

Hands-On Robotics with
JavaScript

Build robotic projects using Johnny-Five and control
hardware with JavaScript and Raspberry Pi

Kassandra Perch

BIRMINGHAM - MUMBAI

Hands-On Robotics with JavaScript
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Gebin George
Acquisition Editor: Shrilekha Inani
Content Development Editor: Abhishek Jadhav
Technical Editor: Prachi Sawant
Copy Editor: Safis Editing
Project Coordinator: Jagdish Prabhu
Proofreader: Safis Editing
Indexer: Mariammal Chettiyar
Graphics: Tom Scaria
Production Coordinator: Deepika Naik

First published: August 2018

Production reference: 1300818

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78934-205-5

www.packtpub.com

http://www.packtpub.com

This book is dedicated to my loving partner, Kevin. Without your constant support and
infinite patience, this book wouldn't exist.

– Kassandra Perch

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Kassandra Perch is an open web developer and supporter. She began as a frontend
developer and moved to server-side with the advent of Node.js and was especially
enthralled by the advance of the NodeBots community. She travels the world speaking at
conferences about NodeBots and the fantastic community around them.

Thank you very much to my very patient editors at Packt—I brought things down to the
wire more than once and you all have handled it exceptionally. To my mentor, Ray—you
taught me that there's always room for improvement. To my mother, Kelly, father Joe,
sister Kaitlynn, and brother Alex—you have been there for me my whole life, and I love
you all dearly. Finally, to Raquel Vélez and Rick Waldron: your NodeBots workshop at
JSConf 2013 changed my life, and you're both wonderful stewards of the community.

About the reviewers
Amit Rana is a Passionate Electronics Engineer, Maker, an Embedded Systems
Professional, and Trainer. He has founded and is running three different firms in
Electronics R & D, Product Development, and Robotics education. He holds a master's
degree in electronics engineering. He has over 10 years of experience in embedded system
designing and programming using various microcontrollers, Arduino, and Raspberry Pi
with wireless technologies. He is also a professional writer who writes blogs on technology
and education. He writes assignments on technical documents for few clients and also
writes blogs on his website.

Shahid Memon is an analytical master of science in autonomous robotics engineering
graduate possessing a bachelor's degree in computer science. He has collaborated with
colleagues on product feasibility studies and new product ideas to meet clients' needs and
support the company objectives. He has coordinated several product development projects
and assisted in the design and testing phase. He is a strategic thinker with the ability to
drive company goals and analyze research impacting products and business needs. He is
an avid researcher of the latest trends within the technology industry and how it affects the
business. He is a proven leader having outstanding communication, interpersonal, project
management, and supervisory skills.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Setting Up Your Development Environment 6
Technical requirements 6
What is the Raspberry Pi? 7

Microcontrollers 8
General-Purpose Input/Output (GPIO) pins 9
Debian and Raspbian 9
Johnny-Five and Raspi-IO 9
So, the Pi is technically a microcontroller... 10
...but it is also a computer! 10

How we will use the Raspberry Pi 10
Taking advantage of all that the Raspberry Pi has to offer! 11
Johnny-Five – letting us code hardware in Node.js 11

Installing the operating system 12
Downloading Raspbian Lite 12
Burning the image to an SD card 13
Editing files on the SD card 14
Booting up the Pi 15

SSHing from a Linux or Mac 16
SSHing from Windows 17

Setting up your password and hardware interfaces 19
First things first – change your password! 19
Updating the Raspberry Pi 20
Turning on the hardware interfaces 20

Installing Node.js, Johnny-Five, and Raspi-IO 21
Installing Node.js and npm 21

Detecting your version of ARM processor 22
Installing Johnny-Five and Raspi-IO 24

Summary 24
Questions 24
Further reading 25

Chapter 2: Creating Your First Johnny-Five Project 26
Technical requirements 26
Creating a project folder 27

Setting up npm to manage our modules 28
Getting started with Johnny-Five and Raspi-IO 28

Gathering resources and documentation 29
Taking a look at the LED-blink project 30

Table of Contents

[ii]

Raspberry Pi pin numbers 31
Wiring up an LED 33

Putting together and attaching the cobbler 33
Attaching the resistor and LED 35

Making the LED blink 35
Putting your code on the Raspberry Pi 36
Running your code 36

Summary 37
Questions 37
Further reading 37

Chapter 3: Building Interactive Projects with RGB LED 38
Technical requirements 38
Looking at the LED and LED.RGB API 39

The LED object 39
The Led.RGB object 40

PWM pins and GPIO expanders 41
How do PWM pins work? 41
Why we need a GPIO expander 43
Wiring up our GPIO expander and RGB LED 43

Bringing in other node packages 44
Project – building a rainbow 44
Using the color npm module 45
Getting our Johnny-Five code started 45

The REPL – a powerful tool in Johnny-Five 46
How does the REPL work? 46
Adding our RGB LED to the REPL 47
Controlling our LED from the command-line interface 48

Summary 48
Questions 49
Further reading 49

Chapter 4: Bringing in Input with Buttons 50
Technical requirements 50
Using inputs in robotics projects 50

Digital versus analog input 51
How to handle analog input with the Raspberry Pi 51

Analog GPIO expanders 51
Using input devices with digital interfaces 51

How Johnny-Five handles input 52
The structure of a typical Johnny-Five project 52

The beginning – including libraries and creating our board object 52
The board ready event handler 53
Constructing our component objects 53
Input event handlers and output device manipulation 53

The Johnny-Five button object 53

Table of Contents

[iii]

The button object 54
Button events 54

Wiring up buttons 55
Putting a button on a breadboard 55
Using a pull-down resistor 56

Adding buttons to our RGB LED project 56
Wiring everything up 56

Using the power and ground side rails 56
Wiring up the buttons 58

Button 1 – stop and start rainbow 59
Refactoring the rainbow cycle 59

Button 2 – next color 60
Summary 61
Questions 61
Further reading 61

Chapter 5: Using a Light Sensor to Create a Night-Light 62
Technical requirements 62
Using an analog sensor with the Pi 63

Finding the right sensors for your Pi project 63
I2C devices 63
SPI 63
How to determine if your sensor will work with Johnny-Five 64

The ambient light sensor 64
Wiring up the sensor 65
Writing a program to get readings and print them to the command line 66

The Johnny-Five sensor events 66
Handling sensor data in the event handler 66

Using and formatting Johnny-Five sensor data 67
Using .scaleTo() and .fscaleTo() to fine-tune measurements 68

Printing sensor data to the command line 68
Using barcli to make the data easier to see 69

Importing barcli and constructing our barcli graph 70
Getting the bar graph to update 70

Creating our night-light 71
Wiring up the LED 71
Coding this project 72

Summary 73
Questions 73
Further reading 74

Chapter 6: Using Motors to Move Your Project 75
Technical requirements 75
More about motors 76

How to control a motor with a microcontroller 77
Preparing for a motor-driven project with Raspberry Pi 78

Putting the hat together 78

Table of Contents

[iv]

Putting the hat on the Pi 79
The Johnny-Five motor object 80

Constructors for our hat 81
Functions that move the motor 81
Adding REPL control 81
Loading and running your motor 82

Troubleshooting your motorized projects 82
Project – cat toy 83

Putting a piece of paper on the motor shaft 84
Coding the randomness to start/stop the motor 84

Project – using two gearbox motors and the motors object 85
Wiring up your TT motors 86
The motors Johnny-Five object 87
Writing some functions 88
Running our motors project 89

Summary 90
Questions 90

Chapter 7: Using Servos for Measured Movement 91
Technical requirements 91
Differences between motors and servos 92

Calculated movements 92
Regular versus continuous servos 93
Powering servos and motors 93

Getting a servo working with Johnny-Five 93
The Johnny-Five servo object 94
Wiring the servo to our PWM hat 95
Coding your first servo sweep 97

Project – two servos and the REPL 97
Wiring up a second servo 98
Using the Johnny-Five servos object 98
Adding the Servos object to our code 99
Adding in REPL functionality 100
Playing with our servos on the command line 100

Project – light meter with the servo 100
Adding in the light sensor 101
Making the servo into a meter 102
Coding the project 102
Running and using our light meter 103

Project – the continuous servo 103
Wiring up the servo 104
Continuous servo constructor and methods 105
Using the REPL with the continuous servo 105
Playing with the continuous servo in the REPL 106

Summary 106

Table of Contents

[v]

Questions 107

Chapter 8: The Animation Library 108
Technical requirements 108
Animating movement 109

Why we need the animation library 109
Moving servos with true precision 109
Implicit use of the animation library 110

Using servo.to() to implicitly create an animation 110
Playing with implicit animations 112
Playing with implicit animations, take two 113

The terminology of the animation library 114
The construction of the animation object 116

Creating the animation object 116
Planning out the animation sequence 117
Creating keyframes 117

Using null and false as positions in keyframes 118
Programming our keyframes 118

Setting cue points and duration 119
Putting it all together to make an animation 119
Watching your animation at work 119

Easing into your servo animations 120
How easing fits into an animation segment 120
Adding easing to our first animation 120
Easing an entire animation segment 121

Learning more about queuing and playing animation segments 121
Looping animation segments 122
Changing the speed of animation segments 123
Playing, pausing, and stopping animation segments 123
Tying it all together in the REPL 124

Summary 125
Questions 125

Chapter 9: Getting the Information You Need 126
Technical requirements 126
Why connect your NodeBots to the internet? 127

Using the power of npm modules 127
Using the data you collect 127
Some things to keep in mind 128

Getting weather data on our Pi with OpenWeatherMap 128
Getting an OpenWeatherMap API key 129
Bringing in request 130
Parsing the response 131

Building a weather dashboard with an LCD 132
Adding an LCD to the Pi 132
The LCD object 133

Table of Contents

[vi]

Constructing our LCD 133
Setting up the LCD 133
Printing to and clearing the LCD 134

Coding it all together 134
Project – scraping data from websites with your Pi 136

Scraping downforeveryoneorjustme.com for johnny-five.io 136
Making the HTTP request 137
Using Cheerio to get the element we want 139
Parsing the HTML and showing the result 139

Summary 140
Questions 140
Further reading 141

Chapter 10: Using MQTT to Talk to Things on the Internet 142
Technical requirements 142
IoT device communications 143

Long polling 143
Websockets 143

MQTT - an IoT PubSub protocol 144
The basics of MQTT 144

Setting up MQTT on the Pi with AdafruitIO 144
Creating an account and a feed 145
Subscribing to the feed using the mqtt npm module 147

The mqtt module 147
The dotenv module 147

Testing our connection 148
Project – adding an LCD and button to see and send MQTT events 149

Wiring it all up 149
Coding it all together 150

Project – social media notifier bot with IFTTT 153
Getting started with IFTTT 153

Linking IFTTT to Adafruit 153
Setting up feeds for your social media MQTT messages in AdafruitIO 154
Creating our IFTTT Applets 155
Wiring up our project 158
Coding our social media notifications to show on the LCD 159
Running your social media bot 160

Summary 161
Questions 161
Further reading 161

Chapter 11: Building a NodeBots Swarm 162
Technical requirements 162
Project – connecting multiple NodeBots 162

Optional – setting up a second Raspberry Pi 163
Setting up your project files and folders 163

Table of Contents

[vii]

If you're using one Pi 164
If you're using two Pis 164

Adding a light sensor to the Pi 165
Creating an MQTT broker on the Pi 165
Programming the MQTT client – have the Pi Report Home 166

If you're using one Pi 167
If you're using two Pis 168

Running our MQTT project 168
If you're using one Pi 168
If you're using two Pis 169

Expanding your NodeBots knowledge 169
Using Johnny-Five on other boards 169

Figuring out pin numbers 170
Checking the platform support page 172

Other node robotics platforms 173
The Tessel 2 173
The Espruino ecosystem 174

Programming graphically with Node-RED 175
Continuing on your NodeBots adventure 176

Figuring out what to build 177
Reaching out to the NodeBots community 177
Where to go to learn more about Electronics 177

Summary 178

Assessments 179

Other Books You May Enjoy 184

Index 187

Preface
There has been a rapid increase in the use of JavaScript in hardware and embedded device
programming. JavaScript has an effective set of frameworks and libraries that support the
robotics ecosystem.

Hands-On Robotics with JavaScript starts with setting up an environment to program
robots in JavaScript. Then, you will dive into building basic-level projects such as a line-
following robot. You will walk through a series of projects that will teach you about the
Johnny-Five library, and develop your skills with each project. As you make your way
through the chapters, you'll work on creating a blinking LED, before moving on to sensors
and other more advanced concepts. You will then progress to building an advanced-level
AI-enabled robot, connect their NodeBots to the internet, create a NodeBots Swarm, and
explore MQTT.

By the end of this book, you will have gained hands-on experience in building robots using
JavaScript

Who this book is for
Hands-On Robotics with JavaScript is for individuals who have prior experience with
Raspberry Pi 3 and like to write sketches in JavaScript. Basic knowledge of JavaScript and
Node.js will help you get the most out of this book.

What this book covers
Chapter 1, Setting Up Your Development Environment, this chapter covers the Raspberry Pi
and how to use and set it up. This includes setting up raspbian on an SD card, installing
Node.js, installing the Johnny-Five library, and installing the Raspi-IO library. The chapter
will also explain the overarching concepts of Johnny-Five and Raspi-IO, as well as the
benefits programming robotics in JavaScript brings.

Chapter 2, Creating Your First Johnny-Five Project, in this chapter, the reader will build their
development environment for their Johnny-Five projects, and create their first Johnny-Five
project: a blinking LED

Preface

[2]

Chapter 3, Building Interactive Projects with RGB LED, in this chapter, readers will be
introduced to digital and PWM IO pins via LEDs–they will create a couple of projects with
multiple LEDs and an RGB LED and explore fully the Johnny-Five LED API. We will also
look at including outside Node.js libraries by including the color library to control the color
of the RGB LED.

Chapter 4, Bringing in Input with Buttons, in this chapter, we'll show users how to
incorporate basic input into their projects with buttons. Readers will learn to track the
button by using Johnny-Five Button event.

Chapter 5, Using a Light Sensor to Create a Night-Light, in this chapter, we will add a sensor
and create our first practical project: a night-light! The night-light will work by reading
from the light sensor and if it's bright in the room, leave an LED off, but if it's dark, light it
up! We'll also discuss the role sensors play in the robotics project ecosystem.

Chapter 6, Using Motors to Move Your Project, in this chapter, we will talk about making
your project move with motors. This includes the extra hardware you will need for your
project to be powered properly, how to wire motors to your project, the johnny-five motor
API, and troubleshooting common problems when it comes to using motors with the
Raspberry pi.

Chapter 7, Using Servos for Measured Movement, in this chapter, we will discuss measured
movement in robotics projects with the servo, and build a servo that responds to a sensor.
Readers will learn about servos and the Johnny-Five servo API, as well as build o project
with one. They will also learn about the differences between servos and motors in the
context of making robotics projects that move.

Chapter 8, The Animation Library, the animation library is a great way to fine-tune control
over your johnny-five servo projects by controlling the speed, acceleration curve, and start
and end points of your servo's movement. In this chapter, we'll look at the animation
library and walk through how to control precision servo movements.

Chapter 9, Getting the Information You Need, in this chapter, we will look into why you
would want to connect your NodeBots projects to the internet. We'll start by looking at
ways you can use GET requests to obtain information from websites; like weather forecasts
for your area. We'll build our first internet-connected bot using weather data and an RGB
LED.

Chapter 10, Using MQTT to Talk to Things on the Internet, in this chapter, we'll talk about
MQTT, a common IoT communications protocol. We'll look into using an MQTT broker,
subscribing to it with our NodeBot, and using that data to react in real-time.

Preface

[3]

Chapter 11, Building a NodeBots Swarm, in the final chapter, we will go over possible paths
to continue on your NodeBots journey. We will look at how to take the skills developed in
the previous chapters and apply them to building multiple connected NodeBots, as well as
exploring the avenues left to explore in the Johnny-Five library.

To get the most out of this book
You will require the following basic things in order to build all the projects that are
included in the book:

A laptop computer with any OS
Raspberry Pi3
Micro SD card (atleast 8 GB)
Breadboard and wires
Adafruit DC and Stepper Motor HAT for Raspberry Pi - Mini Kit
Raspberry Pi 3 T-Cobbler
GPIO expander board
LCD hooked up to your Pi
DC Toy / Hobby Motor - 130 Size
4 x AA Battery Holder with On/Off Switch

For more details on requirements, the setup of hardware and software is explained in each
chapter of the book under the Technical requirements section.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[4]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Hands- ​On- ​Robotics- ​with- ​JavaScript. In case there's an update to the
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​HandsOnRoboticswithJavaScript_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

board.on("ready", function() {
 // Everything else goes in here!
});

Any command-line input or output is written as follows:

sudo node implicit-animations.js

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"To set up a feed, select Feeds in the left menu."

https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/HandsOnRoboticswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnRoboticswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnRoboticswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnRoboticswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnRoboticswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnRoboticswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnRoboticswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnRoboticswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnRoboticswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnRoboticswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnRoboticswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnRoboticswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnRoboticswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnRoboticswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnRoboticswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnRoboticswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnRoboticswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnRoboticswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnRoboticswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnRoboticswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnRoboticswithJavaScript_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnRoboticswithJavaScript_ColorImages.pdf

Preface

[5]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Setting Up Your Development

Environment
Welcome! This book is designed to get you started with writing robotics code in JavaScript
using the Raspberry Pi, Node.js, and the Johnny-Five framework. This chapter will fill in
the details of what the Raspberry Pi is and how we're going to use it, and will also help you
get your development environment ready.

The following topics will be covered in this chapter:

What is the Raspberry Pi
How we will use the Raspberry Pi
Installing the operating system
Setting up SSH and hardware interfaces
Installing Node.js
Installing Johnny-Five and Raspi-IO

Technical requirements
In order to get started, you'll need the following:

A Raspberry Pi 3: Either the original or model B is fine.
A power supply: Plugging the Raspberry Pi into a USB port on your computer
can cause serious issues because it cannot supply enough power to allow the
Raspberry Pi to function properly, so you'll need a proper wall wart power
supply.
MicroSD card: This needs to have at least 8 GB to hold the Raspbian OS and the
code we're going to write. You'll also need a way to write to the SD card from
your computer—either a full SD card adapter or a USB card reader.

Setting Up Your Development Environment Chapter 1

[7]

A PC9685 GPIO expansion board: There are expansion boards that require
assembly on Adafruit (https:/ ​/ ​www. ​adafruit. ​com/​product/ ​815), but if you're
not confident in your soldering, then there are plenty of preassembled ones
available on Amazon if you search for PC9685.
Text editor: Your code editor will be fine; we just need to edit a few files on the
SD card once we've burned the OS image onto it.

If this is your first foray into a hardware project, I suggest getting a kit that contains at least
the following items, as it will help you finish many of the projects in this book, and will
provide you with the parts to create your own designs:

Pi Cobbler
Resistors
LEDs
A servo
A motor
Buttons
Other sensors and peripherals

The following are some good examples of these items (at the time of writing):

The Raspberry Pi 3 B+ starter kit: https:/ ​/​www. ​sparkfun. ​com/ ​products/ ​14644

The Adafruit Raspberry Pi 3 Model B Starter Pack: https:/ ​/​www. ​adafruit.
com/​product/ ​2380

If you already have a Pi, they sell the kit without the Pi as well: https:/ ​/​www.
adafruit. ​com/ ​product/ ​3241

What is the Raspberry Pi?
So, now you've got this green, credit-card-sized object with a bunch of ports that you
recognize, and a bunch of pins, as shown in the following diagram. You can see some chips,
and some parts you might not recognize. Before we talk about the power contained in this
rather inconspicuous board, we need to clear up some vocabulary that we'll be using
throughout the book:

https://www.adafruit.com/product/815
https://www.adafruit.com/product/815
https://www.adafruit.com/product/815
https://www.adafruit.com/product/815
https://www.adafruit.com/product/815
https://www.adafruit.com/product/815
https://www.adafruit.com/product/815
https://www.adafruit.com/product/815
https://www.adafruit.com/product/815
https://www.adafruit.com/product/815
https://www.adafruit.com/product/815
https://www.adafruit.com/product/815
https://www.adafruit.com/product/815
https://www.sparkfun.com/products/14644
https://www.sparkfun.com/products/14644
https://www.sparkfun.com/products/14644
https://www.sparkfun.com/products/14644
https://www.sparkfun.com/products/14644
https://www.sparkfun.com/products/14644
https://www.sparkfun.com/products/14644
https://www.sparkfun.com/products/14644
https://www.sparkfun.com/products/14644
https://www.sparkfun.com/products/14644
https://www.sparkfun.com/products/14644
https://www.sparkfun.com/products/14644
https://www.sparkfun.com/products/14644
https://www.adafruit.com/product/2380
https://www.adafruit.com/product/2380
https://www.adafruit.com/product/2380
https://www.adafruit.com/product/2380
https://www.adafruit.com/product/2380
https://www.adafruit.com/product/2380
https://www.adafruit.com/product/2380
https://www.adafruit.com/product/2380
https://www.adafruit.com/product/2380
https://www.adafruit.com/product/2380
https://www.adafruit.com/product/2380
https://www.adafruit.com/product/2380
https://www.adafruit.com/product/3241
https://www.adafruit.com/product/3241
https://www.adafruit.com/product/3241
https://www.adafruit.com/product/3241
https://www.adafruit.com/product/3241
https://www.adafruit.com/product/3241
https://www.adafruit.com/product/3241
https://www.adafruit.com/product/3241
https://www.adafruit.com/product/3241
https://www.adafruit.com/product/3241
https://www.adafruit.com/product/3241
https://www.adafruit.com/product/3241

Setting Up Your Development Environment Chapter 1

[8]

Microcontrollers
Microcontroller is a term that encapsulates a bunch of devices. It's a term used to describe a
device that contains a processor, memory, and input/output peripherals (or ways to interact
with those peripherals) that is meant for a particular type of task. One extremely common
microcontroller is the Arduino Uno, and the Raspberry Pi technically falls into this category
as well.

Setting Up Your Development Environment Chapter 1

[9]

General-Purpose Input/Output (GPIO) pins
Microcontrollers interface with devices such as sensors, LEDs, and buttons using electrical
signals that are sent and received through pins designed for input and/or output signals.
These pins can be broken into multiple subcategories, as we'll find out in subsequent
chapters, but you can address them as GPIO pins as a whole. We'll use that abbreviation
throughout the book.

Debian and Raspbian
Debian is a distribution of Linux that is considered extremely user friendly for those new to
using Linux. It contains many utilities that are commonly used while working with Linux
preinstalled, and is compatible with a lot of the peripherals that you would use with a
computer, such as Wi-Fi cards and USB devices.

Raspbian is a modified version of Debian specifically designed to run on Raspberry Pi
devices. There are drivers for the GPIO pins, USB Wi-Fi devices, and expansion slots on the
Pi that allow you to attach a specific display and camera.

There are two flavors of Raspbian—Raspbian Full and Raspbian Lite. Full has a graphical
desktop with programs aimed at educational programming and development. Lite (which
we will be using for the projects in this book) only has a command-line interface, but still
has full functionality when it comes to Raspberry Pi peripherals. As of the time of writing,
the current version of Raspbian is 4.14, nicknamed Stretch.

Johnny-Five and Raspi-IO
Back in 2012, Rick Waldron wrote a node-serialport program to operate an Arduino Uno
with Node.js, and formed a library around it called Johnny-Five. Since then, the Johnny-
Five library has grown to over 100 contributors, and can control over 40 platforms,
including the Raspberry Pi! It can also control many kinds of sensors and peripherals that
you can use to create the robotics project you've been dreaming of in Node.js!

One of the ways the Johnny-Five library has grown to support so many platforms is by
creating what are called IO plugins. You create an IO plugin for each type of board you
wish to control. For example, we will be installing and using the Raspi-IO plugin to use
Johnny-Five with the Raspberry Pi.

Setting Up Your Development Environment Chapter 1

[10]

What is great about this system is that the code you write in this book can be used on any
other platform that Johnny-Five supports (you just need to change PIN numbers)! Writing
code for Node.js botnets is much easier when you're using the same APIs for any devices
you might use.

So, the Pi is technically a microcontroller...
Let's get back to the question of what the Raspberry Pi is. In short, it is a microcontroller. It
has dozens of GPIO pins and can be used to interface with many physical peripherals in
order to achieve specialized tasks. The low cost and small size allows the Raspberry Pi to be
a versatile device, but the power involved allows you to use it for tasks that other
microcontrollers may not pack the punch for.

...but it is also a computer!
An interesting fact about the Raspberry Pi is that, while it is a microcontroller, it can also be
used as a fully fledged computer! While it certainly isn't the most powerful hardware, with
full Raspbian installed, a Raspberry Pi attached to a monitor, keyboard, and mouse creates
a great machine for kids and adults to learn programming on! The original intent of the
Raspberry Pi was to create a low-cost educational machine to teach programming, and it
exceeded every expectation in that regard. The fact that it's also a great microcontroller for
the world of makers is a great bonus!

How we will use the Raspberry Pi
So, we've established that the Raspberry Pi is a very versatile and powerful machine for its
size, but with so many options, it can be hard to figure out where to get started. Luckily, we
have a plan that will walk you through your first Raspberry Pi and Johnny-Five projects so
that you can keep up, but which will also empower you to build your way into advanced
robotics projects.

Setting Up Your Development Environment Chapter 1

[11]

Taking advantage of all that the Raspberry Pi has
to offer!
The projects we will build will take advantage of the fact that the Raspberry Pi is both a
microcontroller and a computer. We'll use the Linux operating system, via the Raspbian
distribution, and leverage it to run our projects in Node.js. We'll also use Johnny-Five and
Raspi-IO to leverage the GPIO of the Raspberry Pi in order to create robotics projects in a
way that makes the code easy to understand and portable to many different hardware
platforms.

Johnny-Five – letting us code hardware in
Node.js
In the past, when you thought of robotics projects, it meant writing in C or C++, usually
through the Arduino IDE and APIs. However, as microcontrollers have gotten more
powerful, they are capable of running other programming languages, even scripting
languages, such as subsets of Python and JavaScript.

And, of course, with computer/microcontroller hybrids, such as the Raspberry Pi, you're
able to run stock Node.js, allowing you to create even advanced robotics projects without
having to deal with any low-level languages. There are quite a few benefits to being able to
code robotics projects in Node.js:

Event-based systems: In the Arduino and C/C++ level of robotics programming,
you will need to check the state of everything through each iteration of a loop,
and act accordingly. This can create monolithic functions and code paths. With
Node.js and Johnny-Five, we can use event emitters and systems, which fit in
surprisingly well as they can read sensors and interact with peripherals in the
real world, where things take time. This will help you to organize code in a way
that reflects the asynchronous way the world works.
Garbage collection/automatic memory management: While Arduino and C++
handle most memory management for you, programming in microcontrollers
that use C requires strict memory management. While you may need to bear the
resource constraints of the Raspberry Pi in mind from time to time, it is much
easier than the days of 20K SRAM.

Setting Up Your Development Environment Chapter 1

[12]

Using a language you already know: Instead of trying to remember the way
things work in a new language, it will accelerate your learning in the field of
electronics and robotics if you focus on learning fewer things at once. Using
Node.js can help you focus on learning the wide and varied world of electronics,
instead of adding on the extra work of remembering whether it's uint8_t or
uint16_t.

Installing the operating system
In order to get started with Johnny-Five and the Raspberry Pi, we will need to set up the
Raspbian operating system by burning it to a microSD card. Then, we'll need to edit some
files on the SD card in order for the Raspberry Pi to boot with Wi-Fi and the ability to SSH
in. Lastly, we'll need to boot up the Raspberry Pi and get some settings in place before
finally installing Node.js, Johnny-Five, and Raspi-IO.

Downloading Raspbian Lite
The following steps will show you how to download Raspbian Lite:

The first step is downloading the Raspbian Lite image so we can burn it to our1.
microSD card. The best place to get the image from is https:/ ​/​www.
raspberrypi. ​org/ ​downloads/ ​raspbian/ ​, as shown in the following screenshot:

A screenshot of the Raspbian download page, with both Full and Lite download links

Select RASPBIAN STRETCH LITE (or whichever version is the current one),2.
which will replace the word STRETCH. Give yourself some time for this step to
complete; although Raspbian Lite is much smaller than Raspbian Full, it is still
several hundred megabytes, and can take time to download!

https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/

Setting Up Your Development Environment Chapter 1

[13]

If you're preparing to run a class, hackathon, or some other event using
the Raspberry Pi and Raspbian, it's best to predownload it and place it on
a flash drive to hand around, as conference and event Wi-Fi can be a bit
slower than normal, or even drop in and out, so be prepared!

Burning the image to an SD card
Luckily, the tools for burning OS images to SD cards have evolved arcane command-line
tools that can overwrite your computer's hard drive as easily as it can the SD card. My
current favorite is called Etcher, and it can be downloaded for any platform at https:/ ​/
etcher.​io/​, as shown in the following steps:

The free version is more than enough for our needs, so download and install it as1.
you download Raspbian Lite.
Once they are both downloaded, you'll want to place the micro SD card in your2.
computer, either by placing it into a full-sized SD adapter and then into a slot on
your computer, or by using a USB-to-micro-SD adapter. Whichever you use,
make sure your computer can see the volume as a drive before continuing. Then,
boot up Etcher. The following screenshot shows Etcher running on a Mac:

A screenshot of the Etcher program running on a Mac

https://etcher.io/
https://etcher.io/
https://etcher.io/
https://etcher.io/
https://etcher.io/
https://etcher.io/
https://etcher.io/

Setting Up Your Development Environment Chapter 1

[14]

Once you see a window similar to the preceding screenshot, you'll need to select3.
the Raspbian Lite image you just downloaded. You don't even need to unzip the
.zip file—Etcher can handle that outright! Once you've selected the image,
Etcher should select your micro SD card drive, so long as your machine can see
it! Once you've ensured that the image and micro SD card drive are properly
selected, hit Flash! to begin the process.

Sometimes, with larger micro SD cards, you'll get a warning from Etcher
about the drive being very large (this happens to me when I use 64 GB
cards). This is to prevent you from overwriting your computer's hard
drive. You can bypass the warning by going through a confirmation
window—just be absolutely sure that your micro SD card drive is selected
first!

A few minutes will pass as Etcher burns the image to your micro SD card, then verifies that
it is present on the card. Once this is done, remove and reinsert the micro SD card so that
your computer recognizes it as a drive again; the drive should be named boot. We're not
quite done editing the image files yet, so Etcher's polite attempt to eject the micro SD card
drive needs to be ignored.

Editing files on the SD card
We need to edit and create some files on our Raspberry Pi's image in order to be able to
access it with SSH when we turn on the Raspberry Pi. First, we'll set up the Wi-Fi using the
following steps:

If you're using an Ethernet cable and port to connect the Raspberry Pi to
the internet, you can skip this step. If this doesn't get the Wi-Fi to work,
you'll want to look at the information box under the section Booting up the
Pi for troubleshooting steps and an alternative (if clunkier) way to set this
up.

In order to set up the Wi-Fi, you'll want to create a file in the root of the micro SD1.
card drive called wpa_supplicant.conf that contains the following text:

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
network={
 ssid="yourNetworkSSID"
 psk="yourNetworkPasswd"
}

Setting Up Your Development Environment Chapter 1

[15]

Replace yourNetworkSSID with the SSID of the Wi-Fi network you wish to2.
connect to, and then replace yourNetworkPasswd with that Wi-Fi's network
password.

The Raspberry Pi's Wi-Fi chip can only connect to 2.4 GHz networks at the
time of writing, so you need to make sure that you input a network that
operates on that bandwidth or your Raspberry Pi will not be able to
connect!

After you've set up the Wi-Fi network, you'll want to tell the Raspberry Pi to3.
allow you to SSH into it. To do this, you'll want to create a file called ssh in the
same root folder as the wpa_supplicant.conf file. Make sure that the ssh file
is empty and has no extension. When you're all done, the root directory of the
micro SD card drive will look similar to the following screenshot:

A list of files on the micro SD drive, once I've made my edits

Once this is all done, fully eject the microSD drive, take the microSD card and insert it into
the Raspberry Pi. We're now ready to boot up the Raspberry Pi and start installing
software.

Booting up the Pi
Once the micro SD card is inserted, plug your power source into your Raspberry Pi. A red
and green LED should light up. The red LED should be solid—this is the power indicator.
The green light will flicker on and off—this is the LED that indicates activity. The
Raspberry Pi should take a maximum of a minute or so to boot up once you've plugged it
in. Next, we'll SSH in.

Setting Up Your Development Environment Chapter 1

[16]

SSHing from a Linux or Mac
If you're on a Mac or Linux machine, you'll open up a Terminal and type the following:

ssh pi@raspberrypi.local

If you're successful, you'll see a question appear, asking about the authenticity of the host.
Respond by typing yes and hitting Enter. You'll then be asked for a password, which is
raspberry, as shown in the following screenshot:

Successful SSH into a Raspberry Pi from a Mac Terminal

Once you've entered the password, you should see the following:

Successful login to a Raspberry Pi via SSH from a Mac

Setting Up Your Development Environment Chapter 1

[17]

SSHing from Windows
In order to SSH from a Windows machine, you'll need to use a program called PuTTY. You
can get it on https:/ ​/ ​putty. ​org/ ​. But first, you'll want your Raspberry Pi's IP address.
You'll need a monitor, an HDMI cable, and a USB keyboard. Once you have these, go
through the following steps:

Plug the monitor, HDMI cable, and USB keyboard into the Raspberry Pi before1.
booting it up. Then plug in the power supply.
When it prompts you for a username, type pi. When it asks for a password,2.
enter raspberry. Once you are logged in, type ifconfig. You should see a lot
of information appear.
Look for the wlan0 section and the inet address under that heading. For the3.
following output, the IP is 192.168.1.106, as shown in the following
screenshot. Write this IP down. Then, you can unplug the display and the
keyboard—you won't need them again:

Getting the IP address from the Terminal

https://putty.org/
https://putty.org/
https://putty.org/
https://putty.org/
https://putty.org/
https://putty.org/
https://putty.org/
https://putty.org/

Setting Up Your Development Environment Chapter 1

[18]

Once you have the IP address for your Raspberry Pi, you can boot up PuTTY.4.
The window that opens is the configuration window, as shown in the following
screenshot:

The PuTTY configuration window

Setting Up Your Development Environment Chapter 1

[19]

Type the IP address that you obtained into the field labeled Host Name (or IP5.
address) and click the Open button. You'll be asked about the authenticity of the
host (only the first time you connect). Select Yes. Then enter Pi as the username
and raspberry as the password when prompted. Once that's done, you should
see the following:

Successful login to the Raspberry Pi with PuTTY

Now that everyone's logged in, let's set up our Raspberry Pi for our projects!

Setting up your password and hardware
interfaces
Now that we have our Raspberry Pi connected to the Wi-Fi and we're SSHed in, we need to
make a few changes before we install Node.js and get started with our coding.

First things first – change your password!
When you log in, your Raspberry Pi will warn you that having SSH enabled with the
default username and password isn't very secure, and it's absolutely right! The first step is
to change our password.

Setting Up Your Development Environment Chapter 1

[20]

In order to do so, in your SSH window, type in passwd and hit Enter. You'll be prompted
for your current password (raspberry) and a new password. Type in whatever you like
(just don't forget it)! You'll be asked to confirm it, and voila! The new password is set, as
shown in the following screenshot. Your Raspberry Pi will be much more secure:

Changing your Pi password

Updating the Raspberry Pi
Next, you'll make sure that the Raspberry Pi is updated and ready to go by running the
following command:

sudo apt-get update && sudo apt-get upgrade

This will take a while, but it's worth it to make sure everything is properly updated.

Turning on the hardware interfaces
Next, we'll set up the Raspberry Pi so that our hardware code can run. Run the following
command:

sudo raspi-config

You'll be greeted with a graphical menu with lots of different options, as shown in the
following screenshot:

Setting Up Your Development Environment Chapter 1

[21]

The raspi-config menu

You'll want to use the arrow keys to select Interfacing Options, and then
select I2C and Yes to turn it on. Repeat for SPI, then use Tab to close the menu. When it
prompts you to reboot, say Yes, then SSH back in, because you're ready to install Node.js,
Johnny-Five, and Raspi-IO!

Installing Node.js, Johnny-Five, and Raspi-
IO
So, now that our Raspbian OS is installed and set up, it's time to install Node.js (which
comes bundled with npm), Johnny-Five, and Raspi-IO!

Installing Node.js and npm
In days past, you would have to compile the Node.js source on your Pi, to varying degrees
of success because of the nonexistence of binaries for the ARM processor that Raspberry Pi
uses. Luckily now, because of a rousing amount of third-party support in the past few
years, you can easily download the binary from the https:/ ​/ ​nodejs. ​org/ ​en/​ website! But
how are we going to do this from the command line of our Raspberry Pi?

https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/

Setting Up Your Development Environment Chapter 1

[22]

Detecting your version of ARM processor
If you're using the Raspberry Pi 3 Model B recommended by this book, you're most likely
on ARM v8 (the Raspberry Pi 3 original is ARMv7, which is fine too!). But you should
always double-check (doubly so if you're using a different Raspberry Pi, such as the Pi Zero
or Pi 2/1 series). To check the ARM version on your Raspberry Pi, run the following in your
SSH Terminal:

uname -m

You'll see a return message that looks like armv#, where # is a number (possibly followed
by a letter). That number is what is important, because that number tells us which Node.js
binary we will need. Once you have your ARM version, go through the following steps:

Head to the Node.js download page at https:/ ​/​nodejs. ​org/ ​en/ ​download/ ​, as1.
shown in the following screenshot:

A snapshot of the Node.js binary download page

Right-click on the ARM version link you need and copy the URL. Then, run the2.
following in your Raspberry Pi's SSH Terminal:

wget <binary-download-url>

https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/

Setting Up Your Development Environment Chapter 1

[23]

Replace <binary-download-url> (carats, too!) with the URL you copied from
the Node.js download website. Once it's downloaded, we need to extract the
archive using the following code:

tar -xvf node-v****-linux-armv**.tar.xz

The asterisks will differ depending on the current LTS version of Node.js and3.
your ARM version. The Raspberry Pi will spit out a lot of filenames to the
console, then give you back your shell prompt. This means that the binaries have
been extracted into your home folder. We need to place them into the
/usr/local folder. To do that, run the following:

cd node-v****-linux-armv**
sudo mv ./lib/* /usr/local/lib
sudo mv ./share/* /usr/local/share

This will move all of the precompiled binaries to their new homes on your4.
Raspberry Pi. Once this is done, run the following:

node -v
npm -v

You should see something like the following:

Successful Node.js installation results

If that's all well and good, you now have Node.js and npm installed! Let's wrap5.
this up with Johnny-Five and Raspi-IO! Note that you can absolutely clean up the
binary downloads by running the following:

cd ~
rm -rf node-v**-linux-armv**
rm -rf node-v****-linux-armv**.tar.xz

Setting Up Your Development Environment Chapter 1

[24]

Some of you with more Debian experience may be asking, well, why can't
we just use apt-get? The short answer is that the package with the name
node was taken a very long time ago, and because that is the case, and
because sudo apt-get install nodejs is outdated (at the time of
writing, using this command will install v4 when we need v8+, if it
installs Node.js at all), we need to download the binaries and move them
ourselves.

Installing Johnny-Five and Raspi-IO
To install Johnny-Five, once you've made sure Node.js and npm are installed, run the
following command:

npm i -g johnny-five raspi-io

This installs the libraries globally; you won't have to reinstall it every new project. And
that's it! You're ready to start developing Node.js robotics projects on the Raspberry Pi with
Johnny-Five!

Summary
It feels like a lot, but you've now completed everything you need to have a fully-fledged
development environment for the projects in this book, and you've taken your first steps
toward building robots with JavaScript. You've learned more about what the Raspberry Pi
is and why we're using it, and how to get the operating system image ready to go!

Questions
What is the common operating system for the Raspberry Pi that we'll be using in1.
the projects in this book, and what Linux distribution is it based on?
What does GPIO stand for?2.
Who originally started the Johnny-Five project, and what did they use it to3.
control?

Setting Up Your Development Environment Chapter 1

[25]

What command do you run on the Raspberry Pi to find out what ARM4.
architecture it uses?
Why is changing the default Raspberry Pi password important?5.
What are two benefits of using JavaScript and Node.js for robotics code?6.
Why do we have to download the Node.js binaries instead of using Raspbian's7.
package manager?

Further reading
You can use the following sources for further reading relating to the topics covered in this
chapter:

Learn more about the Raspberry Pi from the website of the Raspberry Pi
organization: https:/ ​/​www. ​raspberrypi. ​org/ ​

Learn more about Johnny-Five from the main project page for Johnny-Five
(we'll be seeing a lot of this site as we use their documentation to complete
many of the book's projects): http:/ ​/​johnny- ​five. ​io/​

Learn more about the Raspbian operating system from the Raspbian website:
https:/​/ ​www. ​raspberrypi. ​org/ ​documentation/ ​raspbian

https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
http://johnny-five.io/
http://johnny-five.io/
http://johnny-five.io/
http://johnny-five.io/
http://johnny-five.io/
http://johnny-five.io/
http://johnny-five.io/
http://johnny-five.io/
http://johnny-five.io/
http://johnny-five.io/
https://www.raspberrypi.org/documentation/raspbian/
https://www.raspberrypi.org/documentation/raspbian/
https://www.raspberrypi.org/documentation/raspbian/
https://www.raspberrypi.org/documentation/raspbian/
https://www.raspberrypi.org/documentation/raspbian/
https://www.raspberrypi.org/documentation/raspbian/
https://www.raspberrypi.org/documentation/raspbian/
https://www.raspberrypi.org/documentation/raspbian/
https://www.raspberrypi.org/documentation/raspbian/
https://www.raspberrypi.org/documentation/raspbian/
https://www.raspberrypi.org/documentation/raspbian/
https://www.raspberrypi.org/documentation/raspbian/
https://www.raspberrypi.org/documentation/raspbian/

2
Creating Your First Johnny-Five

Project
Now that we've set up our development environment, it's time to start writing code and
making LEDs light up! We'll start by running the Hello World! of Johnny-Five robotics:
making an LED blink. In the process, we'll look at how to navigate the Johnny-Five and
Raspi-IO API documents, and examine the event system in Johnny-Five.

The following topics will be covered in this chapter:

Creating a project folder
Installing Johnny-Five and Raspi-IO
Wiring up an LED
Making an LED blink

Technical requirements
You'll need the Raspberry Pi that you set up in Chapter 1, Setting Up Your Development
Environment, a breadboard, and a Pi Cobbler for easier pin access. You can get a Pi Cobbler
(also sometimes called a Pi Wedge) from Adafruit, SparkFun, or Amazon. A Pi Cobbler also
comes in the kits recommended in Chapter 1, Setting Up Your Development Environment.

The example code for this chapter is here: https:/ ​/​github. ​com/
PacktPublishing/ ​Hands- ​On-​Robotics- ​with- ​JavaScript/ ​tree/ ​master/
Chapter02.

https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter02

Creating Your First Johnny-Five Project Chapter 2

[27]

The following diagram shows two different Raspberry Pi Cobblers, both from Adafruit. The
one on the right has the ribbon cable attached:

We'll talk about how to set up the cobbler later in this chapter. You'll also need an LED,
some jumper or breadboard wires, and a 330-ohm resistor.

In case you're asking yourself what's a resistor, and what does it do?, the
short explanation is that a resistor will prevent the 5V electricity from the
pin from burning out your LED, which needs closer to 3.3V of electricity.
For a better primer on electricity, voltage, and resistors, there is some
great, free material on SparkFun's website. You can access this material
via the following links:

Electricity: https:/ ​/​learn. ​sparkfun. ​com/​tutorials/ ​what- ​is-
electricity

Resistors: https:/ ​/​learn. ​sparkfun. ​com/​tutorials/ ​resistors

Creating a project folder
I find the best way to organize your Raspberry Pi is to put each project in its own folder. In
the source code that accompanies this book, I've done just that. But let's walk through how
to set up your own project folders. First, you'll want to create the folder itself. For the
project in this chapter, which we'll call led-blink, you'll want to run the following:

cd ~
mkdir led-blink

https://learn.sparkfun.com/tutorials/what-is-electricity
https://learn.sparkfun.com/tutorials/what-is-electricity
https://learn.sparkfun.com/tutorials/what-is-electricity
https://learn.sparkfun.com/tutorials/what-is-electricity
https://learn.sparkfun.com/tutorials/what-is-electricity
https://learn.sparkfun.com/tutorials/what-is-electricity
https://learn.sparkfun.com/tutorials/what-is-electricity
https://learn.sparkfun.com/tutorials/what-is-electricity
https://learn.sparkfun.com/tutorials/what-is-electricity
https://learn.sparkfun.com/tutorials/what-is-electricity
https://learn.sparkfun.com/tutorials/what-is-electricity
https://learn.sparkfun.com/tutorials/what-is-electricity
https://learn.sparkfun.com/tutorials/what-is-electricity
https://learn.sparkfun.com/tutorials/what-is-electricity
https://learn.sparkfun.com/tutorials/what-is-electricity
https://learn.sparkfun.com/tutorials/what-is-electricity
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors
https://learn.sparkfun.com/tutorials/resistors

Creating Your First Johnny-Five Project Chapter 2

[28]

Make sure that you're running this in your SSH session to the Raspberry Pi, and not on
your desktop.

From here on out, unless the text directly says to run something on your
desktop, you should run all of your commands in the SSH session to your
Raspberry Pi that we set up in Chapter 1, Setting Up Your Development
Environment.

Setting up npm to manage our modules
We're going to be using more than just Johnny-Five and Raspi-IO to create our projects, and
you want to be able to move your code around via your favorite Git hosting service,
perhaps to move it to a new Raspberry Pi, for example. In order to make this as smooth as
possible, we're going to make sure that npm knows how to accurately recreate your projects.
For this, we want a preprepared package.json file. To do this, navigate into your
project folder and tell it to initialize:

cd led-blink
npm init -y

The -y in the npm init command tells npm to use the default answer to all
initialization questions. This is fine for projects that only you will use, but if
you plan to deploy your work for others to use, or create your own npm
modules, be sure to edit your package.json accordingly.

These commands create our package.json so that when we install npm modules with --
save, the manifest will update so that when you move your project, there's a complete
record of our dependencies.

Getting started with Johnny-Five and Raspi-
IO
Now that our project folder is ready for dependencies, we'll start exploring the Johnny-Five
and Raspi-IO documentation that'll help us create the projects in this book.

Creating Your First Johnny-Five Project Chapter 2

[29]

Gathering resources and documentation
There are two main sources of documentation that we'll be using for the projects in this
book:

The Johnny-Five website: http:/ ​/​johnny- ​five. ​io/​

The Raspi-IO GitHub README and wiki: https:/ ​/ ​github. ​com/ ​nebrius/
raspi-​io

The following screenshot shows the Raspi-IO README on GitHub:

http://johnny-five.io/
http://johnny-five.io/
http://johnny-five.io/
http://johnny-five.io/
http://johnny-five.io/
http://johnny-five.io/
http://johnny-five.io/
http://johnny-five.io/
http://johnny-five.io/
http://johnny-five.io/
https://github.com/nebrius/raspi-io
https://github.com/nebrius/raspi-io
https://github.com/nebrius/raspi-io
https://github.com/nebrius/raspi-io
https://github.com/nebrius/raspi-io
https://github.com/nebrius/raspi-io
https://github.com/nebrius/raspi-io
https://github.com/nebrius/raspi-io
https://github.com/nebrius/raspi-io
https://github.com/nebrius/raspi-io
https://github.com/nebrius/raspi-io
https://github.com/nebrius/raspi-io

Creating Your First Johnny-Five Project Chapter 2

[30]

We will be using the Johnny-Five documentation at johnny-five.io to look up API calls
and other information about the Johnny-Five library, and the Raspi-IO README for
Raspberry Pi-specific information, including pin numbers.

Taking a look at the LED-blink project
The first thing we'll need is from the Raspi-IO README: we're going to read and run their
led-blink code as our Hello World! Let's take a look at the code as a block:

const Raspi = require('raspi-io');
const five = require('johnny-five');

const board = new five.Board({
 io: new Raspi()
});

board.on('ready', () => {

 // Create an Led on pin 7 (GPIO4) on P1 and strobe it on/off
 // Optionally set the speed; defaults to 100ms
 (new five.Led('P1-7')).strobe();

});

This doesn't look like much, but there's a lot going on here! The first two lines use require
to pull in the johnny-five and raspi-io modules. Then, we begin constructing a board
object, and we pass a new instance of the raspi-io module in as its I/O. This is how we tell
the Johnny-Five library we're running this code on a Raspberry Pi.

Creating Your First Johnny-Five Project Chapter 2

[31]

Next, we'll set up an event listener on our board object on the ready event. According to
the Johnny-Five documentation, this event fires when the board instance object has completed
any hardware initialization that must take place before the program can operate. This means you
shouldn't run any robotics-related code outside of this event handler, because you cannot
be sure your board is ready to receive hardware commands.

The comments starting on line 10 are very helpful, as they tell us where to hook up our
LED. We'll be using pin 7 (GPIO 4)—that means the seventh physical pin from the top,
which is designated as GPIO 4.

Raspberry Pi pin numbers
Pin 7... is labeled GPIO 4? That's confusing! Luckily, there are many pin diagrams freely
available to help us translate, as shown in the following diagram:

A GPIO/pin map (source: raspberrypi.org)

Creating Your First Johnny-Five Project Chapter 2

[32]

Also, the Raspi-IO library will accept many names for the same pin, as shown in the handy
conversion table in the wiki:

The pin table from the Raspi-IO wiki

Creating Your First Johnny-Five Project Chapter 2

[33]

Keeping one of these pin guides handy is helpful when wiring up any Johnny-Five project
on the Raspberry Pi.

Wiring up an LED
Now that we've gone through the documentation and figured out what goes where, we can
start assembling our Raspberry Pi project. You'll need your Raspberry Pi, Pi Cobbler, two
breadboard wires, an LED (doesn't matter what color), and a 300-ohm resistor.

Putting together and attaching the cobbler
In order to make sure the cobbler is seated correctly, you'll want to make sure that the
ribbon cable points outward from the Raspberry Pi when placed on the GPIO pins, and that
the little tab on the side of the connector faces the right way in the cobbler itself (this is
usually ensured by a plastic wall around the pins that the ribbon cable plugs into; make
sure that you check that it's lined up before applying too much pressure!).

You'll want to seat the cobbler on a breadboard that's at least half sized, though I tend to
prefer full size for Raspberry Pi projects. Make sure the two rows of pins on the cobbler are
on opposite sides of the groove down the center of the breadboard, as shown in the
following photograph:

Creating Your First Johnny-Five Project Chapter 2

[34]

Cobblers on a full-size (top) and half-size (bottom) breadboard

New to breadboards? There's a great explanation of how they work (as
well as some neat trivia) on the SparkFun website (https:/ ​/​learn.
sparkfun. ​com/ ​tutorials/ ​how- ​to-​use- ​a- ​breadboard).

https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard

Creating Your First Johnny-Five Project Chapter 2

[35]

Attaching the resistor and LED
You'll want to use a wire to connect GPIO 4 (pin 7) to a 330-ohm resistor and the resistor to
the positive (long) leg of the LED. Then, you'll want to connect the negative (short) leg to
ground, or any pin marked GND. Your finished project will look something like this:

Your LED project

Now that your LED is wired up, it's time to make it blink!

Making the LED blink
In order to make the LED blink, we'll need to install the code on the Raspberry Pi, and then
run it!

Creating Your First Johnny-Five Project Chapter 2

[36]

Putting your code on the Raspberry Pi
If you wrote your code on your desktop and need to transfer it to your Raspberry Pi, there
are a couple of ways to go about it: you can use rsync on an macOS X or Linux machine:

rsync ./blink-led.js
pi@raspberrypi.local:~/<project folder>/

Replace <project folder> with the folder you want to transfer into (for example, the
book folder would be hands-on-robotics-with-javascript/ch2/blink-led).

For Windows, follow the guide for installing and using WinSCP
at https:/ ​/ ​winscp. ​net/ ​eng/ ​docs/ ​ui_​commander.

Running your code
Once your code is on your Raspberry Pi, you'll want to switch to your SSH session and run
the following, if you're using the source code from this book:

cd hands-on-robotics-with-javascript/ch2/blink-led

Otherwise, use cd to enter the folder where you stored your blink-led.js file on the
Raspberry Pi. Then, run the following:

sudo node blink-led.js

Note that the Raspi-IO plugin requires you to run the command as sudo. If all has gone
well, you should see a quickly blinking LED on your breadboard. If not, here are some
troubleshooting steps:

Check the wiring1.
Double-check the wiring (seriously, 95% of the time it's a wiring issue)2.
Make sure that the Node.js script did not experience an error on the Raspberry Pi3.

https://winscp.net/eng/docs/ui_commander
https://winscp.net/eng/docs/ui_commander
https://winscp.net/eng/docs/ui_commander
https://winscp.net/eng/docs/ui_commander
https://winscp.net/eng/docs/ui_commander
https://winscp.net/eng/docs/ui_commander
https://winscp.net/eng/docs/ui_commander
https://winscp.net/eng/docs/ui_commander
https://winscp.net/eng/docs/ui_commander
https://winscp.net/eng/docs/ui_commander
https://winscp.net/eng/docs/ui_commander
https://winscp.net/eng/docs/ui_commander
https://winscp.net/eng/docs/ui_commander
https://winscp.net/eng/docs/ui_commander
https://winscp.net/eng/docs/ui_commander

Creating Your First Johnny-Five Project Chapter 2

[37]

Summary
Congratulations! You've made a Johnny-Five bot! In this chapter, you've learned how to
wire up an LED, navigate the documentation for Johnny-Five and Raspi-IO, and run your
code on the Raspberry Pi!

Questions
Look in the Johnny-Five documentation, under the LED heading in the section on1.
the API. Look for the strobe function. What does the first argument do? What
would happen if you passed 500 as that first argument?
What is the second argument in the LED.strobe() function? How would this2.
come in handy for applications waiting for the LED to be off?
Does the Johnny-Five LED object emit any events? Why, or why not?3.
Using the Raspi-IO documentation, what does the Raspberry Pi pin P1-294.
translate to in terms of GPIO #?
Using the Johnny-Five documentation, name a function that is an alias for the5.
LED.strobe() function.
What happens before the board's ready event fires in a Johnny-Five application?6.

Further reading
You can consult the following sources for further reading related to the topics covered in
this chapter:

The Johnny-Five documentation: johnny-five.io
The Johnny-Five GitHub repository: https:/ ​/ ​github. ​com/ ​rwaldron/ ​johnny-
five

The Raspi-IO library: https:/ ​/ ​github. ​com/ ​nebrius/ ​raspi- ​io

http://johnny-five.io
https://github.com/rwaldron/johnny-five
https://github.com/rwaldron/johnny-five
https://github.com/rwaldron/johnny-five
https://github.com/rwaldron/johnny-five
https://github.com/rwaldron/johnny-five
https://github.com/rwaldron/johnny-five
https://github.com/rwaldron/johnny-five
https://github.com/rwaldron/johnny-five
https://github.com/rwaldron/johnny-five
https://github.com/rwaldron/johnny-five
https://github.com/rwaldron/johnny-five
https://github.com/rwaldron/johnny-five
https://github.com/nebrius/raspi-io
https://github.com/nebrius/raspi-io
https://github.com/nebrius/raspi-io
https://github.com/nebrius/raspi-io
https://github.com/nebrius/raspi-io
https://github.com/nebrius/raspi-io
https://github.com/nebrius/raspi-io
https://github.com/nebrius/raspi-io
https://github.com/nebrius/raspi-io
https://github.com/nebrius/raspi-io
https://github.com/nebrius/raspi-io
https://github.com/nebrius/raspi-io
https://github.com/nebrius/raspi-io

3
Building Interactive Projects

with RGB LED
Now that we've built a project with Johnny-Five and Raspi-IO, it's time to tackle GPIO
expanders and PWM outputs, and build an interactive project with an RGB LED. We'll also
learn more about the Johnny-Five REPL, learn how a PWM pin works, and use this
knowledge to control an RGB LED from the command line.

The following topics will be covered in this chapter:

Looking at the LED and LED.RGB API
PWM pins and GPIO expanders
Bringing in other node packages with color
The Johnny-Five REPL

Technical requirements
You will have already installed all the software prerequisites for this chapter from Chapter
1, Setting Up Your Development Environment. You'll want to make sure your Raspberry Pi is
connected to the internet and that you have SSHed in using your method of choice.

The example code for this chapter can be found
at https://github.com/nodebotanist/hands-on-robotics-with-javascr
ipt/tree/master/ch3.

https://github.com/nodebotanist/hands-on-robotics-with-javascript/tree/master/ch3
https://github.com/nodebotanist/hands-on-robotics-with-javascript/tree/master/ch3

Building Interactive Projects with RGB LED Chapter 3

[39]

As for hardware, you will need the following:

Your Raspberry Pi
Cobbler/breadboard
Breadboard wires
PCA9685 GPIO expander board
RGB LED
330-ohm resistor x 3

Looking at the LED and LED.RGB API
We took a brief look at the LED API in Johnny-Five in the last chapter, but in this chapter,
we will delve deeper and talk about the PWM output and the cousin of the standard LED,
the RGB LED—so named because it has a red, green, and blue channel, and can replicate
thousands of colors. We will use an RGB LED, as well as some of the more powerful tools
built into Johnny-Five, to build an interactive project in this chapter.

The LED object
The LED object is usually the first thing in Johnny-Five that people look through the
documentation for. It's also a great object to use to outline the general structure of the object
documentation. Let's take a look at each section and get a grasp of where we should look
for what later:

Parameters: This section addresses the parameters that need to be passed into the
object constructor, and what form they need to be in (order, object key, and so
on).
Shapes: These are the fields attached to the constructed object that may be useful
to the user in writing their code. They can be read-only, and are marked if this is
the case.
Component Initialization: This is usually a piece of sample code, but it's always
a description of how to construct a common usage of the object in question. If
there are multiple controllers for a specific component, they are enumerated with
examples for each controller. This will come in handy for our GPIO expander
board.

Building Interactive Projects with RGB LED Chapter 3

[40]

Usage: This is a sample code denoting how to use the most basic functions of an
object; for the LED, this is the blink function, and for sensors, this would show
the function that you would usually use to get readings from the sensor.
API: This is a full documentation of every function available to the object,
including the parameters and intended result.
Events: Many objects emit events (such as the board's ready event); this section
details when they will fire.
Examples: The Johnny-Five community is a fantastic source of examples, and the
examples that are relevant to the object in question will be cataloged and linked
in this section.

Take a moment to get used to the LED documentation (http:/ ​/​johnny- ​five. ​io/ ​api/ ​led/​),
because the Led.RGB object is essentially a subclass of the LED object, and will inherit
many of its functions.

The Led.RGB object
Once you've acquainted yourself with the LED object, click on the Led.RGB link in the
sidebar, as shown in the following screenshot:

You'll be taken to the Led.RGB documentation page. In the Component Initialization section,
look for the LED RGB PCA9685 section. Ignore the wiring diagram (it's for the Tessel 2, a
different microcontroller), but do make a note of the example code, as shown here:

new five.Led.RGB({
 controller: "PCA9685",
 pins: {
 red: 2,
 green: 1,
 blue: 0

http://johnny-five.io/api/led/
http://johnny-five.io/api/led/
http://johnny-five.io/api/led/
http://johnny-five.io/api/led/
http://johnny-five.io/api/led/
http://johnny-five.io/api/led/
http://johnny-five.io/api/led/
http://johnny-five.io/api/led/
http://johnny-five.io/api/led/
http://johnny-five.io/api/led/
http://johnny-five.io/api/led/
http://johnny-five.io/api/led/
http://johnny-five.io/api/led/
http://johnny-five.io/api/led/

Building Interactive Projects with RGB LED Chapter 3

[41]

 }
});

This is the code that we will use to initialize our RGB.LED object.

We will also need the API section in order to determine the functions and parameters that
we will need for using the RGB.LED object. Take a look at the color() function, in
particular.

Now that we have our module for converting colors into RGB values, we can start talking
about how to use an RGB LED in order to get those colors into our projects.

PWM pins and GPIO expanders
Before we wire up and run our RGB LED project, a discussion about PWM pins and GPIO
expanders is warranted, because these are topics that will affect most Johnny-Five projects
that you will complete.

How do PWM pins work?
You don't always want an LED to at its full brightness, especially in the case of RGB LEDs,
where the brightness of each channel (red, green, and blue) determines the perceived color
of the LED. The pins on most microcontrollers are digital: they are either HIGH at 5V or
LOW at 0V. So how do you adjust the brightness of an LED with these types of pins? The
answer involves the idea of average voltage and the speed at which we can flip a digital pin
from HIGH to LOW.

Pulse-width modulation, or PWM, pins operate by setting, effectively, the percentage of
time that a pin is HIGH and LOW. The following screenshot shows an oscilloscope reading
for the state of a pin running at 50% over a short period of time:

Building Interactive Projects with RGB LED Chapter 3

[42]

Oscilloscope reading for a 50% PWM pin

Instead of the LED flickering on and off, this results in the LED appearing to glow at half-
brightness: this is because the human eye cannot keep up with the speed of the state
changes, and sees the LED as on, but dimmed. This helps us to use RGB LEDs to create
thousands of different colors by combining a red, green, and blue channel at varying
degrees of brightness.

When we set the colors in our Johnny-Five code, we can pass values from 0 to 255 for red,
green, and blue. This works well with web hex colors, which use the same range. In
general, you can set a PWM pin from 0 to 255 (with some exceptions outside the scope of
this book).

Building Interactive Projects with RGB LED Chapter 3

[43]

Why we need a GPIO expander
So why do we need a GPIO expander right off the bat, when the Raspberry Pi has so many
GPIO pins? This is because PWM pins require computing resources and timers, and many
microcontrollers have a limited number of hardware PWM pins. You can emulate PWM
pins with software, but the results tend to be on the unreliable side. The Arduino Uno, for
example, has eight PWM pins. The Raspberry Pi has only one GPIO pin, and many projects
(including the servo and motor projects included later in this book) will require many more
than one, and we do not want to use software PWM.

This is why we are using the PCA9685 GPIO expander: it has 16 dedicated PWM pins and
provides all the resources to run them. It communicates with the Raspberry Pi using a
protocol called I2C (pronounced eye-squared-see), the details of which are outside the scope
of this book, and are abstracted away in the Johnny-Five component object. See the Further
reading section if you'd like to learn more about how I2C works.

Wiring up our GPIO expander and RGB LED
First, you'll want to wire the PCA9685 breakout to your PI: GND to GND, VCC to 5V, SDA
to SDA, and SCL to SCL. Next, wire a second GND pin from the cobbler to one of the
ground lines on the side of the breadboard. Next, our LED: the long leg wires to ground.
The leg by itself on one side of the long leg is the red channel; wire that to the 0 column
PWM row pin on the PCA9685 board. Green and blue are on the other side; wire them to
PWM-1 and PWM-2, respectively. Once this is all done, your project should look similar to
the following:

Building Interactive Projects with RGB LED Chapter 3

[44]

The finished wiring for this chapter's project

Bringing in other node packages
Node.js prides itself on creating small, bordering on tiny, packages, and has the excellent
npm package manager (and others) to help manage those packages. Because the Raspberry
Pi runs a full version of Node.js, we can leverage that to our advantage and bring in other
packages in order to build more interesting projects.

Project – building a rainbow
Can you remember the RGB code for orange off the top of your head? I can't. It's easier to
remember to convert the color systems we do know into RGB (especially names such as
red, orange, and cornflower blue). But instead of building a function to convert it for us,
we'll leverage what I call Stilwell's law: if you've thought of it, it's probably on npm already.
True to form, the color module is going to help us out.

Building Interactive Projects with RGB LED Chapter 3

[45]

Using the color npm module
In order to use the color npm module, first we will install it. In your SSH session, in your
project folder, run the following code:

npm i --save color

This will also save the color package to your package.json for code portability purposes.
The module exports a function, which we will use to convert color strings like red or
#FF0000 to an array of integers representing red, green, and blue. We will use these
values to set our RGB LED. This is shown in the following example:

const Color = require('color')

let ledColor = Color('orange')
let ledRed = ledColor.red()
let ledGreen = ledColor.green()
let ledBlue = ledColor.blue()

We'll use this to help set the color of our RGB LED in our Johnny-Five program.

Getting our Johnny-Five code started
Let's pull together what we've learned about the Led.RGB object and the color npm module
to pull together a basic code project that we will call rgb-led-rainbow.js:

const Raspi = require('raspi-io')
const five = require('johnny-five')
const color = require('color')

const board = new five.Board({
 io: new Raspi()
})

board.on('ready', () => {
 let rgbLED = new five.Led.RGB({
 controller: "PCA9685",
 pins: {
 red: 0,
 green: 1,
 blue: 2
 }
 });

 let colors = ['red', 'orange', 'yellow', 'green', 'blue',

Building Interactive Projects with RGB LED Chapter 3

[46]

'rebeccapurple']
 let colorIndex = 0
 let currentColor

 setTimeout(() => {
 currentColor = color(colors[colorIndex])
 rgbLED.color([currentColor.red(), currentColor.green(),
currentColor.blue()])
 colorIndex++
 if(colorIndex >= colors.length) {
 colorIndex = 0
 }
 }, 1000)
})

This code cycles through the colors in the colors array and, once per second, sets the RGB
LED's color and moves forward, generating a rainbow.

The REPL – a powerful tool in Johnny-Five
Debugging our LED can be tricky. Without rewiring things, how can we tell if our green
and blue channels are flipped, or if the red is far brighter than the other channels? One tool
that is very helpful for debugging Johnny-Five projects is the Read–Eval–Print Loop
(REPL).

How does the REPL work?
If you have worked with Node.js, Python, or a few other interpreted languages in the past,
the REPL may not be new to you. It allows you to write statements into the CLI at runtime
to generate results straight from the language engine. This can be very helpful when
debugging code, as you can get a glimpse into and modify the state of code at runtime. This
is also true in Johnny-Five: the REPL allows us to insert Johnny-Five objects, so we can look
at manipulating them at runtime. We're going to use this to play with our RGB LED and
control it from the command line.

Building Interactive Projects with RGB LED Chapter 3

[47]

Adding our RGB LED to the REPL
Take a look at the Johnny-Five documentation for the REPL; it's in the Board component
section of the API. What matters to us is this.repl.inject(), which takes an object and
makes any property of that object accessible from the CLI. Let's modify our code to make
use of the REPL by making the rainbow function check for a Boolean before setting the
LED, and adding that Boolean and the RGB LED component object to the CLI:

const Raspi = require('raspi-io')
const five = require('johnny-five')
const color = require('color')

const board = new five.Board({
 io: new Raspi()
})

board.on('ready', () => {
 let rgbLED = new five.Led.RGB({
 controller: "PCA9685",
 pins: {
 red: 0,
 green: 1,
 blue: 2
 }
 });

 let colors = ['red', 'orange', 'yellow', 'green', 'blue',
'rebeccapurple']
 let colorIndex = 0
 let currentColor
 let rainbowCycle = true

 setTInterval(() => {
 if(rainbowCycle) {
 currentColor = color(colors[colorIndex])
 rgbLED.color([currentColor.red(), currentColor.green(),
currentColor.blue()])
 colorIndex++
 if(colorIndex >= colors.length) {
 colorIndex = 0
 }
 }
 }, 1000)

 this.repl.inject({
 rainbowCycle,
 rgbLED,

Building Interactive Projects with RGB LED Chapter 3

[48]

 color
 })
})

Now, we have access to the LED and the Boolean that controls the rainbow cycle from the
command-line REPL supplied to us by Johnny-Five when we run this code on our
Raspberry Pi.

Controlling our LED from the command-line
interface
Move the code over to your Raspberry Pi, and in your SSH session, navigate to your
project folder using cd and run your project (be sure to use sudo!):

sudo node rgb-led-repl.js

Then, you can manipulate the RGB LED and the color library to change the light's color.
Here are a few things to try:

>> rainbowCycle = false // this stops the rainbow color cycle
>> rgbLED.off() // turns the RGB LED off
>> rgbLED.color(color('rebeccapurple').rgb().array()) // sets the LED
purple!

Summary
In this chapter, you created your first interactive project with the Raspberry Pi and Johnny-
Five! We started by exploring the LED and LED.RGB APIs, then explored the power that
running in Node.js gives us by allowing us to use npm modules, and then we brought it all
together with the REPL!

Building Interactive Projects with RGB LED Chapter 3

[49]

Questions
What does PWM stand for, and what does it accomplish with LEDs?1.
Does the Raspberry Pi have any PWM-capable pins? How many?2.
Why do we need a GPIO expander board to control our RGB LED?3.
How many colors would our RGB LED be able to show without PWM?4.
What protocol does our GPIO expander use to communicate with the Raspberry5.
Pi?
What does the color module do for us?6.
How does the REPL help with debugging? What makes it so powerful?7.

Further reading
More reading on PWM: https:/ ​/​learn. ​sparkfun. ​com/ ​tutorials/ ​pulse-
width-​modulation

More reading on I2C: https:/ ​/​learn. ​sparkfun. ​com/​tutorials/ ​i2c

https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/pulse-width-modulation
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c

4
Bringing in Input with Buttons

We've now explored digital and PWM output in Johnny-Five, but that's only half of the
story. There is so much you can do with input devices in robotics projects, allowing either
user input or observations of the world surrounding your projects to affect the outputs.

We're going to start with a user-input device—buttons. We're also going to talk about how
the Raspberry Pi handles digital inputs, and build buttons into our previous project that
allows users to stop the rainbow color cycle, and advance the color themselves.

The following topics will be covered in this chapter:

Using inputs in robotics projects
The Johnny-Five sensor and button objects
Wiring up buttons
Adding buttons to our RGB LED project

Technical requirements
You'll need your Pi, with the RGB LED from the Chapter 3, Building Interactive Projects with
RGB LED project wired up, along with the GPIO expander board.

Using inputs in robotics projects
You can do a lot with output devices in robotics projects, but the possibilities become
endless when you add inputs. Whether they are user-controlled inputs, such as buttons and
potentiometers, or environmental sensors that measure things such as ambient light or air
quality, input devices can add a new dimension to any robotics project.

Bringing in Input with Buttons Chapter 4

[51]

Digital versus analog input
Much like with digital and PWM output, there are two types of input devices: digital and
analog. Digital inputs are either on or off: buttons are a prime example of this. Analog
inputs give a different level of voltage of signal depending on what they are sensing; a
photoresistor, for example, puts out higher voltage signals when the ambient light is high,
and lower when it is darker.

In order to read data from analog devices, you'll need a pin that can accept an analog input.
But as we saw in the last chapter, all of the GPIO pins on the Raspberry Pi are digital.
Luckily, there are ways to get around this limitation.

How to handle analog input with the Raspberry Pi
There are two ways to go about obtaining analog sensor data on the Raspberry Pi: adding a
GPIO expander that has analog pins, or using sensors that make use of digital signaling to
communicate analog data.

Analog GPIO expanders
These boards act almost exactly like the GPIO expansion board we used in Chapter
3, Building Interactive Projects with RGB LED, except instead of adding PWM output pins,
they add analog input pins. These boards also usually utilize an I2C interface to
communicate with the Raspberry Pi. However, I usually find these boards unnecessary,
because many sensors that collect more than one channel of data (such as an accelerometer)
already utilize I2C or other digital interfaces, and the few sensors that collect one channel of
data can be found with these digital interfaces on board.

Using input devices with digital interfaces
This is the way we'll go in our projects. Devices like these use protocols such as UART, SPI,
and I2C that allow devices that only have digital GPIO to receive analog data. In the
materials for each project, the devices included will not require analog input pins.

Bringing in Input with Buttons Chapter 4

[52]

How Johnny-Five handles input
So we've gotten a glimpse of the way Johnny-Five uses events via the board ready event. If
you've ever programmed with C and Arduino, you may be familiar with the event loop
style of program—a loop runs forever and checks the state of the input devices, then
responds accordingly. You may also be aware of interrupt-driven programming, where a
change in a hardware pin causes the code to jump to a specific function.

Johnny-Five code is closer to the interrupt style; events drive nearly all Johnny-Five
projects. This has several benefits; you can keep your code organized by event type, and
make sure each piece of functionality fires only when it needs to, without having to deal
with programming your own hardware interrupt routines.

When a Johnny-Five project receives input from a sensor or device, it fires a data event.
But what if you only want to run a function when the environment changes? The
change event is for you. We'll look more at the exact event types and when they fire in a
later section, but for now keep in mind that events are how you'll capture the data of your
sensors and input devices.

The structure of a typical Johnny-Five project
A Johnny-Five project consists of a few key sections and building blocks that make it really
easy to read through an example. Let's go through an example here to see more.

The beginning – including libraries and creating our
board object
This section sets the stage for us by bringing in the Johnny-Five. The following code snippet
tells it we're using a Raspberry Pi, and constructs the appropriate board objects. If you're
using other npm modules, like the color module we used in Chapter 3, Building Interactive
Projects with RGB LED, you'd use require to bring them in here as well, as shown:

const five = require("johnny-five")
const Raspi = require("raspi-io")

let board = new five.board({
 io: new Raspi()
})

Bringing in Input with Buttons Chapter 4

[53]

The board ready event handler
Everything else that we do in a Johnny-Five project, besides the header, goes inside this
event handler. This handler, as shown here, means our board is ready to read and write to
GPIO pins, and any code run outside this event handler that manipulates GPIO is not
guaranteed to work and may cause strange behavior:

board.on("ready", function() {
 // Everything else goes in here!
});

Constructing our component objects
The first thing I do inside the board ready event handler is set up Johnny-Five objects for all
of the components of my projects. It's easier to wire up a project from the code if all of the
component types and pins are in the same place in the code:

 // remember, this goes inside the board ready event handler!
 let LED = new five.LED('P1-7')
 let button = new.five.Button('P1-8')

Input event handlers and output device manipulation
This is where the fun happens, we wait for input and manipulate outputs accordingly! This
will watch for a button connected to P1–8 to be pressed, then turn on an LED. But how
would we turn the LED off when the button is released? For that, we're going to take
another look at the Johnny-Five documentation:

 // We'll go over more about the Button in the next section!
 // This is still inside the board ready event handler!
 button.on('press', () => {
 led.on()
 })

The Johnny-Five button object
Before we program our button project, let's take a good look at the Johnny-Five button
object, so we know what events to look for, and what information the constructor wants
from us.

Bringing in Input with Buttons Chapter 4

[54]

The button object
When we look at the button's parameters section, there is only one required parameter, pin.
So we'll need to remember what pin to which we hook the signal from the button, but other
than that, the defaults will serve us nicely:

invert: Defaults to false, and inverts the up and down values. We'd like to keep
this false, as we're wiring the button to not require inversion.
isPullup: Tells boards with pull-up resistors tied to their GPIO pins to initialize
this button with the pull-up enabled. We're going to wire our own resistor, so
this can stay the default false.
isPulldown: Similar to isPullup, but with pull-down resistors. Leave this false
as we are wiring our own pull-down resistor.
holdtime: This is the number of milliseconds a button must be held down before
the hold event is fired. The default of 500 milliseconds will do fine for us here.

There's also a special section called collection, which details how you can control several
buttons with the same object. It's an interesting design, and while we won't explore it for
our two-button project, a good bonus project would be to refactor it to use the buttons
collection object.

Button events
There are three events that the button object uses, and each of them can be used on a single
instance of a button object:

press, down: These are the same event, and they fire when the button has been
pressed
release, up: These events fire when the button is released
hold: This event fires when the button is held down for longer than the
threshold set in the holdtime parameter in the constructor

If you've dealt with hardware before, you might be worried about button
event noise; multiple events firing on one button press or release, release
events when the button hasn't been pressed, and so on. Johnny-Five has
baked debouncing into the button object, so there's no need to worry
about noisy buttons!

Bringing in Input with Buttons Chapter 4

[55]

Wiring up buttons
We're going to add buttons to the project from the previous chapter, to allow users to
change the way the RGB LED works by pressing buttons. When you look at a button, you
see four prongs. While there are four prongs, there are only two input/outputs to a
button—one where electricity goes in, and one where it goes out when the button is
pressed. This is because a button essentially controls the flow of electricity. When the
button is not pressed, the contacts are not connected and electricity cannot flow, and when
pressed, a conductor bridges the two sides and electricity flows. This is how we will use the
button as an input device: a high signal means the button is pressed, a low signal means it
isn't.

Putting a button on a breadboard
Take your button and observe the metal prongs on the bottom. Usually, the two pairs curve
towards the inside of the button. There is one in and out on each side, and each pair with
the same curve has one of each. Keep this in mind when placing it on the breadboard,
shown in the following image:

 When you're placing a button on the breadboard, you'll want to make sure that the button
crosses the trough in the middle of the breadboard in order to prevent a short.

Once you've placed the button into the breadboard, make sure it's well-seated, and that
none of the prongs have curled up into themselves instead of going into the breadboard
socket. If one has, use needle-nose pliers to straighten it.

Now that you've got your button on the breadboard, it's time to wire it to your Pi.

Bringing in Input with Buttons Chapter 4

[56]

Using a pull-down resistor
So the question is, how are we going to get three wires into a device with two leads? We're
going to use what's called a pull-down resistor to tie an input to the side of the button not
connected to power. When the button is pressed, electricity will flow through the resistor
into the signal wire, and we'll use a digital input pin on the Pi to detect that as a button
press.

To do this, wire one side of your button to a 5V power pin on the cobbler. On the other side,
place a 10K ohm resistor that bridges to another row of the breadboard, and in that row
place a wire to bridge to a GPIO pin on the cobbler. Then, in the second row of the button,
below the resistor, place a wire bridging to a GND pin on the cobbler.

The resistor prevents the Pi from shorting when the button is pressed, which will cause
your Pi to temporarily cease functioning and, if left for too long, will cause irreparable
damage.

A short circuit, or short, is when the power and ground of a circuit are
connected without a load (like our resistor) in between, which causes a lot
of issues. To learn more, check out the Further reading section of this
chapter, or any introduction to an electronics book.

Adding buttons to our RGB LED project
Now that we know how buttons work and how to wire one up to the Pi, let's add two
buttons to our RGB LED project.

Wiring everything up
Before we wire up our buttons, we're going to need to do some housekeeping on our
current wiring setup.

Using the power and ground side rails
From here on, we'll be needing more access to power and GND pins, and we don't want a
ton of really long wires criss-crossing our projects. So the first thing we'll do is a little
hardware refactoring.

Take the RGB LED ground off the cobbler row.1.

Bringing in Input with Buttons Chapter 4

[57]

Take the VCC and GND from the GPIO expander off the 5V and GND cobbler2.
rows.
Place a wire between the 5V row of the cobbler and the outer long row (if there's3.
one marked red and one blue, use red).
Place a wire between a GND pin of the cobbler and the other outer row.4.
Plug the RGB LED ground into the side rail you linked to the GND on the5.
cobbler.
Plug the GND from the GPIO expander into the side rail linked to GND on the6.
cobbler, and the VCC into the side rail linked to 5V on the cobbler, as shown in
the following diagram:

Bringing in Input with Buttons Chapter 4

[58]

Wiring up the buttons
Now that we've sorted out our power and ground rails, let's place buttons. For both of the
two buttons:

Place the button on the breadboard as outlined in the last section, bridging the1.
gap in the center of the breadboard.
Wire one side of the button to the side rail connected to the 5V pin on the cobbler.2.
Place a 10K ohm resistor on the other side, bridging to an empty rail.3.
Wire the side of the button with the resistor to the side rail linked to GND on the4.
cobbler. Make sure the resistor is in between the button and the link to ground!
Wire the other end of the resistors to a pin on the cobbler; use #5 for button 1 and5.
#6 for button 2, as shown in the next diagram:

Bringing in Input with Buttons Chapter 4

[59]

And now you're ready to write some code!

Button 1 – stop and start rainbow
Before we set up our buttons, we're going to refactor our rainbow-cycle program a bit to
accommodate the new functionality of the buttons.

Refactoring the rainbow cycle
We're going to refactor the rainbow cycle to do the following:

Look at a scoped variable to see if the color should keep changing on a timed1.
interval or not (for the stop and start button)
Break the code that changes the RGB LED to the next color into its own function2.
(for the next color button)

Let's take a look at the refactor:

board.on('ready', () => {
 let rgbLED = new five.Led.RGB({
 controller: "PCA9685",
 pins: {
 red: 0,
 green: 1,
 blue: 2
 }
 })
 let colorCycle = true

 setInterval(() => {
 if(colorCycle) {
 colorChange()
 }
 }, 1000)

 function colorChange() {
 console.log(currentColor)
 currentColor = color(colors[colorIndex])
 rgbLED.color([currentColor.red(), currentColor.green(),
currentColor.blue()])
 colorIndex++
 if(colorIndex >= colors.length) {
 colorIndex = 0
 }

Bringing in Input with Buttons Chapter 4

[60]

 }
})

We're going to make button1 stop and start the cycle through rainbow colors. To do this,
we'll need to:

Construct a button object to represent our button in the code1.
Watch for the press event from the Johnny-Five button object API2.
Add a variable called cycleOn that can be set to true or false, and have the loop3.
that changes the color use to either change the color or not
We're also going to pull the logic for changing the color out in preparation for4.
our next button

Let's add it to the beginning of our board ready handler:

 let button1 = new five.Button('P1-29')
 button1.on('press', () => {
 colorCycle = !colorCycle
 })

Load this on your Pi, run it with sudo node rainbow-pause-button.js, and see what
happens when you press the button a few times!

Button 2 – next color
Now we'll add a second button and press handler to make the second advance the color
when it is pressed:

 let button2 = new five.Button('P1-31')

 button2.on('press', () => {
 colorChange()
 })

Now, when you press the second button, the color of the LED will advance to the next color
in the array.

Bringing in Input with Buttons Chapter 4

[61]

Summary
This chapter brought together user inputs and output—an RGB LED. We learned how to
use input events in Johnny-Five to manipulate output devices, which is the core of most
Johnny-Five projects, and learned how to use multiple inputs (buttons) to achieve different
effects.

Questions
What events are available to the Johnny-Five button object?1.
Can the Raspberry Pi use analog input devices?2.
How will we use sensors with the Pi?3.
Why are there no events for the RGB.LED object?4.

Further reading
More about analog input pins: https:/ ​/​learn. ​sparkfun. ​com/ ​tutorials/
analog-​to- ​digital- ​conversion

More about pull-up resistors: https:/ ​/ ​learn. ​sparkfun. ​com/​tutorials/ ​pull-
up-​resistors

https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/pull-up-resistors
https://learn.sparkfun.com/tutorials/pull-up-resistors
https://learn.sparkfun.com/tutorials/pull-up-resistors
https://learn.sparkfun.com/tutorials/pull-up-resistors
https://learn.sparkfun.com/tutorials/pull-up-resistors
https://learn.sparkfun.com/tutorials/pull-up-resistors
https://learn.sparkfun.com/tutorials/pull-up-resistors
https://learn.sparkfun.com/tutorials/pull-up-resistors
https://learn.sparkfun.com/tutorials/pull-up-resistors
https://learn.sparkfun.com/tutorials/pull-up-resistors
https://learn.sparkfun.com/tutorials/pull-up-resistors
https://learn.sparkfun.com/tutorials/pull-up-resistors
https://learn.sparkfun.com/tutorials/pull-up-resistors
https://learn.sparkfun.com/tutorials/pull-up-resistors
https://learn.sparkfun.com/tutorials/pull-up-resistors
https://learn.sparkfun.com/tutorials/pull-up-resistors

5
Using a Light Sensor to Create

a Night-Light
In this chapter, we will look at the ways we can still use analog sensors with Johnny-Five
and the Raspberry Pi, even without the Pi having built-in analog input pins. We'll use that
knowledge to build a night-light that turns on and off an LED based on the ambient light in
the room.

The following topics will be covered in this chapter:

Using an analog sensor with the Pi
The ambient light sensor
Creating our night-light

Technical requirements
For this project, you will need a regular LED of any color, and a TSL2561 light sensor,
available on Adafruit (https:/ ​/​www. ​adafruit. ​com/​product/ ​439) and through many other
providers.

The code for this chapter is available at https:/ ​/​github. ​com/
PacktPublishing/ ​Hands- ​On-​Robotics- ​with- ​JavaScript/ ​tree/ ​master/
Chapter05.

https://www.adafruit.com/product/439
https://www.adafruit.com/product/439
https://www.adafruit.com/product/439
https://www.adafruit.com/product/439
https://www.adafruit.com/product/439
https://www.adafruit.com/product/439
https://www.adafruit.com/product/439
https://www.adafruit.com/product/439
https://www.adafruit.com/product/439
https://www.adafruit.com/product/439
https://www.adafruit.com/product/439
https://www.adafruit.com/product/439
https://www.adafruit.com/product/439
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter05

Using a Light Sensor to Create a Night-Light Chapter 5

[63]

Using an analog sensor with the Pi
We talked about the lack of multiple PWM output pins on the Pi in Chapter
3, Building Interactive Projects with RGB LED, but an issue we haven't entirely addressed yet
is with inputs. Digital inputs, such as buttons and switches, anything that is either on or off,
are easy with the Pi, any digital output pin can also be used as a digital input pin. But what
about things that require more than two states, such as sensors that detect light,
temperature, moisture, distances, or anything else we'd like to measure in quantity? The
answer lies in using specialized communication protocols developed over the years that
allow digital pins to communicate analog information.

Finding the right sensors for your Pi project
When you're looking at sensors for a Raspberry Pi project, you need to be sure that any
analog sensor you use has a digital interface. The two most common are I2C and SPI, and
we'll talk about how to tell which your sensor has (or hasn't!) and whether that device can
be used with Johnny-Five.

I2C devices
I2C devices require two more pins to work along with power and a ground pin—an SDA
(data) and SCL (clock) pin. The details of how these are used is beyond the scope of this
book (see the Further reading section for more information), but do know that you can hook
multiple devices to the same SDA and SCL pins, so long as the devices have different I2C
addresses. The address is a two-digit hex number, that is easy to find for nearly all I2C
devices, and in some cases the address can be configured physically on the device.

For this chapter's project, we will be using the TSL2561, which can have two different
addresses configured to it. We'll stick with the default, 0x39 (on the Adafruit model) for
now.

SPI
SPI devices get tricky quickly, you need five pins: power, ground, microcontroller to sensor
data (MOSI), sensor to microcontroller data (MISO), and a chip select line. While multiple
devices on a set of SPI pins can share MISO and MOSI pins, they each need their own chip
select pin, so the microcontroller can signal the device it wishes to communicate with.

Using a Light Sensor to Create a Night-Light Chapter 5

[64]

How to determine if your sensor will work with Johnny-
Five
The best way to see if there already are drivers for the sensor you are eyeing in Johnny-Five
is to check the documentation at the Johnny-Five website. Find the sensor type, and find
out what chip the sensor is using (for example, our light sensor uses the TSL2561). Then, on
the API page for the sensor, at the top, is nearly always a list of supported controllers and
chips. If the chip number on your sensor matches one in that list, it is already compatible
with Johnny-Five: just remember that even though analog sensors are compatible with
Johnny-Five, they will not work with the Pi, because it has no analog input pins of its own.

As an example, here's the list of supported light-sensor controllers and chips, and you can
see the TSL2561 in the list, so we're good to start building out our project:

The ambient light sensor
To get started with our night-light project, we'll start by wiring up our TSL2561 I2C light
sensor and making sure we get good data reads by having it print out to the command line.

Using a Light Sensor to Create a Night-Light Chapter 5

[65]

Wiring up the sensor
In order to wire up our light sensor, we'll need to know which are the SDA and SCL pins of
the Pi. For the Pi 3 and 3 B+, SDA is P1-P3 and SCL is P1-P5; these are also usually labelled
on the cobblers as SDA and SCL. In order to get the sensor working, we'll need the power
pin; this sensor is not 5V tolerant, so we'll need to use a 3.3V power pin. We can attach
GND on the sensor to any ground pin.

The SDA and SCL pins on the sensor need to be connected to the SDA and SCL pins on the
Pi, respectively. In the end, your light sensor should be wired up like the following
diagram:

Using a Light Sensor to Create a Night-Light Chapter 5

[66]

Now that we've wired up our sensor, it's time to figure out how to print that data using
Johnny-Five and other Node.js modules so we can make sure it's up and running.

Writing a program to get readings and print them
to the command line
Sensor object events in Johnny-Five are different from button events, because, well, sensors
are different to buttons! Let's take a look at the differences and how to get the data we need
from our light sensor.

The Johnny-Five sensor events
The two main events we'll see from sensors are data and change. The only real difference
is in the name: data events are fired every time data is retrieved, while change is fired
when the data changes. I tend to use change when building sensor-based projects unless
I'm distinctly logging data over time.

You can configure the time between data collection in the construction of the sensor object,
as well as the threshold that the change in data must pass in order to fire the change event.

Handling sensor data in the event handler
When you receive data from a sensor, it will be attached to the JavaScript this object, so
when you create a callback for the event handler, do not use the arrow syntax, as you will
lose the bindings Johnny-Five places on the this object in JavaScript.

Here's an example of a generic data handler for a change event on a Johnny-Five sensor:

let mySensor = new five.Sensor('PIN_NUMBER')

mySensor.on('change', function() {
 console.log(this.value) // logs a value between 0-255 to the console
})

Now that we've established how we'll get the data, let's talk about what the data will look
like and how we can manipulate it.

Using a Light Sensor to Create a Night-Light Chapter 5

[67]

Using and formatting Johnny-Five sensor data
There are many ways to receive the data sent from a sensor in Johnny-Five, as you can see
by the documentation shown in the following screenshot:

Boolean, raw, analog, constrained, and value can leave you with a lot to process. What each
one means is shown in the preceding diagram, however take note that there is a good
reason the default value is the same as analog: a scaled reading between 0 and 255. It has a
lot to do with the variety of sensors available, the varying granularities of data, and using
scaling to make sure you only have to keep one number range in mind, regardless of how
many sensors you are using.

Using a Light Sensor to Create a Night-Light Chapter 5

[68]

Using .scaleTo() and .fscaleTo() to fine-tune measurements
If you'd like to impose an arbitrary scale on your sensor (say 0 – 100 for percentage), you
have some options built into the Johnny-Five API: .scaleTo() and .fscaleTo(). These
will scale the raw value from the sensor to match the min and max values you pass in:

sensor.on('change', function(){
 // this.value will reflect a scaling from 0-1023 to 0-100
console.log(this.scaleTo([0, 100])); // prints an integer
 console.log(this.fscaleTo([0, 100])); // prints a float
})

Now that we know how to handle the data, let's start on our night-light by creating code to
print the light-sensor values to the command line. This will also allow us to tweak the
change threshold setting and determine what value of the light sensor we should use as an
indicator to turn our LED off and on.

Printing sensor data to the command line
To print data from our sensor to the command line, we'll use the code in print-light-
sensor.js:

const five = require('johnny-five')
const RaspiIO = require('raspi-io')

let board = new five.Board({
 io: new RaspiIO()
})

board.on('ready', () => {
 let lightSensor = new five.Light({
 controller: 'TSL2561'
 })
 lightSensor.on('change', function() {
 console.log(this.value)
 })
})

Using a Light Sensor to Create a Night-Light Chapter 5

[69]

Your output on run should look something like this, with the numbers varying when you
cover or shine light onto the sensor:

This is nice, but a little hard to comprehend. What we'll do next is add in the npm module
barcli to show a nice bar graph that allows us to comprehend in real time the data we're
seeing.

Using barcli to make the data easier to see
That data stream can be hard to process! Let's take a look at leveraging the power of
Node.js to make this easier to see.

In your project folder, run:

npm i --save barcli

To install barcli, a library that creates bar graphs in the Terminal.

Reading the barcli documentation (see Further reading), we'll need to import barcli,
construct a barcli object with the settings we need, then tell when to update and with
what data.

Using a Light Sensor to Create a Night-Light Chapter 5

[70]

Importing barcli and constructing our barcli graph
To import barcli, at the top of your print-light-sensor.js file, following the other
require() statements, add:

const Barcli = require('barcli')

Then, in the board.on('ready') handler, we'll add the bar graph constructor:

let lightGraph = new Barcli({
 label: 'Light Sensor',
 range: [0, 255]
})

Getting the bar graph to update
Remove the console.log() line from the lightSensor.on('change') handler and
replace it with:

lightGraph.update(this.value)

Then you're ready to roll! Move the project folder over to the Pi, navigate to the folder in
your Pi SSH session, and run:

npm i

To make sure that barcli is properly installed on the Pi, run the command:

sudo node light-sensor-barcli.js

You should see a bar graph now, shown as follows, that changes when you shine light on
or cover the sensor:

Now, for our night-light project, you'll want to find a value for the light sensor that we will
use to turn the LED on and off; barcli makes this much easier by making that value much
easier to see.

Using a Light Sensor to Create a Night-Light Chapter 5

[71]

Once you've got the value that works for you (I settled on 25), we're ready to build our
night-light.

Creating our night-light
Now that we know our light sensor works, we can add an LED and create our night-light.

Wiring up the LED
Connect the short leg of your LED to a ground rail using a 330K ohm resistor, and wire the
long leg to GPIO #5, also known as P1-29:

Using a Light Sensor to Create a Night-Light Chapter 5

[72]

Coding this project
Create a file in the same folder as the other files from this chapter, and copy the contents of
print-light-sensor-readings.js into it.

In the start of the board.on('ready') handler, add a constructor for our LED:

let light = new five.Led('P1-29')

And in the lightSensor.on('change') function, replace the console.log statement
with the logic that will turn the LED on and off:

if(this.value <= 25) {
 light.on()
} else {
 light.off()
}

And we're ready to run! Load the folder onto your Pi, navigate to the folder in your Pi's
SSH session, and run:

sudo node night-light.js

When you cover the light sensor with your thumb, the LED should light up, as shown in
the following image:

Using a Light Sensor to Create a Night-Light Chapter 5

[73]

 And when you remove your thumb (in a well-lit room), the LED will turn off, as shown in
the following image:

 And with that, you have successfully coded and built your night-light!

Summary
In this chapter, we learned about analog sensors and the limitations of the Pi for analog
input. We learned about digital interfaces that allow us to collect analog data in Pi projects.
We used this knowledge to set up a light sensor, with bar graphs from barcli to find a
good threshold for an LED to turn on and off. Finally, we used all of this together to build a
night light that illuminates in the dark and turns off in the light.

Questions
What is an analog input sensor?1.
Why can't analog input sensors directly interface with the Raspberry Pi?2.
Name two digital interfaces we can use with the Pi to collect analog data.3.
What two pins (besides power and ground) do I2C sensors need to operate?4.
Name the events that a sensor object can fire.5.
Why is barcli helpful in processing changing sensor data?6.

Using a Light Sensor to Create a Night-Light Chapter 5

[74]

Further reading
More information on analog inputs: https:/ ​/ ​learn. ​sparkfun. ​com/​tutorials/
analog-​to- ​digital- ​conversion

More information on SPI: https:/ ​/​learn. ​sparkfun. ​com/ ​tutorials/ ​serial-
peripheral- ​interface- ​spi

More information on I2C: https:/ ​/ ​learn. ​sparkfun. ​com/​tutorials/ ​i2c

More information on using SPI and I2C with the Pi: https:/ ​/​learn. ​sparkfun.
com/​tutorials/ ​raspberry- ​pi- ​spi-​and- ​i2c- ​tutorial

https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/analog-to-digital-conversion
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial

6
Using Motors to Move Your

Project
We've explored using input to discover the world around our bots, and output to let our
bots communicate, but there is another crucial skill any bot should have: the ability to
move! In the next few chapters, we'll discuss various ways we get let our bots to move, and
discuss how to control that movement. We'll start in this chapter with the simplest
movement component: the motor.

The following topics will be covered in this chapter:

More about motors
Preparing for a motor-driven project with the Raspberry Pi
The Johnny-Five motor object
Troubleshooting your motorized projects
Project – building a randomized motorized cat toy
Project – using a gearbox motor and the motors object

Technical requirements
You will need the Adafruit Pi motor hat kit (https:/ ​/​www. ​adafruit. ​com/ ​product/ ​2348), a
small 5V motor, which you can also get from Adafruit (https:/ ​/​www. ​adafruit. ​com/
product/​711), or many other suppliers, a 4-AA battery case with wire ends and an on/off
switch, available from Adafruit (https:/ ​/​www.​adafruit. ​com/ ​product/ ​830) and many other
suppliers, 2 gearbox or TT motors, available from Adafruit (https:/ ​/​www. ​adafruit. ​com/
product/​3777) and many other suppliers, and a sticky note (or a piece of paper, scissors,
and tape).

https://www.adafruit.com/product/2348
https://www.adafruit.com/product/2348
https://www.adafruit.com/product/2348
https://www.adafruit.com/product/2348
https://www.adafruit.com/product/2348
https://www.adafruit.com/product/2348
https://www.adafruit.com/product/2348
https://www.adafruit.com/product/2348
https://www.adafruit.com/product/2348
https://www.adafruit.com/product/2348
https://www.adafruit.com/product/2348
https://www.adafruit.com/product/2348
https://www.adafruit.com/product/2348
https://www.adafruit.com/product/711
https://www.adafruit.com/product/711
https://www.adafruit.com/product/711
https://www.adafruit.com/product/711
https://www.adafruit.com/product/711
https://www.adafruit.com/product/711
https://www.adafruit.com/product/711
https://www.adafruit.com/product/711
https://www.adafruit.com/product/711
https://www.adafruit.com/product/711
https://www.adafruit.com/product/711
https://www.adafruit.com/product/711
https://www.adafruit.com/product/830
https://www.adafruit.com/product/830
https://www.adafruit.com/product/830
https://www.adafruit.com/product/830
https://www.adafruit.com/product/830
https://www.adafruit.com/product/830
https://www.adafruit.com/product/830
https://www.adafruit.com/product/830
https://www.adafruit.com/product/830
https://www.adafruit.com/product/830
https://www.adafruit.com/product/830
https://www.adafruit.com/product/830
https://www.adafruit.com/product/830
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777

Using Motors to Move Your Project Chapter 6

[76]

Note: If you cannot solder or are uncomfortable soldering, an alternative fully assembled
hat can be found on Amazon (https:/ ​/​www.​amazon. ​com/​SB- ​Motorshield- ​Raspberry-
expansion-​ultrasonic/ ​dp/ ​B01MQ2MZDV/ ​ref= ​sr_ ​1_​fkmr1_ ​1? ​s=​electronics ​ie= ​UTF8 ​qid=
1534705033​sr=​8-​1- ​fkmr1 ​keywords= ​raspberry+pi+motor+controller+TB6612). I will note
changes in the code where necessary—anytime this chapter references the L293D hat, that
is in reference to this hat.

The code for this chapter is available at https:/ ​/​github. ​com/
PacktPublishing/ ​Hands- ​On-​Robotics- ​with- ​JavaScript/ ​tree/ ​master/
Chapter06.

More about motors
A motor is a component that can rotate a shaft in continuous circles at varying speeds.
However, there are many different kinds of motors; let's take a look at a few:

DC motor: This kind of motor is the simplest: it can go in one direction, and the
speed varies by the power you give it. These usually only have two wires: one for
ground and one for power; we will combine the latter with the motor hat to
control the speed. With the correct controller, we can move the motor in both
directions.
Motors with brakes: These motors have a third wire to control a brake that can
stop the motor without the need to coast to a stop, as with DC motors. These
motors are supported by the Johnny-Five library, but will not be covered in this
book.
Stepper motors: Stepper motors are used for precise movements, as they move in
steps that vary based on the size of the motor. They are bi-directional by design
and are great where you need the torque of a motor with precision. We'll talk
more about these in the second project in this chapter. Just know that an easy
way to spot a stepper motor is 5 wires as opposed to 2 or 3:

https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://www.amazon.com/SB-Motorshield-Raspberry-expansion-ultrasonic/dp/B01MQ2MZDV/ref=sr_1_fkmr1_1?s=electronics&ie=UTF8&qid=1534705033&sr=8-1-fkmr1&keywords=raspberry+pi+motor+controller+TB6612
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter06

Using Motors to Move Your Project Chapter 6

[77]

Regular motor on the left, stepper motor on the right

How to control a motor with a microcontroller
You can directly connect DC hobby motors to the PWM pin of a microcontroller to power
them, but this is usually inadvisable: motors take up a lot of power and many
microcontrollers limit the amount of current out of each pin.

 A more advisable solution, which we will be using in this chapter, is to use an external
motor controller; these usually contain the circuitry necessary to do more complex
movement with your motors (such as allowing them to go backwards), and allow for an
external power supply that provides the necessary power to your motors without drawing
it from the microcontroller.

Using Motors to Move Your Project Chapter 6

[78]

Preparing for a motor-driven project with
Raspberry Pi
In order to get started with motors using Johnny-Five and the Raspberry Pi, we'll need to
add a hat (think Arduino shields, but for the Pi, or add-on boards that stack on the Pi if
you're new to electronics) that allows us to:

Provide external power to the motors
Control the motors better than the Pi can on its own (especially in the case of the
stepper motor)

Putting the hat together
Wire the battery pack and the motor to the hat's screw terminals like so:

Using Motors to Move Your Project Chapter 6

[79]

The yellow wire in the diagram should be your ground wire (usually black) and the green
should be your power wire (usually red).

Putting the hat on the Pi
Remove all power from the Pi, and make sure the battery pack is switched off. Also,
remove the cobbler from the GPIO pins if it is still attached. Then, line up the sockets on the
bottom of the hat with the pins on the top of the Pi, in the direction that makes it so the hat
is situated over the Pi. Then, gently press down on the hat until it settles. Don't press
hard— you may bend some of the Pi's pins. When all is said and done, it should look
something like this:

Using Motors to Move Your Project Chapter 6

[80]

And the motor should be plugged into the screw terminals, like so:

Re-apply power to the Pi, and we'll get started coding using the Johnny-Five motor object.

The Johnny-Five motor object
The motor object in Johnny-Five allows us to easily control our motors without having to
worry about communicating with the hat via the Pi. Let's code a test setup with the REPL
before coding our project, to make sure everything is working.

Create a new project folder and, inside it, run the following:

npm init -y

And, create a file in the folder named motor-test.js. Start by requiring in Johnny-Five
and Raspi-IO, instantiating your board object, and creating a board.on('ready')
handler, as we usually do:

const Raspi = require('raspi-io')
const five = require('johnny-five')
const board = new five.Board({
 io: new Raspi()
})

board.on('ready', () => {

})

Using Motors to Move Your Project Chapter 6

[81]

Now, we're ready to set up our motor object, keeping in mind that we'll need to configure
for our hat.

Constructors for our hat
If you are using the Adafruit hat, your constructor is as follows:

let motor = new five.Motor(five.Motor.SHIELD_CONFIGS.ADAFRUIT_V2.M1)

And if you're using the L293D hat, your constructor is as follows:

let motor = new five.Motor(five.Motor.SHIELD_CONFIGS.ADAFRUIT_V1.M1)

Place whichever one applies inside the board.on('ready') function.

Functions that move the motor
Referencing the Johnny-Five documentation, there are a few functions that will allow us to
move the motor from the command line using the REPL:

motor.forward(speed) // speed 0-255, starts the motor forward
motor.stop() // the motor coasts to a stop
motor.start(speed) // resumes the motor moving forward
motor.reverse(speed) // moves the motor backward

Now that we know how to control the motor, let's add the REPL functionality to test it

Adding REPL control
At the end of the board.on('ready') function, add the following:

board.repl.inject({
 motor
})

And now we have full control!

Using Motors to Move Your Project Chapter 6

[82]

Loading and running your motor
Load the project onto the Pi, and navigate to the folder in the Pi ssh session. Then, run the
following:

npm i --save johnny-five raspi-io

Once that's completed, turn on the battery pack and run the following:

sudo node motor-test.js

Once you see Board Initialized, you should try out some of the commands from before:

motor.forward(speed) // speed 0-255
motor.stop()
motor.start(speed)
motor.reverse(speed)

Hopefully, your motor is happily spinning away!

Troubleshooting your motorized projects
But what if your motor doesn't turn? Here are a few things to check if your motor isn't
spinning around:

Is the battery pack for the motor hat turned on? Don't laugh, I've spent many a
minute wondering why it wasn't working only to discover it lacked power.
There's a power light on most motor hats that let you know it has power:

Using Motors to Move Your Project Chapter 6

[83]

The power LED on the Adafruit hat is just above the screw terminals for the external power, and lights up red

Are your batteries fresh? Motors take up a lot of power, and extended use can
wear them down pretty fast.
As I mentioned in the first chapter: check your wiring. Then, check it again.
Make sure all of the wires are securely fastened in the correct screw terminals so
that a light yank cannot dislodge them.
Are you using rechargeable batteries? If so, I admire your commitment to reuse,
but you're going to want 6 rechargeable running your motor due to differences in
voltages between rechargeable and non-rechargeable batteries.

Hopefully, if your motor wasn't spinning before, it is now, and we can build our first
project.

Project – cat toy
In this project, we'll add a piece of paper to our motor, and then code some randomness to
make it spin back and forth at varying speeds (cats get bored with a predictable toy, after
all).

The wiring for this project is the same as the motor test; no need to change anything there.

Using Motors to Move Your Project Chapter 6

[84]

Putting a piece of paper on the motor shaft
Either roll the sticky end of a long sticky note around the motor shaft, or tape a long strip of
paper to it. It should look something like this:

After the relatively simple construction of our toy, let's code some randomness!

Coding the randomness to start/stop the motor
We want the motor to start at a random speed for anywhere from 1-10 seconds, then stop
for 1-10 seconds, and repeat. We also want whether it goes forward or backward to be
random. I limited the speed to 75—anything faster was too much for my cats!

Using Motors to Move Your Project Chapter 6

[85]

In your cat-toy.js file, get rid of the board.repl.inject statement and add the
following:

startMovement()

function startMovement(){
 let direction = Math.round(Math.random())
 let speed = Math.round(Math.random() * 75)
 let time = Math.round(Math.random() * 10)

 if(direction == 0){
 motor.forward(speed)
 } else {
 motor.reverse(speed)
 }

 setTimeout(stopMovement, time*1000)
}

function stopMovement(){
 let time = Math.round(Math.random() * 10)
 motor.stop()
 setTimeout(startMovement, time * 1000)
}

This will randomize the starting and stopping, the speed, and the direction. My cats were at
least mildly entertained by it. If you have cats, give it a try!

Load the project onto the Pi, and navigate to the folder in the Pi SSH session. Then, run:

sudo node cat-toy.js

And watch it go!

We've got one motor going, but if you want to build a bot with wheels, we're gonna need
two motors; let's take a look at that concept with our next project.

Project – using two gearbox motors and the
motors object
Now that we've explored the motor object, let's dig a little deeper and build a project using
two TT motors while exploring the motors object.

Using Motors to Move Your Project Chapter 6

[86]

If you want to take this a step further, you can get yourself a chassis like
this one from Adafruit https:/ ​/​www. ​adafruit. ​com/ ​product/ ​3796 and a
pair of wheels like these from Adafruit https:/ ​/​www. ​adafruit. ​com/
product/ ​3757 and build yourself a moving 2-wheel robot! Just remember
you'll have to either power the Pi with a battery pack (those little USB
packs for charging your phone work great) or stay within range of your
Pi's power cord. If you go with the latter, I'd secure the power jack into the
Pi and be very careful not to let the bot pull too hard on anything.
Honestly, I'd really just recommend using a battery if you're going to let
your Pi move about on its own.

Wiring up your TT motors
For this diagram, pretend the normal DC motors are our TT motors—yellow will be the
ground (usually black) wire, and the green will be the power (normally red) wire.

https://www.adafruit.com/product/3796
https://www.adafruit.com/product/3796
https://www.adafruit.com/product/3796
https://www.adafruit.com/product/3796
https://www.adafruit.com/product/3796
https://www.adafruit.com/product/3796
https://www.adafruit.com/product/3796
https://www.adafruit.com/product/3796
https://www.adafruit.com/product/3796
https://www.adafruit.com/product/3796
https://www.adafruit.com/product/3796
https://www.adafruit.com/product/3796
https://www.adafruit.com/product/3796
https://www.adafruit.com/product/3757
https://www.adafruit.com/product/3757
https://www.adafruit.com/product/3757
https://www.adafruit.com/product/3757
https://www.adafruit.com/product/3757
https://www.adafruit.com/product/3757
https://www.adafruit.com/product/3757
https://www.adafruit.com/product/3757
https://www.adafruit.com/product/3757
https://www.adafruit.com/product/3757
https://www.adafruit.com/product/3757
https://www.adafruit.com/product/3757

Using Motors to Move Your Project Chapter 6

[87]

Now it's time to get started coding our motors to perform common wheeled-vehicle
movements using Johnny-Five and the motors object.

The motors Johnny-Five object
Create a new file in your project folder called driver-bot.js. Start with the usual setup of
the Johnny-Five and Raspi-IO libraries, your board object, and your board.on('ready')
handler:

const Raspi = require('raspi-io')
const five = require('johnny-five')
const board = new five.Board({
 io: new Raspi()
})

board.on('ready', () => {

})

Next, inside the board.on('ready') handler, we'll add the constructors for our two TT
motors:

If you are using the Adafruit hat, your constructors are:

let leftMotor = new five.Motor(five.Motor.SHIELD_CONFIGS.ADAFRUIT_V2.M1)
let rightMotor = new five.Motor(five.Motor.SHIELD_CONFIGS.ADAFRUIT_V2.M2)

And if you're using the L293D hat, your constructors are:

let leftMotor = new five.Motor(five.Motor.SHIELD_CONFIGS.ADAFRUIT_V1.M1)
let rightMotor = new five.Motor(five.Motor.SHIELD_CONFIGS.ADAFRUIT_V1.M2)

Now that our motors are constructed, we'll create our Motors object by passing it an array
containing leftMotor and rightMotor:

let motors = new Five.Motors([leftMotor, rightMotor])

Before we start writing our driving functions, let's talk a little about the benefits of the
Motors object. The main benefit to having your motors in a Motors object is to maintain
control over each individual motor while also being able to control them all at once. For
example:

leftMotor.forward(255) // left motor full speed ahead!
rightMotor.reverse(255) // right motor full speed reverse!
motors.stop() // both motors coast to a stop

Using Motors to Move Your Project Chapter 6

[88]

The motors object allows you to call any Motor object function and it will perform it on all
of the motors at once.

Let's use this knowledge to write some common driving functions that we can use with our
motors.

Writing some functions
First things first, we'll want to let our robot go forward. Inside the board.on('ready')
handler of driver-bot.js, add:

function goForward(speed) {
 motors.forward(speed)
}

Here we see again the benefit of the motors object; we don't have to tell the right and left
motor to move forward separately.

Let's add another function to let our motors coast to a stop:

function stop() {
 motors.stop()
}

And another to let our robot go backward:

function goBackward(speed) {
 motors.reverse(speed)
}

Now that those are done, how about we add some turns? Luckily, the motors object still
lets us control each motor individually—so turns are no problem:

function turnRight(speed) {
 leftMotor.forward(speed)
 rightMotor.stop()
}

function turnLeft(speed) {
 rightMotor.forward(speed)
 leftMotor.stop()
}

Using Motors to Move Your Project Chapter 6

[89]

Finally, let's add the ability to spin left or right in place:

function spinRight(speed) {
 leftMotor.forward(speed)
 rightMotor.reverse(speed)
}

function spinLeft(speed) {
 rightMotor.forward(speed)
 leftMotor.reverse(speed)
}

Now, our motors have everything they need to drive around! Let's give ourselves REPL
access to these methods, the motors object, and the motor objects:

board.repl.inject({
 leftMotor,
 rightMotor,
 motors,
 goForward,
 goBackward,
 stop,
 turnRight,
 turnLeft,
 spinRight,
 spinLeft
})

And now we're ready to load up our code and take our motors for a spin (both
metaphorically and literally)!

Running our motors project
Load the project onto the Pi, and navigate to the folder in the Pi SSH session. Then, run:

sudo node driver-bot.js

Once you see Board Initialized, feel free to try out our new functions:

goForward(100) // start moving both motors forward
stop() // and stop
goBackward(50) // go backward at half the previous speed
stop()
goForward(100)
turnRight(100)
turnLeft(200) // a faster left turn

Using Motors to Move Your Project Chapter 6

[90]

spinRight(255) // robots can't get dizzy, maximum fastness
spinLeft(100)
stop()

And that's it—you've written all the code you need to drive a two-wheeled robot!

As a bonus project, think of a way you could drive the bot without having to type out the
function names each time!

Summary
In this chapter, we learned about the first component that adds movement to our bots: the
motor. We learned about the types of motors, and how to interface one with a
microcontroller. Then, we wrote code to test our motor with the Pi hat and the REPL, and
we built a small randomized cat toy using our knowledge of the Johnny-Five Motor object.
Finally, we built a project that allowed us to explore hands-on the abilities of the Motors
object and write code to drive a two-wheeled robot.

Questions
What is a motor?1.
What's the difference between a motor and a stepper motor?2.
Why should you use external power for motors?3.
Why do we need a hat to control our motor?4.
What are the benefits of the Motors object when using multiple motors?5.

7
Using Servos for Measured

Movement
Now that we've looked at motors, let's look at a more precise way to add to movement to
our projects: the servo. We'll dive into how to wire up one servo, then another, and how to
code both a single servo and multiple ones.

The following topics will be covered in this chapter:

Differences between motors and servos
Getting a servo working with Johnny-Five
Project – two servos and the REPL
Project – the continuous servo

Technical requirements
You'll need your Pi, Cobbler, PWM hat, 2 hobby servos, and the AA battery pack from
Chapter 6, Using Motors to Move Your Project. You'll also need a continuous servo. Finally,
you'll need your light sensor. Optional, but helpful, is a Popsicle or other small stick and
some tape for turning our servo into a meter.

The code for this chapter is available at: https:/ ​/​github. ​com/
PacktPublishing/ ​Hands- ​On-​Robotics- ​with- ​JavaScript/ ​tree/ ​master/
Chapter07.

https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter07

Using Servos for Measured Movement Chapter 7

[92]

Differences between motors and servos
The average hobby servo looks like this:

Also pictured are common accessories: some different arms, and mounting screws/washers.
The wire ends terminate in a solid socket of three: perfect for attaching to our PWM hat.

The motors we worked with last chapter have some very basic differences, and we should
explore them before we start our servo project.

Calculated movements
Unlike the motors we dealt with in the previous chapter, you can make precise and
calculated movements with a servo. Name a degree between 0 and 180 on a regular servo,
and it will go. Motors (excluding stepper motors, which aren't covered in this book) cannot
make these precise movements. So if you're looking to make a wheel go and you don't care
about accurate movements, use a motor. When you're looking to make the joint of a limb
that needs to move precisely with other joints, time to use a servo.

Using Servos for Measured Movement Chapter 7

[93]

Regular versus continuous servos
There are two kinds of servos, and they look remarkably alike. The other kind is called a
continuous servo. They work very similar to regular servos in Johnny-Five, as you can see
in the documentation for servo.continuous, which is on the same page as the servo
documentation. The main difference is that while a regular servo can only go 180 degrees, a
continuous one can go full 360 and continue spinning in the same direction indefinitely.
Some favor using these to move wheels in their vehicle projects, and that's just fine!

Powering servos and motors
This is where servos and motors are very similar: while one servo tends to take less power
than a motor, many projects make use of more servos than they would motors, and that can
mean a strain on your Pi. If you add a lot of servos, you're going to want to provide
external power to the PWM hat; many use 3-4 AA battery packs. I recommend using the
one we used for motors in Chapter 6, Using Motors to Move Your Project.

Powering your servos off of the Pi can have consequences that you
wouldn't expect-- if you're getting memory leak issues while running
servo code, it can be because you're pulling too much power from the Pi!
In general, if you're having weird issues with running servo code, make
sure your servos are adequately powered by an external source.

Getting a servo working with Johnny-Five
To get a servo working with Johnny-Five, we'll look at the Johnny-Five servo object, talk
about wiring the servo to our PWM hat, and write our first piece of code to get the servo to
sweep back and forth.

Using Servos for Measured Movement Chapter 7

[94]

The Johnny-Five servo object
Looking at the servo page in the API section of the Johnny-Five documentation, we will
look first for our constructor. Because we're still using the PCA9685 PWM hat, our
constructor will look like this:

let servo = new five.Servo({
 controller: "PCA9685",
 pin: 0
});

As for moving the servo, there are a few method described in the docs to move the servo.
The first move can be to a fixed position:

servo.to(degree)
servo.min()
servo.max()
servo.home()
servo.center()

Or, another is to sweep back and forth, either as far back and forth as possible, or between a
range:

servo.sweep() // goes 0-180 and back, then repeats
servo.sweep(minDegree, maxDegree) // goes min to max and back, then repeats

You can also stop a moving servo:

servo.stop()

Now that we have a good grasp on coding our servo in Johnny-Five, let's wire up a servo
and test our new knowledge.

Using Servos for Measured Movement Chapter 7

[95]

Wiring the servo to our PWM hat
Wiring the servo to the PWM hat is relatively simple; you need to line up the 3-pin socket
of the servo to the column of pins you want. You also need to attach the power leads of the
shield to AA battery pack from Chapter 6, Using Motors to Move Your Project.

Using Servos for Measured Movement Chapter 7

[96]

I find that figuring out which pin is ground, then making sure that socket is on the bottom,
helps. Ground wires on servos are typically black or brown in color. Then, line up the
socket and slide it onto the pins in the first column (pin 0).

We've hooked up our servo and given power to the PWM hat, so let's code up a servo.

Using Servos for Measured Movement Chapter 7

[97]

Coding your first servo sweep
In a file called single-servo.js, we're going to set up our board, the our servo, and
when it's ready, tell it to sweep back and forth:

const Raspi = require('raspi-io')
const five = require('johnny-five')

const board = new five.Board({
 io: new Raspi()
})

board.on('ready', () => {
 let servo = new five.Servo({
 controller: "PCA9685",
 pin: 0
 })

 servo.sweep()
})

Move the file into its own folder on the Pi, navigate to that folder in your Pi SSH session,
and run the following:

npm init -y
npm i --save johnny-five raspi-io
sudo node single-servo.js

You should see the servo move back and forth. Great! Now it's time to control two servos
using the Johnny-Five Servos object and the command-line REPL.

Project – two servos and the REPL
Now that we have one servo up and running, we're going to wire up a second one and use
the REPL to explore the Johnny-Five Servos object, which is meant to help control several
servos at once.

First, let's wire up our second servo.

Using Servos for Measured Movement Chapter 7

[98]

Wiring up a second servo
Take the second servo, figure out which side is ground, put that one on the bottom, and
slide the three-pin socket over the pins in the second column (pin 1):

Now that we've wired up a second servo, let's start coding our Johnny-Five servos object!

Using the Johnny-Five servos object
The Johnny-Five servos object is meant to help you group servos in ways that make sense
for projects with many servos, such as hexapods with six legs, each containing multiple
servos.

Using Servos for Measured Movement Chapter 7

[99]

You can create a Servos object in a few different ways; the way we will use is to pass an
array of constructed servo objects:

let servos = new five.Servos([servoOne, servoTwo])

This is where the magic happens—now that our servo objects are grouped in a Servos
object, we can control them both independently and as a group:

servoOne.to(0) // Sets servoOne to 0 degrees
servoTwo.to(180) // Sets servoTwo to 180 degrees
servos.center() // Sets both servos to 90 degrees

And all servo object functions are available on the Servos object.

Let's add this to our code.

Adding the Servos object to our code
In the same folder as single-servo.js, create a new file, servos-repl.js, and copy the
contents of single-servo.js into it.

Then, in the board.on('ready') handler, rename servo to servoOne and add a
constructor for servoTwo on pin 1 of the PWM hat:

let servoOne = new five.Servo({
 controller: "PCA9685",
 pin: 0
})

let servoTwo = new five.Servo({
 controller: "PCA9685",
 pin: 1
})

Then, we'll construct a Servos object containing servoOne and servoTwo:

let servos = new five.Servos([servoOne, servoTwo])

Now that our servos are coded, let's add Johnny-Five REPL functionality so we can control
our servos from the command line.

Using Servos for Measured Movement Chapter 7

[100]

Adding in REPL functionality
First, delete the servo.sweep() line from servos-repl.js, as it'll cause an error now.
Instead, place this code, which will allow us to access both of our servos and our servos
group object from the command-line, on the Pi:

board.repl.inject({
 servoOne,
 servoTwo,
 servos
})

Now we're ready to play with our servos!

Playing with our servos on the command line
Load the folder onto the Pi, navigate to the folder in your Pi SSH session, and run the
following:

sudo node servos-repl.js

Once you see Board Initialized, the REPL is ready for commands. Try these out for
starters:

servoOne.to(0)
servoTwo.to(180)
servos.center()

Use the Johnny-Five documentation on servo to see what other fun things you can try with
your servos from the command line!

Project – light meter with the servo
Let's build a project where our servo servos as a light meter that sweeps between 0 and 180
degrees based on the reading from the light sensor.

Using Servos for Measured Movement Chapter 7

[101]

Adding in the light sensor
First, we need to wire the light sensor to the board. Remember, I2C devices can share an
SDA and SCL pin as long as they have different addresses (which the TSL2591, at 0x29, and
the PWM hat, at 0x40, do).

Now that we've wired up the sensor, we'll take on the (optional) task of modifying our
servo to look more like a meter.

Using Servos for Measured Movement Chapter 7

[102]

Making the servo into a meter
Take the servo horn and, with the center of the horn facing away from you, move it as far to
the left as possible (0 degrees). Do not use a lot of force or you'll strip the gears. Then, use the
tape to tape your stick to the servo horn to make it appear longer. then, you can tape it
down to a desk or onto a wall, with your meter pointing left. You can see my attempt in the
following diagram:

Now that we have our light sensor wired up and our meter cobbled together, let's code our
light meter.

Coding the project
Create a new file in your project folder called light-meter.js. Set up your normal
scaffolding: requiring in Johnny-Five and Raspi-IO, setting up our Board object, and
creating the board.on('ready') handler:

const Raspi = require('raspi-io')
const five = require('johnny-five')

const board = new five.Board({
 io: new Raspi()
})

board.on('ready', () => {
})

Using Servos for Measured Movement Chapter 7

[103]

Inside the board.on('ready') handler, construct your Servo and Light objects:

let servo = new five.Servo({
 controller: "PCA9685",
 pin: 0
})

let lightSensor = new five.Light({
 controller: 'TLS2561'
})

Then, we need to build a lightSensor.on('change') handler. We're going to use the
Sensor.scaleTo([min, max]) to scale the 0-255 input of the light sensor to the 0-180
output of the servo:

lightSensor.on('change', function(){
 servo.to(this.scaleTo([0, 180]))
})

And that's it! Let's get it on the Pi and see it at work.

Running and using our light meter
Load your project folder onto the Pi, navigate to the folder in your Pi SSH session, and
run the following command:

sudo node light-sensor.js

Then, cover the light sensor, or shine a light onto it—the servo should move back and forth
accordingly.

Now that we've explored the servo as a means of communicating data as well as creating
motion, let's take a look at the continuous servo.

Project – the continuous servo
Continuous servos are a little like a motor combined with a regular servo: you lose the
ability to go to specific degrees like a regular servo, but you can stop instantly instead of
coasting to a stop like many motors. You can tell a continuous servo to move clockwise or
counterclockwise at different speeds, and you can tell it to stop.

Let's wire up a continuous servo and play with its abilities via the Johnny-Five REPL.

Using Servos for Measured Movement Chapter 7

[104]

Wiring up the servo
The only difference in the wiring is continuous servos look different from regular servos in
that nearly all have a disc instead of a horn. And most have red, white, and black power,
signal, and ground wires, respectively.

(Fritzing didn't have a continuous servo object, so we'll have to make due.)

Using Servos for Measured Movement Chapter 7

[105]

Continuous servo constructor and methods
The constructor for the continuous servo is reminiscent of the RGB LED constructor, in that
it is a property of the Servo object. Otherwise, it looks very similar to the Servo
constructor with our PWM hat:

let continuousServo = new five.Servo.Continuous({
 controller: "PCA9685",
 pin: 0
})

There are three methods we can use with the continuous servo:

Servo.Continuous.cw([speed of 0-1]) // turns the servo clockwise
Servo.Continuous.ccw([speed of 0-1]) // turns the servo counter-clockwise
Servo.Continuous.stop() // stops the servo

Now that we know how to use it and have it wired up, let's write a quick program that lets
us play with our continuous servo in the REPL.

Using the REPL with the continuous servo
Create a file in your project folder called continuous-servo-repl.js, and start with
your usual setup:

const Raspi = require('raspi-io')
const five = require('johnny-five')

const board = new five.Board({
 io: new Raspi()
})

board.on('ready', () => {
})

Then, in our board.on('ready') handler, construct the Servo.Continuous object:

let continuousServo = new five.Servo.Continuous({
 controller: "PCA9685",
 pin: 0
})

Using Servos for Measured Movement Chapter 7

[106]

Finally, after the constructor, inject the continuous servo into the REPL so we can use it:

board.repl.inject({
 continuousServo
})

Now we can load it up and try it out!

Playing with the continuous servo in the REPL
Load your project folder onto the Pi, navigate to the folder in your Pi SSH session, and
run the following command:

sudo node continuous-servo-repl.js

Once you see Board Initialized, you can try controlling the continuous servo by
entering commands into the Johnny-Five REPL:

continuousServo.cw(1) // see how fast it can go!
continuousServo.ccw(.5) // it changes directions near-instantaneously!
continuousServo.stop() // and stops very quickly, too!

It is because of the ability to change direction and stop quickly that some prefer continuous
servos to motors for wheeled robots—it's always great to have options.

Summary
In this chapter, we learned how servos differ from motors, and the difference between
regular and continuous servos. We also learned about the constructor for the Johnny-Five
servo object and its functions. Next, we built a project that taught us how to group servos
with the servos object, and control them from the Pi's command line via REPL. Then, we
built a project that showed the ability of the servo to convey information as well as create
movement by building a light meter. Finally, we learned more about and played with
continuous servos.

Using Servos for Measured Movement Chapter 7

[107]

Questions
What are the differences between servos and motors?1.
What is the difference between regular and continuous servos?2.
Why do servos require an external power source?3.
When would you use servos over motors?4.
What are the benefits of the servos object?5.

8
The Animation Library

Servos are great tools for creating movement in our robotics projects but we need more
control in order to create truly mobile walking robots. Each servo is different; for
example, each servo moves at slightly different max speeds. If you want a bot to walk, you
need timing control, and the ability to know when a servo has finished its movement. Enter
the animation library; this powerful tool inside Johnny-Five allows you to fine-tune your
servo movements to allow you more in-depth control.

The following topics will be covered in this chapter:

Animating movement
The terminology of the animation library
The construction of the animation object
Easing into your servo animations
Learning more about queuing and playing animation segments
Animation object events

Technical requirements
You'll need your two-servo setup from the previous chapter, and that's it for hardware for
this chapter.

The code for this chapter can be found at https:/ ​/​github. ​com/
PacktPublishing/ ​Hands- ​On-​Robotics- ​with- ​JavaScript/ ​tree/ ​master/
Chapter08.

https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter08

The Animation Library Chapter 8

[109]

Animating movement
The animation library makes many things possible with servos that are otherwise anywhere
from difficult to downright implausible. Before we explore the how of the animation library,
however, we should more thoroughly explain the why.

Why we need the animation library
Think about the movement of your leg as you take a step. You don't normally have to, but
when you do, there's a lot going on in your joints! Your hip extends your leg out, and your
knee extends your leg without usually locking it. And your back leg is doing things too;
your hip is allowing the leg to move back, and your ankle is flexing. This is a massive
oversimplification, but it's still really complicated!

Now imagine each of your joints as a servo, and you have to program taking a step. You
cannot control the timing of each movement, because each servo will get to where you tell it
to go as fast as you can. You also can't tell when a joint is done moving, so you have to
hard-code timings and hope it holds up.

This exact kind of issue is what the animation library was made to alleviate. By giving you
more control, you have more precision. But what do we mean by precision?

Moving servos with true precision
True precision, in the context of moving servos, means being able to control the timing,
position, and speed of the servos being used. This level of precision is vital when building
meticulous movements that require multiple movements happening in sync to avoid
physical collisions. A great example of this is a hexapod robot: each joint needs to move in
time with the other joints in the leg, and each leg needs to move at a precise time during a
step in order to avoid colliding with each other or throwing the hexapod off balance.

Moving servos with true precision is a daunting task if you are hard-coding it; imagine
setting 60 calls to servo.to() in order to create an animation that you hope takes one
second. Or hard-coding each movement with servo.to(), timing it with the exact servo
you've placed in the leg of your bot, and everything works...until the servo strips (it
inevitably will), and you have to replace it and repeat the entire calibration process.

The Animation Library Chapter 8

[110]

The animation library in Johnny-Five makes this process much simpler by allowing you to
define your movements as segments of a larger design, that design being the animation
itself. It does all of the math and works out all of the timings to ensure that your servos are
where they need to be when they need to be there.

Implicit use of the animation library
Sometimes, you don't even need to create an animation object in order to create an
animation for your servos. Before we really break into the animation object, let's write some
code that uses the animation library implicitly.

Using servo.to() to implicitly create an animation
In a project folder for this chapter, create a file called implicit-animations.js. We'll
set up this file to use the REPL to demonstrate animations created without explicitly
creating an animation object. Start with the normal boilerplate: bring in johnny-five and
raspi-io, set up your board and board.ready() handler as usual:

const Raspi = require('raspi-io')
const five = require('johnny-five')

const board = new five.Board({
 io: new Raspi()
})

board.on('ready', () => {
})

Then, inside the board.on('ready') handler, construct a Servo object:

 let servo = new five.Servo({
 controller: "PCA9685",
 pin: 0
 })

Next, while still inside the board.on('ready') handler, we're going to create the same
motion three times—each time with a different set of specifications. Two of these will create
an animation behind-the-scenes, and one is the default movement, so you can see the
difference.

The Animation Library Chapter 8

[111]

It can be a little hard to spot the differences in the servo movements if you're looking at a
micro servo horn. I taped a Popsicle stick to my servo horns for this chapter, to make the
differences easier to see. I also taped it to stand up on my desk so it wouldn't tip over, as
shown in the following diagram:

First movement function, still inside your board.on('ready') handler, will be called
normalFullSwing():

function normalFullSwing() {
 servo.to(0)
 servo.to(180)
}

This function will move the servo to 0 degrees as quickly as it can, then bring the servo to
180 degrees as fast as it can.

Let's add a parameter to servo.to() in our next function that will change how long the
servo takes to get there. We'll set it to take in a time parameter that we'll pass through when
we experiment in the REPL:

function timedFullSwing(time) {
 servo.to(0)
 servo.to(180, time)
}

The Animation Library Chapter 8

[112]

This function will take the number of milliseconds passed to it to go from 0 to 180 degrees.
It will still start by going to 0 degrees as fast as possible.

Finally, we'll write a function that takes in a time and a steps parameter that will move the
servo from 0 to 180 in the time given, using the number of steps given. We'll call this
function timedFullSwingWithSteps():

function timedFullSwingWithSteps(time, steps) {
 servo.to(0)
 servo.to(180, time, steps)
}

This function will, as the others, still go to 0 as fast as possible first.

Finally, we'll give ourselves access to these functions from the REPL using
board.repl.inject():

board.repl.inject({
 normalFullSwing,
 timedFullSwing,
 timedFullSwingWithSteps
})

And we're ready to roll (or swing, as it were)!

Playing with implicit animations
Load the folder onto your Pi, navigate into it using your Pi SSH session, and run the
following commands:

npm init -y
npm i --save johnny-five raspi-io

Now that we're all set up, we run the code using:

sudo node implicit-animations.js

Once you see Board Initialized, we can run our functions and see the differences. Here
are just a few to try:

normalFullSwing() // hm...
timedFullSwing(1000) // wait a tick...
timedFullSwingWithSteps(1000, 10) // why didn't it do it?

You may be noticing something is up by now. At most, you might see a twitch or two, but
it's certainly not working as intended!

The Animation Library Chapter 8

[113]

That's because of a very important thing with timing, and that's that if you don't wait for
servo movements to finish, they'll just override each other, causing unstable results.

That's part of why the animation library is so important! It has the ability for you to queue
animations, meaning that the servo will let each movement finish before moving on to the
next, preventing the need for you to program the waiting in yourself (especially icky
considering the asynchronous nature of JavaScript).

Now, we're going to use a few more implicit animations, and some setTimeout() calls, to
make these functions work properly.

Playing with implicit animations, take two
To fix your normalFullSwing() function, we'll set the servo.to(0) call to take 250
milliseconds, and call servo.to(180) after 255 milliseconds (just to be sure it's
completely done getting to 0 first):

function normalFullSwing() {
 servo.to(0, 1000)
 setTimeout(() => { servo.to(180) }, 1010)
}

We'll do the same to the timedFullSwing() and timedFullSwingWithSteps()
functions:

function timedFullSwing(time) {
 servo.to(0, 1000)
 setTimeout(() => { servo.to(180, time) }, 1010)
}

function timedFullSwingWithSteps(time, steps) {
 servo.to(0, 1000)
 setTimeout(() => { servo.to(180, time, steps) }, 1010)
}

Once you've made these changes, reload your project folder and run it:

sudo node implicit-animations.js

If you're using the book code directly instead of following along,
implicit-animations-fixed.js contains the timeouts so you should
run that file instead of running implicit-animations.js again.

The Animation Library Chapter 8

[114]

Now that the code is running as intended, let's play around a little more with these implicit
animations:

// Just a normal swing
normalFullSwing()
// Playing with the time parameter
timedFullSwing(1000)
timedFullSwing(750)
timedFullSwing(5000)
// Playing with the steps parameter
timedFullSwingWithSteps(3000, 2)
timedFullSwingWithSteps(1000, 10)
timedFullSwingWithSteps(1000, 100)

Make a mental note of what changing the timing and steps does to the servo's movements,
it'll come in handy for the rest of the chapter.

Now that we understand some of the underlying effects of the animation library, and why
it's so crucial when dealing with complex servo movements, let's dig into the animation
library in detail. We'll start with the terminology, unless you have a strong background
with animation (as in animated imagery), you have some vocabulary to learn!

The terminology of the animation library
The animation library was named the way it was quite intentionally; the vocabulary of the
animation object very closely matches the vocabulary of animating images. Let's look at a
few of the terms we'll be using heavily throughout this chapter.

Frame: A frame of an animation is, in this context, the state of the servo at a given
instance in time. As you can imagine, programming each and every frame of
servo movement for a complex group of servos, such as a limb, would be a
nightmare. Luckily, technology is on our side here, and we won't have to write
each and every frame.
Keyframe: A keyframe is a point in an animation that serves as an anchor unless
you're drawing (or programming) every frame of an animation by hand; you
establish a set of keyframes that establish the major points of movement for the
animation. For example, in our full sweep we were doing earlier, a good set of
keyframes would be something like this:

Start at any degree
Be at 0 degrees
End at 180 degrees

The Animation Library Chapter 8

[115]

Simpler animations have fewer keyframes, but you always need at least two to
create an animation. Note that keyframes themselves do not have any concept of
time attached; they must be coupled with cue points to create an animation.

Cue point: A cue point is a point in the context of the sequence between 0 and 1,
and a set of cue points paired with an equally-sized set of keyframes and an
overall duration creates a full animation. For instance, when we care the
keyframes above with the set of cue points containing 0 seconds, 1 second, and 2
seconds, you get what starts to sound like an animation:

Start at any degree at 0%
Be at 0 degrees at 50%
End at 180 degrees at 100%

Duration: Duration is the amount of time the animation sequence will run, and
completes an animation when paired with keyframes and cue points. Take the
above example with a duration of 2000 millseconds and you get:

Start at any degree at 0 ms
Be at 0 degrees at 1000 ms
End at 180 degrees at 2000 ms

Tweening: Tweening is the idea of your software creating the necessary frames
between your keyframes. You establish the keyframes, and tweening figures out
what to do in between those frames. The time between each frame (exhibited by
our timedFullSwing() function) and the number of steps (frames) between
keyframes (exhibited by our timedFullSwingWithSteps() function) allow us
to fine-tune the tweening process.
Easing: Another part of the tweening process is easing. Without easing, all
tweening is done linearly, with the same amount of movement in each tweened
frame. This does not look smooth at all if you're building anything trying to
walk. There are several forms of tweening; one of the most common form is ease-
in or ease-out easing, which either starts slowly and ramps up to a fast ending, or
starts fast and ramps down to a slow ending, respectively.

Now that we've discussed the terminology of an animation, we can start coding our first
(explicit) animation object with Johnny-Five!

The Animation Library Chapter 8

[116]

The construction of the animation object
To construct an animation object, we need to create the object itself, create a set of
keyframes and a set of cue points, then enqueue those keyframes and cue points as an
animation to run on our servos.

Creating the animation object
Create a new file in your project folder called my-first-animation.js and create the
normal boilerplate: require in Johnny-Five and Raspi-IO, create your Board object, and
create the board.on('ready') function:

const Raspi = require('raspi-io')
const five = require('johnny-five')

const board = new five.Board({
 io: new Raspi()
})

board.on('ready', () => {
})

Then, inside the board.on('ready') handler, construct our two Servo objects on pin 0
and pin 1 of our PWM hat:

let servoOne = new five.Servo({
 controller: "PCA9685",
 pin: 0
})

let servoTwo = new five.Servo({
 controller: "PCA9685",
 pin: 1
})

And create a Servos object containing our servos:

let servos = new five.Servos([servoOne, servoTwo])

The Animation Library Chapter 8

[117]

Now that we have a group of servos, we can create an animation object:

let myFirstAnimation = new five.Animation(servos)

Now that we have our animation object, it's time to plan out our animation sequence, set
keyframes and cue points, and queue them to animate.

Planning out the animation sequence
Let's plan a simple enough animation for our first go-round: let's allow the servos to start
anywhere, then servoOne will move to 0 degrees while servoTwo will move to 180. Then,
servoOne will sweep to 180 while servoTwo starts moving to 90 degrees, then both servos
will end at 90 degrees. Let's have each of these positions happen two seconds apart. So our
keyframes will look something like this:

Start with servoOne at any degree, start with servoTwo at any degree1.
Move servoOne to 0 degrees, move servoTwo to 180 degrees2.
servoOne stays at its last known position, servoTwo is moving towards 903.
degrees
Move servoOne to 180 degrees, servoTwo is moving towards 90 degrees4.
Move servoOne to 90 degrees, move servoTwo to 90 degrees completed5.

Our cue points will be (in terms of 0-1): 0, .25, .5, .75, 1.

Now that we've planned out our sequence, we can start programming our keyframes.

Creating keyframes
We need to make a keyframe array for each servo in our servos group, for each cue point:
two arrays of five keyframes each.

That sounds simple enough, but how do we tell the animation to let the servos start
wherever they happen to be? And how do we tween servoTwo across two cue points in its
move to 90 degrees? The answer lies in the way Johnny-Five parses null and false as servo
positions in keyframes.

The Animation Library Chapter 8

[118]

Using null and false as positions in keyframes
Null and false are used by Johnny-Five to allow us to create complex segments where we
can tween between multiple cue points or use the last known position of a servo as a
keyframe position.

The effect of null depends on where it is used, if it is used in the first keyframe, it uses the
position of the servo as the animation begins as that keyframe's position. This is exactly
what we need to start our animation sequence, as we want both servos to start at wherever
they happen to be. If null is used in a keyframe that is not the first, then the keyframe will
essentially be ignored at that cue point; if you have 30 in one keyframe, null in the next, and
120 in the third, the servo will move 90 degrees over the two cue points. We will use this to
allow servoTwo to move from 180 to 90 over two cue points.

When you use false as a keyframe position, it will use the position set in the last keyframe.
We will use this on servoOne when the keyframe calls for the servo to remain in its last
known position, instead of hard-coding a second 180-degree position.

Now that we know how null and false affect our positioning in keyframes, let's program
our keyframes for our planned animation sequence.

Programming our keyframes
So based on the information we've been given, the values we need for each keyframe are:

servoOne null, servoTwo null (start wherever the servos happen to be)
servoOne 0, servoTwo 180
servoOne 180, servoTwo null (servoTwo starts moving towards 90 degrees)
servoOne false, servoTwo null (servoOne stays put, servoTwo still moving
to 90 degrees)
servoOne 90, servoTwo 90

Each position needs to be an object with a property degrees for each keyframe. Let's
translate that into JavaScript, right under the construction of our animation object:

let keyframes = [
 [null, {degrees: 0}, {degrees: 180}, false, {degrees:90}], // servoOne
 [null, {degrees: 180}, null, null, {degrees: 90}] // servoTwo
]

Now that we have our keyframes programmed, let's get started on our cue points.

The Animation Library Chapter 8

[119]

Setting cue points and duration
Cue points, no matter how many servos you have, will always be a one-dimensional array
of times to match each keyframe in the array of keyframes you pass in.

Note that while the cue points in this animation are evenly spaced, that is absolutely
optional your cue points can vary wildly in distance from each other without breaking
anything.

Underneath our keyframes object, let's set up our cue points array:

let cuePoints = [0, .25, .5, .75, 1]

We want our animation to take 8 seconds overall, so add:

let duration = 8000

We have all the data we need, let's make an animation!

Putting it all together to make an animation
In order to run our animation sequence, we have to place it in the queue using the
Animation.enqueue() function. We'll need to pass in the duration, keyframes, and cue
points together. In your my-first-animation.js, after the duration, add:

myFirstAnimation.enqueue({
 duration: duration,
 keyFrames: keyframes,
 cuePoints: cuePoints
})

The object containing the duration, keyFrames, and cuePoints properties is known
within the animation library as a Segment object.

The animation segment will immediately begin to play upon queuing, so we're ready to
load our project in and see some animated servos!

Watching your animation at work
Load your project folder onto the Pi, navigate into the folder in your Pi SSH session, and
run:

sudo node my-first-animation.js

The Animation Library Chapter 8

[120]

You should see the animation play out with the two servos as we described it.

This is really powerful, but when you think of a walking hexapod, these linear movements
wouldn't make for a realistic or pretty gait. Let's add some easing into our animation
sequence in order to create some more organic-looking movement.

Easing into your servo animations
Unless you want any of your future walking bots to be very firmly in the uncanny valley,
you'll need to use easing to create a more fluid, natural motion with your animation
segments.

How easing fits into an animation segment
Easing functions are added into the keyframes of a servo; so not only are we saying what
position we want the servo to be, but how it gets there. For example, these keyframes:

let keyframes = [
 null,
 {degrees: 180, easing: 'inoutcirc'}
]

Will take a servo starting at any position and move it to 180, starting out slow, speeding up
in the middle, and slowing down again towards the end.

There are many different options for easing, and they are documented in the ease-
component (https:/ ​/ ​www. ​npmjs. ​com/ ​package/ ​ease- ​component) npm module included as a
dependency to Johnny-Five. We'll be using incirc, outcirc, and inoutcirc to start.

Adding easing to our first animation
Copy the contents of my-first-animation.js into a new file called easing-
animations.js. Next, we'll modify the keyframes array to include some easing:

let keyframes = [
 [null, {degrees: 0}, {degrees: 180, easing: 'inOutCirc'}, false,
{degrees:90, easing:'outCirc'}], // servoOne
 [null, {degrees: 180}, null, null, {degrees: 90, easing:'inCirc'}] //
servoTwo
]

https://www.npmjs.com/package/ease-component
https://www.npmjs.com/package/ease-component
https://www.npmjs.com/package/ease-component
https://www.npmjs.com/package/ease-component
https://www.npmjs.com/package/ease-component
https://www.npmjs.com/package/ease-component
https://www.npmjs.com/package/ease-component
https://www.npmjs.com/package/ease-component
https://www.npmjs.com/package/ease-component
https://www.npmjs.com/package/ease-component
https://www.npmjs.com/package/ease-component
https://www.npmjs.com/package/ease-component
https://www.npmjs.com/package/ease-component
https://www.npmjs.com/package/ease-component
https://www.npmjs.com/package/ease-component

The Animation Library Chapter 8

[121]

Let's also increase the duration of the animation segment so we can really see the difference
easing makes:

let duration = 16000

Then, load it onto the Pi, navigate to the folder in your Pi SSH session, and run the
following command:

sudo node easing-animations.js

Really watch how inCirc, outCirc, and inOutCirc affect your animation.

Easing an entire animation segment
In order to easily set all keyframes in an animation segment to have the same easing, you
can pass an easing property when you enqueue your segment. For example:

myFirstAnimation.enqueue({
 keyFrames: keyframes,
 duration: duration,
 cuePoints: cuePoints,
 easing: 'inOutCirc'
})

The preceding code will override the keyframes and all of them will use inOutCirc
easing. Now that we've fully explored easing our animation segments, let's take a look at
the animation queue and how we can affect our segments when we queue them and when
they're playing.

Learning more about queuing and playing
animation segments
When we queue an animation segment, we pass it a duration, cue points, and keyframes.
But we can also pass in other options that affect the playback of the animation segment. We
can also call methods on the animation object that affect animation segments currently
playing and in the queue.

Before we start messing with these, copy the content of easing-animations.js into a
new file called playing-with-the-queue.js. Remove the call to
myFirstAnimation.enqueue() at the end; we want a little control when we get into the
REPL this time around.

The Animation Library Chapter 8

[122]

Looping animation segments
First, let's add a function that will enqueue our animation normally:

function playMyAnimation() {
 myFirstAnimation.enqueue({
 keyFrames: keyframes,
 duration: duration,
 cuePoints: cuePoints
 })
}

Sometimes you want the animation segment you are enqueuing to run on a loop. Let's
create a function in our board.on('ready') handler that will enqueue our animation
segment on a loop:

function loopMyAnimation() {
 myFirstAnimation.enqueue({
 keyFrames: keyframes,
 duration: duration,
 cuePoints: cuePoints,
 loop: true
 })
}

You can also add the loopBackTo property, and set it to the index of a cue point; the
animation will start its loop from the designated cue point.

What if we want the animation to play forward, then back to the start, and repeat? Let's
write a function that will set the metronomic property to do just that:

function metronomeMyAnimation() {
 myFirstAnimation.enqueue({
 keyFrames: keyframes,
 duration: duration,
 cuePoints: cuePoints,
 metronomic: true
 })
}

Now that we know how to loop and metronome our animation segments, let's explore
changing the speed of animation segments using the animation object.

The Animation Library Chapter 8

[123]

Changing the speed of animation segments
You can call Animation.speed() with a numeric multiplier to change the speed of the
current animation segment. For instance, calling Animation.speed(.5) will halve the
speed, and Animation.speed(2) will double it.

Let's write some functions to half, double, and normalize our animation segment speed:

function halfSpeed() {
 myFirstAnimation.speed(.5)
}

function doubleSpeed() {
 myFirstAnimation.speed(2)
}

function regularSpeed() {
 myFirstAnimation.speed(1)
}

Add these to the loop and metronome functions.

Now that we know how to adjust the speed of animation functions, as well as how to loop
them, let's talk about pausing, playing, and stopping animations.

Playing, pausing, and stopping animation
segments
If left alone, the animation segments will be played until there is nothing left in the queue
to play (meaning if there is a looped or metronome segment, it will stay on that segment).

But you can move to the next animation:

Animation.next()

Or you can pause the current segment:

Animation.pause()

Start it up again:

Animation.play()

The Animation Library Chapter 8

[124]

Or stop the current segment and clear out the entire queue:

Animation.stop()

Let's use these, along with the REPL, to play with our animation and our new-found
powers to manipulate it.

Tying it all together in the REPL
Add the following to the end of the board.on('ready') handler in playing-with-the-
queue.js:

board.repl.inject({
 myFirstAnimation,
 playMyAnimation,
 loopMyAnimation,
 metronomeMyAnimation,
 halfSpeed,
 doubleSpeed,
 normalSpeed
})

Then, load your project folder onto your Pi, navigate to the project folder in your Pi
SSH session, and run the following command:

sudo node playing-with-the-queue.js

Once you see Board Initialized, try a few commands to experiment with how your
animation plays:

loopMyAnimation()
myFirstAnimation.pause()
myFirstAnimation.play()
halfSpeed()
myFirstAnimation.stop()
metronomeMyAnimation()
doubleSpeed()
playMyAnimation()
myFirstAnimation.next()Summary

The Animation Library Chapter 8

[125]

Summary
In this chapter, we dived into the animation library with servos. We learned the key
terminology for the animation library, how to construct an animation segment, how to
queue it, and how to manipulate playback, both when queuing the segments or by calling
methods of the animation object.

Questions
Why are animations necessary for complex movements with multiple servos?1.
What is a keyframe? 2.
What is a cue point?3.
Name the three pieces of an animation segment.4.
What does easing do to our animation keyframes and segments?5.
What method of the animation object stops the current segment and clears the6.
animation queue?
What does calling Animation.speed(.25) do to the current animation?7.

9
Getting the Information You

Need
We've let our Pi discover its immediate surroundings, and let it show data through various
means. We've even given them the ability to move! But there's a cosmos of data to be
collected, and sometimes the data you want can't be collected locally. That's where the
internet, and initiatives to make more and more data freely available, come into play. In
this chapter, we'll look into connecting your Pi to the internet and obtaining weather
information in order to create a weather dashboard.

The following topics will be covered in this chapter:

Why connect your NodeBots to the internet?
Getting weather data on our Pi with OpenWeatherMap
Building a weather dashboard with an LCD
Scraping websites for data with your Pi

Technical requirements
For this project, you'll want your Pi and an LCD character display with an I2C interface.
You can purchase and solder together an LCD (https:/ ​/​www. ​adafruit. ​com/ ​product/ ​198)
and backpack (https:/ ​/ ​www. ​adafruit. ​com/ ​product/ ​292) from Adafruit, or a pre-built
module via SainSmart (https:/ ​/​www. ​amazon. ​in/​SainSmart- ​Serial- ​Module- ​Shield-
Arduino/​dp/​B00AE0FRDQ/ ​).

You'll also want to make sure your Pi can access the outside world with internet access, as
we set it up to in Chapter 1, Setting Up Your Development Environment.

https://www.adafruit.com/product/198
https://www.adafruit.com/product/198
https://www.adafruit.com/product/198
https://www.adafruit.com/product/198
https://www.adafruit.com/product/198
https://www.adafruit.com/product/198
https://www.adafruit.com/product/198
https://www.adafruit.com/product/198
https://www.adafruit.com/product/198
https://www.adafruit.com/product/198
https://www.adafruit.com/product/198
https://www.adafruit.com/product/198
https://www.adafruit.com/product/198
https://www.adafruit.com/product/292
https://www.adafruit.com/product/292
https://www.adafruit.com/product/292
https://www.adafruit.com/product/292
https://www.adafruit.com/product/292
https://www.adafruit.com/product/292
https://www.adafruit.com/product/292
https://www.adafruit.com/product/292
https://www.adafruit.com/product/292
https://www.adafruit.com/product/292
https://www.adafruit.com/product/292
https://www.adafruit.com/product/292
https://www.adafruit.com/product/292
https://www.amazon.in/SainSmart-Serial-Module-Shield-Arduino/dp/B00AE0FRDQ/
https://www.amazon.in/SainSmart-Serial-Module-Shield-Arduino/dp/B00AE0FRDQ/
https://www.amazon.in/SainSmart-Serial-Module-Shield-Arduino/dp/B00AE0FRDQ/
https://www.amazon.in/SainSmart-Serial-Module-Shield-Arduino/dp/B00AE0FRDQ/
https://www.amazon.in/SainSmart-Serial-Module-Shield-Arduino/dp/B00AE0FRDQ/
https://www.amazon.in/SainSmart-Serial-Module-Shield-Arduino/dp/B00AE0FRDQ/
https://www.amazon.in/SainSmart-Serial-Module-Shield-Arduino/dp/B00AE0FRDQ/
https://www.amazon.in/SainSmart-Serial-Module-Shield-Arduino/dp/B00AE0FRDQ/
https://www.amazon.in/SainSmart-Serial-Module-Shield-Arduino/dp/B00AE0FRDQ/
https://www.amazon.in/SainSmart-Serial-Module-Shield-Arduino/dp/B00AE0FRDQ/
https://www.amazon.in/SainSmart-Serial-Module-Shield-Arduino/dp/B00AE0FRDQ/
https://www.amazon.in/SainSmart-Serial-Module-Shield-Arduino/dp/B00AE0FRDQ/
https://www.amazon.in/SainSmart-Serial-Module-Shield-Arduino/dp/B00AE0FRDQ/
https://www.amazon.in/SainSmart-Serial-Module-Shield-Arduino/dp/B00AE0FRDQ/
https://www.amazon.in/SainSmart-Serial-Module-Shield-Arduino/dp/B00AE0FRDQ/
https://www.amazon.in/SainSmart-Serial-Module-Shield-Arduino/dp/B00AE0FRDQ/
https://www.amazon.in/SainSmart-Serial-Module-Shield-Arduino/dp/B00AE0FRDQ/
https://www.amazon.in/SainSmart-Serial-Module-Shield-Arduino/dp/B00AE0FRDQ/
https://www.amazon.in/SainSmart-Serial-Module-Shield-Arduino/dp/B00AE0FRDQ/
https://www.amazon.in/SainSmart-Serial-Module-Shield-Arduino/dp/B00AE0FRDQ/
https://www.amazon.in/SainSmart-Serial-Module-Shield-Arduino/dp/B00AE0FRDQ/
https://www.amazon.in/SainSmart-Serial-Module-Shield-Arduino/dp/B00AE0FRDQ/
https://www.amazon.in/SainSmart-Serial-Module-Shield-Arduino/dp/B00AE0FRDQ/

Getting the Information You Need Chapter 9

[127]

The code for this chapter is available at: https:/ ​/​github. ​com/
PacktPublishing/ ​Hands- ​On-​Robotics- ​with- ​JavaScript/ ​tree/ ​master/
Chapter09.

Why connect your NodeBots to the internet?
While sensors can provide local data, sometimes you want to display data from far away or
data from sensors attached to other devices. This is where we can really leverage Node.js
and npm packages in our favor for our Raspberry Pi projects.

Using the power of npm modules
Back in Chapter 2, Creating Your First Johnny-Five Project, we used the color npm module
to manage colors for us. We've used the barcli module to get our sensor data into bar
graphs. Now it's time to use the request npm module to retrieve data from websites for us!
This allows us to simplify development over microcontrollers that use C by not having to
create HTTP requests by hand each time, and being able to use asynchronous calls.

For those unfamiliar with the request module, we'll use it to make HTTP GET requests like
so:

const request = require('request')

request.get(url, (err, response, body) => {
 console.log(body)
})

We give the request.get() call a URL and a callback that receives an error (that is,
hopefully, null), a response object, and a body which is conveniently extracted for us from
the full request object (which can be huge and complex).

Using the data you collect
You can use data you collect from the internet for many different projects:

https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter09

Getting the Information You Need Chapter 9

[128]

I have a string of lights in my lab that are controllable by Twitch live chat
You can compare information in a local project to data from far away
You can just use random data! Markov chains and other semi-random data can
make for fun projects

Just a few things you'll want to know that will be going into your data collection project:

Is this a REST API? Will I get JSON data back or will it need to be parsed?
Is this scraping an HTTP website? How will I parse out the HTML data I'm
looking for? (Caution: this gets tricky and can be brittle if the website you're
scraping changes often.)
Do I need an API key or JSON Web Token (JWT) for authentication purposes?

Some things to keep in mind
Here are some things to keep in mind when doing internet data collection on your Pi
projects:

Wi-Fi uses a lot of power, so if you're running your project on a battery, you'll
need to keep power consumption in mind.
Use your robotics powers for good, don't build projects that do harm, collect
information they shouldn't, or have other dubious purposes!
Parsing out huge JSON or HTML responses can take a while on the Pi, so take a
look at what you're getting if your project is running a bit slowly.

Getting weather data on our Pi with
OpenWeatherMap
We're going to build a weather bot for this one, and while we could use a temperature
sensor, that'd only tell us what it's like indoors, and usually we'd like to see what the
weather's like outside before we head out the door. So we're going to use the
OpenWeatherMap API to get data and display it on a character LCD; but let's walk before
we can run by starting with getting the data from the API to the Pi.

Getting the Information You Need Chapter 9

[129]

Getting an OpenWeatherMap API key
First, you'll need to sign up for an account at https:/ ​/​openweathermap. ​org/ ​, and generate
an API key. Then, click your username in the upper-left corner and select API Keys from
the tabs that appear near the top of the page:

Generate an API key on this page and keep the tab open; we'll use it in the next section to
get the info we need.

Next, open the API link in a separate tab; you'll see the main API function calls on this
page. The one we're looking for is right at the top – current weather data.

https://openweathermap.org/
https://openweathermap.org/
https://openweathermap.org/
https://openweathermap.org/
https://openweathermap.org/
https://openweathermap.org/
https://openweathermap.org/
https://openweathermap.org/

Getting the Information You Need Chapter 9

[130]

Click the API doc button and we'll figure out what URL we'll need to make a request to. At
the time of writing, the URL is as follows:

http://api.openweathermap.org/data/2.5/weather?q=[city]&appid=[your API
key]

If you go to that URL in your browser with your city and API key filled in, you should see
something like this:

{"coord":{"lon":-97.74,"lat":30.27},"weather":[{"id":800,"main":"Clear","de
scription":"clear
sky","icon":"01n"}],"base":"stations","main":{"temp":305.59,"pressure":1016
,"humidity":46,"temp_min":304.15,"temp_max":307.15},"visibility":16093,"win
d":{"speed":3.6,"deg":170,"gust":8.2},"clouds":{"all":1},"dt":1534470960,"s
ys":{"type":1,"id":2558,"message":0.0037,"country":"US","sunrise":153450715
6,"sunset":1534554612},"id":4671654,"name":"Austin","cod":200}

If those temperatures look a little high to you (even for Austin, TX), that's
because they're in degrees Kelvin. We'll pass the units parameter in our
URL in our project set to metric for degrees Celsius or 'imperial' for
degrees Farenheit.

Now we're ready to code in the npm request module and get our data into our Pi.

Bringing in request
Let's write a basic program without Johnny-Five to collect our data on the Pi before adding
in our LCD. In a file on your Pi or ready to be moved to your Pi called weather-test.js:

const request = require('request')

setInterval(() => {
 request({
 url: 'http://api.openweathermap.org/data/2.5/weather',
 qs: {
 q: [your city],
 appid: [your API key],
 units: ['metric' or 'imperial']
 },
 json: true // returns the parsed json body for us
 }, (err, resp, body) => {
 console.log(body)
 })
}, 60000)

Getting the Information You Need Chapter 9

[131]

Parsing the response
The JSON object that is printed out by the console looks something like this (formatted for
easier reading):

{
 "coord":{"lon":-97.74,"lat":30.27},
 "weather":[
 {"id":800,"main":"Clear","description":"clear sky",
 "icon":"01n"}
],
 "base":"stations",
 "main":{
 "temp":305.59,
 "pressure":1016,
 "humidity":46,
 "temp_min":304.15,
 "temp_max":307.15
 },
 "visibility":16093,
 "wind":{
 "speed":3.6,
 "deg":170,
 "gust":8.2
 },
 "clouds":{"all":1},
 "dt":1534470960,
 "sys":{
 "type":1,
 "id":2558,
 "message":0.0037,
 "country":"US",
 "sunrise":1534507156,
 "sunset":1534554612
 },
 "id":4671654,
 "name":"Austin",
 "cod":200
}

That's a lot of weather data! Luckily, because the request npm module was passed the json:
true property in the options, it assumes that anything passed back is JSON and parses it for
you, so you can access data properties right away:

let longitude = body.coords.lon // -97.74
let conditions = weather.condition // 'clear sky'
let currentTemp = main.temp // 305.59 degrees Kelvin

Getting the Information You Need Chapter 9

[132]

Building a weather dashboard with an LCD
Now that we have our weather data, it's time to wire our character LCD to our Pi and use it
to show the weather data. We'll explore the Johnny-Five LCD object, wire it to the Pi, and
code it all together with Johnny-Five and the npm request module.

Adding an LCD to the Pi
Refer to the following diagram for the connection:

Getting the Information You Need Chapter 9

[133]

Keep in mind that backpack with the I2C interface is on the back of the
LCD; I moved it forward in the diagram to help you see the connections to
the Pi.

The LCD object
Let's take a look at the LCD object in the Johnny-Five documentation in order to figure out
how to construct and use our LCD in our weather dashboard code.

Constructing our LCD
Usually, an LCD without the I2C can take up to eight pins! That's a lot, and I like as few
wires as possible in my robotics projects (easier to debug later). With our backpack, we only
need the two power pins and two I2C pins. But that also means we'll need to find our
controller—if you are using the Adafruit backpack, then our controller is the PCF8574; if
you're bought another backpack, make sure it uses one of the PCF8574x chips!

We'll also need the size of the LCD in rows and columns of characters—most are 2 rows by
16 columns, but you may have gone bigger with the 4 row by 20 columns character model.
In either case, use whichever works for the LCD you attached to the backpack.

With all that in mind, our constructor should look like this:

let LCD = new five.LCD({
 controller: "PCF8574",
 rows: 2,
 cols: 14
});

Now that we've constructed our LCD, let's see what we need to get set up and get
characters on the screen!

Setting up the LCD
First thing we need to do is turn the backlight on:

LCD.on()

Getting the Information You Need Chapter 9

[134]

Then, we'll want to make the blinking cursor disappear:

LCD.noBlink()

Now, we're ready to learn about moving the cursor, printing statements, and clearing the
LCD.

Printing to and clearing the LCD
Before we print, we want to make sure that the LCD is cleared out:

LCD.clear()

And that the cursor is in the home (row 0, col 0) position:

LCD.home()

Next, we can print to the LCD:

LCD.print("Hello, World!")

Note, you can also chain LCD functions together, as Johnny-Five returns the LCD object
from every object function:

LCD.clear(),home(),print('Hello World!')

Now, we have everything we need to start making our dashboard!

Coding it all together
We need to take what we've learned in this chapter and put it together. Start by creating a
file called weather-dashboard.js in your project folder, and setting up your Johnny-
Five, Raspi-IO, and request libraries, constructing your Board object, and creating your
board.on('ready') handler:

const Raspi = require('raspi-io')
const five = require('johnny-five')
const request = require('request')

const board = new five.Board({
 io: new Raspi()
})

board.on('ready', () => {
})

Getting the Information You Need Chapter 9

[135]

Then, inside the board.on('ready') handler, construct and set up our LCD:

let LCD = new Five.LCD({
 controller: 'PCF8574'
})

LCD.noBlink()
LCD.on()

Then, we'll create a function that gets the weather data, and set it on an interval of one
minute:

function getWeather() {
 request({
 url: 'http://api.openweathermap.org/data/2.5/weather',
 qs: {
 q: [your city],
 appid: [your API key],
 units: ['metric' or 'imperial'],
 json: true
 }
 }, (err, resp, body) => {

 })
}

setInterval(getWeather, 60000)

In the request callback, we'll clear, and write to, the LCD:

LCD.clear()
LCD.home().print('Temp: ' + body.main.temp + ' Deg [F or C]')
LCD.setCursor(0, 1).print(body.weather.description)

Finally, call the getWeather() function at the start to prevent the project from taking a full
minute before showing anything:

getWeather()

Once you have the full code together, load the project folder onto our Pi the following,
navigate to the folder in your Pi SSH session, and run the following commands:

npm i
sudo node weather-dashboard.js

Getting the Information You Need Chapter 9

[136]

You should have the temperature and conditions for the city you put in appear on the LCD,
and they should refresh every minute.

Now that we've seen a project where the Pi pulls from a nice neat JSON REST API, let's take
a crack at getting data from a bit more difficult source: HTML scraping.

Project – scraping data from websites with
your Pi
HTML scraping is the process of making a request to a webpage in order to obtain the
HTML itself, so data can be parsed out of it. We're going to build a bot that shows whether
johnny-five.io is up or not by scraping https:/ ​/ ​downforeveryoneorjustme. ​com/ ​, a site
that tells you if a site is down from multiple sources.

You don't need to change the wiring setup from the weather dashboard for this project, our
current hardware is all we need.

Scraping downforeveryoneorjustme.com for
johnny-five.io
First, go to https:/ ​/​downforeveryoneorjustme. ​com/ ​ and enter johnny-five.io in the
URL input, and hit Enter. You should end up at https:/ ​/ ​downforeveryoneorjustme. ​com/
johnny-​five.​io, where hopefully you'll see a rather simple page that looks like this:

https://downforeveryoneorjustme.com/
https://downforeveryoneorjustme.com/
https://downforeveryoneorjustme.com/
https://downforeveryoneorjustme.com/
https://downforeveryoneorjustme.com/
https://downforeveryoneorjustme.com/
https://downforeveryoneorjustme.com/
https://downforeveryoneorjustme.com/
https://downforeveryoneorjustme.com/
https://downforeveryoneorjustme.com/
https://downforeveryoneorjustme.com/
https://downforeveryoneorjustme.com/
https://downforeveryoneorjustme.com/
https://downforeveryoneorjustme.com/
https://downforeveryoneorjustme.com/
https://downforeveryoneorjustme.com/
https://downforeveryoneorjustme.com/johnny-five.io
https://downforeveryoneorjustme.com/johnny-five.io
https://downforeveryoneorjustme.com/johnny-five.io
https://downforeveryoneorjustme.com/johnny-five.io
https://downforeveryoneorjustme.com/johnny-five.io
https://downforeveryoneorjustme.com/johnny-five.io
https://downforeveryoneorjustme.com/johnny-five.io
https://downforeveryoneorjustme.com/johnny-five.io
https://downforeveryoneorjustme.com/johnny-five.io
https://downforeveryoneorjustme.com/johnny-five.io
https://downforeveryoneorjustme.com/johnny-five.io
https://downforeveryoneorjustme.com/johnny-five.io

Getting the Information You Need Chapter 9

[137]

Now to prepare for our web scraping code, we need to know what HTML element we're
looking for as well as the URL. Right-click the It's just you. and select Inspect (or
whichever variation it is on your browser. In Chrome, you'll see something like this:

This is one of the perils of web scraping: there's not always a lot to go on to find your
element. The closest we get is the first paragraph (p tag) of the div with ID domain-main-
content. We'll want to see if it contains the string It's just you. in order to determine
if johnny-five.io is up.

Now that we have our URL and intended element and parsing criteria, let's start coding by
getting the HTML into our Johnny-Five project.

Making the HTTP request
Create a new file in your project folder called scraper-j5-alert.js. Start with the
normal libraries, Board construction, and board.on('ready') handler. Don't forget to
include the request npm module:

const Raspi = require('raspi-io')
const five = require('johnny-five')
const request = require('request')

const board = new five.Board({
 io: new Raspi()
})

Getting the Information You Need Chapter 9

[138]

board.on('ready', () => {
})

Then, inside your board.on('ready') handler, construct and set up your LCD object:

let LCD = new Five.LCD({
 controller: 'PCF8574'
})

LCD.noBlink()
LCD.on()

Then, we're going to create a function to get the HTML from https:/ ​/
downforeveryoneorjustme. ​com/ ​johnny- ​five. ​io and place it on a five-minute interval.
Lastly, we call it so we don't have to wait five minutes for the first result:

function isJohnnyFiveDown() {
 request('https://downforeveryoneorjustme.com/johnny-five.io',
 (err, resp, body) {
 console.log(body)
 })
}

setInterval(isJohnnyFiveDown, 300000)
isJohnnyFiveDown()

Load the project folder onto your Pi, navigate to the folder in you Pi SSH session, and
run:

sudo node scraper-j5-alert.js

You should, maybe after a few seconds, see something like this in the console (I just
screenshotted a small part):

https://downforeveryoneorjustme.com/johnny-five.io
https://downforeveryoneorjustme.com/johnny-five.io
https://downforeveryoneorjustme.com/johnny-five.io
https://downforeveryoneorjustme.com/johnny-five.io
https://downforeveryoneorjustme.com/johnny-five.io
https://downforeveryoneorjustme.com/johnny-five.io
https://downforeveryoneorjustme.com/johnny-five.io
https://downforeveryoneorjustme.com/johnny-five.io
https://downforeveryoneorjustme.com/johnny-five.io
https://downforeveryoneorjustme.com/johnny-five.io
https://downforeveryoneorjustme.com/johnny-five.io
https://downforeveryoneorjustme.com/johnny-five.io

Getting the Information You Need Chapter 9

[139]

But how do we get the info out of that giant string? Regular Expressions? Please, no, not
those. Luckily, as Stilwell's Law (see Chapter 2, Creating Your First Johnny-Five Project)
states, if you can think of functionality, there exists a package on npm for it. In this case, we
have the cheerio module that allows us to parse and query the HTML string with a JQuery-
style API.

Using Cheerio to get the element we want
In your project folder, run the following command:

npm i --save cheerio

The basics on cheerio are you parse text by calling:

const cheerio = require('cheerio')
const $ = cheerio.load(htmlText)

Then, query using the $ variable like you would with JQuery (see Further reading if you've
never used JQuery for a link to a great primer on selecting elements):

let divWithIDHello = $('#hello')
let helloDivText = divWithIDHello.text()

Parsing the HTML and showing the result
This is all we'll need to scrape the HTML and get the status. Inside scraper-alert-
j5.js, we're going to add cheerio's require() call to the top of the file with the other
requires:

const cheerio = require('cheerio')

Then, we're going to modify the callback that fires when request is done fetching the
HTML. We're going to add the cheerio call to load the text and look for the first p child of
the div with ID domain-main-content, and pull out its text. Then, we'll see if that text
contains It's just you. and write to the LCD:

function isJohnnyFiveDown() {
 request('https://downforeveryoneorjustme.com/johnny-five.io',
 (err, resp, body) => {
 let $ = cheerio.load(body)
 let statusText = $('#domain-main-content p')[0].text()
 LCD.clear()
 LCD.home()

Getting the Information You Need Chapter 9

[140]

 LCD.print('johnny-five.io')
 LCD.cursor(0, 1)
 // make sure to use " to surround the string!
 if(statusText.contains("It's just you.")){
 LCD.print('is up!')
 } else {
 LCD.print('is down (possibly)!')
 }
 })
}

We're ready to load it and run it! Load your project onto your Pi, navigate to the folder in
your Pi SSH session, and run the following commands:

npm i
sudo node scraper-alert-j5.js

And you should see whether Johnny-Five is up or not on your LCD!

You may have noticed I put possibly in the down condition. This is
because, as I mentioned before, HTML scraping is very brittle. If they
change It's just you. to It is just you., our code will break! So I like to
remind the LCD viewer that it may not necessarily be down. Again, this is
an example of why, if you can find it, it's better to get data from an API.
But sometimes there's no real choice.

Summary
In this chapter, we built a weather dashboard using an I2C LCD screen knowledge of npm
modules and using REST APIs, and leveraged the power of Node.js and the Pi together.
You can go forward to build so many new projects with these skills; if you can get the
information from the internet, you can use it in your Johnny-Five and Pi projects.

Questions
Why is the Pi well suited for projects that require remote data?1.
What considerations need to be made when making regular web requests from2.
the Pi?

Getting the Information You Need Chapter 9

[141]

Why can we chain the LCD object calls, such as LCD.clear().home()?2.
Why do we use an I2C backpack with our LCD?3.
Would we need more components to use the LCD without the backpack?4.
Does LCD.on() turn on the entire LCD? If not, what does it do?5.

Further reading
The request npm module page: https:/ ​/​www. ​npmjs. ​com/ ​package/ ​request

The full OpenWetherMap API: https:/ ​/​openweathermap. ​org/ ​api

The Johnny-Five LCD documentation: http:/ ​/​johnny- ​five. ​io/​api/ ​lcd/ ​

The cheerio npm module page: https:/ ​/​www. ​npmjs. ​com/ ​package/ ​cheerio

JQuery 'Selecting Elements' tutorial: https:/ ​/​learn. ​jquery. ​com/​using-
jquery-​core/ ​selecting- ​elements/ ​

https://www.npmjs.com/package/request
https://www.npmjs.com/package/request
https://www.npmjs.com/package/request
https://www.npmjs.com/package/request
https://www.npmjs.com/package/request
https://www.npmjs.com/package/request
https://www.npmjs.com/package/request
https://www.npmjs.com/package/request
https://www.npmjs.com/package/request
https://www.npmjs.com/package/request
https://www.npmjs.com/package/request
https://www.npmjs.com/package/request
https://www.npmjs.com/package/request
https://openweathermap.org/api
https://openweathermap.org/api
https://openweathermap.org/api
https://openweathermap.org/api
https://openweathermap.org/api
https://openweathermap.org/api
https://openweathermap.org/api
https://openweathermap.org/api
https://openweathermap.org/api
http://johnny-five.io/api/lcd/
http://johnny-five.io/api/lcd/
http://johnny-five.io/api/lcd/
http://johnny-five.io/api/lcd/
http://johnny-five.io/api/lcd/
http://johnny-five.io/api/lcd/
http://johnny-five.io/api/lcd/
http://johnny-five.io/api/lcd/
http://johnny-five.io/api/lcd/
http://johnny-five.io/api/lcd/
http://johnny-five.io/api/lcd/
http://johnny-five.io/api/lcd/
http://johnny-five.io/api/lcd/
http://johnny-five.io/api/lcd/
https://www.npmjs.com/package/cheerio
https://www.npmjs.com/package/cheerio
https://www.npmjs.com/package/cheerio
https://www.npmjs.com/package/cheerio
https://www.npmjs.com/package/cheerio
https://www.npmjs.com/package/cheerio
https://www.npmjs.com/package/cheerio
https://www.npmjs.com/package/cheerio
https://www.npmjs.com/package/cheerio
https://www.npmjs.com/package/cheerio
https://www.npmjs.com/package/cheerio
https://www.npmjs.com/package/cheerio
https://www.npmjs.com/package/cheerio
https://learn.jquery.com/using-jquery-core/selecting-elements/
https://learn.jquery.com/using-jquery-core/selecting-elements/
https://learn.jquery.com/using-jquery-core/selecting-elements/
https://learn.jquery.com/using-jquery-core/selecting-elements/
https://learn.jquery.com/using-jquery-core/selecting-elements/
https://learn.jquery.com/using-jquery-core/selecting-elements/
https://learn.jquery.com/using-jquery-core/selecting-elements/
https://learn.jquery.com/using-jquery-core/selecting-elements/
https://learn.jquery.com/using-jquery-core/selecting-elements/
https://learn.jquery.com/using-jquery-core/selecting-elements/
https://learn.jquery.com/using-jquery-core/selecting-elements/
https://learn.jquery.com/using-jquery-core/selecting-elements/
https://learn.jquery.com/using-jquery-core/selecting-elements/
https://learn.jquery.com/using-jquery-core/selecting-elements/
https://learn.jquery.com/using-jquery-core/selecting-elements/
https://learn.jquery.com/using-jquery-core/selecting-elements/
https://learn.jquery.com/using-jquery-core/selecting-elements/
https://learn.jquery.com/using-jquery-core/selecting-elements/
https://learn.jquery.com/using-jquery-core/selecting-elements/

10
Using MQTT to Talk to Things

on the Internet
IoT devices can communicate in many ways, and some ways have become standards. We're
going to explore a few of the ways IoT devices communicate, then dive into depth with one
standard, MQTT. We'll then build a small project that allows us to see and send MQTT
events with AdafruitIO, a service that provides MQTT brokers online.

The following topics will be covered in this chapter:

IoT device communications
MQTT – an IoT PubSub protocol
Setting up MQTT on the Pi with AdafruitIO
Project – adding an LCD and button to see and show MQTT events
Project – social media notification bot with IFTTT

Technical requirements
For this project, you'll need your LCD hooked up to your Pi (see Chapter 9, Getting the
Information You Need), a pushbutton, and a 10K ohm resistor for hardware.

For other tools, you'll want to create a free-plan account at https:/ ​/​adafruit. ​io. You will
also want an account with IFTTT (also free) to do the final project.

The code for this chapter is at https:/ ​/​github. ​com/ ​PacktPublishing/
Hands- ​On- ​Robotics- ​with- ​JavaScript/ ​tree/ ​master/ ​Chapter10.

https://adafruit.io
https://adafruit.io
https://adafruit.io
https://adafruit.io
https://adafruit.io
https://adafruit.io
https://adafruit.io
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter10

Using MQTT to Talk to Things on the Internet Chapter 10

[143]

IoT device communications
As we saw in Chapter 9, Getting the Information You Need, our Pi can ask for information
from the internet using HTTP requests. But what if we want regular data sent to the Pi in
real-time? What if we want a swarm of devices chatting with each other, data sent back and
forth as necessary? Let's take a look at a few ways this can be accomplished with web
technologies.

Long polling
Long polling involves asking for information via HTTP requests at certain intervals. If this
sounds familiar, it's because that's precisely what we did in our weather dashboard project
in Chapter 9, Getting the information you need; we poll the OpenWeather API every 60
seconds. This approach is best when there aren't other options; some REST APIs do not
have a way to hold a connection open or establish two-way communication, and long
polling is the way to go in these situations.

But there are newer ways of establishing two-way connections that can be left open,
including the Websocket.

Websockets
Websockets are a powerful tool that allows us to establish a two-way data connection that
stays open until you close it (barring error or loss of connection). You can send messages
back and forth in real time, without having to set up a whole new connection each time. It
also allows the server to communicate back with your Pi without it having to ask, which is
great for real-time data.

While websockets are powerful, there are ways to fine-tune this connection for IoT projects.
It can also be difficult to maintain an open socket and keep the data you are sending or
receiving organized. With this in mind, we're going to talk about MQTT.

Using MQTT to Talk to Things on the Internet Chapter 10

[144]

MQTT - an IoT PubSub protocol
The Message Queuing Telemetry Transport (MQTT) protocol (often pronounced
mosquitto) is a protocol designed for low-bandwidth, high-latency environments, which
makes it a great fit for IoT projects, especially ones running on limited hardware. It is not
solely used for communication between machines: some projects use it to send data for
storage purposes.

Let's take a look at how MQTT works and how it implements a PubSub setup for our
projects.

The basics of MQTT
Let's go over a few terms, then link them together to define MQTT as a concept:

MQTT message: An MQTT message consists of a topic and a message. The topic
is what clients subscribe to, and they usually read the messages for data.
MQTT client: An MQTT client connects to an MQTT broker and can subscribe to
and publish on topics once connected to the broker.
MQTT broker: An MQTT broker handles client connection and passes messages
along to all clients subscribed to a topic when a client publishes a message on
that topic. It can also publish messages to topics, which go to all clients
subscribed.

In our project, we will set up our Pi as an MQTT client, connect it to a broker at AdafruitIO,
and publish messages that the broker will send to the client (our Pi) and takes in messages
it publishes.

Setting up MQTT on the Pi with AdafruitIO
In order to set up MQTT, we'll need a broker. While the Pi can itself serve as a broker (see
the Further reading section), we don't need broker functionality on the Pi. We can use
AdafruitIO to create a broker that we can subscribe to topics with on our Pi.

Using MQTT to Talk to Things on the Internet Chapter 10

[145]

Creating an account and a feed
First, we'll go to https:/ ​/ ​io. ​adafruit. ​com/​ and create a free account. Then, you'll be taken
to a dashboard:

We'll need to set up a feed and get our AIO key in order to get started on the Pi. To set up a
feed, select Feeds in the left-hand menu. Then, click the Actions button in the upper left
corner:

Next, select Create New Feed from the dropdown. Name your feed (I named mine hands-
on-robotics-with-js to make it easy to remember what I created it for). Then, you'll be
taken to your new feed's page:

https://io.adafruit.com/
https://io.adafruit.com/
https://io.adafruit.com/
https://io.adafruit.com/
https://io.adafruit.com/
https://io.adafruit.com/
https://io.adafruit.com/
https://io.adafruit.com/
https://io.adafruit.com/
https://io.adafruit.com/

Using MQTT to Talk to Things on the Internet Chapter 10

[146]

Now that we've created our feed, we can get all the information we need to get the Pi
hooked up to it. First, let's get the Feed key to give to the MQTT module. Click Feed
Information on the right-hand side and copy the value in MQTT by ID and place it
somewhere it's easy to get to. Then, close the Feed Information window.

Next, click View AIO key in the left-hand menu. Copy the value in Active Key and place it
somewhere it's easy to get to.

Now, to clear up some terminology before we proceed: the feed MQTT by ID name you
took note of is going to be the topic of any messages our client (the Pi) sends to our broker
(AdafruitIO), and vice versa.

We now have everything we need to connect our Pi to the AdafruitIO broker.

Using MQTT to Talk to Things on the Internet Chapter 10

[147]

Subscribing to the feed using the mqtt npm
module
Create a project folder for this project to be transferred to the Pi. Inside the folder, run the
following commands:

> npm init -y
> npm i --save mqtt dotenv

This will install the mqtt npm module, which will simplify our MQTT connection, and the
dotenv module, which will allow you to use environmental variables in a separate file
(great for making sure you don't commit your AIO key to GitHub!)

The mqtt module
The mqtt module allows us to construct an MQTT client object:

const client = mqtt.connect(url, {options})

We will pass this method the AdafruitIO URL and our username and AIO key via the
options object.

There are several event handlers available on the MQTT client object (see Further reading),
but for this project we'll be using the following:

client.on('connect', () => {})
client.on('message', (topic, message) => {})

Finally, we'll want to be able to publish messages from our client to the broker:

client.publish(topic, message)

The dotenv module
The dotenv module makes configuration of environment variables that you don't want to,
say, commit to GitHub, easy. You load it into your Node.js application:

const dotenv = require('dotenv').config()

Using MQTT to Talk to Things on the Internet Chapter 10

[148]

This loads a .env file in the same directory that the Node.js file is in, which is in the
following format:

KEY=value

And it is then accessible in your application via the process.env global variable:

let key = process.env.KEY // 'value'

Now that we know more about the libraries and services we're using, let's get a test
connection program set up!

Testing our connection
To test our connection, we'll get our Pi connected to the AdafruitIO broker, subscribe to our
new feed, and publish a message. We'll know it works when we go to the feed dashboard
on the AdafruitIO site and see that our message has been received.

To do this, we need to configure the mqtt client, set up a connect handler for the client,
and use that handler to subscribe and publish our message. In a file called mqtt-test.js
in the folder you set up earlier, write the following code:

const dotenv = require('dotenv').config()
const mqtt = require('mqtt')

const client = mqtt.connect(
 process.env.ADAFRUIT_IO_URL,
 {
 username: process.env.ADAFRUIT_IO_USERNAME,
 password: process.env.ADAFRUIT_IO_KEY,
 port: process.env.ADAFRUIT_IO_PORT
 }
)

client.on('connect', () => {
 console.log('Connected to AdafruitIO')
 client.subscribe(process.env.ADAFRUIT_IO_FEED, () => {
 client.publish(process.env.ADAFRUIT_IO_FEED, 'Hello from the Pi!')
 })
})

Using MQTT to Talk to Things on the Internet Chapter 10

[149]

Then, in the same folder, create a file called .env (make sure it starts with the dot!), and
place the following in it:

ADAFRUIT_IO_URL=
ADAFRUIT_IO_USERNAME=[the username you signed up for AdafruitIO with]
ADAFRUIT_IO_KEY=[your AIO Key from earlier]
ADAFRUIT_IO_PORT=
ADAFRUIT_IO_FEED=[The feed info from earlier]

Then, transfer the folder over to the Pi. In the Pi session, navigate to the folder and run the
following command:

npm i

The preceding command will make sure that all modules are installed correctly on the Pi.
Then, use the following:

node mqtt-test.js

Now go to your AdafruitIO feed dashboard. You should see a message there:

Now that we know we can connect the Pi to AdafruitIO, let's add an LCD to see incoming
messages, and a button to generate outgoing ones!

Project – adding an LCD and button to see
and send MQTT events
We can use the AdafruitIO dashboard to post messages to our MQTT feed, and so we'll use
an LCD to show what we've sent. We'll also wire up a button that will send an MQTT
message when pushed.

Wiring it all up
First, we'll wire our LCD to the I2C pins, and our button to GPIO #5, also known as P1-29:

Using MQTT to Talk to Things on the Internet Chapter 10

[150]

Coding it all together
In a file in the same folder, create mqtt-button-lcd.js. Put in the usual Johnny-Five and
Raspi-IO constructors, and in the board-ready handler:

Then, add the client constructor for AdafruitIO's MQTT connection from mqtt-test.js.
We'll also set up our LCD and button objects here:

let LCD = new five.LCD({
 controller: "PCF8574",
 rows: 2,
 cols: 16
})
let button = new five.Button('P1-29')

Using MQTT to Talk to Things on the Internet Chapter 10

[151]

After that, we're ready to code the sending of messages on the press of the button, and the
printing of messages received on the LCD:

client.on('connect', () => {
 console.log('Connected to AdafruitIO')
 client.subscribe(process.env.ADAFRUIT_IO_FEED, () => {
 client.publish(process.env.ADAFRUIT_IO_FEED, 'Hello from the Pi!')

 button.on('press', () => {
 client.publish(process.env.ADAFRUIT_IO_FEED, 'Button pressed!')
 })

 client.on('message', (topic, message) => {
 LCD.clear().home().print(topic).setCursor(1,0).print(message)
 })
 })
})

Now, move the folder over to the Pi, go into your Pi session, navigate to the folder, run the
following command:

npm i --save johnny-five raspi-io

Then, run the program (be sure to use sudo !)

sudo node mqtt-lcd-button.js

Now, press the button and you should see the message pop up in the AdafruitIO feed
dashboard:

Using MQTT to Talk to Things on the Internet Chapter 10

[152]

And your LCD (remember, MQTT events are published to all, even the client that
published them, if they are subscribed!):

While we're there, click Actions, then Add Data, and type Hello from Adafruit! in the
data box, and hit Create. It should show up on your LCD:

And there you have it! You now have a bot that communicates with the internet via MQTT!

Using MQTT to Talk to Things on the Internet Chapter 10

[153]

Project – social media notifier bot with IFTTT
Having lots of tabs open in your browser, and clicking on each one to see notifications, can
be a nuisance. Luckily, we can easily build a project that pulls in notifications from several
sources to create a bot that notifies us on an LCD. We'll also learn more about If This, Then
That (IFTTT), and its plugin that will allow us to route events to Adafruit IO and thereby
our Pi.

Getting started with IFTTT
IFTTT is a way to create graphical formulas (called applets) that consist of a trigger (such as
a social media event) and an action (such as sending data to AdafruitIO). We're going to
walk through linking AdafruitIO and our social media accounts to IFTTT, and creating
Applets to send social media notification data to AdafruitIO.

First, sign in or create an account at https:/ ​/​ifttt. ​com/ ​, and we'll start linking our
accounts.

Linking IFTTT to Adafruit
To link your AdafruitIO account, click your username in the upper-right corner, select
Services, then select the All Services link at the bottom of the page. Then, type Adafruit
into the search bar, and click the black box marked Adafruit, which should bring you here:

https://ifttt.com/
https://ifttt.com/
https://ifttt.com/
https://ifttt.com/
https://ifttt.com/
https://ifttt.com/
https://ifttt.com/
https://ifttt.com/

Using MQTT to Talk to Things on the Internet Chapter 10

[154]

After that, click Connect and enter your AdafruitIO credentials. You'll want to do this for
any social media networks that you'd like notifications from as well. I added Twitter and
Twitch.tv accounts.

Now that we've linked our accounts, we should take a step back to Adafruit.IO and add
feeds for our social media accounts so we can select them when we create our IFTTT
applets.

Setting up feeds for your social media MQTT
messages in AdafruitIO
In your AdafruitIO dashboard, you should create a feed (this corresponds to an MQTT
topic) for each social media service you want your bot to notify you on. Having clear and
granular topics is important when building large MQTT systems with several bots listening
for events.

I created a group for these feeds by selecting Actions on the Feeds page of the AdafruitIO
dashboard and clicking Create a New Group:

Using MQTT to Talk to Things on the Internet Chapter 10

[155]

I named mine as Social-Media-Bot. Once you've finished making the group, click the
name of the group to be taken to that group's dashboard, which should have no feeds in it
yet. Click Actions and select Create a New Feed from the dropdown. Then, enter the name
of the social media service you will be using as the name of the feed. Repeat for any social
media services you'd like to use.

The AdafruitIO Feed Group also serves as a handy namespacing tool. The
twitter feed in the Social-Media-Bot group becomes Social-Media-
Bot.twitter. This is extremely useful if you end up with multiple projects
with Twitter data feeds.

Now that we have our social media accounts linked to IFTTT, and AdafruitIO feeds ready
to receive data, let's create some IFTTT Applets to collect the social media notifications.

Creating our IFTTT Applets
On the IFTTT home page, you create a new applet by selecting your username in the top-
right corner and selecting New Applet:

You'll be presented with the IFTTT Applet formula:

Using MQTT to Talk to Things on the Internet Chapter 10

[156]

Click the +this link to be taken to a list of services you can use to trigger your IFTTT applet.
Fill out the name of the social media service you wish to use in the search bar, and select it
as it pops up.

You'll then see a list of possible triggers from that service. Select which one you'd like to be
notified for (I started with someone following my twitter account). Once you click your
trigger, you'll be taken back to the formula page, and the +this will be replaced with the
logo for the social media site you use as a trigger. Then, it's time to create our action by
clicking +that.

Using MQTT to Talk to Things on the Internet Chapter 10

[157]

You'll be taken to a similar page to select a service for your action. Search for AdafruitIO
and select it. You'll be asked to fill out some information about which AdafruitIO feed
you'd like to send to, and the message you'd like to send:

Using MQTT to Talk to Things on the Internet Chapter 10

[158]

Select the name of the feed that matches the social media site that triggers this applet.
Under data to save, you can enter a message that we can display on the LCD. You can also
click the Add ingredient button to add information from the social media event itself:

I selected FullName and ended up with the message {{FullName}} followed you on
Twitter!

Repeat this for both the other triggers from the first social media site and the other social
media sites and their triggers.

Now that our IFTTT Applets are sending data to AdafruitIO, we can start wiring and
coding our bot.

Wiring up our project
All you need for this project is the LCD; if you wired up the button for the last project, you
can remove it:

Using MQTT to Talk to Things on the Internet Chapter 10

[159]

Coding our social media notifications to show on
the LCD
Create a file named social-media-bot.js in your project folder, and copy the contents
of mqtt-button-lcd into it. We're going to modify this file to create our social media bot.

First, remove all references to the button variable and Button object, since we won't be
using them.

Using MQTT to Talk to Things on the Internet Chapter 10

[160]

Next. we'll need to get the names of the feeds (topics) that we'll be subscribing to. To do
this, click each feed in the AdafruitIO Feeds page that you want to use for this bot. Then in
the right column of the page, click Feed Information and copy the MQTT by key field:

Then, in the client.on('connect') handler, we're going to subscribe to multiple topics,
and not use the callback feature. Then, we'll add a client.on('message') handler to
display the message from IFTTT on the LCD display:

client.on('connect', () => {
 console.log('Connected to AdafruitIO')
 client.subscribe('nodebotanist/feeds/social-media-bot.twitter')
 client.subscribe('nodebotanist/feeds/social-media-bot.twitch')
 client.on('message', (topic, message) => {
 LCD.clear()
 LCD.home()
 LCD.autoscroll()
 LCD.print(message)
 })
})

Now that we've subscribed to our new feeds and set it to print to the LCD, we can run it!

Running your social media bot
Run the following command to see the output:

sudo node social-media-bot.js

Soon, you should see a message pop up on your LCD when you get a social media
notification.

Using MQTT to Talk to Things on the Internet Chapter 10

[161]

Summary
In this chapter, we discussed several ways that internet-connected devices can talk to each
other. We dove into the MQTT protocol and discussed how its PubSub interface and
abstractions made it a great choice for projects on our Pi. Then, we built a bot that
communicated with the outside world using a button and let the outside world
communicate with it via the AdafruitIO dashboard and IFTTT. Finally, we built a social
media notification bot using AdafruitIO integration into IFTTT.

Questions
What are two ways IoT devices interface with the internet that aren't specific to1.
IoT?
What does MQTT stand for?2.
What is an MQTT client capable of?3.
What is an MQTT broker capable of?4.
Why does our Pi get the messages it publishes to AdafruitIO?5.

Further reading
A great tutorial on MQTT: https:/ ​/ ​www.​pubnub. ​com/ ​blog/ ​what- ​is-​mqtt- ​use-
cases/​

The MQTT protocol official site: http:/ ​/ ​mqtt. ​org/​

AdafruitIO tutorials: https:/ ​/​learn. ​adafruit. ​com/​category/ ​adafruit- ​io

The mqtt module page on npm: https:/ ​/​www. ​npmjs. ​com/ ​package/ ​mqtt

https://www.pubnub.com/blog/what-is-mqtt-use-cases/
https://www.pubnub.com/blog/what-is-mqtt-use-cases/
https://www.pubnub.com/blog/what-is-mqtt-use-cases/
https://www.pubnub.com/blog/what-is-mqtt-use-cases/
https://www.pubnub.com/blog/what-is-mqtt-use-cases/
https://www.pubnub.com/blog/what-is-mqtt-use-cases/
https://www.pubnub.com/blog/what-is-mqtt-use-cases/
https://www.pubnub.com/blog/what-is-mqtt-use-cases/
https://www.pubnub.com/blog/what-is-mqtt-use-cases/
https://www.pubnub.com/blog/what-is-mqtt-use-cases/
https://www.pubnub.com/blog/what-is-mqtt-use-cases/
https://www.pubnub.com/blog/what-is-mqtt-use-cases/
https://www.pubnub.com/blog/what-is-mqtt-use-cases/
https://www.pubnub.com/blog/what-is-mqtt-use-cases/
https://www.pubnub.com/blog/what-is-mqtt-use-cases/
https://www.pubnub.com/blog/what-is-mqtt-use-cases/
https://www.pubnub.com/blog/what-is-mqtt-use-cases/
https://www.pubnub.com/blog/what-is-mqtt-use-cases/
https://www.pubnub.com/blog/what-is-mqtt-use-cases/
https://www.pubnub.com/blog/what-is-mqtt-use-cases/
https://www.pubnub.com/blog/what-is-mqtt-use-cases/
http://mqtt.org/
http://mqtt.org/
http://mqtt.org/
http://mqtt.org/
http://mqtt.org/
http://mqtt.org/
http://mqtt.org/
http://mqtt.org/
https://learn.adafruit.com/category/adafruit-io
https://learn.adafruit.com/category/adafruit-io
https://learn.adafruit.com/category/adafruit-io
https://learn.adafruit.com/category/adafruit-io
https://learn.adafruit.com/category/adafruit-io
https://learn.adafruit.com/category/adafruit-io
https://learn.adafruit.com/category/adafruit-io
https://learn.adafruit.com/category/adafruit-io
https://learn.adafruit.com/category/adafruit-io
https://learn.adafruit.com/category/adafruit-io
https://learn.adafruit.com/category/adafruit-io
https://learn.adafruit.com/category/adafruit-io
https://learn.adafruit.com/category/adafruit-io
https://learn.adafruit.com/category/adafruit-io
https://learn.adafruit.com/category/adafruit-io
https://www.npmjs.com/package/mqtt
https://www.npmjs.com/package/mqtt
https://www.npmjs.com/package/mqtt
https://www.npmjs.com/package/mqtt
https://www.npmjs.com/package/mqtt
https://www.npmjs.com/package/mqtt
https://www.npmjs.com/package/mqtt
https://www.npmjs.com/package/mqtt
https://www.npmjs.com/package/mqtt
https://www.npmjs.com/package/mqtt
https://www.npmjs.com/package/mqtt
https://www.npmjs.com/package/mqtt
https://www.npmjs.com/package/mqtt

11
Building a NodeBots Swarm

Our NodeBots can now sense and display information about the world around them, and
gather information from the internet for display. Now, it's time to look at NodeBots talking
to each other. We will also use this chapter to talk about where to go from here—JavaScript
is available on so many different boards and devices, and in so many new and exciting
ways!

The following topics will be covered in this chapter:

Project – connecting multiple NodeBots
Expanding your NodeBots knowledge
Continuing on your NodeBots adventure

Technical requirements
For this chapter, you can optionally use a second Raspberry Pi with Wireless internet
access. You can also just use the one you have and we'll pretend it is two different Pis.
You'll also need your TSL2591 Light Sensor, your Pi Cobbler, and a few breadboard wires.

The code for this chapter is available at https:/ ​/​github. ​com/
PacktPublishing/ ​Hands- ​On-​Robotics- ​with- ​JavaScript/ ​tree/ ​master/
Chapter11.

Project – connecting multiple NodeBots
In this project, we'll use an npm module that allows us to set up a Raspberry Pi broker on a
Pi—if you have one Pi, we'll have it talk to itself as if it's two separate devices, and if you
have a second Pi, we'll have them talk to each other.

https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Robotics-with-JavaScript/tree/master/Chapter11

Building a NodeBots Swarm Chapter 11

[163]

Optional – setting up a second Raspberry Pi
If you are only using your original Pi, skip this section.

Use the instructions in Chapter 1, Setting Up Your Development Environment, to set up your
second Pi. You do not need a cobbler or any other accessories for this project; if you use a
second Pi, you just need a good power source and a microSD card set up as stated in
Chapter 1, Setting Up Your Development Environment.

If you are using two Pis, the Pi without the cobbler is the broker Pi, and your original Pi
with the cobbler is the client Pi.

If you are using two Pis, you will want to set the hostname of the broker Pi so that they
don't collide. To do this, run the following command:

sudo raspi-config

Then select Network Options, followed by Hostname with the arrow keys. Set the
hostname to something you'll remember (I used nodebotanist-pi-broker.local).
Then, save and exit raspi-config and reboot the Pi.

When you want to start a session on the broker Pi, you'll now use your custom hostname;
for example, if I want to SSH into my broker Pi, I run the following command:

ssh pi@nodebotanist-pi-broker.local

Setting up your project files and folders
You'll want to create two separate project folders for this project: client and broker.
Create these folders and run the following command:

npm init -y

In the client folder, run the following command:

npm i --save mqtt dotenv

In the broker folder, run the following command:

npm i --save mosca

Then, in both folders, create an index.js and a .env file.

Building a NodeBots Swarm Chapter 11

[164]

If you're using one Pi
Move both the client and broker folders to the Pi, navigate to the client folder in your
Pi SSH session, and run the following commands:

sudo npm i -g forever
npm i --save johnny-five raspi-io
npm i

Then, navigate to the broker folder and run the following commands:

npm i
sudo apt-get install mongodb-server // installs mongodb
systemctl enable mongod.service // makes it so mongodb starts when the pi
does

Then, reboot the Pi:

sudo reboot

If you're using two Pis
Move the client folder to your original Pi, SSH into your original Pi, navigate to the
client folder, and run the following commands:

npm i --save johnny-five raspi-io
npm i

Then, move the broker folder to the second Pi you set up, SSH into it, navigate to the
broker folder, and run the following commands:

sudo apt-get install mongodb-server // installs mongodb
systemctl enable mongod.service // makes it so mongodb starts when the pi
does
npm i

Then, reboot the broker Pi:

sudo reboot

Now that we have our project dependencies in place and installed, it's time to wire up this
project up.

Building a NodeBots Swarm Chapter 11

[165]

Adding a light sensor to the Pi
If you are using one Pi, wire the light sensor to it. If you are using two Pis, wire the light
sensor to the client Pi. The following diagram should match either your sole Pi or your
client Pi:

Now we can set up the MQTT broker on the Pi.

Creating an MQTT broker on the Pi
If you are using two Pis, carry out this entire section on the broker Pi. If you are using one
Pi, do all of this on your one Pi.

Building a NodeBots Swarm Chapter 11

[166]

We're going to use the Mosca library to set up an MQTT broker on our Pi. The mosca npm
library makes it really easy to set up and start an MQTT broker. All we need is a running
mongoDB instance (which we took care of in the last step, Setting up light sensor).

In the broker folder (either on your original or broker Pi), in the index.js file, we're
going to set up mosca:

const mosca = require('mosca')

const mqttBroker = new mosca.Server({
 port: 1883,
 backend: {
 type: 'mongo',
 url: 'mongodb://localhost:27017/mqtt',
 pubsubCollection: 'MQTT-broker-NodeBots',
 mongo: {}
 }
})

server.on('ready', () => {
 console.log('MQTT broker ready!')
})

server.on('clientConnected', (client) => {
 console.log('Client connected to MQTT broker: ', client.id)
})

server.on('published', (packet, client) => {
 client = client || {id: 'N/A'} // Catches a weird edge case with mosca
 console.log(`Client: ${client.id}\nTopic: ${packet.topic}\nMessage:
${packet.payload.toString()}\n`)
})

We now have our MQTT broker ready to go! Time to program our client.

Programming the MQTT client – have the Pi
Report Home
In your client folder (and your client Pi if you're using two Pis), open up the index.js
file and write a script to gather light sensor data every time it changes with a threshold of
10 (to prevent too many MQTT messages):

const Raspi = require('raspi-io')
const five = require('johnny-five')

Building a NodeBots Swarm Chapter 11

[167]

const request = require('request')

const board = new five.Board({
 io: new Raspi()
})

board.on('ready', () => {
 let light = new five.Light({
 controller: 'TSL2591',
 threshold: 10
 })

 light.on('change', () => {

 })
})

Then, before the board.on('ready') handler, construct your MQTT client connection,
and add an mqttClient.on() handler that subscribes to the light topic:

const mqttClient = mqtt.connect(
 process.env.MQTT_BROKER_URL,
 {
 port: process.env.MQTT_BROKER_PORT
 }
)

mqttClient.on('connect', () => {
 mqttClient.subscribe('light')
})

Then, inside the board.on('ready') handler, we'll add the code that publishes light data
to our MQTT broker.

light.on('change', function() {
 mqttClient.publish('light', this.value)
})

Now that we've coded our client, we need to set environment variables and get it running.

If you're using one Pi
In the client folder, create a .env file, and add the following:

MQTT_BROKER_URL:mqtt://localhost
MQTT_BROKER_PORT: 1883

Building a NodeBots Swarm Chapter 11

[168]

Make sure to move the client and broker folders to your Pi one last time.

If you're using two Pis
On the client Pi, in the client folder, create a .env file with the following:

MQTT_BROKER_URL:mqtt://[broker pi hostname]
MQTT_BROKER_PORT: 1883

Replace [broker Pi hostname] with the hostname you created back in the Setting up a
Second Raspberry Pi section.

Move the client folder to the client Pi one last time.

Now, it's time to get the code running!

Running our MQTT project
The instructions are slightly different for the one Pi and two Pi setups, but the end result
should look the same.

If you're using one Pi
SSH into your Pi, navigate to the client folder, and run the following command:

su - pi -c "node forever start index.js"

This will cause our client to run in the background and re-start if necessary, so we can see
the console.log() output from our broker. It will also ensure that our script is running as
root, so that the Johnny-Five code will work properly.

Then, navigate to the broker folder, and run the following command:

sudo node index.js

You should start to see broker messages moving on the console as you change the light on
the sensor; this is the MQTT client we set up in our client folder communicating with the
MQTT broker on a different port.

Building a NodeBots Swarm Chapter 11

[169]

If you're using two Pis
SSH into your client Pi, navigate to the client folder, and run the following command:

su - pi -c "node forever start index.js"

This will cause our client to run in the background and re-start if necessary, so we can see
the console.log() output from our broker. It also ensures that our script is run as root, so
that the Johnny-Five code will work properly.

Then, SSH into your broker Pi, navigate to the broker folder, and run the following
command:

sudo node index.js

You should start to see broker messages moving through on the console as you change the
light on the sensor; this is the two Pis speaking to each other using MQTT! Your client Pi is
publishing messages to the broker, which console.log() them, but you could also
connect with other clients that use this data!

You've now built the beginning of your first NodeBots swarm! Now it's time to take a peek
at the wide world of NodeBots that falls outside the scope of this book.

Expanding your NodeBots knowledge
The NodeBots universe is huge and expanding everyday! In fact, we've only really started
exploring the world of Johnny-Five.

Using Johnny-Five on other boards
The Raspberry Pi we used in this book is just one of over 40 boards supported by Johnny-
Five. Just a peek at the platform support page of the Johnny-Five website makes this clear:

Building a NodeBots Swarm Chapter 11

[170]

The best news is that the code you've written in this book can be transferred to most of the boards
pictured here. There are only two steps to porting your code: changing the pin numbers and
making sure the board you are switching to offers the functionality you need.

Figuring out pin numbers
Changing pin numbers means you need to know what pins on your new board complete
which tasks. For instance, if you were moving your I2C LCD from the Pi to the Arduino
Uno, you'd need to know where the SDA and SCL pins are located on the Uno.

Building a NodeBots Swarm Chapter 11

[171]

The best way to get this information is to search the internet for [board name] pinout, and
searching for an image such as the following for the Uno:

A pinout of the ARDUINO Board and ATMega328PU (https:/ ​/​commons.
wikimedia. ​org/ ​wiki/ ​File:Pinout_ ​of_​ARDUINO_ ​Board_ ​and_ ​ATMega328PU.
svg) by pighixxx is licensed under Creative Commons Attribution-Share Alike
4.0 International (https:/ ​/​en.​wikipedia. ​org/ ​wiki/ ​Creative_ ​Commons).

Then, you can match the pins up from there.

https://commons.wikimedia.org/wiki/File:Pinout_of_ARDUINO_Board_and_ATMega328PU.svg
https://commons.wikimedia.org/wiki/File:Pinout_of_ARDUINO_Board_and_ATMega328PU.svg
https://commons.wikimedia.org/wiki/File:Pinout_of_ARDUINO_Board_and_ATMega328PU.svg
https://commons.wikimedia.org/wiki/File:Pinout_of_ARDUINO_Board_and_ATMega328PU.svg
https://commons.wikimedia.org/wiki/File:Pinout_of_ARDUINO_Board_and_ATMega328PU.svg
https://commons.wikimedia.org/wiki/File:Pinout_of_ARDUINO_Board_and_ATMega328PU.svg
https://commons.wikimedia.org/wiki/File:Pinout_of_ARDUINO_Board_and_ATMega328PU.svg
https://commons.wikimedia.org/wiki/File:Pinout_of_ARDUINO_Board_and_ATMega328PU.svg
https://commons.wikimedia.org/wiki/File:Pinout_of_ARDUINO_Board_and_ATMega328PU.svg
https://commons.wikimedia.org/wiki/File:Pinout_of_ARDUINO_Board_and_ATMega328PU.svg
https://commons.wikimedia.org/wiki/File:Pinout_of_ARDUINO_Board_and_ATMega328PU.svg
https://commons.wikimedia.org/wiki/File:Pinout_of_ARDUINO_Board_and_ATMega328PU.svg
https://commons.wikimedia.org/wiki/File:Pinout_of_ARDUINO_Board_and_ATMega328PU.svg
https://commons.wikimedia.org/wiki/File:Pinout_of_ARDUINO_Board_and_ATMega328PU.svg
https://commons.wikimedia.org/wiki/File:Pinout_of_ARDUINO_Board_and_ATMega328PU.svg
https://commons.wikimedia.org/wiki/File:Pinout_of_ARDUINO_Board_and_ATMega328PU.svg
https://commons.wikimedia.org/wiki/File:Pinout_of_ARDUINO_Board_and_ATMega328PU.svg
https://commons.wikimedia.org/wiki/File:Pinout_of_ARDUINO_Board_and_ATMega328PU.svg
https://commons.wikimedia.org/wiki/File:Pinout_of_ARDUINO_Board_and_ATMega328PU.svg
https://commons.wikimedia.org/wiki/File:Pinout_of_ARDUINO_Board_and_ATMega328PU.svg
https://commons.wikimedia.org/wiki/File:Pinout_of_ARDUINO_Board_and_ATMega328PU.svg
https://commons.wikimedia.org/wiki/File:Pinout_of_ARDUINO_Board_and_ATMega328PU.svg
https://commons.wikimedia.org/wiki/File:Pinout_of_ARDUINO_Board_and_ATMega328PU.svg
https://en.wikipedia.org/wiki/Creative_Commons
https://en.wikipedia.org/wiki/Creative_Commons
https://en.wikipedia.org/wiki/Creative_Commons
https://en.wikipedia.org/wiki/Creative_Commons
https://en.wikipedia.org/wiki/Creative_Commons
https://en.wikipedia.org/wiki/Creative_Commons
https://en.wikipedia.org/wiki/Creative_Commons
https://en.wikipedia.org/wiki/Creative_Commons
https://en.wikipedia.org/wiki/Creative_Commons
https://en.wikipedia.org/wiki/Creative_Commons
https://en.wikipedia.org/wiki/Creative_Commons
https://en.wikipedia.org/wiki/Creative_Commons
https://en.wikipedia.org/wiki/Creative_Commons
https://en.wikipedia.org/wiki/Creative_Commons
https://en.wikipedia.org/wiki/Creative_Commons

Building a NodeBots Swarm Chapter 11

[172]

Checking the platform support page
Some boards support protocols and peripherals that others do not: the Arduino Uno has
analog-in pins while the Pi does not, but the Pi has USB support while the Uno does not.
Luckily, the Johnny-Five documentation, under Platform Support, tells you what is and isn't
supported. The Uno is shown here as an example:

Now that you've got a glimpse at where you can continue your adventure within Johnny-
Five, let's take a look at the even larger NodeBots world outside.

Building a NodeBots Swarm Chapter 11

[173]

Other node robotics platforms
There's a wide world of NodeBots out there, and this list is by no means exhaustive. But
let's take our first step into that wider world.

The Tessel 2
The Tessel project sought to create a Node.js native robotics project at a relatively low cost
but with a great user experience, and they really have done a great job (disclaimer: I'm on
the Tessel project team as a contributing member). In hardware terms, it's much like a
Raspberry Pi—it runs Node.js on top of Linux; but not only is it a different form of Linux,
the tessel-cli abstracts away much of the ssh-ing and Linux commands that we had to
do for the Pi. The Tessel 2 is the current model, and it supports Johnny-Five right out of the
box. To learn more, visit the Tessel project website at https:/ ​/​tessel. ​io/ ​.

Image used with open-source license from https://github.com/tessel/project

https://tessel.io/
https://tessel.io/
https://tessel.io/
https://tessel.io/
https://tessel.io/
https://tessel.io/
https://tessel.io/
https://tessel.io/

Building a NodeBots Swarm Chapter 11

[174]

The Espruino ecosystem
There are also bots outside the Johnny-Five ecosystem that run versions of JavaScript
instead of full Node.js. One very popular set is the Espruino project boards. There's the
Espruino main board, Espruino Wi-Fi, the Espruino Pico, Puck.js, Pixl.js, and an MDBT42Q
breakout available at the time of writing. The Espruino project is headed up by Gordon
Williams, you can find the boards at https:/ ​/​www. ​adafruit. ​com/ ​?​q=​Espruino, while
further information is available at http:/ ​/ ​www. ​espruino. ​com/ ​.

https://www.adafruit.com/?q=Espruino
https://www.adafruit.com/?q=Espruino
https://www.adafruit.com/?q=Espruino
https://www.adafruit.com/?q=Espruino
https://www.adafruit.com/?q=Espruino
https://www.adafruit.com/?q=Espruino
https://www.adafruit.com/?q=Espruino
https://www.adafruit.com/?q=Espruino
https://www.adafruit.com/?q=Espruino
https://www.adafruit.com/?q=Espruino
https://www.adafruit.com/?q=Espruino
https://www.adafruit.com/?q=Espruino
https://www.adafruit.com/?q=Espruino
https://www.adafruit.com/?q=Espruino
https://www.adafruit.com/?q=Espruino
http://www.espruino.com/
http://www.espruino.com/
http://www.espruino.com/
http://www.espruino.com/
http://www.espruino.com/
http://www.espruino.com/
http://www.espruino.com/
http://www.espruino.com/
http://www.espruino.com/
http://www.espruino.com/

Building a NodeBots Swarm Chapter 11

[175]

The Espruino family holds a dear place in my heart, as it powered one of my first ever
NodeBots, a light-up dress:

The author giving a panel talk at NodeConf US 2014 in her light-up dress shown in the above image

Programming graphically with Node-RED
Node-RED is a project that allows you to graphically program using blocks and write
blocks using Node.js. Its graphical interface makes many tasks easier to grasp for younger
soon-to-be programmers:

Building a NodeBots Swarm Chapter 11

[176]

Image used with an open-source license from https://github.com/node-red/node-red

Again, this list just scratches the surface of the ever-burgeoning NodeBots world, and I
encourage you to explore and find what works for you!

Continuing on your NodeBots adventure
Here are a few pieces of advice I've curated over the years to help you continue on your
NodeBots journey; I hope they help you and I can't wait to see what you build!

Building a NodeBots Swarm Chapter 11

[177]

Figuring out what to build
I tend to keep a note file open on my phone of cool things I'd like to have. Then, I go
through that list and think: can I build this? I make sure not to consider whether I can buy it
straight-up right away—sometimes it's more fun to build the thing you want instead of just
buying it, and about 90% of the time, you end up being able to build a project that suits you
instead of making do with a store-bought item that doesn't quite do everything you need.

Reaching out to the NodeBots community
Join us on Gitter at https:/ ​/​gitter. ​im/ ​rwaldron/ ​johnny- ​five. We love to help
troubleshoot problems and answer questions! When you see someone doing NodeBots on
Twitter, Reddit, and so on, make sure to reach out! Collaboration brings solutions and
innovation, and it's a case of the more the merrier in the Johnny-Five and NodeBots
community!

Where to go to learn more about Electronics
Here's a small selection of books that help teach electronics and related skills to those of
you who aren't electrical engineers; I find them super helpful for when I have a hardware
problem on my projects:

The Adafruit Guide to Excellent Soldering (https:/ ​/​learn. ​adafruit. ​com/
adafruit- ​guide- ​excellent- ​soldering/ ​tools). If you don't know how to solder,
or you've just been winging it, give this a read to make sure your soldering isn't
what's stopping your project from working.
Practical Guide to Electronics for Inventors, Fourth Edition, by Paul Scherz. This is a
thick book and a dense read, but is a great reference work if you want to learn
how electronic components work without doing differential equations.
Getting Started in Electronics, by Forrest M Mims III. Do you need something a bit
lighter than the Practical Guide? This book is a seminal work in hobbyist
electronics, and this series of project notebooks teaches you how to use
components to build fun and educational projects.

https://gitter.im/rwaldron/johnny-five
https://gitter.im/rwaldron/johnny-five
https://gitter.im/rwaldron/johnny-five
https://gitter.im/rwaldron/johnny-five
https://gitter.im/rwaldron/johnny-five
https://gitter.im/rwaldron/johnny-five
https://gitter.im/rwaldron/johnny-five
https://gitter.im/rwaldron/johnny-five
https://gitter.im/rwaldron/johnny-five
https://gitter.im/rwaldron/johnny-five
https://gitter.im/rwaldron/johnny-five
https://gitter.im/rwaldron/johnny-five
https://gitter.im/rwaldron/johnny-five
https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools
https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools
https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools
https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools
https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools
https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools
https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools
https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools
https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools
https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools
https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools
https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools
https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools
https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools
https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools
https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools
https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools
https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools

Building a NodeBots Swarm Chapter 11

[178]

Summary
In this chapter, we completed our NodeBots journey together by learning how to get our
NodeBots to talk to each other (or themselves). Then, we delved into the wider world of
Johnny-Five and NodeBots. Finally, we looked at good reads to continue your quest for
knowledge regarding electronics and related skills.

I love to see what my readers build—please feel free to reach me at @nodebotani.st or
@nodebotanist on twitter to show me what you have come up with—even if it's a
blinking LED and you're just proud to show it, I'm always happy to see it.

Thank you so much for reading. I appreciate my readers and wish you all the best!

Assessments

Chapter 1
We'll use the Linux operating system, via the Raspbian distribution, and leverage1.
it to run our projects in Node.js.
GPIO stands for General-Purpose Input/Output.2.
Rick Waldron started the Johnny-Five project back in 2012 and wrote a program3.
that used node-serialport to operate an Arduino Uno with Node.js.
We run uname -m command on the command line of our Pi ssh session to find4.
out what ARM architecture the Raspberry Pi uses.
Changing the default Raspberry Pi password is important because default5.
username and password isn't very secure, especially when your Pi is connected
to the internet.
Node.js allows you to create even advanced robotics projects without having to6.
deal with any low-level languages, also it has Event-based systems and Garbage
collection/automatic memory management.
Node.js prides itself on creating small, bordering on tiny, packages, and has the7.
excellent npm package manager (and others) to help manage those packages.

Chapter 2
The first LED.strobe() parameter defines the blinking speed of LED, which is1.
100 ms by default. If the argument is defined as 500 then the blink will go in 500
ms intervals.
The second line of argument use require function to pull in the johnny-five2.
modules.
Johnny-Five LED objects are output only and therefore do not emit any events.3.
Raspberry Pi pin P1-29 translate to GPIO 5 in terms of GPIO#.4.
LED.blink() function is an alias to LED.strobe() function.5.
We begin with constructing a board object, and we pass a new instance of the6.
raspi-io module in as its I/O. This is how we tell the Johnny-Five library we're
running this code on a Raspberry Pi.

Assessments

[180]

Chapter 3
PWM stands for Pulse-width modulation, it sets the percentage of time that a pin1.
is HIGH and LOW. For an LED, it sets the effective brightness.
The Raspberry Pi 3 B+ has 2 PWM pins, but they operate on the same channel,2.
effectively creating 1 PWM pin.
We need the GPIO expander because the RGB LED needs 3 PWM pins to fully3.
function, and the Pi only has 1 on board.
7 -- red, green, blue, white (red+green+blue), yellow (red+green), purple4.
(red+blue), and cyan (green+blue).
The GPIO expander communicates with the Raspberry Pi using the I2C protocol.5.
The color module takes in strings representing color in various formats (#FFF,6.
rgb(255,255,255), and translates them into a red, green, and blue channel that our
Pi and LED understand.
The REPL helps with debugging by letting you see and manipulate the state the7.
bot is in. It is powerful because most robotics platforms have a way of altering
the state of the code while running.

Chapter 4
The events available to the Johnny-Five button object are press, release, and1.
hold.
The Raspberry Pi cannot directly use analog input devices because all of its pins2.
are digital.
We will use sensors with the Pi that add a digital interface to access the readings3.
of the analog sensor itself.
There are no events for the Johnny-Five LED.RGB object because it strictly does4.
output.

Chapter 5
An analog input sensor takes in data from its surroundings and converts it into a1.
value that is represented by a voltage level sent either to an
intermediate processor or the microcontroller directly.
Analog sensors cannot interface directly with the Pi because all of the Pi's GPIO2.
pins are digital.

Assessments

[181]

Two digital interfaces we can use to interface analog sensors with the Pi are I2C3.
and SPI.
The two pins (besides ground and power) that an I2C device needs to operate are4.
an SDA (data) pin and an SCL (clock) pin.
The sensor object can fire the data event, which means data has been collected,5.
and the change event, which indicates that the data from the sensor has
changed.
barcli is helpful in processing sensor data because instead of reading hundreds of6.
lines of numbers, you can look at a bar graph and how it changes when you
manipulate the sensor.

Chapter 6
A motor is an electrical device that converts electricity into rotational movement1.
The difference between a motor and a stepper motor is that motor can only be2.
told what direction and speed to go, while a stepper motor can be told how many
pre-defined increments to move, making it better for precision movements.
You should use external power for motors because otherwise, it will draw too3.
much power from the Raspberry Pi, causing strange errors or even reboots while
your project is running. Your motors may also run slowly or not respond to
commands when powered directly from the Pi.
We need a Pi hat to control our motor because getting the motor to move4.
backward requires extra components that the hat provides—it also makes it
much easier to supply external power to the motors.
The benefits of the Motors object when controlling multiple motors is the ability5.
to control all of your motors in the group with one command while retaining the
ability to send commands to the individual motors.

Chapter 7
The difference between servos and motors is that you can tell a servo what angle1.
to move to, while you can only tell a motor to go forwards or backward and at
what speed.
The difference between regular and continuous servos is regular servos can go2.
from 0-180 degrees and you can control what degree, while you can only tell a
continuous servo which way to rotate and at what speed, but it has full 360-
degree movement.

Assessments

[182]

Servos require an external power source because otherwise, it will draw too3.
much power from the Raspberry Pi, causing strange errors or even reboots while
your project is running. Your motors may also run slowly or not respond to
commands when powered directly from the Pi.
You would use servos over motors when you want your movements to go to a4.
specific angle every time.
The benefits of the Johnny-Five Servos object is the ability to control all of your5.
servos in the group with one command while retaining the ability to
send commands to the individual servos.

Chapter 8
Animations are necessary for complex movements with multiple servos because1.
timing is key for these movements, and moving all servos as fast as they can go
with no easing makes complex movements nigh-impossible.
A keyframe is an array of information about the locations of the servos in an2.
animation at an arbitrary point in time, defined by the animation segment.
A cue point is a point in the animation that lines up with a keyframe. When these3.
are combined with duration in the animation segment, you will get a time for
each keyframe.
The three pieces of an animation segment are the keyframes, the cue points, and4.
the duration.
Easing manipulates our animation keyframes and segments by changing the5.
acceleration rate of the servos as they travel from one keyframe to another.
The method of the animation object that stops the current segment and clears the6.
animation queue is Animation.stop().
Calling Animation.speed(.25) slows the currently running animation to 1/47.
of its original speed.

Chapter 9
The Pi is well-suited for projects that require remote data because of its onboard1.
ability to connect to the internet via either WiFi or Ethernet.
The considerations that need to be taken when making regular web requests2.
from the Pi are:

The size of the payload
How much CPU parsing the payload will take

Assessments

[183]

Whether the data being accessed was meant to be accessed
WiFi requests take a lot of power for the Pi and can cause problems if
the Pi doesn't have a proper power supply

We can chain the LCD object calls, such as LCD.clear().home() because the3.
Johnny-Five Objects always return the instance of the Object the method was
working on, so another method can be called on it.
We use an I2C backpack with our LCD to cut the number of needed wires and4.
pins from 8 to 2, and eliminate the need to hook up our own potentiometer to
adjust LCD contrast.
We would need more components to use the LCD without the backpack—we5.
would need a potentiometer to control the contrast of the LCD.
 LCD.on() does not turn on the entire LCD, instead, it turns on the LCD6.
backlight.

Chapter 10
Two ways IoT devices interface with the internet that aren't specific to IoT are1.
HTTP/S and WebSockets.
MQTT stands for Message Queueing Telemetry Transport.2.
An MQTT client is capable of connecting to a broker, subscribing to topics,3.
process incoming messages to topics they are subscribed to, and publishing to
topics.
An MQTT broker is capable of letting MQTT clients connect, making sure4.
published messages go to all clients that are subscribed to the message's topic,
and publishing messages to any topic.
The Pi gets a copy of the messages we send to AdafruitIO because it is subscribed5.
to the topic it is publishing to, and every device subscribed to the topic is sent the
message by the broker.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Learning Robotics using Python - Second Edition
Lentin Joseph

ISBN: 978-1-78862-331-5

Design a differential robot from scratch
Model a differential robot using ROS and URDF
Simulate a differential robot using ROS and Gazebo
Design robot hardware electronics
Interface robot actuators with embedded boards
Explore the interfacing of different 3D depth cameras in ROS
Implement autonomous navigation in ChefBot
Create a GUI for robot control

https://www.packtpub.com/hardware-and-creative/learning-robotics-using-python-second-edition

Other Books You May Enjoy

[185]

ROS Robotics Projects
Lentin Joseph

ISBN: 978-1-78355-471-3

Create your own self-driving car using ROS
Build an intelligent robotic application using deep learning and ROS
Master 3D object recognition
Control a robot using virtual reality and ROS
Build your own AI chatter-bot using ROS
Get to know all about the autonomous navigation of robots using ROS
Understand face detection and tracking using ROS
Get to grips with teleoperating robots using hand gestures
Build ROS-based applications using Matlab and Android
Build interactive applications using TurtleBot

https://www.packtpub.com/hardware-and-creative/ros-robotics-projects

Other Books You May Enjoy

[186]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Adafruit
 reference 85
AdafruitIO dashboard
 button, wiring up 149
 client constructor, adding 150, 151, 152
 LCD, adding 149
 LCD, wiring up 149
 MQTT events, sending with button 149
 MQTT events, viewing with LCD 149
AdafruitIO
 Message Queuing Telemetry Transport (MQTT),

setting up 144
 reference 145
ambient light sensor
 .fscaleTo() function, using 68
 .scaleTo() function, using 68
 about 64
 bar graph, obtaining 70
 barcli graph, constructing 70
 barcli, importing 70
 barcli, using 69
 data, printing to command line 68, 69
 Johnny-Five sensor data, formatting 67
 Johnny-Five sensor data, using 67
 Johnny-Five sensor events 66
 readings, obtaining 66
 readings, printing to command line 66
 SCL pins 65
 SDA pins 65
 sensor data, handling in event handler 66
 wiring up 65, 66
analog input
 analog GPIO expanders 51
 handling, with Raspberry Pi 51
 input devices, using with digital interfaces 51

 versus digital input 51
analog sensor
 determining, for Johnny-Five 64
 I2C devices 63
 selecting 63
 SPI 63
 using 63
animation library, terminology
 cue point 115
 duration 115
 easing 115
 frame 114
 keyframe 114
 tweening 115
animation library
 implicit animations, playing with 112, 113, 114
 need for 109
 servo.to() function, using 110, 111, 112
 servos, moving with true precision 109
 using 110
animation object
 animation sequence, planning out 117
 animation, implementing 119
 animation, viewing 119, 120
 constructing 116
 creating 116, 117
 cue points, setting 119
 duration, setting 119
 keyframes, creating 117
 keyframes, programming 118
 null and false, using as positions in keyframes

118

animation segments
 implementing, in REPL 124
 looping 122
 pausing 123, 124
 playing 121, 123, 124

[188]

 queuing 121
 speed, modifying 123
 stopping 123, 124
ARM processor
 version, detecting 22, 23

B
breadboard
 reference 33
button object, Johnny-Five
 about 53, 54
 events 54
buttons
 adding, to RGB LED project 56
 placing, on breadboard 55
 pull-down resistor, using 56
 wiring up 55

C
cat toy project
 creating 83
 randomness, coding to start/stop motor 84
 sticky note, putting on motor shaft 84
color npm module
 using 45
continuous servo project
 continuous servo constructor 105
 creating 103
 methods 105
 playing, with continuous servo in REPL 106
 REPL, using 105
 wiring up 104
continuous servos
 versus regular servos 93

D
Debian 9
digital input
 versus analog input 51
downforeveryoneorjustme.com
 reference 136

E
ease-component

 reference 120
Espruino ecosystem
 about 174
 reference 174
Etcher
 about 13
 reference 13

G
general-purpose input/output (GPIO) pins 9
GPIO expander
 need for 43
 wiring up, with RGB LED 43
group servos, with REPL
 adding, in REPL functionality 100
 building 97
 Johnny-Five servos object, using 98
 Servos object, adding 99
 wiring up 98

H
hardware interfaces
 setting up 19
 turning on 20, 21

I
I2C devices 63
IFTTT
 about 153
 linking, to Adafruit 153, 154
 reference 153
 social media notifier bot, building 153
inputs
 digital input, versus analog input 51
 handling, for Johnny-Five 52
 using, robotics projects 50
IoT device, communications
 long polling 143
 options 143
 websockets 143

J
Johnny-Five motor object
 coding 80

[189]

 constructors 81
 executing 82
 functions, implementing 81
 loading 82
 REPL control, adding 81
Johnny-Five servo
 coding, to sweep 97
 Johnny-Five servo object 94
 wiring 93
 wiring, to PWM hat 95, 96
Johnny-Five
 about 9
 board object, creating 52
 board ready event handler 53
 button object 53
 component objects, constructing 53
 exploring 28
 hardware, coding in Node.js 11
 input event handlers 53
 inputs, handling 52
 installing 21, 24
 libraries, including 52
 output device manipulation 53
 reference 29
 structure 52

L
LED object
 about 39
 reference 40
LED-blink project
 building 30, 31
 code, executing 36
 code, installing on Raspberry Pi 36
 Raspberry Pi pin numbers 31, 32, 33
Led.RGB object 40, 41
LED
 cobbler, attaching 33
 cobbler, connecting together 33
 resistor, attaching 35
 wiring up 33
light meter, with servo
 executing 103
 light sensor, adding 101
 project, building 100

 project, coding 102
 servo, wiring into meter 102
 using 103
Linux
 Raspberry Pi, booting up with SSH 16
long polling 143

M
Mac
 Raspberry Pi, booting up with SSH 16
Message Queuing Telemetry Transport (MQTT)
 about 144
 account, creating 145, 146
 connection, testing 148, 149
 feed, creating 145, 146
 feed, subscribing with mqtt npm module 147
 MQTT broker 144
 MQTT client 144
 MQTT message 144
 setting up, with AdafruitIO 144
microcontroller
 about 8
 motors, controlling 77
mosquitto 144
motor-driven project
 implementing, on Pi 79, 80
 preparing, with Raspberry Pi 78
 wiring up 78, 79
motorized projects
 troubleshooting 82, 83
motors, versus servos
 about 92
 calculated movements 92
 powering 93
 regular, versus continuous servos 93
motors
 about 76
 controlling, with microcontroller 77
 DC motor 76
 stepper motors 76
 with brakes 76
mqtt npm module
 dotenv module 147, 148
 feed, subscribing 147
 mqtt module 147

[190]

N
night-light
 coding 72, 73
 creating 71
 LED, wiring up 71
node packages
 color npm module, using 45
 using 44
node robotics platforms
 Espruino ecosystem 174
 Tessel 2 173
Node-RED
 programming, graphically 175
Node.js
 benefits, in coding robotics projects 11
 installing 21
 reference 21, 22
NodeBots
 .env file, creating 167
 client and broker folders, moving to Pi 164
 collected data, using 127, 128
 community 177
 connecting, to internet 127
 considerations 128, 176, 177
 enhancing 169
 folders, setting up 163
 Johnny-Five, using on other boards 169
 light sensor, adding to Pi 165
 MQTT broker, creating on Pi 166
 MQTT client, programming 166
 MQTT client, programming for multiple Pi 168
 MQTT project, executing 168
 MQTT project, executing for single Pi 168
 MQTT project, executing with multiple Pi 169
 multiple NodeBots, connecting 162
 node robotics platforms 173
 npm modules, using 127
 pin numbers, figuring out 170
 platform support page, checking 172
 project files, setting up 163
 Raspberry Pi, setting up 163
 resources 177
 with multiple Pi 164
npm

 installing 21
 setting up, to manage modules 28

O
OpenWeatherMap
 API key, obtaining 129, 130
 reference 129
 request, handling 130
 response, parsing 131
 weather data, obtaining on Pi 128
operating system
 installing 12
 Raspbian Lite, downloading 12

P
password
 modifying 19
 setting up 19
Pi Cobbler 26
Pi Wedge 26
project folder
 creating 27
 npm, setting up to manage modules 28
pull-down resistor
 using 56
PuTTY
 reference 17
PWM pins 41, 42

R
rainbow project
 building 44
 button, adding for color 60
 coding, with Johnny-Five 45, 46
 rainbow cycle, refactoring 59, 60
 starting 59
 stopping 59
Raspberry Pi
 about 7, 10
 advantages 10, 11
 analog input, handling 51
 ARM processor version, detecting 22, 23
 booting up 15
 booting, via SSH from Linux or Mac 16
 booting, via SSH from Windows 17, 18, 19

[191]

 Debian 9
 general-purpose input/output (GPIO) pins 9
 Johnny-Five 9
 microcontroller 8
 motor-driven project, preparing 78
 Raspbian 9
 Raspi-IO 9
 updating 20
 used, for building robotics projects 10
Raspbian 9
Raspbian Lite
 downloading 12
 files, editing on SD card 14, 15
 image, burning to SD card 13, 14
 reference 12
Raspi-IO
 about 9
 exploring 28
 installing 21, 24
 reference 29
read–eval–print loop (REPL)
 about 46
 functioning 46
 LED, controlling from command-line interface 48
 RGB LED, adding 47, 48
regular servos
 versus continuous servos 93
resistor
 LED, attaching 35
RGB LED project
 buttons, adding 56
 buttons, wiring up 56, 58
 GPIO expander, wiring up 43
 ground side rails, using 56, 57
 power, using 56, 57
 using 39
robotics projects
 inputs, using 50

S
SD card
 files, editing 14, 15
 image, burning 13, 14
servo animations
 animation segment, easing 121

 easing functions, adding 120
 easing into 120
 easing, adding 120, 121
servos, versus motors
 about 92
 calculated movements 92
 powering 93
 regular, versus continuous servos 93
social media notifier bot
 building, with IFTTT 153
 executing 160
 feeds, setting up for MQTT messages in

AdafruitIO 154, 155
 IFTTT Applets, creating 155, 156, 157, 158
 notifications, displaying on LCD 159, 160
 project, wiring up 158
SPI 63
Stretch 9

T
Tessel 2
 about 173
 reference 173
two-wheeled robot
 functions, writing 88, 89
 gearbox motors, using 85
 motors Johnny-Five object 87
 motors object, using 85
 motors project, executing 89
 TT motors, wiring up 86

W
weather dashboard
 building, with LCD 132
 coding 134, 135, 136
 data, printing on LCD 134
 LCD object, using 133
 LCD, adding to Pi 132
 LCD, clearing 134
 LCD, constructing 133
 LCD, setting up 133, 134
weather data
 obtaining, on Pi with OpenWeatherMap 128
web scraping
 downforeveryoneorjustme.com, scraping for

johnny-five.io 136, 137
 element, obtaining with Cheerio 139
 HTML, parsing 139
 HTTP request, creating 137, 139
 result, displaying 139

 with Pi 136
websockets 143
Windows
 Raspberry Pi, booting up with SSH 17, 18, 19
WinSCP
 reference 36

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Setting Up Your Development Environment
	Technical requirements
	What is the Raspberry Pi?
	Microcontrollers
	General-Purpose Input/Output (GPIO) pins
	Debian and Raspbian
	Johnny-Five and Raspi-IO
	So, the Pi is technically a microcontroller...
	...but it is also a computer!

	How we will use the Raspberry Pi
	Taking advantage of all that the Raspberry Pi has to offer!
	Johnny-Five – letting us code hardware in Node.js

	Installing the operating system
	Downloading Raspbian Lite
	Burning the image to an SD card
	Editing files on the SD card
	Booting up the Pi
	SSHing from a Linux or Mac
	SSHing from Windows

	Setting up your password and hardware interfaces
	First things first – change your password!
	Updating the Raspberry Pi
	Turning on the hardware interfaces

	Installing Node.js, Johnny-Five, and Raspi-IO
	Installing Node.js and npm
	Detecting your version of ARM processor

	Installing Johnny-Five and Raspi-IO

	Summary
	Questions
	Further reading

	Chapter 2: Creating Your First Johnny-Five Project
	Technical requirements
	Creating a project folder
	Setting up npm to manage our modules

	Getting started with Johnny-Five and Raspi-IO
	Gathering resources and documentation
	Taking a look at the LED-blink project
	Raspberry Pi pin numbers

	Wiring up an LED
	Putting together and attaching the cobbler
	Attaching the resistor and LED

	Making the LED blink
	Putting your code on the Raspberry Pi
	Running your code

	Summary
	Questions
	Further reading

	Chapter 3: Building Interactive Projects with RGB LED
	Technical requirements
	Looking at the LED and LED.RGB API
	The LED object
	The Led.RGB object

	PWM pins and GPIO expanders
	How do PWM pins work?
	Why we need a GPIO expander
	Wiring up our GPIO expander and RGB LED

	Bringing in other node packages
	Project – building a rainbow
	Using the color npm module
	Getting our Johnny-Five code started

	The REPL – a powerful tool in Johnny-Five
	How does the REPL work?
	Adding our RGB LED to the REPL
	Controlling our LED from the command-line interface

	Summary
	Questions
	Further reading

	Chapter 4: Bringing in Input with Buttons
	Technical requirements
	Using inputs in robotics projects
	Digital versus analog input
	How to handle analog input with the Raspberry Pi
	Analog GPIO expanders
	Using input devices with digital interfaces

	How Johnny-Five handles input
	The structure of a typical Johnny-Five project
	The beginning – including libraries and creating our board object
	The board ready event handler
	Constructing our component objects
	Input event handlers and output device manipulation

	The Johnny-Five button object
	The button object
	Button events

	Wiring up buttons
	Putting a button on a breadboard
	Using a pull-down resistor

	Adding buttons to our RGB LED project
	Wiring everything up
	Using the power and ground side rails
	Wiring up the buttons

	Button 1 – stop and start rainbow
	Refactoring the rainbow cycle

	Button 2 – next color

	Summary
	Questions
	Further reading

	Chapter 5: Using a Light Sensor to Create a Night-Light
	Technical requirements
	Using an analog sensor with the Pi
	Finding the right sensors for your Pi project
	I2C devices
	SPI
	How to determine if your sensor will work with Johnny-Five

	The ambient light sensor
	Wiring up the sensor
	Writing a program to get readings and print them to the command line
	The Johnny-Five sensor events
	Handling sensor data in the event handler

	Using and formatting Johnny-Five sensor data
	Using .scaleTo() and .fscaleTo() to fine-tune measurements

	Printing sensor data to the command line
	Using barcli to make the data easier to see
	Importing barcli and constructing our barcli graph
	Getting the bar graph to update

	Creating our night-light
	Wiring up the LED
	Coding this project

	Summary
	Questions
	Further reading

	Chapter 6: Using Motors to Move Your Project
	Technical requirements
	More about motors
	How to control a motor with a microcontroller

	Preparing for a motor-driven project with Raspberry Pi
	Putting the hat together
	Putting the hat on the Pi

	The Johnny-Five motor object
	Constructors for our hat
	Functions that move the motor
	Adding REPL control
	Loading and running your motor

	Troubleshooting your motorized projects
	Project – cat toy
	Putting a piece of paper on the motor shaft
	Coding the randomness to start/stop the motor

	Project – using two gearbox motors and the motors object
	Wiring up your TT motors
	The motors Johnny-Five object
	Writing some functions
	Running our motors project

	Summary
	Questions

	Chapter 7: Using Servos for Measured Movement
	Technical requirements
	Differences between motors and servos
	Calculated movements
	Regular versus continuous servos
	Powering servos and motors

	Getting a servo working with Johnny-Five
	The Johnny-Five servo object
	Wiring the servo to our PWM hat
	Coding your first servo sweep

	Project – two servos and the REPL
	Wiring up a second servo
	Using the Johnny-Five servos object
	Adding the Servos object to our code
	Adding in REPL functionality
	Playing with our servos on the command line

	Project – light meter with the servo
	Adding in the light sensor
	Making the servo into a meter
	Coding the project
	Running and using our light meter

	Project – the continuous servo
	Wiring up the servo
	Continuous servo constructor and methods
	Using the REPL with the continuous servo
	Playing with the continuous servo in the REPL

	Summary
	Questions

	Chapter 8: The Animation Library
	Technical requirements
	Animating movement
	Why we need the animation library
	Moving servos with true precision
	Implicit use of the animation library
	Using servo.to() to implicitly create an animation
	Playing with implicit animations
	Playing with implicit animations, take two

	The terminology of the animation library
	The construction of the animation object
	Creating the animation object
	Planning out the animation sequence
	Creating keyframes
	Using null and false as positions in keyframes
	Programming our keyframes

	Setting cue points and duration
	Putting it all together to make an animation
	Watching your animation at work

	Easing into your servo animations
	How easing fits into an animation segment
	Adding easing to our first animation
	Easing an entire animation segment

	Learning more about queuing and playing animation segments
	Looping animation segments
	Changing the speed of animation segments
	Playing, pausing, and stopping animation segments
	Tying it all together in the REPL

	Summary
	Questions

	Chapter 9: Getting the Information You Need
	Technical requirements
	Why connect your NodeBots to the internet?
	Using the power of npm modules
	Using the data you collect
	Some things to keep in mind

	Getting weather data on our Pi with OpenWeatherMap
	Getting an OpenWeatherMap API key
	Bringing in request
	Parsing the response

	Building a weather dashboard with an LCD
	Adding an LCD to the Pi
	The LCD object
	Constructing our LCD
	Setting up the LCD
	Printing to and clearing the LCD

	Coding it all together

	Project – scraping data from websites with your Pi
	Scraping downforeveryoneorjustme.com for johnny-five.io
	Making the HTTP request
	Using Cheerio to get the element we want
	Parsing the HTML and showing the result

	Summary
	Questions
	Further reading

	Chapter 10: Using MQTT to Talk to Things on the Internet
	Technical requirements
	IoT device communications
	Long polling
	Websockets

	MQTT - an IoT PubSub protocol
	The basics of MQTT

	Setting up MQTT on the Pi with AdafruitIO
	Creating an account and a feed
	Subscribing to the feed using the mqtt npm module
	The mqtt module
	The dotenv module

	Testing our connection

	Project – adding an LCD and button to see and send MQTT events
	Wiring it all up
	Coding it all together

	Project – social media notifier bot with IFTTT
	Getting started with IFTTT
	Linking IFTTT to Adafruit

	Setting up feeds for your social media MQTT messages in AdafruitIO
	Creating our IFTTT Applets
	Wiring up our project
	Coding our social media notifications to show on the LCD
	Running your social media bot

	Summary
	Questions
	Further reading

	Chapter 11: Building a NodeBots Swarm
	Technical requirements
	Project – connecting multiple NodeBots
	Optional – setting up a second Raspberry Pi
	Setting up your project files and folders
	If you're using one Pi
	If you're using two Pis

	Adding a light sensor to the Pi
	Creating an MQTT broker on the Pi
	Programming the MQTT client – have the Pi Report Home
	If you're using one Pi
	If you're using two Pis

	Running our MQTT project
	If you're using one Pi
	If you're using two Pis

	Expanding your NodeBots knowledge
	Using Johnny-Five on other boards
	Figuring out pin numbers
	Checking the platform support page

	Other node robotics platforms
	The Tessel 2
	The Espruino ecosystem

	Programming graphically with Node-RED

	Continuing on your NodeBots adventure
	Figuring out what to build
	Reaching out to the NodeBots community
	Where to go to learn more about Electronics

	Summary

	Assessments
	Other Books You May Enjoy
	Index

