable, and set it to check whether Reserve is greater than 0. Once again, right-click the
Ball.Count = 0 event to create another subevent, this time with the condition System - Else.
For the subevent with the condition Reserve > 0, add the following actions:

e Add System - Variables: Subtract from, subtracting 1 from Reserve.

e Add System - Create Object, creating a Ball object on the Main
layer, with X coordinate Paddle.X and Y coordinate Paddle.Y - 24
(the coordinates position the ball directly above the center of
the paddle).

107

CHAPTER 8 " RECTANGLE DESTROYER

e Add Ball - Angle: Set angle, and set it to 280 degrees.
e Add MessageStart - Set visible, and set it to Visible.

e Add Ball - Pin to object, and select Paddle with mode Position
Only.

e Add Ball - Bullet: Set enabled, and select Disabled.

In particular, notice that these last two actions are the same that appear in the layout
start event, which effectively attaches the ball to the paddle and freezes it in place until the
player clicks a mouse button. For the event with the condition System - Else, add the action
MessageEnd - Set Visible, and select Visible. In contrast, to congratulate the user upon
destroying all bricks, create a new event with the condition System - Compare two values,
and set it to check whether Brick.Count is equal to 0; add the action MessageWin - Set Visible,
and select Visible. In addition, you need to make sure that the win and lose messages cannot
appear on the screen at the same time; to the Else condition, add the inverted condition
MessageWin - Is visible, and to the Brick.Count equals 0 condition, add the inverted
condition MessageLose - Is visible. These events and subevents should appear as shown in
Figure 8-5; notice in particular that the subevents appear indented underneath their parent
event. Also add an action to the Every tick event that sets the text of TextReserveto Balls
left: " & Reserve. Save and test your work; let the balls fall past the paddle and check
whether the reserve ball functionality works as expected.

8l #Sy‘-t:‘m Ball. Count = 0
9 ‘n'?';yslem Reserve > (0 ‘n'Sys:em Subtract 7 from Reserve
'n'Sys:em Create object @ Ball on layer 0 at (Paddle.X, Paddle.Y - 24)
Q Ball Set angle to 280 degrees
@ Ball ﬁ} Pin Pin to ===Paddle (Position only)
Q Eall Set ¢’ Bullet Disabled
== ClickStart Set Visible
; 'u' System Else ==MessageEnd Set Visible
i —MessageWin X Is visible
ﬂ'System Brick.Count = 0 ——MessageWin Set Visible

11
—=MessageEnd X Is visible

Figure 8-5. Event and subevents for when balls are lost and winning the game

ltems

In this section, we will discuss a variety of items that are randomly released when bricks
are destroyed. These items move downward toward the bottom of the screen, and if
caught by the player, they can affect gameplay in a variety of ways. Some items will
increase the size of the paddle or the speed of the ball. Other items will give game objects
abilities. For example, the ball may be able to cause explosions that destroy nearby
bricks, or the paddle may be able to fire laser beams (for a limited time) that destroy

108

CHAPTER 8 " RECTANGLE DESTROYER

individual bricks. Other standard items spawn additional balls on the screen or add extra
reserve balls. Having a great variety of gameplay-changing items is important in a game
such as this, because without them, the gameplay would quickly become monotonous
and dull.

In what follows, you will implement the items listed earlier; additional item ideas
will be discussed in the “Side Quests” section later in this chapter. To begin, create a
new sprite called Item with the image item-blank.png (from the Items folder in the
assets archive). Change the size to 48,48, position the sprite outside the layout, add the
behaviors Destroy outside layout and Bullet, and change the Bullet properties Speed to
200 and Set angle to No. For each type of item you create, a new animation will be added
to the Item sprite. When an item is generated, one of the animations will be randomly
selected, and when the paddle collides with an Item sprite, the name of the animation
will be used to determine the effect the item will have. In the event sheet, locate the
event with the condition Brick - On destroyed, and create a subevent for this event
with the condition System - Compare two values, checking whether random(0, 100)
is less than 50. Add the actions Brick - Spawn another object, spawning an Item object
on the Main layer, and Item - Bullet: Set angle of motion, setting it to 90 degrees (this is
in the downward direction). Later, after you have added item types, you will add one
more action to this event that will randomly set the animation. Create a new event with
condition Paddle - On collision with, and select Item; add the action Item - Destroy. For
each new item type you add to the game, you will add a subevent to this event, which
determines how gameplay is affected.

Items Affecting the Ball

First, you will implement a variety of items that affect the ball, in order of increasing
complexity. The corresponding events will be shown in Figure 8-6 at the end of this
section.

The simplest ball-related item adds 1 to the reserve ball count variable. Add a new
animation to the Item object named BallExtra, using the image ball-extra.png. In
the subevent that spawns items (under Brick - On destroyed), add the action Item - Set
animation, and enter "BallExtra". Then, in the event with the condition where the
Paddle collides with an Item, add a subevent with the condition Item - Animation: Is
playing, and for the animation name, enter "BallExtra" (remembering that the spelling
and capitalization has to match the animation name exactly). Then add the action
System - Variables: Add to and add 1 to Reserve. Save and run your game; when a brick is
destroyed, there will be a 50 percent chance that an item is spawned, and when you collect
it, you should see in the user interface that the reserve ball count has increased by 1. You
have now created your first item!

The next simplest items to implement change the speed of the ball. Add two new
animations to the Item object: one named BallSpeedUp, using the image ball-speed-
up.png, and the other named BallSpeedDown, using the image ball-speed-down.png.
Now there are a total of three animations to choose from when an item is spawned.

To randomly choose one of the animations, you will use the choose function, which
can take any number of inputs and which randomly selects one of them. Double-click
the action that sets the Item animation to edit the action, and replace the text with
choose("BallExtra", "BallSpeedUp", "BallSpeedDown").Now, each time an item is

109

CHAPTER 8 " RECTANGLE DESTROYER

spawned, one of these three animations will be randomly selected and set for the item
object.! In the Paddle collision with Item event, add a subevent with the condition

Item - Animation: Is playing, and for the animation name, enter "BallSpeedUp". Next add
the action Ball - Bullet: Set speed, and enter Ball.Bullet.Speed * 1.25. This will cause
the ball to speed up by 25 percent. Add another subevent that checks whether the Item
animation BallSpeedDown is playing, and as before, add an action that changes the ball’s
speed, this time entering Ball.Bullet.Speed * 0.80, which reduces the speed of the
ball by 20 percent (which cancels out a 25 percent increase from a BallSpeedUp item).

As usual, save and test your game to verify that these new powerups work as intended.

Next, you will add the MultiBall item, which creates an additional ball on screen.
Add a new animation to the Item object called MultiBall, with the image ball-spawn.
png. Adjust the action that sets the Item animation so that the MultiBall animation may
be selected. In the Paddle collision with Item event, add a subevent that checks whether
the Item animation MultiBall is playing, and add the action Ball - Spawn another object,
and select Ball. This will have the effect that every ball that is currently on the screen
will spawn another ball, effectively doubling the number of balls currently in play. This
can rapidly lead to many balls on screen, and too many balls may cause the game to lag.
For this reason, or for other gameplay considerations, you may want to add a second
condition to this subevent called System - Pick random instance, and select the Ball
object. This will cause the action to apply to only one of the balls onscreen, and thus the
total number of balls would increase only by 1 when this item is collected.

Finally, you will implement the ability for the ball to create explosions that destroy
multiple bricks. When the ball has this ability, it will be indicated by changing the color of
the ball to orange; similarly, other ball abilities could be indicated by using additional colors.
Add a new animation to the Ball object named Orange with the image ball-orange.png.
Add a new sprite named Explosion with the image explosion.png. Add the behavior Fade,
change the property Fade out time to 0.25, and move the Explosion object into the margin
area of the layout. Add a new animation to the Item object called FireBall, with the image
ball-fire.png. Edit the action that sets the Item animation so that the FireBall animation
may be selected. In the Paddle collision with Item event, add a subevent that checks
whether the Item animation FireBall is playing, and add the action Ball - Set animation to
"Orange". Finally, you will need two new events to activate the effect. First, create an event
with two conditions; specifically, add Ball - On collision with, selecting Brick, and then add
Ball - Animation: Is playing, entering "Orange". To this event, add the action Brick - Spawn
another object, and select Explosion on layer Main. Second, create an event with condition
Explosion - Is overlapping another object, select Brick, and add the action Brick - Destroy.

When you are finished adding all the content described in this section, the
corresponding events should appear as shown in Figure 8-6.

Later, when you have added many item types and you want to test only the most recently added
type, you can change this line to just the name of the new animation, which guarantees that
particular type will be spawned. When the final version of the game is ready, you can then change
this to choose between all the item types you have added.

110

CHAPTER 8 " RECTANGLE DESTROYER

3[= = mmBrick On destroyed % System | Add 700 to Score

4 ﬁ.‘.ys!rm random(0, 100) < 50 . Brick Spawn jliem on layer "Main® {image point 0)
:_] tem Set f Bullet angle of motion to 90 degrees

3 tem Set animation to choose("BallExtra®, *BallSpeedUp®, “BallSpeedDown”,
“MultiBall®, “FireBall”) (play from beginning)

12 [= -=-Paddle On collision with (] item l:_]lle'n Destroy
13 Dltrn Is animation "BallExtra” playing -n-S‘,'stem Add 7 tc Reserve
14 Dlh""ﬂ Is animation “BallSpeedUp” playing Q Ball Set o’ Bullet speed to Ball Bullet. Speed * 1.25
15 '_]Ite:n Is animation "BallSpeedDown" playing () Ball Set ¢ Bullet speed to Ball Bullet. Speed * 0.80
- Dlte'n Is animation "MultiBall” playing QD Ball Spawn Q) Ball on layer *Main™ (image point ()
1
'n'Sys'.L-rn Pick a random Q) Ball instance
17 :_]Ite:'n Is animation "FireBall" playing Q Ball Set animation to "Orange” (play from beginning)
18 = QJ Ball On collision with & Brick W Brick Spawn {_ Explosion on layer "Main” (image point 0}
Q Ball Is animation "Orange” playing
19 __JExplosion Is overlapping i Brick . Brick Destroy

Figure 8-6. Events for items that affect the ball

Items Affecting the Paddle

Here, you will implement a variety of items that affect the paddle. As in the previous
section, the corresponding events will be shown at the end, in Figure 8-7.

The simplest paddle-related items change the size of the paddle and are quite
similar to the items that change the speed of the ball. Add two new animations to the
Item object: one named PaddleExpand, using the image paddle-expand.png, the other
named PaddleShrink, with the image named paddle-shrink.png. Adjust the action that
sets the Item animation so that these new animations may be selected. In the Paddle
collision with Item event, you will add two new subevents. The first subevent should
check whether the Item animation PaddleExpand is playing and that the associated
action is Paddle - Set width set to Paddle .Width * 1.25. The second subevent should
check whether the Item animation PaddleShrink is playing and that the associated action
is Paddle - Set width set to Paddle.Width * 0.80.

Finally, you will add the ability for the paddle to shoot lasers that can destroy bricks;
however, since this ability will make the game easy, the ability will be active for only
5 seconds. First, add a new animation to the Item object named Paddlelaser with the
image paddle-laser.png. Then, add a new Sprite object to the game named Laser with
the image laser-red.png, change its size to 90, 30, position it off-screen, and add the
behaviors Bullet and Destroy outside layout. Next, add a new animation to the Paddle

111

CHAPTER 8 " RECTANGLE DESTROYER

object named Red using the image paddle-red.png, and apply the same collision polygon
settings as you did for the original paddle image. Now you are ready to set up the events
that implement this ability. Adjust the action that sets the Item animation so that this

new animation may be selected. In Paddle collision with Item event, add a subevent that
checks whether the Item animation PaddleLaser is playing, and add the following three
actions:

e Add the action Paddle - Set animation to "Red".
e Add the action System - Wait, and enter 5 seconds.
e Add the action Paddle - Set animation to "Default".

The System - Wait action is particularly useful here because it sets up a delay until
the next action in the event is performed (but there is no effect on other events). Create
a new event with two conditions: first add Mouse - On any click and then add Paddle -
Animation: Is playing, entering "Red". Add the action Paddle - Spawn another object, and
select Laser on layer Main. Next, add the action Laser - Z Order: Move to bottom (so it
appears underneath the paddle and behind the walls). Next, add the action Laser - Bullet:
Set angle of motion, setting it to -90 degrees (this is in the upward direction). Finally,
create an event with the condition Laser - On collision with another object, select Brick,
and add these actions: Brick - Start fade; Brick - Solid: Set enabled (select Disabled); and
Laser - Destroy.

When you are finished adding all the content described in this section, the
corresponding events should appear as shown in Figure 8-7. As usual, save and test your
project to verify that the newly added item types work as expected.

112

CHAPTER 8 " RECTANGLE DESTROYER

4 ﬂ-System random(0, 100) < 50 EmBrick | Spawn Oltem on layer *Main® (image point 0)
[_]Item Set ¢ Bullet angle of motion to 90 degrees

C}Item Set animation to choose("BallExtra®,
“BallSpeedUp”, "BallSpeedDown", “MultiBall",
“FireBall®, "PaddleExpand”, "PaddleShrink”,
“PaddleLaser") (play from beginning)

18 :jllem Is animation "PaddleExpand” playing = Ball Set animation to "Orange” (play from beginning)
«=Paddle = Set width to Paddle.Width * 1.25

19 Ijltum Is animation “PaddleShrink™ playing Q Ball Set animation to "Orange” (play from beginning)
=Paddle = Set width to Paddle. Width * 0.80

20 ;:}ltem Is animation “"PaddleLaser” playing «==Paddle = Set animation to "Red" (play from beginning)
£E system Wait 5 seconds

«=Paddle = Set animation to "Default” (play from beginning)

. @ Mouse On any click «==Paddle Spawn == Laser on layer "Main" (image point 0)
= «==Paddle Is animation "Red” playing =Laser Move to bottom of layer
“Laser Set ¢” Bullet angle of motion to -90 degrees
24 | ==|aser On collision with Bl Brick EEBrick D Fade: start fade
EBrick Set g Solid Disabled
==laser Destroy

Figure 8-7. Events for items that affect the paddle

At this point, you have implemented all the basic mechanics for Rectangle Destroyer.
Congratulations!

Side Quests

As usual, many of the standard features should be added to the game at this point:
menus, audio, pause functionality, and so on. You could change the layout of the bricks

to an interesting geometric pattern or even make the level resemble pixel art! You could
also implement multiple levels; once all the bricks in a level are destroyed, the next level
could be loaded. You could add a timer to the game, displayed in the user interface, and
award the players a bonus at the end of the level depending on how quickly they destroy
all the bricks. You could add a difficulty ramp, adding a small value to the ball speed every
tick, so that the balls speed up slightly over time. You could add solid nonbrick obstacles
to the level; you might even consider adding movement to these objects, with either the
Sine or Rotate behavior. You might want to reset the ball to its original animation after a

113

CHAPTER 8 " RECTANGLE DESTROYER

certain amount of time to limit the power of the fireball item. You will also probably want
to adjust the drop rate of the items (as 50 percent is rather high).

Most interestingly from a gameplay perspective, you could create even more types
of items. Here, we list some ideas for you to consider, of varying difficulty to implement.
Most of these will require you to design and create your own item graphic; you can use
the image file item-blank.png as a starting point.

e Gain additional points.

e Destroy arandom brick. The simplest way to do this is by using
the System condition Pick random instance.

e Change the size of the ball, either smaller or larger. This is
probably easiest to accomplish by adding new small and large
animation images to the Ball object.

e Make the ball “heavy” for 10 seconds. To do so, you could set the
ball gravity to 200, use the System - Wait action, and then set the
ball gravity back to 8.

e “Freeze” the paddle for 5 seconds. To implement this, add a new
animation image (named Freeze) to the paddle, and then to the
paddle movement event add the condition Paddle - Animation: Is
playing, enter "Freeze", and invert the condition.

e Give the paddle free movement for 10 seconds. To implement this,
add another new animation image to the Paddle (named Free).
Then add an event that checks whether this animation is playing
and, if so, sets the position of the paddle to Mouse.X and Mouse. Y.
After the System - Wait action, be sure to include an action that
sets the Y position of the paddle back to its original value.

e Add a “safety net” along the bottom edge of the screen in the form
of a solid object that is destroyed after it is hit; such an object will
save a ball from falling off-screen once.

e Lose all reserve balls and destroy the paddle (thus causing the
player to lose the game).

Summary

In this chapter, you created the game Rectangle Destroyer. You used animations to create
multiple versions of objects (the Item object) and to indicate the current state or abilities
of objects (the Ball and Paddle objects). Most important from a game design perspective,
you spent a significant amount of time implementing items that alter the gameplay,
which keeps the player experience changing and interesting.

In the next chapter, instead of destroying bricks with balls, you will destroy creatures
with spells, as you create the top-down game Spell Shooter.

114

CHAPTER 9

Spell Shooter

In this chapter, you will be creating a top-down shooter game called Spell Shooter, shown
in Figure 9-1, inspired by classic top-down shooters such as Gauntlet.

& TN
L $
‘\ -

h ‘

Creatures Remaining 5

\.r_.:\r

Chzrg

f\

Figure 9-1. The Spell Shooter game

Introduction

In Spell Shooter, the player controls a wizard whose goal is to use his magical powers to
banish evil creatures. The wizard shoots magical balls of energy, and if a creature is hit,
that creature is destroyed. After a shot is fired, there is a “recharging period,” which is a
1-second delay until the next shot is able to be fired; this gameplay mechanic is used to
motivate players to carefully line up their shots. (If there were no such limitation in
place, the average player might instead simply fire shots as quickly as possible,

hoping that some will hit their target.) The creatures randomly run between smokelike
vortices, where they will hide for a short amount of time before running to the next.

© Lee Stemkoski and Evan Leider 2017 115
L. Stemkoski and E. Leider, Game Development with Construct 2,
DOI 10.1007/978-1-4842-2784-8_9

CHAPTER 9 ' SPELL SHOOTER

The game world is large, and the player will most likely need to move around the area

to locate some of the creatures. (To reduce this difficulty, one of the optional side quests
explains how to implement a creature-locating compass spell.) Once the creatures are all
destroyed, the player wins the game.

The wizard has eight-direction movement, controlled by the keyboard; for the
convenience of the player, either the arrow keys or the W/A/S/D keys (or the E/S/D/F
keys, for an international audience) can be used. Shots are aimed using the mouse and
fired by clicking a mouse button. The user interface contains a progress bar that indicates
when it is possible to fire the next shot. There is also a text display that shows how many
creatures are left in the area. The optional compass spell, mentioned earlier, is activated
when the spacebar is pressed, and a directional indicator fades in and out around the
player.

This project uses many behaviors: 8-Direction, Scroll to, Bound to layout, Bullet,
Destroy outside layout, Fade, and Sine. Animations will be created from individual image
files, as well as from spritesheets. Functions used include random, floor, and choose.
New material includes the game mechanic of using the mouse to aim the player, creating
variables for instances (as opposed to global variables), and the logic involved in making
sprites navigate along a path.

To begin, download the zip file containing the graphics for this chapter from the
book web site. In the layout properties, set the layout Name to Main, and set Size to 1600,
1200. As you have in previous projects, set up three layers named Background, Main, and
UIL. In the project properties, change the window Size to 800, 600 (and change the Name
and Author properties as you like). Since the game world (layout size) is larger than the
window size, it is important to stop the Ul layer from scrolling off-screen (as you did in
Chapter 7), and therefore you need to change the Ul layer property Parallax to 0, 0. In the
layout area, create a TiledBackground named Background, using the image background.
jpg, and position and resize the object so that it covers the entire layout area. Change its
Layer property to Background. Your layout should appear as shown in Figure 9-2.

Figure 9-2. The starting layout with a TiledBackground

116

http://dx.doi.org/10.1007/978-1-4842-2784-8_7

CHAPTER 9 © SPELL SHOOTER

Player Setup and Mouselook

In this section, you will set up the wizard object and the mouse-based controls for
aiming. In the layout, set the active layer to Main. Create a new sprite named Wizard. In
the Animation frames image editor window, right-click and select the option to import
animation frames from individual files (as you did in Chapter 5). Add the image files
wizard-1.png, wizard-2.png, and wizard-3.png and delete the default empty frame.
Change the animation properties Speed to 8, Loop to Yes, and Ping-Pongto Yes. When
you're finished, close the image editor windows. In the layout area, change the wizard
Size to 48,48, and position it in the center of the layout. Add the behavior 8-Direction and
change the property Set angle to No. (This will be particularly important, as the wizard
should be able to move in one direction while facing a different direction.) Also add the
behaviors Scroll to and Bound to layout.

Next, you will create some events that enable the player to use the W/A/S/D keys
for movement, if desired, just as you did in Chapter 5. First, add a Keyboard object to
the project. In the event sheet, create a new event with the condition Keyboard - Key
is Down, and set Key to W. Add the action Wizard - 8-Direction: Simulate Control, and
select Up from the list. Create additional events for the remaining keys and associated
controls. When you are finished, these events should appear as in Figure 9-3. Test your
game to check that when you hold each of the W/A/S/D keys, the wizard moves in the
corresponding direction.

As it stands, the wizard’s animation continues, even when the wizard is not
moving. Next, you will create events to start and stop the wizard animation at the
appropriate times. First, create a new event with the condition Wizard - 8-Direction: Is
moving, and add the action Wizard - Set animation, with Animation set to "Default".
Next, you need to stop the animation when the wizard is not moving. You could do
this with an event that has an inverted Is moving condition, as you did in Chapter 4,
but instead, you will use the newly learned Else condition, which has the same effect
in this situation. Create a new event with the condition System - Else, and add the
action Wizard - Animation: Stop. Since the Else event is directly below the Is moving
event, this event will activate exactly when the wizard is not moving. These events are
also shown in Figure 9-3.

Finally, you will implement the game mechanic that causes the wizard to face in
the direction of the mouse; this is often referred to as mouselook. This control scheme is
common in first-person and top-down shooter games. First, add a Mouse object to the
project. In the event sheet, create a new event with the condition System - Every tick, and
then add the action Wizard - Rotate toward position, setting Degrees to 10,' setting X to
Mouse.X, and setting Y to Mouse.Y. When you are finished, this event should appear as
in Figure 9-3. Save and test your game to check that when you move your mouse cursor
around the game’s window, the wizard rotates and faces toward the location of the mouse
CUrsor.

!Setting Degrees to 10 will result in a rotation rate of 600 degrees per second, provided that the
program is running at 60 frames per second. To achieve more consistent performance across
computers with lower frame rates, you could instead set this value to 600 * dt.

117

http://dx.doi.org/10.1007/978-1-4842-2784-8_5
http://dx.doi.org/10.1007/978-1-4842-2784-8_5
http://dx.doi.org/10.1007/978-1-4842-2784-8_4

CHAPTER 9 ' SPELL SHOOTER

B Keyboard = W is down IC wizard Simulate £33 8Direction pressing Up
2 B Keyboard = S is down t Wizard Simulate -:E& 8Direction pressing Down
3 B Keyboard = A is down ‘ Wizard Simulate ‘:EE 8Direction pressing Left
4 EHKeyboard = D is down t Wizard Simulate -:-:-E 8Direction pressing Right
5 t Wizard EEESDH(‘{ tion is moving t Wizard Set animation to "Default” (play from beginning)
6 KkSystem Else t Wizard Stop animation
7 ﬁSystem Every tick t Wizard Rotate 70 degrees toward (Mouse.X, Mouse.Y)

Figure 9-3. Events for changing the 8-Direction controls, wizard animation playback, and
mouselook

Creatures and Vortices

In this section, you will add the enemy creatures that the wizard is attempting to destroy
and the vortices that these creatures run between (although the actually movement won't
be implemented until the following section).

In the layout, create a new sprite named Creature. In the Animation frames window,
import the frames from the sprite strip named monster.png, which has eight horizontal
cells and one vertical cell. The animation frames need to be facing right to be aligned
with the default angle of motion for the Bullet behavior, so the frames must be rotated to
the right. To rotate all the animation frames by 90 degrees clockwise at once, hold Shift
on your keyboard, and click the Rotate 90° clockwise button at the top of the Edit image
window, as displayed in Figure 9-4. Each Creature frame should now be facing right. Set
the animation properties Speed to 12, Loop to Yes, and Ping-pong to Yes. When you are
finished, close the image editor. Add the Bullet behavior and change Speed to 300. Also,
add the Fade behavior and set Active at start to No.

o Edit image: Creature (Default, frame 0) X
DrBecfe XDB ¢392 3raQaQQ @

[Tolerance 100 = st

o C* Rotate 90° clockwise (hold shift to rotate entire animation)
, @
/ -

100% Mouse: -313, 29 64 x 64 PNG-32

JL NN

4 7

Figure 9-4. Rotating the animation frames in the image editor

118

CHAPTER 9 © SPELL SHOOTER

Next, create a new sprite named Vortex. These sprites will be the locations that the
Creatures move toward. In the Animation frames window, import the frames from the
sprite strip named smoke. png, which has six horizontal cells and five vertical cells. Set the
animation properties Speed to 30 and Loop to Yes. When you are finished, close the image
editor. In the layout, change the size of the Vortex object to 160,160, and add the behavior
Sine to the Vortex sprite. In the Sine behavior properties, set Movement to Size, Period to
4, and Magnitude to 32. This will give the Vortex sprite a pulsing effect.

Create five additional instances each of the Creature and Vortex objects, and spread
them across the layout, as shown in Figure 9-5.

&

Figure 9-5. Creature and Vortex instances spaced around the layout

Instance Variables and Waypoint Logic

Next, you will set up the project so that the creatures randomly move between the
vortices. For this to work, there needs to be a way to distinguish between the instances of
the Vortex object and for each creature to keep track of which vortex it should be moving
toward. Variables are an ideal way to store this information. Each instance needs to store
its own related data, however, and thus global variables are not an optimal way to keep
track of this information. Instead, Construct 2 allows you to create instance variables,
which are variables that are associated to an object, where each instance can store and
access its own values. Each instance effectively has its own copy of the variable, which it
can then change at will. In what follows, you will create an instance variable for the Vortex
objects named ID, which will serve as a unique identifier, and an instance variable for
the Creature objects named Target, which will store the ID number of the vortex toward
which it will be moving.

First, click the Vortex object in the object panel, and in the Properties panel, click
the blue text Instance variables. The Vortex: Instance variables window will appear,
containing space for local values to be stored, shown on the left side of Figure 9-6. Add
a new instance variable by clicking the + icon. Name it ID, set Type to Number, set Initial

119

CHAPTER 9 ' SPELL SHOOTER

value to 0, and set Description to Unique identification number. Click OK and return
to the layout editor. Your new instance variable should appear as shown on the right side
of Figure 9-6. Click the Creature object in the object panel, repeat this process to create
an instance variable named Target, and set Description to ID of the Vortex to move
towards.

Vortex: Instance variables Mew instance variable X

+20 e

Na Type Initial value Name |ID |
Type | Number v]

Initial value | 0 |

Description | Unique identification number. [
(optional)

) — Help |0K£|fkme||

Figure 9-6. Adding a new instance variable to the Vortex object

In the layout editor, you can now set the value of the ID variables for the vortex
instances (the creatures’ target values will be set with an event described in a later
section). Click a single vortex in the layout, and in the Properties panel, set the value of
ID to 0. Click a different vortex, and set its ID value to 1. Repeat this process for each of
the vortices in the layout until they each have one of the numbers from 0 to 5, as shown
in Figure 9-7 (where text has been added in the figure to show the values for each
instance).

Properties ax

2

= Object type properties
Name Vortex
Plugin Sprite
uip 1"
Global No

= Common
Layer Main
Angle 0
Opacity 100

[Position 607, 449

[Ssize 160, 160

5 Instance variables

D b 1
Add [edit Instance variables
B Behaviors

Figure 9-7. Setting up the ID instance variable for the vortices

120

CHAPTER 9 © SPELL SHOOTER

Next, you will randomly set the Target values of the creatures at the beginning of
the game. You could use the System condition On start of layout, but instead you will
use the creature condition On created; this activates immediately for any creatures that
are present at the beginning of the game and has the added advantage that if creatures
are created later, their target values will also be set by this event. Create an event with
the condition Creature - On created, and add the action Creature - Instance variables:
Set value. Then set Instance variable to Target and Value to flooxr (random(Vortex.
Count)). The floor function is used to round a decimal number to the nearest integer
less than the number; for example, the expression floor(3.85) yields the number 3. It is
necessary to round the random number since the vortex IDs are whole numbers, but the
random function results in decimal values. Rounding down is important here since the
largest vortex ID number will be one less than the total number of vortices, as the vortex
numbering began at zero. When finished, this event should appear as in Figure 9-8.

8 = f Creature = On created f Creature = Set Target to floor(random(Vortex.Count))

Figure 9-8. Event to give creatures random starting targets

You will also need to create an event that rotates a creature toward its intended target
vortex. You will use the Rotate towards position action, just as you did for rotating the wizard
toward the mouse position. However, identifying the associated pairs of creatures and vortices
is somewhat complicated and requires understanding of the Construct event “filter” system.

In general, actions are applied to the set of instances that meet the criteria specified
in the condition (or conditions), and in particular, if there are no restrictions in the
conditions, then all the instances will be affected at the same time. This fact was implicit
and straightforward in earlier projects, but because of the complexity of this project, a
more detailed discussion is in order.

At first thought, the correct condition to use for this event appears to be Creature -
Compare instance variable, while checking whether Target is equal to Vortex. ID. However,
this condition is insufficient. When the condition is being checked, the Construct software
checks each creature instance one by one, selects the subset of creature instances (which is
called filtering) whose Target variables matches the expression Vortex.ID, and then applies
the corresponding action (or actions) to this subset. What is unclear is which Vortex
instance’s ID is being used for each of these comparisons. To clarify and correct the logic of
this condition, you will use a System condition called For each, which effectively repeats an
event once for each instance of the object.

With this understanding, you are ready to proceed. Create a new event with
the condition System - Loops: For Each, and select Creature. Add the condition
Vortex - Compare instance variable, and check whether ID is equal to Creature.Target.
Finally, add the action Creature - Rotate toward position, set Degrees to 10, set X to
Vortex.X, and set Yto Vortex.Y. The event should appear as shown in Figure 9-9.

{)ﬁSystem For each # Creature ‘Clealure Rotate 10 degrees toward (Vortex.X, Vortex.Y)
Q
& Vortex ID = Creature.Target

Figure 9-9. Event to set the creatures to rotate toward Vortex objects

121

CHAPTER 9 ' SPELL SHOOTER

Next, you will implement a set of actions that occur when each creature reaches
its intended destination. The creatures should hide (turn invisible) and stop moving
for a random amount of time, select a new target vortex, and then become visible and
start moving again. Create a new event with the condition Creature - On collision with
another object, and select Vortex. To verify that the creature has collided with its actual
target (rather than a vortex that was simply in the way), you will add a second condition
called Vortex - Compare instance variable, and (as before) check whether ID is equal to
Creature.Target. Next, add the following actions:

e Add Creature - Set visible, and set Visibility to Invisible.
e Add Creature - Bullet: Set speed, and set Speed to 0.

e Add System - Variables: Add to. For Variable, select Target, and for
Value, enter choose(1,2).

e Add System - Wait, and set Seconds to random(1,3).?
e Add Creature - Set visible, and set Visibility to Visible.
e Add Creature - Bullet: Set speed, and set Speed to 300.

Note that some randomness was included when selecting the next target: by
randomly choosing 1 or 2, the creature may either go to the next vortex in the sequence
or go to the one after that. However, there are a limited number of possible target values;
once the target value reaches the total number of vortices (Vortex.Count), the target
number should “wrap around” and be reset to 0 or 1. To set this up, add a subevent with
the condition Creature - Instance variables: Compare value, and check whether Target is
greater than or equal to Vortex.Count. Then, add the action Creature - Instance variables:
Set value, and set Target to choose(0,1). When you are finished, the events should
appear as shown in Figure 9-10. Save and test your project, making sure that the enemies
move randomly, as expected.

_ = fF Creature On collision with # Vortex @ Creature | Set Invisible

= # Vortex | ID = Creature.Target @ Creature | Set ¢ Bullet speed to 0
¥ Creature | Add choose(7,2) to Target
-ﬂ System Wait random(3) seconds
W Creature | Set Visible

@ Creature | Set ¢? Bullet speed to 300

11 f Creature = Target = Vortex.Count f Creature | Set Target to choose(0,7)

Figure 9-10. The events that will cause the creatures to move and hide along a random path

“There is an alternative and more robust approach to queuing future actions for an object using the
Timer object, which will be introduced in the next chapter.

122

CHAPTER 9 © SPELL SHOOTER

Spell Shooting

In this section, you will create the spell-related game mechanics: the wizard will shoot a
spell when a mouse button is clicked, and if the spell hits a creature, the creature will be
destroyed. You will also implement the spell-charging delay described in the introduction
of the chapter, as well as the charge progress bar and enemy count displayed in the user
interface.

First, you need to add the spell object. Add a new sprite named Spell; in the
Animation frames window, import animation frames from the sprite strip named
swirling-yellow.png, which consists of four rows and five columns. Set the animation
properties Speed to 30 and Loop to Yes. Close the image editor, and position the spell in
the margins of the layout. Add the behavior Bullet, and change the bullet property Speed
to 600. Also add the behavior Destroy outside layout. In the event sheet, create a new
event with the condition Mouse - On click (keeping the default properties), add the action
Wizard - Spawn another object, set Object to Spell, and set Layer to "Main". This event is
shown in Figure 9-11.

Next, you will enable the player to destroy the creatures when they are hit by a spell.
A sparklike special effect will be added as the creature fades out of existence. Add a
new sprite named Spark; in the Animation frames window, add animation frames from
the sprite strip named spark. png, which consists of four rows and four columns. Set
the animation properties Speed to 16 and Loop to Yes. Close the image editor, position
the spark in the margins of the layout, and add the behavior Fade (keeping the default
properties). In the event sheet, create a new event with the condition Spell - On collision
with another object, and select Creature. Also add the condition Creature - Is visible. Next,
add the following actions:

e Add Creature - Spawn another object, set Object to Spark, and set
Layer to "Main".

e Add Spell - Destroy.
e Add Creature - Bullet: Set enabled, and choose Disabled.
e Add Creature - Start fade.

This event is also shown in Figure 9-11. Save your project and run the layout; test that
the wizard is able to shoot spells and that when they collide with a creature, a spark effect
is generated, while the creature stops and fades away with the spark.

12 = (?] Mouse On Left button Clicked t Wizard Spawn Spell on layer "Main” (image point 0)
=p (.. Spell On collision with @ Creature @ Creature = Spawn Spark on layer "Main" (image point 0)
13
*(m.{hn(‘ Is visible Spell Destroy

o Creature Set ¢ Bullet Disabled
‘ Creature L, Fade: start fade

Figure 9-11. Events related to casting spells

123

CHAPTER 9 ' SPELL SHOOTER

Spell Charge and User Interface

In this section, you will implement the spell-charging game mechanic and begin
creating the user interface. After firing a spell, a bar graphic that indicates the amount
of charge will shrink, and after it regrows to its normal size, the wizard will be able to
shoot another spell.

First, add a new Text object named TextCharge to the project. Place it on the UI
layer, and position it in the bottom-left corner of the game window (as indicated by the
dashed lines in the layout). Since this object will be the label for the charge bar, change
the default text to Charge:. To make the text easier to read, change the font to Arial, bold,
size 24. By adding the drop shadow effect from previous chapters, the text will be easier to
see with contrasting backgrounds. Duplicate the TextCharge object, move it a few pixels
down and to the right, and then change the font color to yellow to match the Spell object
and create a coordinated color scheme.

Next, add a new Sprite object named Chargeometer with the image chargeometer.
png. When the chargeometer grows, it should grow from left to right. This can be
accomplished by changing the width of the object, but first one modification must be
made. When sprites are rotated or scaled, it is with respect to a special point called the
origin; by default, this point is located at the center of the sprite. This makes sense for
most situations because objects typically rotate around their center (rather than around
a corner) or grow equally in all directions from the center. Since we want the sprite to
grow from left to right, the origin point location must be changed. Double-click the
chargeometer to open the image editor windows, and click the second icon from the
bottom to open the Image Points window. Here, right-click the list entry named Origin,
and in the pop-up window, click Quick assign and then Left, as shown in Figure 9-12. You
should see the Origin point moved to the left of the image.

Image points n
+/0 3 DwBGELS XDE w2 /q s

ko Numbee | i X | 100 3 Y 20
- Origin 0
& Add image point The Orlgm
m
Apply to whole animation
Apply to all animations 200 x 40 PNG-32 Origin: 100, 20
Quick assign » Top-left
0 Help on image points Top
Top-right
Left
B
Middle LJ'
Right
Bottom-left
Bottom
Bottom-right

Figure 9-12. Editing the Origin point location in the image points menu

124

CHAPTER 9 © SPELL SHOOTER

When you are finished, close the image editor. Place the Chargeometer object on the
Ul layer, and position it in the bottom-left area of the game window, directly to the right
of the TextCharge object from earlier. Your TextCharge and Chargeometer objects should
appear as shown in Figure 9-13.

Figure 9-13. The TextCharge and Chargeometer objects in the layout

For the chargeometer to return to its original width after being shrunk, its original
size needs to be stored in a variable for later reference. Here, you can use a global variable
(since there is only one instance of the chargeometer), but in theory, you could choose to
use an instance variable instead. In the event sheet, right-click and add a global variable;
set Name to OriginalWidth, with Initial Value set to 0. The value can be set when the
game begins; create a new event with the condition System - On start of layout. Then
create the action System - Variables: Set value, and set OriginalWidth to Chargeometer.
Width.

Implementing the charging functionality requires a variety of additions to pre-
existing events as well as the creation of entirely new events. First, to drain the charge,
locate the event where the spell is spawned, and add the action Chargeometer - Set
width, setting it to 0. To prevent the wizard from firing again before the charging
period is finished, in the same event as before, add the condition Chargeometer -
Compare width, and check whether it is equal to OriginalWidth. To continuously
recharge the bar, you need to add a small fraction of its original width back during
every tick. Since there is no Add width action, you can instead use the Set width
action, setting the width to its current value plus a fraction of its original width. The
fractional value you will use is the built-in Construct expression dt, which stands for
“delta time” and stores the amount of time that passes during every tick. Typically,
video games run at 60 frames per second, which means that each tick takes 1/60
of a second, and this is the value of dt. (The value of dt is automatically adjusted
for games that run at slower rates.) Adding 1/60 of the width of the chargeometer
back at a rate of 60 times per second means that the chargeometer will be restored
to its original width in exactly one second. To set this up, locate the event with the
condition Every tick, and to this event add the action Chargeometer - Set width, set
to Chargeometer.Width + OriginalWidth * dt. Finally, to stop the charge bar
from growing too large (larger than its original size), you need one more event.
Create a new event with the condition Chargeometer - Compare width, and check
whether it is greater than OriginalWidth; add the action Chargeometer - Set width,
and set it to OriginalWidth. When you are finished, these events should appear as
shown in Figure 9-14. Save and test your project to check that when you shoot, the
chargeometer drains and recharges and that you can’t shoot again until the bar has
returned to its original size.

125

CHAPTER 9 ' SPELL SHOOTER

7 | Lesystem | Every tick I wizard | Rotate 70 degrees toward (Mouse.X, Mouse.Y)
= Chargeometer | Set width to Chargeometer Width + OriginalWidth * dt
5 = (8 Mouse On Left button Clicked [Wizard Spawn (. Spell on layer "Main" (image point 0)
0
- Chargeometer | Width = OriginalWidth -~ Chargeometer | Set width to 0
14 % g system | on start of layout £ System | Set OriginalWidth to Chargeometer. Width
15 I = Chargeometer Width > OriginalWidth = Chargeometer | Set width to OriginalWidth

Figure 9-14. Events for draining and recharging the chargeometer

Score and Game QOver

Currently, the wizard is able to shoot spells and destroy creatures. In this section, you will
improve the user interface so that it keeps players aware of their progress: a Text object
that displays the number of creatures remaining to destroy, and a “you win” message that
appears once all the creatures have been destroyed.

First, add a new Sprite object named Messagelin with the image Youlin.png.
Position it in the center of the game window, set its Layer to UL, and set Initial Visibility
to Invisible. Also, add a new Text object named TextScore to the project. Set Layer to
UI, and position it in the bottom-right corner of the game window. Change its default
text to Creatures Remaining: 0, and change the font to Arial, bold, size 24. Set the
Horizontal alignment property to Right. Duplicate the object, move it a few pixels down
and to the right, and set the font color to red to match the creatures. The area of the
layout corresponding to the game window (the top-left region) should appear similar to
Figure 9-15.

Figure 9-15. The new user interface in the layout

126

CHAPTER 9 © SPELL SHOOTER

Next, locate the event with the condition Every tick, and add the action TextScore - Set
text, setto "Creatures Remaining: " & Creature.Count. To configure the win message,
create a new event with the condition System - Compare two values, set to check whether
Creature.Count is equal to 0, and add the action MessageWin - Set visible. The events should
appear as shown in Figure 9-16. Save and test your project; make sure that TextScore updates
correctly and that your win message appears when you have destroyed all the creatures.

T System | Every tick Wizard Rotate 70 degrees toward (Mouse. X, Mouse.Y’
Y ry g
Chargeometer | Set width to Chargeometer. Width + OriginalWidth * dt

[T]TextScore Set text to “Creatures Remaining: * & Creature.Count

16 £k System | Creature.Count = 0 | =—MessageWin | Set Visible

Figure 9-16. Events for updating the score and displaying the win message

Congratulations! You have now finished implementing the core mechanics of the
Spell Shooter game.

Side Quests

In this optional section, you will learn how to add a compass-like mechanic to your game
to assist the player in locating creatures that are off-screen, as well as some suggested
additional features to explore.

Adding a Radar

Currently, the player must move around the layout to find creatures. In this section, you
will create a compass display that is pinned to the player and appears for a brief time
when the player presses the spacebar. The compass image contains an arrow that will
point in the direction of the nearest creature. Using this feature will simplify the game for
the player, possibly reducing any feeling of frustration from the difficulty of locating the
quick and randomly moving creatures.

First, add a new Sprite object named Compass with the image compass.png. Position
it directly centered on the wizard, as shown in Figure 9-17. Add the behavior Fade, and
change the properties Active at start to No and Destroy to No. Also add the behavior Pin.

:":--"‘\
ni .0_; \
e
A Y ’

b +

B

Figure 9-17. The compass object centered on the wizard

127

CHAPTER 9 ' SPELL SHOOTER

For the compass to fade in and out correctly, set its Opacity to 0, but don’t do this
until after you have positioned the compass correctly (because you won'’t be able to
see it on the layout after you change this property). In addition, to pin the compass to
the wizard, locate the event with the condition On start of layout, and add the action
Compass - Pin to another object, setting Pin to to Wizard and setting Mode to Position
only. Setting the mode correctly is particularly important in this case since you want the
compass to be able to rotate independently from the wizard.

There is a condition you have not previously used before called Pick nearest/furthest.
This condition selects a particular instance of an object based on its distance from a given
point. Create a new event with the condition Creature - Size & Position: Pick nearest/furthest,
set Which to nearest, and set Xto Wizard.X and YtoWizard.Y. Then add the action Compass
- Rotate toward position, set Degrees to 10, set X to Creature.X, and set Yto Creature.Y.

Now that the compass rotation is configured, you are ready to create the event to
display it. Keep in mind that, for the compass to work properly, it should be usable when
there is at least one creature remaining. Create a new event with the condition Keyboard -
On key pressed, and select the Space key. Add another condition called System - Compare
two values, and set it to check whether Creature. Count is greater than 0. Add the action
Compass - Set opacity to 100 and the action Compass - Start fade. The events should
appear as shown in Figure 9-18.

14 = F System = On start of layout #System Set OriginalWidth to Chargeometer. Width

(¥Compass | ® Pin Pin to E Wizard (Position only)
17 fCrenture Pick nearest to (Wizard X, Wizard) { }Compass Rotate 70 degrees toward (Creature.X, Creature.Y)

= B Keyboard = On Space pressed (" iCompass = Set opacity to 100
18
ﬂ-bystem Creature.Count > 0 (}Compass D Fade: start fade

Figure 9-18. Events for rotating and displaying the compass

On Your Own

You can add plenty of other additions and features to Spell Shooter. As usual, it would be
wise to add polish to this game with standard features such as menus, audio, and pause
functionality. To add to the difficulty level, you could add a lose condition: the player may
lose the game if the wizard gets hit by creatures a given number of times. Also, keep in
mind what you learned in Chapter 8 when designing Rectangle Destroyer. You are now
able to add spawnable items to any of your previous games! Such an item could be set
to appear once every 10 seconds at a random position on the layout and fade out after 5
seconds have passed.

Here are some item ideas that would work well in Spell Shooter:

e “SpeedUp” and “SpeedDown” items or obstacles that affect the
wizard or creatures’ speeds as you did in the previous chapter

e “Shrink” item that shrinks creatures, making them harder to
vanquish

128

http://dx.doi.org/10.1007/978-1-4842-2784-8_8

CHAPTER 9 © SPELL SHOOTER

e “Burst” spell item that shoots three spells at once
e “Rapid” spell that takes less time to recharge

e “CreatureNest” item that spawns more creatures if you touch
them

You could also add a countdown timer, which adds a sense of urgency to the player’s
quest to destroy all the creatures, and if the player doesn’t destroy all the creatures within
the time limit, the player loses the game. With a timer in place, a ranking or rating system
could be added that evaluates the player’s performance depending on how quickly the
wizard vanquished the creatures.

Summary

In this chapter, you created the game Spell Shooter. You learned how to implement the
mouselook game mechanic and combined it with traditional W/A/S/D-style controls to
give the player the ability to shoot while moving around the screen. To create random
movement patterns, you learned how to use instance variables and waypoint logic,
together with the random and choose functions. To create more balanced gameplay, you
implemented a rechargeable shooting mechanic. You also added a rotating compass
feature to assist the player in locating difficult-to-find creatures. The “Side Quests” section
discussed extra features such as a lose condition, items, a timer, and a rating system.

In the next chapter, you will leave the magical world of spells and creatures and
instead shoot at enemy planes flying over the ocean as you create the game Airplane
Assault.

129

CHAPTER 10

Airplane Assault

In this chapter, you will be creating another top-down shooter game called Airplane
Assault, shown in Figure 10-1, that was inspired by the classic survival-based game 1942.

Figure 10-1. The Airplane Assault game

In Airplane Assault, the player controls a plane whose goal is to destroy as many
enemy planes as possible for points. The player’s plane shoots small bullets, and if an
enemy is hit, that enemy is destroyed. In contrast to Spell Shooter, the player will have
a limited amount of health, which is reduced when hit by an enemy plane bullet. If the
player’s health reaches zero, then the plane will be destroyed, and the game will be over.
During gameplay, enemies will spawn every few seconds, move in a random pattern
between waypoints, and face and attack the player with their own bullets. The player will
need to move around the screen to line up shots and avoid enemy bullets at the same
time. This game is endless; the implicit goal of the player is to earn a high score.

© Lee Stemkoski and Evan Leider 2017 131
L. Stemkoski and E. Leider, Game Development with Construct 2,
DOI 10.1007/978-1-4842-2784-8_10

CHAPTER 10 ' AIRPLANE ASSAULT

The player plane has eight-direction movement, controlled by the arrow keys. Shots
are fired by pressing the spacebar. The user interface contains two Text objects that
display the player’s current health points and score.

This chapter assumes you are familiar with the Sprite, TiledBackground, Text, and
Keyboard objects; the 8-Direction, Bound to layout, Bullet, and Destroy outside layout
behaviors; animations; global and instance variables; and the functions random, floor,
and choose. The Flash behavior will be introduced to give the player a moment of
invincibility after being hit. The Timer behavior will also be introduced to enable enemy
planes to periodically fire at the player. You will learn about the angle function, which
makes it easy to determine the angle between two objects or locations. Instance variables
will be used in a new way: to add health points to objects.

To begin, download the zip file containing the graphics for this chapter from the
book web site. In the layout properties, set the layout Name to Game, and set Size to
800, 800. As you have in previous projects, set up three layers named Background,

Main, and UI. In the project properties, change the window Size to 800, 800. Add a
TiledBackground object named Water using the image water.png, and resize it so it
covers the entire layout area.

Player, Waypoint, and Enemy Setup

In this section, you will add the player plane object, the enemy planes that the player
must shoot, and the Waypoint objects that determine the path that the enemy planes
follow. In the layout, set the active layer to Main. Create a new sprite named Player,
with the image player.png, and position it near the bottom of the layout. Change its
Angle property to 270, and position it in the lower center of the layout. Add the behavior
8-Direction and change the property Set angle to No. (The player will face only upward
during gameplay.) Also add the behavior Bound to layout.

Next, add a new sprite named Waypoint. This Waypoint object will be almost
identical to the Vortex waypoint from the Spell Shooter game, except in Airplane Assault
the waypoints will be invisible in the final version. Since a graphic isn’t needed, use the
image editor tools such as the bucket or paintbrush to fill the image area with a solid color.
Change the size of the sprite to 32-by-32 pixels. When you are finished, close the image
editor windows. Create another new sprite named Enemy, with the image enemy-plane.png.
Add the Bullet behavior, and change the properties Speed to 200 and Set angle to No, since
the enemies will be facing the player rather than their direction of movement. Create five
additional instances of the Waypoint sprite and two additional instances of the Enemy sprite,
organizing them in the layout, as shown in Figure 10-2.

Add an instance variable named ID to the Waypoint object, set Type to Number, Initial
valueto 0, and Description to Unique identification number. Then, to the Enemy
object, add an instance variable named Target, set Type to Number, set Initial value to O,
and set Description to ID of the Waypoint to move towards.In the layout editor, click
a single waypoint in the layout, and in the Properties panel, set the value of ID to 0. Click
another waypoint and set its ID value to 1. Repeat this for each waypoint in the layout
until they each have one of the numbers from 0 to 5 (each number occurring exactly
once), as shown in Figure 10-2.

132

CHAPTER 10 I AIRPLANE ASSAULT

Figure 10-2. The player, enemies, and waypoints with IDs in the layout

Next, you will randomly set the Target values of the enemy airplanes at the beginning
of the game as you did in Spell Shooter with the event condition Or created. First, in the
event sheet, create an event with the condition Enemy - On created, and set the action
Enemy - Variables: Set value. Then set Instance variable to Target, and set Value to
floor(random(Waypoint.Count)).

You will now create movement events that rotate and move enemies toward their
intended target waypoints, with the For Each and ID comparison conditions. Create a
new event with the condition System - Loops: For Each, and select Enemy. Add another
condition called Waypoint - Compare instance variable, and check whether the ID is
equal to Enemy. Target. In Spell Shooter, you used the Rotate towards position action
to rotate sprite images toward vortex waypoints and also to move them toward these
waypoints using the Bullet behavior (in that project, the Bullet property Set angle was
set to Yes). In Airplane Assault, the enemy plane sprite images will rotate to face the
player while they are moving in a different direction toward waypoints. To accomplish
this, you will use two actions: Rotate towards position and Bullet: Set angle of motion.
With Set angle of motion, you will use the angle function, which takes as input the X and
Y coordinates of two locations (a total of four inputs altogether) and returns the angle
between those locations. Add the action Enemy - Rotate toward position, set Degrees to 10,
set Xto Player.X, and set Yto Player.Y. Add another action Enemy - Set angle of motion,
and set Angle to angle(Enemy.X, Enemy.Y, Waypoint.X, Waypoint.Y).

Next, you will add the events for when an enemy reaches its destination, at which
point they should select their next target (which should involve some randomness).
Create a new event with the condition Enemy - On collision with another object, and
select Waypoint. To verify that the enemy has collided with its actual target, add a second
condition called Waypoint - Compare instance variable, and again check whether the ID

133

CHAPTER 10 ' AIRPLANE ASSAULT

is equal to Enemy. Target. Add the action Enemy - Variables: Add to. For Variable, select
Target, and for Value enter choose(1, 2).

You also need to make sure that the value of the Target variable does not exceed
the total number of waypoints (Waypoint.Count). Add a subevent with the condition
Enemy - Compare instance variable, and check whether Target is greater than or equal
to Waypoint.Count. Then, add the action Enemy - Variables: Set value, and set Target to
choose(0,1).

When you are finished adding all the content described in this section, the
corresponding events should appear as shown in Figure 10-3. Save and test your project.
Make sure you can move your player with the arrow keys and that the enemies move
randomly while facing the player.

1 = '+ Enemy On created '+ Enemy Set Target to floor(random(Waypoint.Count))
Qﬁ Systern For each «t' Enemy '+ Enemy Rotate 70 degrees toward (Player.X, Player.Y)
\ Waypaint ID = Enemy.Target ‘* Enemy Set @ Bullet angle of motion to angle(Enemy.X, Enemy.Y,

Waypoint X, Waypoint.Y) degrees

= “t— Enemy On collision with \af *f Enemy Add choose(1, 2) to Target
3= Waypoint
\n/ Waypoint ID = Enemy.Target
4 r{- Enemy Target = Waypoint.Count '-* Enemy Set Target to choose(0, 1)

Figure 10-3. Events to set the enemies to rotate toward waypoints

Shooting and Spawning Enemies

In this section, you will add bullets for the player and enemies to shoot at each other and
explosions that appear when they hit. You will also add random enemy spawning as well
as configure the Timer behavior to set up a randomly periodic event that causes enemy
planes to shoot.

First, in the layout, now that you have verified the enemy movement between
waypoints works as expected, you no longer need to see the waypoints on the screen;
click the Waypoint object in the object panel (so that all instances are selected) and
set Initial visibility to Invisible. Next, create a Keyboard object. Then add two new
sprites: one named PlayerBullet with the image bullet-gold.png and another named
EnemyBullet with bullet-silver.png. Add the Bullet and Destroy Outside Layout
behaviors to both. Position the bullets in the margins of the layout. Add another new
sprite named Explosion; in the Animation frames window, import animation frames
from the sprite strip named explode-animation.png, which consists of four rows and
four columns. Set the animation properties Speed to 30, and set Loop to No. Close the
image editor and position the explosion in the layout margins.

In the event sheet, create a new event with the condition Keyboard - On key
pressed, and select the Space key. Add the action Player - Spawn another object, select
PlayerBullet, and set Layer to "Main". Next, create a new event with the condition
PlayerBullet - On collision with another object, and select Enemy. Add the following three
actions: PlayerBullet - Destroy, Enemy - Spawn another object to spawn an Explosion

134

CHAPTER 10 I AIRPLANE ASSAULT

object on the Main layer, and Enemy - Destroy. To remove explosions from the game once
their animations are complete, create one more event with the condition Explosion -
Animations: On any finished, and add the action Explosion - Destroy.

Since randomness adds to the challenge and replayability factor of this game, you
will add periodically spawning enemies at random positions above the layout. In addition,
you will implement a random shooting rate to prevent enemies from shooting at the same
time; having enemies act differently from each other adds to the realism of the game.

To do this, you will use the Timer behavior, a new action named Start timer,
and a new condition named On timer. The Start timer action determines when the
corresponding On timer condition will register as true; both the condition and the action
contain a Tag parameter, which is used to set up the association by giving these the same
value. The Start time condition contains two additional parameters: Duration, which is
used to specify how much time will pass until the On timer condition is first activated, and
Type, which can be set to Once (which activates the condition one time) or Regular (will
periodically activate the condition). In this game, every time an enemy spawns, it will start
a timer called Shoot, which will repeat at a random rate, between 0.5 and 1.0 seconds.
When an enemy’s On timer condition activates, it will shoot a bullet toward the player.

In the layout, select the Enemy object, and add the behavior Timer. Then, move the
enemy objects into the margins above the layout. In the event sheet, create a new event with
the condition System - Every X seconds, and set Interval to 1. Add the action System - Create
object, set Object to Enemy, set Layer to "Main", set X to random(100, 700), and set Y to -100.
In the event with the condition Enemy - On created, add the action Enemy - Start timer, set
Durationto 0.5 + random(0.5), set Typeto Regular, and set Tagto "Shoot". Next, create
a new event with the condition Enemy - On timer and set Tag to "Shoot". Then add the
action Enemy - Spawn another object to spawn an EnemyBullet object on the Main layer.

When you are finished adding all the content described in this section, the
corresponding events should appear as shown in Figure 10-4. Save and test your project.
Make sure you can shoot bullets with the spacebar key to destroy enemies and that
enemies are shooting toward you at random rates.

1|* + Enemy On created '-* Enemy Set Target to floor{random(Waypoint Count))
** Enemy Start G Timer “Shoot” for 0.5 + random(0.5) (Regular)
5 =EKeyboard On Space pressed t Player Spawn = PlayerBullet on layer "Main™ (image point 0)

& = = PlayerBullet | On collision with «* Enemy == PlayerBullet Destroy

+ Enemy Spawn () Explosien on layer *Main® (image point 0)
'* Enemy Destroy
7 = () Explosion On any animation finished) Explosion Destroy
'“System Every 1 seconds -ﬂ'Systom Create object —* Enemy on layer "Main® at (random{100,700), - 100)
9 =>v-§ Enemy On @ Timer “Shoot* rf Enemy S5pawn < EnemyBullet on layer "Main® (image point @)

Figure 10-4. Events for shooting and spawning more enemies

135

CHAPTER 10 ' AIRPLANE ASSAULT

Score, Health, Invincibility, and Game Over

In this section, you will implement player health and invincibility game mechanics, create
the scoring system and user interface, and add the “game over” message that appears
when the player runs out of health. After the player is hit by an enemy bullet, the player
will lose one health point, and a Text object will update to indicate the player’s current
health.

First, add a new Text object named TextScore to the project. Set its Layer to UI,
and position it in the bottom-left corner of the game window. Change the default text to
Score: 0.To make the text easier to read, change the font to Arial, bold, size 24, and set
the font color to black. Add another new Text object named TextHP to the project. Set its
Layer to UI, and position it in the bottom-right corner of the game window. Change its
default text to HP: 0, and change the font to Arial, bold, size 24. Also set the Horizontal
alignment property to Right.

You will add health points as an instance variable to the player object since they are
associated to a value intrinsic to the player, in contrast to the score, which is associated to
the game as a whole. Add an instance variable named HP to the Player object, set Type to
Number, Initial value to 10, and Description to Player health points.In the event sheet,
create a new global variable named Score with the initial value 0. Then create an event
with condition Enemy - On destroyed and action System - Variable: Add to, adding 100 to
Score. Create another event with the condition System - Every tick and the two actions
TextScore - Set text to "Score: " & Score and TextHP - Set text to "HP: " & Player. HP.

When an enemy bullet collides with the player and the player is not currently
invincible (which occurs for a brief period after having been damaged), a small explosion
should appear to indicate the damage, the player’s health should decrease by 1, and
the player sprite should flash for 1 second to indicate invincibility. To implement the
invincibility feature, you will use the Flash behavior, a new action called Flash, and a
new condition called Is flashing. The action Flash will then cause the object associated
to alternate between visible and invisible at a specified rate. The visibility duration is
specified by the On time parameter, the invisibility duration by the Off time parameter, and
the overall effect duration (how long the entire flash sequence should last) by the Duration
parameter. You can use the Is flashing condition to check whether the player is flashing
and thus whether the player should be able to take damage at that particular time.

To implement this, add the Flash behavior to the Player object. In the event sheet,
create a new event with the condition EnemyBullet - On collision with another object, and
select Player. Add another condition Player - Is flashing. When finished, right-click this
condition in the event sheet, and select Invert from the menu that appears. Then add the
following actions:

e Add EnemyBullet - Destroy.

e Add Player - Spawn another object, and spawn an Explosion
object on the Main layer.

e Add Player - Variables: Subtract from. For Variable, select HP, and
for Value, enter 1.

e Add Enemy - Flash. For On time and Off time, enter 0.1, and for
Duration enter 1.

136

CHAPTER 10 I AIRPLANE ASSAULT

Finally, you will implement the “game over” functionality. In the layout, add a
new sprite named GameOver with the image gameover . png. Positon it in the center of
the layout, set its Layer to UI, and set Initial Visibility to Invisible. When the player’s
health reaches 0 (or below), the “game over” message will be displayed, the player will be
destroyed, and a giant explosion will appear (many times larger than the default size). In
addition, enemies should stop spawning, and any remaining enemies will rotate toward
and fly off the bottom of the layout (since there is no player object remaining to shoot
at). For the enemies to rotate and move differently, the For each event that currently
rotates and moves enemies should be restricted to work only while the player exists (or
is onscreen); otherwise, they will interfere with the “game over” sequence of movements
discussed earlier. In the event sheet, locate the For each event, and add the condition
Player - Is on-screen. Also, add this condition to the Every 1 second event to stop enemy
planes from spawning after the player is destroyed. Then create a new event with the
condition Player - Compare instance variable, and check whether HP is less than or equal
to 0. Then add the following actions:

e Add GameOuver - Set visible, and set it to Visible.

e Add Player - Spawn another object, and spawn an Explosion
object on the Main layer.

e Add Explosion - Set scale, and set it to 8.
e Add Player - Destroy.
e Add Enemy - Angle: Set angle, and set Angle to 90 degrees.

e Add Enemy - Bullet: Set angle of motion, and set Angle to 90
degrees.

When you are finished adding all the content described in this section, the
corresponding events should appear as shown in Figure 10-5. Save and test your project.
Make sure you receive points for destroying enemies and that you can lose health and
flash upon taking damage. Also test that when you run out of health, the game ends

properly.

137

CHAPTER 10 ' AIRPLANE ASSAULT

10 = n+ Enemy On destroyed -n-.‘i',rstpm Add 100 to Score

11 $kSystem Every tick iTiTexiScore | Set text to "Score: " & Score

T ;TextHP Set text to "HP: " & Player.HP

=» =¥ EnemyBullet | On collision with f% Player = EnemyBullet Destroy

':& Player X Is flashing .‘é Player Spawn 1) Explosion on layer "Main" (image point 0}
5{:- Player Subtract 7 from HP
i Player % Flash: Flash 0.1 on 0.1 off for 1.0 seconds
Q# System For each l+ Enemy l+ Enemy Rotate 70 degrees toward (Player.X, Player.Y)
2 W\'\l’aypoint ID = Enemy.Target l+ Enemy Set ’ Bullet angle of motion to anglef Enemy.X, Enemy.Y,
Player Eoniaeen Waypoint.X, Waypoint.¥) degrees

13 T% Player HP <0 ==GameQOver Set Visible
5€ Player Spawn 1) Explosion on layer "Main" (image point 0)
) Explosion Set scale to 8
i Player Destroy
-+ Enemy Rotate 10 degrees toward 90
-f Enemy set ¢ Bullet angle of motion to 90 degrees

Figure 10-5. Events for score, player health, and game over

Congratulations! You have now finished implementing the core mechanics of the
Airplane Assault game.

Side Quests

In this optional section, you will add endless vertical scrolling along the vertical axis to
your water background, similar to the effect from the Plane Dodger game, with a few key
differences. This will add a sense of global movement to the gameplay. A list of suggested
additional features will also be presented for your consideration.

Endless Vertical Scrolling

First, in the layout, for the Background sprite, change the Position property to 0, 0, and
set Size to 800, 800. Add the Bullet behavior, change Speed to 200, and change Set angle
to No (because this object should not be rotated). Create another instance of Background,
and set its Position to 0, -800. The layout should appear as shown in Figure 10-6.

138

CHAPTER 10 I AIRPLANE ASSAULT

Figure 10-6. The layout adjusted for endless vertical scrolling

In the event sheet, create a new event with the condition System - On start of layout,
add the action Water - Set angle of motion, and set Angle to 90. Next, you will create the
event that shifts Background above the layout after it moves off-screen on the bottom.
Create another event with the condition Water - Size & Position: Is on-screen. When
finished, right-click this condition in the event sheet and select Invert from the menu that
appears. Add the condition Water - Compare Y, and check whether the Y coordinate is
greater than 800. Finally, add the action Water - Move at angle, with Angle set to 270 and
Distancesetto 2 * Water.Height. When you are finished, these events should appear as
in Figure 10-7. Save and test your project; the background image should appear to scroll
forever, with no noticeable gap between the two images.

14 S FFSystem | On start of layout [l water Set ¢’ Bullet angle of motion to 90 degrees

. Wwater | Xison-screen [lwater Move 2 * Water.Height pixels at angle 270
15
l .Water Y > 800

Figure 10-7. Events for endless vertical scrolling

139

CHAPTER 10 ' AIRPLANE ASSAULT

On Your Own

Airplane Assault is a great starting point for applying many features and items you have
learned so far. Adding menus, audio, and pause functionality would certainly give this
game a more polished presentation. To make the game a bit more difficult, you could add
enemy health points. To do this, you could add a health point instance variable to the
enemy and, in the Enemy - On collision with PlayerBullet event, replace the Destroy action
with one that subtracts a health point instead. You could then add an event for when
the Enemy’s health is less than or equal to 0 and proceed to destroy them as you used to
do. You could also add falling obstacles and items that positively or negatively affect the
player’s characteristics such as speed.

Here, we list some other ideas of varying difficulty to implement:

e Adjusting the player’s collision polygon to be smaller (thus
increasing their chances of survival)

e Adding analog gamepad support (discussed in Chapter 5)
e Gaining additional points from a “Bonus Points” item
e Adding an item to increase the player’s health points

¢ Adding a dangerous, instant destruction item that would destroy
the player on contact

e Adding an explosive bullet to shoot and explode after a delay,
with range damage

e Implementing SpawnRate and EnemySpeed variables from Plane
Dodger for difficulty ramp

Summary

In this chapter, you created the game Airplane Assault. You used the Timer behavior to
implement time-based, repeated enemy shooting with a random interval. To give the
player multiple chances to battle, you learned how to add health points and how to use
the Flash behavior to add invincibility. In the “Side Quests” section, you added endless
vertical scrolling to the background for a more immersive experience. The “Side Quests”
section also discussed other additions including enemy health points, analog gamepad
support, items, and a difficulty ramp.

In the next chapter, you will continue fighting a stream of enemies, this time via
ground-based turrets, as you create the game Tower Defenders.

140

http://dx.doi.org/10.1007/978-1-4842-2784-8_5

CHAPTER 11

Tower Defenders

In this chapter, you'll create Tower Defenders, a top-view game where the player places
various towers to defend a base from attacking enemies, as shown in Figure 11-1.

JTOWERWDEEEND ES
Base HP: 7
Cash: $115

Figure 11-1. The Tower Defenders game

In Tower Defenders, the player places cannons (or other defensive structures)
alongside a road, which automatically attack enemies traveling along the road toward the
player’s base. Destroying enemies increases the player’s resources (or “cash”), which can
then be used to purchase additional turrets. As time progresses, enemies spawn more
frequently, and more difficult enemies may appear. Every time an enemy reaches the
player’s base, the base loses one health point; if all health points are lost, the game is over.
Since an unlimited number of enemies can spawn, the ultimate goal of the player is to
survive as long as possible.

Since cannons have a limited field of view, turret placement is important in this
game; the player should choose locations within the range of as much road area as
possible, but at the same time, it is important to fit as many turrets as possible in the

© Lee Stemkoski and Evan Leider 2017 141
L. Stemkoski and E. Leider, Game Development with Construct 2,
DOI 10.1007/978-1-4842-2784-8_11

CHAPTER 11 " TOWER DEFENDERS

available area. Cash management is also a key feature in this game: the player must
decide which type of cannons to invest in. Less expensive cannons are generally less
powerful; they may have weaker bullets, may have a smaller range, or may take longer
between shots, compared to more expensive turrets.

In developing this game, a significant amount of time will be spent on the user
interface. In addition to text displays, there are also clickable buttons that enable the
player to purchase new cannons. Once a cannon is purchased, there will be a colored disk
centered on the mouse that indicates the range of the turret and whether it may be placed
at the current mouse location.

This game will make use of Sprite, TiledBackground, Text, and Mouse objects; global
and instance variables; subevents; else conditions; and the waypoint-based logic from
previous chapters. You will learn how to use the Turret behavior, which rotates an object
toward a preset target and fires bullets at regular intervals. You will also implement a
shoplike game mechanic to purchase cannons. To place the purchased cannons, you will
learn how to implement a mouse-based drag-and-drop mechanic. You will also learn
how to create “or” condition blocks to reduce redundant sets of conditions.

To begin, download the zip file containing the graphics for this chapter from the
book web site. In the layout properties, set the layout Name to Main, and set Size to 800,
600. As you have in previous projects, set up three layers named Background, Main, and
UL In the project properties, change the window Size to 800, 600. Also, on the View tab
select the View grid and Snap to grid check boxes.

Level Setup

In this section, you will set up the level and create a path for the enemies to follow.

First, create a TiledBackground named BackgroundUI, with the image white-pixels.
png. Change its size to 192,608, and position it on the left side of the layout. Then, in the
Background layer, create a TiledBackground named BackgroundDirt, with the image
dirt.png; change its size to 608,608, and position it on the right side of the screen so
that it fills the remaining area in the layout. Finally, create a TiledBackground named
Road with the image road. png; this object will be used to create the path along which the
enemies will move. Create multiple instances of the Road object and position them to
form a road from the top edge of the dirt area to another edge; make sure the road is

64 pixels (2 squares) wide at all times. Figure 11-2 shows one possible road configuration.

142

CHAPTER 11 " TOWER DEFENDERS

Figure 11-2. Setup for the background graphics and the road

Next, you'll need to configure the spawn point and waypoints that the enemy objects
will follow. Set the layout’s active layer to Main. Create a new sprite named SpawnPoint;
draw any image you like in the image editor (as it won’t be visible while the game is being
played), resize it to 32,32, and place it in the margin of the layout by the beginning of
the road. Create a new sprite named Waypoint (again, with a drawn image), and create
an instance variable with Name set to ID, Type set to Number, Initial value set to 0, and
Description setto Unique identification number. Create additional instances of this
object, place one in the center of each corner of the road, and place one beyond the end
of the road in the margins of the layout. Change the values of the instance variables of the
Waypoint objects so that they start at 0 and increase by 1 at each corner. When finished,
change the size of the Waypoint objects to 8, 8. Figure 11-3 illustrates the placement and
numbering of the waypoints for the road configuration in Figure 11-2.

Figure 11-3. Waypoint positions and numbering

143

CHAPTER 11 " TOWER DEFENDERS

Enemy Movement

In this section, you will add enemies that will follow the path indicated by the waypoints.
In contrast to previous chapters, when the enemy arrives at a waypoint, its current Target
value will be increased by 1 (rather than by a random value). In addition, a new enemy
will spawn every second. Also, as each enemy is created, its angle should be adjusted to
move downward.

First, create a new sprite named Enemy, with the image truck.png, and change the
name of the animation to Truck. Close the image editor window and change the property
Angle to 90. Place it above the SpawnPoint object in the margin of the layout. Add the Bullet
behavior, and change Speed to 200. Add an instance variable named Target, set Type to
Number, set Initial value to 0, and set Descriptionto ID of the Waypoint to move towards.

Movement along the waypoints is handled by two events. First, create an event, add the
condition System - For Each, and select Enemy. Then add the condition Waypoint - Compare
instance variable, and check whether ID is equal to Enemy . Target. Add the action Enemy
- Rotate toward position, set Degrees to 15, set X to Waypoint.X, and set Y'to Waypoint.Y.
Second, create another event, and first add the condition Enemy - On collision with another
object, and select Waypoint. Then add the condition Waypoint - Compare instance variable,
and again check whether ID is equal to Enemy. Target. Add the action Enemy - Variables:
Add to, select Target, and enter 1. Finally, to periodically spawn enemies, create another
event with the condition System - Every X seconds, and for Interval, enter 5. Add the action
SpawnPoint - Spawn another object, and select Enemy. In addition, add the action Enemy
- Set angle, and set Angle to 90 degrees. When you are finished, the enemy-related events
should appear as in Figure 11-4. Save and test your project, making sure that the enemies
spawn and move along the path until the end and then move outside the layout. Once you
have verified that everything works as expected, click the Waypoint object in the object
panel (so that all instances are selected) and set Initial visibility to Invisible. Note that the
enemies aren’t automatically destroyed when they move off-screen; this will be addressed
later in the chapter when you add the player’s base.

, Q# System For each @ Enemy BB Enemy Rotate 75 deqgrees toward (WaypoinlX, Waypoint.Y)
WWaypoinl ID = Enemy.Target
- Bl Enemy On collision with WWaypuint EWEnemy Add 1 to Target
WWnypninl 1D = Enemy.Target
38 ﬁ System Every 5 seconds S spawnPoint Spawn @B Enemy on layer “Main” (image point 0)
BB Enemy Set angle to 90 degrees

Figure 11-4. Events for enemy movement and spawning

Cannons and Bullets

You are now ready to implement cannons, most of whose functionality will be handled
by the Turret behavior. Add a new Sprite object named Cannon with the image turret-
light.png. Rename the animation to Light. Adjust the collision polygon to form a box
around the base of the Cannon object, and adjust the origin image point so that it is in the
middle of the base, as shown in Figure 11-5.

144

CHAPTER 11 " TOWER DEFENDERS

Figure 11-5. Collision polygon for the Cannon sprite

When you are finished, close the image editor windows. Position the cannon on the
dirt, near a corner of the road. Add the behavior Turret. The Turret behavior will give
the cannon the ability to aim at enemies and shoot bullets, which need to be set up now
as well. Create another new sprite named Missile with the image message.png, add the
behavior Bullet and the behavior Destroy outside layout, and position the sprite in the
margin area. Select the Cannon object again. The Turret behavior properties that you
need to adjust are explained and their new values are given in the following list:

e Range: This is how close enemies must be to be detected. Set this
to 100.

e Rotate Speed: This is how quickly the cannon can rotate (in
degrees per second) toward its target. Set this to 360.

e Predictive aim: When set to No, the turret will rotate toward the
target’s current position; when set to Yes, the turret will rotate to a
position ahead of the current target, taking into account the speed
of the turret projectile and the speed and direction of the target.
(However, the turret may still miss its intended target if the target
changes direction suddenly.) Set this to Yes.

e Projectile speed: This value is used as described earlier when
Predictive aim is set to Yes. In general, this should be set to the
speed of the projectile objects that the turret will spawn.

Set this to 400.

You will now set up instance variables to add health to enemies and a power level
(which indicates the amount of damage inflicted on contact) to the missiles, which will be
set by the cannons. Select the Enemy object, add an instance variable named HP, set Type
to Number, set Initial value to 2, and set Description to Enemy health points. Then select
the Cannon object, add an instance variable named Power, set Type to Number, set Initial
value to 1, and set DescriptiontoUsed to set Missile Power. Then, select the Missile
object, add an instance variable named Power, set Type to Number, set Initial value to 1,
and set Description to Value to subtract from enemy HP.

The objects that the cannon will target and the projectiles that the cannon will fire are
specified with events. Create a new event with the condition System - On start of layout,
add the action Cannon - Turret: Add object to target, and select Enemy. Add another event
with the condition Cannon - Turret: On shoot, add the action Cannon - Spawn another
object (select Missile), add the action Missile - Instance variables: Set value, and set Power

145

CHAPTER 11 " TOWER DEFENDERS

to Cannon.Power. These events, as well as the following events described in this section,
should appear as shown in Figure 11-6.

To make it easier for the player to see when an enemy has been damaged, you will
add an animated explosion effect. Add a new sprite named Explosion; in the Animation
frames window, import animation frames from the sprite strip named explosion.png,
which consists of six rows and six columns. Set the animation property Speed to 60 and
Loop to No. Close the image editor and position the explosion sprite in the layout margins.

To make the missiles damage the enemies as described earlier, create a new event
with the condition Missile - On collision with another object, and select Enemy. Then add
the following actions:

e Add Enemy - Variables: Subtract from, select HP, and for Value
enter Missile.Power.

e Add Missile - Spawn another object, and select Explosion.
e Add Explosion - Set size, and set both Width and Height to 32.
e Add Missile - Destroy.

To destroy enemies whose health has reached 0, create a new event with the
condition Enemy - Compare instance variable, and check whether HP is less than or equal
to 0. Then add the following actions:

e Add Enemy - Spawn another object, and select Explosion.
e Add Explosion - Set size, and set both Width and Height to 64.
e Add Enemy - Destroy.

Finally, two more events will complete this section. First, explosions whose
animations are complete should be removed from the layout, so create an event with
the condition Explosion - On any animation finished and the action Explosion - Destroy.
Second, missiles should not appear in the area of the layout corresponding to the user
interface, so create an event with the condition Missile - On collision with another object,
select BackgroundUI, and add the action Missile - Destroy. Figure 11-6 shows the events
described in this section.

146

CHAPTER 11 " TOWER DEFENDERS

5 ""ﬁ!-,yslem On start of layout ®-Cannon Add ﬁ Turret target @M Enemy

6 "&@-Cannon On .9Tur'et shoot ®-Cannon Spawn * Missile on layer "Main" (image point 0)
% Missile Set Power to Cannon.Power

7 7 % Missile On collision with EBEnemy BBEnemy Subtract Missile.Power from HP
% Missile Spawn Explosion on layer “Main” (image point ()

Explosion = Set size to (32, 32)
% Missile Destroy

8§ EEEnemy HP <0 EBEnemy Spawn Explosion on layer "Main” (image point ()
Explosion Set size to (64, 64)
EBEnemy Destray

9 "™ _ Explosion On any animation finished Explosion Destroy

10 @ Missile On collision with BackgroundUl = Missile Destroy

Figure 11-6. Events for cannon setup and enemy health

Earning Cash

Next, you will begin to implement the cash mechanic that will be used for purchasing
additional cannons later, which will become important as the enemy spawn rate
increases (which will be implemented later). To begin, in the event sheet, create a new
global variable named Cash with initial value 0, and for Description enter Used to buy
cannons. To help distinguish the user interface area from the gameplay area, you will add
a decorative logo. Create a new sprite named Logo with the image tower-defenders-
title.png, setits size to 192,32, and position it on top of BackgroundU], in the top-

left area of the layout, as shown in Figure 11-1. Then create a new Text object named
TextCash, and set its position to 0, 96. Change its default text to Cash: $0; set the font to
Arial, bold, size 22; and set the font color to green. Also set both the Horizontal alignment
and Vertical alignment properties to Center.

Select the Enemy object, add an instance variable named Cash, set Type to Number,
set Initial value to 4, and set Description to Cash added when destroyed. In the event
sheet, locate the Enemy.HP <= 0 event, and add the action System - Variables: Add to,
adding the value Enemy.Cash to the Cash variable. Create a new event with the condition
System - Every tick and action TextCash - Set text to "Cash: $” & Cash. The events in this
section should appear as shown in Figure 11-7.

147

CHAPTER 11 " TOWER DEFENDERS

] WEnemy HP=<0 BN Enemy Spawn Explosion on layer 0 (image point 0)

Explosion | Setsize to (64, 64)

W Enemy Destroy
System Add Enemy.Cash to Cash
11| XfSystem = Every tick {TiTextCash Settext to "Cash: $" & Cash

Figure 11-7. Events for earning and displaying cash

Cannon Purchase and Placement

In this section, you will add a shoplike mechanic to enable the player to purchase
additional cannons. You will add a button-style object to the user interface, which the
player clicks to make a purchase. You will also implement drag-and-drop functionality that
allows the player to select a position for the cannon after it is purchased. At the same time,
you will also create events that prevent the player from placing a newly purchased cannon
in a prohibited area (overlapping the road, another cannon, or the user interface itself).
The purchasing buttons will created from a combination of a Sprite object and a
Text object to avoid having to create new sprite images with prerendered text for each
individual button. Add a new sprite named PurchaseButton with the image button.
png. Position it in the center of the BackgroundU], and set its size to 160,128. Add two
instance variables, one named Type (with Type set to Text, Initial value set to Light, and
Description set to Cannon animation name) and the other named Price (with Type set to
Number, Initial value set to 15, and Description set to Cash needed to purchase cannon).
Next, add a new Text object named TextPrice, and position it on the purchase button.
Change its default text to Light Cannon $15; set the font to Arial, bold, size 16; and set
its font color to green. Also set both the Horizontal alignment and Vertical alignment
properties to Center. You may want to resize the Text object so that each word appears on
a separate line. The user interface should appear in the layout as shown in Figure 11-8.

Cannon

$15

Figure 11-8. Adding a button to the user interface

148

CHAPTER 11 " TOWER DEFENDERS

The next mechanic to implement is cannon spawning and placement. The cannon
being dragged will be set to the position of the mouse (similar to the paddle movement
in the Rectangle Destroyer game), but because there are typically multiple cannons
onscreen, the correct one needs to be uniquely identified. For this purpose, select the
Cannon object, and add a new instance variable named Dragging, set Type to Number, set
Initial value to 0, and set Descriptionto 0 = Fixed in place, 1 = Dragging.

You will next set up a translucent circle that appears when a cannon is purchased,
which serves two purposes: the size of the circle indicates the range of the cannon, and
the color of the circle indicates whether the cannon may be placed at the current mouse
position (green for “yes” and red for “no”). Create a new sprite named Circle with the
image circle-green.png, and change the name of the animation to Green. Add a new
animation named Red, using the image circle-red.png. Close the image editor, and
set the properties Layer to UI, Opacity to 50, and Initial visibility to Invisible. Since
the circle indicator will be visible only while the player is in the process of placing the
cannon, the circle’s visibility can be used in one of the conditions that check whether
the player is currently able to purchase a cannon (the player cannot purchase another
cannon while in the process of placing one).

With these steps completed, you are now ready to create the event that enables the
player to purchase a cannon. To begin, add the Mouse object to the project. In the event
sheet, create a new event with the following conditions:

e Add Mouse - On object clicked, and select PurchaseButton.

e Add Global and Local Variables - Compare variable, and check
whether Cash is greater than or equal to PurchaseButton.Price.

e Add Circle - Is Visible; this condition needs to be inverted.
Next, add the following actions to the event:

e Add System - Variables: Subtract from, select Cash, and for Value
enter PurchaseButton.Price.

e Add PurchaseButton - Spawn another object, select Cannon, and
set Layerto "UIL".

e Add Cannon - Set animation, and enter PurchaseButton.Type.

e Add Cannon - Variables: Set value, select Dragging, and for Value
enter 1.

e Add Cannon - Turret: Set enabled, and select Disabled.

e Add Circle - Set size, and set both Width and Height to Cannon.
Turret.Range * 2.

e Add Circle - Set visible, setto Visible.

149

CHAPTER 11 " TOWER DEFENDERS

This event appears in Figure 11-9.

* (@ Mouse On Left button Clickedon |_| $gSystem Subtract PurchaseButton.Price from Cash
12 PurchaseButton _JPurchaseButton Spawn B-Cannon on layer “UI* (image point 0)
Rk system Cash = PurchaseButton Price &-Cannon Set animation to PurchaseButton.Type (play from beginning)
@circle X Is visible 8B-Cannon Set Dragging to 1
8-Cannon betﬁlmret disabled
.t'iu-.’lo Set size to (Cannon.Turret Range * 2, Cannon.TurretRange * 2)
.CIIL'I.‘ Set Visible

Figure 11-9. Event for purchasing cannons

The next event to create implements the drag mechanic, which sets the purchased
cannon (and the indicator circle) to the position of the mouse. While this is happening,
the color of the circle needs to change depending on whether the cannon can be placed
in the current position. The cannon may not be placed if it overlaps the road, the user
interface, or another cannon. The first two of these conditions are straightforward to
check, but the third is not, because of the way conditions “filter” the set of instances
under consideration. It may seem like you should be able to simply check this with
a pair of conditions: Cannon - Compare instance variable (check whether Dragging
equals 1) and Cannon - Is overlapping another object (select Cannon). However, after
the first condition is evaluated, only those cannons whose Dragging variable equals 1
will be considered when checking the second condition, which is not what you need to
happen. To avoid these complexities, a new sprite will be introduced to indicate the areas
currently occupied by cannons.

Create a new sprite named Taken, fill in the sprite with any color, close the image
editor, and set Initial visibility to Invisible. Resize and position the sprite so that it
exactly covers the cannon currently placed on the layout. In the event sheet, create a
new event with the condition Cannon - Compare instance variable (and check whether
Dragging equals 1). Add the action Cannon - Set position, setting X and Y to Mouse . X and
Mouse.Y, respectively, and add the action Circle - Set position to another object, selecting
Cannon. To this event, add a subevent with the condition Cannon - Is overlapping another
object, select BackgroundUI, add the action Circle - Set animation, and enter "Red". Next,
you could create additional events with similar conditions to check the other overlap
cases, but since each one of these events would contain the same action, it is more
efficient to use an “or” block, in which case only one of the listed conditions needs to be
true to activate the actions. To make this event an “or” block, right-click the area in the
event to the left of the condition, and from the pop-up menu that appears, select Make
'Or' block. Add the condition Cannon - Is overlapping another object, and select Road;
then add the condition Cannon - Is overlapping another object, and select Taken. You will
notice that the word or appears between the conditions you have added. Finally, add a
second subevent to this event, with the condition System - Else. Then add the action
Circle - Set animation, and enter "Green". This event should appear as in Figure 11-10.

150

13 ®@-=Cannon
& Cannon
14 8- Cannon
8- Cannon
15 #Syhf_ern

&-Cannon

.Cilcle

Dragging = 1

Is overlapping BackgroundUI .Lia;le
-or-

Is overlapping .Road
-or-

Is overlapping ﬁ Taken

Else .CII(_le

CHAPTER 11 " TOWER DEFENDERS

Set position to (Mouse.X, Mouse.Y)

Set position to ®8-Cannon (image point 0)

Set animation to “Red” (play from beginning)

Set animation to "Green” (play from beginning)

Figure 11-10. Event for dragging cannons and updating the circular placement indicator

Finally, you need to implement the drop mechanic. Thanks to your previous work,
this step is relatively straightforward since the color of the circle indicates whether the
cannon may be placed. There are a few actions that you need to remember: enable the
Turret behavior, and then set the Dragging variable to 0, make the Circle invisible, and
spawn a Taken instance to mark the selected location as unavailable in future cannon
placements. Create a new event with the following conditions:

e Add Mouse - On click (keep the default properties).

e Add Cannon - Variables: Compare value, set to check whether
Dragging is equal to 1.

e Add Circle - Animation: Is playing, set to check whether Green is
playing.

Then add the following actions:

e Add Cannon - Move to layer, and enter "Main".

e Add Cannon - Variables: Set value, select Dragging, and for Value
enter 0.

e Add Cannon - Turret: Set enabled, and select Enabled.

e Add Cannon - Spawn another object, and select Taken.

e Add Circle - Set visible, set to Invisible.

This event should appear as shown in Figure 11-11.

» @ Mouse

16 @8=Cannon

.Cirrlsr

On Left button Clicked 8- Cannon

Dragging = 1 B-Cannon

Is animation “Green" playing &~ Cannon
&-Cannon
.Circle

Figure 11-11. Event for placing cannons

Move to layer "Main®

Set Dragging to 0

Set pl’urwt enabled

Spawn i‘ﬁ Taken on layer 0 (image point 0)

Set Invisible

151

CHAPTER 11 " TOWER DEFENDERS

To add a bit of polish, you can change the mouse cursor when it is hovering over a
button to a different icon, which will help the player notice that the objects can be clicked.
To add this feature, create a new event with the condition Mouse - Cursor is over object,
and select the PurchaseButton. Add the action Mouse - Set cursor style, and select Hand.
Create another event with the condition System - Else, add the action Mouse - Set cursor
style, and select Normal. When you are finished, the cursor style events should appear as
shown in Figure 11-12.

17 (!) Mouse Cursoris over [PurchaseButton (f] Mouse = Set cursor to Hand

18 ﬁ'System Else U‘, Mouse | Set cursor to Normal

Figure 11-12. Events for setting mouse cursor style

At this point, if you haven’t done so recently, you should certainly save your game
and test the purchasing mechanic and the drag-and-drop functionality. To speed up the
testing project, you should change the initial value of the global variable Cash to a large
number (so that you don’t have to wait to earn money to make purchases); just remember
to set it back to the original value when you’re done testing!

Game Ending and Difficulty Ramp

In this section, you will add the Base object that the player will defend from incoming
enemies. The base will be placed at the end of the road path and will have a limited
number of health points, which will be displayed in the user interface. Every enemy that
reaches the base will reduce the base’s health by 1, and when its health reaches 0, the
game is over. To keep the game challenging, a difficulty ramp will be added to increase
the enemy spawning rate, similar to the implementation from the Plane Dodger game.
To begin, in the layout, add a new Sprite object named Base with the image base.
png, and position it at the end of the path made by the road. To the Base object, add an
instance variable named HP, set Type to Number, set Initial value to 10, and set Description
to Health points. Next, add a new Text object named TextBaseHP, and set its position
to 0, 64.Change its default text to Base HP: 10; set the font to Arial, bold, size 22; set
the font color to red, and set the Horizontal alignment to Center. Add another new sprite
named GameOver with the image game-over.png. Position it in the center of the game
area, set its Layer to UL, and set Initial Visibility to Invisible. Next, in the event sheet,
locate the Every tick event and add the action TextBaseHP - Set text to "Base HP: " & Base.
HP. Then, create a new event with the condition Enemy - On collision with another object,
and select Base. Then add the following actions:

e Add Enemy - Spawn another object, and select Explosion.
e Add Explosion - Set size, set to a Width of 64 and Height of 64.
e Add Enemy - Destroy.

e Add Base - Spawn another object, and select Explosion.

152

CHAPTER 11 " TOWER DEFENDERS

e Add Explosion - Set size, set to a Width of 128 and Height of 128.
e Add Base - Variables: Subtract from, select HP, and for Value enter 1.

To destroy the base when it runs out of health, create a new event with the condition
Base - Compare instance variable, and check whether HP is less than or equal to 0. Then
add the following actions:

e Add GameOQuver - Set visible, set to Visible.
e Add SpawnPoint - Destroy.
e Add Base - Destroy.

When you are finished, the base-related and “game over” events should appear as
shown in Figure 11-13. Save and test your project. Make sure that enemies damage the
base and that when the base runs out of health, the game ends.

10 ﬁSy.‘.to:n Every tick TextCash Set text to "Cash: $* & Cash

iT;TextBaseHP | Set text to "Base HP: * & Base.HP

19 = EBEnemy On collision with »®Base EBEnemy Spawn Explosion on layer 0 (image point 0)
Explosion Set size to (64, 64)
@B Enemy Destroy
“w#Base Spawn Explosion on layer 0 (image point 0)

Explosion Set size to (128, 128)

o Base Subtract 7 from HP

20 @ Base HP <0 == GameOver | Set Visible
8P spawnPoint | Destroy

“# Base Destroy

Figure 11-13. Events for “‘game over”

As the game stands, enemies spawn at a constant interval, and this game is trivially
easy once a few turrets are in place. To increase the challenge, you will create and use a
global variable named SpawnRate to adjust this rate. First, in the event sheet, create a new
global variable named SpawnRate with an initial value of 5, and for Description, enter
Seconds until next enemy spawns. Locate the Every 1 seconds event, double-click its
condition, and change Interval to SpawnRate. Then, create a new event with the condition
System - Every X seconds, and for Interval enter 5. Add the condition System - Variables:
Compare variable, set to check whether SpawnRate is greater than or equal to 0.50. Then
add the action System - Variables: Subtract from. For Variable select SpawnRate, and set
Value to 0.25. The difficulty ramp events should appear as shown in Figure 11-14. Save
and test your project. Make sure that enemies spawn at a gradual and increasing rate, and
notice the game’s new difficulty.

153

CHAPTER 11 " TOWER DEFENDERS

3 -ﬂ- System Every SpawnRate seconds SP SpawnPoint = Spawn @8 Enemy on layer 0 (image point ()

BB Enemy Set angle to 90 degrees

-n- System Every 5 seconds ﬂ- System | Subtract 0.25 from SpawnRate
Xk System SpawnRate > 0.50

21

Figure 11-14. Events for difficulty ramp

Congratulations! You have now finished implementing the core mechanics of the
Tower Defenders game.

Side Quests

In this optional section, you will add an additional, stronger enemy type for more
variation and game difficulty. To give the player the element of choice, you will add a
new, more expensive yet powerful cannon type to assist the player in dire situations. You
will also implement time speed control buttons in the user interface to enable players to
pause, play, and fast-forward gameplay. You will also explore other suggested features.

Additional Enemy Types

Currently, the enemies are all similar in appearance and health. In this section, you will
create an additional Tank enemy type. To accomplish this, you will add a new animation
to the existing Enemy object. The new Tank enemy will have a one in five chance of
appearing. As soon it does, its health instance variable will be adjusted to have an extra
health point, its Cash variable will be set to 6 for a higher reward, and its speed will be a
bit slower than the average enemy truck.

First, in the layout, to the Enemy sprite, create a new animation named Tank,
using the image tank.png. Then in the event sheet, locate the event where enemies are
spawned. To this event, add a subevent with the condition System - Compare two values,
set to check whether random(0, 100) is less than or equal to 20. Then add the following
actions:

e Add Enemy - Set animation, and enter "Tank".

e Add Enemy - Variables: Set value, select HP, and for Value enter 3.
e Add Enemy - Variables: Set value, select Cash, and for Value enter 6.
e Enemy - Bullet: Set speed, and enter 180.

When you are finished, these events should appear as in Figure 11-15. Save and test
your project. Make sure that every once in a while, a slower and stronger enemy Tank
appears, rewarding you with more cash upon its destruction.

154

CHAPTER 11 " TOWER DEFENDERS

4[=] «pEBEnemy = On created ESEnemy Set angle to 90 degrees

#System random(0, 100) < 20 @B Enemy

v

et animation to "Tank™ (play from beginning)

@ Enemy SetHP to 3
Bl Enemy SetCashto 6
EWEnemy Set ¢” Bullet speed to 180

Figure 11-15. Events for adding a Tank enemy type

Additional Cannon Types

In the game’s current state, the player has one choice in terms of cannon purchase. In
this section, you will add a new Heavy cannon choice that will be more expensive, will
be stronger, and will have more range than the current Light cannon. Create another
instance of the PurchaseButton object, position it below the original, set its Type
variable to Heavy, and set its Price variable to 20. Then create another instance of the
TextPrice object, change its default text to Heavy Cannon $20, and position it on the new
PurchaseButton. At this point, your user interface should resemble the one shown at
this beginning of this chapter, in Figure 11-1. Next, double-click the Cannon sprite, and
create a new animation named Heavy, using the image turret-heavy.png. When you are
finished, close the image editor windows.

The purchase event must be adjusted to coordinate the values and properties of
the cannon based on its type. In particular, you will increase the power of the heavy
cannon type (which is reasonable, given its higher cost). Locate the event containing the
condition where the PurchaseButton is clicked, and add a subevent with the condition
Cannon - Animation: Is playing, set to check whether Heavy is playing. Then, add the
action Cannon - Variables: Set value, select Power, and for Value enter 2. When you are
finished, the subevent should appear as in Figure 11-16. Save and test your project; you
should now be able purchase and place stronger “heavy cannons” for a cost of $20.

13 ®-Cannon Is animation "Heavy" playing &-Cannon Set Power to 2

Figure 11-16. Subevent for configuring the heavy cannon type

Time Speed Control

In this section, you will implement time speed control buttons that enable players to
pause or speed up the game. These buttons will all be created in similar fashion to the
buttons created in Chapter 5. To begin, in the layout, create three new sprites, with the
names ButtonPlay, ButtonPause, and ButtonFast, using the images button-play.png,
button-pause.png, and button-fast.png, respectively. Change the size of each of these
sprites to 60, 60 and arrange them near the bottom of the BackgroundUI object. Then,
in the event sheet, create a new event with the condition Mouse - On object clicked, and
select the ButtonPause. Add the action System - Set time scale, and enter 0. Create two

155

http://dx.doi.org/10.1007/978-1-4842-2784-8_5

CHAPTER 11 " TOWER DEFENDERS

more similar events, but for clicking the ButtonPlay and ButtonFast objects and setting
the timescales to 1 and 1.5, respectively. When you are finished, the time speed control
events should appear as in Figure 11-17. Save and test your project. You should be able to
pause, play, and speed up the game. Notice during speedup, enemies spawn faster, which
adds a layer of difficulty.

24 = @; Mouse = On Left button Clicked on oaunonl’ause -ﬂ'System Set time scale to 0
25 | = (T) Mouse = On Left button Clicked on Q) ButtonPlay % System Set time scale to 1

26 = () Mouse = On Left button Clicked on oauﬂonFast ¥k System | Set time scale to 1.5

Figure 11-17. Events for time speed control

On Your Own

As usual, you should add menus and audio to this project. With the dynamic shoplike
mechanic and customizable variables you have created in Tower Defenders, there is
plenty of room for possible additions and features. You could create new cannon types
with different speeds, firing rates, range, and power; you will have to take all these
features into account when selecting the price for each new cannon type to keep the
gameplay balanced.

Another addition you could consider is a Land Mine object. Such an object would
be very different from cannons and would not involve the turret behavior at all; such an
object should be able to be placed only on the road (and not overlapping dirt or walls).
When an enemy collides with it, it should do a great deal of damage to the enemy, but the
land mine itself should also be destroyed. The logic for purchase and placement would be
similar to that for cannons, but it will require its own set of events because of the different
overlapping conditions. You will have to determine a fair cost for the Land Mine object
that takes into account its power but also the fact that it can be used only one time.

Another possible addition you could add are upgrade buttons. These buttons could
trigger actions that will increase cannon range of sight or decrease the rate of fire time for
the cannons. Their cost should be typically high. (You will need to store these adjusted
values in global variables, update all the currently existing turret properties, and use the
global variables when initializing newly created turrets.)

Summary

In this chapter, you created the game Tower Defenders. You were introduced to the Turret
behavior to implement dynamic aiming and firing cannon objects. You then learned how
to create a game economy, which fueled a shoplike mechanic for purchasing additional

156

CHAPTER 11 " TOWER DEFENDERS

cannons. In doing this, you learned how to add buttons and how to implement drag-
and-drop mechanics to place cannons on the playing field. You also learned how to use
the “or” block feature to reduce event redundancy. The “Side Quests” section discussed
potential game additions including implementing more enemy types, more turret types,
and speed control buttons for the user interface.

In the next chapter, instead of destroying enemies that travel across the screen, you
will focus on avoiding enemies as you run around a maze while collecting coins, as you
create a game called Maze Runman.

157

CHAPTER 12

Maze Runman

In this chapter, you'll create Maze Runman, a top-down collection game where the player
maneuvers around a maze trying to collect coins while avoiding being caught by ghosts,
as shown in Figure 12-1.

Figure 12-1. The Maze Runman game

In Maze Runman, the player controls a character, named Runman, whose goal is to
collect all the coins scattered around a haunted maze. Three ghosts will move around the
maze; two of them will chase Runman, while the third will wander around at random.

If Runman is hit by a ghost, the game is over. The player must plan their route carefully,
keep an eye on the ghosts, and be ready to change their route quickly.

© Lee Stemkoski and Evan Leider 2017 159
L. Stemkoski and E. Leider, Game Development with Construct 2,
DOI 10.1007/978-1-4842-2784-8_12

CHAPTER 12 I MAZE RUNMAN

Runman can travel in four directions, and movement is controlled by the arrow
keys. Coins are collected on contact. This chapter assumes you are familiar with using
the Sprite, TiledBackground, Keyboard, and Tilemap objects; using the Bullet, Timer,
and Fade behaviors; creating image-based animations; and using the floor and
random functions. In this chapter, you will learn how to implement precise grid-aligned
movement with the Bullet behavior. You will also learn about the Array object, a data
structure that will be used to store the possible directions in which each ghost may
move. There will also be a discussion about how to create “intelligent” ghosts, which
will appear to respond to the player’s movement and, at times, may even seem to be
setting up “ambushes” for the player. Since the logic underlying the game mechanics in
this chapter is quite complex, you will also learn how to create groups in the event sheet
to keep the events more clearly organized. Also in this chapter, conditions and actions
will be expressed more briefly than in previous chapters: event group headings will be
included only occasionally to avoid confusion, and if a condition or action requires only
one parameter, it will be given in parentheses.

To begin, download the zip file containing the graphics for this chapter from the
book web site. In the View tab, select the Snap to grid and Show grid check boxes, and set
the grid width and grid height both to 16. Set both the layout size and the window size to
480, 480.Asyou have in previous projects, set up three layers named Background, Main,
and UI. In the Background layer, add a TiledBackground object named Background with
the image dirt.png. Resize and position this object so that it covers the entire layout.
Then add a TileMap object named Walls with the image wall-tileset.png. These tiles
are 32-by-32 pixels, so the default properties for the tilemap do not need adjustment.
Using the Tilemap editor, design a mazelike level using any arrangement you like,
provided that the layout is surrounded by a wall (which will prevent Runman and the
ghosts from moving off-screen), and make sure that there are no dead-end paths (these
would interfere with the ghost movement events, as will be explained later). Figure 12-2
shows one possible level design; this figure displays a 32-by-32 grid to more clearly
illustrate the tiles used in creating the level. When you are finished, click the selection tool
in the Tilemap panel, and lock the Background layer via the Layer panel.

160

CHAPTER 12 ' MAZE RUNMAN

Figure 12-2. Background and tilemap maze setup

Player Setup and Grid-Based Movement

In this section, you will set up the Runman character and grid-based movement. The
process for setting up the Runman sprite’s animations is identical to how you set up

the Cleaner sprite’s animations in the Cleanup Challenge game in Chapter 4. To begin,
set the active layer to Main, and create a new sprite named Runman; in the Animation
frames window, load the spritesheet general48.png (with three horizontal cells and four
vertical cells), and set the Animation properties Speed to 6, Loop to Yes, and Ping-pong
to Yes. Then duplicate this animation three times so that there are four animations in
total. Next, rename the animations to South, West, East, and North. Select the animation
named South in the list; in the Animation frames window, click each frame that does

not correspond to the character walking south (those initially numbered 3 through 11);
and press the Delete key. Repeat this process for the West, East, and North animations,
deleting the frames not required within each of the animations.

Next, you need to adjust the sprite’s collision polygon to a smaller shape and adjust the
sprite’s origin to be aligned with the grid. These adjustments must be applied to all frames
of all animations for consistency and to prevent glitches. Select the South animation, and
adjust the collision polygon (adding and repositioning vertices as necessary) until it is

161

http://dx.doi.org/10.1007/978-1-4842-2784-8_4

CHAPTER 12 I MAZE RUNMAN

roughly circular, as illustrated in Figure 12-3. After this adjustment, right-click the polygon
and select Apply to all animations. Next, in the Image points window, adjust the origin
image point using the Quick-assign tool (as you did with the Chargeometer object in the
Spell Shooter game in Chapter 9) so that the origin point is at the bottom-left corner of the
sprite, also shown in Figure 12-3. After this adjustment, right-click the Origin in the Image
points window, and select Apply to all animations. When you are finished, close the image
editor windows. Change the size of the sprite to 32,32, and position it at any open grid
square except for those with an adjacent wall on the right.

Figure 12-3. The Player sprite’s circular collision polygon

The next mechanic you will implement is grid-based movement: the characters in
this game can move only in straight lines in four directions (north, south, east, and west)
and can change directions only from the center of each grid square. Determining when
a character has reached the center of a grid square is difficult since character positions
are updated only 60 times per second, and because of the automatic approximation of
decimal values by computers, the exact coordinates might not be obtained. To overcome
this dilemma, you will use a formula from physics: speed = distance/time. You will know
both the speed (it will be set to 100 pixels/second) and the distance between tiles
(32 pixels). Therefore, you can use this formula to calculate how long it will take a
character to travel from one grid square to the next since the formula can be rewritten
as time = distance/speed. A timer will be set up to go off regularly at this time interval,
and on the corresponding tick (and only then), the character will have the opportunity to
change direction. At the same time, the character might not be located at the exact center
of a tile when the timer goes off (because of the aforementioned rounding errors), so the
character’s position will also be adjusted at this instant, as shown in Figure 12-4, to avoid
accumulating errors that could result in glitches at a later time.

Figure 12-4. Adjusting Runman’s position to be centered in a grid square

162

http://dx.doi.org/10.1007/978-1-4842-2784-8_9

CHAPTER 12 © MAZE RUNMAN

To begin, select the Runman object and add the behaviors Bullet and Timer. Set the
Bullet properties Speed to 100 and Set angle to No. Also, since Runman will move to the
right by default, in the Properties panel change Initial animation to East. (Incidentally,
this is also why you avoided placing Runman with a wall directly to his right.) In what
follows, you will use groups to keep sets of events organized and easy to locate in the
event sheet. Groups are basically headers that display a line of text; events are added to
a group by adding them as subevents to the group, just as you would add a subevent to
another event. In the event sheet, right-click in the margins, select Add group, and set
Name to Player Movement. To this group, add an event with the condition System - On
start of layout. In accordance with the formula discussed earlier, add the action Runman -
Timer - Start timer, set Duration to 32/100, set Type to Regular, and set Tag to "Grid".

The next event to be added will realign Runman to the center of the grid square
to which he is closest. Since the grid square positions are located at multiples of 32,
Runman’s X and Y position should be set to the nearest multiple of 32 whenever the timer
activates. To determine which multiple of 32 is closest, you can divide the current position
by 32, round it to the closest whole number, and then multiply it by 32. For example, given
the number 95, the closest multiple of 32 is 96 = 3 * 32. The key part in this calculation is
figuring out the multiplier, which is 3 in this case. We know that 96 / 32 is exactly 3, while
95 / 32 is 2.96875, which is only approximately 3. Using the round function converts this
approximate decimal into the desired exact value 3, and then you can simply multiply
this by 32 to get the position to which Runman should be adjusted. To implement this
calculation in the event sheet, in the Player Movement group, add a subevent with
condition Runman - On timer, and set Tag to "Grid". Add the action Runman - Set X,
setting X to round(Runman.X / 32) * 32, and add the action Runman - Set Y, setting Y
to round(Runman.Y / 32) * 32. When you are finished, the events should appear as in
Figure 12-5.

1 [-] Player Movement

2 l:bﬁS',sle'n ©On start of layout fRu.’fl".’\a"\ S:drl(E-}T:!r\e: “Grid” for 32 / 100 (Regular)
Add action
3 4 = B runman on (B Timer “Gria" B runman | Set X to round PlayerX /32) * 32

Frunman | Set ¥ to roundy Playery /32) * 32

Figure 12-5. The Player Movement group and events for grid alignment

Next, you will implement events that enable the player to change Runman'’s
direction, provided that no walls are blocking the way. This type of check is called
preventative collision detection, meaning that rather than waiting for a collision to happen
(and responding accordingly), you will check to see whether the player is holding down
an arrow key corresponding to a direction in which a tile exists; if so, Runman will be
prevented from moving in that direction in the first place. Potential collisions such as
these can be detected with a condition named Is overlapping at offset. To begin, in the
layout, add a Keyboard object. Then, in the event sheet, add a subevent to the On timer
event you created previously. Create two conditions for this new event: Keyboard - Key is
down (Right arrow) and the inverted condition Runman - Is overlapping at offset (Walls,
at an Offset X of 32 and an Offset Y of 0). Add two actions to this event: Runman - Bullet:
Set angle of motion (0) and Runman - Set Animation ("East"). Next, you will create three

163

CHAPTER 12 I MAZE RUNMAN

more subevents in the On timer event with the same conditions and actions, but with the
parameter values changed as follows:

e Check whether the player is holding down the left arrow key and
for an overlap at the values Offset X of -32 and Offset Y of 0; set the
angle of motion to 180 and the animation to "West".

e Check whether the player is holding down the up arrow key and
for an overlap at the values Offset X of 0 and Offset Y of -32; set the
angle of motion to -90 and the animation to "North".

e Check whether the player is holding down the down arrow key
and for an overlap at the values Offset X of 0 and Offset Y of 32; set
the angle of motion to 90 and the animation to "South".

When you are finished, these events should appear as in Figure 12-6.

= Keyboard Right arrow is down 2 Runman Set ¢ Bullet angle of motion to 0 degrees
4 g Runman X s overlapping *==Wialls g Runman Set animation to "East” (play from beginning)
at offset (32, 0)
B Keyboard Left arrow is down ﬁ Runman Set f Bullet angle of motion to 180 degrees
> g Runman XK Is overlapping ===Walls 9 Runman Set animation to "West" (play from beginning)

at offset (-32, 0)

EEKeyboard Up arrow is down g Runman Set ¢ Bullet angle of motion to -90 degrees

(1]

g Runman XK Is overlapping ===Walls 9 Runman Set animation to “North™ (play from beginning)
at offset (0, -32)

XKeyboard Down arrow is down £ runman set ¢ Bullet angle of motion to 90 degrees

7 g Runman X Is overlapping === Walls ﬁ Runman Set animation to “South” (play from beginning)
at offset (0, 32)

Figure 12-6. Events for player movement and animation

At this point, Runman can move freely throughout the level and stays aligned with a
grid. However, the wall tiles you added in the tilemap do not currently function as walls;
Runman can travel right through them. To get the precisely desired effect, you will not
add the Solid behavior; instead, you will create another set of events to implement this
feature. These events will check the direction in which Runman is traveling (by checking
the name of the currently playing animation), and if there is a wall ahead, Runman’s
movement, animation, and timer will all be stopped. If the player presses a key while
Runman is not moving (indicated by a speed of 0), then his speed will be restored to its
original value, the On timer event will be activated again immediately, and the recurring
timer will be set up again.

To start implementing these features, add a new subevent to the On timer event, with
two conditions: Runman - Animation: Is playing ("East") and Runman - Is overlapping
another object (Walls, with Offset X set to 32 and Offset Y set to 0). To this event, add three
actions: Runman - Bullet: Set speed (0), Runman - Animation: Stop, and Runman - Timer:

164

CHAPTER 12 © MAZE RUNMAN

Stop timer ("Grid"). Next, you will create three more subevents in the On timer event
with the same conditions and actions, but with the parameter values of the conditions
changed as follows:

e Check whether the West animation is playing and for overlap at
Offset X of -32 and Offset Y of 0.

e Check whether the North animation is playing and for overlap at
Offset X of 0 and Offset Y of -32.

e Check whether the South animation is playing and for overlap at
Offset X of 0 and Offset Y of 32.

You will also need an event as described earlier that starts Runman moving again
after he has stopped. Create a new subevent in the Player Movement group (but it should
not be a subevent of the On timer event) with the condition Keyboard - On any key
pressed and the condition Runman - Bullet: Compare speed (0). Add the three actions
Runman - Bullet: Set speed (100), Runman - Timer: Start timer (Duration set to 0, Type set
to Once, Tag set to "Restart"), and Runman - Timer: Start timer (Duration set to 32/100,
Type set to Regular, Tag set to "Grid"). The extra Restart timer needs to be created to
activate the On timer event again right away (the Grid timer cannot be used for both
these purposes at the same time). Finally, the On timer event needs to be adjusted so that
either of the named timers can activate it; to this end, right-click the event, select Make
"or" block, and then add a second condition called Timer - On Timer ("Restart"). When
you are finished, these events should appear as in Figure 12-7. Save the project and
preview your game to make sure that the movement works as expected and that Runman
is blocked by the walls.

165

CHAPTER 12 I MAZE RUNMAN

= B runman 0n (O Timer “Grid" & setXto round(Runmanx /32) * 32

3 E — & setvioround(Runmany /32) * 32
* ® runman on (5 Timer “Restart”

3 g Runman s animation "East” playing g Runman Set ¢ Bullet speed to 0
g Runman Is overlapping ===Walls at offset (32, 0) 9 Runman Stop animation
g Runman Stnp@ Timer “Grid"
5 2 Runman Is animation "West" playing 9 Runman Set 4" Bullet speed to 0
9 Runman s overlapping ===Walls at offset (-32, 0) ﬁ Runman Stop animation
g Runman Stop @ Timer “Grid"
9 Runman Is animation "Morth” playing 9 Runman Set ” Bullet speed to 0
10
g Runman Is overlapping ™=Walls at offset (0, -32) g Runman Stop animation
g Runman Stop GTirnE{ “Grid”
g Runman Is animation "South™ playing g Runman Set a Bullet speed to 0
"
2 Runman Is overlapping ===Walls at offset (0, 32) ” Runman Stop animation
ﬂ Runman Stop (:) Timer “Grid"
5 “*E=iKeyboard On any key pressed 9 Runman Set ¢” Bullet speed to 100
1
g Runman ¢ Bullet speed =0 ﬁ Runman Start (';) Timer “Restart” for 0 (Once)

E Runman Start G Timer “Grid" for 32 f 100 (Regular)

Figure 12-7. Events for tilemap wall functionality

Enemies and Intelligent Movement

In this section, you will implement enemy ghosts with intelligent movement patterns that
will chase the player around the maze. These ghosts will also be subject to grid-based
movement; the implementation will be similar to the previous section but simpler, as the
ghosts will not stop moving. To begin, create a new sprite named Ghost; in the Animation
frames window, load the spritesheet ghost. png (three horizontal cells and one vertical
cell), and set the Animation properties Speed to 6, Loop to Yes, and Ping-pongto Yes.

As you did with the Runman sprite, adjust the collision polygon shape and origin image
point, as shown in Figure 12-8, and after each of these changes, select the right-click
menu option Apply to whole animation. When you are finished, close the image editor
windows. Change the size to 28,28, add the Bullet and Timer behaviors, set Bullet Speed
to 90 (so it is just a bit slower than Runman), and change Set angle to No. Create two more
instances of the Ghost object, and position them each on an empty tile space (but not
with a wall directly to the right, as before).

166

CHAPTER 12 © MAZE RUNMAN

Figure 12-8. The Ghost sprite’s collision polygon

In the event sheet, right-click and create a new group named Ghost Movement. In this
group, create an event with the condition System - On start of layout, and add the action Ghost
- Timer: Start Timer (with Duration set to 32/90, Type set to Regular, and Tagset to "Grid").
Then create an event with the condition Ghost - On Timer ("Grid") and the condition Systermn
- For Each (Ghost). Add the action Ghost - Set X, setting X to round(Ghost.X / 32) * 32,
and add the action Ghost - Set Y, setting Y to round(Ghost.Y / 32) * 32.

Before creating any more events, it is necessary to introduce a new feature of Construct:
the Array object. Arrays are “data structures” that can be used to store a list (or a grid) of
values. Here, arrays will be used to store the directions of movement available to each ghost
each time they reach the next grid square, and one of the stored directions will be selected
according to the programmed pattern for each ghost. To begin, in the layout, add a new
object, an Array object named Directions, and then return to the event sheet.

In the Ghost - On timer event, add an action called Directions - Set Size, and set Width
to 0, Height to 1, and Depth to 1. Since you are interested only in storing a list of values
(as opposed to a 2D or 3D grid of values), Height and Depth should always be set to 1. The
width refers to the number of values being stored in the list, and setting it to 0 effectively
“resets” or “clears out” the list, preparing it for reuse when analyzing the options for each
of the ghosts.

Next, you will add values to the array, corresponding to the angles of movement
for the available directions. One of the requirements for a direction to be considered
available is that there must be no overlap with a wall in that direction. Additionally,
ghosts are not permitted to reverse direction because otherwise ghosts would behave
erratically, hovering back and forth between positions as they attempt to align themselves
horizontally or vertically with Runman. Directions satisfying these conditions are added,
or “pushed,” onto the array. For example, if there is no wall to the right (offset (32,0)) and
the ghost is not moving to the left (motion angle 180), then moving to the right is a valid
option, and the corresponding angle (0) will be added to the array. To implement this,
create a subevent to the Ghost - On timer event, with the inverted condition Ghost - Is
overlapping at offset (Walls, Offset X set to 32, Offset Y set to 0) and the condition System -
Compare two values (check whether Ghost. Bullet. AngleOfMotion is not equal to 180). Add
the action Directions - Manipulation - Push (set Where to Back, Value to 0, and Axis to X).

167

CHAPTER 12 I MAZE RUNMAN
Create three more events with the same conditions and actions, with the parameter values
changed as follows:

e Ifthere is no overlap at offset (-32, 0) and the angle of motion is
not 0, then push 180 onto the array.

e Ifthere is no overlap at offset (0, -32) and the angle of motion is
not 90, then push -90 onto the array.

e Ifthereis no overlap at offset (0, 32) and the angle of motion is not
-90, then push 90 onto the array.

When you are finished, the Ghost Movement group should appear as in Figure 12-9.

13 = Ghost Movement

14 '?ﬁ'.‘.ysrom On start of layout 1 Ghost Start @ Timer “Grid" for 32 / 90 (Regular)
=) Ghost On C"} Timer “Grid* s Ghost Set X to round(Ghost.X / 32) * 32
15
5:0
Qffsystem Foreach () Ghost) Ghost Set Y to round(GhostY / 32) * 32

@D:'u]iun‘. Setsizeto (0,7, 7)

s Ghost X Is overlapping ===Walls at offset (32, 0) HH Directions Push back 0 on X axis
“S\,ﬂ:tmn Ghost.Bullet AngleQfMotion = 180

{_r Ghost X Is overlapping ===Walls at offset (-32, 0) @Di"ections Push back 780 on X axis
#System Ghost.Bullet AngleOiMotion # 0

s Ghost X s overlapping ===Walls at offset (0, -32) @Di:e‘.tiuns Push back -90 on X axis
'u'fzystem Ghost.Bullet AngleOfMotion # 90

s Ghost X s overlapping ===Walls at offset (0, 32) Bl Directions Push back 90 on X axis
'nbystem Ghost.Bullet. AngleOfMotion # -90

Figure 12-9. Events for ghost grid alignment and adding available directions to the array

Before adding the events that correspond to the different movement patterns that the
ghosts will follow, you need to add an instance variable to the ghosts to distinguish between
them. Select the ghost object, and add an instance variable named Pattern, with Type set
to text, Value setto Vertical, and Description setto Vertical, Horizontal, or Random.
Then, select an instance of one of the ghosts, set its Pattern variable to Horizontal, and
select another one and set its Pattern variable to Random so that each of the three ghosts
has a different value. When changing direction, the ghost with Pattern set to Vertical
will choose to move either north or south, depending on whether Runman is located to
the north or south of the ghost (and provided the ghost is currently able to move in
that particular direction). If this ghost has the same Y coordinate as Runman, then it will
choose to move either east or west, following similar criteria. The ghost with Pattern set to
Horizontal follows similar logic but prioritizes moving east or west, while the ghost with
Pattern set to Random will simply choose one of its currently available directions at random.

Before implementing these movement patterns, you will set up a “default” direction
for the ghosts to follow, in case no good option is available (where “good” is defined
from the perspective of the ghosts, as a direction that moves them closer to Runman).

168

CHAPTER 12 © MAZE RUNMAN

Add a subevent to the Ghost - On timer event, with the condition System - Every tick and
the action Ghost - Bullet: Set angle of motion, set to Directions.At(0). The Array action
At retrieves a value stored in the array at a given position (or index); array positions are
numbered starting with 0 (a standard convention in computer science).

Next, you will implement the vertical pattern of movement described earlier. To
the Ghost - On timer event, add a subevent with the condition Ghost - Compare instance
variable (check whether Pattern is equal to "Vertical"). To this event, you will add a
set of four subevents that compare the position of the ghost to Runman, and if a good
move exists in the array of directions, then the ghost’s angle of motion will be changed
to that value. For example, if the ghost’s X coordinate is less than Runman’s X coordinate
(Runman is to the right of the ghost) and the angle 0 is currently in the Directions array
(indicating that the ghost is able to move to the right), then the ghost angle of motion
will be set to 0. Similar events will be created for the other possible directions. It should
be noted here that events that appear later in this list correspond to the movements
that will take priority because their actions can override previous actions; it is as if these
later events “have the final word” in what happens in the game. Create a new subevent
with the condition Ghost - Compare X (check whether it is less than Runman. X) and the
condition Directions - Contains value (0), and add the action Ghost - Bullet: Set angle
of motion (0). Create three more subevents with the same conditions and actions, but
change the parameter values as follows:

e Check whether the ghost X value is greater than Runman. X and
whether Directions contains the value 180, and set the angle of
motion to 180.

e Check whether the ghost Yvalue is less than Runman.Y and
whether Directions contains the value 90, and set the angle of
motion to 90.

e Check whether the ghost Yvalue is greater than Runman.Y and
whether Directions contains the value -90, and set the angle of
motion to -90.

When you are finished, the events should appear as in Figure 12-10.

20 # System Every tick) Ghost Set @ Bullet angle of motion to Directions At(0) degrees
21) Ghost Pattern = “Vertical”
) Ghost X < Runman.X i) Ghost Set ¢ Bullet angle of motion to 0 degrees
22
HEHDirections Contains value 0
-) Ghost X > Runman.X) Ghost Set ¢ Bullet angle of motion to 780 degrees

ﬁ Directions Contains value 180
s Ghost Y < Runman.Y (s Ghost Set @’ Bullet angle of motion to 90 degrees

24
@ Directions Contains value 90

) Ghost ¥ > Runman.Y L) Ghost Set # Bullet angle of motion to -90 degrees

25
ﬁ Directions Contains value -90

Figure 12-10. Events for vertical pattern ghost movement

169

CHAPTER 12 I MAZE RUNMAN

The events controlling the ghost following the horizontal pattern are extremely
similar to the previous events. Copy and paste the event with the condition Pattern =
"Vertical” and its subevents. In the new copy of the events, edit the condition to check
whether Pattern is equal to "Horizontal", and click and drag to rearrange the subevents
so that the events comparing the X values appear last, as shown in Figure 12-11. Finally,
to implement the random movement pattern, you will need to write only a single event.
Add a new event with the condition Ghost - Compare instance variable, and check
whether Pattern is equal to "Random". For the action, you need to generate a random
number between 0 and the width of (number of elements in) the Directions array, use the
floor function to truncate the decimal digits (since array positions are whole numbers),
and extract the array element at that position. This is accomplished by adding the action
Ghost - Bullet: Set angle of motion, set to Directions.At(floor(random(Directions.
Width))). When finished, these events should appear as shown in Figure 12-11. Save and
test your project, and verify that all three ghosts move in different patterns, as expected.
(To check an individual pattern more easily, you could delete the other ghost instances
temporarily and simply add them back to the project later.)

26 B) Ghost Pattern = "Horizontal"
o7 b Ghost Y < Runman.Y L Ghost Set gﬁu[let angle of motion to 90 degrees
I ﬁl)irediuns Contains value 90
() Ghost Y > Runman.Y 2y Ghost Set 0’ Bullet angle of motion to -90 degrees
28 @Dirt-ninn\ Contains value -90
=) Ghost X < Runman.X 2 Ghost Set f}iullvt angle of motion to 0 degrees
= ﬁDircctions Contains value 0
" (b Ghost X > Runman.X h Ghost Set ¢ Bullet angle of motion to 780 degrees
N ﬁDirections Contains value 180
31 {» Ghost Pattern = "Random” s Ghost Set 4 Bullet angle of motion to Directions.At{

floor(random(Directions.Width))) degrees

Figure 12-11. Events for horizontal and random pattern ghost movement

Collecting Coins

In this section, you will add coins for the player to collect while moving around the maze.
These coins will give the player points that will be added to their score. To begin, create
anew sprite named Coin with the image coin.png, and position it in any open path grid
square. You should create additional coin instances to fill all open grid locations (those
not occupied by the player, ghost, or walls). When finished, select the Coin object in

the object panel (so that all instances are selected); then right-click in the layout area,
and select Z-Order - Send to bottom of layer. This makes the Runman and the ghosts
appear on top of the coins, rather than underneath them (which would look strange).

To keep track of points earned, in the event sheet, add a global variable named Score
with an initial value of 0. To display this value on the user interface, create a new Text
object named TextScore, set its Layer to UL, and position it in the top-center of the game
window, over the top bounding wall. Change the default text to Score: 0.Change the

170

CHAPTER 12 © MAZE RUNMAN

font to Arial, bold, size 14, and change the font color to a bright yellow (since it matches
the color of the coins and is also easily visible against the dark wall). Your user interface
and style of coin placement should be similar to example layout shown in Figure 12-12.

Figure 12-12. The user interface and coin placement in the layout

You can now set up the corresponding events for collecting coins and updating the
text displayed. First, in the event sheet, right-click the empty area in the event sheet to
create a new group named Coin Events. Next, to this group, add a new subevent with
the condition Runman - On collision with another object (Coin), add the action System -
Variables: Add to (add 10 to Score), and add the action Coin - Destroy. Add another event
to this group, with the condition System - Every tick and the action TextScore - Set text
("Score: " & Score). When finished, these events should appear as in Figure 12-13.

32 5 Coin Events

33—l g Runman On collision with @ Coin #System Add 170 to Score
@ Coin Destroy
34 'u'System Every tick {f}TenScore Set text to “Score: " & Score

Figure 12-13. Events for collecting coins

171

CHAPTER 12 I MAZE RUNMAN

Game End

In this section, you will implement end-of-game conditions that indicate whether the
player has lost or won. When the game has ended, the player and ghosts’ movement

will be stopped, and then they will all fade away. To begin, in the layout, to the Runman
object, add the behavior Fade, and set Active at start to No. Then, click Ghost in the object
panel (so all instances are selected) and similarly add the Fade behavior, and set Active at
start to No. Create two new sprites: one named MessagelLose using the image text-lose.
png and one named MessageWin using the image text-win.png. Set their Layer properties
to UI, set Size to 416 by 64, set “Initial visibility” to Invisible, and center both within
the window bounds. Next, you will add the “game over” sequence event that will fade the
player and the ghosts upon player collision with a ghost. Since you will want to fade away
all ghosts in the game, not just the one filtered by the collision condition, you will add an
additional System condition called Pick all to reset the event’s filter for the ghosts so that
the actions are applied to all ghosts (not just the one that collided with the player). First,
in the event sheet, right-click the empty area in the event sheet to create a new group
named Game End. To this group, add a new subevent, add the condition Runman - On
collision with another object (Ghost), and add the condition System - Pick all (Ghost). Add
the following actions:

e MessageLose - Set visible (Visible)

e Runman - Bullet: Set enabled (Disable)
e Runman - Start fade

e Ghost - Bullet: Set enabled (Disable)

e Ghost - Start fade

You will now add the winning sequence event, which will occur when all coins
have been collected (or equivalently, when no coins remain). To the Game End group,
add another subevent called System - Compare two values (check if Coin.Count is equal
to 0); then add the same actions as in the previous event, but change MessageLose to
MessageWin in this new event. The “game end” events should appear as in Figure 12-14.

172

CHAPTER 12 © MAZE RUNMAN

35 mGame End

o = [} Ghost On collision with ﬁ Runman ==Messagelose Set Visible
#System Pick all () Ghost 9 Runman Set @’ Bullet Disabled
g Runman DFade: start fade
) Ghost Set ¢ Bullet Disabled
) Ghost (L) Fade: start fade
37 #System Coin.Count = 0 ——MessageWin Set Visible
ﬂ Runman Set ﬁ Bullet Disabled
zj Runman DFade: start fade
("} Ghost Set ¢” Bullet Disabled
) Ghost DFade: start fade

Figure 12-14. Events for the end of the game

Congratulations! You have now finished implementing the core mechanics of the
game Maze Runman.

Side Quests

In this optional section, you will add a special collectable jewel item that will repeatedly
spawn at a specified location for the player to collect, giving the player repeated chances
for extra points. Additional features will also be suggested at the end of this section.

Adding a Jewel Bonus Item

To add more variety to the maze, you will add a special collectable jewel item that will
repeatedly spawn at a specified location (designated by a SpawnPoint sprite), and on
collection, the jewel should grant the player a bonus of 100 points. To begin, add a new
sprite named JewelSpawn with any drawn image (this sprite will be invisible during
gameplay), and resize it to 32, 32.Find alocation of a coin in the middle of the maze,
delete that particular coin instance, and position the JewelSpawn at that location. Then,
set Initial visibility to Invisible. Next, add a new sprite named Jewel, with the image
jewel.png, and position it in the layout margins. Add the Fade behavior to the jewel, and
set Wait time to 9. Every 20 seconds a jewel should spawn, and the player will have 10
seconds to collect it before it disappears. In the event sheet, create a new group named
Jewel Events. To this group, add a new event with the condition System - Every X seconds
(20) and the action JewelSpawn - Spawn another object (Jewel). Add another event to
this group with the condition Runman - On collision with another object (Jewel); add the
action System - Variables: Add to (add 100 to Score), and add the action Jewel - Destroy.
When you are finished, the events should appear as in Figure 12-15.

173

CHAPTER 12 I MAZE RUNMAN

38 - Jewel Events

39 #Syste:n Every 20 seconds SEJL".«-L‘Ibpawn Spawn ‘W Jewel on layer 0 (image point 0)
40 ” E Runman On collision with W Jewel #-System Add 700 to Score
V¥V evel Destroy

Figure 12-15. Events for the bonus jewel item

On Your Own

As usual, you should add menus, pause functionality, and audio to the Maze Runman
game. You could add more maze levels, each with a new, different design. After all the
coins have been collected in a level, you could use the System - Go to layout action to
start the next level; the score will be preserved since it is stored in a global variable. You
could implement a global variable called Level to keep track of what level you are on and
display it on the user interface. As you reach a new level, you could make the player and
ghosts have higher speeds to ramp up the difficulty. In addition, to compensate for this
higher difficulty, more points could be awarded for collecting coins in higher levels.

You could design and create more types of enemies besides ghosts. For example, you
could create a Spider enemy, whose movement (limited to either vertical or horizontal)
is controlled by the Sine behavior; its position and magnitude (a multiple of 32) would
have to be determined and set manually for each instance to prevent it from appearing to
move through walls. You could also add different types of jewel that appear at the spawn
point (randomly selected by the choose function, similar to the Item objects from the
Rectangle Destroyer game), with each jewel worth different point values. You could even
implement a “runaway” moving jewel, controlled by a similar set of events as the ghosts,
with the comparisons reversed so that the jewel moves away from Runman instead of
toward him. This jewel could be set to disappear after a certain time interval, adding to
the challenge. If the player catches this jewel, then the player should earn a great number
of points.

Summary

In this chapter, you created the game Maze Runman. By using a tilemap, you created a
maze for the player to strategically navigate, while collecting coins and avoiding ghosts.
You learned how to implement precise grid-based movement by combining the Bullet
and Timer behaviors. You were introduced to the Array object, which helped you store
multiple values. By accessing the array data, you created events that simulated intelligent
behavior for the ghosts and created variations on their movement patterns. Throughout
the chapter, you organized events by using groups in the event sheet. The “Side Quests”
section discussed how to create a regularly reappearing jewel for bonus points and
suggested a variety of other features you could add to your game.

In the next chapter, you'll create another game where the player collects coins and
dodges enemies: a side-view, platformer-style game called Jumping Jack.

174

CHAPTER 13

Jumping Jack

In this chapter, you will create a side-perspective platform-style game called Jumping
Jack, shown in Figure 13-1, inspired by classic arcade and console games such as Super
Mario Bros.

@2 &

2eoeeeee

Figure 13-1. The Jumping Jack game

In Jumping Jack, the player controls Jack the Koala, whose goal is to navigate a level,
collecting coins and dodging or defeating enemies along the way, until he reaches the flag
at the end of the level. Enemies come in two varieties: the flying type, which fly back and

© Lee Stemkoski and Evan Leider 2017 175
L. Stemkoski and E. Leider, Game Development with Construct 2,
DOI 10.1007/978-1-4842-2784-8_13

CHAPTER 13 I JUMPING JACK

forth between two given points, and the ground type, which move along the ground and
reverse direction whenever they encounter a wall. Enemies can be destroyed by jumping
on top of them, but otherwise they damage the player on contact. After being hit three
times, the player loses the game. The environment itself contains a variety of interactive
elements, such as ladders that can be climbed, springboards that launch the koala into
the air, platforms that can be jumped through from underneath, brick blocks that can

be destroyed by colliding with them from underneath, and keys that can be collected

to allow the koala to pass through locked blocks. The “Side Quests” section describes
additional potential features such as adding a countdown timer.

The player controls the koala using the arrow keys to walk and climb ladders and
using the spacebar to jump. The user interface displays the number of coins collected,
the health of the koala, and whether any keys have been collected. This project uses the
Tilemap, Sprite, TiledBackgrounds, and Keyboard objects, and it uses the behaviors Scroll
to, Pin, Fade, Bullet, Solid, and Flash. The koala character uses a new behavior called
Platform for standard platform controls, as well as the 8-Direction behavior for climbing
ladders. The behavior JumpThru is introduced to create a special type of one-way solid.
The Function object will be introduced to avoid repeating code, and the Particle object
will be introduced for a brick-breaking visual effect.

To begin, download the assets for this chapter from the book web site. Set the layout
size to 1600, 640 and the window size to 800, 640. On the View tab, select the Snap to
grid and Show grid check boxes, and set the grid width and grid height both to 16. Add
three additional layers to your project (for a total of four layers), naming them Background,
Map, Main, and UI. The reason for using four layers in this project (as opposed to three, as
you have in previous projects) is that the background image needs to scroll more slowly
than the tilemap for a parallax effect (as in the Plane Dodger game in Chapter 6), so it
must be in a separate layer. At the same time, to avoid accidentally selecting or modifying
the tilemap once it is complete (as discussed when developing the Racecar 500 game in
Chapter 7), the tilemap should be in its own layer so that it can be locked later. For the
Background layer, set Parallax to 50, 0; this will cause the Background layer to scroll at
half the speed as the Map and Main layers while the player navigates the level. For the UI
layer, set Parallax to 0, 0; this will fix the Ul in place, as desired.

Level Design

In this section, you will set up a basic level. In the Background layer, add a
TiledBackground object named Background with the image background.png. Resize and
position this object so that it covers the entire layout. In the Map layer, add a TileMap
object named Map with the image platform-tiles.png. These tiles are 32-by-32 pixels,

so the default properties for the tilemap do not need to be adjusted. However, you should
adjust the collision polygons for the nonsquare tiles, as you did for the Racecar 500 game
in Chapter 7. In the layout, add some ground tiles across the bottom of the map. Also,
create some walls (at least six blocks high) on each side to stop the player from falling off
the sides of the level. (Alternatively, you could create invisible solid objects to place at
either end to serve the same purpose.) Feel free to add a staircase or two in the middle for
variety and perhaps some floating platforms. Many other objects will be added later in the
chapter, so do not feel compelled to fill the tilemap at this time; leave plenty of open space
available. When you are finished, the layout should appear similar in style to Figure 13-2.

176

http://dx.doi.org/10.1007/978-1-4842-2784-8_6
http://dx.doi.org/10.1007/978-1-4842-2784-8_7
http://dx.doi.org/10.1007/978-1-4842-2784-8_7

CHAPTER 13 I JUMPING JACK

When you are finished, add the Solid behavior to the tilemap, click the selection tool in
the Tilemap panel, and lock the Background and Tilemap layers.

P S

e I o i b e G P B P e B i)

Figure 13-2. Background and basic tilemap setup

Player Setup

The next goal is to set up the koala character that the player controls. Set the active layer
toMain, and add a new sprite named Koala. In the image editor, set up the following
animations with the given names, images from the koala folder, and animation properties
(when applicable):

e Name: Stand. Image: stand.png.
e Name: Jump. Image: jump.png.

e Name: Walk. Images: walk-1.png, walk-2.png, walk3.png. Set
Speed to 6, Loop to Yes, and Ping-pongto Yes.

e Name: Climb. Images: c1limb-1.png, climb-2.png. Set Speed to 6
and Loop to Yes.

When you are finished, you need to adjust the collision polygon so that it is
consistent across all frames of all animations; otherwise, strange glitches may occur.
Select the Stand animation, and adjust the collision polygon (deleting and repositioning
vertices as necessary) until it is a rectangle, somewhat thinner than the image itself, as
illustrated in Figure 13-3. Make sure that the left and right sides of the collision polygon
are perfectly vertical. For precise measurements, when a vertex is selected, its coordinates
are displayed at the bottom of the image editor window, and its position can be adjusted
pixel by pixel with the arrow keys. When you are finished, right-click the polygon, and in
the menu that appears, select Apply to all animations.

177

CHAPTER 13 I JUMPING JACK

Figure 13-3. Collision polygon for the Koala sprite

For the Koala object, set Size to 32, 50, and add the behaviors Platform, Scroll to, and
8-Direction. The Platform behavior handles walking and jumping. However, the ability
to climb ladders must be managed separately. For example, when climbing a ladder,
gravity does not affect the player, and the player can also move up and down. This can be
efficiently handled by using two behaviors, enabling one and disabling the other when
appropriate. Set the Platform properties Max speed to 120 and Default controls to No. Set
the 8-Direction properties Max speed to 120, Set angle to No, and Initial state to Disabled.
There are no conditions that check whether these behaviors are enabled, so you will store
this information with an instance variable. Add an instance variable and set Name to
State, Type to Text, Initial value to Normal, and Description to Normal or Climbing.

The reason you disabled the default Platform controls is that you will reserve the up
and down arrow keys for climbing, and the spacebar (or another key of your choice) can
be used for jumping. Next, you will implement these alternative controls. At the same
time, you will use the Appearance: Set mirrored action to reflect the sprite image so that
the koala is facing in the direction that it is moving. In the layout, add a Keyboard object
and then open the event sheet. Because of the large number of events in this project, you
will use groups to keep your events organized. In the event sheet, add a group named
Player Movement, and add the following subevents in this group (be sure to use the
Platform action Simulate control, not the 8-Direction action):

e Add the condition Keyboard - Key is down (Left arrow), add the
action Koala - Platform: Simulate control (Left), and add the
action Koala - Appearance: Set mirrored (Mirrored).

e Add the condition Keyboard - Key is down (Right arrow), add the
action Koala - Platform: Simulate control (Right), and add the
action Koala - Appearance: Set mirrored (Not Mirrored).

e Add the condition Keyboard - On key pressed (Space), and add the
action Koala - Platform: Simulate control (Jump).

178

CHAPTER 13 I JUMPING JACK

The completed events should appear as shown in Figure 13-4.

- Player Movement
2 Keyboard Left arrow is down z—’_\ Koala Simulate i Platform pressing Left
Koala SetMirrored

2 Keyboard Right arrow is down E Koala Simulate i Platform pressing Right
#% Koala Set Not mirrored

“EEKeyboard On Space pressed # Koala Simulate 3 Platform pressing Jump

Figure 13-4. Player movement events

This is a good point to save and test your game. At this point, check that the controls
move the koala as expected and that the screen scrolls along with the koala (and the
background scrolls at half-speed). The koala should face the direction it is moving in, but
the animations have not been activated yet; you set these up (except for climbing) next.
Asyou will see, the Platform behavior has a great number of conditions that check the
movement and surroundings of the object, and these are quite useful for activating the
correct animation.

In the event sheet, add a new group named Player Animation. In this group, add a
subevent with the condition Koala - Compare instance variable, and check whether State
equals Normal. Create three subevents to this condition as follows:

e Add the condition Koala - Platform: Is on floor, add the inverted
condition Koala - Platform: Is moving, and add the action
Koala - Set Animation ("Stand").

e Add the condition Koala - Platform: Is on floor, add the condition
Koala - Platform: Is moving, and add the action Koala - Set
Animation ("Walk").

e Add the inverted condition Koala - Platform: Is on floor, and add
the action Koala - Set Animation ("Jump").

The completed events should appear as in Figure 13-5. Once again, save and test
your game and confirm that the animations appear as expected.

179

CHAPTER 13 I JUMPING JACK

- Player Animation

= B Koala State = “Normal”
Koala & Platform is on floor # Koala Setanimation to "Stand" (play from beginning)
3 Koala X i Platform is moving
R Koala 8 Platform is on floor # Koala Set animation to “Walk" (play from beginning)
Koala B Platform is moving

koala M B Platform is on floor # Koala Setanimation to "Jump” (play from beginning)

Figure 13-5. Player animation events

Ladders and Climbing

In this section, you will implement the ladder-climbing mechanic. This is complicated
because of the need to switch between two different behaviors, determine the different
conditions in which the player will want the koala to start or stop climbing, and handle
the animations. To reduce the repetition of particular sets of actions, you will also learn
how to use the Function object. To start, create a new TiledBackground object named
Ladder, using the image ladder. png. You are using a TiledBackground rather than a
Sprite object so that the pattern of rungs repeats as you resize the object. Resize and
position the Ladder object so that it is 32 pixels wide and so it reaches from the ground to
the top of one of your tilemap platforms, as shown in Figure 13-6. Also, add the behavior
Jump-thru to the ladder. This behavior allows other objects to pass though from below,
but not from above, a mechanic that is used in many platform-style games.

Figure 13-6. Setting up a ladder next to a tilemap platform

When switching from the platform behavior to the 8-Direction behavior for climbing,
two of the required actions are to disable the Platform behavior and to enable the
8-Direction behavior. In addition, the koala’s State variable should be set to keep track
of the control scheme being activated (in this case, "Climbing"). One subtle point that
needs to be taken into account is the koala’s motion at the moment when a movement

180

CHAPTER 13 I JUMPING JACK

behavior is disabled. Both the Platform and 8-Direction variables independently keep
track of the koala’s velocity in the X and Y directions in variables named VectorX and
VectorY. Whenever you disable a behavior, you should set both of these values to 0.
Otherwise, when the behavior is reenabled later, these variables will be restored to their
original values at the moment the behavior was disabled, causing unexpected motion in
some direction.

As will be discussed later, you will see that there multiple combinations of conditions
for which the koala should start climbing or stop climbing. To avoid entering the same
set of actions repeatedly, you will use the Function object. The Function object has many
uses, one of which is to activate another event in the event sheet. In the layout, add the
Function object to the project. Much like the Keyboard or Audio object, this does not add
anything to the layout, but it enables extra conditions and actions in the event sheet. In
the event sheet, in the Player Movement group, add a new subevent with the condition
Function - On Function, and set Name to "ClimbStart". This event can be activated at a
later time by a Function object action named Call function, as you will see. Next, add the
following actions to the event you just created:

e Koala - Platform: Set enabled (Disabled)

e Koala - Platform: Set Vector X (0)

e Koala - Platform: Set Vector Y (0)

e Koala - 8-Direction: Set enabled (Enabled)

e Koala - Instance variables: Set value, with State set to "Climbing"

Add another subevent in this group, again with the condition Function - On
Function, but this time set Name to "ClimbStop". Add the following set of actions, which
closely correspond to the set of actions earlier:

e Koala - 8-Direction: Set enabled (Disabled)

e Koala - 8-Direction: Set Vector X (0)

e Koala - 8-Direction: Set Vector Y (0)

e Koala - Platform: Set enabled (Enabled)

e Koala - Instance variables: Set value, with State set to "Normal"

When you are finished, the events should appear as in Figure 13-7. You can save your
project, but there is nothing new to test at this time, as no other events have activated
these functions yet.

181

CHAPTER 13 I JUMPING JACK

@Y Function On "ClimbStart" # Koala Set 54 Platform Disabled
Koala Set SR Platform vector X to 0
ﬁ Koala Set i Platform vector Y to 0
Koala Set £#3 8Direction Enabled
}3 Koala Set State to "Climbing”

% ¥ Function On "ClimbStop™ # Koala Set {#} 8Direction Disabled
Koala Set {#2 8Direction vector X to 0
}'3 Koala Set *:EE 8Direction vector Y to 0
}3 Koala Setiplatform Enabled
#: Koala Set State to “Normal®

Figure 13-7. Functions that switch the Platform and 8-Direction behaviors

Next, we will discuss the conditions for which one of these functions should be
activated. The most obvious cases are that when the koala is overlapping a ladder and
the player presses either the up arrow or down arrow key, the ClimbStart event should
be called, and whenever the koala is not overlapping a ladder, then the ClimbStop event
should be called. However, there are two subtle additional scenarios to consider. First, if
the koala is climbing down and reaches the ground, then the player probably wants the
koala to stop climbing. If the koala is standing on top of the ladder and the player presses
down, then the player probably wants to start climbing.

The logical difficulty with checking these last two scenarios is that they both involve
the area directly below the koala’s feet. The most straightforward way to be able to check
these conditions is to create a sprite that serves as a “sensor” for this area, as follows.
Create a new sprite named Below, and use the image editor drawing tools to fill in the
box with a solid color and draw a letter B. When you are finished, close the image editor
windows, change the property Size to 24,18, and set Initial visibility to Invisible.
Position the sprite so that it appears a few pixels below the bottom of the Koala sprite, as
shown in Figure 13-8 (you may need to temporarily disable the Snap to grid option to line
it up accurately, or press the Alt key while dragging to ignore the grid positioning). Add
the Pin behavior to the Below object. To active the Pin object, in the event sheet, create a
new event with the condition System - On start of layout, and add the action Below - Pin
to object (Koala). In addition, since the ladder was added after the koala, the koala will
appear underneath the ladder. To remedy this, add a section action to the event: Koala - Z
Order: Move to top. This event should appear as in Figure 13-9.

182

CHAPTER 13 © JUMPING JACK
-~
»

Figure 13-8. Placement of the Below sprite

+ &% System On start of layout @Beluw A PinPinto E Koala (Position & angle)
'E\ Koala Move to top of layer

Figure 13-9. Events to activate on start of layout

Now you are ready to add the events that activate and deactivate the climbing
behavior. In the group Player Movement, add the following five subevents, which are also
shown in Figure 13-10:

e Addthe condition Keyboard - On key pressed (Up arrow), add the
condition Koala - Is overlapping another object (Ladder), and add
the action Function - Call function ("ClimbStart").

e Add the condition Keyboard - On key pressed (Down arrow), add
the condition Koala - Is overlapping another object (Ladder), and
add the action Function - Call function ("ClimbStart").

e Add the inverted condition Koala - Is overlapping another
object (Ladder), and add the action Function - Call function
("ClimbStop").

e Add the condition Keyboard - Key is down (Down arrow), add the
condition Below - Is overlapping another object (Map), add the
inverted condition Below - Is overlapping another object (Ladder),
and add the action Function - Call function ("ClimbStop").

e Add the condition Keyboard - On key pressed (Down arrow), add
the condition Below - Is overlapping another object (Ladder), add
the inverted condition Below - Is overlapping another object (Map),
add the action Function - Call function ("ClimbStart"), and add
the action Koala - Move at angle, with Angle set to 90 and Distance
setto 2.

183

CHAPTER 13 I JUMPING JACK

@& Keyboard On Up arrow pressed ey Function Call "ClimbStart” ()
& Koala Is overlapping |— Ladder
“E&% Keyboard On Down arrow pressed e Function Call "ClimbStart” ()
B Koala Is overlapping [Ladder
£ Koala X Is overlapping = Ladder o Function Call “ClimbStop” ()
2 Keyboard Down arrow is down e Function Call "ClimbStop™ ()
:Eselow X Is overlapping |— Ladder
@Below Is overlapping 8 Map
@& Keyboard On Down arrow pressed ey Function Call "ClimbStart” ()
Eselow Is overlapping |— Ladder £ Koala Move 2 pixels at angle 90

[Bleelow X Is overlapping "8 Map

Figure 13-10. Events to activate and deactivate climbing

In the last two events listed, the overlapping map conditions are present to stop the
koala from trying to start climbing when the solid tilemap is in the way and to stop the
koala from falling off the ladder too soon in the situation where the bottom of the ladder
is not next to solid tiles from the tilemap. In addition, the extra action in the last event is
necessary because the Jump-thru behavior on the ladder prevents the koala from passing
through it from above, so an initial adjustment is required. Finally, in some platform
games, pressing the jump button also causes the player to stop climbing and “fall down”
(return to the Platform controls); you can add this feature as a sixth event if desired.

Although you could test the climbing mechanic at this time, the koala would appear
strange while climbing because the events that activate the climb animation have not
yet been set up; this will be your next step. In the Player Animation group, add a new
subevent with the condition Koala - Compare instance variable, and check whether State
equals "Climbing". Create two subevents to this condition as follows:

e Add the condition Koala - 8-Direction: Is moving, and add the
action Koala - Set Animation ("Climb").

e Add the condition System - Else, and add the action
Koala - Animation: Stop.

Figure 13-11 shows these events. Now is an excellent time to save and test your game
and verify that the climbing mechanic works as desired. However, when climbing up the
ladder, the player will have to be careful to align the koala so that its head does not hit
a tilemap tile while climbing, which, having the Solid behavior, would prevent further
movement. Try every combination of movement that can trigger these events: standing
on the ground and climbing up the ladder, standing on top of the ladder and climbing
down, climbing the ladder starting from midjump, falling off the ladder by climbing to
either side, and so on.

184

CHAPTER 13 I JUMPING JACK

Koala State = “Climbing”
E\ Koala ':ﬁﬁaireaion is moving k Koala Set animation to “Climb™ (play from beginning)
Lk system Else 2 Koala Stop animaticn

Figure 13-11. Events to activate the climbing animation

Overall, climbing ladders is a difficult and complicated mechanic to implement well,
so congratulations on completing this section!

Additional Game Objects

In this section, you will create a variety of objects for the koala to interact with, which will
make the gameplay much more interesting. In particular, you will add a flag (which it is
the koala’s goal to reach), platforms that can be jumped through, coins to collect along
the way, springboards that launch the koala into the air, bricks that can be broken, coins
to collect along the way, and keys that let the koala pass through locked blocks. Although
many of these objects could be considered optional, it is worth implementing them all to
learn how the game mechanics work, and later you can make a final decision on which

of these to include. To keep your code organized, in the event sheet, create a new group
named Object Interaction. All the events you create in the following sections should be
subevents in this group unless stated otherwise.

Goal Flag

The player needs to have a goal; in this game, you will create a flag that the koala is trying
to reach. Create a new sprite named Flag; in the Animation frames window, load the
spritesheet flag.png (two horizontal cells and one vertical cell), and set the Animation
properties Speed to 5 and Loop to Yes. Make sure the Flag object is on the Main layer, and
place it near the end of your level. Create another new sprite, named MessageComplete,
using the image message-complete.png. Place it on the Ul layer; to center it in the
window, make its X coordinate 400 (since a sprite’s location is measured from its center
by default and the window is 800 pixels wide). Its Y coordinate can be anything you

want, although you should avoid overlapping the other elements on the Ul layer. Set the
property Initial visibility to Invisible. Then, in the event sheet, add a new event with the
condition Koala - On collision with another object (Flag), add the action Koala - destroy,
and add the action MessageComplete - Set visible (Visible). Figure 13-12 shows this event.

21 Object Interaction

2= R Koala On collision with Flag ~—MessageComplete Set Visible

;3 Koala Destroy

Figure 13-12. Event to display a message after reaching the goal

185

CHAPTER 13 I JUMPING JACK

Jump-Through Platforms

Jump-through platforms are a common feature in many platform-style games; in some,
they are used as an alternative to ladders that enable the player to reach higher areas in
the level. Since the Construct game engine provides a Jump-thru behavior (which you
have used previously in the section on ladder mechanics), this is fairly straightforward.
Recall that the Jump-thru behavior enables an object to act as a solid from above, while
enabling the player to move (or jump) through it from below. In the layout, create a new
TiledBackground object named Platform using the image log-bridge.png. You are using
a TiledBackground object instead of a Sprite object so that the image repeats, similar to
the Ladder object. Add the Jump-thru behavior. In the layout, change the height of your
platform to 16 pixels, but make the width anything you like.

Optionally, you may want to give the players the ability to jump down through
platforms, which is conveniently an action provided with the Platform behavior. An
intuitive control scheme to activate jumping down is when the koala is standing on a
platform and the player presses the jump button while holding the down arrow key. To
configure this event, locate the event in the Player Movement group that contains the
action Platform - Simulate control (Jump). To this event, add a subevent with the condition
Keyboard - Key is down (Down arrow) and the condition Koala: Compare instance variable
(check whether State is equal to "Normal"). Then add the action Koala - Platform: Fall
through. Figure 13-13 shows this subevent.

EZKeyboard Down arrow is down ;:} Koala Fall "ﬁ_ Platform down through jump-thru
£ Koala State = "Normal”

Figure 13-13. Event for jumping down through Platform objects

Another optional feature to add to the platform objects is movement, which is most
easily accomplished by adding the Sine behavior and setting the Sine property Movement
property to Horizontal or Vertical. To make each platform move a greater distance,
you can increase the value of the Magnitude property, but you will need to increase the
Period property by the same factor if you want to keep the same speed of movement. If
you add the Sine behavior but you still want some platforms to remain stationary, set their
Magnitude value to 0.

Springboards

With the default Platform behavior property values, the koala can jump to a height of
nearly five (32-pixel) tiles. To overcome walls or other barriers higher than this, you could
design a route involving ladders or platforms. To add some variety, you could also create a
springboard, which is an object that launches a character into the air when the character
lands on it. To implement this, create a new sprite named Springboard; in the Animation
frames window, load the spritesheet springboard.png (three horizontal cells and one
vertical cell), and set the Animation properties Speed to 8, Loop to Yes, and Ping-pong to
Yes. Adjust the collision polygon for each frame of the animation to fit the image displayed

186

CHAPTER 13 I JUMPING JACK

in each frame. In the event sheet, create a new event with the condition Below - On
collision with another object (Springboard), and add the action Koala - Platform: Set Vector
Y (-1000). Vector Y indicates motion in the vertical axis; the negative value indicates the
upward direction. Figure 13-14 shows this event. Feel free to experiment with the value of
Vector Y until you are satisfied with the jump height.

24 " Below On collision with "9 Springboard E Koala Set ﬁPIaLfcrm vector Y to -1000

Figure 13-14. Event to implement a springboard game mechanic

Breakable Bricks

Destructible objects are another type of classic platform game objects. In this section, you
will implement breakable bricks, which can be destroyed by the koala if he jumps into
them from underneath or, equivalently, if the area above the koala collides with the brick.
To detect collisions in this area, you will create another sprite (named Above) that will be
invisible and pinned to the koala, similar to the Below sprite. To provide visual feedback to
the player when the brick is destroyed, you will create an animated effect that resembles
brick fragments falling down. Since it is difficult to find a spritesheet with this particular
sequence of images, you will learn how to simulate this effect with a Particle object.

First, create a new sprite named Brick using the image brick.png. Open the
collision polygon editor, right-click to bring up the corresponding menu, and select Set to
bounding box. This is important to keep the koala from “snagging” or getting caught on
the corners if he were to walk across the top of a row of bricks. Create a few new instances
of this object, and position them around the level within the jumping range of the koala.

Create a new sprite named Above; use the image editor drawing tools to fill in the
box with a solid color and draw a letter A. When you are finished, close the image editor
windows, change the size to 16, 16, and set Initial visibility to Invisible. Position this
sprite above the head of the koala sprite. Add the Pin behavior. In the event sheet, locate
the On start of layout event, and add the action Above - Pin to object (Koala).

Next, you will set up a Particle object. Particle objects generate particle systems,
which are large numbers of copies of a single small image (each of which is called a
particle) that move independently to simulate visual effects; these are often used to create
animations of smoke, fire, star fields, and so forth. There are a great number of properties
that can be configured for the Particle object, only some of which will be discussed in
the text that follows. In the layout, create a new Particle object named Fragments; in
the image editor, open the image fragment.png. Close the image editor, and position
the fragments object in the left margin of the layout area. The relevant particle object
properties that you need to modify are briefly defined, and their values should be set as
listed here:

e Type: This can be Continuous (to create a constant spray of
particles over a period of time) or One-shot (which generates a
set number of particles at a single instant in time); set this to
One-shot.

187

CHAPTER 13 I JUMPING JACK

e Rate: If Type s set to Continuous, this represents the number of
particles generated per second. If Type is set to One-shot, this
represents the total number of particles generated. Set this to 6.

e Spray cone: This represents the range of directions (specified in
degrees) in which the particles can be fired; the angle of motion
for each particle will be a random number between 0 and this
number. Set this to 120.

e Speed: This is how fast the particles move initially; set this to 300.
e Size: This is the initial size of the particles; set this to 16.

e Gravity: This represents the downward acceleration of the
particles. For consistency, this value should match the value for
the platform behavior, so you should set this to 1500.

e Acceleration: This represents the change in speed per second; this
is not needed for the intended effect, so set this to 0.

e Speed randomizer: This specifies a random adjustment to the
speed of the particles; since this is also unnecessary for this effect,
set this to 0 as well.

e Destroy mode: This determines when the particle will be
destroyed: after fading out, after a certain amount of time passes,
or after the particles stop moving. Set this to Timeout expired.

e Timeout: This is the time in seconds until the particles will be
destroyed; set this to 3 (so that the particles will have enough time
to fall past the bottom edge of the layout).

Finally, you can set up the event that enables the koala to destroy the bricks. In the
event sheet, create a new event with the condition Above - On collision with another
object (Brick), and add the following three actions:

e Add Brick - Spawn another object (Fragments, on the "Main"
layer).

e Add Fragments - Set angle (270) so that the particle spray cone
direction faces upward.

e Add Brick - Destroy.

When finished, this event should appear as in Figure 13-15.

25 “"E!Abn'\.fc- On collision with [Brick Bl Brick Spawn Fragments on layer "Main™ (image point 0)

L
Fragments Set angle to 270 degrees
Bierick Destroy

Figure 13-15. Event to create breakable bricks with a particle effect

188

CHAPTER 13 I JUMPING JACK

Coins

A standard feature in many platformer games is the ability to collect some type of object,
such as coins. They may be worth a certain number of points, or collecting a certain
number may yield some type of award to the player, such as an extra life. Players can

use them as a benchmark of their skill and have the personal goal of collecting more
than their personal best, with the ultimate goal of collecting them all. As they have the
potential to serve so many purposes, you will learn how to implement collectible coin
objects in this game.

To begin, create a new sprite named Coin, and in the image editor Animation frames
window, load the spritesheet coin.png (six horizontal cells and one vertical cell). Set the
Animation properties Speed to 8 and Loop to Yes. Close the image editor windows, and
in the layout, change the property Size to 24, 24. Create a few additional instances of the
Coin object. To keep track of the number of coins collected by the koala, add an instance
variable to the koala named Coins with an initial value of 0. To display this value on the
user interface, create a new Text object named TextCoins with Text set to 0, and change
the font to Arial, bold, size 36. Change the font color to a golden yellow to match the coins
themselves. For visual simplicity, instead of displaying the word Coins in the Text object,
you will add an icon to the Ul instead. Create a new sprite named IconCoin with the
image icon-coin.png. Make sure that TextCoins and IconCoin are both on the Ul layer,
and position them in the upper-left area of the layout, with the icon to the left of the text.
(Figure 13-18 shows how they will be positioned, after you have added some other user
interface elements later.) The final addition to the layout will be a sparkle animation that
will appear every time a coin is collected; this gives visual feedback to the player. On the
Main layer, create a new sprite named Sparkle, and in the image editor Animation frames
window, load the spritesheet from the sparkle folder named sparkle-yellow.png
(four horizontal cells and eight vertical cells). Set the animation property Speed to 60.

With these objects added, you can now set up the corresponding events. First, create
anew event with the condition Koala - On collision with another object (Coin), and add
these three actions: Koala - Instance variables: Add to (add I to Coins), Coin - Spawn
another object (Sparkle, on layer "Main"), and Coin - Destroy. Create another event with
the condition Sparkle - Animation: On any finished, and add the action Sparkle - Destroy.
Finally, create an event with the condition System - Every tick, and add the action TextCoins -
Set Text (Koala.Coins). When finished, these events should appear as in Figure 13-16.

26 |* ?_\ Koala On collision with Coin ?j Koala Add 1 to Coins
Coin Spawn Sparkle on layer "Main” (image paoint 0)
Cain Destray

27 = Sparkle On any animation finished Sparkle Destray

28 £E system Every tick iTiTextCoins Set text to Koala.Coins

Figure 13-16. Events related to the coin-collecting mechanic

189

CHAPTER 13 I JUMPING JACK

Keys and Locked Blocks

A feature common in many genres of games are locked doors, which are obstacles in
the level that require the player to obtain a key in order to pass. Locks temporarily block
further progress and can be used to help guide the player through a level, motivating the
player to more fully explore a level to locate and obtain the necessary key. In this game,
the locked doors will be solid-colored blocks (with a keyhole), and if the player obtains
the correspondingly colored key, these blocks will unlock (disappear) on contact. There
will be an icon in the user interface whose appearance changes once the player has
obtained the key. To keep track of whether the player has collected a key (or any other
objects), one often uses a variable, but for simplicity in this project, you will use the

Ul icon animation name for this purpose. As with the coins earlier, you will also create
another colored sparkle effect to provide visual feedback when the player has collected
the key.

To begin, create a new sprite named KeyBlue with the image key-blue.png. (For
organizational purposes, you will find this image, as well as the other key-related images,
in the key folder.) Close the image editor, change the size to 32,32, and position the key
somewhere easily accessible in your layout. Create a new sprite named LockBlue with
the image lock-blue.png. Just as you did for the Brick objects earlier (and for the same
reasons), you need to adjust the collision polygon of the LockBlue object so that it is set
to the bounding box. Once this is done, close the image editor, and change the brick size
to 32,32. Add the behaviors Solid and Fade, and change the properties Active at start to
No and Fade out time to 0.25. Create a new sprite named IconKeyBlue with the image
key-blue-icon-0.png; this will be the default image displayed on the user interface. Add
another animation named Collected, with the image key-blue-icon-1.png; this will
be shown after the key is collected. Make sure that IconKeyBlue is on the Ul layer, and
position it in the layout near the upper-right area of the window bounds (indicated by a
dashed line, shown in Figure 13-18). Finally, add a new animation to the Sparkle object
named Blue using the spritesheet sparkle-blue.png and using the same settings as
when you created the original sparkle animation.

You will set up two events for this mechanic, one for collecting the key and the other
for removing the locks. First, create a new event with the condition Koala - On collision
with (KeyBlue). Although only two actions are strictly necessary (destroying the key and
updating the corresponding icon image), you will implement additional actions for visual
feedback and to draw the player’s attention to the changed state of the Ul icon. Add the
following actions:

e KeyBlue - Spawn another object (Sparkle on layer "Main")

e Sparkle - Set animation ("Blue")

e KeyBlue - Destroy

e System - Wait (1 second)

e IconKeyBlue - Spawn another object (Sparkle on layer "UI")
e Sparkle - Set animation ("Blue")

e IconKeyBlue - Set animation ("Collected")

190

CHAPTER 13 I JUMPING JACK

Create another event with the condition Koala - On collision with another object
(LockBlue) and the condition IconKeyBlue - Animation: Is playing ("Collected"); add
the action LockBlue - Start Fade and the action LockBlue - Solid: Set enabled (Disabled).
When you are finished, these two events should appear as shown in Figure 13-17.

29 —|* 3 Koala On collision with O KeyBlue Ow KeyBlue Spawn Sparkle on layer “Main" (image point 0)
Sparkle Set animation to "Blue” (play from beginning)
Ow KeyBlue Destroy
'u"jysle-n Wait 1.0 seconds
P conKeyBlue Spawn Sparkle on layer “UI” (image point ()
Sparkle Set animation to "Blue” (play from beginning)
G lconKeyBlue Set animation to "Collected” (play from beginning)
i * P Koala On collision with .I.ockBIue .Lo:kB ue G Fade: start fade
(:'?‘le KeyBlue Is animation "Collected” playing ._ULkB ue Sel g Scolid Disabled

Figure 13-17. Events related to the key and lock mechanic

If you want, you can create additional colored locks and keys, where each key
unlocks the blocks of the same color, using the same setup as described earlier.
Additional images for this purpose (keys, locks, icons, and sparkle effects) are included in
the graphics collection for this chapter.

Enemies

In this section, you will implement two different types of enemy creatures to provide a
more active challenge for the player. The first enemy will be an airborne creature named
Fly that flies (as the name implies) back and forth between two locations using the
waypoint-style mechanics used in the Spell Shooter and Airplane Assault games, but with
no randomness included. The second enemy will be a ground-based creature named
Slime that is subject to gravity (just as the koala is) and moves across the ground until
encountering a wall, at which point it turns around and moves in the opposite direction.
Both types of enemy have many features in common: they will use an instance variable to
keep track of their current travel direction, they can both be destroyed if the koala jumps
on top of them, and they both damage the koala if he collides with them in any other
manner.

Before implementing the enemies themselves, you will set up the health mechanic
for the player. Select the Koala object, and add a new instance variable named Health
with an initial value of 3. To display this value on the user interface, create a new Text
object named TextHealth with Text set to 3, and change the font to Arial, bold, size 36.
Change the font color to red. As before with the coins, you will add an icon to the user
interface instead of displaying the word Health. Create a new sprite named IconHeart
with the image icon-heart.png. Make sure that TextHealth and IconHeart are both
on the Ul layer, and position them in the upper-central area of the layout, between the
coin and key display. At this point, the user interface is complete and should resemble

191

CHAPTER 13 I JUMPING JACK

Figure 13-18. Add the Flash behavior to the koala; this will be used for a temporary
invincibility mechanic when the koala is damaged, similar to the setup for the plane in
the Airplane Assault game. Finally, in the event with the condition System - Every tick,
add the action TextHealth - Set text (Koala.Health).

o0 P

Figure 13-18. The final layout of icons and text in the user interface area

Next, you will implement the fly enemy. Create a new sprite named Fly, and in the
image editor Animation frames window, load the spritesheet fly.png (two horizontal
cells and one vertical cell). Set the animation properties Speed to 8 and Loop to Yes. Close
the image editor. Add the Bullet behavior, set Speed to 100, and set Set angle to No. Add
an instance variable named Direction, of type Text, with an initial value of Left and
description Left or Right. Next, create a new sprite named FlyPoint, using the image
editor tools to fill in the background, draw the letter F, and change the size to 32-by-32
pixels. Add an instance variable to this object named Move, of type Text, with an initial
value of Left and a description of Used to set Fly Direction to Left or Right.
Change the property Initial visibility to Invisible. In the layout, create another instance
of the FlyPoint object, and change its Move value to Right. In the layout, arrange the Fly
object and the two FlyPoint objects in a horizontal line. The FlyPoint object with Move
set to Right should be on the left, the Fly object should be in the center, the FlyPoint
object with Move set to Left should be on the right, and about 100 pixels of space should
separate each of these objects.

Now you will set up the events for fly movement, which are based on logic similar to
waypoints from earlier chapters. The idea is that if Direction is set to Left, then the sprite
image should face to the left and the angle of motion should be set to 180; corresponding
actions occur when Direction is set to Right. Whenever a Fly object collides with a
FlyPoint object, the Fly’s Direction variable should be set to the FlyPoint’s Move variable.
(This is why the FlyPoint on the left side has its Move variable set to Right, because that is
the new direction that the Fly should begin moving in after it collides with the FlyPoint.)
In turn, the angle of motion of the Fly object will be set according to the value of its Move
variable. To keep your events organized, start by creating a new group named Enemies;
the events in this section should be added as subevents to this group unless stated
otherwise. Create a new event with the condition Fly - Compare instance variable, and
check whether Direction is equal to "Left". Add the action Fly - Appearance: Set Mirrored
(Mirrored), and add the action Fly - Bullet: Set angle of motion (180). Create another new
event with the same set of conditions and actions, but change the parameters to check
whether Direction is equal to "Right", set the mirroring to Not mirrored, and set the
angle of motion to 0. Figure 13-19 shows these events.

There are two events needed for interaction between the Fly and Koala objects. If
the koala lands on top of the fly, the fly should be destroyed, and the koala bounces off
by a small amount. Any other collision between the koala and fly will damage the koala,
causing the koala to lose one health point and to flash for two seconds, during which

192

CHAPTER 13 I JUMPING JACK

period the koala cannot take additional damage. Create a new event with the condition
Below - On collision with another object (Fly) and the condition Koala - Platform: Is
falling. Add the action Fly - Destroy and the action Koala - Platform: Set Vector Y (-400).
Create another new event with the condition Koala - On collision with another object
(Fly), and add the inverted condition Koala - Is flashing. Add the action Koala - Instance
variables: Subtract from (subtract 1 from Health) and the action Koala - Flash (change
Duration to 2 seconds). These events are also shown in Figure 13-19.

31 wEnemies

32 & Fly Direction = “Left" & Fly Set Mirrored
& Fly Set ¢” Bullet angle of motion to 180 degrees
33 & Fly Direction = "Right” & Fly Set Not mirrored
& Fly Set ¢ Bullet angle of motion to 0 degrees
34 * & Fly On collision with E]Flypoint & Fly Set Direction to FlyPoint Move
L"Bclow On collision with & Fly & Fly Destroy
35 a 3
g Koala I'ﬁ‘ll"lalform is falling ﬁ Koala Set ir’latfmrn vector Y to -400
o ﬁ Koala On collision with & Fly ?:: Koala Subtract 7 from Health
36
}5_': Koala x Is flashing E Koala f; Flash: Flash 0.1 on 0.1 off for 2 seconds

Figure 13-19. Events related to the Fly enemy

Next, you will set up the Slime enemy. Create a new sprite named Slime, and in the
image editor Animation frames window, load the spritesheet slime.png (two horizontal
cells and one vertical cell). Set the animation property Speed to 4 and Loop to Yes. Close
the image editor. Add the Platform behavior, and set Max speed to 60 and Default controls
to No. Add an instance variable named Direction, of type Text, with an initial value of
Left and a description of Left or Right. Since the Platform behavior has conditions that
check for walls to the left or right, it is not necessary to create an object analogous to the
FlyPoint object to detect when the slime needs to change direction.

The slime movement events are analogous to the fly movement events, except that
instead of setting the bullet angle of motion, you will simulate the platform control in
the corresponding direction. Changing the value of the Direction variable will occur
when the slime is next to a wall. The events that result in the slime being destroyed or the
koala taking damage are identical to the corresponding events for the fly, except that the
references to the Fly object are replaced with the Slime object. To begin implementing
these features, create a new event with the condition Slime - Compare instance variable,
and check whether Direction is equal to "Left". Add the action Slime - Appearance: Set
Mirrored (Mirrored), and add the action Slime - Platform: Simulate control (Left). Create
another new event with the same set of conditions and actions, but change the parameters
to check whether Direction is equal to "Right", set the mirroring to Not mirrored, and set

193

CHAPTER 13 I JUMPING JACK

the simulated control to Right. Next, create an event with the condition Slime - Platform:
Is by wall (1eft), add the action Slime - Instance variables: Set value, and set Direction

to "Right". Create another event with the same condition and action, but change the
parameters to check whether there is a wall to the right, in which case the value of
Direction should be set to "Left".

Finally, you will create the events that handle interaction between the koala and the
slime. Since these events are so similar to the events for the Fly object, the quickest way
to create them is to copy and paste a new copy of each of the corresponding fly-related
events. Select the new copies of the events (clicking the area to the left of the condition
to ensure all the conditions and actions are selected), right-click to bring up a menu, and
select the Replace object; select Fly in the first window that appears, and select Slime in
the next window that appears. You should see that all the references to the fly have been
replaced by references to the slime. When you are finished, these events should appear as
in Figure 13-20.

37 wSlime Direction = "Left” wSlime Set Mirrored

= Slime Simulate ipl.ltfnrm pressing Left

38 ® Slime Direction = "Right" wSlime Set Not mirrored

mSlime Simulate iplalform pressing Right

39 = Slime ﬁ Platform has wall to left = Slime Set Direction to "Right”
40 ® Slime ﬁ Platform has wall to right w5lime Set Direction to “Left”
=’Below On collision with % Slime wSlime Destroy
41 : .
}3 Koala ﬁ[’latform is falling f: Koala Setiplatform vector ¥ to -400
= f: Koala On collision with & Slime 2: Koala Subtract 7 from Health
42
g Koala XK Is flashing ﬁ Koala ? Flash: Flash 0.1 on 0.1 off for 2 seconds

Figure 13-20. Events related to the Slime enemy

Finally, there needs to be a “game over” message that appears when the koala’s
health reaches 0. Create a new sprite named MessageGameOver using the image message-
game-over.png. Set its Layer to UI, set Initial visibility to Invisible, and center it within
the window bounds, as you did for the MessageComplete object earlier in the chapter.
Then add the event Koala - Compare instance variable to check whether Health is less or
equal than 0, and add the action Koala - Destroy and the action MessageGameQuver - Set
visibility (Visible). This event is shown in Figure 13-21.

194

CHAPTER 13 I JUMPING JACK

43 E\ Koala Health < 0 E‘ Koala Destroy

—=MessageGameOver Set Visible

Figure 13-21. Event to display the “game over” message

At this point, you now have a complete platformer game, with a great variety of
obstacles, enemies, and win and lose conditions. This is the longest and most complex
project you have encountered in this book thus far, so congratulations for reaching this
point!

Side Quests

With the number of features you have added to this project, the first improvement you may
want to consider is designing an interesting level, combining the features in various ways.
You could create a mazelike level where the player has to search for a key to unlock a group
of blocks surrounding the goal flag. You could add difficult jumps requiring great precision
or many enemies for an extra challenge. You could add scenic elements (such as clouds
and bushes) to the level, similar to the recommendation from the Racecar 500 game.

Pits are a feature that many platform games add; pits are holes in the ground that
cause the player to lose if they fall through. Your instinct may be to add the Destroy
outside layout behavior to the koala. However, this would have the unfortunate side effect
of also destroying the player if they jumped above the top edge of the layout, which could
easily happen, depending on your particular level design. If you want to implement this
gameplay mechanic, one approach is to a new sprite named Pit, resizing it to be longer
than the entire map and placing it in the margins of the layout, about 100 pixels below the
bottom edge of the level. Create a corresponding event that checks whether the koala has
collided with the Pit sprite and, if so, sets the koala’s health to 0. At that point, the “game
over” event will handle displaying the MessageGameOver object.

Another item you could add is a heart item that adds one to the koala’s health when
it is collected. You could set up a heartbeat-like pulsing animation with the Sine behavior
set to change the size of the object. A few heart items could be strategically placed around
the level in difficult-to-reach locations, or they could be occasionally spawned when an
enemy is destroyed, similar to the item-spawning mechanic from the Rectangle Destroyer
game. Locate the event where an enemy is destroyed, and create a subevent with a
condition that compares a randomly generated number to a fixed number.

Currently, only enemies cause the koala to lose health points. You could add an
environmental hazard, such as spikes, that damage the player on collision. Since you
don’t want the player to be able to walk through the spikes, you probably want to add the
Solid behavior to the sprite. However, to stop the player from simply walking across the
spikes damage-free after the first collision, you may instead want to replace the collision
condition with checking for overlap with the Below sprite (which is sufficient if the spikes
can only be fallen onto from above).

To add a sense of tension, you may want to consider adding a countdown timer,
analogous to the timer you added in the Racecar 500 game; if the time reaches 0, then
the player instantly loses the game. With this addition, you could also consider adding

195

CHAPTER 13 I JUMPING JACK

a Clock item, which adds to the total time remaining, thus making it easier to complete
the level in time. The Clock item also opens up a possibility for a particularly challenging
level design: you could design a level and initially set the timer to an amount that is
insufficient to complete the level, thus forcing the player to pick up one or more Clock
items along the way.

Finally, a common feature in many platform-style games are item blocks, which
typically contain coins (or could contain other items such as hearts, keys, clocks, etc.) that
are spawned when the block is hit from below. The blocks typically have two animations:
a flashing animation, such as the one generated by the spritesheet shown on the left
side of Figure 13-22, and an empty image, as shown on the right side of Figure 13-22.

The event condition to set up is similar to the condition for breaking bricks: the Above
sprite should collide with the item block, and you will also need to add the condition that
checks whether the flashing animation is playing. The associated actions would be for the
system to spawn an object directly above the item box (similar to the paddle spawning

a ball in the Rectangle Destroyer game), and the item box should set its animation to

the blank image. To be able to spawn different types of items, additional item block
objects could be created (using the same animations, so as to not give away anything to
the player), or if you want to have only one item block object, a random number could

be generated to determine what is spawned, or an instance variable could be used to
determine which time of item to spawn.

Figure 13-22. Item block graphics: a flashing block animation (left) and an empty block
image (right)

These are just a few ideas to get you started; many more possibilities exist. Feel free
to experiment and test your creations. Most important, have fun!

Summary

In this chapter, you created the platform-style game Jumping Jack. This game built on
concepts and skills from most of the previous projects. Two new behaviors were introduced:
Platform for standard platform controls and Jump-Thru for solidlike objects that characters
can move or jump through from underneath. The Function object was introduced to
reduce repeated code, and the Particle object was introduced to create an animated effect
based on a single small image. Ladder-climbing mechanics were implemented, and many
interactive objects were added to the level. Enemies with different movement patterns were
also created to add an active challenge for the player. Finally, a great number of ideas for
additional features were suggested in the “Side Quests” section.

In the next chapter, you will create the final game project in this book: Treasure
Quest, a top-down perspective adventure game, inspired by the classic console game The
Legend of Zelda.

196

CHAPTER 14

Treasure Quest

In this chapter, you will create a top-down adventure-style game named Treasure Quest,
shown in Figure 14-1, inspired by classic games such as The Legend of Zelda.

Coins: 55 Bombs: 2

-

(1)

Figure 14-1. The Treasure Quest game

In Treasure Quest, the player controls a character named Hero whose goal is to find
and collect the treasure chest. Along the way, there will be obstacles such as rocks that
block the hero’s progress and enemies that attack the hero. The hero has a sword, which
can be swung to destroy enemies (or any bushes that block the hero’s path). Coins are
sometimes dropped by defeated enemies (or can be found hidden around the level), and

© Lee Stemkoski and Evan Leider 2017 197
L. Stemkoski and E. Leider, Game Development with Construct 2,
DOI 10.1007/978-1-4842-2784-8_14

CHAPTER 14 I TREASURE QUEST

they can be used to purchase objects such as hearts (which restore a health point) or
bomb bags (which contain a number of bombs, which can then be used to destroy rocks).
There are three varieties of enemies: one that flies randomly through the air, one that
moves randomly on the ground, and one that actively seeks out and chases the hero. In
this project, the game world is spread out across multiple layouts.

The player moves the hero with the arrow keys, swings the sword with the spacebar
key, and places bombs with the B key (after they are obtained). For simplicity, the
purchasing mechanic is handled by placing items behind doors that open (disappear) on
contact if the hero has enough coins. The user interface displays the hero’s health and the
number of coins and bombs currently held. Because of the complexity of this game, a sign
object is introduced; if the hero touches the sign, the corresponding message is displayed
on the user interface. This can be used to inform the player of the control scheme,
to explain game mechanics (for example, how doors work), to provide navigational
information (for example, “the bomb shop is to the south”), to give the player hints about
how to complete the level, and so forth.

The chapter assumes familiarity with most of the topics presented in earlier
chapters, including most types of objects, behaviors (8-Direction, Solid, Bullet, Fade,
Rotate, Flash, Timer), instance and global variables, and functions. In the event sheet,
groups, subevents, and “or” blocks will be used frequently. The Line of sight and Persist
behaviors will be introduced, as well as the Global property for objects and layers, which
enables them to continue existing when switching to a new layout (which is particularly
important for the hero and the user interface). Many new mechanics will be introduced,
such as switching between layouts and creating an “item shop.” Since you have gained
great experience in using Construct by this point, the style in this chapter is less guided
and emphasizes game design concepts rather than the details of setting up events
(although the events will be fully displayed in the chapter figures, as usual).

To begin, download the assets for this chapter from the book web site. Set the layout
size to 960, 960 and the window size to 480, 480. Change the layout name to Field and
the event sheet name to Game Events. In the View tab, select the Snap to grid and Show
grid check boxes, and set the grid width and grid height both to 16. Add three additional
layers to your project (for a total of four layers), and name them Map, Walls, Main, and UI.
For the Ul layey, set Parallax to 0, 0; this will fix the Ul in place, as desired.

Level Design

In this section, you will set up the level, using a tilemap for the background image. Unlike
some of the previous projects (such as Racecar 500 and Jumping Jack), you will not add
the Solid behavior to the tilemap. Instead, you will create wall sprites, which will be
invisible and have the Solid behavior attached; instances will be placed over tiles that
correspond to impassable barriers (such as fences or mountains). Also, when designing
each level, the top 64 pixels of the layout should be reserved for the user interface area, so
this area should be filled with a barrier of some sort. After setting up the tilemap, you will
also create sprite objects for trees, bushes, and rocks (to which interactivity will be added
later).

198

CHAPTER 14 I TREASURE QUEST

To begin, add a Tilemap object named World to the Map layer of the layout,
using the tileset image adventure-tileset.png. These tiles are 32-by-32 pixels, so no
properties need to be changed. Design a level using these tiles. For variety, there are lots
of variations of grass tiles. Create a border around the perimeter of the layout. Figure 14-2
shows one such layout, which contains a grassy field with some dirt paths leading to two
mountains, one of which contains a cave entrance (which will actually lead the player to
anew screen), while the other has a ladder leading up the side to the top (which will be
a good location to place the treasure chest, as you will see later). Figure 14-2 is displayed
using a 32-by-32 grid to make the tile selection more apparent. When you are finished,
click the Tilemap panel, click on the Select Tool, and then lock the Map layer.

Figure 14-2. Tilemap for a sample level

Next, you will create wall objects that specify the solid parts of the level. Make the
Walls layer active in the layout, and add a new sprite named Wall. Draw anything you like
in the image editor. Close the image editor, set Opacity to 50 (to make it easier to position
in the layout), and set Initial visibility to Invisible. Add the Solid behavior. Then, create
as many additional instances as necessary, resizing and positioning each one, until the
tiles corresponding to solid objects are all covered, such as the fence and mountainside
(but not the ladder or cave entrance!) tiles. When you are finished, the wall layout
corresponding to Figure 14-2 would look similar to Figure 14-3, for example; a diamond

199

CHAPTER 14 I TREASURE QUEST

pattern was drawn on the Wall sprites to make them easier to see in the diagram. When
you are finished, lock the Walls layer, and uncheck the box next to the layer name so that
the objects in this layer are no longer visible (even at 50 percent opacity, they can be
distracting).

-
DO
RS

Figure 14-3. The wall objects added to the layout

Next, make the Main layer active in the layout. Create three new sprites named Tree,
Bush, and Rock, using the images tree.png, bush.png, and rock.png, respectively. Check
their collision polygons, and adjust them if desired. Add the Solid behavior to each of
these objects. Add the Fade behavior to the Bush object, and change Fade out timeto 0.25
and Active at start to No. Create multiple instances of each of these objects, and position
them throughout the level. Change the size of individual tree instances for variety, if
desired. When finished, the layout corresponding to Figure 14-2 could look similar to
Figure 14-4, for example. Later in this chapter, you will add interactivity to some of these
objects: bushes will be able to be destroyed by the hero’s sword, and rocks will be able to
be destroyed with bombs.

200

CHAPTER 14 I TREASURE QUEST

Figure 14-4. Adding trees, bushes, and rocks to the layout

Hero Setup

First, you will set up the hero character, just as you did for the Cleanup Challenge and
Maze Runman games. Create a new sprite named Hero; in the Animation frames window,
load the spritesheet general48. png (three horizontal cells and four vertical cells), and set
the Animation properties Speed to 6, Loop to Yes, and Ping-pong to Yes. Then duplicate
this animation three times so that there are four animations total. Next, rename the
animations to South, West, East, and North. Select the animation named South in the

list, and in the “Animation frames” window, click each frame that does not correspond to
the character walking south (those initially numbered 3 through 11), and press the Delete
key. Repeat this process for the West, East, and North animations, deleting the frames

not required within each of the animations. Next, adjust the sprite’s collision polygon

to a smaller circular shape (as shown in Figure 14-5), right-click the polygon, and select
Apply to all animations. Close the image editor, and change the size of the sprite to 32,32.
Add the behaviors Bound to layout, Scroll to, and 8-Direction; change the 8-Direction
properties Speed to 120 and Set angle to No.

201

CHAPTER 14 I TREASURE QUEST

Figure 14-5. Collision polygon for the Hero sprite

Next, you will set up some events to set the correct hero animation, but instead of
relying on key press conditions, as you did in previous projects, here you will use the
angle of motion to select the correct angle. For convenience, you will convert this value to
the nearest multiple of 90 (similar to the calculations in Maze Runman) and store it in an
instance variable. Also, as was the case in the Maze Runman game, angles of motion are
measured in the range from -180 to 180 (in contrast to the sprite object’s Angle property,
which uses the range from 0 to 360). Therefore, the angles -180, -90, 0, 90, and 180 will
correspond to the directions West, North, East, South, and West, respectively.!

Select the Hero sprite, and add an instance variable named AnimAngle with an
initial value of 90. In the event sheet, create a group named Hero Animation. To this
group, add a subevent that checks whether the hero is moving (via the 8-Direction
condition), in which case the Hero instance variable AnimAngle should be set to
round(Hero.8Direction.MovingAngle / 90) * 90, which calculates the nearest
multiple of 90. Then add four subevents to this event, each of which will compare
the value of the hero’s AnimAngle variable and, depending on the result, will set the
Hero animation accordingly. If AnimAngle is equal to 90, for example, the animation
name should be set to "South". Similarly, the value 0 corresponds to "East", and -90
corresponds to "North". Since "West" has two corresponding values, set the condition
to an “or” block, and check whether AnimAngle is equal to 180 or whether AnimAngle
is equal to -180. Finally, add another subevent to the group (not a subevent of the
event currently numbered as 2) with the System condition Else, in which case the Hero
animation should be stopped. Note that this event corresponds to when the Hero - Is
moving condition is false, and the left edges of these conditions should line up in the
event sheet. When you are finished, these events should appear as in Figure 14-6.

"Note that the direction West has two corresponding angles; because of the cyclic nature of angle
measurement, no matter what range of values is used, two different multiples of 90 (the minimum
and maximum values in the range) will end up corresponding to a single direction.

202

CHAPTER 14 I TREASURE QUEST

1 ;Hero Animation
2 a Hero EE,’:&Direct’on is moving a Hero Set AnimAngle to round(Hero.8Direction.MovingAngle /90) * 90

3 aHero AnimAngle = 90 aHero Set animation to "South™ (play from beginning)

4 aHero AnimAngle = 0 aHero Set animation to “East” (play from beginning)

5 ﬂHero AnimAngle = -90 aHero Set animation to "North” (play from beginning)
EiHero AnimAngle = 180 £ Hero set animation to "West™ (play from beginning)

6 - ar -

EiHero AnimAngle = -180
7 ¢'Syslem Else aHero Stop animation

Figure 14-6. Events for setting the Hero animation

Sword-Fighting Mechanics

A separate sprite will be created for the sword. The goal is that when the player presses
the attack key, a sword will be spawned (at the correct position and angle), it will rotate
(to give the appearance that the hero is swinging it), and then it will be destroyed.
(Presumably, the hero is extremely quick at sheathing and unsheathing his sword.) For
simplicity, the hero will not move while swinging the sword.>

To begin, add a new sprite named Sword with the image sword.png. In the image
editor, set the origin of the sword to the point on the sword handle where it should appear
held by the hero, and apply the change to all animations. You may want to consider
setting the collision polygon so that it is set to the bounding box of the image to make
it easier for the player to hit moving targets. Close the image editor, change the size of
the sprite to 32,12, and position it outside the layout. Add the behaviors Destroy outside
layout and Rotate. For this game, the goal is for the sword to swing through 180 degrees
in 0.25 seconds; therefore, set the rotation speed to 720 (since one-fourth of 720 is 180).
Since the midpoint of the sword’s swing should be aligned with the direction the hero is
facing, after the sword is spawned, you will have to subtract half the range of the sword
swing from the direction the hero is facing, as you will see later.

When spawning a sprite, the default setting is for the origin of the new sprite to be
aligned with the origin of the sprite that is spawning it. However, it would be best if the
handle of the sword spawned in the location of the hero’s hand (we will assume the hero
is right-handed in this game). To accomplish this, you will create another image point
for each animation, indicating the position of the hero’s right hand in each case.
Double-click the hero to open the image editor windows, and select the South animation.

?To implement this, you would need to consider adding the Pin behavior to keep the sword in the
correct position relative to the hero, as well as some events to adjust the anchor point and z-order of
the sword in the case that the hero changes direction suddenly.

203

CHAPTER 14 I TREASURE QUEST

Open the image points menu, click the plus icon to add a new image point, and then click
in the position indicated in Figure 14-7 to set the location of the image point. In the list of
image points, right-click Imagepoint I and select Apply to whole animation (otherwise,
the other frames of the South animation would not have such a point set, which would
cause inconsistencies in where the sword will be spawned). Repeat this process,

adding image points for the North, East, and West animations in the locations shown in
Figure 14-7. When you are finished, close the image editor windows.

Figure 14-7. Positions for new image points to indicate sword spawn location

Now you are ready to create the events related to sword-swinging. In the layout,
add a Keyboard object to the project. In the event sheet, add a new group called Sword
Mechanics. To this group, add an event that checks whether the spacebar has been
pressed and uses a System condition to check whether Sword.Count is equal to 0
(which will prevent multiple sword instances from being onscreen at the same time).
Create actions for the following set of tasks:

e The hero’s movement should stop, and the 8-Direction behavior
should be disabled.

e The hero should spawn a sword on the Main layer, at image point 1.
e The sword’s angle should be set to Hero.AnimAngle - 90 degrees.
e Wait for 0. 25 seconds (the duration of the sword swing).

e Destroy the sword, and reenable the 8-Direction behavior.

204

CHAPTER 14 I TREASURE QUEST

In addition, since the hero is presumably right-handed, the hero needs to appear above
the sword if he is facing north or west, so add an event that checks either whether the hero’s
North or West animation is playing, in which case the hero should be moved to the top of
the layer. Finally, add an event that checks whether the sword has collided with the bush, in
which case start the bush fade-out process. When the events in this section are finished, they
should appear as shown in Figure 14-8.

8 - Sword Mechanics
B Keyboard On Space pressed B Hero Stop £33 8Direction
Lk system Sword.Count = 0 B Hero SetZsi8Direction Disabled

ﬂHero Spawn <=Sword on layer "Main" (image point 1)
<—Sword Setangle to Hero. AnimAngle - 90 degrees
ﬁSystem Wait 0.25 seconds
<=Sword Destroy
B Hero SetsisDirection Enabled

L Hero Is animation “North" playing &) Hero Move to top of layer
10 -or-
£ Hero Is animation "West" playing

11 "€=Sword Oncollision with @ Bush @Bush [[JFade: start fade

Figure 14-8. Events for swinging the sword and destroying bushes

Multiple Levels

Next, you will set up the ability for the hero to move between multiple screens. To begin,
you will set up a second level. In the projects panel, right-click the layout folder and add
a new layout, but do not create a new event sheet. Once the layout is created, change the
name to Cave, set the size to 480,480 (which is smaller than the field but matches the
window size exactly), and set up the layers and grid options just as you did for the Field
layout. Click the Cave layout, and in the Properties panel, set the layout property’s Event
sheet (which is currently set to none) to Game Events. Set the active layer to Map, open the
project panel again, and drag World (the tilemap object) onto the layout area. This will
create a copy of the preexisting tilemap. Resize this to fit the layout, and draw a simple,
empty, cavelike interior, as shown in Figure 14-9, making sure to leave a gap (some dirt
tiles) in the bottom area where the hero will be able to exit, and an empty 64-pixel high
region across the top, where the user interface will eventually be displayed. Lock the Map

205

CHAPTER 14 I TREASURE QUEST

layer, and set the active layer to Walls. From the project panel, drag a Wall object onto the
layout, positioning it over tiles that should be considered solid. Duplicate this object, and
repeat this process until the wall tiles are all covered by Wall objects, just as you did when
designing the previous layout. When finished, lock the Map layer, and set the active layer
toMain.

Figure 14-9. Initial design for the Cave layout

Next, you will implement the layout-switching mechanic using a pair of sprite
objects named Spawn and Portal. When the hero collides with a portal, a new layout will
be loaded, and the hero will be positioned at a particular spawn instance, both of whose
names are stored in instance variables of the Portal object.

Return to the Field layout. Create a new sprite named Spawn; in the image editor,
fill in the area with a solid color and draw a letter S. Close the image editor windows, set
Size to 32,32, and set Initial visibility to Invisible. Add an instance variable called Name
of type Text with an initial value of Start. Similarly, create another new sprite named
Portal, drawing an image of a letter P in the image editor and setting it to be initially
invisible. (Setting the portal size is not as important here; spawn instances should be the
size of the hero, while portal sizes may vary.) Add two instance variables to the Portal
object, one named Layout of type Text with an initial value if Field and the other named
Spawn of type Text with an initial value of Start. In the Field layout, place the Spawn
object at a position where you want the hero to be when the game starts. Place the Portal
object over the entrance to the cave, and change its Layout variable to Cave and its Spawn
variable to Entrance.

206

CHAPTER 14 I TREASURE QUEST

Next, create another spawn instance, and place it a bit below the entrance to the cave
(making sure the two objects do not overlap, which could cause the hero to immediately
warp to another layout), and change its Name variable to CaveExit. Switch to the Cave
layout, and from the project panel, drag an instance of the Portal object and an instance
of the Spawn object onto the layout. Position the Spawn instance above the cave exit, and
change its Name variable to Entrance (to match the Spawn variable of the portal from
the previous layout). Position the Portal instance along the bottom edge of the cave exit,
and change its Layout variable to Field and its Spawn variable to CaveExit (to match
the Name variable of the spawn instance by the cave in the previous layout). Figure 14-10
shows the positions of these Portal and Spawn objects.

Figure 14-10. Placement of the Portal and Spawn instances in the field layout (left) and
Cave layout (right)

Now you will set up the events that control this game mechanic. In the event
sheet, add a global variable named SpawnLocation with an initial value of Start. This
is necessary to store the name of the spawn instance that the hero should be moved to
when switching between layouts. In particular, if you were to create an event with an
action that switches the layout, followed by an action that moves the player to the new
spawn point, it would not work properly since the new layout isn’t loaded until after the
event is finished (and thus the spawn point you seek is not yet available).

Next, select the Hero object, and change the Global property to Yes. The result of
changing this property is that the Hero instance will not be destroyed when switching to
the new layout; it will still be present after the next layout loads. This is important because
every layout requires an instance of the Hero object, and it is preferable to share the same
instance between them so that any instance variables you may set up for the hero will
preserve their values when layouts are switched. Finally, in the event sheet, create a new
group called Portal and Spawn. Add an event that checks whether the hero has collided
with a portal, in which case the global variable SpawnLocation should be set to Portal.
Spawn, and then the layout should be changed with the action System - Go to layout (by
name), entering Portal. Layout. Create a second event with the System condition On
start of layout and with the Spawn condition that checks for the instance whose Name
variable is equal to the global variable SpawnLocation. To this event, add an action that
sets the hero to the location of the Spawn object. When you are finished, these events
should appear as shown in Figure 14-11.

207

CHAPTER 14 I TREASURE QUEST

When testing these new features, make sure the Field layout is displayed when
clicking the Run layout icon so that the field level is displayed first. If you run the project
while the Cave layout is displayed, the cave level will be loaded first instead, and since
there is no hero instance available, you will not be able to test any of the features.

12 . Portal and Spawn

13— ﬂHero On collision with P Portal ﬁSystem Set SpawnLocation to Portal Spawn
4 system Go to layout Portal.Layout

“’ﬂ'System On start of layout a Hero Set position to S Spawn (image point 0)
S Spawn Name = SpawnLocation

Figure 14-11. Events for switching layouts with the Portal and Spawn objects

User Interface Design

In this section, you will set up the various elements of the user interface. There are three
main features that the user interface will support: a display of the hero’s status (health
remaining, coins collected, and bombs available), win and lose message graphics, and an
area that displays the text written on signs (which is an object that you will create later).

To begin, in the Field layout, set the active layer to UL In the Layers panel, select the
Ul layer, and change the property Global to Yes. The effect of this setting is similar to the
effect of the Global setting of the Hero object; the objects contained in the global layer
will not be destroyed when switching to another layout, provided that the layout contains
a layer with the same name. (This will be apparent only while the game is running,
however.) If you switch to the Cave layout and select its UI layer, you will see that its
Global property has been automatically changed to (Yes, overridden), which indicates
that this layer will in fact receive copies of the objects in the Field layout’s Ul layer. For the
Global property to work correctly, it is important that the layout containing the Global
layer is loaded before any other layouts that also contain this layer.

Create two new sprites, one named Messagelin with the image file message-win.
png and the other named MessagelLose with the image file message-1lose.png. Resize both
of these sprites so that their width is less than 400 (so they fit within the window), and
change their height proportionately. To horizontally center these sprites in the window
(which is 480 pixels wide), change their position so that their X coordinate is 240. Set their
Initial visibility to invisible. The events that cause these objects to appear will be added
later in the chapter, as they require additional objects to be created.

208

CHAPTER 14 I TREASURE QUEST

Status Display

The player will want to be aware of three quantities at all times: the hero’s health, the
number of coins the hero has collected, and the number of bombs the hero has available
to use. Although the coin and bomb objects have not yet been added, you can still set

up the corresponding variables and text displays at this time. Select the Hero object, and
add three new instance variables: Health, Coins, and Bombs. Each of these will store a
number; the initial values should be set to 3, 0, and 0, respectively. Create a new sprite
named BackgroundUI, and in the image editor, fill it with a dark gray color. Change the
size to 480-by-64 pixels, and position it in the top-left corner of the layout. (This is why
you needed to fill the top 64-pixel area of each layout with a solid barrier; this part of the
map will always be obscured by the user interface.) Next, create three new Text objects,
named TextHealth, TextCoins, and TextBombs; set their font to Arial, bold, size 18; set
their font colors to pink, light yellow, and light gray, respectively; and set their initial
text properties to "Health: 3", "Coins: 0", and "Bombs: 0", respectively. Resize and
position these objects on the BackgroundUI object, equally spaced from each other, as
shown in Figure 14-12. In the event sheet, create a new group named User Interface.
To this group, add an event with the condition System - Every tick, and add actions that
set the text of the three text objects TextHealth, TextCoins, and TextBombs to "Health:
& Hero.Health, "Coins: " & Hero.Coins, and "Bombs: " & Hero.Bombs, respectively.
Figure 14-13 shows this event.

Health: 3 Coins: 0 Bombs: 0

Figure 14-12. Positioning of Text objects in the status display area of the user interface

15 _User Interface

16 ﬁSystem Every tick Ef}TextHealth Set text to "Health: " & Hero.Health
ﬁ}TextCoins Set text to "Coins: " & Hero.Coins
{TiTextBombs Set text to “Bombs: " & Hero.Bombs

Figure 14-13. Group and event for updating user interface text

Sign Mechanics

Signs, which have the ability to display text to the player, can serve a variety of purposes
and have the potential to greatly improve the overall gameplay experience. Signs can help
the player navigate the game world, introduce new game mechanics, provide clues, or
remind the player of the control scheme. In this section, you will create a sign object for
the game world that the hero can interact with and will create a corresponding display in

209

CHAPTER 14 I TREASURE QUEST

the user interface that displays the sign message. To keep the player controls as simple as
possible, the sign text will be displayed whenever the hero collides with a sign (in contrast
to requiring the user to press a button to read the sign), and the sign text display will be
hidden once the hero moves a few pixels away from the corresponding sign.

Since the Ul layer is currently active, you will add the display objects first. In the Field
layout, add a new sprite named BackgroundMessage using the image file background-
message.png. Change its size to 400, 160, and position it toward the bottom of the user
interface area. Next, add a Text object named TextMessage, and change the font to Arial,
bold, size 18. Position and resize the Text object so that it nearly fills the same area as the
BackgroundMessage object. Then, for the initial text, enter the word test 20 to 30 times;
this is simply to give you an idea of how much text this object can display in the given area
at the current font size (which can be adjusted as desired). Set the initial visibility of both
these objects to Invisible. Figure 14-14 illustrates the position of these new objects, with
the other UI components included for reference.

Coins: 0 Bombs: 0

test test test test test test test
test test test test test test test
test test test test test test test

Figure 14-14. Positioning of the sign text display in the user interface

Next, you will add the sign with which the hero can interact. In the layout, set the
active layer to Main, and create a new sprite named Sign with the image sign.png.
Change its size to 32,32, add the behavior Solid, and add an instance variable named
Message of type Text with the initial value This is a sign.

210

CHAPTER 14 I TREASURE QUEST

In the event sheet, you will create two events: one for displaying this message
in the user interface and one for hiding the display objects once the hero moves far
enough away from the sign. In the User Interface group, create a new event that checks
whether the hero has collided with a sign, in which case the BackgroundMessage and
TextMessage objects should become visible and the TextMessage object should have its
text set to Sign.Message. The event to “turn off” the display is a bit more complicated,
as it needs to measure the distance between the player and the correct instance of the
sign (as many games may contain more than one sign per layout). In particular, when
the player is next to the sign, the distance between their center points will be about 32
pixels (the size of most of the game objects); you will hide the display elements once the
hero moves an additional 4 pixels away or, in other words, once the distance becomes
greater than 36. The distance between two points can be calculated using the function
distance, which takes four inputs: the X and Y coordinates of the two points between
which the distance is being measured (similar to the inputs of the angle function). With
this in mind, create a new event that checks whether TextMessage is visible. Add a second
condition that checks whether the Sign instance variable Message is equal to TextMessage.
Text (this selects the correct sign instance in case of multiple signs being present). Add
a third condition with the System condition Compare two values, and check whether
distance (Hero.X, Hero.Y, Sign.X, Sign.Y) is greater than 36. To this event, add actions that
set BackgroundMessage and TextMessage to be invisible. When you are finished, these
events should appear as shown in Figure 14-15.

17 * 8 Hero On collision with [l Sign mmBackgroundMessage Set Visible
Set Visible
T iTextMessage Set text to Sign.Message
[i}?extMessage Is visible mmBackgroundMessage Set Invisible
18 -Sign Message = TextMessage.Text ﬁETextMessage Set Invisible

'u-System distance(Hero.X, Hero.Y,
Sign.X, Sign.Y) > 36

Figure 14-15. Events for the user interface displays

ltems

In this section, you will create the items referenced by the text displays in the user
interface, as well as related objects used to implement the corresponding game
mechanics. These objects and their purpose are as follows:

e Heart: Restores the hero’s health
e Bomb: Destroys rocks (and enemies, which will be added later)

e Explosion An animated effect that appears after the bomb
explodes

e Bomb bag: Increases the hero’s bomb count

211

CHAPTER 14 I TREASURE QUEST

e Coin: Used to purchase hearts and bomb bags; there are different
types, which have different values

e Coindoor: The hero may pass if he has enough coins; can be used
to implement a shop mechanic

e Treasure chest: The ultimate item the hero is trying to collect

Hearts

Hearts are the simplest item to implement. In the layout, make sure the active layer is
set to Main, and then create a new sprite named Heart with the image heart.png. In the
event sheet, create a new group named Items. Add an event to this group that checks
whether the hero has collided with a heart, in which case the hero’s instance variable
Health should be increased by 1, and the heart instance should be destroyed.

Figure 14-16 shows this event.

19 . ltems
20 "’QHero On collision with 9 Heart ﬂHero Add 7 to Health
@ Heart Destroy

Figure 14-16. Event for collecting the Heart object

Coins

Next, you will add coins. There will be three different variations: copper, silver, and gold,
with values 1, 5, and 20, respectively. In the layout, add an object named Coin with the
image coin-copper.png. Change the name of the animation to Coin1. Add two more
animations, with the names Coin5 and Coin20, with image files coin-silver.png and
coin-gold.png, respectively. Close the image editor windows. Add an instance variable
named Value of type Number with a default value of 1. In the event sheet Item group,
create a new event with the Every tick condition that sets the Coin animation name to
"Coin" & Coin.Value; this will set the correct image for the coin, depending on its value
(provided itis 1, 5, or 20). Create another event that checks whether the hero has collided
with a coin, in which case the hero’s instance variable Coins should be increased by Coin.
Value, and the coin instance should be destroyed.

212

CHAPTER 14 I TREASURE QUEST

Coins are “spent” by the hero when he passes through doors, which have an
associated cost. Just as there are variations in the coin image and value, there will be
variations in the door image and cost. In the layout, add an object named CoinDoor with
the image door-05. png. Change the animation name to Door5. Add another animation
with the name Door25 and the image door-25.png. Close the image editor windows.
Add an instance variable named Cost of type Number with a default value of 5. Also add
the behavior Solid. In the event sheet, add an action to the Every tick event, and set the
CoinDoor animation name to "Door" & CoinDoor.Cost. Create a new event with that
checks whether the hero has collided with a door and also checks whether the hero’s
instance variable Coins is greater than or equal to CoinDoor.Cost (to make sure the hero
has enough coins). The associated actions are to subtract DoorCoin.Cost from the hero’s
Coins variable and to destroy the door. Figure 14-17 shows these events.

21 #System Every tick @ Coin Set animation to "Coin" & Coin.Value (play
from beginning)

[BlCoinDoor Set animation to "Door* & CoinDoor.Cost
(play from beginning)

2" Q Hero On collision with @ Coin QHem Add Coin.Value to Coins

@ Coin Destroy
= e a Hero On collision with fﬁCninDonr aHero Subtract CoinDoor.Cost from Coins
i ﬂ Hero Cains = CoinDoor.Cost @Coin[}acr Destroy

Figure 14-17. Events for Coin and CoinDoor objects

You are now ready set up the Cave layout to function as an item shop. Switch to
the Cave layout, unlock the Map and Walls layers (if they were previously locked), and
edit the tilemap to add two borders surrounding rectangular areas, each containing a
single gap for a CoinDoor object in the front, as shown in Figure 14-18. Add instances of
the solid Wall object covering the newly added tiles so that the hero is prevented from
simply moving through them. Add CoinDoor instances to each of the gaps; change the left
door’s Cost variable to 5 and the right door’s Cost variable to 25. In the center of the left
rectangle, add a heart instance. Later, after creating the BombBag object, you will add it to
the center of the right rectangle. Next, you will add a few signs to explain this room to the
player. Near the left door, add a sign with its Message variable set to Hearts restore one
health. Near the right door, add a sign with Message set to Bomb bags contain 4 bombs.
Use with the B key. In the center of the screen, closer to the door, add a sign with Message
setto Doors will open if you have enough coins.You may even want to consider
placing a sign near the cave entrance on the Field layout, with its Message set to Item
shop. To simplify testing the shop mechanic, you may want to add a few coin instances
close to the hero, with their Value variable set to 20.

213

CHAPTER 14 I TREASURE QUEST

You will notice that if you open a door and collect an item and then leave and return
to the layout, the door and item will have respawned. For item shops (which typically
appear to carry an infinite stock of items in most games), this is ideal. However, for items
such as coins, this is probably not desirable, because the player could repeatedly exit and
reenter a layout and collect the respawned coins, making them trivially easy to acquire
(rather than as a well-earned reward for exploration or combat). To remedy this situation,
you may want to consider adding the Persist behavior to the Coin object. Among the
effects of this behavior are that once an instance is destroyed, it will not be re-created if
the layout is reloaded. (In addition, the property values of a persistent object are stored in
memory and not reset to their default values when the layout is reloaded.) In theory, you
could consider adding this behavior to other objects (such as bushes, rocks, or enemies),
but do not add it to any type of item being sold by the shop, or else the player will not be
able to purchase the item a second time (at least, not at that location).

Figure 14-18. Tilemap design for an item shop mechanic

Bombs

It is now time to add bombs. In the layout, create a new sprite named BombBag with image
bomb-bag.png. Change its size to 32, 32. Place an instance of this object in the empty
rectangular area in the Cave layout’s item shop. In the event sheet Item group, create a
new event that checks whether the hero has collided with a bomb bag, in which case the
hero’s instance variable Bombs should be increased by 4, and the bomb bag instance
should be destroyed.

Next, in the layout, create a new sprite named Bomb. In the Animation frames
window, import frames from the sprite sheet bomb-flash.png (which contains eight cells
horizontally and six cells vertically), and set the animation speed to 8. Since there are
48 frames altogether, this speed means it will take 6 seconds for the animation to finish.
Close the image editor windows, change the size of the sprite to 24,24, and move it to the
layout margins. Create another new sprite, named Explosion. In the Animation frames

214

CHAPTER 14 I TREASURE QUEST

window, import frames from the sprite sheet explosion.png (which contains six cells
both horizontally and vertically), and set its animation speed to 36. Adjust the collision
polygon of one of the frames containing the largest image (such as frame 10) to a circular
shape, and apply the change to the whole animation. Close the image editor windows,
change the sprite size to 96,96, and move it into the layout margins. Add the Fade
behavior (and leave the associated properties at their default values).

Finally, you will add the events for the bomb mechanics. In the event sheet, create a
new event that checks whether the B key was pressed and also whether the hero’s Bombs
variable is greater than or equal to 1. When this occurs, you should subtract 1 from the
hero’s Bombs variable, the hero should spawn a bomb on the Main layer at image point
1 (which is also used when swinging the sword), and the hero sprite needs to be moved
to the top of the layer (so that the bomb appears underneath the hero). Create another
event that checks whether the bomb’s animation is finished, and if so, the bomb should
spawn an Explosion object on the Main layer, and the bomb should be destroyed. Contact
with the Explosion object will be used for damage and destruction purposes; create two
new events that check whether the explosion has collided with the bush or the rock, and
destroy the corresponding object. Finally, create an event that destroys the Explosion
object when its animation is finished. Figure 14-19 shows the events described in this
section.

24 = @ Hero On collision with g BombBag £ Hero Add 4 to Bombs
P BombBag Destroy

56 “*E&Keyboard On B pressed & Hero Subtract 7 from Bombs
aHem Bombs > 1 a Hero Spawn Q Bomb on layer "Main"
(image point 1)
a Hero Move to top of layer
26 "Q Bomb On any animation finished Q Bomb Spawn Explosion on layer
“Main" (image point 0)
@ Bomb Destroy
27 ® _ Explosion On collision with & Bush & Bush Destroy
28 ® . Explosion On collision with (g Rock) Rock Destroy
29 | * Explosion On any animation finished Explosion Destroy

Figure 14-19. Events involving bombs and related objects

215

CHAPTER 14 I TREASURE QUEST

The Treasure Chest

The goal in Treasure Quest is, as the title indicates, to obtain the treasure, which you will
implement in this section. In the layout, create a new sprite named Chest with the image
treasure-chest.png. Choose a strategic location to place the chest in the layout that will
present a challenge to the player. For example, Figure 14-20 shows the chest placed on
top of a mountain, which will be accessible only after destroying the rock at the base of
the ladder, which requires the hero to purchase a bomb bag at the item shop, which in
turn requires that coins be collected (and in the next section, you will implement enemies
that drop coins when they are defeated).

Figure 14-20. A possible location for the treasure chest

The event corresponding to the end of game mechanic is fairly straightforward.
Create a new event that checks whether the hero has collided with the chest, in which
case you could add 500 to the hero’s Coins variable, destroy the chest, make the win
message visible, and destroy the lose message (so that the win and lose messages cannot
be on the screen at the same time). Figure 14-21 shows this event.

29 | B Hero On collision with [E Chest S Hero Add 500 to Coins
gChest Destroy
—MessageWin Set Visible
——Messagelose Destroy

Figure 14-21. The event for collecting the treasure chest and winning the game

216

CHAPTER 14 I TREASURE QUEST

Enemies

At this point, you have a variety of components in place that will enable you to design an
intricate level. However, there are no active antagonists in your game yet, and all that the
hero’s sword does at this point is destroy bushes. If your goal was to create a game called
Adventures in Landscaping, then you could stop here. However, it will be assumed that
you want to create more interesting opponents for the hero to fight. In this section, you
will create three different types of enemies, shown in Figure 14-22.

¢ Righter, which moves randomly along the ground either north,
south, east, or west, changing direction every few seconds

e Flyer, which flies above the ground (and is not affected by solid
objects), moves in any direction, and changes direction frequently

e Seeker, which moves randomly along the ground as Righter does,
but if it is able to see the hero (provided that no solid objects are
blocking the line of view), then it chases the hero

Figure 14-22. Three types of enemies: Righter, Flyer, and Seeker

Enemies will do a single point of damage to the hero’s health (causing the hero to
enter a flashing, invincible state for a few seconds), while enemies themselves can be
destroyed by a single sword hit or bomb explosion. To manage the different types of
enemies, a single Enemy sprite will be created, and one animation will correspond to
each of the types.® All the behaviors needed by any type of enemy will need to be added
to this one base object and adjusted for each instance, depending on the animation
displayed.

To begin, create a new sprite named Enemy. Rename the animation to Righter,
and load the image file enemy-righter.png. Create two new animations named Flyer
and Seeker, loading animation frames from the sprite sheets enemy-flyer.png and
enemy-seeker.png, respectively (each of which contains four cells horizontally and one
cell vertically); change the two animations’ properties Speed to 8 and Loop to Yes.
Close the image editor windows, and resize the sprite to 32 by 32.

3There is a much better way to accomplish the same goal using a feature in Construct 2 called
Families, but it is available only in the paid, licensed version of the software. Since the projects in
this book are all designed to be created with the free version of Construct 2, we will use the “single
object, multiple animations” approach here.

217

CHAPTER 14 I TREASURE QUEST

Add the behaviors Bound to layout, Timer, Bullet, Sine, and Line of Sight. Create two
more instances of the Enemy object so that there are a total of three. Among those three,
change the Initial animation property so that one is Righter, one is Flyer, and one is
Seeker. You will next customize the properties of each of these enemies, and if you want
to create another enemy of a particular type later, duplicate the instance corresponding to
the enemy type you want to add.

First, select the Righter enemy. The Sine behavior is used to animate this enemy type
with a pulsing effect (but not the others, so this behavior will be disabled for the other
enemy types later). Set the Sine behavior properties Movement to Size, Period to 0.5, and
Magnitude to 4; then set the Bullet behavior properties Speed to 50, Bounce off solids to
Yes, and Set angle to No.

Next, select the Flyer enemy. Change the Sine behavior property Active at start to No.
Set the Bullet behavior properties Speed to 80, Bounce off solids to No, and Set angle to No.
Since the bullet behavior is unaffected by solid objects, this will present the illusion of the
enemy flying above the world.

Finally, select the Seeker enemy. Change the Sine behavior property Active at start
to No. Set the Bullet behavior properties Speed to 110, Bounce off solids to Yes, and Set
angle to Yes. This enemy will make use of the Line of Sight behavior to check whether the
hero can be seen by the enemy. The Line of Sight properties define the area in which the
enemy can detect (or “see”) other objects. Change the property Range to 240; this is how
far away the enemy can detect other objects. Change the property Cone of view to 160;
this is the angular range (in degrees, around the direction in which the enemy is facing)
where other objects can be detected.

Now you will set up timers for each of the enemy types, which will cause them to
change direction periodically. In the event sheet, create a new group called Enemies, and
add an event with the condition On start of layout. Add three subevents to this event,
which check whether the Enemy animation name Righter, Flyer, or Seeker is playing, and
in each case start a timer with the Turn tag to repeat regularly, every 3, 1, or 3 seconds,
respectively. Create another event in the Enemies group that checks whether the Enemy
timer tagged as Turn has activated, and as before, create three subevents to this event
to check for each of the possible Enemy animation names. For the Righter and Seeker
enemy types, add the action to set their bullet angles of motion to choose(-90, 0, 90,
180); for the Flyer enemy type, set the bullet angle of motion to random(-180, 180).
Finally, the Seeker enemy should select a random direction only if it cannot see the hero,
so to the seeker event, add a second condition of Enemy - Has line of sight to another
object (Hero), and invert it. Then add another event to the Enemies group (but not as
a subevent to the On timer event) that checks whether an enemy is playing the Seeker
animation and also whether the enemy has a line of sight to the player, in which case
it should set the enemy’s bullet angle of motion to the expression angle(Enemy.X,
Enemy.Y, Hero.X, Hero.Y); this will cause the Seeker to pursue the hero, until the hero
gets hit or runs out of sight behind a solid object. Figure 14-23 shows these events.

218

CHAPTER 14 I TREASURE QUEST

30 _Enemies

31 & &k System On start of layout
32 MlEnemy s animation "Righter” playing el Enemy Start @ Timer "Turn" for 3 (Regular)
33 MfAEnemy Is animation “Flyer” playing def Enemy Start C‘-) Timer “Turn” for 1 (Regular)
34 MfEnemy s animation "Seeker” playing Ml Enemy Start C'—) Timer "Turn" for 3 (Regular)
35 & " dAEnemy Oon CL)Timer "Turn"
36 MfAEnemy s animation "Righter” playing P Enemy Set d Bullet angle of motion to
choose(-90, 0, 90, 180) degrees
37 MAEnemy s animation "Flyer” playing Pof Enemy Set ¢” Bullet angle of motion to
random(-180, 180) degrees
Add action
MeAEnemy s animation "Seeker” playing el Enemy Set IBuIletangle of motion to
38 W hoose(-90, 0, 90, 180) d
defEnemy 3 Has +) LineOfSight to £ Hero L caress
a5 P Enemy Is animation “Seeker" playing Pt Enemy Set ¢ Bullet angle of motion to
deAEnemy Has *)3 LineOfSight to & Hero anglel P mitL Enenty di tleta Xo

Hero.Y) degrees

Figure 14-23. Events for enemy movement for each of the three enemy types

Next, you will set up the interaction between the hero and the enemies: enemies
colliding with the hero damage the hero, while swords or bomb explosions colliding with
an enemy destroy the enemy (which then drops a coin). First, you will add an animated
smoke effect that will appear when an enemy is destroyed. Create a new sprite named
Smoke; in the Animation frames window, load the sprite sheet smoke. png (which has six
cells both horizontally and vertically). Set the animation speed property to 72 (so the
animation will be finished in 0.5 seconds). Close the image editor, change the sprite size
to 48,48, add the Fade behavior, and change the fade out time to 0.5 seconds (to match
the animation time).

In the event sheet Enemies group, create a new event that checks whether the sword
or an explosion has collided with an enemy, in which case the enemy should spawn a
coin (whose Value variable should be set to 1 as a default), the enemy should spawn
a smoke object, and the enemy should be destroyed. Occasionally, the enemy should
drop a silver or gold coin, so to this event you will add a pair of subevents that generate
arandom number and, if it falls in a certain range, change the value of the coin object.
For the first of these, use the system condition Compare two values, and check whether
random(0, 100) is less than 20, in which case the coin should have its Value set to 5.

For the second subevent, check whether random(0, 100) is less than 5, in which case the
coin Value should be set to 20.

219

CHAPTER 14 I TREASURE QUEST

Finally, to damage the player (and implement the temporary invincibility mechanic),
add the Flash behavior to the Hero object. In the event sheet Enemies group, create a
new event that checks whether an enemy has collided with the hero and also checks
that the hero is not flashing, in which case the hero should flash for 2 seconds and the
hero’s Health variable should be decreased by 1. Add another event that checks whether
the hero’s Health variable is less than or equal to 0, in which case the hero should be
destroyed, the lose message should become visible, and the win message should be
destroyed. These events should appear as shown in Figure 14-24.

*<=Sword On collision with ®%e#Enemy Mo Enemy Spawn @ Coin on layer
40 B - or - “Main" (image point 0)
* Explosion On collision with ®ef Enemy @ Coin Set Value to 7
O Enemy Spawn Smoke on layer
“Main" (image point 0)
fof Enemy Destroy
41 ﬂSystem random(0,100) < 20 @® Coin Set Value to 5
42 '“'Systum random(0,100) < 5 @® Coin Set Value to 20
o 0 Enemy On collision with a Hero aHero 4 Flash: Flash 0.1 on 0.1 off
a Hero X flashing for 2 seconds
a Hero Subtract 7 from Health
A4 a Hero Health < 0 a Hero Destroy

——Messagelose Set Visible

—MessageWin Destroy

Figure 14-24. Events for enemy and hero interaction

At this point, you have finished implementing all the features of the Treasure Quest
game. Congratulations!

Side Quests

Even though Treasure Quest was one of the largest projects in this book, there are

a myriad of features that could still be implemented, many of which have no doubt
occurred to you while working through the project. You could redesign the game
presented in this chapter or create more layouts and connect them with portals and
spawn points. You could develop new items such as arrows that attack enemies from a
distance, torches that can be used to burn down wooden barriers, or a portable bridge

220

CHAPTER 14 I TREASURE QUEST

that can be used to cross small streams. You could add different types of enemies that
fire projectiles at you or environmental hazards, such as spikes that damage the hero on
contact. You could have alternative goals to win the game, such as clearing out all the
enemies from an area or defeating a large boss-type enemy that has many health points
of its own. The possibilities are endless, and with the skills you have developed, you are
ready to create them on your own!

Summary

In this final project, you applied the skills that you have developed from previous projects
to create the complex adventure-style game Treasure Quest, which featured multiple
interconnected layouts, various items for the player to use, an in-game “item shop”
mechanic, and enemies with greatly different movement patterns. You learned about the
behaviors Line of sight and Persist and about the Global property for objects and layers,
which preserved them across layouts. Congratulations on reaching this point and having
successfully created a great variety of video games! In the next and final chapter of this
book, you will read a variety of advice for continuing on in game development.

221

CHAPTER 15

The Journey Continues

In this final chapter, we’ll present a variety of steps you could consider as you continue
on in game development. Among these, we'll discuss working on additional projects,
learning skills in related areas, and bringing your games to a wider audience. Along the
way, we'll present lists of resources of all types and general advice for many situations.

Continue Developing

In this section, we’ll begin by talking about how you could refine your current projects
and start working on new projects, either on your own or as part of a game jam event.
We'll provide a list of online resources where you can obtain art assets to help you
along the way. Finally, we'll give a healthy dose of advice for overcoming the inevitable
obstacles that will arise.

Working on Projects

Ideally, you've been working through all the project examples in this book. Many of the
projects presented have concluded with a section titled “On Your Own”; you should try to
complete as many of these suggestions as you can; this is vital to your growth as a game
developer because you learn by doing, especially by figuring things out independently.
After each of the projects is functional, you should always experiment, create your own
additions, and try your own variations. Make sure you understand the purpose of each
event and how they fit together as a unified whole.

After you've extracted as much knowledge and experience from this book as you
feel is possible, it’s time to strike out on your own and start creating your own games. To
start, we recommend you continue creating games inspired by arcade-era classics, since
these games usually have simple and straightforward mechanics that will still provide
great development experience. Some particular recommendations of games to look into
include Space Invaders, Missile Command, Joust, and Bubble Bobble. While these games
may appear simplistic at first, each has interesting subtleties that will exercise your game
development skills. While doing this, we advise creating a physical list identifying and
prioritizing the game-specific features you'll be working on: the particular game mechanics,
level design, user interface, and artistic style, in roughly this order. For example, if your
main character is a winged archer, don’t worry about the color of their belt until after the

© Lee Stemkoski and Evan Leider 2017 223
L. Stemkoski and E. Leider, Game Development with Construct 2,
DOI 10.1007/978-1-4842-2784-8_15

CHAPTER 15 I THE JOURNEY CONTINUES

character is able to fly and shoot arrows. (In fact, it is common practice for developers to
use simple colored polygon shapes during the game mechanic phase of development.)
Don’t worry if you're not an artist; there are many web sites with freely available video game
graphics, and there are many artists in the community looking for collaborators. Finally,
once you're comfortable with your skills and abilities, it’s time to develop your own original
game concept or join a team working on a game and lend your skills.

Obtaining Art Resources

Although this has not been the focus of this book, every game benefits from quality
graphics and audio. We recommend the following web sites for obtaining artistic
resources. Most of these web sites have both free and paid options, while others are
driven by user donations.

e Kenney Game Assets: http://kenney.nl/ Created by Kenney
Vleugels, this site features more than 18,000 art assets that can
be useful in many genres. In this book, assets from this site were
featured in most of the games you created.

e Game Art Guppy: www. gameartguppy.com/ Created by Vicki
Wenderlich, this site contains a collection of high-quality art crafted
especially for independent game developers. In this book, the koala
character from the Jumping Jack game was obtained from this site.

e OpenGameArt: http://opengameart.org This is a repository for
all types of media (2D and 3D graphics, as well as sound effects
and music). Contributions are community driven. Licensing
details and conditions are determined by the individual creators.

o The Spriter’s Resource: waw. spriters-resource.com/ This features a
nearly comprehensive set of game art assets from many game console
systems throughout history. Because of copyright restrictions, however,
these assets cannot be used in published or commercial games.

e CoolText: http://cooltext.com This is a free text art graphics
generator that can be useful for creating graphics for title screens
as well as text and buttons for user interfaces.

e Textures: http://textures.com This site offers images of many
types of materials, both natural and constructed.

e BFXR:www.bfxr.net/ This resource randomly generates a wide
range of retro-style sound effects for use in games.

e FreeSound:www.freesound.org/ This is a collaborative database of
Creative Commons-licensed sounds, organized into packs and also
grouped by tags.

e Incompetech: http://incompetech.com/ Created by Kevin Macleod, this
web site features a collection of royalty-free original music compositions
that can be searched by genre, tempo, feel, or instrumentation. In this
book, the background music for the game Starfish Collector (in Chapter 5),
called “Master of the Feast,” was obtained from this collection.

224

http://kenney.nl/
http://www.gameartguppy.com/
http://opengameart.org/
http://www.spriters-resource.com/
http://cooltext.com/
http://textures.com/
http://www.bfxr.net/
http://www.freesound.org/
http://incompetech.com/
http://dx.doi.org/10.1007/978-1-4842-2784-8_5

CHAPTER 15 I THE JOURNEY CONTINUES

Participating in Game Jams

One way to gain valuable game development experience is to participate in a game jam.
A game jam is a gathering of game developers for the challenge of designing and creating
a game in a short time span, typically about 48 hours. Participants may be programmers,
artists, writers, or others with related skills. Because of the time limit, these events require
rapid prototyping and development skills, and they encourage participants to focus on
creativity, core mechanics, and bringing a project to completion (or at least a playable
state). Individuals often take part in these events for the express purpose of increasing
their skills in these areas. In addition, many game jams select a theme that must be
incorporated by all games developed at the event. The themes are usually announced at
the start of each event to discourage advanced planning and to encourage creativity.
Although some game jams have panels of judges and declare one or more winners,
these events are typically informal and friendly, and they give participants the chance to
connect with each other and provide a sense of community. Some events may be held at
one or more physical locations. Some events may have no central location; developers
work in areas of their own choosing (but are still held to the same time and schedule
restrictions). The following are some notable long-running game jam events:

e Global Game Jam: http://globalgamejam.org/ This is the largest
game jam in the world. It’s an international event that takes place
once each year, typically at the end of January. This is not an
online event; on-site participation is required, and for this reason
there are typically hundreds of physical locations (“jam sites”)
around the world where individuals can attend.

e Ludum Dare: http://ludumdare.com/ Major events are held
three times a year, and minor (“mini”) events are held during the
months when there is not a major event. Some participants attend
gatherings at various sites, but most developers work from their
own locations.

e One Game A Month: waww.onegameamonth.com/ As the name
suggests, these game jams are held monthly. The rules are
particularly relaxed, and each jam takes place over the course
of the entire month, so as to provide maximum flexibility to
participants. The web site is extremely gamified and awards
“experience points” for completing various objectives, which
can be a great source of motivation. The organizer is Christer
Kaitila, who has also written a book called The Game Jam Survival
Guide, which discusses these events in great detail and provides a
plethora of advice on how to have a successful experience.

Overcoming Difficulties

On your journey as a game developer, you will stumble at times. Everyone does. Perhaps
you can'’t figure out how to start implementing a particular game mechanic. Perhaps your
game entities are behaving in strange and unexpected ways. Whatever your difficulty may

225

http://globalgamejam.org/
http://ludumdare.com/
http://www.onegameamonth.com/

CHAPTER 15 I THE JOURNEY CONTINUES

be, don’t give up! Spend some time wrestling with the problem. Try different conditions
or actions. Try to implement simpler ideas first, and test your project as often as possible
to pinpoint exactly which addition has caused problems. Don’t give up; remember that
the process of overcoming difficulties helps you grow as a game developer.

However, also remember that balance is key in development (just as it is in games).
Yes, it is valuable to learn how to fix your projects, but if any particular problem persists
for a long time, take a break before you become overly frustrated or discouraged. Keep
things in perspective: it probably wouldn’t be worth spending five straight hours trying
to figure out why your platformer character gets stuck or glitches through a tilemap,
for example. In such a situation, spend some time away from your computer—take a
walk, think about something else, and come back to your problem later with a refreshed
outlook.

After making a sincere effort to resolve any difficulties yourself, if you are still stuck,
don’t despair. There is a vibrant and active community of fellow game developers and
enthusiasts out there that may be able to be of assistance. The Scirra forums are an
excellent place to ask for help. Start by searching these sites to see whether someone
has asked the same or a similar question in the “How do I...” FAQ. If not, then you can
create a post to ask your question. Make sure you clearly describe what you are trying
to do, and include details about what you have tried, what has worked, and what hasn’t.
Including a . capx file of your attempt can be very helpful in case you are only able to
implement part of a feature or to demonstrate what isn’t working in your project. Most of
all, be polite and patient. The people who frequent these forums usually do so voluntarily
and provide general assistance out of a sense of community. It’s perfectly normal that a
posted question might not generate a response for 48 hours or more. (In the meantime,
be active in the community and see whether anyone has posted any questions that you
might be able to answer; helping others will also help you develop a deeper knowledge of
Construct.) Whenever someone responds to your question, be sure to acknowledge them;
if they suggest a course of action, write a follow-up post as to whether it worked. And
finally, if you turn out to be the person to resolve your own question or decide to proceed
in a completely different direction to circumvent the problem altogether, you should post
that information as well, to provide future readers a sense of closure.

Broadening Your Horizons

In addition to increasing your depth of knowledge and programming proficiency, you
should devote time to developing a breadth of knowledge in game-related areas, which
will have a positive impact on the quality of the games you produce. We briefly mention a
few ways to work toward this goal in the following text.

Playing Different Games

Most game enthusiasts have a favorite genre. Some people spend most of their time
playing first-person shooters, others prefer to devote their time to role-playing games, and
so forth. As a game developer, you should consider playing games from as wide a range

as you can, including action, adventure, puzzle, strategy, role-playing, sports, simulation,
storytelling, and so forth. At the same time, try games from various time periods

226

CHAPTER 15 I THE JOURNEY CONTINUES

(from classic to modern) and from different size developers (from large professional
companies to smaller studios to independent gamemakers and game jam competitors).
Even if you don’t find a particular game or genre compelling, you will grow as a developer
if you spend some time playing such games, especially when you do so with a developer’s
mind-set. Try to understand why people like a given game. Examine each game’s level
progression, gameplay balance, narrative and character development, artistic style, and
interface design. Keep an eye out for what makes each game innovative or unique. Try to
mentally place yourself in the role of the original game developers who created the game,
think about possible reasons why they might have made the decisions they did, and
ponder whether you might have done the same or branched out in a different direction.

Increasing Your Skill Set

While you continue to develop games, you should also consider broadening your overall
skill set. A solid set of programming skills is highly desirable, but game developers
(especially those working independently or in small studios) often need to be a jack-of-
all-trades, especially in the areas of graphics and audio. To get started in these areas, we
recommend the following software and tutorials:

e Inkscape: http://inkscape.org/ This is software for creating
vector graphics, freely available. The web site contains a list of
high-quality tutorials for all skill levels. Most relevant to our
interests, however, is a set of game art tutorials written by Chris
Hildenbrand, available at http://2d-game-art-tutorials.zeef.
com/chris.hildenbrand.

e Audacity: http://audacityteam.org/ This is a multitrack audio
editor and recorder, freely available. The Audacity manual
contains an extensive list of tutorials that will teach you all sorts of
useful recording and editing skills.

Recommended Reading

In addition to broadening your skill set, it is also worthwhile to broaden your knowledge
base. There are a variety of books available on topics related to game development that
will help you do exactly that. Of course, there are far too many to list here, and no doubt
we have omitted a number of high-quality titles. Nonetheless, we have listed a few
representative samples from across a range of fields, with a cross section of topics, to give
you an indication of what'’s available out there: game design, literary aspects, history, and
social impact.

e Fundamentals of Game Design, 3rd edition, by Ernest Adams
(New Riders, 2013). This book discusses a variety of topics such
as concept development, gameplay design, core mechanics, user
interfaces, storytelling, and balancing; exercises, worksheets, and
case studies are also included.

227

http://inkscape.org/
http://2d-game-art-tutorials.zeef.com/chris.hildenbrand
http://2d-game-art-tutorials.zeef.com/chris.hildenbrand
http://audacityteam.org/

CHAPTER 15 I THE JOURNEY CONTINUES

e The Ultimate Guide to Video Game Writing and Design, by Flint
Dille and John Zuur Platten (Lone Eagle, 2008). Topics covered
include integrating story elements into a game, writing a game
script, creating design documentation, the creative process, team
dynamics, and business considerations.

e Vintage Games: An Insider Look at the History of Grand Theft
Auto, Super Mario, and the Most Influential Games of All Time,
by Bill Loguidice and Matt Barton (Focal Press, 2009).
This book explores the history of some of the most influential
video games of all time, with a particular focus on their
development, critical reception, and impact on the industry.

® Reality Is Broken: Why Games Make Us Better and How They Can
Change the World, by Jane McGonigal (Penguin Books, 2011).
In this book, the author discusses theories from psychology,
cognitive science, sociology, and philosophy in the context
of game playing, and explains how games can make us more
productive and change the world for the better.

It is also useful to stay abreast of current news and developments in the game
industry, as well as to hear the opinions, approaches, struggles, and successes of your
fellow game developers. For these purposes, there is no better alternative to following
blogs. We list some particularly substantial sites, each of which features regular blog
postings (as well as additional useful information and resources).

e Gamasutra: waw.gamasutra.com/ This web site is devoted to the
art and business of making games, which, among other resources,
contains curated lists of blog postings that touch on all aspects of
the industry.

e GameDeuv.net: waw. gamedev . net This is a resource for developers
of all fields and expertise, containing articles and tutorials on
technical, creative, and business aspects on game development.

e Hooby Game Dev: www. hobbygamedev . com/ Maintained by Chris
DeLeon (a professional video game developer, author, and
instructor), this regularly updated web site contains articles,
advice, tutorials, case studies, interviews, and more.

Sharing Your Games

Once you have designed and created some games of your own, you should consider
sharing them with others. After all, games are meant to be played! This process will
require you to export your games to a playable format and find an audience of eager game
enthusiasts, both of which we discuss here.

Construct 2 features many ways to share your games. The easiest approach, which is
included with the free version of the software, is to select Export from the File menu and
convert your game to HTML5 format. The exporter will create a directory containing an

228

http://www.gamasutra.com/
http://www.gamedev.net/
http://www.hobbygamedev.com/

CHAPTER 15 I THE JOURNEY CONTINUES

HTML file, store all the images, and convert all the events into JavaScript code for you; the
files can be uploaded to a web site (either your own personal web site or web sites such
as those listed in the following text) and played online. There are other export formats
available (for platforms such as desktop computers and smartphones), but access to
these exporter options will require you to purchase a personal license for the software,
which may be a good investment by this point!

One of the greatest joys of being a game developer is when others play your games.
Even if a project is unfinished, having people playtest your game and provide feedback
can help your creations to reach even greater heights and attract an even larger audience.
Scirra provides web hosting services specifically for games created with Construct 2
on its site. In addition, there are many other web sites that support independent game
developers and provide forums where you can share your work with the community. We
list some of these here, and note that some of these web sites (such as Itch.io, IndieDB,
and GameJolt) will also provide you with the ability to upload your games onto their
servers after you register for an account.

e Scirra Arcade: waw.scirra.com/arcade/

e [tch.io:www.itch.io

e IndieDB: www.indiedb.com/

e GameJolt: http://gamejolt.com/

e GameDeuv.net: waw. gamedev.net/

e The Independent Games Source (TIGSource): waw. tigsource.com/
e Indie Gamer forums: http://forums.indiegamer.com/

If you post a game to one of these sources, while you're waiting to hear people’s
opinion on your work, you should strive to be an active participant in their forums. Try a
few games and provide feedback to your fellow developers. We all benefit from a vibrant
game development community, so be sure to join in and be a part of it!

With that final piece of advice, we come to the end of our journey together through
this book. We hope, however, your journey as a game developer will continue. May you
have good fortune on all your future endeavors!

229

http://www.scirra.com/arcade/
http://www.itch.io/
http://www.indiedb.com/
http://gamejolt.com/
http://www.gamedev.net/
http://www.tigsource.com/
http://forums.indiegamer.com/

APPENDIX A

Game Design Documentation/

While you will learn many technical and practical aspects of game development as you
work through the example projects in this book, it is equally important to have a solid
foundation in the theoretical aspects of game design. The first effort to create a framework
for these concepts was discussed in a paper published by Robin Hunicke, Marc LeBlanc,
and Robert Zubek in 2004.! In it, they proposed the Mechanics-Dynamics-Aesthetics
(MDA) framework, which provides a useful way to categorize the components of a game.

They defined Mechanics as the formal rules of the game, expressed at the level of
data structures and algorithms, Dynamics as the interaction between the player and the
game mechanics while the game is in progress, and Aesthetics as the emotional responses
experienced by players as they interact with the game. Since then, other frameworks
have been proposed, each of which provides a different way of analyzing games.
A popular example is Jesse Schell’s Elemental Tetrad,? which consists of Mechanics,
Story, Aesthetics, and Technology (where aesthetics is defined more broadly than in the
original MDA framework). Frameworks such as these are valuable tools to help people
consistently and fully analyze games. Players can use frameworks to better understand
and express what they enjoy about particular games. Developers can use the formal
structure to help them create a more cohesive design and to organize and document the
development process; explaining how to write such documentation is the goal of this
appendix.

A game design document (GDD) serves as the blueprint or master plan for creating
a game: it describes the overall vision of a game, as well as the details (often based on
a game design framework such as MDA). Practical aspects are also included, such as a
schedule that lists when certain features will be completed, a list of team members and
responsibilities, and plans for testing and releasing the game. A GDD can provide clarity
and focus, while serving as a guide and a reference to the person or people working on
the game. To be most effective, the GDD should be as complete as possible before the
development process begins. Depending on the flexibility of the developers, a certain
amount of modification may be permitted over the course of development, and various
adjustments may need to be made after collecting feedback from gameplay testing.

"Hunicke, LeBlanc, and Zubek. “MDA: A Formal Approach to Game Design and Research.”
Proceedings of the Nineteenth National Conference on Artificial Intelligence, 2004.
2Schell. The Art of Game Design: A Book of Lenses. CRC Press, 2008.

© Lee Stemkoski and Evan Leider 2017 231
L. Stemkoski and E. Leider, Game Development with Construct 2,
DOI 10.1007/978-1-4842-2784-8

APPENDIXA " GAME DESIGN DOCUMENTATION

There is no one standard format for game design documents; an Internet search will
provide many templates for a variety of development scenarios. GDD templates often
contain a bulleted list of topics or questions for your consideration (when applicable). In
what follows, we present a similar list of questions for you to ponder as you design your
own games; the scope of these questions is particularly good for individual developers
or small teams working on projects with game engine software such as Construct 2. By
recording detailed responses to the following queries, you will effectively create your own
game design document to help guide you through the development process.

1. Overall vision.

a. Write a short paragraph (three to six sentences)
explaining your game. (This is sometimes called the
elevator pitch: a short summary used to quickly and
simply describe an idea or product during a 30-second
elevator ride.)

b. How would you describe the genre(s)? Is it single-
player or multiplayer (and if the latter, cooperative or
competitive)?

c. Whatis the target audience? Include demographics (the
age, interests, and game experience of potential players),
the game platform (desktop, console, or smartphone),
and any special equipment required (such as gamepads).

d. Why will people want to play this game? What features
distinguish this game from similar titles? What is the
hook that will get people interested at first, how will the
game keep people interested, and what makes it fun?

2. Mechanics: the rules of the game world. (Note that the
following questions are phrased in terms of the game’s
main character, as distinguished from the player, since the
player is the focus of the section on dynamics. However, if
no such character exists, the player can be considered as the
character.)

a. What are the character’s goals? These may be divided
into short-term, medium-term, and long-term goals.

b. What abilities does the character have? This should
include any action the character is capable of
performing, such as moving, attacking, defending,
collecting items, interacting with the environment, and
so forth. Describe the abilities or actions in detail; for
example, how high can the character jump? Can the
character both walk and run?

232

APPENDIXA I GAME DESIGN DOCUMENTATION

What obstacles or difficulties will the character face?
Some obstacles are active (such as enemies, projectiles,
or traps) and should be described in detail (how they
affect the player, their location, their movement patterns,
and so forth). Other obstacles are passive (such as

doors that need to be unlocked, mazes that need to be
navigated, puzzles that need to be solved, or time limits
that need to be to beat). How can the character overcome
these obstacles (items, weapons, spells, quick reflexes)?

What items can the character obtain? What are their
effects, where are they obtained, and how frequently do
they appear?

What resources must be managed (such as health,
money, energy, and experience)? How are these
resources obtained and used? Are they limited?

Describe the game world environment. How large is

the world (relative to the screen)? Are there multiple
rooms or regions? Is the gameplay linear or open? In
other words, is there a strictly linear progression of levels
or tasks to complete, or can the character select levels,
explore the world, and complete quests at will?

3. Dynamics: the interaction between the player and the game
mechanics.

a.

What hardware is required by the game (keyboard,
mouse, speakers, gamepad, touchscreen)? Which keys/
buttons are used, and what are their effects? How is

the player informed of the control scheme (a separate
manual document, game menus, tutorials, or in-game
signs)?

What type of proficiency will the player need to develop
to become proficient at the game? Are there any complex
actions that can be created from combinations of basic
game mechanics? Do the game mechanics or game world
environment directly or indirectly encourage the player
to develop or discourage any particular play strategies?
Does the player’s performance affect the gameplay
mechanics (as in feedback loops)?

What gameplay data is displayed during the game (such
as points, health, items collected, time remaining)?
Where is this information displayed on the screen? How
is the information conveyed (text, icons, charts, status
bars)?

233

APPENDIXA " GAME DESIGN DOCUMENTATION

234

d.

What menus, screens, or overlays will there be (title
screen, help/instructions, credits, game over)? How does
the player switch between screens, and which screens
can be accessed from each other?

How does the player interact with the game at the
software level (pause, quit, restart, control volume)?

Aesthetics: the visual, audio, narrative, and psychological
aspects of the game; these are the elements that most directly
affect the player’s experience.

a.

Describe the style and feel of the game. Does the

game take place in a world that is rural, technological,
or magical? Does the game world feel cluttered or
sparse, ordered or chaotic, geometric or organic? Is the
mood lighthearted or serious? Is the pace relaxing or
frenetic? All the aesthetic elements discussed should
work together and contribute to create a coherent and
cohesive theme.

Does the game use pixel art, line art, or realistic graphics?
Are the colors bright or dark, varied or monochromatic,
shiny or dull? Will there be value-based or image-based
animations? Are there any special effects? Create a list of
graphics you will need.

What style of background music or ambient sounds

will the game use? What sound effects will be used

for character actions or for interactions with enemies,
objects, and the environment? Will there be sound effects
corresponding to interactions with the user interface?
List all the music and sounds you will need.

What is the relevant backstory for the game? What is the
character’s motivation for pursuing their goal? Will there
be a plot or storyline that unfolds as the player progresses
through the game?

What emotional state(s) does the game try to provoke:
happiness, excitement, calm, surprise, pride, sadness,
tension, fear, frustration?

What makes the game “fun”? Some players may enjoy the
graphics, music, story, or emotions evoked by the game.
Other features players might enjoy include the following:

i. Fantasy (simulating experiences one doesn’t have in
real life)

ii. Role-playing (identifying with a character)

iii.

iv.

Vi.

viii.

ix.

APPENDIXA I GAME DESIGN DOCUMENTATION

Competition (against other players or against
records previously set by oneself)

Cooperation (working with others toward a common
goal)

Compassion (providing assistance or rescuing
others)

Discovery (finding objects or exploring a world)

Overcoming challenges (such as defeating enemies
or solving puzzles)

Collection (including game items or badges/
trophies for achievements)

Social aspects (both within the game and the
communities that form around the game)

Development.

a. Ifworking with a group: list the team members, and
list their roles (game designer, programmer, illustrator,
animator, composer, sound editor, writer, manager, etc.),
responsibilities, and skills.

b. What equipment will you need for this project? Include
both hardware and software that will be needed
for content creation (graphics and audio), game
development, and playtesting.

c. What are the tasks that need to be accomplished to create
this game? Estimate the time required for each task,
the estimated completion date, and the team member
responsible; then estimate the priority of each feature (in
case some features need to be eliminated because of time
constraints or unexpected circumstances).

d. What points in the development process are suitable for
playtesting? How will you find people to playtest your
game? What specific kinds of feedback are you interested
in gathering? (For example, you could ask how clear the
goals are, how easy or intuitive the controls are, how
balanced the difficulty level is, and which parts of the
game were most or least enjoyable.) Finally, how will
you collect this information (such as a questionnaire or a
brief discussion)?

e. What are your plans for dissemination? Do you have
plans to promote this game through social media, forum
postings, gameplay videos, or advertisements?

235

Index

A B

Airplane assault

eight-direction movement, 132

endless vertical scrolling, 138-139

features, 140

line up shots and enemy bullets, 131

player, waypoint and enemy
setup, 132-133

score, health, invincibility and
game over, 136-138

shooting and spawning enemies,
134-135

shoots small bullets, 131

Alternative controls

changing default controls, 74
gamepad controllers, 75-76
touchscreen input, 76-77

Art resources, 224
Audio

ButtonMute, 71
ButtonPause, 68-69
ButtonResume, 68-69
classification, 69-70
elements, 70

C

Cleanup challenge

background images, 50-52
cars
bullet behavior, 55
CarWarp object, 56
initial animation, 55
global variable, 60-62
player, 52-54

randomization, 62-63

Text objects, 57-60
Creature-compare instance

variable, 121

Construct 2

downloading and installing, 2

export, 7

features, 2

preview, 7

programming skills, 227-228

save, 7

sharing, 228-229

user interface, 3-5, 7
Custom Movement, 31

D

Difficulty ramp, 85

E, F

Enemy planes
difficulty ramp, 85
SpawnRate, 86-87

G

Game design document (GDD)
aesthetics, 234-235
development, 235
dynamics, 233-234
mechanics, 232-233
overall vision, 232

Game jams, 225

Gamepad.Axis, 75

Global variables, 60-62

© Lee Stemkoski and Evan Leider 2017
L. Stemkoski and E. Leider, Game Development with Construct 2,
DOI 10.1007/978-1-4842-2784-8

237

INDEX

H

Hero animation
animation frames, 201
collision polygon, 202
sword-fighting mechanics, 203-205

Image-based animation, 23
Instance variables, 60, 119
Items

ball, 109-111

paddle, 111-113

J, K

Jumping Jack
breakable bricks, 187-188
coins, 189
creation, 175
enemies
Fly and Koala objects, 192-193
game ovet, 195
item block graphics, 196
slime movement events, 193-194
types, 191
Ul layer, 191
goal flag, 185
jump-through platforms, 186
keys and locked blocks, 190-191
ladders and climbing (see
Ladders-climbing mechanic)
level design, 176-177
object interaction, 185
player setup, 177-180
springboards, 187

L

Ladders-climbing mechanic
activation and
deactivation, 184-185
function object, 181-182
player movement, 183
tilemap platform, 180

M,N,O

Maze Runman games
background and tilemap
maze setup, 161

238

bonus jewel item events, 173-174
coin events, 171
directions and movement, 160
end-of-game conditions, 172-173
enemies and intelligent movement
data structures, 167
default direction, set up, 168
ghost grid alignment
events, 168
ghost sprite’s collision
polygon, 167
horizontal and random pattern
ghost movement events, 170
parameter values, 168
subevents, parameter
values, 169
on timer event, 167
vertical pattern ghost
movement, events, 169
events, collecting coins, 171
floor and random functions, 160
image-based animations, 160
player setup and grid-based
movement
adjusting Runman’s position,
grid square, 162
player movement and
animation, 164
player movement group and
grid alignment, 163
preventative collision
detection, 163
sprite’s collision polygon, 161
tilemap wall functionality, 166
on timer event, 164
tilemap panel, 160
user interface and coin
placement, 171
Mechanics-dynamics-aesthetics
(MDA) framework, 231

PQ
Plane Dodger
background effects, 80-82
creation, 79
enemy planes, 85-87
features, 87-88
player, 82, 83
score, 83-85
star, 83-85
Player’s plane, 82-83

INDEX

R instance variables and
waypoint logic
Racecar 500 creatures random starting
car behavior properties, 94-95 targets, 121
creation, 89 events, move and hide
obstacles, 99-100 creatures, 122
race time (see Race timer) ID instance variable, 120
scenery, 98 rotate toward Vortex objects,
tilemap (see Tilemaps) creatures, 121
Race timer Vortex object, 119-120
invisible, 97 player setup and mouse-based
keyboard object, 96 controls, 117
Text object, 95 recharging period, 115
Ul layer and position, 95 score and game over, 126
Rectangle Destroyer spell charge and user interface, 124, 126
background, 104 TiledBackground, 116
balls, 104-105 user interface, 116
bricks, 104-105 W/A/S/D keys, 116
creation, 103 Sprites
features, 113-114 image editor, 14
items (see Items) instances, 15
MessageEnd, 106 layouts, 14-16
MessageStart, 106 object creation, 13
MessageWin, 106 properties, 13
paddle, 104-105 Starfish Collector
walls, 104-105 animation and text, 66-68
audio, 69-71
S behaviors, 18-20
ButtonPause, 68-69
Space rocks ButtonResume, 63-69
collision events, 34 creation, 9
lasers, 32 events, 16-18
layout properties, 28 layer panel, 11
shields, 42 layout properties, 10
spaceship movement, 29-31 menus, 72-73
thruster effect (see project properties, 12
Thrusters and explosions, solid objects, 22-23
space rocks) sprite objects (see Sprites)
UFOs, 43-45 value-based animations, 23-24
winning/losing, 40
Spaceship movement T
acceleration, 31
capping, 31 Teleportation
conditions and actions, 30 expressions, 40
rotation, 30 mechanic, 40
Spell Shooter warp effects, 38-39
adding radar, 127-128 Text objects, 57-60
creatures and vortices, 118-119 Thrusters and explosions,
8-Direction, 116 space rocks
events, casting spells, 123 events, 38
features, 128 features, 34
gauntlet, 115 fire object, 34-36

239

INDEX

Tilemaps
collision polygons, 94
panel, 91-92
racetrack, 90
road configurations, 90
Tower defenders
cannon purchase and
placement, 148-151
cannons and bullets, 144-146
destroying enemies, 141
earning cash, 147
enemy movement, 144
game ending and difficulty
ramp, 152-153
level setup, 142-143
side quests
cannon types, 155
dynamic shoplike mechanic and
customizable variables, 156
enemy types, 154-155
time speed control, 155-156
turret placement, 141
Treasure Quest
creation, 197
enemies
hero interaction, 219-220
types, 217-219
Hero setup (see Hero animation)
items
bombs, 214-215
coins, 212-214

240

hearts, 212
treasure chest, 216
portal and spawn
instances, 207
tilemap, 199
UI (see User interface design)
wall object, 200, 206

U

Unidentified flying objects (UFOs)
collisions, 45
destroy, 45
SpawnPoint, 44
User interface design
layout, 6
properties, 6
sign mechanics, 209-211
status display, 209
template projects, 4-5

\'

Value-based animations, 23-24
Vortex-compare instance
variable, 122

W, XY,Z
Waypoint-compare instance
variable, 133

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: Getting Started with Construct 2
	About the Construct 2 Game Engine
	Downloading and Installing
	The User Interface
	Saving, Previewing, and Exporting Games
	Summary

	Chapter 2: Starfish Collector
	Project Setup
	Sprites
	Events
	Behaviors
	Ending the Game
	Side Quests
	Solid Objects
	Value-Based Animations
	On Your Own

	Summary

	Chapter 3: Space Rocks
	Introduction
	Spaceship Movement
	Lasers and Rocks
	Thrusters and Explosions
	Teleportation
	Winning or Losing the Game
	Side Quests
	Shields
	UFOs
	On Your Own

	Summary

	Chapter 4: Cleanup Challenge
	Backgrounds
	Animating the Player
	Cars
	Displaying Messages with Text Objects
	Keeping Score with Global Variables
	Side Quests
	Randomization
	On Your Own

	Summary

	Chapter 5: Adding Polish to Your Game
	Adding Animation and Text
	Mouse Input and Buttons
	Audio
	Menus
	Alternative Controls
	Changing Default Controls
	Gamepad Controllers
	Touchscreen Input

	Summary

	Chapter 6: Plane Dodger
	Background Effects
	The Player’s Plane
	Stars and Score
	Enemy Planes
	Side Quests
	Summary

	Chapter 7: Racecar 500
	Introduction
	Tilemaps and Level Design
	Car Mechanics
	Race Timer
	Side Quests
	Scenery
	Obstacles
	On Your Own

	Summary

	Chapter 8: Rectangle Destroyer
	Introduction
	Paddle, Walls, Bricks, and Balls
	Game Start and End
	Items
	Items Affecting the Ball
	Items Affecting the Paddle

	Side Quests
	Summary

	Chapter 9: Spell Shooter
	Introduction
	Player Setup and Mouselook
	Creatures and Vortices
	Instance Variables and Waypoint Logic
	Spell Shooting
	Spell Charge and User Interface
	Score and Game Over
	Side Quests
	Adding a Radar
	On Your Own

	Summary

	Chapter 10: Airplane Assault
	Player, Waypoint, and Enemy Setup
	Shooting and Spawning Enemies
	Score, Health, Invincibility, and Game Over
	Side Quests
	Endless Vertical Scrolling
	On Your Own

	Summary

	Chapter 11: Tower Defenders
	Level Setup
	Enemy Movement
	Cannons and Bullets
	Earning Cash
	Cannon Purchase and Placement
	Game Ending and Difficulty Ramp
	Side Quests
	Additional Enemy Types
	Additional Cannon Types
	Time Speed Control
	On Your Own

	Summary

	Chapter 12: Maze Runman
	Player Setup and Grid-Based Movement
	Enemies and Intelligent Movement
	Collecting Coins
	Game End

	Side Quests
	Adding a Jewel Bonus Item
	On Your Own

	Summary

	Chapter 13: Jumping Jack
	Level Design
	Player Setup
	Ladders and Climbing
	Additional Game Objects
	Goal Flag
	Jump-Through Platforms
	Springboards
	Breakable Bricks
	Coins
	Keys and Locked Blocks

	Enemies
	Side Quests
	Summary

	Chapter 14: Treasure Quest
	Level Design
	Hero Setup
	Sword-Fighting Mechanics

	Multiple Levels
	User Interface Design
	Status Display
	Sign Mechanics

	Items
	Hearts
	Coins
	Bombs
	The Treasure Chest

	Enemies
	Side Quests
	Summary

	Chapter 15: The Journey Continues
	Continue Developing
	Working on Projects
	Obtaining Art Resources
	Participating in Game Jams
	Overcoming Difficulties

	Broadening Your Horizons
	Playing Different Games
	Increasing Your Skill Set
	Recommended Reading

	Sharing Your Games

	Appendix A: Game Design Documentation
	Index

