Getting
Started with
Kubernetes

Third Edition

Getting Started with

Kubernetes
Third Edition

Extend your containerization strategy by orchestrating and
managing large-scale container deployments

Jonathan Baier
Jesse White

BIRMINGHAM - MUMBAI

Getting Started with Kubernetes
Third Edition

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Rahul Nair

Content Development Editor: Sharon Raj
Technical Editor: Komal Karne

Copy Editor: Safis Editing

Project Coordinator: Drashti Panchal
Proofreader: Safis Editing

Indexer: Mariammal Chettiyar

Graphics: Tom Scaria

Production Coordinator: Shantanu Zagade

First published: December 2015
Second edition: May 2017
Third edition: October 2018

Production reference: 2061118
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78899-472-9

www . packtpub.com

http://www.packtpub.com

Dedicated to my loving and talented wife, Kaitlyn. Thank you for your support while writing
this book, and for all the good work you do in this world.

- Jesse White

A Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt .com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors

Jonathan Baier is an emerging technology leader living in Brooklyn, New York. He has had
a passion for technology since an early age. When he was 14 years old, he was so interested
in the family computer (an IBM PCjr) that he pored over the several hundred pages of
BASIC and DOS manuals. Then, he taught himself to code a very poorly-written version of
Tic-Tac-Toe. During his teenage years, he started a computer support business. Throughout
his life, he has dabbled in entrepreneurship. He currently works as Senior Vice President of
Cloud Engineering and Operations for Moody's corporation in New York.

1'd like to thank my wonderful wife, Tomoko, and my playful son, Nikko. You both gave
me incredible support and motivation during the writing process for both editions of this
book. Your smiles move mountains I could not on my own. You are my True North and
guiding light in the storm.

I'd also like to thank my co-author, Jesse, for all the hard work in updating and adding
new chapters to this edition. You not only made this edition possible, but also took the book
to the next level!

Jesse White is a 15-year veteran and technology leader in New York City's very own Silicon
Alley, where he is a pillar of the vibrant engineering ecosystem. As founder of DockerNYC
and an active participant in the open source community, you can find Jesse at a number of
leading industry events, including DockerCon and VelocityConf, giving talks and
workshops.

About the reviewer

Jakub Pavlik is a co-founder, former CTO, and chief architect of TCP Cloud (acquired by
Mirantis in 2016). Jakub and his team worked for several years on the IaaS cloud platform
based on the OpenStack-Salt, Kubernetes, and Open Contrail projects, which they deployed
and operated for global service providers. Leveraging his skills in architecture,
implementation, and operation, his TCP Cloud team was acquired by #1 pure play
OpenStack company Mirantis. Currently a director of engineering, together with other
skilled professionals, Jakub builds and operates a new generation of edge-computing
platforms at Volterra Inc. He is also an enthusiast of Linux OS, ice hockey (with Pepa), and
films, and loves his wife, Hanulka.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Preface

Table of Contents

N

Chapter 1: Introduction to Kubernetes

Technical requirements
A brief overview of containers
What is a container?
cgroups
Namespaces
Union filesystems
Why are containers so cool?

© o N

1"
13

15

The advantages of Continuous Integration/Continuous Deployment 17

Resource utilization 18
Microservices and orchestration 19
Future challenges 19
Our first clusters 20
Running Kubernetes on GCE 21
Kubernetes Ul 32
Grafana 36
Command line 37
Services running on the master 38
Services running on the minions 41
Tearing down a cluster 44
Working with other providers 44
CLI setup 45
IAM setup 45
Cluster state storage 47
Creating your cluster 47
Other modes 53
Resetting the cluster 54
Investigating other deployment automation 54
Local alternatives 55
Starting from scratch 56
Cluster setup 56
Installing Kubernetes components (kubelet and kubeadm) 58

Setting up a master 59

Joining nodes 61
Networking 61

Joining the cluster 62
Summary 63
Questions 63

Table of Contents

Further reading

Chapter 2: Building a Foundation with Core Kubernetes Constructs

Technical requirements
The Kubernetes system
Nucleus
Application layer
Governance layer
Interface layer
Ecosystem
The architecture
The Master
Cluster state
Cluster nodes
Master
Nodes (formerly minions)
Core constructs
Pods
Pod example
Labels
The container's afterlife
Services
Replication controllers and replica sets
Our first Kubernetes application
More on labels
Replica sets
Health checks
TCP checks
Life cycle hooks or graceful shutdown
Application scheduling
Scheduling example
Summary
Questions
Further reading

Chapter 3: Working with Networking, Load Balancers, and Ingress

Technical requirements
Container networking
The Docker approach
Docker default networks
Docker user-defined networks
The Kubernetes approach
Networking options
Networking comparisons
Weave
Flannel
Project Calico

[ii]

Table of Contents

Canal 117
Kube-router 117
Balanced design 118
Advanced services 119
External services 120
Internal services 121
Custom load balancing 123
Cross-node proxy 125
Custom ports 126
Multiple ports 127
Ingress 128
Types of ingress 129
Migrations, multicluster, and more 135
Custom addressing 137
Service discovery 138
DNS 139
Multitenancy 140
Limits 142

A note on resource usage 146
Summary 146
Questions 146
Further reading 147
Chapter 4: Implementing Reliable Container-Native Applications 148
Technical requirements 148
How Kubernetes manages state 149
Deployments 149
Deployment use cases 149
Scaling 151
Updates and rollouts 152
History and rollbacks 156
Autoscaling 158
Jobs 161
Other types of jobs 163
Parallel jobs 163
Scheduled jobs 164
DaemonSets 164
Node selection 166
Summary 169
Questions 169
Chapter 5: Exploring Kubernetes Storage Concepts 170
Technical requirements 171
Persistent storage 171
Temporary disks 172

[iii]

Table of Contents

Cloud volumes 173
GCE Persistent Disks 173

AWS Elastic Block Store 179

Other storage options 180
PersistentVolumes and Storage Classes 180
Dynamic volume provisioning 182
StatefulSets 183
A stateful example 184
Summary 190
Questions 191
Further reading 191
Chapter 6: Application Updates, Gradual Rollouts, and Autoscaling 192
Technical requirements 193
Example setup 193
Scaling up 194
Smooth updates 195
Testing, releases, and cutovers 198
Application autoscaling 202
Scaling a cluster 204
Autoscaling 204
Scaling up the cluster on GCE 205
Scaling up the cluster on AWS 209
Scaling manually 211
Managing applications 211
Getting started with Helm 212
Summary 215
Questions 216
Further reading 216
Chapter 7: Designing for Continuous Integration and Delivery 217
Technical requirements 217
Integrating Kubernetes with a continuous delivery pipeline 218
gulp.js 218
Prerequisites 218
gulp.js build example 219
The Kubernetes plugin for Jenkins 222
Prerequisites 222
Installing plugins 223
Configuring the Kubernetes plugin 226

Helm and Minikube 231
Bonus fun 236
Summary 236
Questions 236
Further reading 237

[iv]

Table of Contents

Chapter 8: Monitoring and Logging
Technical requirements
Monitoring operations
Built-in monitoring

Exploring Heapster
Customizing our dashboards

FluentD and Google Cloud Logging

FluentD

Maturing our monitoring operations

GCE (Stackdriver)
Signing up for GCE monitoring
Alerts

Beyond system monitoring with Sysdig

Sysdig Cloud
Detailed views
Topology views
Metrics
Alerting
The Sysdig command line
The Csysdig command-line Ul
Prometheus
Prometheus summary
Prometheus installation choices
Tips for creating an Operator
Installing Prometheus
Summary
Questions

Further reading

Chapter 9: Operating Systems, Platforms, and Cloud and Local

Providers

Technical requirements

The importance of standards
The OCI Charter

The OCI
Container Runtime Interface
Trying out CRI-O
More on container runtimes

CNCF

Standard container specification

CoreOS

rkt

etcd
Kubernetes with CoreOS
Tectonic

Dashboard highlights

[v]

238
238
238
239
241
243
247
248
249
250
250
250
252
252
253
254
256
257
259
260
262
262
263
264
265
267
268
268

269
269
270
271
272
273
276
283
284
285
286
289
290
290
292
293

Table of Contents

Hosted platforms
Amazon Web Services
Microsoft Azure
Google Kubernetes Engine
Summary
Further reading

Chapter 10: Designing for High Availability and Scalability
Technical requirements
Introduction to high availability

How do we measure availability?
Uptime and downtime
Uptime
Downtime
The five nines of availability
HA best practices
Anti-fragility
HA clusters
HA features of the major cloud service providers
HA approaches for Kubernetes
Prerequisites
Setting up
Stacked nodes
Installing workers
Cluster life cycle
Admission controllers
Using admission controllers
The workloads API
Custom resource definitions
Using CRDs
Summary
Questions
Further reading

Chapter 11: Kubernetes SIGs, Incubation Projects, and the CNCF
Technical requirements

Setting up Git for contributions
Git's benefits

CNCEF structure

What Kubernetes isn't
Kubernetes SIGs
How to get involved
Summary
Questions
Further reading

Chapter 12: Cluster Federation and Multi-Tenancy

297
297
297
298
298
298

299
299
300
300
300
301
301
302
303
304
305
305
306
307
309
310
315
315
316
317
318
320
321
325
326
326

327
328

329
331

332
334
339
342
343
343
343

344

[vil

Table of Contents

Technical requirements 344
Introduction to federation 345
Why federation? 345
The building blocks of federation 346
Key components 349
Federated services 350
Setting up federation 350
Contexts 351
New clusters for federation 351
Initializing the federation control plane 352
Adding clusters to the federation system 354
Federated resources 354
Federated configurations 357
Federated horizontal pod autoscalers 360
How to use federated HPAs 362
Other federated resources 362
Events 363
Jobs 363
True multi-cloud 363
Getting to multi-cloud 364
Deleting the cluster 374
Summary 377
Questions 377
Further reading 377
Chapter 13: Cluster Authentication, Authorization, and Container
Security 378
Basics of container security 378
Keeping containers contained 379
Resource exhaustion and orchestration security 379
Image repositories 380
Continuous vulnerability scanning 381
Image signing and verification 381
Kubernetes cluster security 382
Secure API calls 383
Secure node communication 383
Authorization and authentication plugins 384
Admission controllers 384
RBAC 385
Pod security policies and context 386
Enabling PodSecurityPolicies 386
Additional considerations 391
Securing sensitive application data (secrets) 391
Summary 393
Questions 393

[vii]

Table of Contents

Further reading

Chapter 14: Hardening Kubernetes
Ready for production
Ready, set, go
Lessons learned from production
Setting limits
Scheduling limits
Memory limit example
Scheduling CPU constraints
CPU constraints example
Securing a cluster
Third-party companies
Private registries
Google Kubernetes Engine
Azure Kubernetes Service
ClusterHQ
Portworx
Shippable
Twistlock
Aqua Sec
Mesosphere (Kubernetes on Mesos)
Deis
OpenShift
Summary
Questions
Further reading

Chapter 15: Kubernetes Infrastructure Management

Technical requirements
Planning a cluster
Picking what's right
Securing the cluster
Tuning examples
Upgrading the cluster
Upgrading PaaS clusters
Scaling the cluster
On GKE and AKS
DIY clusters
Node maintenance
Additional configuration options
Summary
Questions
Further reading

Assessments

394

395
395
397
397
399
399
400
403
403
405
407
407
408
408
409
409
409
409
409
410
410
410
411
411
411

412
412
413
413
415
416
417
417
421
422
422
423
424
424
425
425

426

[viii]

Table of Contents

Other Books You May Enjoy 433

Index 436

[ix]

Preface

This book is a guide to getting started with Kubernetes and overall container management.
We will walk you through the features and functions of Kubernetes and show how it fits
into an overall operations strategy. You'll learn what hurdles lurk in moving a container off
the developer's laptop and managing them at a larger scale. You'll also see how Kubernetes
is the perfect tool to help you face these challenges with confidence.

Who this book is for

Whether you've got your head down in development, you're up to your neck in operations,
or you're looking forward as an executive, Kubernetes and this book are for you. Getting
Started with Kubernetes will help you understand how to move your container applications
into production with best practices and step-by-step walkthroughs tied to a real-world
operational strategy. You'll learn how Kubernetes fits into your everyday operations, which
can help you prepare for production-ready container application stacks.

Having some familiarity with Docker containers, general software development, and
operations at a high level will be helpful.

What this book covers

Chapter 1, Introduction to Kubernetes, is a brief overview of containers and the how, what,
and why of Kubernetes orchestration, exploring how it impacts your business goals and
everyday operations.

Chapter 2, Building a Foundation with Core Kubernetes Constructs, uses a few simple
examples to explore core Kubernetes constructs, namely pods, services, replication
controllers, replica sets, and labels. Basic operations, including health checks and
scheduling, will also be covered.

Chapter 3, Working with Networking, Load Balancers, and Ingress, covers cluster networking
for Kubernetes and the Kubernetes proxy. It also takes a deeper dive into services, and
shows a brief overview of some higher-level isolation features for multi-tenancy.

Preface

Chapter 4, Implementing Reliable, Container-Native Applications, covers both long-running
application deployments and short-lived jobs. We will also look at using DaemonSets to
run containers on all or subsets of nodes in the cluster.

Chapter 5, Exploring Kubernetes Storage Concepts, covers storage concerns and persistent
data across pods and the container life cycle. We will also look at new constructs for
working with stateful applications in Kubernetes.

Chapter 6, Application Updates, Gradual Rollouts, and Autoscaling, is a quick look at how to
roll out updates and new features with minimal disruption to uptime. We will also look at
scaling for applications and the Kubernetes cluster.

Chapter 7, Designing for Continuous Integration and Delivery, explains how to integrate
Kubernetes into your continuous delivery pipeline. We will see how to use a K8s cluster
with gulp.js and Jenkins as well.

Chapter 8, Monitoring and Logging, teaches how to use and customize built-in and third-
party monitoring tools on your Kubernetes cluster. We will look at built-in logging and
monitoring, the Google Cloud Monitoring/Logging service, and Sysdig.

Chapter 9, Operating Systems, Platforms, and Cloud and Local Providers, starts off by covering
Open Container Project and its mission to provide an open container specification, looking
at how having open standards encourages a diverse ecosystem of container
implementations (such as Docker, rkt, Kurma, and JetPack). The second half of this chapter
will cover available OSes, such as CoreOS, Project Atomic, and their advantages as a host
OSes, including performance and support for various container implementations.

Chapter 10, Designing for High Availability and Scalability, uncovers the Kubernetes
Workload capability, which allows us to leverage all App Workload APISs, such as the
DaemonSet, Deployment, ReplicaSet, and StatefulSet APIs, in order to create foundations
for long-running, stateless, and stateful workloads. We will describe and implement
admission control to validate and/or mutate objects within the cluster.

Chapter 11, Kubernetes SIGs, Incubation Projects, and the CNCF, discusses the new globally
distributed collaboration model of Kubernetes and its partner projects. We'll describe the
three tiers of organization around SIGs, the different between incubating and graduated
projects, and how the CNCF is evolving the idea of an open source project into a
distributed foundation.

Chapter 12, Cluster Federation and Multi-Tenancy, explores the new federation capabilities
and how to use them to manage multiple clusters. We will also cover the federated version
of the core constructs and the integration to public cloud vendor DNS.

[2]

Preface

Chapter 13, Cluster Authentication, Authorization, and Container Security, gets into the
options for container security, from the container run-time level to the host itself. We will
discuss how to apply these concepts to workloads running in a Kubernetes cluster and
some of the security concerns and practices that relate specifically to running your
Kubernetes cluster.

Chapter 14, Hardening Kubernetes, and How to Find Out More about Third-Party Extensions and
Tools, covers some of the extensions available from vendors for enterprise-grade
deployments. Additionally, we'll look at a brief survey of some of the existing tools and
services that work with Kubernetes for monitoring, security, and storage.

Chapter 15, Kubernetes Infrastructure Management, focuses on how to make changes to the
infrastructure that powers your Kubernetes infrastructure, whether it be a purely public
cloud platform or a hybrid installation. We'll discuss methods for handling underlying
instance and resource instability, and strategies for running highly available workloads on
partially available underlying hardware.

To get the most out of this book

This book will cover downloading and running the Kubernetes project. You'll need access
to a Linux system (VirtualBox will work if you are on Windows) and some familiarity with
the command shell.

Additionally, you should have a Google Cloud Platform account. You can sign up for a free
trial here: https://cloud.google.com/.

Also, an AWS account is necessary for a few sections of the book. You can sign up for a free
trial here: https://aws.amazon.com/.

Download the example code files

You can download the example code files for this book from your account at
www .packt . com. If you purchased this book elsewhere, you can visit
www . packt . com/support and register to have the files emailed directly to you.

[3]

https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
http://www.packt.com
http://www.packt.com/support

Preface

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Getting-Started-with-Kubernetes-third-edition. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://www.packtpub.com/sites/default/files/
downloads/9781788994729_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "The last two main pieces of the Master nodes are kube-controller-manager
and cloud-controller-manager.”

[4]

http://www.packt.com
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781788994729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994729_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994729_ColorImages.pdf

Preface

A block of code is set as follows:

"conditions": [
{
lltype" : llReadyll,
"status": "True"

}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:
"conditions": [
{
lltype n : llReady " ,
"status": "True"

}

Any command-line input or output is written as follows:

$ kubectl describe pods/node-js-pod

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Click on Jobs and then long-task from the list, so we can see the details."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

[5]

Preface

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[6]

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

Introduction to Kubernetes

In this book, we will help you build, scale, and manage production-ready Kubernetes
clusters. Each section of this book will empower you with the core container concepts and
the operational context of running modern web services that need to be available 24 hours
of the day, 7 days a week, 365 days of the year. As we progress, you'll be given concrete,
code-based examples that you can deploy into running clusters in order to get real-world
feedback on Kubernetes' many abstractions. By the end of this book, you will have
mastered the core conceptual building blocks of Kubernetes, and will have a firm
understanding of how to handle the following paradigms:

Orchestration

Scheduling

Networking

Security

Storage

Identity and authentication
e Infrastructure management

This chapter will set the stage for why Kubernetes? and give an overview of modern
container history, diving into how containers work, as well as why it's important to
schedule, orchestrate, and manage a container platform well. We'll tie this back to concrete
objectives and goals for your business and product. This chapter will also give a brief
overview of how Kubernetes orchestration can enhance our container management strategy
and how we can get a basic Kubernetes cluster up, running, and ready for container
deployments.

In this chapter, we will cover the following topics:

e Introducing container operations and management
¢ The importance of container management
e The advantages of Kubernetes

Introduction to Kubernetes Chapter 1

e Downloading the latest Kubernetes
e Installing and starting up a new Kubernetes cluster
e The components of a Kubernetes cluster

Technical requirements

You'll need to have the following tools installed:

e Python

e AWS CLI

¢ Google Cloud CLI
e Minikube

We'll go into the specifics of these tools' installation and configuration as we go through
this chapter. If you already know how to do this, you can go ahead and set them up now.

A brief overview of containers

Believe it or not, containers and their precursors have been around for over 15 years in the
Linux and Unix operating systems. If you look deeper into the fundamentals of how
containers operate, you can see their roots in the chroot technology that was invented all
the way back in 1970. Since the early 2000s, FreeBSD, Linux, Solaris, Open VZ, Warden, and
finally Docker all made significant attempts at encapsulating containerization technology
for the end user.

While the VServer's project and first commit (running several general purpose Linux server on a
single box with a high degree of independence and security (http://ieeexplore.ieee.org/
document/1430092/?reload=true)) may have been one of the most interesting historical
junctures in container history, it's clear that Docker set the container ecosystem on fire back
in late 2013 when they went full in on the container ecosystem and decided to rebrand from
dotCloud to Docker. Their mass marketing of container appeal set the stage for the broad
market adoption we see today and is a direct precursor of the massive container
orchestration and scheduling platforms we're writing about here.

[8]

http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true
http://ieeexplore.ieee.org/document/1430092/?reload=true

Introduction to Kubernetes Chapter 1

Over the past five years, containers have grown in popularity like wildfire. Where
containers were once relegated to developer laptops, testing, or development
environments, you'll now see them as the building blocks of powerful production systems.
They're running highly secure banking workloads and trading systems, powering IoT,
keeping our on-demand economy humming, and scaling up to millions of containers to
keep the products of the 21st century running at peak efficiency in both the cloud and
private data centers. Furthermore, containerization technology permeates our technological
zeitgest, with every technology conference in the world devoting a significant portion of
their talks and sessions devoted to building, running, or developing in containers.

At the beginning of this compelling story lies Docker and their compelling suite of
developer-friendly tools. Docker for macOS and Windows, Compose, Swarm, and Registry
have been incredibly powerful tools that have shaped workflows and changed how
companies develop software. They've built a bridge for containers to exist at the very heart
of the Software Delivery Life Cycle (SDLC), and a remarkable ecosystem has sprung up
around those containers. As Malcom McLean revolutionized the physical shipping world in
the 1950s by creating a standardized shipping container, which is used today for everything
from ice cube trays to automobiles, Linux containers are revolutionizing the software
development world by making application environments portable and consistent across the
infrastructure landscape.

We'll pick this story up as containers go mainstream, go to production, and go big within
organizations. We'll look at what makes a container next.

What is a container?

Containers are a type of operating system virtualization, much like the virtual machines
that preceded them. There's also lesser known types of virtualization such as Application
Virtualization, Network Virtualization, and Storage Virtualization. While these
technologies have been around since the 1960s, Docker's encapsulation of the container
paradigm represents a modern implementation of resource isolation that utilizes built-in
Linux kernel features such as chroot, control groups (cgroups), UnionFS, and namespaces
to fully isolated resource control at the process level.

[9]

Introduction to Kubernetes Chapter 1

Containers use these technologies to create lightweight images that act as a standalone,
fully encapsulated piece of software that carries everything it needs inside the box. This can
include application binaries, any system tools or libraries, environment-based
configuration, and runtime. This special property of isolation is very important, as it allows
developers and operators to leverage the all-in-one nature of a container to run without
issue, regardless of the environment it's run on. This includes developer laptops and any
kind of pre-production or production environment.

This decoupling of application packaging mechanism from the environment on which it
runs is a powerful concept that provides a clear separation of concerns between
engineering teams. This allows developers to focus on building the core business
capabilities into their application code and managing their own dependencies, while
operators can streamline the continuous integration, promotion, and deployment of said
applications without having to worry about their configuration.

At the core of container technology are three key concepts:

e cgroups
¢ Namespaces
¢ Union filesystems

cgroups

cgroups work by allowing the host to share and also limit the resources each process or
container can consume. This is important for both resource utilization and security, as it
prevents denial-of-service (DoS) attacks on the host's hardware resources. Several
containers can share CPU and memory while staying within the predefined constraints.
cgroups allow containers to provision access to memory, disk I/O, network, and CPU. You
can also access devices (for example, /dev/foo). cgroups also power the soft and hard
limits of container constraints that we'll discuss in later chapters.

There are seven major cgroups:

e Memory cgroup: This keeps track of page access by the group, and can define
limits for physical, kernel, and total memory.

e Blkio cgroup: This tracks the I/O usage per group, across the read and write
activity per block device. You can throttle by group per device, on operations
versus bytes, and for reads versus writes.

e CPU cgroup: This keeps track of user and system CPU time and usage per CPU.
This allows you to set weights, but not limits.

[10]

Introduction to Kubernetes Chapter 1

e Freezer cgroup: This is useful in batch management systems that are often
stopping and starting tasks in order to schedule resources efficiently. The
SIGSTOP signal is used to suspend a process, and the process is generally
unaware that it is being suspended (or resumed, for that matter.)

e CPUset cgroup: This allows you to pin a group to a specific CPU within a multi-
core CPU architecture. You can pin by application, which will prevent it from
moving between CPUs. This can improve the performance of your code by
increasing the amount of local memory access or minimizing thread switching.

e Net_cls/net_prio cgroup: This keeps tabs on the egress traffic class (net_cls) or
priority (net_prio) that is generated by the processes within the cgroup.

¢ Devices cgroup: This controls what read/write permissions the group has on
device nodes.

Namespaces

Namespaces offer another form of isolation for process interaction within operating
systems, creating the workspace we call a container. Linux namespaces are created via a
syscall named unshare, while clone and setns allow you to manipulate namespaces in
other manners.

unshare () allows a process (or thread) to disassociate parts of

its execution context that are currently being shared with other processes
(or threads). Part of the execution context, such as the mount namespace,
is shared implicitly when a new process is created using FORK(2) (for
more information visit http://man7.org/linux/man-pages/man2/fork.2.
html) or VFORK(2) (for more information visit http://man7.org/1linux/
man-pages/man2/vfork.2.html), while other parts, such as virtual
memory, may be shared by explicit request when creating a process or
thread using CLONE(2) (for more information visit http://man7.org/

linux/man-pages/man2/clone.2.html).

Namespaces limit the visibility a process has on other processes, networking, filesystems,
and user ID components. Container processes are limited to seeing only what is in the same
namespace. Processes from containers or the host processes are not directly accessible from
within this container process. Additionally, Docker gives each container its own
networking stack that protects the sockets and interfaces in a similar fashion.

[11]

http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/vfork.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html

Introduction to Kubernetes Chapter 1

If cgroups limit how much of a thing you can use, namespaces limit what things you can
see. The following diagram shows the composition of a container:

Operating System

Docker Engine

Application or Application or Application or
Process A Process B Process N

In the case of the Docker engine, the following namespaces are used:

pid: Provides process isolation via an independent set of process IDs from other
namespaces. These are nested.

net: Manages network interfaces by virtualizing the network stack through
providing a loopback interface, and can create physical and virtual network
interfaces that exist in a single namespace at a time.

ipc: Manages access to interprocess communication.

mnt: Controls filesystem mount points. These were the first kind of namespaces
created in the Linux kernel, and can be private or shared.

uts: The Unix time-sharing system isolates version IDs and kernel by allowing a
single system to provide different host and domain naming schemes to different
processes. The processes gethostname and sethostname use this namespace.
user: This namespace allows you to map UID/GID from container to host, and
prevents the need for extra configuration in the container.

[12]

Introduction to Kubernetes Chapter 1

Union filesystems

Union filesystems are also a key advantage of using Docker containers. Containers run
from an image. Much like an image in the VM or cloud world, it represents state at a
particular point in time. Container images snapshot the filesystem, but tend to be much
smaller than a VM. The container shares the host kernel and generally runs a much smaller
set of processes, so the filesystem and bootstrap period tend to be much smaller—though
those constraints are not strictly enforced. Second, the union filesystem allows for the
efficient storage, download, and execution of these images. Containers use the idea of copy-
on-write storage, which is able to create a brand new container immediately, without having
to wait on copying out a whole new filesystem. This is similar to thin provisioning in other
systems, where storage is allocated as needed:

' Thin R/W layer 1 «—— Container layer

! | ! ! !

91e54dfb1179

-

d74508fb6632 1.895 KB

>— Image layers (R/O)
c22013c84729 194.5 KB

d3alf33eBaba 188.1 MB

ubuntu:15.04

Container
(based on ubuntu:15.04 image)

Copy-on-write storage keeps track of what's changed, and in this way is similar to
distributed version control systems (DVCS) such as Git. There are a number of options
available to the end user that leverage copy-on-write storage:

e AUFS and overlay at the file level
e Device mapper at the block level
e BTRFS and ZFS and the filesystem level

The easiest way to understand union filesystems is to think of them like a layer cake with
each layer baked independently. The Linux kernel is our base layer; then, we might add an
OS such as Red Hat Linux or Ubuntu.

[13]

Introduction to Kubernetes Chapter 1

Next, we might add an application such as nginx or Apache. Every change creates a new
layer. Finally, as you make changes and new layers are added, you'll always have a top
layer (think frosting) that is a writable layer. Union filesystems leverage this strategy to
make each layer lightweight and speedy.

In Docker's case, the storage driver is responsible for stacking these layers on top of each
other and providing a single pane of glass to view these systems. The thin writable layer on
the top of this stack of layers is where you'll do your work: the writable container layer. We
can consider each layer below to be container image layers:

Writable Layer

=\

‘ Ubuntu

Base Ubuntu Image

Writable Layer

‘ Apache

‘ Ubuntu

Apache Ubuntu Image

Writable Layer

‘ MysQl

‘ Ubuntu

MySQL Ubuntu Image

[14]

Introduction to Kubernetes Chapter 1

What makes this truly efficient is that Docker caches the layers the first time we build them.
So, let's say that we have an image with Ubuntu and then add Apache and build the image.
Next, we build MySQL with Ubuntu as the base. The second build will be much faster
because the Ubuntu layer is already cached. Essentially, our chocolate and vanilla layers,
from the preceding diagram, are already baked. We simply need to bake the pistachio
(MySQL) layer, assemble, and add the icing (the writable layer).

Why are containers so cool?

What's also really exciting is that not only has the open source community embraced
containers and Kubernetes, but the cloud providers have also deeply embraced the
container ecosystem, and invested millions of dollars in supporting tooling, ecosystem, and
management planes that can help manage containers. This means you have more options to
run container workloads, and you'll have more tools to manage the scheduling and
orchestration of the applications running on your clusters.

We'll explore some specific opportunities available to Kubernetes users, but at the time of
this book's publishing, all of the major cloud service providers (CSPs) are offering some
form of hosted or managed Kubernetes:

e Amazon Web Services: AWS offers Elastic Container Service for Kubernetes
(EKS) (for more information visit https://aws.amazon.com/eks/), a managed
service that simplifies running Kubernetes clusters in their cloud. You can also
roll your own clusters with kops (for information visit https://kubernetes.io/
docs/setup/custom-cloud/kops/). This product is still in active development:

NODES
MASTERS
o—
= A
5 S t K‘ - o =
S ’
@7
@ NODES
Provision an EKS cluster Deploy worker nodes Connect to EKS Run Kubernetes apps

EKS automatically deploys Add worker nodes to you Point your favorite Deploy your Kubernetes
Kubernetes maste EKS cluste Kubernetes tooling at your pplications to your EKS cluster
EKS cluster

[15]

https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/
https://kubernetes.io/docs/setup/custom-cloud/kops/

Introduction to Kubernetes Chapter 1

¢ Google Cloud Platform: GCP offers the Google Kubernetes Engine (GKE) (for
more information visit https://cloud.google. com/kubernetes—engine/), a
powerful cluster manager that can deploy, manage, and scale containerized
applications in the cloud. Google has been running containerized workloads for
over 15 years, and this platform is an excellent choice for sophisticated workload
management:

.ﬂl.‘l'=-=-

e Microsoft Azure: Azure offers the Azure Container Service (AKS) (for more
information visit https://azure.microsoft.com/en-us/services/kubernetes—
service/), which aims to simplify the deployment, management, and operations
of a full-scale Kubernetes cluster. This product is still in active development:

AN\

When you take advantage of one of these systems, you get built-in management
of your Kubernetes cluster, which allows you to focus on the optimization,
configuration, and deployment of your cluster.

[16]

https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/

Introduction to Kubernetes Chapter 1

The advantages of Continuous
Integration/Continuous Deployment

ThoughtWorks defines Continuous Integration as a development practice that requires
developers to integrate code into a shared repository several times a day. By having a
continuous process of building and deploying code, organizations are able to instill quality
control and testing as part of the everyday work cycle. The result is that updates and bug
fixes happen much faster and the overall quality improves.

However, there has always been a challenge in creating development environments that
match those of testing and production. Often, inconsistencies in these environments make it
difficult to gain the full advantage of Continuous Delivery. Continuous Integration is the
first step in speeding up your organization's software delivery life cycle, which helps you
get your software features in front of customer quickly and reliably.

The concept of Continuous Delivery/Deployment uses Continuous Integration to enables
developers to have truly portable deployments. Containers that are deployed on a
developer's laptop are easily deployed on an in-house staging server. They are then easily
transferred to the production server running in the cloud. This is facilitated due to the
nature of containers, which build files that specify parent layers, as we discussed
previously. One advantage of this is that it becomes very easy to ensure OS, package, and
application versions are the same across development, staging, and production
environments. Because all the dependencies are packaged into the layer, the same host
server can have multiple containers running a variety of OS or package versions.
Furthermore, we can have various languages and frameworks on the same host server
without the typical dependency clashes we would get in a VM with a single operating
system.

This sets the stage for Continuous Delivery/Deployment of the application, as the
operations teams or the developers themselves can focus on getting deployments and
application rollouts correct, without having to worry about the intricacies of dependencies.

Continuous Delivery is the embodiment and process wherein all code changes are
automatically built, tested (Continuous Integration), and then released into production
(Continuous Delivery). If this process captures the correct quality gates, security
guarantees, and unit/integration/system tests, the development teams will constantly
release production-ready and deployable artifacts that have moved through an automated
and standardized process.

[17]

Introduction to Kubernetes Chapter 1

It's important to note that CD requires the engineering teams to automate more than just
unit tests. In order to utilize CD in sophisticated scheduling and orchestration systems such
as Kubernetes, teams need to verify application functionality across many dimensions
before they're deployed to customers. We'll explore deployment strategies that Kubernetes
has to offer in later chapters.

Lastly, it's important to keep in mind that utilizing Kubernetes with CI/CD reduces the risk
of the many common problems that technology firms face:

* Long release cycles: If it takes a long time to release code to your users, then it's a
potential functionality that they're missing out on, and this results in lost
revenue. If you have a manual testing or release process, it's going to slow down
getting changes to production, and therefore in front of your customers.

e Fixing code is hard: When you shorten the release cycle, you're able to discover
and remediate bugs closer to the point of creation. This lowers the fixed cost, as
there's a correlation between bug introduction and bug discovery times.

¢ Release better: The more you release, the better you get at releasing. Challenging
your developers and operators to build automation, monitoring, and logging
around the processes of CI/CD will make your pipeline more robust. As you
release more often, the amount of difference between releases also decreases. A
smaller difference allows teams to troubleshoot potential breaking changes more
quickly, which in turn gives them more time to refine the release process further.
It's a virtuous cycle!

Because all the dependencies are packaged into the layer, the same host server can have
multiple containers running a variety of OS or package versions. Furthermore, we can have
various languages and frameworks on the same host server without the typical dependency
clashes we would get in a VM with a single operating system.

Resource utilization

The well-defined isolation and layer filesystem also makes containers ideal for running
systems with a very small footprint and domain-specific purpose. A streamlined
deployment and release process means we can deploy quickly and often. As such, many
companies have reduced their deployment time from weeks or months to days and hours
in some cases. This development life cycle lends itself extremely well to small, targeted
teams working on small chunks of a larger application.

[18]

Introduction to Kubernetes Chapter 1

Microservices and orchestration

As we break down an application into very specific domains, we need a uniform way to

communicate between all the various pieces and domains. Web services have served this
purpose for years, but the added isolation and granular focus that containers bring have

paved the way for microservices.

A definition for microservices can be a bit nebulous, but a definition from Martin Fowler, a
respected author and speaker on software development, says this:

In short, the microservice architectural style is an approach to developing a single
application as a suite of small services, each running in its own process and
communicating with lightweight mechanisms, often an HI'TP resource API. These
services are built around business capabilities and independently deployable by fully
automated deployment machinery. There is a bare minimum of centralized management of
these services, which may be written in different programming languages and use different
data storage technologies.

As the pivot to containerization and as microservices evolve in an organization, they will
soon need a strategy to maintain many containers and microservices. Some organizations
will have hundreds or even thousands of containers running in the years ahead.

Future challenges

Life cycle processes alone are an important piece of operation and management. How will
we automatically recover when a container fails? Which upstream services are affected by
such an outage? How will we patch our applications with minimal downtime? How will
we scale up our containers and services as our traffic grows?

Networking and processing are also important concerns. Some processes are part of the
same service and may benefit from proximity to the network. Databases, for example, may
send large amounts of data to a particular microservice for processing. How will we place
containers near each other in our cluster? Is there common data that needs to be accessed?
How will new services be discovered and made available to other systems?

[19]

Introduction to Kubernetes Chapter 1

Resource utilization is also key. The small footprint of containers means that we can
optimize our infrastructure for greater utilization. Extending the savings started in the
Elastic cloud will take us even further toward minimizing wasted hardware. How will we
schedule workloads most efficiently? How will we ensure that our important applications
always have the right resources? How can we run less important workloads on spare

capacity?

Finally, portability is a key factor in moving many organizations to containerization.
Docker makes it very easy to deploy a standard container across various operating systems,
cloud providers, and on-premise hardware or even developer laptops. However, we still
need tooling to move containers around. How will we move containers between different
nodes on our cluster? How will we roll out updates with minimal disruption? What process
do we use to perform blue-green deployments or canary releases?

Whether you are starting to build out individual microservices and separating concerns
into isolated containers or you simply want to take full advantage of the portability and
immutability in your application development, the need for management and orchestration
becomes clear. This is where orchestration tools such as Kubernetes offer the biggest value.

Our first clusters

Kubernetes is supported on a variety of platforms and OSes. For the examples in this book,
I used an Ubuntu 16.04 Linux VirtualBox (https://www.virtualbox.org/wiki/Downloads)
for my client and Google Compute Engine (GCE) with Debian for the cluster itself. We will
also take a brief look at a cluster running on Amazon Web Services (AWS) with Ubuntu.

To save some money, both GCP (https://cloud.google.com/free/) and
AWS (nttps://aws.amazon.com/free/) offer free tiers and trial offers for
their cloud infrastructure. It's worth using these free trials for learning
Kubernetes, if possible.

Most of the concepts and examples in this book should work on any
installation of a Kubernetes cluster. To get more information on other
platform setups, refer to the Kubernetes getting started page, which will
help you pick the right solution for your cluster: http://kubernetes.io/
docs/getting-started—-guides/.

[20]

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://cloud.google.com/free/
https://cloud.google.com/free/
https://cloud.google.com/free/
https://cloud.google.com/free/
https://cloud.google.com/free/
https://cloud.google.com/free/
https://cloud.google.com/free/
https://cloud.google.com/free/
https://cloud.google.com/free/
https://cloud.google.com/free/
https://cloud.google.com/free/
https://cloud.google.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/
http://kubernetes.io/docs/getting-started-guides/

Introduction to Kubernetes Chapter 1

Running Kubernetes on GCE

We have a few options for setting up the prerequisites for our development environment.
While we'll use a Linux client on our local machine in this example, you can also use the
Google Cloud Shell to simplify your dependencies and setup. You can check out that
documentation at https://cloud.google.com/shell/docs/, and then jump down to the
gcloud auth login portion of the tutorial.

Getting back to the local installation, let's make sure that our environment is properly set
up before we install Kubernetes. Start by updating the packages:

$ sudo apt-get update

You should see something similar to the following output:

$ sudo apt update

[sudo] password for user:

Hit:1 http://archive.canonical.com/ubuntu xenial InRelease

Ign:2 http://dl.google.com/linux/chrome/deb stable InRelease

Hit:3 http://archive.ubuntu.com/ubuntu xenial InRelease

Get:4 http://security.ubuntu.com/ubuntu xenial-security InRelease [102 kB]
Ign:5 http://dell.archive.canonical.com/updates xenial-dell-dino2-mlk
InRelease

Hit:6 http://ppa.launchpad.net/webupd8team/sublime-text-3/ubuntu xenial
InRelease

Hit:7 https://download.sublimetext.com apt/stable/ InRelease

Hit:8 http://dl.google.com/linux/chrome/deb stable Release

Get:9 http://archive.ubuntu.com/ubuntu xenial-updates InRelease [102 kB]
Hit:10 https://apt.dockerproject.org/repo ubuntu-xenial InRelease
Hit:11 https://deb.nodesource.com/node_7.x xenial InRelease

Hit:12 https://download.docker.com/linux/ubuntu xenial InRelease

Ign:13 http://dell.archive.canonical.com/updates xenial-dell InRelease
<SNIPPED. . .>

Fetched 1,593 kB in 1s (1,081 kB/s)

Reading package lists... Done

Building dependency tree

Reading state information... Done

120 packages can be upgraded. Run 'apt list —-—-upgradable' to see them.

$
Install Python and curl if they are not present:

$ sudo apt-get install python
$ sudo apt-get install curl

[21]

https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/
https://cloud.google.com/shell/docs/

Introduction to Kubernetes Chapter 1

Install the gcloud SDK:
$ curl https://sdk.cloud.google.com | bash

We will need to start a new shell before gcloud is on our path.

Configure your GCP account information. This should automatically open a browser, from
where we can log in to our Google Cloud account and authorize the SDK:

$ gcloud auth login

If you have problems with login or want to use another browser, you can
optionally use the ——no-launch-browser command. Copy and paste the
URL to the machine and/or browser of your choice. Log in with your
Google Cloud credentials and click Allow on the permissions page.
Finally, you should receive an authorization code that you can copy and
paste back into the shell, where the prompt will be waiting.

A default project should be set, but we can verify this with the following command:
$ gcloud config list project

We can modify this and set a new default project with the following command. Make sure
to use project ID and not project name, as follows:

$ gcloud config set project <PROJECT ID>

We can find our project ID in the console at the following
URL: https://console.developers.google.com/project. Alternatively,
we can list the active projects with $ gcloud alpha projects list.

You can turn on API access to your project at this point in the GCP dashboard, https://
console.developers.google.com/project, or the Kubernetes script will prompt you to do

so in the next section:

[22]

https://console.developers.google.com/project
https://console.developers.google.com/project
https://console.developers.google.com/project
https://console.developers.google.com/project
https://console.developers.google.com/project
https://console.developers.google.com/project
https://console.developers.google.com/project
https://console.developers.google.com/project
https://console.developers.google.com/project
https://console.developers.google.com/project
https://console.developers.google.com/project
https://console.developers.google.com/project
https://console.developers.google.com/project

Introduction to Kubernetes Chapter 1

® Getting Started

e

APT Enable APIs and get credentials like keys

i, Deploy a prebuilt solution

r*' Add dynamic logging to a running application
@a Maonitor errors with Error Reporting

@ Deploy a Hello World app

ﬁ} Take a VM quickstart

[) Create a Cloud Function

{) Install the Cloud SDK

= Explore all tutorials

Next, you want to change to a directory when you can install the Kubernetes binaries. We'll
set that up and then download the software:

$ mkdir ~/code/gsw-k8s-3
$ cd ~/code/gsw-k8s-3

Installing the latest Kubernetes version is done in a single step, as follows:

$ curl -sS https://get.k8s.io | bash

It may take a minute or two to download Kubernetes depending on your connection speed.
Earlier versions would automatically call the kube-up . sh script and start building our
cluster. In version 1.5, we will need to call the kube-up . sh script ourselves to launch the
cluster. By default, it will use the Google Cloud and GCE:

$ kubernetes/cluster/kube-up.sh

If you get an error at this point due to missing components, you'll need to add a few pieces
to your local Linux box. If you're running the Google Cloud Shell, or are utilizing a VM in
GCP, you probably won't see this error:

$ kubernetes_install cluster/kube-up.sh...

Starting cluster in us-centrall-b using provider gce
calling verify-prereqgs

missing required gcloud component "alpha"

missing required gcloud component "beta"

$

[23]

Introduction to Kubernetes Chapter 1

You can see that these components are missing and are required for leveraging the kube—
up.sh script:

$ gcloud components list
Your current Cloud SDK version is: 193.0.0
The latest available version is: 193.0.0

| Components |

T 1
| status | Name | ID | Size |

| Not Installed App Engine Go Extensions | app-engine-go | 151.9 MiB |
| Not Installed Cloud Bigtable Command Line Tool | cbt | 4.5 MiB |

| Not Installed Cloud Bigtable Emulator | bigtable | 3.7 MiB |
|
|

Not Installed Cloud Datalab Command Line Tool | datalab | < 1 MiB |

Not Installed Cloud Datastore Emulator | cloud-datastore—emulator |
17.9 MiB |
| Not Installed | Cloud Datastore Emulator (Legacy) | gcd-emulator | 38.1
MiB |
| Not Installed | Cloud Pub/Sub Emulator | pubsub-emulator | 33.4 MiB |
| Not Installed | Emulator Reverse Proxy | emulator-reverse—proxy | 14.5
MiB |
| Not Installed | Google Container Local Builder | container-builder-
local | 3.8 MiB |
| Not Installed | Google Container Registry's Docker credential helper |

docker-credential-gcr | 3.3 MiB |

| Not Installed | gcloud Alpha Commands | alpha | < 1 MiB |

| Not Installed | gcloud Beta Commands | beta | < 1 MiB |

| Not Installed | gcloud app Java Extensions | app-engine-java | 118.9
MiB |

| Not Installed | gcloud app PHP Extensions | app-engine-php | |

| Not Installed | gcloud app Python Extensions | app-engine-python | 6.2
MiB |

| Not Installed | gcloud app Python Extensions (Extra Libraries) | app-
engine-python-extras | 27.8 MiB |

| Not Installed | kubectl | kubectl | 12.3 MiB |

| Installed | BigQuery Command Line Tool | bg | < 1 MiB |

| Installed | Cloud SDK Core Libraries | core | 7.3 MiB |

| Installed | Cloud Storage Command Line Tool | gsutil | 3.3 MiB |

L L

[24]

Introduction to Kubernetes Chapter 1

To install or remove components at your current SDK version [193.0.0], run:
$ gcloud components install COMPONENT_ID
$ gcloud components remove COMPONENT_ID

To update your SDK installation to the latest version [193.0.0], run:
$ gcloud components update

You can update the components by adding them to your shell:

$ gcloud components install alpha beta
Your current Cloud SDK version is: 193.0.0
Installing components from version: 193.0.0

I
L
| These components will be installed. |
[l
I

—

| Name | Version | Size |

|

I

—
gcloud Alpha Commands | 2017.09.15 | < 1 MiB |

I
| gecloud Beta Commands | 2017.09.15 | < 1 MiB |
L | |

— 1

For the latest full release notes, please visit:
https://cloud.google.com/sdk/release_notes

Do you want to continue (Y¥/n)? y

L}
I— Creating update staging area =

= Installing: gcloud Alpha Commands =

= Installing: gcloud Beta Commands =

L}
= creating backup and activating new installation =—
IL

Performing post processing steps...done.
Update done!

[25]

Introduction to Kubernetes Chapter 1

After you run the kube-up. sh script, you will see quite a few lines roll past. Let's take a
look at them one section at a time:

. Starting cluster in us-centralil-b using provider gce
. calling verify-preregs

components are up to date.
components are up to date.

components are up to date.

If your gcloud components are not up to date, you may be prompted to
update them.

The preceding screenshot shows the checks for prerequisites, as well as making sure that all
components are up to date. This is specific to each provider. In the case of GCE, it will
verify that the SDK is installed and that all components are up to date. If not, you will see a
prompt at this point to install or update:

. calling kube-up
Your active configuration is: [default]

Project: dynamic-nomad-152102

Zone: us-centrall-b

gs://kubernetes-staging-549d6b8doc/kubernetes-devel/

+++ Staging server tars to Google Storage: gs://kubernetes-staging-549déb8d9oc/kub
ernetes-devel

+++ kubernetes-server-linux-amd64.tar.gz uploaded (shal = 5df19e3745bbcBc7d1asbfe
d61d9e1bad189db64)

+++ kubernetes-salt.tar.gz uploaded (shal = 95e855d893e4549b935aedB8736f3a2372ae7c
cd3)

+++ kubernetes-manifests.tar.gz uploaded (shal = e9c52530a14612c91f45e0817743925a0
dba6dcc8)

INSTANCE_GROUPS=

MODE_NAMES=

[26]

Introduction to Kubernetes Chapter 1

Now, the script is turning up the cluster. Again, this is specific to the provider. For GCE, it
first checks to make sure that the SDK is configured for a default project and zone. If they
are set, you'll see those in the output:

You may see an output that the bucket for storage hasn't been created.
That's normal! The creation script will go ahead and create it.

BucketNotFoundException: 404 gs://kubernetes-staging-22caacf4l7 bucket does
not exist.

Next, it uploads the server binaries to Google Cloud storage, as seen in the Creating gs:...
lines:

Looking for already existing resources

Starting master and configuring firewalls

Created [https://www.googleapis.com/compute/vl/projects/dynamic-nomad-152102/zon
esfus-centrall-b/disks/kubernetes-master-pd].

NAME ZONE SIZE_GB TYPE STATUS
kubernetes-master-pd us-centralil-b 20 pd-ssd READY

New disks are unformatted. You must format and mount a disk before it
can be used. You can find instructions on how to do this at:

https://cloud.google.com/compute/docs/disks/add-persistent-disk#formatting

Created [https://www.googleapis.com/computefvl/projects/dynamic-nomad-1521682/glo
bal/firewalls/kubernetes-master-https].

NAME NETWORK SRC_RANGES RULES SRC_TAGS TARGET_TAGS
kubernetes-master-https default 0.0.0.08/0 tcp:443 kubernetes-mast
er

Created [https://www.googleapis.com/computefvl/projects/dynamic-nomad-1521682/reg
ions/us-centralil/addresses/kubernetes-master-ip].

Generating certs for alternate-names: IP:23.251.158.223,IP:10.0.0.1,DNS:kubernet
es,DNS:kubernetes.default,DNS:kubernetes.default.svc,DNS:kubernetes.default.svc.
cluster.local,DNS:kubernetes-master

[27]

Introduction to Kubernetes Chapter 1

It then checks for any pieces of a cluster already running. Then, we finally start creating the
cluster. In the output in the preceding screenshot, we can see it creating the master server,
IP address, and appropriate firewall configurations for the cluster:

+++ Logging using Fluentd to gcp

WARNING: You have selected a disk size of under [200GB]. This may result in poor
I1/0 performance. For more information, see: https://developers.google.com/compu
te/docs /disks#pdperformance.

Created [https://www.googleapis.com/compute/vl/projects/dynamic-nomad-152182/glo
bal/firewalls/kubernetes-minion-all].

NAME NETWORK SRC_RANGES RULES SRC_TAG
S TARGET_TAGS

kubernetes-minion-all default 10.244.0.0/14 tcp,udp,icmp,esp,ah,sctp

kubernetes-minion

Created [https://www.googleapis.com/compute/vl/projects/dynamic-nomad-152102/zon
es/us-centralil-b/instances/kubernetes-master].

NAME ZONE MACHINE_TYPE PREEMPTIBLE IMNTERNAL_IP EXTER
NAL_IP STATUS

kubernetes-master wus-centrali-b ni-standard-1 10.128.0.2 23.25
1.158.223 RUNNING

Creating minions.

Attempt 1 to create kubernetes-minion-template

WARNING: You have selected a disk size of under [200GB]. This may result in poor
I/0 performance. For more information, see: https://developers.google.com/compu

te/docs /disks#pdperformance.

Created [https://www.googleapis.com/compute/vl/projects/dynamic-nomad-152102/glo

bal/instanceTemplates/kubernetes-minion-template].

NAME MACHINE_TYPE PREEMPTIBLE CREATION_TIMESTAMP

kubernetes-minion-template ni-standard-2 2016-12-10T04:25:37.527-

08:00

Created [https://www.googleapis.com/compute/vl/projects/dynamic-nomad-152102/zon

es/us-centrali-b/instanceGroupManagers/kubernetes-minion-group].

(NAME LOCATION SCOPE BASE_INSTANCE_NAME SIZE TA

RGET_SIZE INSTANCE_TEMPLATE AUTOSCALED

kubernetes-minion-group us-centrali-b zone kubernetes-minion-group @ 3

kubernetes-minion-template no

Waiting for group to become stable, current operations: creating: 3

Waiting for group to become stable, current operations: creating: 3

Waiting for group to become stable, current operations: creating: 1

Group is stable

Finally, it creates the minions or nodes for our cluster. This is where our container
workloads will actually run. It will continually loop and wait while all the minions start up.
By default, the cluster will have four nodes (minions), but K8s supports having more than
1,000 (and soon beyond). We will come back to scaling the nodes later on in this book:

Attempt 1 to create kubernetes-minion-template

WARNING: You have selected a disk size of under [200GB]. This may result in
poor I/O performance. For more information, see:
https://developers.google.com/compute/docs/disks#performance.

Created
[https://www.googleapis.com/compute/vl/projects/gsw-k8s-3/global/instanceTe
mplates/kubernetes-minion-template] .

[28]

Introduction to Kubernetes Chapter 1

NAME MACHINE_TYPE PREEMPTIBLE CREATION_TIMESTAMP
kubernetes-minion-template nl-standard-2 2018-03-17T11:14:04.186-07:00
Created
[https://www.googleapis.com/compute/vl/projects/gsw-k8s-3/zones/us-centrall
-b/instanceGroupManagers/kubernetes-minion-group] .

NAME LOCATION SCOPE BASE_INSTANCE_NAME SIZE TARGET_SIZE INSTANCE_TEMPLATE
AUTOSCALED

kubernetes-minion-group us—-centrall-b zone kubernetes-minion-group 0 3
kubernetes-minion-template no

Waiting for group to become stable, current operations: creating: 3

Group is stable

INSTANCE_GROUPS=kubernetes-minion-group
NODE_NAMES=kubernetes—-minion—-group-176g kubernetes-minion-group-s9qw
kubernetes-minion-group—-tr7r

Trying to find master named 'kubernetes-master’

Looking for address 'kubernetes-master-ip'

Using master: kubernetes-master (external IP: 104.155.172.179)

Waiting up to 300 seconds for cluster initialization.

Now that everything is created, the cluster is initialized and started. Assuming that
everything goes well, we will get an IP address for the master:

calling validate-cluster
Validating gce cluster, MULTIZONE=
Project: gsw-k8s-3
Network Project: gsw-k8s-3
Zone: us-centrall-b
No resources found.
Waiting for 4 ready nodes. 0 ready nodes, 0 registered. Retrying.
No resources found.
Waiting for 4 ready nodes. 0 ready nodes, registered. Retrying.
Waiting for 4 ready nodes. ready nodes, registered. Retrying.
Waiting for 4 ready nodes. 0 ready nodes, 4 registered. Retrying.
Found 4 node(s).
NAME STATUS ROLES AGE VERSION
kubernetes-master Ready, SchedulingDisabled <none> 32s v1.9.4
kubernetes-minion-group-176g Ready <none> 25s v1.9.4
kubernetes-minion-group-s9gw Ready <none> 25s v1.9.4
kubernetes-minion-group-tr7r Ready <none> 35s v1.9.4
Validate output:
NAME STATUS MESSAGE ERROR
etcd-1 Healthy {"health": "true"}
scheduler Healthy ok
controller—-manager Healthy ok
etcd-0 Healthy {"health": "true"}
Cluster validation succeeded

o

o
[y

[29]

Introduction to Kubernetes Chapter 1

Also, note that configuration along with the cluster management credentials are stored
in home/<Username>/.kube/config.

Then, the script will validate the cluster. At this point, we are no longer running provider-
specific code. The validation script will query the cluster via the kubect1. sh script. This is
the central script for managing our cluster. In this case, it checks the number of minions
found, registered, and in a ready state. It loops through, giving the cluster up to 10 minutes
to finish initialization.

After a successful startup, a summary of the minions and the cluster component health is
printed on the screen:

Done, listing cluster services:

Kubernetes master is running at https://104.155.172.179

GLBCDefaultBackend is running at
https://104.155.172.179/api/v1/namespaces/kube-system/services/default-http
-backend:http/proxy

Heapster is running at
https://104.155.172.179/api/v1l/namespaces/kube-system/services/heapster/pro
Xy

KubeDNS is running at
https://104.155.172.179/api/v1l/namespaces/kube-system/services/kube-dns:dns
/proxy

kubernetes—-dashboard is running at
https://104.155.172.179/api/v1/namespaces/kube-system/services/https:kubern
etes—-dashboard: /proxy

Metrics—-server is running at
https://104.155.172.179/api/v1l/namespaces/kube-system/services/https:metric
s—server: /proxy

Grafana is running at
https://104.155.172.179/api/v1/namespaces/kube-system/services/monitoring-g
rafana/proxy

InfluxDB is running at
https://104.155.172.179/api/v1l/namespaces/kube-system/services/monitoring-i
nfluxdb:http/proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info
dump'.

Finally, a kubectl cluster-info command is run, which outputs the URL for the master
services, including DNS, Ul, and monitoring. Let's take a look at some of these components.

[30]

Introduction to Kubernetes Chapter 1

If you'd like to get further debugging and/or diagnose cluster problems, you can use
kubectl cluster-info dump to see what's going on with your cluster. Additionally, if
you need to pause and take a break and want to conserve your free hours, you can log into
the GUI and set the kubernetes-minion-group instance group to zero, which will
remove all of the instances. The pencil will edit the group for you; set it to zero. Don't forget
to set it back to three if you want to pick up again!

= Google Cloud Platform &= Gswkes3 ~ Q

EE:lE Compute Engine € Instance groups yd
B VvMinstances & kubernetes-minion-group
I.“-l Instance groups Members Details
Zone us-centrall-b Template: kubernetes-minion-template Autoscaling: OFf
& Instance templates
g Disks CPU utilization «

You can simply stop the manager as well. You'll need to click the stop button to shut it
down:

Google Cloud Platform & Gswkss3 -

{# Compute Engine VM instances [CREATE INSTANCE =~ & IMPORT VM C' REFRESH

B VMinstances Select aninstance

Columns ~

LN Instance groups
@ = R LABELS MONITORING
nstance templates
MName ~ Zone Recommendation Internal IP External
O Disks . - abels help o P TR
©) kubemnetes-master us-centrall-b 10.128.0.2 104155 Labels help organize your resources (g

2] Snapshots
s : © Noinstances selected.

[images

If you'd like to start the cluster up again, start the servers again to keep going. They'll need
some time to start up and connect to each other.

If you want to work on more than one cluster at a time or you want to use a different name
than the default, see the <kubernetes>/cluster/gce/config-default. sh file for more
fine-grained configuration of your cluster.

[31]

Introduction to Kubernetes

Chapter 1

Kubernetes Ul

Since Kubernetes v1.3.x, you can no longer authenticate through public IP addresses to the
GULI. To get around this, we'll use the kubectl proxy command. First, grab the token
from the configuration command, and then we'll use it to launch a local proxy version of

the UI:

$ kubectl config view |grep token
token: RvoYTIn4rExilbNRzk56g0PUOsrZbzOf
$ kubectl proxy —--port=8001

Open a browser and enter the following URL: https://localhost/ui/.

You can also type these commands to open a browser window
automatically if you're on macOS: $ open

https://localhost/ui/ or $ xdg-open https://localhost/ui if
you're on Linux.

The certificate is self-signed by default, so you'll need to ignore the warnings in your
browser before proceeding. After this, we will see a login dialog:

A

Your connection is not private

Attackers might be trying to steal your information from 35.184.174.88 (for example,
passwords, messages, or credit cards). Learn more
NET:ERR_CERT_AUTHORITY_INVALID

D Automatically send some system information and page content to Google to help detect

dangerous apps and sites. Privacy policy

HIDE ADVANCED Back to safety

This server could not prove that it is 35.184.174.88; its security certificate is not trusted by
your computer's operating system. This may be caused by a misconfiguration or an
attacker intercepting your connection.

Proceed to 35.184.174.88 {unsafe)

[32]

Introduction to Kubernetes Chapter 1

At this login dialog, you'll need to input the token that you grabbed in the aforementioned
command.

This is where we use the credentials listed during the K8s installation. We
can find them at any time by simply using the config command $
kubectl config view.

Use the Token option and log in to your cluster:

Kubernetes Dashboard

(® Kubeconfig

Please select the kubeconfig file that you have created to configure
access to the cluster. To find out more about how to configure and use
kubeconfig file, please refer to the Configure Access to Multiple Clusters
section.

(O Token

Every Service Account has a Secret with valid Bearer Token that can be
used to log in to Dashboard. To find out more about how to configure and
use Bearer Tokens, please refer to the Authentication section.

Choose kubeconfig file

[33]

Introduction to Kubernetes Chapter 1

Now that we have entered our token, you should see a dashboard like the one in the
following screenshot:

kubernetes Q. Search +creaTE | @

Cluster Discovery and Load Balancing

Namespaces
ek Services =
Persistent Volumes . .

Name & Labels Cluster IP Internal endpoints External endpoints Age €
Roles

component: apise.. kubernetes:443 TCP
Storage Classes kubernetes 10.0.0.1 - 25 minutes
Y o provider: kubernet.. kubernetes:0 TCP

Namespace
Config and Storage
default v

Overview Secrets =
Workloads Name < Type Age
Cron Jobs default-token-dnx5r kubernetes.io/service-account-token 24 minutes

Daemon Sets
Deployments

Jobs

The main dashboard takes us to a page with not much display at first. There is a link to
deploy a containerized app that will take you to a GUI for deployment. This GUI can be a
very easy way to get started deploying apps without worrying about the YAML syntax for
Kubernetes. However, as your use of containers matures, it's a good practice to use the
YAML definitions that are checked in to source control.

If you click on the Nodes link on the left-hand side menu, you will see some metrics on the
current cluster nodes:

[34]

Introduction to Kubernetes Chapter 1

= kubernetes + CREATE
Admin
CPU usage history Memory usage history
Namespaces
Nodes 0.427 157 6i
0.380 _ 1406Gi
Persistent Volumes & — o)
o 0.285 = 105Gi
i g 0.190 = 6.98 Gi
Namespace g g
O 0095 2 3496Gi
default ~ 0 0
16:41 16:55 16:41 16:55
Workloads Time Time
Deployments
Name Labels Ready Age
Replica Sets .
beta.kubernetes.io/a...
Replication Controllers e
Daemon Sets beta.kubernetes.io/o...
0 kubernetes-master True 9hours
Pet Sets failure-domain.beta....
Jobs failure-domain.beta....
Pods show alllabels

At the top, we can see an aggregate of the CPU and memory use followed by a listing of
our cluster nodes. Clicking on one of the nodes will take us to a page with detailed
information about that node, its health, and various metrics.

The Kubernetes Ul has a lot of other views that will become more useful as we start
launching real applications and adding configurations to the cluster.

[35]

Introduction to Kubernetes Chapter 1

Grafana

Another service installed by default is Grafana. This tool will give us a dashboard to view
metrics on the cluster nodes. We can access it using the following syntax in a browser:

https://localhost/api/vl/proxy/namespaces/kube-system/services/monitoring-g
rafana

The Grafana dashboard should look like this:

Bcuter- ® B » < z00mout > OlastSminutes &

Overall Cluster CPU Usage

CPU Usage by Node

Overall Cluster Memory Usage

From the main page, click on the Home drop-down and select Cluster. Here, Kubernetes is
actually running a number of services. Heapster is used to collect the resource usage on the
pods and nodes, and stores the information in InfluxDB. The results, such as CPU and
memory usage, are what we see in the Grafana Ul. We will explore this in depth in Chapter
8, Monitoring and Logging.

[36]

Introduction to Kubernetes Chapter 1

Command line

The kubect1 script has commands for exploring our cluster and the workloads running on
it. You can find it in the /kubernetes/client/bin folder. We will be using this command
throughout the book, so let's take a second to set up our environment. We can do so by
putting the binaries folder on our PATH, in the following manner:

$ export PATH=S$PATH:/<Path where you downloaded K8s>/kubernetes/client/bin
$ chmod +x /<Path where you downloaded K8s>/kubernetes/client/bin

You may choose to download the kubernetes folder outside your home
folder, so modify the preceding command as appropriate. It is also a good
idea to make the changes permanent by adding the export command to

the end of your .bashrc file in your home directory.

Now that we have kubect1 on our path, we can start working with it. It has quite a few
commands. Since we have not spun up any applications yet, most of these commands will
not be very interesting. However, we can explore two commands right away.

First, we have already seen the cluster-info command during initialization, but we can
run it again at any time with the following command:

$ kubectl cluster-info

Another useful command is get. It can be used to see currently running services, pods,
replication controllers, and a lot more. Here are the three examples that are useful right out

of the gate:
e Lists the nodes in our cluster:
$ kubectl get nodes
e Lists cluster events:
$ kubectl get events
e Finally, we can see any services that are running in the cluster, as follows:

$ kubectl get services

[371]

Introduction to Kubernetes Chapter 1

To start with, we will only see one service, named kubernetes. This service is the core API
server for the cluster.

For any of the preceding commands, you can always add a -h flag on the end to
understand the intended usage.

Services running on the master

Let's dig a little bit deeper into our new cluster and its core services. By default, machines
are named with the kubernetes— prefix. We can modify this using
$KUBE_GCE_INSTANCE_PREFIX before a cluster is spun up. For the cluster we just started,
the master should be named kubernetes-master. We can use the gcloud command-line
utility to SSH into the machine. The following command will start an SSH session with the
master node. Be sure to substitute your project ID and zone to match your environment:

$ gcloud compute ssh —--zone '"<your gce zone>" "kubernetes-master"

$ gcloud compute ssh —--zone "us—-centrall-b" "kubernetes-master"
Warning: Permanently added 'compute.5419404412212490753' (RSA) to the list
of known hosts.

Welcome to Kubernetes v1.9.4!

You can find documentation for Kubernetes at:
http://docs.kubernetes.io/

The source for this release can be found at:
/home/kubernetes/kubernetes-src.tar.gz

Or you can download it at:

https://storage.googleapis.com/kubernetes-release/release/vl1l.9.4/kubernetes

—-src.tar.gz

It is based on the Kubernetes source at:
https://github.com/kubernetes/kubernetes/tree/v1.9.4

For Kubernetes copyright and licensing information, see:
/home/kubernetes/LICENSES

jesse@kubernetes-master ~ §

[38]

Chapter 1

Introduction to Kubernetes
If you have trouble with SSH via the Google Cloud CLI, you can use the
console, which has a built-in SSH client. Simply go to the VM instances

details page and you'll see an SSH option as a column in the
kubernetes-master listing. Alternatively, the VM instance details page

has the SSH option at the top.
& VM instance details 2 EDIT) RESET B CLONE B STOP W DELETE
& kubernetes-master
CPU utilization « Thour | 6hours | 12hours | 1day | 2 days
CPU
CPU
[~
50 N f \
| /
40 I.' / N\
30 | \ o ~
] | N o
| ., I
\\JI
Mar

Mar 20, 6:45 FM

ar 20, 6:30 PM

Ly 3
vlar LU

W cPu: 29.29

Remuote access

SSHEI “onnect t

Open in browser window
Open in browser window on custom port

Logs

View gcloud command

Stackd
Use another SSH client

Serial [
Mar

Machine type
nl-standard-1 (1 vCPU, 3.75 GB memary)

[39]

Introduction to Kubernetes Chapter 1

Once we are logged in, we should get a standard shell prompt. Let's run the docker
command that filters for Image and Status:

$ docker container 1ls --format 'table {{.Image}}\t{{.Status}}'

IMAGE STATUS
gcr.io/google_containers/node-problem-detector:ve.1
gcr.io/google_containers/pause-amd64:3.08

gcr.io/google_containers/fluentd-gcp:1.21
gcr.iofgoogle_containers/kube-apiserver:fa481b6112db7dcced6bfc8cfbf149a2
gcr.io/google_containers/etcd:2.2.1

gcr.io/google_containers/etcd:2.2.1

gcr.io/google_containers/rescheduler:ve.2.1

gcr.io/google_containers/glbc:0.8.8

gcr.io/google-containers/kube-addon-manager:v5.1
gcr.io/google_containers/etcd-empty-dir-cleanup:8.8.1
gcr.io/google_containers/kube-controller-manager:9bifc8f7afac597ccb49e34778214c49
gcr.iofgoogle_containers/kube-scheduler:67b73a442b6a6f362a086ea4ab8dcicd
gcr.io/google_containers/pause-amd64:3.
4gcr.iofgoogle_containers/pause-amd64:
gcr.io/google_containers/pause-amd64:
gcr.io/google_containers/pause-amd64:
gcr.io/google_containers/pause-amd64:
gcr.io/google_containers/pause-amd64:
gcr.io/google_containers/pause-amd64:
gcr.io/google_containers/pause-amd64:
gcr.io/google_containers/pause-amd64:
gcr.io/google_containers/pause-amd64:

W W W W
000000 0QC0QCO0Q

Even though we have not deployed any applications on Kubernetes yet, we can note that
there are several containers already running. The following is a brief description of each
container:

e fluentd-gcp: This container collects and sends the cluster logs file to the Google
Cloud Logging service.

® node-problem-detector: This container is a daemon that runs on every node
and currently detects issues at the hardware and kernel layer.

e rescheduler: This is another add-on container that makes sure critical
components are always running. In cases of low resource availability, it may
even remove less critical pods to make room.

¢ glbc: This is another Kubernetes add-on container that provides Google Cloud
Layer 7 load balancing using the new Ingress capability.

® kube-addon-manager: This component is core to the extension of Kubernetes
through various add-ons. It also periodically applies any changes to
the /etc/kubernetes/addons directory.

¢ etcd-empty-dir-cleanup: A utility to clean up empty keys in et cd.

[40]

Introduction to Kubernetes Chapter 1

e kube-controller-manager: This is a controller manager that controls a variety
of cluster functions, ensuring accurate and up-to-date replication is one of its
vital roles. Additionally, it monitors, manages, and discovers new nodes. Finally,
it manages and updates service endpoints.

® kube-apiserver: This container runs the API server. As we explored in the
Swagger interface, this RESTful API allows us to create, query, update, and
remove various components of our Kubernetes cluster.

® kube-scheduler: This scheduler takes unscheduled pods and binds them to
nodes based on the current scheduling algorithm.

e etcd: This runs the et cd software built by CoreOS, and it is a distributed and
consistent key-value store. This is where the Kubernetes cluster state is stored,
updated, and retrieved by various components of K8s.

¢ pause: This container is often referred to as the pod infrastructure container and
is used to set up and hold the networking namespace and resource limits for each
pod.

I omitted the amd64 for many of these names to make this more generic.
The purpose of the pods remains the same.

To exit the SSH session, simply type exit at the prompt.

In the next chapter, we will also show how a few of these services work
together in the first image, Kubernetes core architecture.

Services running on the minions

We could SSH to one of the minions, but since Kubernetes schedules workloads across the
cluster, we would not see all the containers on a single minion. However, we can look at the
pods running on all the minions using the kubectl command:

$ kubectl get pods
No resources found.

[41]

Introduction to Kubernetes Chapter 1

Since we have not started any applications on the cluster yet, we don't see any pods.
However, there are actually several system pods running pieces of the Kubernetes
infrastructure. We can see these pods by specifying the kube-system namespace. We will
explore namespaces and their significance later, but for now, the ~——namespace=kube-
system command can be used to look at these K8s system resources, as follows:

$ kubectl get pods ——-namespace=kube-system
jesse@kubernetes-master ~ $§ kubectl get pods —--namespace=kube-system
NAME READY STATUS RESTARTS AGE
etcd-server-events-kubernetes-master 1/1 Running 0 50m
etcd-server-kubernetes-master 1/1 Running 0 50m
event-exporter-v0.1.7-64464bff45-rg88v 1/1 Running 0 51m
fluentd-gcp-v2.0.10-c4ptt 1/1 Running 0 50m
fluentd-gcp-v2.0.10-d9¢5z 1/1 Running 0 50m
fluentd-gcp-v2.0.10-ztdzs 1/1 Running 0 51m
fluentd-gcp-v2.0.10-zxx6k 1/1 Running 0 50m
heapster-v1.5.0-584689c78d-z9blg 4/4 Running 0 50m
kube-addon-manager-kubernetes-master 1/1 Running 0 50m
kube-apiserver-kubernetes-master 1/1 Running 0 50m
kube-controller-manager-kubernetes-master 1/1 Running 0 50m
kube-dns-774d5484cc-gcgdx 3/3 Running 0 51m
kube-dns-774d5484cc-hgm9r 3/3 Running 0 50m
kube-dns-autoscaler-69c5cbdcdd-8hj5j 1/1 Running 0 51m
kube-proxy-kubernetes-minion-group-012f 1/1 Running 0 50m
kube-proxy-kubernetes-minion-group-699m 1/1 Running 0 50m
kube-proxy-kubernetes-minion-group-sj9r 1/1 Running 0 50m
kube-scheduler-kubernetes-master 1/1 Running 0 50m
kubernetes—-dashboard-74£855c8¢c6-v4£f6x 1/1 Running 0 51m
17-default-backend-57856c5£55-21z6w 1/1 Running 0 51m
17-1b-controller-v0.9.7-kubernetes-master 1/1 Running 0 50m
metrics-server-v0.2.1-7£8dd98c8f-v9b4c 2/2 Running 0 50m
monitoring-influxdb-grafana-v4-554£5d97-17q4k 2/2 Running 0 51m
rescheduler-v0.3.1l-kubernetes-master 1/1 Running 0 50m

The first six lines should look familiar. Some of these are the services we saw running on
the master, and we will see pieces of these on the nodes. There are a few additional services
we have not seen yet. The kube-dns option provides the DNS and service discovery
plumbing, kubernetes-dashboard-xxxx is the user interface for Kubernetes, 17-
default-backend-xxxx provides the default load balancing backend for the new layer-7
load balancing capability, and heapster-v1.2.0-xxxx and monitoring-influx-
grafana provide the Heapster database and user interface to monitor resource usage
across the cluster.

[42]

Introduction to Kubernetes Chapter 1

Finally, kube-proxy-kubernetes-minion-group-xxxx is the proxy, which directs
traffic to the proper backing services and pods running on our cluster. The kube-
apiserver validates and configures data for the API objects, which include services,
replication controllers, pods, and other Kubernetes objects. The rescheduler guarantees
the scheduling of critical system add-ons, given that the cluster has enough available
resources.

If we did SSH into a random minion, we would see several containers that run across a few
of these pods. A sample might look like the following:

IMAGE STATUS
gcr.io/google_containers/exechealthz-amd64:1.2 13
gcr.io/google_containers/kube-dnsmasg-amd64:1.4 13
gcr.lo/google_containers/heapster_grafana:v3.1.1 13
gcr.io/google _containers/kubedns-amd64:1.8 13
gcr.io/google_containers/heapster_influxdb:ve.7 13
gcr.io/google_containers/defaultbackend:1.0 13
gcr.io/google_containers/pause-amd64:3.0 13
gcr.io/google_containers/pause-amd64:3.0 13
gcr.io/google_containers/pause-amd64:3.0 13
gcr.io/google_containers/fluentd-gcp:1.25 13
gcr.iofgoogle_containers/node-problem-detector:ve.1 13
gcr.io/google_containers/kube-proxy:b87ffd2bf726a72a08bbc021970cb855 13
gcr.iof/google_containers/pause-amd64:3.0 13
gcr.iof/google_containers/pause-amd64:3.0 13
gcr.lo/google_containers/pause-amd64:3.0 13

Again, we saw a similar lineup of services on the master. The services we did not see on the
master include the following:

¢ kubedns: This container monitors the service and endpoint resources in
Kubernetes and synchronizes any changes to DNS lookups.

® kube-dnsmasq: This is another container that provides DNS caching.

¢ dnsmasg-metrics: This provides metric reporting for DNS services in cluster.

e 17-defaultbackend: This is the default backend for handling the GCE L7 load
balancer and Ingress.

® kube-proxy: This is the network and service proxy for your cluster. This
component makes sure that service traffic is directed to wherever your
workloads are running on the cluster. We will explore this in more depth later in
this book.

¢ heapster: This container is for monitoring and analytics.

e addon-resizer: This cluster utility is for scaling containers.

[43]

Introduction to Kubernetes Chapter 1

® heapster_grafana: This tracks resource usage and monitoring.
® heapster_influxdb: This time series database is for Heapster data.

e cluster-proportional-autoscaler: This cluster utility is for scaling
containers in proportion to the cluster size.

e exechealthz: This performs health checks on the pods.

Again, I have omitted the amd64 for many of these names to make this
more generic. The purpose of the pods remains the same.

Tearing down a cluster

Alright, this is our first cluster on GCE, but let's explore some other providers. To keep
things simple, we need to remove the one we just created on GCE. We can tear down the
cluster with one simple command:

$ cluster/kube-down.sh

Working with other providers

By default, Kubernetes uses the GCE provider for Google Cloud. In order to use other
cloud providers, we can explore a rapidly expanding tool set of different options. Let's use
AWS for this example, where we have two main options: kops (https://github.com/
kubernetes/kops) and kube-aws (https://github.com/kubernetes—incubator/kube-aws).
For reference, the following KUBERNETES_PROVIDER are listed in this table:

Provider KUBERNETES_PROVIDER Type

value
Google Compute Engine gce Public cloud
Google Container Engine gke Public cloud
Amazon Web Services aws Public cloud
Microsoft Azure azure Public cloud
Hashicorp vagrant vagrant Virtual development environment
VMware vSphere vsphere Private cloud/on-premise virtualization
libvirt running CoreOS libvirt-coreos Virtualization management tool
Canonical Juju (folks behind Ubuntu) |juju OS service orchestration tool

[44]

https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws

Introduction to Kubernetes Chapter 1

CLI setup

Let's try setting up the cluster on AWS. As a prerequisite, we need to have the AWS
CLlI installed and configured for our account. The AWS CLI installation and configuration
documentation can be found at the following links:

¢ Installation documentation:
http://docs.aws.amazon.com/cli/latest/userguide/installing.html#instal
l-bundle-other-os

¢ Configuration documentation:
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-start
ed.html

You'll also need to configure your credentials as recommended by AWS (refer to https://
docs.aws.amazon.com/sdk-for-go/vl/developer—-guide/configuring-sdk.

html#specifying-credentials) in order to use kops. To get started, you'll need to first
install the CLI tool (refer to https://github.com/kubernetes/kops/blob/master/docs/
install.md). If you're running on Linux, you can install the tools as follows:

curl -Lo kops https://github.com/kubernetes/kops/releases/download/$ (curl -
s https://api.github.com/repos/kubernetes/kops/releases/latest | grep
tag_name | cut -d '"' -f 4)/kops-darwin-amdé64

chmod +x ./kops

sudo mv ./kops /usr/local/bin/

If you're installing this for macOS, you can use brew update && brew install kops
from the command-line Terminal. As a reminder, you'll need kubect1 installed if you
haven't already! Check the instructions in the preceding links to confirm the installation.

IAM setup

In order for us to use kops, we'll need an IAM role created in AWS with the following
permissions:

AmazonEC2FullAccess
AmazonRoute53FullAccess
AmazonS3FullAccess
IAMFullAccess
AmazonVPCFullAccess

[45]

http://docs.aws.amazon.com/cli/latest/userguide/installing.html#install-bundle-other-os
http://docs.aws.amazon.com/cli/latest/userguide/installing.html#install-bundle-other-os
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md
https://github.com/kubernetes/kops/blob/master/docs/install.md

Introduction to Kubernetes Chapter 1

Once you've created those pieces manually in the AWS GUI, you can run the following
commands from your PC to set up permissions with the correct access:

aws

aws

arn:

aws

arn:

aws

arn:

aws

arn:

aws

arn:

aws

aws

aws

iam

iam

aws :

iam

aws :

iam

aws :

iam

aws :

iam
aws

iam

iam

iam

create—group —-—-group—name kops

attach—-group-policy —--policy-arn

iam: :aws:policy/AmazonEC2FullAccess —--group-name kops
attach—-group-policy —--—-policy-arn

iam: :aws:policy/AmazonRoute53FullAccess —-group-name kops
attach—-group-policy —--policy-arn

iam: :aws:policy/AmazonS3FullAccess —--group-name kops
attach—-group-policy ——-policy-arn

iam: :aws:policy/IAMFullAccess —--group-name kops
attach—-group-policy —-—-policy-arn

:iam: :aws:policy/AmazonVPCFullAccess —-group-name kops

create—user —--user-—-name kops
add-user—-to—-group —--user—name kops ——group—name kops

create—access—-key —--user—name kops

In order to use this newly created kops user to interact with the kops tool, you need to copy
down the secretAccessKey and AccessKeyID from the output JSON, and then configure
the AWS CLI as follows:

configure the aws client to use your new IAM user

aws configure # Use your new access and secret key here

aws ilam list-users # you should see a list of all your IAM users here

Because "aws configure" doesn't export these vars for kops to use, we
export them now

export AWS_ACCESS_KEY_ID=$ (aws configure get aws_access_key_id)

export AWS_SECRET_ACCESS_KEY=$ (aws configure get aws_secret_access_key)

We're going to use a gossip-based cluster to bypass a kops configuration requirement of
public DNS zones. This requires kops 1.6.2 or later, and allows you to create a locally
registered cluster that requires a name ending in .k8s.1local. More on that in a bit.

If you'd like to explore how to purchase and set up publicly routable DNS
through a provider, you can review the available scenarios in the kops
documentation here: https://github.com/kubernetes/kops/blob/

master/docs/aws.mdfconfigure—dns.

[46]

https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns
https://github.com/kubernetes/kops/blob/master/docs/aws.md#configure-dns

Introduction to Kubernetes Chapter 1

Cluster state storage

Since we're building resources in the cloud using configuration management, we're going
to need to store the representation of our cluster in a dedicated S3 bucket. This source of
truth will allow us to maintain a single location for the configuration and state of our
Kubernetes cluster. Please prepend your bucket name with a unique value.

You'll need to have kubectl, kops, the aws cli, and IAM credentials set
up for yourself at this point!

Be sure to create your bucket in the us-east -1 region for now, as kops is currently
opinionated as to where the bucket belongs:

aws s3api create-bucket \
—-bucket gsw-k8s-3-state-store \
—--region us—-east-1

Let's go ahead and set up versioning as well, so you can roll your cluster back to previous

states in case anything goes wrong. Behold the power of Infrastructure as Code!

aws s3api put-bucket-versioning —--bucket gsw-k8s-3-state-store —-
versioning-configuration Status=Enabled

Creating your cluster

We'll go ahead and use the .k8s.1local settings mentioned previously to simplify the DNS
setup of the cluster. If you'd prefer, you can also use the name and state flags available
within kops to avoid using environment variables. Let's prepare the local environment first:

$ export NAME=gswk8s3.k8s.local

$ export KOPS_STATE_STORE=s3://gsw-k8s-3-state-store

$ aws s3api create-bucket —--bucket gsw-k8s-3-state-store --region us-east-1
{

"Location": "/gsw-k8s-3-state-store"

-~

[47]

Introduction to Kubernetes Chapter 1

Let's spin up our cluster in Ohio, and verify that we can see that region first:

$ aws ec2 describe-availability-zones —--region us—east-2

{
"AvailabilityZones": [
{
"State": "available",
"ZoneName": "us-east-2a",
"Messages": [],
"RegionName": "us-east-2"
}I
{
"State": "available",
"ZoneName": "us—east-2b",
"Messages": [],
"RegionName": "us-east-2"
}I
{
"State": "available",
"ZoneName": "us—east-2c",
"Messages": [],
"RegionName": "us-east-2"
}
1

}

Great! Let's make some Kubernetes. We're going to use the most basic kops cluster
command available, though there are much more complex examples available in the
documentation (https://github.com/kubernetes/kops/blob/master/docs/high_
availability.md):

kops create cluster —--zones us-east-2a ${NAME}

With kops and generally with Kubernetes, everything is going to be created within Auto
Scaling groups (ASGs).

Read more about AWS autoscaling groups here—they're
essential: https://docs.aws.amazon.com/autoscaling/ec2/userguide/
AutoScalingGroup.html.

Once you run this command, you'll get a whole lot of configuration output in what we call
a dry run format. This is similar to the Terraform idea of a Terraform plan, which lets you
see what you're about to build in AWS and lets you edit the output accordingly.

[48]

https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://github.com/kubernetes/kops/blob/master/docs/high_availability.md
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html

Introduction to Kubernetes Chapter 1

At the end of the output, you'll see the following text, which gives you some basic
suggestions on the next steps:

Must specify --yes to apply changes
Cluster configuration has been created.

Suggestions:

* list clusters with: kops get cluster

* edit this cluster with: kops edit cluster gwsk8s3.k8s.local

* edit your node instance group: kops edit ig —--name=gwsk8s3.k8s.local
nodes

* edit your master instance group: kops edit ig --name=gwsk8s3.k8s.local
master-us—east-2a

Finally configure your cluster with: kops update cluster gwsk8s3.k8s.local
--yes

If you don't have an SSH keypair in your ~/ . ssh directory, you'll need to

create one. This article will lead you through the steps: https://help.
github.com/articles/generating—a-new-ssh-key-and-adding—-it-to-

the-ssh-agent/.

Once you've confirmed that you like the look of the output, you can create the cluster:

kops update cluster gwsk8s3.k8s.local --yes

This will give you a lot of output about cluster creation that you can follow along with:

I0320 21:37:34.761784 29197 apply_cluster.go:450] Gossip DNS: skipping DNS
validation

I0320 21:37:35.172971 29197 executor.go:91] Tasks: 0 done / 77 total; 30
can run

I0320 21:37:36.045260 29197 vfs_castore.go:435] Issuing new certificate:
"apiserver—aggregator-ca"

I0320 21:37:36.070047 29197 vfs_castore.go:435] Issuing new certificate:
"ca"

I0320 21:37:36.727579 29197 executor.go:91] Tasks: 30 done / 77 total; 24
can run

I0320 21:37:37.740018 29197 vfs_castore.go:435] Issuing new certificate:
"apiserver—-proxy-client"

I0320 21:37:37.758789 29197 vfs_castore.go:435] Issuing new certificate:
"kubecfg"

I0320 21:37:37.830861 29197 vfs_castore.go:435] Issuing new certificate:
"kube-controller-manager"

I0320 21:37:37.928930 29197 vfs_castore.go:435] Issuing new certificate:
"kubelet"

I0320 21:37:37.940619 29197 vfs_castore.go:435] Issuing new certificate:
"kops"

[49]

https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/

Introduction to Kubernetes Chapter 1

I0320 21:37:38.095516 29197 vfs_castore.go:435] Issuing new certificate:
"kubelet-api"

I0320 21:37:38.124966 29197 vfs_castore.go:435] Issuing new certificate:
"kube-proxy"

I0320 21:37:38.274664 29197 vfs_castore.go:435] Issuing new certificate:
"kube-scheduler"

I0320 21:37:38.344367 29197 vfs_castore.go:435] Issuing new certificate:
"apiserver—aggregator"

I0320 21:37:38.784822 29197 executor.go:91] Tasks: 54 done / 77 total; 19
can run

I0320 21:37:40.663441 29197 launchconfiguration.go:333] waiting for IAM
instance profile "nodes.gswk8s3.k8s.local" to be ready

I0320 21:37:40.889286 29197 launchconfiguration.go:333] waiting for IAM
instance profile "masters.gswk8s3.k8s.local" to be ready

I0320 21:37:51.302353 29197 executor.go:91] Tasks: 73 done / 77 total; 3
can run

I0320 21:37:52.464204 29197 vfs_castore.go:435] Issuing new certificate:
"master"

I0320 21:37:52.644756 29197 executor.go:91] Tasks: 76 done / 77 total; 1
can run

I0320 21:37:52.916042 29197 executor.go:91] Tasks: 77 done / 77 total; O
can run

I0320 21:37:53.360796 29197 update_cluster.go:248] Exporting kubecfg for
cluster

kops has set your kubectl context to gswk8s3.k8s.local

As with GCE, the setup activity will take a few minutes. It will stage files in S3 and create
the appropriate instances, Virtual Private Cloud (VPC), security groups, and so on in our
AWS account. Then, the Kubernetes cluster will be set up and started. Once everything is
finished and started, we should see some options on what comes next:

Cluster is starting. It should be ready in a few minutes.

Suggestions:
* validate cluster: kops validate cluster
* list nodes: kubectl get nodes —--show-labels

* ssh to the master: ssh -i ~/.ssh/id_rsa admin@api.gswk8s3.k8s.local
The admin user is specific to Debian. If not using Debian please use the
appropriate user based on your OS.

* read about installing addons:
https://github.com/kubernetes/kops/blob/master/docs/addons.md

You'll be able to see instances and security groups, and a VPC will be created for your
cluster. The kubect1 context will also be pointed at your new AWS cluster so that you can
interact with it:

[50]

Introduction to Kubernetes Chapter 1
Launch Instance Actions v
Filter by tags and attributes or search by keyworc 12

Name

master-us-east-2a. masters.gswkas3 kas local

nodes.gswkds3 ks local

nodes.gswkds3 ks local

-

Instance ID

i-04dbc80b39fe7d1da

i-04d4f3d43b5165fbc
i-0d1872bcEfe184efd

Instance Type

cd large
t2.medium

t2.medium

us-east-2a
us-east-2a

us-east-2a

Availability Zone

@ running
@ running
@ running

Once again, we will SSH into master. This time, we can use the native SSH client and the
admin user as the AMI for Kubernetes in kops is Debian. We'll find the key files in

/home/<username>/.ssh:

$ ssh -v -i /home/<username>/.ssh/<your_id_rsa_file> admin@<Your master IP>

If you have trouble with your SSH key, you can set it manually on the cluster by creating a
secret, adding it to the cluster, and checking if the cluster requires a rolling update:

$ kops create
~/.ssh/id_rsa.
$ kops update
Using cluster

pub
cluster —--yes

I0320 22:03:42.823049 31465 apply_cluster.go:450]
validation

I0320 22:03:43.220675 31465 executor.go:91] Tasks:
can run

I0320 22:03:43.919989 31465 executor.go:91] Tasks:
can run

I0320 22:03:44.343478 31465 executor.go:91] Tasks:
can run

I0320 22:03:44.905293 31465 executor.go:91] Tasks:
can run

I0320 22:03:45.385288 31465 executor.go:91] Tasks:
can run

I0320 22:03:45.463711 31465 executor.go:91] Tasks:
can run

I0320 22:03:45.675720 31465 update_cluster.go:248]
cluster

from kubectl context: gswk8s3.k8s.local
Gossip DNS:

secret —-name gswk8s3.k8s.local sshpublickey admin -i

skipping DNS

0 done / 77 total; 30

30 done /
54 done /
73 done /
76 done /
77

done /

Exporting

kops has set your kubectl context to gswk8s3.k8s.local

Cluster changes have been applied to the cloud.

77 total; 24

77 total; 19

77 total; 3
77 total; 1
77 total; O

kubecfg for

Changes may require instances to restart: kops rolling-update cluster

$ kops rolling-update cluster —-name gswk8s3.k8s.local

[51]

Instance State

Introduction to Kubernetes Chapter 1

NAME STATUS NEEDUPDATE READY MIN MAX NODES
master-us-east-2a Ready 0 1 1 1 1
nodes Ready 0 2 2 2 2

No rolling-update required.
$

Once you've gotten into the cluster master, we can look at the containers. We'll use sudo
docker ps --format 'table {{.Image}}t{{.Status}}' toexplore the running
containers. We should see the following:

admin@ip-172-20-47-159:~$ sudo docker container ls —--format 'table
{{.Image}}\t{{.Status}}'

IMAGE STATUS

kope/dns-
controller@sha256:97£80ad43££833b254907a0341c7£fe34748e007515004c£0da09727c5
442f53b Up 29 minutes

gcr.io/google_containers/pause—amd64:3.0 Up 29 minutes
gcr.io/google_containers/kube-
apiserver@sha256:71273b57d811654620dc7a0d22£d893d9852b6637616£8e7e3£4507c60
ea7357 Up 30 minutes
gcr.io/google_containers/etcd@sha256:19544a655157£fb089b62d4dac02bbd095£82ca
245dd5e31dd1684d175b109947 Up 30 minutes

gcr.io/google_containers/kube-
proxy@sha256:cc94b481£168bf96bd21cb576cfaa06c55807£fcba8a6620b51850ele30£febe
b4 Up 30 minutes

gcr.io/google_containers/kube-controller-
manager@sha256:5ca59252abaf231681£96d07c939e57a05799d1c£876447fe6c2e1469d58
2bde Up 30 minutes
gcr.io/google_containers/etcd@sha256:19544a655157fb089b62d4dac02bbd095£82ca
245dd5e31dd1684d175b109947 Up 30 minutes

gcr.io/google_containers/kube-
scheduler@sha256:46d215410a407b9b5a3500b£8b421778790£5123££f2f4364£99b352a2b
a62940 Up 30 minutes
gcr.io/google_containers/pause—amdé4:
gcr.io/google_containers/pause—amdé4:
gcr.io/google_containers/pause—amdé4:
gcr.io/google_containers/pause—amdé4:
gcr.io/google_containers/pause—amdé4:
gcr.io/google_containers/pause—amdé4:
protokube:1.8.1

Up 30 minutes
Up 30 minutes
Up 30 minutes
Up 30 minutes
Up 30 minutes
Up 30 minutes

Wwwwwuw
O O0OO0OoOoo

[52]

Introduction to Kubernetes Chapter 1

We can see some of the same containers as our GCE cluster had. However, there are several
missing. We can see the core Kubernetes components, but the f1uentd-gcp service is
missing, as well as some of the newer utilities such as node-problem-

detector, rescheduler, glbc, kube-addon-manager, and etcd-empty-dir-cleanup.
This reflects some of the subtle differences in the kube-up script between various public
cloud providers. This is ultimately decided by the efforts of the large Kubernetes open-
source community, but GCP often has many of the latest features first.

You also have a command that allows you to check on the state of the cluster in kops
validate cluster, which allows you to make sure that the cluster is working as
expected. There's also a lot of handy modes that kops provides that allow you to do various
things with the output, provisioners, and configuration of the cluster.

Other modes

There are various other modes to take into consideration, including the following:

¢ Build a terraform model: -—target=terraform. The terraform model will be
built in out /terraform.

e Build a cloudformation model: —-target=cloudformation. The
Cloudformation JSON file will be built in out /cloudformation.

¢ Specify the K8s build to run: --kubernetes-version=1.2.2.

¢ Run nodes in multiple zones: --zones=us-east-1b, us-east-1c, us-
east-1d.

¢ Run with a HA master: -—-master-zones=us-east-1b, us—east-1c, us-
east-1d.

¢ Specify the number of nodes: --node-count=4.

¢ Specify the node size: -—node-size=m4.large.

e Specify the master size: -—master-size=m4.large.

¢ Override the default DNS zone: --dns-zone=<my.hosted.zone>.

The full list of CLI documentation can be found here: https://github.

com/kubernetes/kops/tree/master/docs/cli.

[53]

https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli
https://github.com/kubernetes/kops/tree/master/docs/cli

Introduction to Kubernetes Chapter 1

Another tool for diagnosing the cluster status is the componentstatuses command, which
will inform you of state of the major Kubernetes moving pieces:

$ kubectl get componentstatuses
NAME STATUS MESSAGE ERROR
scheduler Healthy ok
controller—-manager Healthy ok
etcd-0 Healthy {"health": "true"}

Resetting the cluster

You just had a little taste of running the cluster on AWS. For the remainder of this book, I
will be basing my examples on a GCE cluster. For the best experience following along, you
can get back to a GCE cluster easily.

Simply tear down the AWS cluster, as follows:

$ kops delete cluster —--name ${NAME} --yes

If you omit the ——yes flag, you'll get a similar dry run output that you can confirm. Then,
create a GCE cluster again using the following, and in doing so making sure that you're
back in the directory where you installed the Kubernetes code:

$ cd ~/<kubernetes_install_dir>
$ kube-up.sh

Investigating other deployment automation

If you'd like to learn more about other tools for cluster automation, we recommend that you
visit the kube-deploy repository, which has references to community maintained
Kubernetes cluster deployment tools.

Visit https://github.com/kubernetes/kube-deploy to learn more.

[54]

https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy
https://github.com/kubernetes/kube-deploy

Introduction to Kubernetes Chapter 1

Local alternatives

The kube-up. sh script and kops are pretty handy ways to get started using Kubernetes on
your platform of choice. However, they're not without flaws and can sometimes run
aground when conditions are not just so.

Luckily, since K8's inception, a number of alternative methods for creating clusters have
emerged. We'd recommend checking out Minikube in particular, as it's an extremely simple
and local development environment that you can use to test out your Kubernetes
configuration.

This project can be found here: https://github.com/kubernetes/minikube.

It's important to mention that you're going to need a hypervisor on your
machine to run Minikube. For Linux, you can use kvm/kvm2, or
VirtualBox, and on macOS you can run native xhyve or VirtualBox. For
Windows, Hyper-V is the default hypervisor.

The main limitation for this project is that it only runs a single node, which limits our
exploration of certain advanced topics that require multiple machines. Minikube is a great
resource for simple or local development however, and can be installed very simply on
your Linux VM with the following:

$ curl -Lo minikube
https://storage.googleapis.com/minikube/releases/latest/minikube-linux—amdé
4 && chmod +x minikube && sudo mv minikube /usr/local/bin/

Or install it on macOS with the following:

$ brew cask install minikube

We'll cover how to get started with Minikube with the following commands:

$ minikube start

Starting local Kubernetes v1.7.5 cluster...
Starting VM...

SSH-ing files into VM...

Setting up certs...

Starting cluster components...

Connecting to cluster...

Setting up kubeconfig...

Kubectl is now configured to use the cluster.

[551]

https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

Introduction to Kubernetes Chapter 1

You can create a sample deployment quite simply:

$ kubectl run hello-minikube --image=k8s.gcr.io/echoserver:1.4 —--port=8080
deployment "hello-minikube" created

$ kubectl expose deployment hello-minikube —--type=NodePort

service "hello-minikube" exposed

Once you have your cluster and service up and running, you can interact with it simply by
using the kubect1 tool and the context command. You can get to the Minikube
dashboard with minikube dashboard.

Minikube is powered by localkube (https://github.com/kubernetes/
minikube/tree/master/pkg/localkube) and libmachine (https://
github.com/docker/machine/tree/master/libmachine). Check them out!

Additionally, we've already referenced a number of managed services, including GKE,
EKS, and Microsoft Azure Container Service (ACS), which provide an automated
installation and some managed cluster operations. We will look at a demos of these in
Chapter 14, Hardening Kubernetes.

Starting from scratch

Finally, there is the option to start from scratch. Luckily, starting in 1.4, the Kubernetes
team has put a major focus on simplifying the cluster setup process. To that end, they have
introduced kubeadm for Ubuntu 16.04, CentOS 7, and HypriotOS v1.0.1+.

Let's take a quick look at spinning up a cluster on AWS from scratch using the kubeadm
tool.

Cluster setup

We will need to provision our cluster master and nodes beforehand. For the moment, we
are limited to the operating systems and version listed earlier. Additionally, it is
recommended that you have at least 1 GB of RAM. All the nodes must have network
connectivity to one another.

[561]

https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/kubernetes/minikube/tree/master/pkg/localkube
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine
https://github.com/docker/machine/tree/master/libmachine

Introduction to Kubernetes Chapter 1

For this walkthrough, we will need one t2.medium (master node) and three t2.mirco
(nodes) sized instances on AWS. These instance have burstable CPU and come with the
minimum 1 GB of RAM that's required. We will need to create one master and three worker
nodes.

We will also need to create some security groups for the cluster. The following ports are
needed for the master:

Type Protocol|Port range|Source

All traffic|All All {This SG ID (Master SG)}

All traffic|All All {Node SG ID}

SSH TCP 22 {Your Local Machine's IP}

HTTPS |[TCP 443 {Range allowed to access K8s API and Ul}

The following table shows the port's node security groups:

Type Protocol[Port range|Source

All traffic|All All {Master SG ID}

All traffic|All All {This SG ID (Node SG)}
SSH TCP 22 {Your Local Machine's IP}

Once you have these SGs, go ahead and spin up four instances (one t2.medium and three
t2.mircos) using Ubuntu 16.04. If you are new to AWS, refer to the documentation on
spinning up EC2 instances at the following

URL: http://docs.aws.amazon.com/AWSEC2/latest /UserGuide/LaunchingAndUsingInstan
ces.html.

Be sure to identify the t2.medium instance as the master and associate the master security
group. Name the other three as nodes and associate the node security group with those.

These steps are adapted from the walk-through in the manual. For more
information or to work with an alternative to Ubuntu, refer to https://
kubernetes.io/docs/getting-started-guides/kubeadm/.

[571

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/LaunchingAndUsingInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/LaunchingAndUsingInstances.html
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/

Introduction to Kubernetes Chapter 1

Installing Kubernetes components (kubelet and
kubeadm)

Next, we will need to SSH into all four of the instances and install the Kubernetes
components.

As the root user, perform the following steps on all four instances:

1. Update the packages and install the apt -transport-https package so
that we can download from sources that use HTTPS:

$ apt-—-get update
$ apt—get install -y apt-transport-https

2. Install the Google Cloud public key:

$ curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg |
apt-key add -

3. Next, let's set up the repository:

cat <<EOF >/etc/apt/sources.list.d/kubernetes.list

deb http://apt.kubernetes.io/ kubernetes-xenial main

EOF

apt—-get update

apt—get install -y kubelet kubeadm kubectl docker.io kubernetes-cni

You'll need to make sure that the cgroup driver used by the kubelet on the master node is
configured correctly to work with Docker. Make sure you're on the master node, then run
the following:

docker info | grep -i cgroup
cat /etc/systemd/system/kubelet.service.d/10-kubeadm.conf

If these items don't match, you're going to need to change the kubelet configuration to
match the Docker driver. Running sed -i "s/cgroup-driver=systemd/cgroup-
driver=cgroupfs/g" /etc/systemd/system/kubelet.service.d/10-
kubeadm.conf should fix the settings, or you can manually open the systemd file and
add the correct flag to the appropriate environment. After that's complete, restart the
service:

$ systemctl daemon-reload
$ systemctl restart kubelet

[581]

Introduction to Kubernetes Chapter 1

Setting up a master

On the instance you have previously chosen as master, we will run master initialization.
Again, as the root, run the following command, and you should see the following output:

$ kubeadm init

[init] using Kubernetes version: v1.11.3

[preflight] running pre-flight checks

T1015 02:49:42.378355 5250 kernel_validator.go:81] Validating kernel
version

T1015 02:49:42.378609 5250 kernel_validator.go:96] Validating kernel config
[preflight/images] Pulling images required for setting up a Kubernetes
cluster

[preflight/images] This might take a minute or two, depending on the speed
of your internet connection

[preflight/images] You can also perform this action in beforehand using
'kubeadm config images pull'

[kubelet] Writing kubelet environment file with flags to file
"/var/lib/kubelet/kubeadm-flags.env"

[kubelet] Writing kubelet configuration to file
"/var/lib/kubelet/config.yaml"

[preflight] Activating the kubelet service

[certificates] Generated ca certificate and key.

[certificates] Generated apiserver certificate and key.

[certificates] apiserver serving cert is signed for DNS names [master
kubernetes kubernetes.default kubernetes.default.svc
kubernetes.default.svc.cluster.local] and IPs [10.96.0.1 172.17.0.71]
[certificates] Generated apiserver-kubelet-client certificate and key.
[certificates] Generated sa key and public key.

[certificates] Generated front-proxy-ca certificate and key.
[certificates] Generated front-proxy-client certificate and key.
[certificates] Generated etcd/ca certificate and key.

[certificates] Generated etcd/server certificate and key.

[certificates] etcd/server serving cert is signed for DNS names [master
localhost] and IPs [127.0.0.1 ::1]

[certificates] Generated etcd/peer certificate and key.

[certificates] etcd/peer serving cert is signed for DNS names [master
localhost] and IPs [172.17.0.71 127.0.0.1 ::1]

[certificates] Generated etcd/healthcheck-client certificate and key.
[certificates] Generated apiserver-etcd-client certificate and key.
[certificates] wvalid certificates and keys now exist in
"/etc/kubernetes/pki"

[kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/admin.conf"
[kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/kubelet.conf"
[kubeconfig] Wrote KubeConfig file to disk: "/etc/kubernetes/controller-
manager.conf"

[kubeconfig] Wrote KubeConfig file to disk:
"/etc/kubernetes/scheduler.conf"

[591]

Introduction to Kubernetes Chapter 1

[controlplane] wrote Static Pod manifest for component kube-apiserver to
"/etc/kubernetes/manifests/kube-apiserver.yaml"

[controlplane] wrote Static Pod manifest for component kube-controller-
manager to "/etc/kubernetes/manifests/kube-controller-manager.yaml"
[controlplane] wrote Static Pod manifest for component kube-scheduler to
"/etc/kubernetes/manifests/kube-scheduler.yaml"

[etcd] Wrote Static Pod manifest for a local etcd instance to
"/etc/kubernetes/manifests/etcd.yaml"

[init] waiting for the kubelet to boot up the control plane as Static Pods
from directory "/etc/kubernetes/manifests"

[init] this might take a minute or longer if the control plane images have
to be pulled

[apiclient] All control plane components are healthy after 43.001889
seconds

[uploadconfig] storing the configuration used in ConfigMap "kubeadm-config"
in the "kube-system" Namespace

[kubelet] Creating a ConfigMap "kubelet-config-1.11l" in namespace kube-
system with the configuration for the kubelets in the cluster

[markmaster] Marking the node master as master by adding the label "node-
role.kubernetes.io/master="""

[markmaster] Marking the node master as master by adding the taints [node-
role.kubernetes.io/master:NoSchedule]

[patchnode] Uploading the CRI Socket information "/var/run/dockershim.sock"
to the Node API object "master" as an annotation

[bootstraptoken] using token: 0760dk.qg4l5au0jyx4vgéhr

[bootstraptoken] configured RBAC rules to allow Node Bootstrap tokens to
post CSRs in order for nodes to get long term certificate credentials
[bootstraptoken] configured RBAC rules to allow the csrapprover controller
automatically approve CSRs from a Node Bootstrap Token

[bootstraptoken] configured RBAC rules to allow certificate rotation for
all node client certificates in the cluster

[bootstraptoken] creating the "cluster-info" ConfigMap in the "kube-public"
namespace

[addons] Applied essential addon: CoreDNS

[addons] Applied essential addon: kube-proxy

Your Kubernetes master has initialized successfully!

To start using your cluster, you need to run the following as a regular
user:

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id —u) :$(id —g) $HOME/.kube/config

You should now deploy a pod network to the cluster.
Run "kubectl apply —-f [podnetwork].yaml" with one of the options listed at:
https://kubernetes.io/docs/concepts/cluster—administration/addons/

[60]

Introduction to Kubernetes Chapter 1

You can now join any number of machines by running the following on each
node
as root:

kubeadm join 172.17.0.71:6443 —-token 0760dk.g415aul0jyx4vg6hr ——
discovery-token-ca-cert-hash
sha256:453e2964eb9%cc0cecfdbl167194£60c6£7bd8894dc3913e0034bf0b33af4£f40£5

To start using your cluster, you need to run as a regular user:

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u) :$(id -g) $HOME/.kube/config

You should now deploy a pod network to the cluster. Run kubectl apply -£
[podnetwork] .yaml with one of the options listed at https://kubernetes.io/docs/

concepts/cluster-administration/addons/.

You can now join any number of machines by running the following on each node
as root:

kubeadm join —--token <token> <master-ip>:<master-port> —--discovery-token-
ca—-cert-hash sha256:<hash>

Note that initialization can only be run once, so if you run into problems, you'll need to
use kubeadm reset.

Joining nodes

After a successful initialization, you will get a join command that can be used by the
nodes. Copy this down for the join process later on. It should look similar to this:

$ kubeadm join —--token=<some token> <master ip address>

The token is used to authenticate cluster nodes, so make sure to store it somewhere securely
for future use.

Networking

Our cluster will need a networking layer for the pods to communicate on. Note that
kubeadm requires a CNI compatible network fabric. The list of plugins currently available
can be found here: http://kubernetes.io/docs/admin/addons/.

[61]

https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
https://kubernetes.io/docs/concepts/cluster-administration/addons/
http://kubernetes.io/docs/admin/addons/

Introduction to Kubernetes Chapter 1

For our example, we will use calico. We will need to create the calico components on our
cluster using the following yaml. For convenience, you can download it

here: http://docs.projectcalico.org/vl.6/getting-started/kubernetes/installation
/hosted/kubeadm/calico.yaml.

Once you have this file on your master, create the components with the following
command:

$ kubectl apply -f calico.yaml
Give this a minute to run setup and then list the kube-systemnodes in order to check this:
$ kubectl get pods --namespace=kube-system

You should get a listing similar to the following one with three new calico pods and one
completed job that is not shown:

]
it «

Calico setup

Joining the cluster

Now, we need to run the join command we copied earlier, on each of our node instances:

$ kubeadm join —--token=<some token> <master ip address>

Once you've finished that, you should be able to see all nodes from the master by running
the following command:

$ kubectl get nodes

[62]

http://docs.projectcalico.org/v1.6/getting-started/kubernetes/installation/hosted/kubeadm/calico.yaml
http://docs.projectcalico.org/v1.6/getting-started/kubernetes/installation/hosted/kubeadm/calico.yaml

Introduction to Kubernetes Chapter 1

If all went well, this will show three nodes and one master, as shown here:

Summary

We took a very brief look at how containers work and how they lend themselves to the new
architecture patterns in microservices. You should now have a better understanding of how
these two forces will require a variety of operations and management tasks, and how
Kubernetes offers strong features to address these challenges. We created two different
clusters on both GCE and AWS, and explored the startup script as well as some of the built-
in features of Kubernetes. Finally, we looked at the alternatives to the kube-up script in
kops, and tried our hand at manual cluster configuration with the kubeadm tool on AWS
with Ubuntu 16.04.

In the next chapter, we will explore the core concept and abstractions K8s provides to
manage containers and full application stacks. We will also look at basic scheduling, service
discovery, and health checking.

Questions

1. Name three places where you can easily deploy a Kubernetes cluster.

2. What are other types of pre-existing virtualization technologies that predate
containers?

3. Name as many cgroup controls as you can!

4. What are some of the reasons why enabling CI/CD with containers is so
important to organizations?

5. What prerequisites are required to get a Kubernetes cluster up and running on
AWS or GCE?

6. Name four services running on the Kubernetes master nodes. Hint: these are
containers.

7. What are some alternatives to the kube-up. sh script?
8. What's the tool used for building a Kubernetes cluster from scratch?

[63]

Introduction to Kubernetes Chapter 1

Further reading

Want more information on DevOps practices on Kubernetes? Check out DevOps with
Kubernetes: https://www.packtpub.com/virtualization-and-cloud/devops—kubernetes.

You can also read about different applications and automation approaches with the
Kubernetes Cookbook: https://www.packtpub.com/virtualization-and-cloud/kubernetes—

cookbook.

[64]

https://www.packtpub.com/virtualization-and-cloud/devops-kubernetes
https://www.packtpub.com/virtualization-and-cloud/kubernetes-cookbook
https://www.packtpub.com/virtualization-and-cloud/kubernetes-cookbook
https://www.packtpub.com/virtualization-and-cloud/kubernetes-cookbook
https://www.packtpub.com/virtualization-and-cloud/kubernetes-cookbook
https://www.packtpub.com/virtualization-and-cloud/kubernetes-cookbook
https://www.packtpub.com/virtualization-and-cloud/kubernetes-cookbook
https://www.packtpub.com/virtualization-and-cloud/kubernetes-cookbook
https://www.packtpub.com/virtualization-and-cloud/kubernetes-cookbook
https://www.packtpub.com/virtualization-and-cloud/kubernetes-cookbook
https://www.packtpub.com/virtualization-and-cloud/kubernetes-cookbook
https://www.packtpub.com/virtualization-and-cloud/kubernetes-cookbook
https://www.packtpub.com/virtualization-and-cloud/kubernetes-cookbook
https://www.packtpub.com/virtualization-and-cloud/kubernetes-cookbook
https://www.packtpub.com/virtualization-and-cloud/kubernetes-cookbook
https://www.packtpub.com/virtualization-and-cloud/kubernetes-cookbook
https://www.packtpub.com/virtualization-and-cloud/kubernetes-cookbook
https://www.packtpub.com/virtualization-and-cloud/kubernetes-cookbook
https://www.packtpub.com/virtualization-and-cloud/kubernetes-cookbook

Building a Foundation with Core
Kubernetes Constructs

This chapter will cover the core Kubernetes constructs, namely pods, services, replication
controllers, replica sets, and labels. We will describe Kubernetes components, dimensions
of the API, and Kubernetes objects. We will also dig into the major Kubernetes cluster
components. A few simple application examples will be included to demonstrate each
construct. This chapter will also cover basic operations for your cluster. Finally, health
checks and scheduling will be introduced with a few examples.

The following topics will be covered in this chapter:

Kubernetes' overall architecture

The context of Kubernetes architecture within system theory

Introduction to core Kubernetes constructs, architecture, and components

How labels can simplify the management of a Kubernetes cluster

Monitoring services and container health

Setting up scheduling constraints based on available cluster resources

Technical requirements

You'll need to have your Google Cloud Platform account enabled and logged in or you can
use a local Minikube instance of Kubernetes. You can also use Play with Kubernetes over
the web: nttps://labs.play-with-k8s.com/.

Here's the GitHub repository for this chapter: https://github.com/PacktPublishing/
Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02.

https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://labs.play-with-k8s.com/
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02
https://github.com/PacktPublishing/Getting-Started-with-Kubernetes-third-edition/tree/master/Code-files/Chapter02

Building a Foundation with Core Kubernetes Constructs Chapter 2

The Kubernetes system

To understand the complex architecture and components of Kubernetes, we should take a
step back and look at the landscape of the overall system in order to understand the context
and place of each moving piece. This book focuses mainly on the technical pieces and
processes of the Kubernetes software, but let's examine the system from a top-down
perspective. In the following diagram, you can see the major parts of the Kubernetes
system, which is a great way to think about the classification of the parts we'll describe and
utilize in this book:

ii

Automation

Governa nce quer Policy Eﬁfnocri’cement

Deployment

Application Layer wounn

API

Nucleus
Execution
Container Network Volume Image Cloud Identity
Runtime Plugin Plugin Registry Provider Provider

Let's take a look at each piece, starting from the bottom.

Nucleus

The nucleus of the Kubernetes system is devoted to providing a standard API and manner
in which operators and/or software can execute work on the cluster. The nucleus is the bare
minimum set of functionality that should be considered absolutely stable in order to build
up the layers above. Each piece of this layer is clearly documented, and these pieces are
required to build higher-order concepts at other layers of the system. You can consider the
APIs here to make up the core bits of the Kubernetes control plane.

[66]

Building a Foundation with Core Kubernetes Constructs Chapter 2

The cluster control plane is the first half of the Kubernetes nucleus, and it provides the
RESTful APIs that allow operators to utilized the mostly CRUD-based operations of the
cluster. It is important to note that the Kubernetes nucleus and consequently the cluster
control plane was built with multi-tenancy in mind, so the layer must be flexible enough to
provide logical separation of teams or workloads within a single cluster. The cluster control
plane follows API conventions that allow it to take advantage of shared services such as
identity and auditing, and has access to the namespaces and events of the cluster.

The second half of the nucleus is execution. While there are a number of controllers in
Kubernetes, such as the replication controller, replica set, and deployments, the kubelet is
the most important controller and it forms the basis of the node and pod APIs that allow us
to interact with the container execution layer. Kubernetes builds upon the kubelet with the
concept of pods, which allow us to manage many containers and their constituent storage
as a core capability of the system. We'll dig more into pods later.

Below the nucleus, we can see the various pieces that the kubelet depends on in order to
manage the container, network, container storage, image storage, cloud provider, and
identity. We've left these intentionally vague as there are several options for each box, and
you can pick and choose from standard and popular implementations or experiment with
emerging tech. To give you an idea of how many options there are in the base layer, we'll
outline container runtime and network plugin options here.

Container Runtime options: You'll use the Kubernetes Container Runtime Interface (CRI)
to interact with the two main container runtimes:

e containerd
o rkt

You're still able to run Docker containers on Kubernetes at this point, and as containerd is
the default runtime, it's going to be transparent to the operator at this point due to the
defaults. You'll be able to run all of the same docker <action>commands on the cluster
to introspect and gather information about your clusters.

There are also several competing, emerging formats:

® cri-containerd: https://github.com/containerd/cri-containerd
e runv and clear containers, which are hypervisor-based solutions: https://
github.com/hyperhqg/runv and https://github.com/clearcontainers/runtime

e kata containers, which are a combination of runv and clear containers: https://
katacontainers.io/

e frakti containers, which combine runv and Docker: https://github.com/
kubernetes/frakti

[671]

https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/containerd/cri-containerd
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/hyperhq/runv
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://github.com/clearcontainers/runtime
https://katacontainers.io/
https://katacontainers.io/
https://katacontainers.io/
https://katacontainers.io/
https://katacontainers.io/
https://katacontainers.io/
https://katacontainers.io/
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti
https://github.com/kubernetes/frakti

Building a Foundation with Core Kubernetes Constructs Chapter 2

You can read more about the CRI here: http://blog.kubernetes.io/

2016/12/container-runtime—-interface—-cri-in-kubernetes.html.

Network plugin: You can use the CNI to leverage any of the following plugins or the
simple Kubenet networking implementation if you're going to rely on a cloud provider's
network segmentation, or if you're going to be running a single node cluster:

o Cilium

e Contiv

o Contrail

e Flannel

o Kube-router
e Multus

e Calico

e Romana

e Weave net

Application layer

The application layer, often referred to as the service fabric or orchestration layer, does all
of the fun things we've come to value so highly in Kubernetes: basic deployment and
routing, service discovery, load balancing, and self-healing. In order for a cluster operator
to manage the life cycle of the cluster, these primitives must be present and functional in
this layer. Most containerized applications will depend on the full functionality of this
layer, and will interact with these functions in order to provide "orchestration" of the
application across multiple cluster hosts. When an application scales up or changes a
configuration setting, the application layer will be managed by this layer. The application
layer cares about the desired state of the cluster, the application composition, service
discovery, load balancing, and routing, and utilizes all of these pieces to keep data flowing
from the correct point A to the correct point B.

[68]

http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html
http://blog.kubernetes.io/2016/12/container-runtime-interface-cri-in-kubernetes.html

Building a Foundation with Core Kubernetes Constructs Chapter 2

Governance layer

The governance layer consists of high-level automation and policy enforcement. This layer
can be thought of as an opinionated version of the application management layer, as it
provides the ability to enforce tenancy, gather metrics, and do intelligent provisioning and
autoscaling of containers. The APIs at this layer should be considered options for running
containerized applications.

The governance layer allows operators to control methods used for authorization, as well as
quotas and control around network and storage. At this layer, functionality should be
applicable to scenarios that large enterprises care about, such as operations, security, and
compliance scenarios.

Interface layer

The interface layer is made up of commonly used tools, systems, user interfaces, and
libraries that other custom Kubernetes distributions might use. The kubect1 library is a
great example of the interface layer, and importantly it's not seen as a privileged part of the
Kubernetes system; it's considered a client tool in order to provide maximum flexibility for
the Kubernetes APL If you run $ kubectl -h, you will get a clear picture of the
functionality exposed to the interface layer.

Other pieces at this layer include cluster federation tools, dashboards, Helm, and client
libraries such as client-node, KubernetesClient, and python. These tools provide
common tasks for you, so you don't have to worry about writing code for authentication,
for example. These libraries use the Kubernetes Service Account to authenticate to the
cluster.

Ecosystem

The last layer of the Kubernetes system is the ecosystem, and it's by far the busiest and
most hectic part of the picture. Kubernetes approach to container orchestration and
management is to present the user with the options of a complementary choice; there are
plug-in and general purpose APIs available for external systems to utilize. You can consider
three types of ecosystem pieces in the Kubernetes system:

e Above Kubernetes: All of the glue software and infrastructure that's needed to
"make things go" sits at this level, and includes operational ethos such as
ChatOps and DevOps, logging and monitoring, Continuous Integration and
Delivery, big data systems, and Functions as a Service.

[69]

Building a Foundation with Core Kubernetes Constructs Chapter 2

¢ Inside Kubernetes: In short, what's inside a container is outside of
Kubernetes. Kubernetes, or K8s, cares not at all what you run inside of a
container.

¢ Below Kubernetes: These are the gray squares detailed at the bottom of the
diagram. You'll need a technology for each piece of foundational technology to
make Kubernetes function, and the ecosystem is where you get them. The cluster
state store is probably the most famous example of an ecosystem component:
etcd. Cluster bootstrapping tools such as minikube, bootkube, kops, kube-
aws, and kubernetes-anywhere are other examples of community-provided
ecosystem tools.

Let's move on to the architecture of the Kubernetes system, now that we understand the
larger context.

The architecture

Although containers bring a helpful layer of abstraction and tooling for application
management, Kubernetes brings additional to schedule and orchestrate containers at scale,
while managing the full application life cycle.

K8s moves up the stack, giving us constructs to deal with management at the application-
or service- level. This gives us automation and tooling to ensure high availability,
application stack, and service-wide portability. K8s also allows finer control of resource
usage, such as CPU, memory, and disk space across our infrastructure.

Kubernetes architecture is comprised of three main pieces:

¢ The cluster control plane (the master)
e The cluster state (a distributed storage system called etcd)
¢ Cluster nodes (individual servers running agents called kubelets)

The Master

The cluster control plane, otherwise known as the Master, makes global decisions based on
the current and desired state of the cluster, detecting and responding to events as they
propagate across the cluster. This includes starting and stopping pods if the replication
factor of a replication controller is unsatisfied or running a scheduled cron job.

[70]

Building a Foundation with Core Kubernetes Constructs Chapter 2

The overarching goal of the control plane is to report on and work towards a desired state.
The API that the master runs depends on the persistent state store, et cd, and utilizes

the watch strategy for minimizing change latency while enabling decentralized component
coordination.

Components of the Master can be realistically run on any machine in the cluster, but best
practices and production-ready systems dictate that master components should be co-
located on a single machine (or a multi-master high availability setup). Running all of the
Master components on a single machine allows operators to exclude running user
containers on those machines, which is recommended for more reliable control plane
operations. The less you have running on your Master node, the better!

We'll dig into the Master components, including kube-apiserver, eted, kube-
scheduler, kube—-controller-manager, and cloud-controller-manager when we
get into more detail on the Master node. It is important to note that the Kubernetes goal
with these components is to provide a RESTful API against mostly persistent storage
resources and a CRUD (Create, Read, Update, and Delete) strategy. We'll explore the basic
primitives around container-specific orchestration and scheduling later in this chapter
when we read about services, ingress, pods, deployments, StatefulSet, CronJobs, and
ReplicaSets.

Cluster state

The second major piece of the Kubernetes architecture, the cluster state, is the et cd key
value store. et cd is consistent and highly available, and is designed to quickly and reliably
provide Kubernetes access to critical cluster current and desired state. etcd is able to
provide this distributed coordination of data through such core concepts as leader election
and distributed locks. The Kubernetes API, via its API server, is in charge of updating
objects in etcd that correspond to the RESTful operations of the cluster. This is very
important to remember: the API server is responsible for managing what's stuck into
Kubernetes' picture of the world. Other components in this ecosystem watch<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>