@
' L]

e —

~ $

- w

DEVEIop:ihg i
5D Games
with Unity

Independent Game Programming
with C#

Jared Halpern

ApreSS®

Developing 2D Games
with Unity

Independent Game
Programming with C#

Jared Halpern

Apress’

Developing 2D Games with Unity: Independent Game Programming with C#

Jared Halpern
New York, NY, USA

ISBN-13 (pbk): 978-1-4842-3771-7 ISBN-13 (electronic): 978-1-4842-3772-4
https://doi.org/10.1007/978-1-4842-3772-4

Library of Congress Control Number: 2018963589
Copyright © 2019 by Jared Halpern

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-3771-7.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3772-4

Table of Contents

About the AUthOrccccmmnnmmmnsssmnssss s xiii
About the Technical ReVIEWETccsssesssssssassssnsssnsssassssassssnsssansssnsssas Xv
Acknowledgments.......cccursssssssmsmnmnmesssssssssssssnssssssssssssssssnnssssssssssnnnnns Xvii
o - - Xix
About This BOOK........cccrumssssmmnmmssssnsnmssssssssssssssssnssssssssnssssssssnsssssssnnnsssss XXi
Chapter 1: Games and Game ENgines........cccussseenssssssnnsssssssnsssssssssnssssss 1
Game Engines—What Are TREY? ... 1
The First Way to Build @ HOUSE..........ccovecrrererercrrcseree e 4

The Second Way t0 Build @ HOUSEccovermrrenernnenenesessse e sessesessenens 4
About the First APProach........cueceeeevnesnnesesnse s ssssesesssessssessssenens 5
About the Second APProachc.ccocevvvrcerernsnrne s 5

IN CONCIUSIONo s 6
Game Engines HiStOriCallyccccoveerriennernnscrnccsine st sesnenens 6
GAME ENGINES TOUAYcoveuerercrerreereeeresese s e se s se s e eennenens 8
The Unity GAME ENQINE........ccoveererenerreerenesese s sessssesssnens 10
SUMMANY....ceiieeerrcsere s se e nr e e 12
Chapter 2: Introduction to Unityccccemmmmmmmmmmmmmssssssssnsssssssssssssssssnens 13
TS 1L TR 13
CONFIGUIE UNILY .vvuereeriecererereesesseresesessesessessesessessessesassessessesaesssessessesaesssnensesees 14
L0 D GO 15
I3 T= B0 o T 15

iii

TABLE OF CONTENTS

The Script Editor: Visual Studio...........cccvvriennsnine s 17
Navigating the Unity Interface..........ccoovrenriennesrnscrreserese e 18
Understanding the Different Window VIEWS..........ccovevnrenmnenesnsesnsesesesesensesenns 18
Configure and Customize the Layoutc.ccccvvvrniennesnese e 22
The TranSform TOOISELccov i 23
Handle Position CONtrOIS...........ccccieverrnisnmsesirssssse s sesssnssas 25
Play, Pause, and Step CONtrolS.........coucvnerrienninn s sens 26
Unity Project StrUCTUIE. ... 28
Unity DOCUMENTALION.......coveceereeree e 29
SUMMANY....eriieeiresere e s se s e e e e 29
Chapter 3: Foundationscccivnnsemmmmnnsssnnnmmnssssnmmssssssmsssssssssssasnns 31
Game Objects: Our Container ENtItieScccevivvvrerierenssensense s sessesessesessensenees 31
Entity-Component DESIONccvvvverevererrereresesseressessssessessessssessessessessssessessens 33
Components: BUilding BIOCKScccccevrrrrncennesrcse s sens 35
SPIIEES ettt ————————————— 35
ANIMALIONS ... e e nr s 45
The Animator State Machingccocvevrvcrnennes s 49

0] 01T T 54
The Rigidbody COMPONENT........cccoevrieriererererrerere e se s e sesneees 56
Tags and LAYEISccccvcerererirsire e s s s 57
TAQS et ——————————————— 57
I S 58
SOMTING LAYETS ...vveeerreerinesessesessesesessesessesessssssessssnsssssssssesesssssssssesessesssssnsnsans 59
Introducing: Prefabs.......cccvvevrsni e 63
Scripts: Logic for COMPONENTSccvevvrerverieresessersesessssessessessessssessessessessssessesses 65

iv

TABLE OF CONTENTS

State and ANIMALIONSccoveeerererr e e 75
More State MaChINES.........ccoveererrererererrserere e 75
Animation Parameters.........ccovveernnenenesenssesssesesese s sessnnens 78

SUMMANY....eitierretre s e e nr e 90

Chapter 4: World Building.......cccsuusssemmnmmsssssnnmsssssssnsssssssssssssssssssssssnnnnss 91

Tilemaps and Tile PalEtteSccvcerererierreriererirserrere s s s se e sessesesne s 91

Creating Tile PAIEHEScveverrrere vttt se e saenees 93

Painting with Tile Palettes.........ccccrniinininincr e 96
The Tile PalEtte......c.ccoreereerecresee s nnenens 97

Working with Multiple Tilemaps. ..o 101

Graphics SEHNGS.......ccovrirrrnrerrese e 106

L LLC 0 11 T D 107

USiNg CiNEMACKINEccvvererreierrere et se s sae e e e 111
Installing Cinemachine in Unity 2017ccccovvrnvvnnennnnncnnsesnesessesesenns 111
Installing Cinemachine in Unity 2018..........cccciiinninininnsnrnene s 112
After Installing CineMACNINEceeerrerrererese e 113

Virtual CAMEIaS.......cccvvvererrerrrese s se s sessssnsssnens 114
Cinemaching CoONfiNer ... 120

STADINZALION ... ——————————— 125

MALEITALS ... s 129

Colliders and TilemMaPS........ccovrrrrreriennrrrre s enens 130
Tilemap COllAEr 2Dcccvcverenirirrerere e snens 130
Composite COIlIUENS.....c.ccviirirere e 133
Editing PhySiCS SNAPEScccvvveriierinenirese s snssenens 137

SUMMAIY . eeitiirerere s e s e s s r e e s e s sae e e e s e s aesa e e s e e aesae e e e nannaees 141

TABLE OF CONTENTS

Chapter 5: Assembling the Nuts and BoItSccccvsssemnninsssnnnnsssnnns 143
ChAracter Class.........cocvrrrreenerererssseeeseresss e se s se e s sesessans 143
PIAYEE CIASS ...cvreeereeereeereree e e s 145
FOCUS ON Prefabscococvrerereerecsesese s 147

Create @ Coin Prefab.........cccccvvvennennnssnesse s 147
Set Up the Circle Collider 2Dcccvvrrevnnenrenenienessessesesss s sessesessssessesseees 148
Set Up @ CUSTOM TaQ......cceierrererererrerere s sesessessesessesse e ssesessessessessssessesaees 149
Layer-Based Collision Detectioncccvevverevvsenseriernses v s s sessessesessessessees 151
Triggers and SCriPtiNg.......ccoucrvririennsnn s 154
Scriptable ODJECLS.......ccvvrererrrererere e e 156
Creating a Scriptable ODJECT.........ccccorverrrerere s 157
Build the Consumable SCript.........ccuvrererinerinsennesersse e 161
AsSembIing OUr REMccvcvere s ssennens 162
Player COIlISIONScccvverrererrerserersessssersessessssessessesssssssessesssssssessessessesensessens 164
Creating a Heart POWEr-Upcccoeecrncnrc st se e 165
T4 0T 173

Chapter 6: Health and Inventory..........cccuscmmmnnnsennnmnsssssnnmnsssssnmnsnnn 175

Creating @ Health Bar.........c.ccccoverinisennscssnese e e 175
CaNVAs ODJECLSccvvcerererierirre e sa e s a e e naennes 175
ULEIBMENIS ...t 176
Building the Health Bar..........c.ccorvinirine s 176
Y111 1 0] 179
Adjusting the AnChor POINTSccoceenennneserescrsese s 181
ULIMAQe MASKS ..o e 184
Importing Custom FONTScccoevivrirn e 188
Adding Hit-Points TEXEccvverivrrierierernnirsere s sessessese e ssesessessessssessessens 189
Scripting the Health Barcocevvvvverievnnenrene s sesessessssessesse s 192

TABLE OF CONTENTS

Scriptable Object: HitPoints ..o 192
Update the Character SCript........ccccvirininninn e 193
Update the Player SCript.......ccovivninininnsnsn s ssesnes 194
Create the HealthBar SCript..........ccccvinvrnrennesersse s 198
Configure the Health Bar Component..........cccccvvvvvnrnienienssensessesessessenenes 202
INVENTONY .o e e 206
Import the Inventory Slot IMage........coocvnvrcnincrnr e 209
Configure the Inventory SIOtL..........coocn 210
Create the INVentory SCript........ccovovereernrrerese s 218
SUMMANY ..ot a e s s e nn e nra s 231
Chapter 7: Characters, Coroutines, and Spawn Pointsccccuisees 233
Create @ GAME MANAGETeovverererirrerererre s s ses e s sae s ssessesnens 233
LS 110 (=] (0] 234
Creating the Singleton.........cccorincninin 235
Build a GameManager Prefab.........c.ccccoverrnrrnnenessnesssesesesese e 238
SPAWN POINTS ..o 238
Build a Spawn Point Prefabc..cccovvevninnnsesnesensse e sessessssenens 241
Configure the Player Spawn Point........c..cocoovvrininnnsnienessseneresee s sessennes 245
SPAWN the PIAYET ...ccuevvevreeriere et serere s sse s sse e s ss e e ssesneees 246

IN SUMMATY ..o e e e 248

A Spawn Point for ENEMIEScccvvviriininicnesssinsenese s e sessessens 249
Camera MaANAQET........ccocvveeerrrrereresereseressesessese e se e e ses s ssssessesesesssnenns 251
Using the Camera Managerc.ccovveernenenenesnsessssesesssse s sessessssesessnnes 253
Character Class DESIgNccvererinierieniennsense s sss e ssesnes 256
The Virtual KEYWOIT.......cccvvererenirierieressssessesesessssessessessessssessessesssssssessessens 256

vii

TABLE OF CONTENTS

The ENeMY ClassS.......cccucririinnineresis s s sss s s s s e snesnes 257
(2123 2T (0] 1 o S 257
The Internal ACCESS MOTIfier.........coveerrrernresereserssese s 258

COPOULINEScueirieerrreerree e s e p s 259
INVOKING COTOULINEScivevreerereriesesserereseeses e sse e ses e sse s ssssessessesassessessesaes 260
Pausing or “Yielding” EXeCUtionc.ccucvverininnnnnnsen s 260
A Complete COroUtiNg.......ccovvevererrcsern e 260
Coroutines with Time INtervals..........cocoovrenrerrecrnsereeee e 261
The ADSEract KEYWOrdc.ccveveeerrererrscresese s 261
Implementing the ENemy Classc.cucvnenmrenernnesnsessssssesssesessesessesessnns 263
The DamageCharacter() method..........cocuvvvrierennnnsni s 263
RESEICNAIACIEI()....eveererrerrerersersersesesseressessssersessessesesessesaesassessessessesensessens 266
Calling ResetCharacter() in ONENADIE().......cccvverrerererrersererensersersersesessensenses 266
10 F T T (=]) OSSPSR 267

Updating the Player ClaSSccuoveererrererenerrnsesesesesesesessesessese s sesesessssessnnes 267
Refactoring Prefab Instantiation............cccocvvevninnisnnssssssesese e 269
REVIBWcivierrscsessese e sr e s sn s 270
Using What We’ve BUIlL..........ccoceverrinienencserse s sesesseseesessessesnes 271
ONCOIIISIONENTEI2D.......ccceiicereresssssese e sssas 272
ONCOIIISIONEXIT2Dcovrerrererereressssessesesessssssssssesesssssssssssssssssssssssssssesssnsasaes 273
Configure the Enemy SCrip.......ccorvrininnsnrrrrr e 274

101111 1T o SR 275

Chapter 8: Artificial Intelligence and Slingshots.........c.cccusssenssssnnnnas 277

The Wander AlgOrithM.........ovcvvverernnrere e s ssessssessesnes 277
Getting STArtedcccveeverr s ———————— 278
Create the Wander SCripl........cccoovrinininincnr e 279
Wander VariabIes..........coeorvenneneresersscsese e 280

viii

TABLE OF CONTENTS

BUIld QUL STAM() ...veveveeeererererereseeseseesese s se e ses s 282
The Wander COroULINEcovrererenerensesesesese s e s sessesenns 283
Choosing @ New ENdpointccoveevnermrnnmrnsmsenssessse s sessesessssessnnes 285
Angles to Radians t0 VECIOrS!..........ccccvvvrnennisennesnne s 287
Enemy Walk ANiMationcccveeriennienieniennsene s sessese s sessessessessssessessens 287
The MoVe() COrOULINEccvveererererrere s s e s s s s e s e s saessssessesnens 291
Configure Wander SCHpt........ccoovirrininnrr s 294
ONTriggerENter2D()cccvivnrrirrrr e s 295
ONTrGYEIEXIt2D()..ceeueerreerenerersesessesesessesesesessesessssesessesessssesesesessssessanessnnes 297
€T 10 LSS 299
SEIf-DEFENSEcvrviciiri i ————————————— 302
Classes NEEUEM.........ccuurruemrerererrreese e 303
AMMO ClASScvrerrrreeerererrsee s sesns s e e 303
IMPOIt the ASSELS......ccceierc s 304
Add Components, SEt LAYEIS.........cccuerrrrererenerreseressesessesessesesessesessssessssesenns 304
Update the Layer ColliSion MatriX..........ccoourererenerrnsesensesessssessssssessesssssnessnnes 305
Build the AMmO SCriPL.......ccoverrnsrnerrsse e 306
Before We Forget ... Make the AmmoObject Prefabcocvvvvvievvcniennns 308
00T A 0T) o O 308
Building the Weapon Class..........cuuvninrnnernnesnesesese s sessesessssessenes 310
Stubbing-0ut Methods ... 313
The SpawnAmmo Method ... 315
The Arc Class and Linear Interpolation...........cccoovvnvniniennnnieniesnnsensensennens 317
Screen Points and World Points.........c.cocvnmnnssess s 320
The FireAmmo Method ..o 321
Configure the Weapon SCriPt.......covvvrerierrrnrerieresesseresesessesessessesessessenaes 323
AICING . e ne 324

ix

TABLE OF CONTENTS

Animating the SIiNgShot..........cocrvri e ———- 326
Animation and BIend TreeS.....c.cucverererrrrererenereseressese s senns 326
BIENA TFEES ...eevreeerreeriee s e 327
Clean Up the ANIMAtor..........ccovveeerenernsmsnesesese e ssse s sessesessasesennes 328
Build the Walking BIENd Treeccvrerreriererernereresessessessessesessessessessssesessens 329
Layers, All the Way DOWNcccvvmrininnnne s s s s e 332
A Note About Blend TYPES......ccvvcrierernnnsne s se s sesse s sssssssessessens 333
Animation Parameters..........cccoverenrnrcnreserese e 333
Use the Parameters.........ccovcvverenenrsscsnesese s 335
OK, DUL WAY? ...ttt 337
[T o I T OO 339
Create the TranSitions...........coovrnnnn s 339
Updating the Movement Controllercovvevvvnverieresesnerseresessesessesessessessenes 340
Import the Fight SPrites.......ccccvinininir e 342
Create Animation CliPSccccverinninini s 342
Build the Fighting BIENnd Tree.........ccocvrererenernsmsnsesesssesessesesesessesesessesessenens 344
EXIt TIME c.eviescccerese s 346
Update the Weapon Class.......cccueevrrrrereresensesesessssessessessssessessessssessessesaes 347
Add the Variables...........cornnnr s 347
SEAM(). v veeererereseseseese e 349
Update Update()........curerrernrmnnriereninnines s sesseseseses s se s e sessessssessessesses 350
Determining DIreCHIONccoeveeereerree e 350
The Slope Method.........ccovririnnin e 353
Calculate the SIOPES.......cocvvrvrerirrrre e 354
Comparing J-INTErCePIS.....cvvverererr s 355
HigherThanNegativeSIOPELINE()covvverrerererrerererersessersersesessessessessssessensens 356

TABLE OF CONTENTS

The GetQuadrant() methodcccririirsnini 357
The UpdateState() Method...........ccoeerrennesrecrrceree e 359
Flicker When Damagedcooueerrveerenenmssnmsessesesssesssessssssessssessssssesssssssssessenes 362
Update the Player and Enemy ClasSescccuvurervverrnnenesssesnsesensesssssnensnns 363
Building for PIatfOrmsccocvvvririenerrrerse e ses e sse e ssssesesseees 364
EXIting the GAME.....ccevecererere e s sa e s sr e nne s 367
11T 1117 o OO 367
WhEAE'S NBXL.....ceeeeeeeerceree e e 368
0] 0 1T T TS 368
LEAIN IMOFE ... e 369
Where t0 FInd HElP ..o ssesessessessens 369
GAME JAMS.....vvieieiiririr s 370
NEWS aNd AFEICIES.....coueeerereeree s 37
GAMES ANA ASSEIScueeecrercrere e 37
BEYONM! ... e s 371
INA@X.ciiiisssnnnnnnnnnnnsssssssnsnnnnnnnsssssssssnnnnnnnnnssssssssnnnnnnnnnnssssssnsnnnnnnnnnsssssnnn 373

About the Author

Jared Halpern is a software developer with a background in Computer
Science and over 12 years of experience working in a wide range of
technologies. Lately he has specialized in Apple and Unity. Jared has built
many iPhone apps over the years, including games, augmented reality,
photography, eCommerce, video, and GIF apps. His interests include
Swift, Unity, AR, Game Development, and the creative application of these
technologies. He has an immense passion for the potential of games as an
interactive medium to tell stories and give experiences in ways that other
mediums cannot. He currently enjoys working as a freelance software
developer. Jared is on Twitter: @JaredEHalpern and his website: https://
JaredHalpern.com.

xiii

https://JaredHalpern.com
https://JaredHalpern.com

About the Technical Reviewer

Jason Whitehorn is an experienced entrepreneur and software developer
and has helped many oil and gas companies automate and enhance

their oilfield solutions through field data capture, SCADA, and machine
learning. Jason obtained his bachelor of science in computer science from
Arkansas State University, but he traces his passion for development back
many years before then, having first taught himself to program BASIC on
his family’s computer while still in middle school.

When he is not mentoring and helping his team at work, writing, or
pursuing one of his many side projects, Jason enjoys spending time with
his wife and four children and living in the Tulsa, Oklahoma region. More
information about Jason can be found on his website: https://jason.
whitehorn.us.

https://jason.whitehorn.us/
https://jason.whitehorn.us/

Acknowledgments

Above all, I want to thank my wife Drew for her boundless support, love,
advice, patience, snacks, and encouragement over the past year while I
worked evenings and weekends on this book. I could never have done this
without you.

I would like to thank Apress Publishing for the opportunity to write
this book. The experience of working with editors Aaron Black and
Jessica Vakili was a true pleasure from start to finish. The impact of their
professionalism, insight, and assistance at every step of the way cannot
be overstated. This book benefited immensely from the guidance and
attention to detail from my technical reviewer Jason Whitehorn and
development editor James Markham. Thank you to Liz Arcury from the
Apress social team for all your help.

My programming knowledge has benefited greatly from the
community over at gamedev.stackexchange.com, especially moderator
Douglas Gregory. I also thank the folks at Unity who lent their expertise
during discussions in Unity Forums, in particular Gregory Labute.

I owe a tremendous debt to my parents, who have always supported
my interests in technology and writing, my sister Sam whose work ethic
inspires me, and my brother Zach who always has my back.

I also thank my friends and family, especially Derina and Justin
Man, Brian Wesnofske, George Peralta, Nelson Pereira, Jolene and Maris
Schwartz, Melissa Gordon, Constantinos Sevdinoglou, Ben Buckley, and
Gene Goykhman for their never-ending support, positivity, and
enthusiasm.

xvii

Preface

My video game “history” started in the public library when I discovered a
series of beat-up, paperback books with titles resembling, “How to Write
Your Own Computer Games in BASIC.” By copying code from the book into
an editor, I was able to create rudimentary adventure games. In college, I
used C++ and Direct-X to create a Bejeweled clone with a Star Trek theme.
As an iOS Developer, I eventually worked on a virtual-pet game using
Apple’s SceneKit and SpriteKit frameworks. When I discovered the Unity
game engine, everything I had been attempting to do just came together.
Instead of spending half a week writing the code to parse and slice sprites,
Unity allowed me to drag and drop a spritesheet, click a button, then get
on with development. I could finally focus on making games, instead of
spending the majority of my time writing code.

It's possible to create video games—great video games, without Unity
or any game engine. But it will take much, much longer than it needs to.
You'll spend time and effort solving problems that aren’t necessary to solve
any more. It may take years to finish. Because life will also be happening
during those years, it’s possible, and in fact likely, that you'll never finish
the game. Speaking from experience—I rarely finished any of the game
projects that I started before I was introduced to Unity.

Teddy Roosevelt once was quoted in his autobiography, “Do what you
can, with what you've got, where you are.” I subscribe to that mindset, and
I also believe that hard work alone won'’t always help you accomplish your
goals. Success in life can often be about leverage: leveraging whatever
resources you have, where ever you are, for maximum impact. The trick for
making the most of your time is to find multipliers: things that allow you to
produce a multiple of what you'd otherwise be capable of producing. Unity

Xix

PREFACE

is one such multiplier. Unity allows you to take whatever time you have—
nights, weekends, a 30-minute lunch break, and maximize the usage of
that time toward making games. By using Unity to get the most out of your
time, you're more likely to actually finish your game.

When I set out to write this book, I wanted to write the type of book
I'd want to read if I were learning Unity for the first time. Hopefully I
succeeded. In the following pages, you'll learn the fundamental skills
required to create your own video games in Unity, and perhaps leave your
own mark on the future of gaming. Let’s get started.

About This Book

Who Is This Book For?

This book was written for programmers interested in making video games
with Unity. It's not recommended that you learn to program for the first
time while reading this book.

The programming language used in this text is C#. Although this text
does not include a C# tutorial, the C# language is syntactically similar to
many other popular programming languages. If you're already familiar
with a language such as Java, then the syntax of C# will come naturally to
you. Explanations of pertinent aspects of C# are included with the code
examples used while building the game in this book.

What Are We Building?

This book is structured toward building a 2D RPG-style game in Unity over
the course of eight chapters. The game is in the style of those top-down
RPGs from the 1990s, but the concepts can be carried over to create other
types of games as well.

You should feel free to tinker with the code, break things, change
things around, and tweak values. If you break something and can’t figure
out how to fix it, refer to the source code from the Apress GitHub account
to fix things. As you're working your way through this book, remember
that it can be helpful to have something explained a different way. If you're
not content with an explanation in this book, or if you would benefit from

ABOUT THIS BOOK

an alternate explanation, look to the Unity documentation online. Look

at gamedev.stackexchange.com and the official Unity forums and ask
questions. Make sure you understand what’s going on. Don’t settle for half
of an understanding—you’ll do yourself a disservice.

What You Will Need for This Book

The hardware requirements for this book are minimal: a PC or MacBook
made in the past few years. The software requirements to run Unity 2018
are Windows 7 SP1+, 8, 10, 64-bit versions only; or macOS 10.11+. We'll be
using the personal edition of the Unity software, which is free.

Art Sources

The Enemy sprites in this book were created using a wonderful
procedural-generation sprite tool created by Robert Norenberg. The tool
can be found here: https://0x72.itch.io/pixeldudesmaker

The typeface used in this book’s sample game is called Silkscreen.
Silkscreen was created by Jason Kottke and can be found here: https://
www.1001fonts.com/silkscreen-font.html

The heart and coin sprites are sourced from the sprite set on
OpenGameArt.org created by user: ArMM1998 and licensed CCO, public-
domain.

The map tile artwork was created by the author, Jared Halpern,
based heavily on pixel-style art from the heart and coin sprite set on
OpenGameArt.org. The player sprites were all created from scratch by
the author as well. Both the map tile artwork and the player sprites are
licensed by CC0, public-domain.

xxii

https://0x72.itch.io/pixeldudesmaker
https://www.1001fonts.com/silkscreen-font.html
https://www.1001fonts.com/silkscreen-font.html

CHAPTER 1

Games and Game
Engines

In this introductory chapter, I'll talk a bit about game engines: what they
are, and why they’re used. I'll also discuss a few game engines of historical
significance, as well as introduce the high-level capabilities of Unity. If you
want to get straight to making games, feel free to skim or skip this chapter
and come back to it later.

Game Engines—What Are They?

Game engines are software development tools designed to reduce the cost,
complexity, and time-to-market required in the development of video
games. These software tools create a layer of abstraction on top of the
most common tasks in developing video games. The layers of abstraction
are packaged together into tools designed to function as interoperable
components that can be replaced outright or extended with additional
third party components.

Game engines provide tremendous efficiency benefits by reducing
the depth of knowledge required to make games. They can be minimal in
their prebuilt functionality or full-featured, allowing game developers to
focus entirely on writing gameplay code. Game engines offer an incredible
advantage over starting from scratch for solo developers or teams who
just want to focus on making the best game possible. When building the

© Jared Halpern 2019
J. Halpern, Developing 2D Games with Unity, https://doi.org/10.1007/978-1-4842-3772-4_1

CHAPTER 1 GAMES AND GAME ENGINES

sample game in this book, you won'’t need to build complex mathematical
libraries from the ground up or figure out how to render individual pixels
on-screen, because the developers who created Unity have already done
that work for you.

Well-designed modern game engines do a good job of separating
functionality internally. The game play code, which consists of code
describing the player and inventory, is kept separate from the code that
decompresses an .mp3 file and loads it into memory. Game play code will
call on well-defined engine API interfaces to request things like “draw this
sprite at this location” and so forth.

The component-based architecture of a well-designed game
engine allows for extensibility that encourages adoption, because the
development team is not locked into a predetermined set of engine
capabilities. This extensibility is especially important if the game engine
source code is not available as open-source or is prohibitively expensive
to license. The Unity game engine is purpose built to allow for third party
plug-ins. It even goes so far as to provide an Asset Store containing plug-
ins, accessible through the Unity Editor.

Many game engines allow for cross-platform compilation as well,
meaning that your game code is not constrained to a single platform.

The engine does this by not making assumptions about the underlying
computer architecture and letting the developer specify which platform
they’re using. If you wanted to release your game for console, desktop, and
mobile, the game engine allows you to flip a few switches to set the build
configuration to that platform.

There are caveats to the miracles of cross-platform compilation
though. Although cross-platform compilation is an amazing feature and
testament to how far game technology has come, keep in mind that if
you're building a game for multiple platforms, you’ll need to provide
different image sizes and allow for the code reading in the controls to
accept different kinds of peripherals such as a keyboard. You might need to

CHAPTER 1 GAMES AND GAME ENGINES

adjust the layout of your game on-screen as well as numerous other tasks.
It can actually be a lot of work just to port a game from one platform to
another, but you probably won’t have to touch the game engine itself.

Some game engines are so visually oriented that they allow for the
creation of games without writing a single line of code. Unity has the
ability to customize user-interfaces that can be configured for use by
other nonprogrammer members of the development team such as level
designers, animators, art directors, and game designers.

There are many different types of game engines, and there are no
rules as to which functionality is absolutely required to be considered a
game engine. The most popular game engines contain some or all of the
following functionality:

e Graphics rendering engine, supporting 2D or 3D
graphics

» Physics engine that supports collision detection
e Audio engine to load and play sounds and music files
e Scripting support to implement gameplay logic

e Aworld object model defining the contents and
properties of the game world

e Animation handling to load animation frames and play
them

o Networking code to allow for multiplayer,
downloadable content, and leaderboards

e Multithreading to allow game logic to execute
simultaneously

e Memory management because no computer has
unlimited memory

o Artificial intelligence for pathfinding and computer
opponents

CHAPTER 1 GAMES AND GAME ENGINES

If you're not fully sold yet on using a game engine, consider the
following analogy.

Say you want to build a house. To start with, this house will have a
concrete foundation, a nice wood floor, sturdy walls, and a weather-treated
wooden roof. There are two ways of going about building this house:

The First Way to Build a House

Excavate the ground using a hand shovel until you've dug sufficiently deep
to plant the foundation. Make concrete by heating limestone and clay at
2,640 °F in a kiln, grind it, and mix in a bit of gypsum. Take the powdered
concrete you've created, mix it with water, crushed stone or fine sand, and
lay your foundation.

At the same time you lay the foundation, you'll need steel rebars to
strengthen the concrete. Gather the iron ore required to make steel rebar
and smelt it in a blast furnace to make ingots. Melt and hot-roll those
ingots into sturdy reinforcement bars for the concrete foundation.

After that, it’s time to build the frame on which you'll hang your walls.
Take your axe and start chopping down trees. Felling a few hundred or so
timber will be enough to supply the raw materials, but next you'll need
to take each timber and mill them into lumber. When you're done, don’t
forget to treat the lumber so it’s weatherproof and doesn’t rot or become
infested with insects. Build out your joists and girders on which you'll lay
the floor, and are you exhausted yet? We're just getting started!

The Second Way to Build a House

Purchase bags of premixed concrete, steel rebar, treated lumber from a
mill, a dozen boxes of paper-tape galvanized nails, and a pneumatic nail
gun. Mix and pour your concrete to create your foundation, lay down the
premade steel rebar, let the concrete set, then build out your floor with the
treated lumber.

CHAPTER 1 GAMES AND GAME ENGINES

About the First Approach

The first way of building a house requires tremendous amount of
knowledge simply to create the materials needed to begin building a
house. This approach requires that you know the precise ratio of raw
materials needed and techniques to make concrete and steel. You'll need
to know how to fell trees without ending up pinned underneath one, and
you’ll have to know the proper chemicals required to treat the lumber,
which you've taken great pains to cut into hundreds of uniform beams.
Even if you possessed all the knowledge required to build a house this way,
it would still take you thousands of hours.

This first approach is analogous to sitting down to write a video game
without using a game engine. You must do everything from scratch: write
the math libraries, graphics rendering code, collision detection algorithms,
network code, asset loading libraries, audio player code, and much more.
Even if you knew how to do all these things from the get-go, it would
still take you a long time to write the game engine code and debug it. If
you aren’t familiar with linear algebra, rendering techniques, and how
to optimize culling algorithms, you should expect that it could take you
years before you have enough of a game engine that you can actually start
writing the game to go along with it.

About the Second Approach

The second way of building a house assumes that you aren’t starting
entirely from scratch. It doesn’t require that you know how to work a
blast furnace, fell hundreds of timbers, or mill them to make lumber. The
second way allows you to focus entirely on building the house instead of
making the materials that you'll need to build the house. Your house will
be constructed faster, cost less as a result, and probably be higher quality,
provided you carefully selected the materials and know how to use them.

CHAPTER 1 GAMES AND GAME ENGINES

The second approach is analogous to sitting down to write a video
game and using a prebuilt game engine. The game developers are able to
focus on the game’s content and don’t need to know how to do complex
calculations to figure out if two objects collided as they're flying through
the air because the game engine will do that for them. There’s no need to
construct an asset-loading system, write low-level code to read user-input,
decompress sound files, or parse animation file formats. It's unnecessary
to build this functionality common to all video games because the game
engine developers have already put thousands of hours into writing,
testing, debugging, and optimizing code to do these things already.

In conclusion ...

It is impossible to overstate the advantage that game engines give to

the independent developer or the big-studio team working on the next

hit game. Some developers want to write their own game engines as a
programming exercise to learn how everything works under the hood,

and they will learn a tremendous amount. But if your intention is to ship a
game, then you're doing yourself a disservice by not using a premade game
engine.

Game Engines Historically

Historically game engines have sometimes been closely tied to the

games themselves. In 1987, Ron Gilbert, along with some help from Chip
Morningstar, created the SCUMM, or Script Creation Utility for Maniac
Mansion game engine, while working at Lucasfilm Games. SCUMM is a
great example of a game engine that was custom-made for a specific type
of game. The “MM” in SCUMM stands for Maniac Mansion, which was a
critically acclaimed adventure game and the first to use the point-and-click
style interface, which Gilbert also invented.

CHAPTER 1 GAMES AND GAME ENGINES

The SCUMM game engine was responsible for converting scripts
consisting of human-readable tokenized words such as “walk character to
door” into byte-sized programs to be read by the game engine interpreter.
The interpreter was responsible for controlling the games’ actors on screen
and presenting the sound and graphics. The ability to script gameplay
instead of coding it, facilitated rapid prototyping and allowed the team to
begin building and focusing on the gameplay from an early stage. Although
the SCUMM engine was developed specifically for Maniac Mansion
(Figure 1-1), it also was used for other hit games such as Full Throttle, The
Secret of Monkey Island, Indiana Jones and the Last Crusade: The Graphic
Adventure, and more.

Figure 1-1. Maniac Mansion, from Lucasfilm Games, uses the
SCUMM Engine

When compared with modern day game engines like Unity, the
SCUMM Engine lacks a great deal of flexibility, as it was custom-made
for point-and-click style games. However, like Unity, the SCUMM engine
allowed game developers to focus on gameplay instead of continuously
rewriting graphics and sound code for each game, saving untold amounts
of time and effort.

CHAPTER 1 GAMES AND GAME ENGINES

Sometimes game engines can have an enormous impact on the
industry as a whole. In mid-1991, a seismic shift in the industry occurred at
a company named id Software, when 21-year-old John Carmack built a 3D
game engine for a game called Wolfenstein 3D. Up until then, 3D graphics
were generally limited to slow-moving flight simulation games or games with
simple polygons, because the available computer hardware was too slow
to calculate and display the number of surfaces necessary for a fast-paced
3D action game. Carmack was able to work around the current hardware
limitations by using a graphics technique called raycasting. This allowed
for fast display of 3D environments by calculating and displaying only the
surfaces visible to the player, instead of the entire area around the player.

This unique approach allowed Carmack, along with John Romero,
designer Tom Hall, and artist Adrian Carmack to create a violent, fast-
paced game about mowing down Nazis that spawned the first-person
shooter (FPS) genre of video games. The Wolfenstein 3D engine was
licensed by id Software to several other titles. They have produced seven
game engines to date, which have been used in influential titles such as
Quake 111 Arena, a Doom reboot, and Wolfenstein II: The New Colossus.

These days, building a rough 3D FPS-game prototype is something an
experienced game developer can do in a few days using a powerful game
engine like Unity.

Game Engines Today

Modern-day AAA game development studios such as Bethesda Game
Studios and Blizzard Entertainment often have their own in-house,
proprietary game engines. Bethesda’s in-house game engine is called:
Creation Engine and was used to create The Elder Scrolls V: Skyrim as well
as Fallout 4. Blizzard has their own proprietary game engine used to make
games such as World of Warcraft and Overwatch.

CHAPTER 1 GAMES AND GAME ENGINES

A proprietary in-house game engine may start out as built for a specific
game project. After that project is released, the game engine often finds a
new life when it’s reused for the next game coming out of that game studio.
The engine might require upgrades to stay current and take advantage of
the latest technology, but it doesn’t need to be rebuilt from the ground-up.

If a game development company doesn’t have an in-house engine,
they typically use an open-source engine, or license a third-party engine
such as Unity. To create a significant 3D game these days without the use
of a game engine would be an incredibly demanding task—financially as
well as technologically. In fact, game studios with in-house game engines
require separate programming teams dedicated entirely to building out
engine features and optimizing them.

Having said all of this, why would an AAA-studio choose not to use
a game engine like Unity, but instead elect to build their own in-house
engine? Companies such as Bethesda and Blizzard have an enormous
body of pre-existing code to draw from, financial resources, and a wealth
of deeply talented programmers. For certain types of projects, they want
complete control over every facet of their game and game engine.

Even having all of these advantages over the typical small game
studios, Bethesda still used Unity to develop the mobile game: Fallout
Shelter; and Blizzard used Unity to develop a little cross-platform
collectible card game: Hearthstone. When time equals money, a game
engine like Unity can be used to quickly prototype, build out, and iterate
on functionality. The time = money equation is especially relevant if your
plan is to release a game to multiple platforms. Porting an in-house engine
to specific platforms such as iOS and Android can be time consuming. If a
project doesn’t require the same level of control over the game engine that
you would need when developing a game like Overwatich, using a cross-
compatible game engine like Unity is a no-brainer.

CHAPTER 1 GAMES AND GAME ENGINES

The Unity Game Engine

Unity is an extremely popular game engine that affords a huge number of
advantages over other game engines available in the market today. Unity
offers a visual workflow with drag-and-drop capabilities and supports
scripting with C#, a very popular programming language. Unity has long
supported 3D and 2D graphics, and the toolsets for both grow more
sophisticated and user-friendly with each release.

Unity has several tiers of licenses and is free for projects with revenues
up to $100k. It offers cross-platform support for 27 different platforms
and takes advantage of graphics APIs specific to the system architecture,
including Direct3D, OpenGL, Vulkan, Metal, and several others.

Unity Teams offers cloud-based project collaboration and continuous
integration.

Since its debut in 2005, Unity has been used to develop thousands of
desktop, mobile, and console games and applications. A small sampling
of some well-known titles developed over the years with Unity would
include: Thomas Was Alone (2010), Temple Run (2011), The Room (2012),
RimWorld (2013), Hearthstone (2014), Kerbal Space Program (2015),
Pokémon GO (2016), and Cuphead (2017), which is seen in Figure 1-2.

10

CHAPTER1 GAMES AND GAME ENGINES

Figure 1-2. Cuphead, developed by StudioMDHR, uses the Unity
Game Engine

For game developers who want to customize their workflow, Unity
affords the ability to extend the default visual editor. This extremely
powerful mechanism allows for the creation of custom tools, editors, and
inspectors. Imagine creating a visual tool for your game designers to easily
tweak values for in-game objects like hit-points for a character class, skill-
trees, attack range, or item drops, without having to go into the code and
modify values or use an external database. This is all made possible and
straightforward by the Editor Extension functionality that Unity provides.

Another Unity advantage is the Unity Asset Store. The Asset Store is
an online storefront where artists, developers, and content creators can
upload content to be bought and sold. The Asset Store contains thousands
of free and paid Editor Extensions, models, scripts, textures, shaders, and
more, which teams can use to accelerate their development timelines and

enhance a final product.

11

CHAPTER 1 GAMES AND GAME ENGINES

Summary

In this chapter we learned about the many advantages to using a premade
game engine as opposed to writing your own. We touched on a couple of
interesting game engines of yesteryear and the impact they had on game
development as a whole. We also outlined the specific advantages that
Unity offers and mentioned some of the better-known games developed
using the Unity engine. Perhaps one day soon, someone will mention your
game as one of the better known games made with Unity!

12

CHAPTER 2

Introduction to Unity

This chapter covers the Unity Editor—installing, configuring, navigating its
windows, using its toolset, and getting familiar with the project structure.
Not all of this material will be immediately relevant to your everyday work
in Unity, and you'll probably have to refer back to this chapter a few times
in the future anyway, so don’t try to commit it all to memory on the first go.

Install Unity

First thing’s first: head over to https://store.unity.comand download
Unity. Because we're just learning to use Unity, get the Personal version,
which is free.

For our purposes in this book, the main difference between the free
version and the Plus tier is that the free version flashes the “Made with
Unity” on the splash screen, while the Plus version allows you to create a
custom splash screen. The Plus, Pro, and Enterprise versions get gradually
more expensive, but offer interesting benefits such as better analytics and
control over your data, multiplayer features, test builds using the Unity
Cloud service, and even access to the source code at the Enterprise level.

You should remember that these tiers your qualification for each tier is
determined by revenue. If you or your game company generate less than
$100k/year USD, you qualify to use Unity Personal Edition free of charge. If
your company generates less than $200k/year USD, you're required to use
the Unity Plus tier. Finally, if your company generates more than $200k/
year USD you must use Unity Pro. Not a bad deal at all.

© Jared Halpern 2019
J. Halpern, Developing 2D Games with Unity, https://doi.org/10.1007/978-1-4842-3772-4_2

https://store.unity.com

CHAPTER 2 INTRODUCTION TO UNITY

While installing Unity, the Unity Download Assistant will prompt you
to select which components of the Unity Editor you want to install. Ensure
that the following components are checked off: Unity 2018 (or the most
recent version), Documentation, Standard Assets, and Example Project.
We'll be building our sample game to run stand-alone on your desktop
(PC, Mac, or Linux) in this book. If you’d like, you can also check off boxes
to install the components for WebGL, i0S, or Android Build Support to
build for those platforms as well.

Configure Unity

After installing Unity and running for the first time, you'll be prompted to
sign in to your account (Figure 2-1). Creating and signing into an account
isn’t really necessary unless you want to take advantage of some more
advanced features such as Cloud Builds and Ads, but there’s no harm in
creating an account and signing in anyway. You'll need an account if you
want to use anything from the Unity Asset Store.

L] Unity 2017.3.013

<Q unity

Sign into your Unity ID

G Sign in with goegle

or
B3 signin with facebook

Figure 2-1. Unity sign in screen

14

CHAPTER 2 INTRODUCTION TO UNITY

Let’s go through Unity’s Projects and Learning screen, as seen in
Figure 2-2, and point out a few things. On the upper left, you'll notice two
tabs—Projects and Learn.

® Unity 2017.3.013

Projects Learn 5 New 3] open (@) My Account

In the Cloud
2D_Joints

Test3D
test

Text

Text Adv

Figure 2-2. Unity Projects and Learning screen

Select Projects and let’s go through the options:

On Disk

A history of the last six projects you've worked on will appear, and can be
opened by selecting them.

In the Cloud

This refers to using cloud-based collaborative projects, which we won'’t be
covering. Unity Teams has a feature called Unity Collaborate that allows
team members to update files in a project and publish those changes to
the cloud. Other team members can then view those changes and decide

15

CHAPTER 2 INTRODUCTION TO UNITY

whether to sync their local project with the changes or ignore them. If
you've ever worked with Git, Unity Collaborate is very similar, but whereas
Git has a bit of a learning curve, Unity Collaborate is intentionally designed
to be very visual and easy to use.

Now select the Learn tab.

The Learn section has a wealth of information and you could easily
spend a few weeks going through all the tutorials, sample projects,
resources, and links. Don’t be afraid to open up sample projects that look
well beyond the scope of what you already know. Poke around, tweak
things, and break things. That’s how learning happens. If you break
something and can't fix it, you can always close and reload the sample
project.

Ok, let’s start creating our project.

Select “New” from the top right of the Projects and Learning Screen.

You'll be presented with a screen, seen in Figure 2-3, containing a few
configuration options for setting up your new project.

The default name of a new Unity project is, “New Unity Project.”
Change the Project Name to be “RPG” or “Greatest RPG Ever’, as seen in
Figure 2-3. Select the radio button next to 2D to configure the project to
show a side view in 2D at all times. Don’t worry if you forget to set this—it’s
easy to switch once our project is created.

Note the file path in the Location text box. That’s where Unity will save
your project. I like to organize source code on my computer inside a parent
directory called “source” with Unity code inside a “Unity” subdirectory,
but you can organize your directory structure however you wish. If you're
logged in, you'll see a toggle switch to turn on Unity Analytics. You can
leave this setting turned off, as we won't be using it.

16

CHAPTER 2 INTRODUCTION TO UNITY

® Unity 2017.3.03
Projects Learn Hopen () Myaccount
RPG 3D® 2D | Add Asse: Package]
_
/Users/jared/source/unity .UFF) Enable Unity Analytics (7)

Figure 2-3. Project creation

Hit the “Create Project” button to create a new project with these
settings and open it in the Unity Editor.

The Script Editor: Visual Studio

As of Unity 2018.1, Visual Studio is now the default Script Editor for
developing C# scripts. Historically, the built-in Script Editor shipped with
Unity was MonoDevelop, but starting with Unity 2018.1, Unity ships with
Visual Studio for Mac instead of MonoDevelop on macOS. On Windows,
Unity ships with Visual Studio 2017 Community and no longer ships with
MonoDevelop.

Next up, we'll get to know the Unity Editor.

17

CHAPTER 2 INTRODUCTION TO UNITY

Navigating the Unity Interface

Stretching across the top of the Unity Editor is the Tool Bar, which consists
of the Transform Toolset, Tool Handle Controls, the Play, Pause, and Step
Controls, the Cloud Collaboration Selector, Services Button, Account
Selector, Layer Selector, and Layout Selector. We'll go through all of these
at the appropriate time.

The Unity interface (Figure 2-4) is made up of a number of window
views, which we’ll review next.

(o N S S

Figure 2-4. The Unity Editor

Understanding the Different Window Views

Let’s go through the various views displayed in the Default Editor Layout.
There are many views available other than those we discuss below, and
we’ll cover some of them later in this book.

18

CHAPTER 2 INTRODUCTION TO UNITY

e Scene View

Scenes can be thought of as the foundation of Unity Projects, so you'll have
the Scene View open most of the time while you're working in the Unity
Editor. Everything that happens in your game takes place in a Scene. The
Scene View is where we’ll construct our game and do most of our work
with sprites and colliders. Scenes contain GameObjects and they hold

all the functionality relevant to that Scene. We'll cover GameObjects in
more detail in Chapter 3, but for now just know that every object in a Unity
Scene is a GameObiject.

¢ Game View

The Game View renders your game from the currently active camera’s
point of view. The Game View is also where you'll view and play your
actual game while you're working on it in Unity Editor. There are ways of
building and running your game outside of Unity Editor as well, such as a
stand-alone application, in a Web browser, or on a mobile phone, and we’ll
cover some of these platforms later in this book.

e Asset Store

A compelling factor when choosing Unity to build games is the Unity Asset
Store. As discussed in Chapter 1, the Unity Asset Store is an online storefront
where artists, developers, and content creators can upload content to be
bought and sold. The Unity Editor has a built-in tab that connects to the
Asset Store for convenience, but you can also access the Asset Store via

the Web at https://assetstore.unity.com. Although there’s no harm in
having this pane available in your Layout, there’s also no harm in hiding it
and only opening it when you need something from the Asset Store.

e Hierarchy Window

The Hierarchy Window displays a list of all objects in the current Scene in a
hierarchical format. The Hierarchy Window also allows for the creation of new
GameODbjects via the “Create” drop-down menu in the top-left corner. The
search field allows a developer to search for specific GameObjects by name.

19

https://assetstore.unity.com

CHAPTER 2 INTRODUCTION TO UNITY

In Unity, GameObjects can contain other GameObjects in what’s called
a “parent-child” relationship. The Hierarchy Window will display these
relationships in a helpful nested format. Figure 2-5 portrays the Hierarchy

Window view in an example Scene.

= Hierarchy | =
i Create v| (oAl
v Q GameScene* v
Main Camera
¥V Environment
¥ Ground
Tree
Bush
Road
v Car
Driver

»

Figure 2-5. The Hierarchy Window

Here’s a brief explanation about what we mean by “parent-child”
relationships in the Hierarchy Window. The example Scene in Figure 2-5
is called GameScene, and it contains a GameObject called Environment.
Environment is a parent object to several GameObjects, including one
called Ground. Ground is a child object with respect to Environment.
However, Ground contains several child objects of its own, including Tree,
Bush, and Roads. Ground is the parent object with respect to these child
objects.

e Project Window

The Project Window gives an overview of all the content in the Assets
folder. It's helpful to create folders in the Project Window to organize
items such as audio files, materials, models, textures, scenes, and scripts.
Throughout the lifetime of your project, you'll spend a lot of time dragging

20

CHAPTER 2 INTRODUCTION TO UNITY

and rearranging assets in folders and selecting those assets to view them in
the Inspector Window. In this book, we’ll demonstrate a suggested project
folder structure, but you should feel free to rearrange things in a way that
makes logical sense to you and the way you like to work.

e« Console View

The Console View will display errors, warnings, and other output from
your Unity application. There are C# scripting functions that can be used
to output information to the Console View at runtime to aid in debugging.
WEe'll cover those later on when we discuss debugging. You can toggle the
various forms of output on and off via the three buttons in the top-right of
the Console View.

Tip Sometimes you’ll get an error message that occurs with every
Unity frame update, and those messages will clog up your Console
View in a hurry. In situations like this, it’s helpful to hit the Collapse
toggle button to collapse all identical error messages into a single
message.

o Inspector Window

The Inspector Window is one of the most useful and important windows
in the Unity Editor; be sure to familiarize yourself with it. Scenes in

Unity are made up of GameObjects, which consist of Components

such as Scripts, Meshes, Colliders, and other elements. You can select

a GameObject and use the Inspector to view and edit the attached
Components and their respective properties. There are even techniques
to create your own properties on GameObjects that can then be modified.
We'll cover this more in later chapters. You can also use the Inspector to
view and change properties on Prefabs, Cameras, Materials, and Assets
as well. If an Asset is selected, such as an audio file, the Inspector will

21

CHAPTER 2 INTRODUCTION TO UNITY

show details such as how the file was loaded, its imported size, and the
compression ratio. Assets such as Material Maps will allow you to inspect
the Rendering Mode and Shader.

Tip Notice that you can access many of the more commonly used
panes via the shortcut: Control (PC) or Cmd / §8 (Mac) + number. For
example, 38 + 1, and 38 + 2 to switch between the Scene View and
Game View, respectively on a Mac. This is a good way to save some
time and avoid having to use the mouse for more common pane
switching.

Configure and Customize the Layout

Each pane can be rearranged by grabbing the tab on the top-left of the
pane and dragging it. Unity allows a user to create a custom Editor layout
by dragging around panes, locking them into place, resizing them to your
liking, and then saving that layout.

To save the layout, you have two options:

e Go to the menu option: Window » Layouts » Save
Layout. When prompted, give your custom layout a
name, and hit the Save button.

e C(lick the layout selector in the top-right-most corner of
the Unity Editor (Figure 2-6). It will say Default at first.
Then select Save Layout and give your custom layout a
name and hit the Save button.

You can load any layout in the future from the same menu: Window »
Layouts, or use the Layout selector. If you want to reset your layout, simply
select Default from the Layout selector.

22

CHAPTER 2 INTRODUCTION TO UNITY

Unity 2017.3.0f3 Personal (64bit) - Untitled - RPG - PC, Mac & Linux Standalone (Personal) <OpenGL 4.1>

> uim| | ank= B tarers.~ M Ovtauk 1

Save Layout... |
Delete Layout...

Revert Faclory Settings... |
e

This folder is empty

Figure 2-6. The Layout drop-down menu

The Transform Toolset

Next, we'll go through the different buttons and toggles that make up
the Tool Bar. The three things to note with the Tool Bar for now are: the
Transform Toolset; the Tool Handle Controls; and the Play, Pause, and
Step Controls. There are other controls on the Tool Bar but we’ll get to
those when we start to use them.

The Transform tools (Figure 2-7) allow a user to navigate around the
Scene View and interact with GameObjects.

O EIEIEAIniE

Figure 2-7. The Transform Toolset

23

CHAPTER 2 INTRODUCTION TO UNITY

The six Transform tools, from left to right, are:
¢ Hand

The Hand tool allows you to left-click and drag the mouse around the
screen to pan around the view. Note that you won’t be able to select any
objects when the Hand Tool is selected.

¢ Move

Selecting the Move tool and selecting a GameODbiject in either the
Hierarchy or Scene View will allow you to move that object around the

screen.
o Rotate
The Rotate tool rotates selected objects.
e Scale
The Scale tool scales selected objects.
o Rect

The Rect tool allows for the moving and resizing of selected objects
using 2D Handles, which will appear on the selected object.

e Move, Rotate, or Scale Selected Objects

This tool is a combination of the Move, Rotate, and Scale tools,
consolidated into one set of Handles.

At any time, you can temporarily switch to the Hand tool (only in 2D
projects) by pressing Option (Mac) or Alt (PC) and move around the Scene.

24

CHAPTER 2 INTRODUCTION TO UNITY

Tip The six controls in the Transform toolset are individually
mapped to the following six keys: Q, W, E, R, T, Y. Use these hot-keys
to quickly switch between the tools.

A useful trick when using the Move tool (hot-key: W) is to have the
GameObiject snap to specific increments by holding down Control
(PC) or Cmd / 38 (Mac). Adjust the snap increment settings in Edit »
Snap Settings menu.

Handle Position Controls

To the right of the Transform Toolset you'll find the handle position
controls, as seen in Figure 2-8.

| »a Center | @ Local |

Figure 2-8. The handle position controls

Handles are the GUI controls on objects used to manipulate them in a
Scene. The Handle position controls allow you to adjust the position of the
Handles for selected objects and how they are oriented.

The first toggle button (see Figure 2-8) allows you to set the position of
the Handles.

The two options for position are:

o Pivot: this places the Handles at the selected object’s
pivot point.

o Center: this places the Handles at the center of the
selected object.

25

CHAPTER 2 INTRODUCTION TO UNITY

The second toggle button allows you to set the orientation of the
Handles. Note that the orientation button will be grayed out if the Scale
tool is selected, as orientation doesn’t pertain to scale. The two orientation

options are:

e Local: when selected, a Transform tools functionality
will be relative to the GameODbiject.

e Global: when selected, a Transform tools functionality
will be relative to the world space orientation.

Tip It's possible to change the pivot point of a Sprite by selecting
the Sprite in the Project window, switching the Sprite Mode to
Multiple in the Inspector, and clicking the Sprite Editor button. Tap
the Slice button in the Sprite Editor and select a Pivot point from the
drop-down menu.

Play, Pause, and Step Controls

The Unity Editor has two modes: Play Mode and Edit Mode. When the Play
button is pressed, provided there are no bugs preventing the game from
building, the Unity Editor enters Play Mode and switches to the Game
View (see Figure 2-9). The shortcut to enter play mode is Control (PC) or
Cmd / 88 (Mac) +P.

> 11 M

Figure 2-9. Play, Pause, and Step controls

26

CHAPTER 2 INTRODUCTION TO UNITY

While still in Play Mode, you can switch back to Scene View by
selecting the tab at the top of the Scene Pane if you want to inspect
GameObijects in the running Scene. This is helpful if you need to debug a
Scene. While in Play Mode, you also can press the Pause button at any time
to pause the running Scene. The shortcut to pause the scene is Control +
Shift + P on PC, and Cmd / 38 (Mac) + Shift + P on Mac.

The Step button allows Unity to advance a single frame, and then
pause again. This is helpful for debugging as well. The shortcut to Step
ahead by a single frame is Control + Alt + P on PC, and Cmd / 38 (Mac) +
Option + P on Mac.

Pressing the Play button again while in Play Mode will stop playing the
Scene, switch the Unity Editor back to Edit Mode, and switch back to Scene
View.

An important thing to always remember when working in Play Mode
is that any changes you make to objects will not be saved or reflected in
the Scene once the Editor switches back to Edit mode. It’s very easy to
forget about this while a Scene is running, make some changes and tweak
things until they’re perfect, only to have those changes lost when you stop

playing.

Tip To make it super obvious that you're in Play Mode, it’s useful
to configure Unity preferences to switch the background tint color

of the Editor automatically when entering Play Mode. To do so, go to
the menu option as seen in Figure 2-10: Unity » Preferences. Select
Colors from the options on the left, and look for the section header,
“General.” Select your preferred background tint color and exit out.
Now hit the Play button to see the results. The background of the
Unity Editor should be tinted to your selected color.

27

CHAPTER 2 INTRODUCTION TO UNITY

Unity Preferences

General
External Tools
Keys

Gl Cache

2D

Cache Server

Cinemachine

Colors

Animation
EulerX
EulerY
EulerZ

General

Playmode tint

Scene

Background

Center Axis

Grid

Crid Component

Guide Line

Material Validator Pure Metal
Material Validator Value Too High
Material Validator Value Too Low
Preselection Highlight

Selected Axis

Selected Outline

Wireframe

Wireframe Overlay

Wireframe Selected

X Axis

Y Axis

Z Axis

[UseDefaults |

Figure 2-10. Unity Preferences menu

Unity Project Structure

The main two Unity project folders to know are the Assets/ folder and the
ProjectSettings/ folder. If you're using any form of source version control,

these are the two folders you should check in.

28

CHAPTER 2 INTRODUCTION TO UNITY

The Assets/ folder is where all game resources are located including
scripts, images, sound files, and so forth.

The ProjectSettings/ folder, as the name suggests, contains all types
of project settings pertaining to physics, audio, networking, tags, time,
meshes, and so on. Everything set from the menu Edit » Project Settings is
stored in this folder.

There are other folders and files in the Unity project structure
but they're all generated based off of the contents of Assets/ or
ProjectSettings/. The Library/ folder is a local cache for imported assets,
and Temp/ is used for temporary files generated during the build process.
Files ending with a .csproj extension are C# project files, and files ending
with .sln are solution files used for the Visual Studio IDE.

Unity Documentation

Unity is very well documented, and the documentation available on
Unity’s website (https://docs.unity3d.com/) covers the scripting API

as well as working with the Unity Editor. Unity also has dozens of video
tutorials with content appropriate for all levels of developer experience

in the Learn portal (https://unity3d.com/learn). The Unity Forums
(https://forum.unity.com/) are the place for discussions about Unity
topics, and Unity Answers (https://answers.unity.com) is a great
resource to post questions and get help from fellow Unity developers in the
community.

Summary

We've covered a lot of material in this chapter that will be relevant to your
future as a Unity Game Developer. We introduced the most commonly
used windows and views in the Unity Editor such as Scene View, where
you construct your game, and Game view, where you can view your game

29

https://docs.unity3d.com/
https://unity3d.com/learn
https://forum.unity.com/
https://answers.unity.com

CHAPTER 2 INTRODUCTION TO UNITY

running. We discussed how the Hierarchy Window gives an overview

of all GameObjects in the current scene, how to edit the properties of
these GameODbjects in the Inspector, and how to manipulate them via
the Transform Toolset, and Handle Position controls. Along the way, we
discussed how to change the layout of these windows and views and save
that layout for future use. We learned how the console view will display
error messages and can be used for debugging when issues arise with
our game. We concluded the chapter by pointing out the extensive Unity
documentation, video tutorials, discussion forums, and Q&A resources.

30

CHAPTER 3

Foundations

Now that we're familiar with the Unity Editor, it’s time to starting making
our game. This chapter will walk you through how to construct the objects
and write the code that will comprise our game. We'll talk about software
design patterns used in Unity, along with some higher-level principles in
Computer Science and how they’re relevant to making games. You'll also
learn how to control the player on-screen and play the player animations.

Game Objects: Our Container Entities

Games in Unity consist of Scenes, and everything in a Scene is called
a GameObject. You'll encounter Scripts, Colliders, and other types of
elements in your Unity adventures, and all of these are GameODbjects. It’s
helpful to think of GameObjects as a sort of container, composed of many
pieces of individually implemented functionalities. As we discussed in
Chapter 2, GameObijects can even contain other GameObijects in parent-
child relationships.

We're going to create our first GameObject, then talk about why Unity
uses GameObijects as a fundamental aspect of building games.

In the Hierarchy view, select the Create button in the top-left (Figure 3-1),
and select Create Empty. This creates a new GameObject in the Hierarchy

view.

© Jared Halpern 2019
J. Halpern, Developing 2D Games with Unity, https://doi.org/10.1007/978-1-4842-3772-4_3

CHAPTER 3 FOUNDATIONS

-

)
RIEIEIEA)
‘= Hierarchy

| Create ~| (GrATl)

Bl Pivot

Create Empty Child
3D Object
2D Object
Effects
Light
Audio
Video

ul

Camera
S ——

VYVYVYYVYYY

Figure 3-1. One way of creating a new GameODbject in the Hierarchy view

There are a few different ways to create GameODbjects. You also
could have right-clicked on the Hierarchy view pane itself, or gone to the
GameObject » Create Empty in the top menu.

Right-click the new GameObject and select Rename. Call it
“PlayerObject.” This PlayerObject will contain all the logic related to the
courageous player in our RPG!

Make a second GameObject and call it “EnemyObject.” This
EnemyObject will contain all the logic related to an enemy that our player
must defeat.

As we learn how to build a game in Unity, we're also going to learn
Computer Science concepts that will make you a better programmer
overall, and how those concepts will make your life easier as a game
developer.

32

CHAPTER 3 FOUNDATIONS

Entity-Component Design

There is a concept in Computer Science known as “separation of
concerns.” Separation of concerns is a design principle that describes how
software is divided into modules based on the functionality they perform.
Each module is responsible for a single functional “concern” that should
be completely encapsulated by that module. When it comes down to
implementation, a concern can be a somewhat loose and interpretive
term—these concerns can be as broad as the responsibility for rendering
graphics on-screen, or as specific as calculating when one triangle in space
overlaps with another triangle.

One of the primary motivations for separating concerns in software
design is to reduce wastefulness seen when a developer writes duplicated
or overlapping functionality. For example, if you have code that renders
an image on-screen, you should only have to write that code once. A video
game will have dozens or hundreds of situations where rendering graphics
to screen is needed, but the developer only had to write that code once and
can reuse it everywhere.

Unity builds on the philosophy of separation of concerns with a very
popular design pattern in game programming called Entity-Component
design. Entity-Component design favors “composition over inheritance,”
which is the notion that objects or “entities” should encourage code reuse
by containing instances of classes that encapsulate specific functionality.
Entities gain access to functionality via instances of these component
classes. When used appropriately, composition can result in less code and
be easier to understand and maintain.

This is different from the common design approach in which an
object inherits functionality from a parent class. A disadvantage to using
inheritance is that it can lead to deep and wide inheritance trees, where
changing one small thing in a parent class can have ripple-down effects
with unintended consequences.

33

CHAPTER 3 FOUNDATIONS

In Unity’s Entity-Component design, something called a GameObject
is the Entity and the Components are actually called “Components.”
Everything in a Unity Scene is considered a GameObject, but GameObjects
by themselves don’t do anything. We implement all of our functionality
in Components, then add these Components to our GameODbijects to give
them the behaviors that we want. Adding functionality and behaviors to an
entity becomes as straightforward as adding a component to that entity.
The Components themselves can be thought of as distinct modules, only
focused on one thing, and decoupled from other concerns and code.

Take a look at the following diagram to get a better idea of how we
might use Entity-Component design in a hypothetical game setting. The
Components that provide behaviors are in the top x-axis, and the Entities
in our game are in the y-column on the left.

Graphics Collision Physics Audio Player
Renderer Detection Integration

Player X X X X

Enemy X X X X

Spear (weapon) X X X

Tree X X

Villager X X X

As you can see, the player and the enemy will need all four component
functionalities. The spear weapon will need most of the functionality,
especially physics for when it’s thrown, but not audio. The tree doesn’t
require physics or audio—just graphics rendering and collision detection
to ensure that anything bumping into it cannot pass through it. The villager
in the preceding example requires graphics and collision detection, but
will just be walking around the scene, so they don’t need physics. They
might need audio though, if we want our game to play an audio track of the
villager interacting with the player.

34

CHAPTER 3 FOUNDATIONS

The Unity Entity-Component design is not without its limitations,
especially for large projects, and after many years has begun to show its
age. It is due to be replaced in the future by a more data-oriented design.

Now let’s put this newfound knowledge to use.

Components: Building Blocks

Select our PlayerObject in the Hierarchy view, and notice how the values
in the Inspector have changed. You should see something that looks like
Figure 3-2.

© Inspector]

Ei PlayerObject | £ Static *

Tag | Untagged ¢ | Layer| Default 3
¥ . Transform &,
Position X0 1Y |0 'z 0
Rotation X 0 'Y 0 lz 0
Scale x[1 Y[1 |z
[Add Component]

Figure 3-2. The Transform component

The one element universal to all GameObjects in Unity is the
Transform component, which is used to determine the position, rotation,
and scale of that GameObject in the scene. We will be using the Transform

component in our game when we want to move our Player character.

Sprites

If you're new to game development, you might be asking, “What’s a
sprite?” A sprite in the context of video game development is just a 2D
image. If you've ever seen Super Mario Brothers on Nintendo (Figure 3-3),

35

CHAPTER 3 FOUNDATIONS

or played a game like Stardew Valley (Figure 3-4), Celeste, Thimbleweed
Park, or Terraria, you've played games that used sprites.

Figure 3-3. An individual sprite of Mario, the heroic plumber from
Super Mario Brothers, (Nintendo)

Figure 3-4. The chickens, ducks, scarecrow, vegetables, trees, and all
the other images in this image of Stardew Valley are individual sprites

36

CHAPTER 3 FOUNDATIONS

Animation effects in 2D games can be achieved using a technique
similar to how animated films, anime, or cartoons are made. Just like
individual cells (frames) of a cartoon, sprites are illustrated and saved to a
disk ahead of time. Displaying individual sprites in a rapid sequence can
convey the impression of motion, such as a character walking, fighting,
jumping, or inevitably dying.

To see the player character on screen, we need to display the images
using a Sprite Renderer Component. We will add this Sprite Renderer
Component to the Player GameObject. There are a few different ways of
adding a Component to a GameObject but we're going to use the Add
Component button the first time.

Select the Add Component button from the Inspector, then type in
“sprite” and select Sprite Renderer (Figure 3-5). This adds the Component
to our Player GameObject. Instead we could have created a GameObject
with the Sprite Renderer already attached by going to the GameObject
menu, then selecting 2D Object » Sprite.

37

CHAPTER 3 FOUNDATIONS

Figure 3-5. Add a Sprite Renderer Component to the Player GameODbject

Add a Sprite Renderer Component to the EnemyObject using the same
technique.

Saving the scene is a good habit to get into, so let’s save the Scene right
now. Type Control (PC) / CMD (Mac) + s, then create a new folder and
name it “Scenes”. Save the Scene as “LevelOne” We've created a new folder
to hold this Scene and other Scenes that we’ll create for our game.

Next, create a folder called, “Sprites” in the Project view. As you might
have guessed, this will hold all the sprite assets for our project. Create
another folder underneath this Sprites folder called, “Player” and another
called “Enemies”. Select the Sprites folder in the Project view and then go

38

CHAPTER 3 FOUNDATIONS

to the folder in your Downloads directory, Desktop, or where ever you've
placed the unzipped folder with the downloaded game assets for this book.

In the downloaded assets for Chapter 3, select the file named Player.
png, EnemyWalk_1.png, and Enemyldle_1.png, and drag them into the
Sprites folder in the Project view. Once they're in the main Sprites folder,
drag them into their respective Player and Enemies folders. Your Project
view should resemble Figure 3-6.

Assets » Sprites » Player

Player

Figure 3-6. The Project view after adding the Player sprite sheet. The
Enemy sprite sheets are in the Enemies folder

Now select the Player sprite sheet in the Project view. Notice how
its properties have appeared in the Inspector on the right. We're going
to configure the Asset Import Settings in the Inspector and then use the
Sprite Editor to slice up this sprite sheet into individual sprites.

39

CHAPTER 3 FOUNDATIONS

Set the Texture Type to “Sprite (2D and UI)” and select the Sprite
Mode dropdown picker and select “Multiple.” This indicates that there are
multiple sprites in that sprite sheet asset.

Change the pixels per unit to 32. We'll explain the pixels per unit, or
PPU, settings when we talk about cameras.

Change Filter Mode to “Point (no filter).” This will make the sprite
texture appear blocky up close, which is perfect for the pixelated look of
our artwork.

Toward the bottom, press the Default button, and select “None” for
Compression.

Double-check that the properties in the Inspector match Figure 3-7.

Press the Apply button to apply our changes, and then press the Sprite
Editor button in the Inspector. It’s time to slice our sprite sheet into sprites.

40

CHAPTER 3 FOUNDATIONS

| @ Inspector

Figure 3-7. Properties for the Player sprite sheet, as shown in the
Inspector

41

CHAPTER 3 FOUNDATIONS

The Sprite Editor tool built into the Unity Engine is very convenient for
taking sprite sheets, consisting of many sprites, and slicing them up into
individual sprite assets.

Select “Slice” in the upper left, and choose “Grid By Cell Size” for Type.
This allows us to set the dimensions of the slicing. For Pixel Size, enter 32
and 32 for X and Y, respectively.

Press the “Slice” button. If you look closely at Figure 3-8 you'll see
a faint white line outlining each of our Player sprites. This white line
indicates where the sprite sheet has been sliced.

e — s e . o

!l Custom Plvot

Figure 3-8. Setting the pixel size for the imported Player sprite sheet

Now press the “Apply” button to apply the slice to the sprite sheet.
Close the Sprite Editor.

We were able to enter the exact dimensions for this sprite sheet because
we knew them ahead of time. When you're working on your own games,
you'll encounter sprite sheets with sprites of various dimensions and you
might have to play around with the dimensions a bit to get them just right.
The Unity Sprite Editor also has the ability to automatically detect sprite
dimensions on an imported sprite sheet by selecting “Automatic” from Type
in the Sprite Editor » Slice menu. You might get mixed results from this
technique, depending on what sprite sheets you use, but it’s a starting point.

What did all that slicing and dicing do for us? Click the little triangle
next to the Player sprite sheet and take a look at all the individual sprites
extracted from the sprite sheet (Figure 3-9). We're going to create some
animations using our freshly cut player sprites.

42

CHAPTER 3 FOUNDATIONS

Assets ~ Sprites ~ Player

Player.png

Figure 3-9. The resulting sliced sprites from the Player sprite sheet

Let’s put these sprites to work. Select the PlayerObject. In the Inspector

view, all the way to the right of the Sprite property you'll see a little circle

(Figure 3-10). Click that circle to bring up the Sprite Selector screen as seen

in Figure 3-11.

Mask Interaction

© Inspector Til =
[« PlayerObject | O Static ¥ 4
Tag | Player 4 | Layer| Blocking &l
Prefab | Select | Revert [Apply)
¥ .~ Transform 2,
Position x[3.65 Y125 |z[0
Rotation x/0 Yo 'z0 |
Scale X1 [¥v[1 1z[1 |
v <. [V Sprite Renderer 1,
Sprite None (Sprite) o]
Color v
Flip
Material | @ Sprites-Default)
Draw Mode [simple ail
Sorting Layer [Characters s]
Order in Layer 0

[None =

Figure 3-10. Press this button to bring up the Select Sprite screen

In the Sprite Selector screen, double-click to select one of the Player
sprites to use as a stand-in for our PlayerObject in the Scene when we're

editing our game (Figure 3-11).

43

CHAPTER 3 FOUNDATIONS

Figure 3-11. Select one of the Player sprites to represent our player in
the Scene view when the game isn't playing

Now that we have all of our player sprites, let’s import the enemy sprite
sheets. Select the “Enemyldle_1" sprite sheet and set its Import Settings in
the Inspector the same as our PlayerObject:

Texture Type: Sprite (2D and UI)
Sprite Mode: Multiple

Pixels Per Unit (PPU): 32

Filter Mode: Point (no filter)
Compression: None

Press the Apply button.

Use the Sprite Editor to slice the sprite sheet into individual 32 x 32
pixel sprites. Ensure the white slice lines appear in the right place, then
press the Apply button and close the Sprite Editor. Follow the same steps
for the “EnemyWalk_1" sprite sheet to slice it into individual sprites.

44

CHAPTER 3 FOUNDATIONS

Animations

Let’s create a new folder to hold the animations we’re about to create. You
remember how to do that, right? Select Assets from the Project view, right
click, and then select Create » Folder. Or you can click the Create button
in the top-left of the Project view. Call this folder, “Animations” Select

the Animations folder and create another two subfolders within it, titled
“Animations” and “Controllers”.

Expand the Player sprites by clicking the little arrow next to it in the
Project view. Select the first Player sprite—this should be a sprite of the player
walking east. Hold down the shift-key to select the three sprites next to it.
Drag these four sprites together onto the PlayerObject as seen in Figure 3-12.

[collen - ||

| Create | (EAT
v €] LevelOne
Main Camera
PlayerObject

i@ Project
Create *
» Favorites

| Assets » Sprites »

¥l Assets
» Bl Animations
B Scenes
¥ Il Sprites
il Enemies

Player_0

~ Player.png

Figure 3-12. Dragging sprites onto the PlayerObject to create a new
Animation

45

CHAPTER 3 FOUNDATIONS

A screen prompting you to Create New Animation will appear
(Figure 3-13). Navigate to the Animations » Animations subdirectory that
we created previously, and save this Animation as “player-walk-east”.

L Create New Animation
Create a new animation for the game object 'PlayerObject’:

Save As: player-walk-east ~

Tags:

<

< s Blo s Animations

Name Date Modified

Q

n

Faverites
%+ Dropbox
[Desktop
B33 Articles to read
¢ iCloud Drive

7% Applications
™ Documents

o Downloads

(3 source

F= Rama Newalnnmant

New Folder cancel [N

Figure 3-13. Create and save a new Animation object

Now select the PlayerObject and look at the Inspector view. Notice
how we have two new components (Figure 3-14): Sprite Renderer and
Animator.

A Sprite Renderer component is responsible for displaying or
rendering a sprite. Unity also added an Animator component, which
contains an Animator Controller, which allows the playing of animations.

46

CHAPTER 3 FOUNDATIONS

Figure 3-14. Two new components have been automatically added:
Sprite Renderer and Animator

Dragging the sprites to the PlayerObject and creating a new Animation
resulted in these two components being added to the PlayerObject.

When we added an Animation to our PlayerObject, the Unity Editor
was smart enough to know that we would need some way of playing
and controlling that animation. So it automatically created an Animator

47

CHAPTER 3 FOUNDATIONS

component to play the animation, and attached an Animation Controller
object, “PlayerObject”. We could have also pressed the Add Component
button in the Inspector, searched for “Animator,” and then added an
Animator manually.

The Animation Controller called, “PlayerObject’, will appear by default
in the folder where we saved the “player-walk-east” animation. The
default name for the Animation Controller is “PlayerObject” (Figure 3-15),
which is confusing because our main Player GameObject is also called
“PlayerObject.”

@3 Project
] Create '|
» Favorites Assets = Animations » Animations

v [l Assets
¥ i Animations
@l Controllers

Wl Scenes

¥ Wl Sprites
@ Enemies player-walk-east PlayerObject

Bl Player

Figure 3-15. The automatically created Animation Controller:
PlayerObject, along with our first animation object: player-walk-east

Let’s rename the Animation Controller to something slightly more
descriptive. Select the PlayerObject, and press the Enter-key, or right-click,
and rename the object to “PlayerController”.

Select, drag, and move that PlayerController object into the Controllers
folder we created.

Double-click on the PlayerController object to open the Animator

window.

48

CHAPTER 3 FOUNDATIONS

The Animator State Machine

The Animation Controller maintains a set of rules, called a State Machine,
used to determine which Animation Clip to play for an associated object
based on which state the Player is in. Some examples of states used by a
Player object might be: walk, attack, idle, eat, and die. We further divide

up these states into directions because our player might be facing north,
south, east, or west when they are in these states. A visual flow-like
representation of these states is displayed in the Animator window, as seen
in Figure 3-16.

Unity 2017.3.0f3 Personal (64bit) - Outdoors.unity - Greatest RPG of All Time - PC, Mac & Linux Standalone (Personal) <OpenGL 4.1>
L BLocal 3T

ume. #3 Animator G Animation .
W Base Layer | Autn Live Link |

| Layers || Parameters |

(G Hame i

List is Empty

ntrollescontroller

Figure 3-16. The Animator window

It’s helpful to think of the Animation Controller as the “brain”
controlling the animation. Each state in the Animation State Machine is
represented by an Animation object attached to it. This Animation object
contains the actual Animation Clip to play for that state. The Animation
Controller also maintains the details of how to transition between the
animation states.

49

CHAPTER 3 FOUNDATIONS

As you can see in the Animator window, our Animation Controller has
the following states: Entry state, Any, Exit, and the state we just added:
player-walk-east. The “Any state” is used when you want to transition to a
state, such as “jump” from any other state.

If you don’t see the Exit state, you might need to scroll around the
window a bit to find it. You can also zoom in and zoom out with the scroll
button on your mouse or trackpad to get a better view of things, and hold
the Option / Alt-key while dragging the background, to move around the
Animator window. At any time, feel free to move around these Animation
objects and arrange them in a way that makes sense to you.

Let’s add the rest of our animations. Go back to the Sprites folder and
select the next four sprites. These are the sprites used when the player
walks west. Drag these four onto the PlayerObject, the same way we did
to create the previous walking animation. When prompted by the Create
New Animation save window, type “player-walk-west” and save to the
Animations » Animations folder. You should see this new animation
appear in the Animator window.

Follow the same steps to create new animations for the other sprites.
Note that the walk south and walk north animations only have two frames,
not four. Call their animations “player-walk-south” and “player-walk-
north’; and save them to the Animations » Animations folder.

50

CHAPTER 3 FOUNDATIONS

At this point, your Animator window should resemble Figure 3-17 with
all four Animation objects shown. These four Animation objects represent
four different states of walking, and hold references to the Animation Clips

as well.
€ Game % Animator C Animatio -
I} || Paramesers | & Base Layer Auta Live Link
Eemare 4
List is Empty

controlber

Figure 3-17. The Animator window showing all four player walk
animations, after adding them to the PlayerObject

We've done all this work, but we still don’t have anything animating
on screen yet. There’s one last step—in the Hierarchy view, select the Main
Camera GameObject and set the size property to 1. This is temporary
so you can clearly see the player animating. We’ll explain more about
Cameras later on in the book.

Press the Play button in the toolbar. If all goes well, you should see our
intrepid Player frantically running in place as in Figure 3-18.

51

CHAPTER 3 FOUNDATIONS

Figure 3-18. We have sampled the sweet taste of pixelated victory

Let’s slow down our frantic Player. Open the Animator window by
double-clicking the PlayerObject Animator, or by selecting the Animator
window tab. Select the “player-walk-east” Animation and change the value
for Speed to 0.6 as in Figure 3-19.

52

CHAPTER 3 FOUNDATIONS

© Inspector Tile Palette :
H |player-walk-east |
Tag | |
Motion [B player-walk-east)
Speed [06 |
Multiplier [- [] Parameter
Normalized Time [_] Parameter
Mirror U [_] Parameter
Cycle Offset 0 | [[) Parameter
Foot IK O
Write Defaults v
Transitions Solo Mute
List is Empty
=
l Add Behaviour |

Figure 3-19. Changing the Animation Speed

Then press play again to see her walking at a more sustainable pace.
You can adjust this speed to whatever you feel looks natural.

Stop the Playing Scene by pressing the Play button again.

Now create and save the animations for our EnemyWalk_1 and
Enemyldle_1 animations. Each of these animations contains five sprites
each. Name the animations: enemy-walk-1, and enemy-idle-1. Rename
the EnemyObject Animation Controller to EnemyController, and move it
to the Animations » Controllers subfolder. Move the enemy animations to
the Animations » Animations subfolder.

53

CHAPTER 3 FOUNDATIONS

Colliders

Next we're going to learn about Colliders. Colliders are added to
GameObjects and used by the Unity Physics Engine to determine when
a collision has taken place between two objects. The shape of a Collider
is adjustable, and they’re usually shaped more or less like the outline of
the object they represent. It's sometimes computationally prohibitive
to outline the exact shape of an object and often unnecessary, as an
approximation of an object’s shape is sufficient for collision purposes and
indistinguishable by the player during runtime. An approximation of the
objects shape using a type of Collider called a “Primitive Collider” is also
less processor intensive. There are two types of Primitive Colliders in Unity
2D: Box Collider 2D and Circle Collider 2D.

Select the PlayerObject and then select the Add Component button in
the Inspector. Search for and select “Box Collider 2D” to add a Box Collider
2D to the PlayerObject as seen in Figure 3-20.

54

CHAPTER 3 FOUNDATIONS

Figure 3-20. Adding a Box Collider 2D to the PlayerObject

We'll need to know when the player collides with an enemy, so add a
Box Collider 2D to the EnemyObject as well.

55

CHAPTER 3 FOUNDATIONS

The Rigidbody Component

A Rigidbody Component added to a GameObiject allows that GameObject
to interact with the Unity Physics Engine. It's how Unity knows to apply
forces such as gravity to a GameObject. A Rigidbody also allows you to
apply forces to the GameODbiject via scripts. For example, your game may
have a GameODbiject called “car,” which contains a Rigidbody. You could
apply a certain amount of force to the car object to move it in the current
direction, depending on which button a player is pressing: gas or turbo.

With the PlayerObject selected, click the Add Component button in the
Inspector, search for “Rigidbody 2D,” and add it to the PlayerObject. In the
Body Type dropdown for the Rigidbody Component, select “Dynamic.”
Dynamic Rigidbody will interact and collide with other objects. Set the
following properties of the Rigidbody 2D to 0: Linear Drag, Angular Drag,
and Gravity Scale. Set Mass to 1.

The second type of Body Type in the drop-down menu is Kinematic.
Kinematic Rigidbody 2D Components aren’t affected by external physics
forces such as gravity. They do have a velocity but only move when we
move their Transform component, usually via a Script. This is a different
approach from applying forces to move a GameODbiject, as we described
previously. The third Body Type is Static, for the objects in the game that
won’t move at all.

Select the EnemyObject and add a Rigidbody 2D Component of type
Dynamic to it as well.

Now that we've added a Rigidbody 2D to our player and enemy,
they will be affected by gravity. Because our game uses a top-down
perspective, let’s turn off gravity so our player doesn’t go flying off the
screen. Go to Edit » Project Settings » Physics 2D and change the value
for Gravity Y from -9.81 to 0.

56

Tags and Layers

Tags

CHAPTER 3

FOUNDATIONS

Tags allow us to label GameODbijects for easy reference and comparison

while our game is running.
Select the PlayerObject. Under the Tag drop-down menu on the

very top left of the Inspector, select the Player tag to add a tag to our

PlayerObject, as seen in Figure 3-21.

[[®nspector [e
a (& |PlayerObject
Tag v Untagged

YA T
Positior
Rotatio
Scale

vl S
Sprite
Color
Flip

Respawn
Finish
EditorOnly
MainCamera

GameController

Add Tag...

| () Static ¥

p Layer | Default &)

@ %

Y0 z)0 |

Y0 z)0 |

ME 'zl |

rite) (o]
e

Figure 3-21. Select the Player Tag in the Inspector to assign it to our

PlayerObject

The Player tag is a default tag that comes with every Scene in Unity but

you also can add tags as you need.

Create a new Tag called “Enemy” and use it to set the EnemyObject

Tag. We'll add Tags for other items later as our game develops.

57

CHAPTER 3 FOUNDATIONS

Layers

Layers are used to define collections of GameObjects. These collections
are used in collision detection to determine which layers are aware of
each other and thus can interact. We can then create logic in a Script to
determine what to do when two GameObjects collide. As we can see in
Figure 3-22, we want to create a new “User Layer” called “Blocking” Type
“Blocking” into the User Layer 8 field.

Select the Layers drop-down menu and select, “Add Layer.” You should
see the Layers window appear as in Figure 3-22.

© Inspector

\:q,r Tags & Layers &,
» Tags
P Sorting Layers
¥ Layers
Builtin Layer O Default
Builtin Layer 1 TransparentFX
Builtin Layer 2 Ignore Raycast
Builtin Layer 3
Builtin Layer 4 Water
Builtin Layer 5 ul

Builtin Layer 6
Builtin Layer 7
User Layer 8 |Blocking |
User Layer 9 []
User Layer 10 | |

Figure 3-22. The Layers window

Now select the PlayerObject again to view its properties in the
Inspector. Select the Blocking Layer we just created from the drop-down
menu (see Figure 3-23) to add our PlayerObject to that Layer. Select the
EnemyObiject and set the Layer to “Blocking” in the Inspector as well.

58

CHAPTER 3 FOUNDATIONS

0: Default
1: TransparentFX
2: Ignore Raycast
4: Water
@ PlayerObject 5: Ul
Tag | Player ¢ | Layer 8: Blocking
Prefab | Select | Revert

Add Layer...

¥ . Transform : : w
Position x[3.65 |Y[L25 |z[0o |
Rotation x[0 y[o z/0 |
Scale X1 7 Z|1 |

Figure 3-23. Select Blocking Layer from the drop-down menu

Later on, we'll configure our game to enforce the condition that certain
GameODbijects will not be able to pass through any object in the Blocking
Layer. For example the Player will be in the Blocking Layer, as will any
walls, trees, or enemies. Enemies should not be able to pass through the
player, and the player should not be able to pass through any walls, trees,
or enemies.

Sorting Layers

Let’s look at a different type of Layer now: Sorting Layers. Sorting Layers
are different than regular Layers in that they allow us to tell the Unity
Engine what order our various 2D Sprites on the screen should be
“rendered” or drawn. Because the Sorting Layer relates to rendering,
you'll always see the Sorting Layer drop-down menu inside the Renderer
component.

To get a better idea of what we mean by the “order” in which sprites
are rendered, take a look at the screenshot in Figure 3-24 of the point-
and-click adventure Thimbleweed Park. The screenshot shows two player

59

CHAPTER 3 FOUNDATIONS

characters standing in a room. We can see various pieces of furniture in
the room such as a filing cabinet and a table. In the Thimbleweed Park
screenshot, the female detective, Agent Ray, appears to be standing in
front of the filing cabinet. This effect is accomplished by rendering the
sprite of Agent Ray after the game engine renders the filing cabinet.

Figure 3-24. A screenshot of Thimbleweed Park showing characters
standing in front of objects

Thimbleweed Park uses its own proprietary game engine instead of
Unity, but all engines must have some sort of logic describing the order in
which to render pixels.

In our RPG, we're going to be looking from the top-down, in what'’s
called an “orthographic” perspective. We’ll talk more about what that
means when we talk about cameras, but for now know that we want Unity
to draw pixels for the ground first, then any characters such as the player or
enemies on top of the ground, so the characters appear to be walking on it.

We're going to add a Sorting Layer called “Characters” that we'll use for
our player and all enemies.

60

CHAPTER 3 FOUNDATIONS

In the Sprite Renderer Component in the Inspector, select the Sorting
Layer dropdown and select “Add Sorting Layer” as seen in Figure 3-25. The
Sorting Layer that we create will be available throughout our game, even
though we're creating it from the menu on the PlayerObject.

(@ nspector [Ia s
[« [PlayerObject | O Static v
Ta'g LM Layerm—ﬂ

E—

Add Sorting Layer... 3

Figure 3-25. Adding a Sorting Layer

Add a Sorting Layer named, “Characters” (Figure 3-26), and then
click on the PlayerObject again to view its Inspector and select our new
Characters Sorting Layer from the Sorting Layer drop-down menu, as seen
in Figure 3-27.

61

CHAPTER 3 FOUNDATIONS

v Default J

Characters

—
Add Sorting Layer...

Figure 3-27. Use the new Characters Sorting Layer in our
PlayerObject

Select our EnemyObject and set its Sorting Layer to Characters,
because we want enemies to also be rendered on top of things like
ground tiles.

62

CHAPTER 3 FOUNDATIONS

Introducing: Prefabs

Unity allows you to construct GameObjects with embedded Components
and then create something called a “Prefab” out of that GameObject.
Prefabs can be thought of as pre-fabricated templates from which you can
create, or “instantiate,” new copies of already-made GameObjects. This
asset has a very useful feature that allows you to edit all of the Prefabs

at once by changing the Prefab template. On the other hand, you could
choose to change a single Prefab and leave the rest of them identical to the
original.

For example, imagine if you had a Scene where the player is inside a
tavern. There are numerous props inside this tavern such as chairs, tables,
and mugs of ale. If you created individual GameODbjects for all of these
props, each one of them would be independently editable. If you should
ever want to change a single property on every table, for example, to make
them dark wood instead of light wood, you’d have to select and edit each
one of the tables and change that property. If the table objects were Prefab
instances, you'd only have to change the property on a single object—the
Prefab, then click the button to apply that change to all the instances
derived from that Prefab.

We're going to use this straightforward technique of Prefabs constantly
throughout the process of building our game.

It's really easy to create a Prefab out of a GameObject. First, create a
Prefabs folder under our Assets folder in the Project view. Then select our
PlayerObject from the Hierarchy view and simply drag it into our Prefabs
folder.

The screenshot in Figure 3-28 shows a Prefab after we’ve dropped our
PlayerObject into the Prefabs folder.

63

CHAPTER 3 FOUNDATIONS

‘s PlayerObiject.prefab

Figure 3-28. Create a Prefab by dragging any GameODbject into the
Prefabs folder

Take a look at the Hierarchy view in Figure 3-28. You'll notice that the
PlayerObject text is light blue. This indicates that PlayerObject is based on
a Prefab. This also means that going forward, if you make any changes to

64

CHAPTER 3 FOUNDATIONS

the PlayerObject Prefab and you want to apply the changes to all instances
of the Prefab, you need to press the Apply button in the Inspector while
that GameODbiject is selected in the Project view (see Figure 3-29).

© Inspector | Tile "=

¥ |PlayerObject | [J Static ¥ b
Tag [Player ¢ | Layer| Blocking : |
Prefab | Select | Revert [Apply J
¥ . Transform [%,
Position X[365 |Y[1.25 |Z[0 |
Rotation x 0 20 'z/0 |
Scale X1 [Y[1 |z |1 |

Figure 3-29. Press the Apply button to apply any changes you make
to the PlayerObject, to all instances of the Prefab

You can now safely delete the PlayerObject from the Hierarchy view,
as we now have a Prefab PlayerObject which we can always use to recreate
the PlayerObject. If you want to edit all instances of the Prefab, simply drag
the Prefab object back into the Hierarchy view and make your changes,
then press Apply.

Do the same for the EnemyObject: drag it into the Prefabs folder and
delete the original EnemyObject from the Hierarchy view.

Now’s a good time to save our Scene again, so make sure to do that.

Scripts: Logic for Components

So we have our PlayerObject and we have our EnemyObject. Let’s make
them move! Select our PlayerObject Prefab and drag it into the Hierarchy
view. You'll notice that the Inspector has once again been populated with
the properties for the PlayerObject.

65

CHAPTER 3 FOUNDATIONS

Scroll to the bottom of the Inspector and press the Add Component
button. Type in the word, script and select “New Script” Name the new
script, “MovementController” as seen in Figure 3-30.

Figure 3-30. Name the new Script: “MovementController”

Create a new folder called “Scripts” in the Project view. The new script
will have been created in the top-level Assets folder in the Project view.
Drag the MovementController script into the Scripts folder, and then
double-click it to open it in Visual Studio.

It's time to program our first script. Scripts in Unity are written in a
language called C#. Once you've opened up our MovementController
script in Visual Studio, it should resemble Figure 3-31.

66

CHAPTER 3 FOUNDATIONS

Figure 3-31. The MovementController script in Visual Studio

Note Up until relatively recently, Unity allowed developers to

write scripts in two different languages: C# as well as a language
resembling JavaScript called “UnityScript.” Starting with the Unity
2017.2 beta, Unity began the process of deprecating UnityScript, but
it’s possible you might find some UnityScript samples out there in the
wild. Going forward, you should only use C# to write scripts for Unity.
You can read more about the reasons for deprecation in Unity’s blog:
https://blogs.unity3d.com.

Let’s go through the structure of a typical Unity Script. All of the
following lines should be typed exactly as you see them, and every line
in C# should end with a semicolon. Programming languages are very
literal and don’t take kindly to omitted semicolons, returns, or extra
letters or numbers. The lines prefaced with // are comments, written only
for clarification, and you don’t have to type those. Comments in C# can
be written using two forward slashes: // or with a: /* followed by your

comment, and closed with: */

67

https://blogs.unity3d.com

CHAPTER 3 FOUNDATIONS

/11

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

/12
public class MovementController : MonoBehaviour

{

// 3
// Use this for initialization
void Start()

{

}

/1 4
// Update is called once per frame
void Update()

{
}
}
Here’s a breakdown of each preceding section:
/11

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

Namespaces are used to organize and control the scope of classes in
a C# project to avoid conflicts as well as make the developers lives easier.
The keyword Using is used to describe a specific Namespace in the .NET
Framework, and saves the developer the trouble of having to type the fully
qualified name every time a method from that Namespace is used.

68

CHAPTER 3 FOUNDATIONS

For example, if we include the System namespace, as in the following
example:

using System;
instead of having to type the cumbersome:
System.Console.WritelLine("Greatest RPG Ever!");
We can simply type the shorter version:
Console.WritelLine("Greatest RPG Ever!");

This is possible because the: using System; declaration clarifies that
code in this class file will be using the System namespace.

Namespaces in C# are also nestable. This means you can refer to
namespaces within namespaces like Collections, within System. This is
written as follows:

using System.Collections;

The UnityEngine Namespace contains many Unity-specific classes,
some of which we’ve already used in our Scene, such as MonoBehaviour,
GameObiject, Rigidbody2D, and BoxCollider2D. By declaring the
UnityEngine Namespace, we can reference and work with these classes in
our C# script.

/12
public class MovementController : MonoBehaviour

For a class to be attached to a GameObject within a Scene
as a Component, it needs to inherit from the UnityEngine class
MonoBehaviour. By inheriting from MonoBehaviour, a class gets
access to methods such as Awake(), Start(), Update(), LateUpdate(), and
OnCollisionEnter() along with guarantees that those methods will be
invoked at a certain point in Unity’s event function execution cycle.

69

CHAPTER 3 FOUNDATIONS

/73
void Start()

One of the methods provided by the parent MonoBehaviour class is
Start(). We'll describe the event function execution cycle later but as you
can imagine from its name, the Start() function is one of the first methods
to be called as a script executes. The Start() method is called before the
first frame update provided a few conditions are met:

1. The script must inherit from MonoBehaviour.
Our MovementController does inherit from
MonoBehaviour.

2. The script must be enabled at initialization time. By
default, scripts will be enabled, but it is possible for
a script not to be enabled initialization time, which
could be a possible error source.

/1 4
void Update()

The Update() method is called once per frame and is used to update
game behaviors. Because Update() is called once per frame, a game with a
24 frames-per-second rate will call Update() 24 times in a second, however
the time between update calls may vary. If you require a consistent time
between method calls, then use the FixedUpdate() method.

Now that we're familiar with the default MonoBehaviour script, replace
the MovementController class with the following:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

70

CHAPTER 3

public class MovementController : MonoBehaviour

{

/71
public float movementSpeed = 3.0f;

!/l 2
Vector2 movement = new Vector2();

//3
Rigidbody2D rb2D;

private void Start()

{
/1 4
rb2D = GetComponent<Rigidbody2D>();
}
private void Update()
{
// Keep this empty for now
}
/15
void FixedUpdate()
{
// 6
movement.x = Input.GetAxisRaw(“Horizontal”);
movement.y = Input.GetAxisRaw(“Vertical”);
/117

movement.Normalize();

/78
rb2D.velocity = movement * movementSpeed;

FOUNDATIONS

71

CHAPTER 3 FOUNDATIONS

}
}

/11
public float movementSpeed = 3.0f;

Declare a public float that we’ll use to adjust and set the characters
movement speed. By declaring it public, we allow this variable
movementSpeed to appear in the Inspector when the GameObiject to
which it is attached is selected.

Take a look at Figure 3-32 to see how the public variable appears in
the Inspector, in the Movement Controller (Script) section. Unity will
automatically capitalize the first letter of a public variable, and add a space
right before the first uppercase letter. That means “movementSpeed” will
appear as “Movement Speed” in the Inspector.

© Inspector Til [=
& [PlayerObject | [static =
Tag [Player 4| Layer| Blocking 4]
Prefab | Select | Revert [Apply J
¥ . Transform o,
Position X 3.65 |¥[1.25 Z0
Rotation X 0 YO Zo
Scale x[1 K |]
» - [+ Sprite Renderer 3y
» - [Animator B,
» M ¥/ Box Collider 2D o,
¥ « [¥ Movement Controller (Script) =,
Script | . MovementController (=]
Movement Speed (3 |
»-* Rigidbody 2D o,
Sprites-Default *,
> Shader 'Sprit_es.ngfault v
[Add Component I

Figure 3-32. The public variable movementSpeed appears
capitalized and with a space

72

CHAPTER 3 FOUNDATIONS

// 2
Vector2 movement = new Vector2();

A Vector2 is a built-in data structure that holds 2D vectors or points.
We're going to use it to represent a Player or Enemy character’s location in
2D space or where the character is moving to.

/13
Rigidbody2D rb2D;

Declare a variable to hold a reference to the Rigidbody2D.

/1 4
rb2D = GetComponent<Rigidbody2D>();

The method GetComponent takes a parameter of Type, and will
return the component attached to the current object of that type, if one is
attached. We call GetComponent<Rigidbody2D> to grab a reference to the
Rigidbody2D component that we attached to the PlayerObject in the Unity
Editor. We're going to use this component to move the player around.

/15
FixedUpdate()

As we discussed a few pages earlier, FixedUpdate() is called at fixed
intervals by the Unity Engine. This contrasts with the Update() method that
is called once per frame. On slower hardware devices, a games framerate

could slow down, in which case Update() may be called less frequently.

// 6
movement.x = Input.GetAxisRaw("Horizontal");
movement.y = Input.GetAxisRaw("Vertical");

The Input class gives us several ways to capture user input. We capture
user input using the method GetAxisRaw() and assign the values
to the x and y values of our Vector2 structure. The GetAxisRaw() method

73

CHAPTER 3 FOUNDATIONS

takes a parameter specifying which 2D axis we are interested in, horizontal
or vertical, and retrieves a -1, 0, or 1 from the Unity Input Manager and
returns it.

A "1" indicates that the right key, or "d" (using the common w, a, s, d
input configuration) was pressed, while a "-1" indicates that the left key
or "a" was pressed. A "0" indicates that no key was pressed. This input key
mapping is configurable via the Unity Input Manager, which we’ll explain

later.

!/l 7
movement.Normalize();

This will “normalize” our vector and keep the player moving at the
same rate of speed whether they're moving diagonally, vertically, or
horizontally.

// 8
rb2D.velocity = movement * movementSpeed;

Multiplying the movementSpeed by the movement Vector will set the
velocity of the Rigidbody2D attached to the PlayerObject and move it.

Go back to the Unity Editor and ensure that you see our PlayerObject
in the Hierarchy view. If not, drag the PlayerObject from the Prefabs folder
into the Hierarchy view.

There’s one last very important step: we need to add the script to the
PlayerObject.

To add the script to our PlayerObject, drag the MovementController
script from the Scripts folder, onto the PlayerObject in the Hierarchy
view, or drag it into the Inspector when the PlayerObject is selected.

This is how we can attach a script to an object in the Unity Editor. The
MovementController script gets access to the other components in the
PlayerObject when it is attached to a specific object.

74

CHAPTER 3 FOUNDATIONS

Now press the play button. You should see our player character
walking in place. Press either the arrow keys or W, A, S, D on your keyboard
and watch her move around.

Congratulations! You've just breathed life into what was once just
electronic impulses. You know what they say about what comes with great
power...

State and Animations
More State Machines

Now that we know how to move our character around the screen, we're
going to talk about how to switch between animations based on the
current player state.

Go to the Animations » Controllers folder and double-click the
PlayerController object. You should be looking at the Animator window,
displaying the State Machine we set up earlier. As we discussed earlier,
Unity’s Animation State machine allows us to view all the various player
states and their associated animation clips.

Click and drag your Animation State objects around until it resembles
the screen in Figure 3-33, with the player-idle off to the side, and the
player-walk animations grouped together. There’s no need to get too
precise when lining them up, as the only thing that really matters is the
directional arrows between the Animation State objects.

75

CHAPTER 3 FOUNDATIONS

| Base Layer

Figure 3-33. Organization of the Animations in the Animator
window

In Figure 3-33, you can see how the player-walk-east Animation State
is orange. The orange color indicates that it’s the default state for this
Animator. Select then right-click on the “player-idle” Animation State and
select “Set as Layer Default State” as seen in Figure 3-34. The color should
change to orange.

Set StateMachine Default State

Figure 3-34. Right-click and select Set as Layer Default State to set
the player-idle animation as the default

76

CHAPTER 3 FOUNDATIONS

We want player-idle to be the default state because when we’re not
touching a directional key, we want the player facing south toward the user
in an idle state. This will look as if the player character is awaiting the user.

Now select and right-click on the “Any State” and select “Make
Transition.” A line with an arrow will appear, attached to and following
around your mouse. Click on “player-walk-east” to create a transition
between the Any State object and player-walk-east.

If you've done this correctly, it should look like Figure 3-35.

Figure 3-35. Create a transition from Any State to player-walk-east

Now do the same for the rest of the Animation States: right-click Any
State, Create Transition, and select each one of the Animation States to
create a transition. As we mentioned earlier, the “Any State” is used when
you want to transition to a state, such as “jump” from any other state.

You should create a total of five white transition arrows pointing from
Any State to all four player-walk Animation States and the player-idle
Animation State. There also should be a orange-colored default-state
arrow from the Entry Animation State, leading to the player-idle Animation
State, as seen in Figure 3-36.

77

CHAPTER 3 FOUNDATIONS

Figure 3-36. Create transitions from Any State to all the Animation
States

Animation Parameters

To use these transitions and states, we want to create something called an
Animation Parameter. Animation Parameters are variables defined in the
Animation Controller and are used by scripts to control the Animation
State Machine.

We're going to use this Animation Parameter that we create in
our Transitions and in our MovementController script to control the
PlayerObject and make her walk around the screen.

Select the Parameters tab (Figure 3-37) on the left side of the
Animator window. Press the plus symbol and select “Int” from the
drop-down (Figure 3-38). Rename the created Animation Parameter to
“AnimationState” (Figure 3-39).

78

CHAPTER 3 FOUNDATIONS

Parameters

Figure 3-37. The Parameters tab in the Animator window

Parameters

Figure 3-38. Select Int from the drop-down menu

79

CHAPTER 3 FOUNDATIONS

l Layers || Parameters | -

(orName)+,

[Sroto A

Figure 3-39. Name the Animation Parameter: AnimationState

We're going to set the Animation Parameter in each Transition to a
specific condition. If during gameplay this condition is ever true, then the
Animator will transition to that Animation State and the corresponding
Animation Clip will play. Because this Animator component is attached to
the PlayerObject, the Animation Clips will be displayed at the Transform
component’s location in the Scene. We use a script to set this Animation
Parameter condition to be true and trigger the state transition.

Select the white Transition line connecting Any State to the player-
walk-east state. In the Inspector, change the settings so that they match
Figure 3-40.

80

CHAPTER 3

© inspector | Tile Palette |G

~ AnyState -> player-walk-east &,
' 1 AnimatorTransitionBase

- Transitions Solo Mute

e e R

[| #

AnyState -> player-walk-east

Has Exit Time -
W Settings

Exit Time [0.75 |
Fixed Duration O
Transition Duratior 0 |
Transition Offset 0 |
Interruption Source Current State Then Next St 4 |
Ordered Interruptic[_]
Can Transition To ¢[_]

Preview source state [player-idle-east t)

Figure 3-40. Configuring the Transition in the Inspector

FOUNDATIONS

81

CHAPTER 3 FOUNDATIONS

We want to uncheck boxes such as Exit Time, Fixed Duration, and
Can Transition to Self. Make sure to set Transition Duration (%) to 0, and
Interruption Source to “Current State Then Next State.”

Uncheck Has Exit Time because we want to interrupt an animation if
our user presses a different key. If we left Has Exit Time checked, then the
animation would have to finish playing up until the % entered in the Exit
Time box, before the next one could begin, and that would result in poor
player experience.

On the bottom of the inspector, you'll see an area titled, “Conditions.”
Click the plus symbol in the lower-right and select AnimationState, Equals,
and enter 1 (Figure 3-41). We've just created a condition that says: if the
Animation Parameter called “AnimationState” equals 1, then enter this
Animation State and play the Animation. This is how we will trigger state
changes from the script we're about to write.

Conditions

= |AnimationState v | | Equals 4|1

e

Figure 3-41. Setting the condition of the Animation Parameter:
AnimationState

Note It’s really easy to accidentally leave the AnimationState drop-
down box as “Greater” instead of “Equals” so watch out for that. Our
transitions won’t work properly if we don’t set the condition to Equals.

The next item we're going to do is actually set that AnimationState
parameter equal to 1 in our script. Go back to Visual Studio and our
MovementController.cs script.

82

CHAPTER 3
Replace the MovementController class with:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class MovementController : MonoBehaviour

{
public float movementSpeed = 3.0f;

Vector2 movement = new Vector2();

// 1
Animator animator;

/12
string animationState = "AnimationState";
Rigidbody2D rb2D;

/73
enum CharStates
{
walkEast = 1,
walkSouth = 2,
walklWest = 3,
walkNorth = 4,
idleSouth = 5
}
private void Start()
{
/1 4
animator = GetComponent<Animator>();
rb2D = GetComponent<Rigidbody2D>();
}

FOUNDATIONS

83

CHAPTER 3 FOUNDATIONS

private void Update()

{
/15
UpdateState();
}
void FixedUpdate()
{
// 6
MoveCharacter();
}
private void MoveCharacter()
{
movement.x = Input.GetAxisRaw("Horizontal");
movement.y = Input.GetAxisRaw("Vertical");
movement.Normalize();
rb2D.velocity = movement * movementSpeed;
}
private void UpdateState()
{
/17
if (movement.x > 0)
{
animator.SetInteger(animationState, (int)
CharStates.walkEast);
}

84

CHAPTER 3 FOUNDATIONS

else if (movement.x < 0)

{
animator.SetInteger(animationState,
CharStates.walkWest);

}

else if (movement.y > 0)

{
animator.SetInteger(animationState,
CharStates.walkNorth);

}

else if (movement.y < 0)

{
animator.SetInteger(animationState,
CharStates.walkSouth);

}

else

{
animator.SetInteger(animationState,
CharStates.idleSouth);

}

Animator animator;

script is attached.

string animationState = "AnimationState";

(int)

(int)

(int)

(int)

We create a variable called “animator” that we’ll use later on to store
areference to the Animator component in the GameObject to which this

85

CHAPTER 3 FOUNDATIONS

Typing a string directly into the code where it will be used is called
“hard-coding” the value. It’s also a common source of bugs when the
inevitable typos happen, so let’s avoid the possibility altogether by only
typing it once, then using the variable when we need to refer to the string.

// 3
enum CharStates

The data type “enum” is used to declare a set of enumerated constants.
Each enumerated constant corresponds to an underlying typed value, such
as int (integer), and you can reference the enum to get the corresponding
value.

Here we declare an enum called CharStates and use it to map the
various states of a character (walk east, walk south, etc.) along with a
corresponding int. We’ll use this int value to set our Animation State soon.

/1 4
animator = GetComponent<Animator>();

Grab a reference to the Animator component in the GameObiject to
which this script is attached. We want to save this component reference so
we can quickly access it later on via this variable, and don’t have to retrieve
it every time we need it. Using GetComponent is most common way of
accessing other components from within a script. You can even use it to
access other scripts.

/15
UpdateState();

Call a method that we’ve written to update the animation state
machine. We’ve moved this logic into a separate method to keep the
codebase clean and easily readable. The more code you have in a single
method, the harder it is to read. Harder to read code is harder to debug,
test, and maintain.

86

CHAPTER 3 FOUNDATIONS

// 6
MoveCharacter();

We've moved the code to move the player into another method to keep
the code clean and readable.

/17

This series of if-else-if statements will determine if our call to
Input.GetAxisRaw() returnsa-1, 0, or 1, and move the character
accordingly.

For example:

if (movement.x > 0)
{
animator.SetInteger(animationState, (int)
CharStates.walkEast);

}

If movement along the x axis is greater than 0, then the player is
pressing the key to go right.

We want to tell the Animator object that it should change the state
to walk-east, so we call the SetInteger() method to set the value of the
Animation Parameter we created earlier and trigger the transition of states.

SetInteger() takes two parameters: a string, and an int value. The first
value is the Animation Parameter (Figure 3-42) we created earlier in the
Unity Editor called, “AnimationState.”

Conditions

= |AnimationState '+ | Equals 4 1

+ -

Figure 3-42. We set this Animation Parameter from our script

87

CHAPTER 3 FOUNDATIONS

We've conveniently stored the name of this Animation Parameter in a
string called “animationState” in our script and we’ll pass that as the first
parameter to SetInteger().

The second parameter to SetInteger() is the actual value to set for
AnimationState. Because each value in our CharStates enum corresponds
with an int value, when we type:

CharStates.walkEast

We are actually using whatever value walkEast corresponds with in the
enum. In this case, walkEast corresponds with 1. We still need to explicitly
cast (or convert) this to an int by writing (int) to the left of the variable. The
reason why we need to cast the enum is beyond the scope of this book but
has to do with the way the C# language is implemented under the hood.

Save your script and switch back to the Unity Editor so we can put all of
this to use. Select the white transition arrows leading to player-walk-south,
and in the Conditions area, click that plus symbol. Select AnimationState,
Equals, and enter the value 2. This value 2 corresponds with the value 2 in
the enum in the script we just wrote.

Now select each white transition arrow one-by-one for player-walk-
west, player-walk-north, and all of the player-idle state transition arrows.
Add a Condition to each of them via the Inspector window and enter the
corresponding value from the CharStates enum:

enum CharStates

{
walkEast = 1,
walkSouth = 2,
walkWest = 3,
walkNorth = 4,
idleSouth = 5
}

88

CHAPTER 3 FOUNDATIONS

As you're going through each transition arrow, remember to uncheck
boxes such as Exit Time, Fixed Duration, Can Transition to Self, and set
Transition Duration (%) to 0.

One last thing, I promise! Select each player-walk Animation State
object and adjust the speed to 0.6, and adjust each idle animation to 0.25.
This will make our player animations look just right.

You've now set up a large portion of the player animations required for
our game. Press the Play button and move our character around the screen
with the arrow keys or W, A, S, D.

Go on and stretch your pixelated legs.

Tip If you forget the exact parameters for a method in C#, Visual
Studio will show a helpful pop-up with this information (Figure 3-43).
You can press return to auto-complete the method call.

// 6

if (movement.x > @)

{
animator.SetIntegerif}

} else if (movement.x <

{

}
else if (movement.y > 0)
{

animator.SetInteger(

animator.SetInteger(
} else if (movement.y < ¢

Figure 3-43. Visual Studio displays a pop-up with the methods
parameter names and types

89

CHAPTER 3 FOUNDATIONS

Summary

In this chapter we’ve covered a lot of the core knowledge required to make
games in Unity. We covered some of the design philosophy and computer
science principles behind how Unity works. We covered how games in
Unity are made of Scenes, and everything in a Scene is a GameObject. We
learned about how Colliders and Rigidbody components work together to
determine when two GameObjects collide and how Unity’s physics engine
should handle the interaction. We learned how Tags are just labels used
to refer to GameODbijects, such as the PlayerObject, from Scripts while our
game is running. Another useful tool we added to our toolkit is Layers,
which are used to group together GameObjects. We can then impose logic
onto these Layers via Scripts.

One of the most useful concepts we learned in this chapter was
Prefabs, which we think of as premade asset templates which we use
to create new copies of these assets. For example, our game might have
hundreds of enemy objects appear over the course of the game, or even
at once (if you really want to kill the player). Instead of creating hundreds
of individual enemy GameObijects, we create one enemy prefab and
instantiate new copies of the enemy GameObject from that prefab. We've
started the process of learning how to write Unity scripts, and we’ll
continue building on that knowledge throughout this book. We even
wrote our first script to walk the player around the screen by moving the
PlayerObject Transform component. Our script also set the Animation
Parameters used by the Animator state machine to control the transitions
between player states and animation clips. We covered a lot in this chapter,
but we’re really just getting started!

90

CHAPTER 4

World Building

Now that we’ve learned how to create basic character animations and
change the state between them, it’s time to create a world for these
characters to inhabit. Two-dimensional (2D) worlds are often created by
placing a series of tiles together to paint a background, then placing other
tiles on top of that background to create the illusion of depth. These tiles
are really just sprites that have been segmented or “sliced” into convenient
dimensions and usually placed using a Tile Palette. The designer or
developer can build up multiple layers of these Tilemaps to create effects
such as trees, birds flying overhead, or even mountains in the distance.
We're going to learn how to do many of these things in this chapter. You'll
even get to create your own custom Tilemaps for our RPG game. You'll also
learn how the Unity Camera works, and how to create behavior to follow
the player as she walks around the level.

Tilemaps and Tile Palettes

With the introduction of the Tilemap feature, Unity took a significant step
forward with their 2D workflow toolchain. Unity Tilemaps make it easy to
create levels natively within the Unity Editor, instead of relying on outside
tools. Unity also has a number of tools that augment the Tilemap feature,

some of which we’ll get into in this chapter.

© Jared Halpern 2019
J. Halpern, Developing 2D Games with Unity, https://doi.org/10.1007/978-1-4842-3772-4_4

CHAPTER 4 WORLD BUILDING

Tilemaps are data structures that store sprites in a particular
arrangement. Unity abstracts away the details of the underlying data
structure and makes it easy for the developer to focus on working with the
Tilemap.

To get started, we'll need to import the Tilemap assets, just as we
imported the sprite assets used for our player and enemy in Chapter 3.

Before we start importing, let’s get organized: create new folders in the
Sprites directory called: “Objects” and “Outdoors.” We'll use these folders
to hold the spritesheets and sliced sprites used for our outdoor Tilemap
and various objects we’ll place in our world.

From the downloaded book assets, in the Chapter 4 folder, find the
spritesheet titled “OutdoorsGround.png” Drag the spritesheet into the
Sprites » Outdoors folder. The Outdoors Import Settings in the Inspector
should be set to the following:

Texture Type: Sprite (2D and UI)
Sprite Mode: Multiple

Pixels Per Unit: 32

Filter Mode: Point (no filter)

Ensure the Default button is selected at the bottom
and set Compression to: None

Press the Apply button.

Now we want to slice the spritesheet that we’ve just imported. Go into
the Sprite Editor by clicking its respective button in the Inspector. Press the
Slice button in the upper-left and then the Grid by Cell Size from the Type
menu. Use 32 x 32 for the X and Y pixel size. Press the Slice button.

Check that the resulting slice lines look good, and then press the
Apply button in the top-right corner of the Sprite Editor. We now have our
outdoor tile set.

92

CHAPTER 4 WORLD BUILDING

Next we want to create our Tilemap. In the Hierarchy view, right-click
and Select 2D Object » Tilemap to create a Tilemap GameObject. You
should see a GameObject appear called “Grid” with a child GameObject
called, “Tilemap.” This Grid object is used to configure the layout of
its child Tilemaps. The child Tilemaps are made up of a Transform
component just like all GameObjects, a Tilemap component, and a
Tilemap Renderer component.

This Tilemap component is where we actually “paint” our tiles.

Creating Tile Palettes

Before we can paint, we need to create a tile palette, which is made of
individual tiles. Go to the menu Window » Tile Palette to show the Tile
Palette pane. Dock the Tile Palette pane in the same area as the Inspector.
We want our project to stay organized, so create a folder in our Project
view under the main Assets folder called “TilePalettes,” then create another
folder called “Tiles” under the Sprites folder. In the Tiles folder, create
two folders called, “Outdoors” and “Objects.” Your Project view should
resemble Figure 4-1.

93

CHAPTER 4 WORLD BUILDING

Project

Figure 4-1. Project View after creating folders

Select the “Create New Palette” button in the Tile Palette window.
Name the Palette, “Outdoor Tiles” and leave the Grid and Cell Size settings
as shown in Figure 4-2.

94

CHAPTER 4 WORLD BUILDING

[@linspector [Tilepalette [
2=y

Active Tilemap [Tilemap s]

Outdoor Tiles ¢| Edit |

Create New Palette

Name {Outdoor Tiles| |

Grid [Rectangle ™

Cell Size [Automatic + 8
x[1 ¥ [1 'z/o ;

[Cancel] Create |

Figure 4-2. Create a new Tile Palette

Press “Create” and save the Tile Palette to the newly created
TilePalettes folder. This will create a TilePalette GameODbject.

Select the Sprites » Outdoors folder in the Project view, then select the
Tile Palette view from wherever you've docked it. We're going to create a
Tile Palette using the Outdoors spritesheet we imported and sliced earlier.

Select the Outdoors spritesheet and drag it into the Tile Palette area to
where it says, “Drag Tile, Sprite or Sprite Texture assets here.”

When prompted to “Generate Tiles into folder’, navigate to the Sprites
» Tiles » Outdoor Tiles folder we created earlier, and press the Choose
button. Unity will now generate the TilePalette tiles from the individually
sliced sprites. In a few moments, you should see the tiles from our
Outdoors spritesheet appear in the Tile Palette.

95

CHAPTER 4 WORLD BUILDING

Painting with Tile Palettes

Now comes the fun part: we’re going to use our Tile Palette to paint a
Tilemap.

Select the paintbrush tool from the Tile Palette, and then select a tile
from the Tile Palette. Use the paintbrush to paint on the Tilemap in the
Scene view. If you make a mistake, you can hold down the Shift key to use
the tile paintbrush as an eraser. When the paintbrush is selected, you can
hold down Option (Mac)/Alt (PC) + the left mouse button to pan around
the Tilemap.

Use Option (Mac)/Alt (PC) + left mouse button to pan around the Tile
Palette, left-click to select a tile, and left-click and drag to select a group of
tiles. If your mouse has a scroll wheel, you can use that to zoom in and out
on the Tile Palette, or you can hold down Option / Alt + swipe up/down on
a touchpad to zoom in and out. These same keys and gestures will work for
the Tile Map as well.

Paint your Tilemap and have fun! You can make your Tilemap
look however you'd like, but here’s a suggestion for how to get started
(Figure 4-3).

96

CHAPTER 4 WORLD BUILDING

Figure 4-3. The beginnings of a Tilemap

Now that we’ve done a little bit of painting, let’s take a closer look at the
tools in the Tile Palette.

The Tile Palette

Select—Select areas of the grid or

1 Move Selection—Move around
selected areas

97

CHAPTER 4 WORLD BUILDING

Paintbrush—Select a tile from the Tile

Palette then use the Paintbrush to paint on the

Tilemap

4‘ Box Fill—Paint a filled area using the

actively selected tile

o

Pick New Brush—Use an existing tile

from the Tilemap as a new brush

&

Erase—Remove a painted tile from
the Tilemap (Shortcut: hold down Shift)

&

Flood Fill—Fill an area with the
actively selected tile

Let’s get back to building our level.

From the assets you downloaded for this book, drag the file titled,
“OutdoorsObjects.png” into the Sprites » Objects folder. The Import
Settings in the Inspector should be set to the following:

Texture Type: Sprite (2D and UI)
Sprite Mode: Multiple

Pixels Per Unit: 32

98

CHAPTER 4 WORLD BUILDING

Filter Mode: Point (no filter)

Ensure the Default button is selected at the bottom
and set Compression to: None

Press the Apply button.

Now go into the Sprite Editor by clicking its respective button in the
Inspector. Press the Slice button in the upper-left and then Grid by Cell
Size from the Type menu. Use 32 x 32 for the X and Y pixel size. We are
reusing the Sprite slicing techniques we learned in Chapter 3.

Press the Slice button and check that the resulting white slice lines look
like they're dividing the sprite sheet in the right positions. Press the Apply
button in the top-right corner of the Sprite Editor. We now have a set of
outdoor-themed object sprites to place in our scene.

Now we're going to create a Tile Palette to paint with these object
sprites. Go back to our Tile Palette and select Create New Palette from the
drop-down. Name the new palette, “Outdoor Objects” and press the Create
button. When prompted, save this Palette to the TilePalettes folder where
we saved our Outdoor Tiles Palette earlier.

Now we’ll do the same as we did for the Outdoor Tiles: select the
Outdoor Objects spritesheet and drag it into the Tile Palette area where it
says, “Drag Tile, Sprite or Sprite Texture assets here.’

When prompted to “Generate Tiles into folder’, navigate to the Sprites
» Tiles » Objects folder we created and press the Choose button. Unity
will now generate the Tile Palette tiles from the individually sliced sprites.
In a few moments, you should see the tiles from our Objects spritesheet
appear in the Tile Palette.

99

CHAPTER 4 WORLD BUILDING

Tip Sometimes sprites are made of multiple tiles. To select multiple
tiles at once, make sure the Paintbrush tool is chosen then click and
drag a rectangle around the tiles you want to use. Then you can just
paint normally with the paintbrush. The large rock in the Objects
spritesheet is made of four separate sprite tiles.

Select one of the rocks from the Outdoor Objects Tile Palette by
clicking and dragging a rectangle around all four tiles. Use the paintbrush
to place a single rock on your Tilemap. You'll immediately notice that
something looks wrong: you can actually see the background of the Unity
Scene view around the outline of the rock sprite (Figure 4-4).

Figure 4-4. Transparent border around the placed rock object sprite

100

CHAPTER 4 WORLD BUILDING

When we painted the rock tiles on the same Tilemap as the ground
tiles, we didn’t actually paint on top of the existing tiles. Instead, we
replaced the existing tiles with new tiles. Because the rock sprites we
painted with contain some transparent pixels, we can see the background
of the Scene view. To avoid this, we’ll use multiple Tilemaps and Sorting
Layers.

Working with Multiple Tilemaps

Let’s get our Tilemaps organized. Click on the Tilemap object in the
Hierarchy view and rename it: “Layer_Ground.”

We're going to create multiple Tilemaps and stack them on top of each
other in layers. Right-click on the Grid object in the Hierarchy view and go
to: 2D Object » Tilemap to create a new Tilemap. Select this new Tilemap
and rename it: “Layer_Trees_and_Rocks.” As you may have guessed from
the name, we're going to paint trees, bushes, shrubs, and rocks on this
Tilemap.

At this point, if you started to paint, you'd notice that have run into the
same transparency issue again. There are two things we have to do to fix
this issue.

To paint on a specific Tilemap, it must be selected as the Active
Tilemap in the Tile Palette view. In the Tile Palette window, you'll notice
the drop-down menu for Active Tilemap (Figure 4-5). Use it to select our
new layer, Layer_Trees_and_Rocks.

101

CHAPTER 4 WORLD BUILDING

NFA - EEEAE

Active Tilemap

Layer_Ground 3
Layer_Trees_and_Rocks

« ¥ Layer_Ground

Objects

Figure 4-5. Select Layer_Trees_and Rocks to make it the Active Tilemap

If you recall our earlier discussion, the Sprite Renderer uses Sorting
Layers to determine the order in which to render sprites. Before we can
paint on our Layer_Trees_and_Rocks Tilemap, we need to set up the
Sorting Layers for our Tilemaps. This will ensure that when we paint our
trees and rocks, they will appear on top of the ground tiles.

Select Layer_Ground and find the Tilemap Renderer Component in
the Inspector.

Press the Add Sorting Layer button in the Tilemap Renderer and create
two layers: call the first layer “Ground” and the second layer “Objects”.
Rearrange these Sorting Layers by clicking and dragging them so that
Ground is above Objects in the listing as seen in Figure 4-6.

k‘} Tags & Layers > S
P Tags
¥ Sorting Layers
= Layer Default
— Layer 'Ground |
— Layer |Objects |

Figure 4-6. Be sure the Ground Layer is above the Objects Layer

102

CHAPTER 4 WORLD BUILDING

Select the Layer_Ground Tilemap in the Hierarchy view again, to see its
properties in the Inspector. In the Tilemap Renderer component, change
the Sorting Layer to “Ground.” Select the Layer_Trees_and_Rocks Tilemap
and change its Sorting Layer to “Objects.”

Delete the rock tiles we painted earlier by setting the Active Layer to
Layer_Ground, and then select the Erase tool from the Tile Palette toolset.
You also can delete items using the paintbrush by holding down shift and
painting. Fill in the erased spot with some grass or whatever ground tile
you like from the Outdoor Objects palette.

Now we're ready to paint. When you want to paint ground tiles, be
sure that the Active Tilemap is set to Layer_Ground, and when you want to
paint trees, rocks, and shrubs, be sure the Active Tilemap is Layer_Trees_
and_Rocks.

Tip Use the square-bracket keys, “[“ and “]” to rotate a selected
tile before using it to paint. You can also rotate tiles directly on the
palette this way.

Then set the Active Tilemap to Layer_Trees_and_Rocks and paint
some rocks and bushes using the Outdoor Objects Tile Palette (Figure 4-7).

103

CHAPTER 4 WORLD BUILDING

Figure 4-7. Paint some rocks and bushes onto the Layer_Trees_and_
Rocks Tilemap

Now our map is starting to look like a map. There are a few things we
have to do before our player can go exploring though.

We want to make sure the player is rendered in front of the ground
and rocks. We'll accomplish this by setting the player’s sorting layer.
Select the PlayerObiject, then look for the Sorting Layer property in the
Sprite Renderer Component and press the Add Sorting Layer button. Add
a Sorting Layer called “Characters” and move it to the bottom, after the
Ground and Objects layers. Now we've told the Sprite Renderer to render
objects in order from the first Sorting Layer, “Ground” to the last Sorting
Layer, “Characters.”

Your Sorting Layers should look like Figure 4-8.

104

CHAPTER 4 WORLD BUILDING

@ Inspector | Tile Palette =

L%

. Tags & Layers

) 3

> Tags

¥ Sorting Layers

— Layer
— Layer
— Layer
— Layer

Default

‘Ground

'Objects

\Characters

b Layers

Figure 4-8. Add the Characters Sorting Layer

Select the PlayerObject and set its Sorting Layer to the Characters
layer that we just created. This will render the player on top of the ground
and any objects on the ground and give the appearance of the characters

walking on top of the ground.

We'll explain how the camera works later in this chapter but for now,
select the camera object and change the Size property to 3.75.
Press the Play button and take our Player for a walk around the

little island.

You'll notice a few things immediately:

e The camera doesn’t follow the Player. In fact, you can

walk right off the screen and keep walking forever if you

wanted to.

o The player can walk right through objects on the map.

e You might see a few strange-looking lines or “tears”
on the Tilemap. If they appear, they will be located

between where two tiles meet.

We're going to address all of these points in this chapter.

105

CHAPTER 4 WORLD BUILDING

We’ll learn to use Colliders to prevent the Player from walking
through everything, and we’ll use a tool called Cinemachine to make the
Camera follows the Player as he walks. We'll also make sure the Camera is
configured properly. We'll configure the graphic settings to ensure we get
a crisp edge, which is important for pixel art and we’ll use a Material to get
rid of the tears.

Tip If you have multiple Tilemap layers but would like to focus on
just one, use the Tilemap focus mode in the lower-right of the Scene
view. This will allow you to gray-out the other Tilemap layers and
focus working on a specific layer.

Graphics Settings

Let’s tweak the Unity Engine graphics settings so that our pixel art looks
as good as possible. Unity uses an algorithm called anti-aliasing when
the graphics output of the current device isn’t powerful enough to render
the edges of objects into perfectly smooth lines. Instead of rendering
smooth lines, the edges of objects appear jagged or aliased. The anti-
aliasing algorithm runs over the edges of an object and gives it a smooth
appearance to compensate for the jagged graphics output.

Anti-aliasing is turned on by default in the Unity Editor regardless of
the power of the device you're using. To turn off anti-aliasing, go to the Edit
Menu » Project Settings » Quality, and set Anti-Aliasing to Disabled. As
we've learned, the Unity Engine can be used for both 3D and 2D games,
but we don’t need anti-aliasing for our pixel-art style 2D game.

From within that same menu, Edit » Project Settings » Quality, also
disable Anisotropic Textures. Anisotropic filtering is a way of enhancing
image quality when using a specific type of camera perspective. It isn’t
relevant to what we're doing here with our project, so we should turn it off.

106

CHAPTER 4 WORLD BUILDING

The Camera

All 2D projects in Unity use something called an Orthographic camera.
Orthographic cameras render objects that are both near and far, the same
size. By rendering all objects the same size, it appears to the onlooker as
though everything is the same distance from the camera. This is different
from how 3D projects render objects. In 3D projects, objects are rendered
with different sizes to give the illusion of distance and perspective. We
configured our Unity project to use an Orthographic camera in the very
beginning, when we set up a 2D project.

To get the best results when rendering 2D graphics, it’s important to
understand how the camera works in a 2D game. Orthographic cameras
have a property called Size that determines how many vertical “world
units” can fit into half of the screen’s height. World units are determined
by setting the PPU or pixels per unit setting in Unity. As you may suspect
from the name, the pixels per unit setting describes how many pixels the
Unity Engine should render in a single world unit, that is, pixels per unit.
PPU can be set during the import assets process. PPU is important because
when you're creating art for your game, you’ll want to make sure it all looks
good at the same PPU.

The equation for camera size is:

(Vertical resolution / PPU) * 0.5 = Camera Size

Let’s use a few simple examples to clarify this concept.

Given a screen resolution of 960 x 640, the vertical screen height is 640
pixels. Let’s use a PPU of 64, to make our calculations simple: 640 divided
by 64 equals 10. That means 10 world units stacked on top of each other
would take up the entire vertical screen height and 5 world units would
take up half of the vertical screen height. Thus, the camera size is 5, as seen
in Figure 4-9.

107

CHAPTER 4 WORLD BUILDING

Screen

64 pixels
B4 pixels

Half the Height = 64 pixels
=5 World Units

64 pixels
Thus: o

Camera Size=5

64 pixels
- = 540 (px) / 64 (PPU)
64 pixels =10 World Units

64 pixels

640 64 pixels

pixels
64 pixels

B4 pixels

960
pixels

Figure 4-9. Resolution of 960 x 640 and PPU of 64, results in a
Camera Size of 5

Let’s do another example. If your game uses a screen resolution of
1280 x 1024, then the vertical screen height is 1024. Using a PPU of 32,
we divide 1024 by 32 to get 32. That means 32 world units stacked on
top of each other would take up the entire vertical screen height and 16
world units would take up half of the vertical screen height. Thus, the
orthographic camera size is 16.

Here’s one last example to reinforce the equation. Using a screen
resolution of 1280 x 720, the vertical screen height would be 720. Using
a PPU of 32, we divide 720 by 32 to get 22.5. That means 22.5 world units
stacked on top of each other would fit into the vertical screen height:
22.5 divided by 2 equals 11.25, which is half of the screen height and our
orthographic camera size.

Starting to get the hang of this? Orthographic size can seem bizarre at
first but really, it’s a pretty simple equation.

108

CHAPTER 4 WORLD BUILDING

Here’s that equation again:
(Vertical resolution / PPU) * 0.5 = Camera Size

The trick to getting a good-looking pixel art game is to pay attention to
the orthographic camera size with respect to the resolution, and make sure
the artwork looks good at a certain PPU.

In our game, we're going to use a resolution of 1280 x 720 but we'll use
a trick to scale up the art a bit. We're going to multiply the PPU by a scaling
factor of 3.

Our modified equation will look like this:

(Vertical resolution / (PPU * Scaling factor)) * 0.5 = Camera Size

Using a resolution of 1280 x 720 and a PPU of 32:

(720 / (32 PPU * 3)) * 0.5 = 3.75 Camera Size

This is why we set our camera size to be 3.75 earlier.

Now that we have a better understanding of how the camera works
in Orthographic games, let’s set our screen resolution. Unity comes
with several screen resolution choices out of the box, but sometimes it’s
beneficial to set your own. We're going to set a resolution of 1280 x 720,
which is considered “Standard HD” and should be sufficient for the style of
game we are making.

Click on the Game window and look for the Screen Resolution drop-
down menu. By default, it will probably be set to Free Aspect as seen in
Figure 4-10.

isplayl :]] Free Aspect

Figure 4-10. The drop-down menu

109

CHAPTER 4 WORLD BUILDING

At the bottom of the drop-down menu, press the plus sign to open a
window where you can enter new resolution. Create a custom resolution of
1280 x 720, as seen in Figure 4-11.

Add
Label 'HD: 1280x720 |
Type | Fixed Resolution 3)

Width & Height (1280 | [720] |
HD: 1280x720 (1280x720)

| Cancel I{ 0K |

Figure 4-11. Create a new custom resolution

Press the play button and walk the character around the map to see
our new resolution and camera in action.

Exciting stuffl OQur game is starting to look like ... well, a game!

We've created a map for the player to walk around, but as you may
have noticed, the camera stays in one place. This is fine for certain types
of games such as puzzle games, but for an RPG, we’ll need the camera
to follow the player around. It’s possible to write a C# script to direct the
camera to follow the player, but we’re going to use a Unity tool called
Cinemachine instead.

Note Cinemachine was originally created by Adam Myhill and sold
in the Unity Asset Store. Unity eventually acquired Cinemachine and
made it part of their free offerings. As mentioned in Chapter 2, you
can create your own tools, artwork, and content, and sell them in the
Unity Asset Store.

110

CHAPTER 4 WORLD BUILDING

Using Cinemachine

Cinemachine is a powerful suite of Unity tools for procedural in-game
cameras, cinematics, and cutscenes. Cinemachine can automate all

types of camera movements, blend and cut from camera to camera
automatically, and automate all types of complex behaviors, many of them
well beyond the scope of this book. We're going to use Cinemachine to
automatically track the player as she walks around the map.

Cinemachine was made available through the Asset Store for Unity
2017.1, but starting with Unity 2018.1, Cinemachine was made available
through the new Unity Package Manager. Earlier versions of Unity can still
use Cinemachine from the Asset Store, but that version is no longer being
updated and will contain no new features.

We'll talk about how to install Cinemachine in both Unity 2017 and
Unity 2018 later. Refer to the instructions for the version of Unity that
you're running.

Installing Cinemachine in Unity 2017

Go to the Window menu and select Asset Store to open the Asset Store tab.
At the top of screen in the search field, type in, “Cinemachine” and press
enter. You should get a result that looks like Figure 4-12.

Cinemachine

Unity Essentials
Unity Technologies
%k k ok (1330)
FREE

Figure 4-12. The Cinemachine Unity Package in the Asset Store

111

CHAPTER 4 WORLD BUILDING

Press on the Cinemachine icon to go to the asset page. On the asset
page, press the Import button to import the Cinemachine Unity Package
into your current project. Unity will present you with a pop-up screen as
seen in Figure 4-13 showing all the assets inside the package. Press the
Import button.

e o Import Unity Package

i Cinemachine

€ unity

v @ w Cinemachine -
v ¥ mBase [NEW]
v & wmeditor =
v (¥ mmeditors 0 |
«: CinemachineBasicMultiChannelPeliEc
« CinemachineBlenderSettingsEditoli<s
« CinemachineBlendListCameraEditéds
¢ CinemachineBrainEditor.cs s
« CinemachineClearShotEditor.cs 12
o CinemachineColliderEditor.cs 1L
« CinemachineComposerEditor.cs L
« CinemachineConfinerEditor.cs L0
- CinemachineExternalCameraEditdied
« CinemachineFramingTransposerB&wbr

Se——_1X L e e AYUER

Figure 4-13. Import the Cinemachine Unity Package

YUY U

Importing the Cinemachine package should have created a new folder
called, “Cinemachine”.

Installing Cinemachine in Unity 2018

From the menus, select Window » Package Manager. You should see
the Unity Package Manager window appear. Select the All tab, as seen in
Figure 4-14, then select Cinemachine.

112

CHAPTER 4 WORLD BUILDING

Packages

Cinemachine [install [2.1.13]

Ads 207 © 4| Version 2.1.13
Analytics Library 2.0.16 Ml view Doc ion - View Ct
Analytics Standard Events 1013 | com.unity.cinemachine

Asset Bundle Browser 1.5.0 Author: Unity Technologies Inc.
This package is not installed for your project.

Smart camera tools for passionate creators.

Cinemachine

Entities 0.0.12-preview.2

AR RUteing i IMPORTANT NOTE: If you are upgrading from the Asset Store version
IncrementalCompiler 0.0.42-preview.1 of Cinemachine, delete the Cinemachine asset from your project
Package Manager Ul T BEFORE installing this version from the Package Manager.
Postprocessing 2.0.5-preview

ProBuilder 3.0.8

Figure 4-14. Select the All Tab

Click the Install button in the upper-right to install Cinemachine.
After Cinemachine is finished installing, close out the Package Manager
window. You should see a new Packages folder in the Project view.

After Installing Cinemachine

Regardless of which version of Unity you're running, when Cinemachine
is done installing, you should see a Cinemachine menu at the top of the
screen, between Component and Window.

Note Unity Packages are collections of files that can be dropped
into a project and will simply work out of the box. Packages come
as modular, version, and automatically resolve dependencies. In May
2018, Unity announced that packages are the future and they intend
to distribute many of their new features via packages.

113

CHAPTER 4 WORLD BUILDING

Virtual Cameras

Go to the Cinemachine menu and select Create 2D Camera. This should
create two objects: a Cinemachine Brain, attached to the main Camera,
and a Cinemachine Virtual Camera GameObject called “CM vcam1”.

What is a Virtual Camera? The Cinemachine documentation uses
a great analogy—a Virtual Camera can be thought of as a cameraman.
This cameraman controls the position and lens settings of the Main
Camera but is not actually a camera. A Virtual Camera can be thought of
as a lightweight controller that directs the Main Camera and tells it how
to move. We can set a target for the Virtual Camera to follow, move the
virtual camera along a path, blend from one path into another, and adjust
all types of parameters around these behaviors. Virtual cameras are a very
powerful tool to have in your Unity game development toolbox.

The Cinemachine Brain is the actual link between the Main Camera
and the Virtual Cameras in a Scene. The Cinemachine Brain monitors for
the currently active Virtual Camera, and then applies its state to the Main
Camera. Switching on and off Virtual Cameras during runtime allows the
Cinemachine Brain to blend together cameras for some pretty amazing
results.

Select the virtual camera and drag the PlayerObject into the property
called, “Follow” as seen in Figure 4-15.

114

CHAPTER 4 WORLD BUILDING

Figure 4-15. Set the Virtual Camera Follow target to the PlayerObject

This tells the Cinemachine Virtual Camera to follow and track the
Transform component of the Player GameObject as she moves across the
map.

Press play and watch the camera follow the player around. Pretty neat!
With Cinemachine, we get some pretty sophisticated camera behaviors out
of the box with just a few mouse clicks.To get a better idea of the hidden

115

CHAPTER 4 WORLD BUILDING

parameters governing camera movement, let’s hide the ground layer.
Select the Layer_Ground Tilemap object from the Project view. Uncheck
the box next to the Tilemap’s Tilemap Renderer component to deactivate
it. Now Unity won’t render the Layer_Ground Tilemap. Your Scene should
resemble Figure 4-16, with all the ground tiles hidden.

Figure 4-16. After unchecking the box to the left of “Tilemap
Renderer” to deactivate it

Now click on the Main Camera object in the Hierarchy view and press
the colored box that says Background. Change the background color to
white (Figure 4-17). This will make it easier to see the Cinemachine follow
frame in the next step.

116

CHAPTER 4 WORLD BUILDING

v & ¥ Camera &,
Clear Flags | Skybox :
Background | | ’
Culling Mask | Everything ¢]
Projection | Orthographic s)

Figure 4-17. Change the Camera background color to white

Last, select the virtual camera and ensure that the “Game Window
Guides” checkbox is checked. You'll see what Game Window Guides are in

the next step.

Press the play button again. Notice how there’s a white box in the
middle encircling the player, surrounded by a light blue colored area, and
ared area encompassing all of it (Figure 4-18). This white box is called
the “Dead Zone.” There’s a yellow point inside the Dead Zone called the
Tracking Point that will move directly with the player.

» ®» » BW
e

® ¥

S

Figure 4-18. The Dead Zone around the player contains a yellow
tracking point

117

CHAPTER 4 WORLD BUILDING

The Dead Zone surrounding the player is the area in which the
tracking point can move, and the camera won’t move to follow. When the
tracking point moves outside of the Dead Zone and into the blue area,
the camera will move and begin to track. Cinemachine will add a bit of
damping to the movement as well. If you're somehow able to move fast
enough to get the player into the red area, the camera will track the player
1:1 and follow every movement with no delay.

Make sure the Game view is visible and click on the edge of the white
box. Drag the white box out a bit, to resize the tracking area and make it
a bit bigger. Now the player can walk a little further without the camera
moving. You can play around with the size of these guides to get camera
behavior that feels natural in your game.

With the Cinemachine object still selected in the Hierarchy view, look
at the Cinemachine Virtual Camera component. You'll see an arrow to
expand the “Body” section. Inside the Body section, (Figure 4-19) there
are options to adjust the X and Y Damping for the virtual camera body.
Damping is how quickly the Virtual Camera Dead Zone will move to catch
up with the tracking point.

118

CHAPTER 4 WORLD BUILDING

v 4 ¥ Cinemachine Virtual Camera (Script) %,
Status: Live [Solo J
Game Window Guides (¥
Save During Play ™

Priority 10
Follow LA. PlayerObject (Transform) | (o]
Look At 'None (Transform) | ©
¥ Lens
Orthographic Size '3.75 [
Near Clip Plane 0.1 |
Far Clip Plane 15000 |
Dutch e @ |0—[
¥ | Body [Framing Transposer 4]
Lookahead Time (O |O—|
Lookahead Smooth O 10 |
X Damping L, [1—]
Y Damping =) Iﬁ
Z Damping =) IZI

Figure 4-19. The Damping properties from the Virtual Camera Body
properties section

The best way to understand Damping is to adjust the X and Y Damping
as you walk the player around the map. Press Play and experiment with the
Damping values.

If you walk the player to the edge of the map, you'll see the camera
moves with the target and things don't look too bad. But we can do better.

Stop play and select the Layer_Ground object in the Hierarchy view.
Check the box to the left of “Tilemap Renderer” to make the layer visible
again.

119

CHAPTER 4 WORLD BUILDING

Cinemachine Confiner

Now that we know how to make the camera track the player as they walk
around, we're going to learn how to prevent the camera from moving
when the player gets close to the edge of the screen. We’ll use a component
called a Cinemachine Confiner to confine the Camera to a certain area.
The Cinemachine Confiner will use a Collider 2D object, which we’ve
preconfigured to surround the area in which we want to constrain the camera.

Before we get into the implementation details, let’s visualize how
the Confiner will affect camera movement. Keep in mind that the virtual
camera is actually directing the active scene camera, telling it where to
move and at what speed.

In Figure 4-20, we have the player in a Scene, about to walk east.

Scene

; : Walk East

Player
Boundaries of { Camera w/ Confiner
Collider 2D ! (Visible Bounds) i

Figure 4-20. The player is about to walk east

120

CHAPTER 4 WORLD BUILDING

The area in white is the visible viewport of the currently active camera.
The area in gray is the rest of the map, outside of the camera’s viewport and
not currently visible. The perimeter of the area in gray is surrounded by a
Collider 2D.

As the player walks east, the virtual camera directs the camera to
move east and track the player as she walks through the scene, as seen in
Figure 4-21.

Walking East
Player

Boundaries of i Camera w/ Confiner :
Collider 2D i (Visible Bounds)

Figure 4-21. The player is walking east

The virtual camera movement will take into account player movement
speed, the size of the Dead Zone, and the amount of Damping applied to
the camera body.

The key thing to keep in mind is that we’ve encircled the perimeter of
the area in gray with a Polygon Collider 2D and set the bounding shape of
the Confiner to point to this Collider. When the Confiner edge hits the edge

121

CHAPTER 4 WORLD BUILDING

of that bounding shape, it will interact and tell the virtual camera to direct
the active camera to stop moving, as seen in Figure 4-22.

21O

Camera stopped
Player i at edge of screen

Boundaries of i Camera w/ Confiner
Collider 2D i (Visible Bounds)

Figure 4-22. The Confiner has hit the edge of the Polygon Collider 2D
and the camera has stopped moving

As you can see in the earlier figures, the Confiner edge has hit the edge
of the bounding shape which is the Collider 2D, surrounding the level. The
Virtual Camera has stopped moving, and the player continues to walk to
the edge of the map.

Let’s build a Cinemachine Confiner.

Select our Virtual Camera from the Hierarchy view. In the Inspector,
next to Add Extension, select CinemachineConfiner from the drop-
down menu. This will add a Cinemachine Confiner component to our
Cinemachine 2D Camera.

The CinemachineConfiner requires either a Composite Collider 2D,
or a Polygon Collider 2D to determine where the edges of the confinement
begin. Select the Layer_Ground object and add a Polygon Collider 2D via

122

CHAPTER 4 WORLD BUILDING

the Add Components button. Click the Edit Collider button on the collider
component and edit the collider so that it surrounds the edges of our
Layer_Ground level as seen in Figure 4-23.

Figure 4-23. Drag the corners of the Polygon Collider 2D to match
the outline of Layer_Ground

The arrows in Figure 4-23 are there to remind you to leave a little bit
of a space between the collider and the edge of the map. This is so the
camera will show a bit of water and won’t be confined strictly to the edge
of the land mass. Don’t forget to press the Edit Collider button again when
you're finished editing the collider. Check the “Is Trigger” property on
the collider component and then select our Cinemachine Camera again.
We want to use this Collider as a trigger because if we didn't, the player
would be forcefully pushed out of the collider when the player’s Collider
and Tilemap Collider interacted. This is because two objects with Colliders
can’t occupy the same place unless one of them is being used as a Trigger.

Select and drag the Layer_Ground object into the Bounding Shape 2D
field of the Cinemachine Confiner as seen in Figure 4-24.

123

CHAPTER 4 WORLD BUILDING

v 4@ Cinemachine Confiner (Script) &,

Confine Mode [Confine 2D 4]
Bounding Shape 2D & Layer_Ground (Poly ©
Confine Screen Edges [_|

Damping o———]

Figure 4-24. The Polygon Collider 2D from the Layer_Ground will be
used for the Bounding Shape 2D

The Confiner will take the Collider 2D from the Layer_Ground object and
use it as the Confiner’s bounding shape. Make sure to check the “Confine
Screen Edges” box to tell the Confiner to stop at the Polygon 2D edges.

Press the play button and walk toward the edge of the screen. If
everything is set up properly, you'll see the Virtual Camera’s Dead Zone
stop moving as soon as the camera reaches the edge where we placed the
Polygon Collider 2D earlier. The arrow in Figure 4-25 points to the edge of
the Polygon Collider 2D. As you can see, the player has walked far out of
the Dead Zone, and while the Tracking Point has continued moving with
the Player, the Camera has stopped.

Figure 4-25. The Dead Zone has stopped moving along with the player

124

CHAPTER 4 WORLD BUILDING

To review, the three steps to setting up a Cinemachine Confiner:

1. Add a CinemachineConfiner Extension to the
Virtual Camera.

2. Create a Polygon Collider 2D on a Tilemabp, edit its
shape to determine the confinement edges, and set
the “Is Trigger” property.

3. Use this Polygon Collider 2D as the Bounding Shape
2D field of the Cinemachine Confiner.

Forcing the camera to stop moving at the edge of the screen, while
allowing the player to continue walking, is a common effect that you've
probably seen in dozens of 2D games.

Note that using a Confiner won’t prevent the player from walking off
the map—just the camera from tracking them. We’ll set up some logic soon
to keep the player from walking off the map.

Stabilization

As you walk the player around the map, you may notice a slight jittering
effect. The jittering is especially pronounced when you stop walking and
the virtual camera damping slowly brings the tracking to a halt. This
jittering effect is due to overly precise camera coordinates. The camera is
tracking the player but it’s moving to subpixel positions, whereas the player
is only moving around from pixel to pixel. We made sure of that when we
did the calculations for the Orthographic Camera size earlier.

To fix this jittering, we want to force the final Cinemachine Virtual
Camera position to stay within pixel boundaries. We're going to script a
simple “extension” component that we’ll add to the Cinemachine Virtual
Camera. Our extension component will grab the last coordinates of the
Cinemachine Virtual Camera and round them to a value that lines up with
our PPU.

125

CHAPTER 4 WORLD BUILDING

Create a new C# Script called RoundCameraPos and open it up in
Visual Studio. Type in the following script and refer to the following
comments to better understand it. This is certainly one of the more
advanced scripts you'll be writing, but if having your game look good is
important to you, it pays to understand it.

using UnityEngine;

/11
using Cinemachine;

/12
public class RoundCameraPos : CinemachineExtension

{
/l3
public float PixelsPerUnit = 32;

/1 4

protected override void PostPipelineStageCallback(
CinemachineVirtualCameraBase vcam,
CinemachineCore.Stage stage, ref CameraState state,
float deltaTime)

/15
if (stage == CinemachineCore.Stage.Body)

{
/16

Vector3 pos = state.FinalPosition;

/17
Vector3 pos2 = new Vector3(Round(pos.x),
Round(pos.y), pos.z);

126

CHAPTER 4 WORLD BUILDING

/1 8
state.PositionCorrection += pos2 - pos;

}
/19
float Round(float x)

{

return Mathf.Round(x * PixelsPerUnit) / PixelsPerUnit;

And the explanation for the earlier code:

/11
using Cinemachine;

Import the Cinemachine framework to write an extension component
that we’ll attach to the Cinemachine Virtual Camera.

/12
public class RoundCameraPos : CinemachineExtension

Components that hook into Cinemachine’s processing pipeline must
inherit from CinemachineExtension

/13
public float PixelsPerUnit = 32;

The Pixels Per Unit, or PPU. As we discussed earlier when we talked
about the Camera, we're displaying 32 pixels in one world unit.

/1 4

protected override void PostPipelineStageCallback(Cinemachine
VirtualCameraBase vcam, CinemachineCore.Stage stage, ref
CameraState state, float deltaTime)

127

CHAPTER 4 WORLD BUILDING

This method is required by all classes that inherit from
CinemachineExtension. It’s called by Cinemachine after the Confiner is
done processing.

/15
if (stage == CinemachineCore.Stage.Body)

The Cinemachine Virtual Camera has a post-processing pipeline
consisting of several stages. We perform this check to see what stage of the
camera’s post-processing we're in. If we're in the “Body” stage then we're
permitted to set the Virtual Camera's position in space.

/] 6
Vector3 finalPos = state.FinalPosition;

Retrieve the Virtual Camera’s final position

/17
Vector3 newPos = new Vector3(Round(finalPos.x),
Round(finalPos.y), finalPos.z);

Call the Rounding method we wrote (following) to round the position,
and then create a new Vector with the results. This will be our new, pixel-
bounded position.

/] 8
state.PositionCorrection += newPos - finalPos;

Set the VC's new position to the difference between the old position
and the new rounded position that we just calculated.

/19

A method that rounds the input value. We use this method to make
sure the camera always stays on a pixel position.

128

CHAPTER 4 WORLD BUILDING

Materials

As you walk the player around the map, you may notice some lines or
“tears” between the tiles. That’s because they aren’t snapping precisely to
a pixel-perfect location. To fix this, we’ll use something called a Material to
tell Unity how we want our sprites rendered.

Create a new folder called, “Materials” then right-click and Create »
Material. Call this material, “Sprite2D.”

Set the properties on the material as follows:

Shader: Sprites/Default
Ensure Pixel Snap is checked.

The new Material properties should look like Figure 4-26.

@ Inspector =
Sprite2D %,
Shader | Sprites/Default v

Tine —
Pixel snap I
Render Queue [From Shader [|| 3000 ‘
Enable GPU Instancing OJ
Double Sided Global lllumination []

Figure 4-26. Configure the new material

We want the Renderer component in our GameObjects to use this
Material instead of the default Material.

Select our Layer_Ground Tilemap and change the material in the
Tilemap Renderer by clicking the dot next to the Material property. When
you've selected the Sprite2D material, the Renderer component should
look like Figure 4-27.

129

CHAPTER 4 WORLD BUILDING

v %5 (/ Tilemap Renderer 3,
Material @ Sprite2D | o
Sort Order | Bottom Left ¢
Sorting Layer | Ground o)
Order in Layer 0 |
Mask Interaction | None 3]

Figure 4-27. Use the Sprite2D Material in our Tilemap Renderer
component

Do this for all of our Tilemap layers, and then press the Play button and
the tears should have disappeared.

Colliders and Tilemaps
Tilemap Collider 2D

Now we’re going to solve the problem where the player can walk through
everything on the Tilemap. Remember how we added a Box Collider 2D
to our PlayerObject back in Chapter 3? There is a component specially
tailored for Tilemaps called a Tilemap Collider 2D. When a Tilemap
Collider 2D is added to a Tilemap, Unity will automatically detect and add
a Collider 2D to each sprite tile it detects on that Tilemap. We are going to
use these Tilemap colliders to determine when the PlayerObject collider
comes in contact with a tile collider and prevent the player from walking
through it.

Select Layer_Trees_and_Rocks from the Hierarchy view then press the
Add Component button in the Inspector. Search for and add a component
called “Tilemap Collider 2D”.

You'll notice that all the sprites on your Layers_Obijects Tilemap now
have a thin green line surrounding them, indicating a Collider component,
similar to Figure 4-28.

130

CHAPTER 4 WORLD BUILDING

Figure 4-28. The Tilemap Collider 2D added Colliders to the rocks,
as shown by the arrow

Note If you see a box surrounding every tile on the Tilemap,

then you had the wrong Tilemap (Layer_Ground) selected. This is

a common mistake. Remove the Tilemap Collider 2D Component

by clicking the gear icon in the top right of the Component in the
Inspector, then select Remove Component from the menu as seen in
Figure 4-29.

131

CHAPTER 4 WORLD BUILDING

v iii M Tilemap Collider 2D #*,
Material :

Is Trigger
Used By Effector

Reset

Remove Component

Used By Composite D Move Up
Offset Move Down
Copy Component
P Info

Paste Component As New

i Paste C 1ent Val
Sprites-Default aste Component Values

Figure 4-29. Removing the misplaced Tilemap Collider 2D Component

Now select the desired Tilemap: Layer_Trees_and_Rocks in the
Hierarchy view and add a Tilemap Collider 2D Component to it.

We've just added a Collider 2D to every tile sprite on Layer_Objects.
Take a look at Figure 4-30 and notice how the bushes around the garden
have seven separate colliders. The problem with this is that it’s pretty
inefficient for Unity to be keeping track of all these colliders.

Figure 4-30. Every sprite in the Layer_Trees_and_Rocks now has its
own Collider

132

CHAPTER 4 WORLD BUILDING

Composite Colliders

Fortunately, Unity comes with a tool called a Composite Collider that

will combine all of these separate colliders into one large collider,

which is more efficient. Keeping the Layer_Trees_and_Rocks Tilemap
Layer selected in the Hierarchy view, select Add Component and add a
Composite Collider 2D component to Layer_Trees_and_Rocks. You can
leave all the default settings as they are. Now check the box in the Tilemap
Collider 2D that says, “Used By Composite” and watch how all the separate
Colliders for the bushes are merged together like magic.

When we added a Composite Collider 2D to the Tilemap layer, Unity
automatically added a Rigidbody 2D component. Set this Rigidbody 2D
component Body Type to Static because it won’t be moving.

Before we press Play, let’s make sure that when the player collides
with something, she doesn’t rotate around, as seen in Figure 4-31.
Because the PlayerObject has a Dynamic Rigidbody 2D component, it is
subject to forces imposed by the physics engine when it interacts with
other colliders.

133

CHAPTER 4 WORLD BUILDING

Figure 4-31. This ridiculous-looking rotation is due to Rigidbody 2D
collisions

Select the PlayerObject and in the attached Rigidbody 2D component,
check the “Freeze Rotation Z” checkbox as seen in Figure 4-32.

134

CHAPTER 4 WORLD BUILDING

v~* Rigidbody 2D %,
Body Type [Dynamic :
Material \None (Physics Material 2D) i
Simulated 4
Use Auto Mass -
Mass (1
Linear Drag 0
Angular Drag 0.05
Gravity Scale 0
Collision Detection [Discrete ¢
Sleeping Mode [start Awake ¢]
Interpolate [None &l
¥ Constraints
Freeze Position | |X []Y
Freeze Rotation [fZ
P Info

Figure 4-32. Freeze the Z axis rotation to prevent the Player from
spinning

Press the Play button and walk the Player around the map. You'll
notice that she can no longer walk through shrubbery, rocks, or anything
you placed on the Layer_Trees_and_Rocks level. This is because the
collider that we added to the PlayerObject in Chapter 3 is colliding with the
Tilemap collider we added just a few moments ago.

You'll also notice that for some objects there is a noticeable gap
between where the Player has stopped and the object on the Tilemap. To
better view the bounds of each Collider, keep the game running and switch
to Scene view by selecting the Scene tab.

Zoom in to the Player using the scroll-wheel on your mouse or
touchpad. Pan around the scene if you need to by pressing Alt (PC)
or Option (Mac) then clicking and dragging the Tilemap. Select the
PlayerObject from the Hierarchy view to see its Box Collider. Then hold
down Control (PC) or Cmd / 38 (Mac) and select the Layer_Trees_and_
Rocks TileMap, without deselecting the PlayerObject.

135

CHAPTER 4 WORLD BUILDING

Both GameObjects should now be selected, and you should see a
collider around the Player and another collider around the tile in the
Tilemap. Depending on how you've painted your Tilemap, the exact Tiles
will differ, but as you can see in Figure 4-33, the collider boxes show up as
thin green lines for each object.

Figure 4-33. The gap between the Player and objects around her are
due to the collider boxes—the thin green box

The colliders for the rock and the player have collided, preventing
the player from moving any closer. Because the collider isn’t hugging the
rock very closely, there’s a noticeable gap between where the player has
stopped and the rock. We can fix this by editing the Physics Shape for each
type of sprite.

136

CHAPTER 4 WORLD BUILDING

Editing Physics Shapes

To edit the Physics Shape for sprites in a spritesheet, select the Outdoor
Objects spritesheet in the Project view and open the Sprite Editor in the
Inspector. Go to the Sprite Editor drop-down menu on the top-left and
select Edit Physics shape, as seen in Figure 4-34.

Sprite Editor
v Sprite Editor

Edit Outline
Edit Physics Shape

Figure 4-34. Select the Edit Physics Shape in the Sprite Editor

Select a sprite that you want to edit and press the update button next to
“Outline Tolerance” to see the physics shape outline around the sprite.

Drag the boxes to match the outline of your object however you wish
(Figure 4-35). There’s no need to get ultra-precise with the Physics Shape
unless your game mechanics really depend on it. You can create additional
points by clicking on the line itself and delete points by selecting a point
and hitting Control (PC) or Cmd / 38 (Mac) + delete.

Figure 4-35. Matching the Physics Shape to the sprite

137

CHAPTER 4 WORLD BUILDING

When you're satisfied with the Physics Shape, press the Apply button
and close the Sprite Editor. To use this new Physics Outline in the scene,
be sure the relevant Tilemap is selected and press the Reset button from
the gear icon drop-down menu on the Tilemap Collider 2D component,
as seen in Figure 4-36. This will force the Unity Editor to read the updated
Physics Shape information.

v iii @ Tilemap Collider 2D ,
Used By Compi '
Offset

X0 Remove Component

> Info Move Up
i — Move Down

¥ Rigidbo Copy Component
Body Type i
Material
Simulated > 4

Figure 4-36. Reset the Tilemap Collider 2D component to use the
new Physics Shape

Now press the play button and see how your new and improved
colliders are working out.

Tip Unity takes its best guess in terms of merging the colliders
when it makes a Composite Collider so it’s possible that if you left
gaps around sprites when you adjusted their Physics Outlines in the
Tile Editor, you won’t see all the tiles merged into one giant collider.
You can either adjust the Physics Outlines in the Tile Editor again

or leave it if there aren’t many gaps. Remember: if you adjust the
Physics Outlines for objects, you’ll need to reset the component each
time to get the updated Physics Outline.

138

CHAPTER 4 WORLD BUILDING

Because you're an expert on colliders now, you may also want to adjust
the Box Collider 2D on our player to be a bit smaller, as seen in Figure 4-37.

Figure 4-37. Adjust the collider size on our player for a better fit

Now that we're familiar with Tilemap Colliders, let’s use them to create
a boundary around the land mass in our map so that the player can’t walk
into the water. Your game might have different requirements—it’s possible
that you'll want the player to walk into the water for some reason. But what
follows is one of several different techniques to prevent the player from
walking into areas you don’t want them in.

Select your Layer_Ground and remove any tiles from the area that you
don’t want the player to walk into. In the sample map we've created, we’'ll
remove the water tiles because we don’t want the player walking into the
water. We're removing these tiles because we’re going to paint them onto
a different layer. Now create a new Tilemap layer called, “Layer_Water”.
Make sure to set the Sorting Layer on the new layer to Ground, just to stay
consistent.

139

CHAPTER 4 WORLD BUILDING

Make sure to select the newly created layer as your Active Tilemap in
the Tile Palette screen. Paint the area that you would like to keep the player
out of, such as the water, as seen in Figure 4-38. Note that in Figure 4-38,
we have the Focus On setting set to the Tilemap, so we can see only the
tiles from the currently selected Tilemap layer.

Figure 4-38. Turn Focus On to see the new Tilemap Layer clearer

We want to add a Tilemap Collider 2D and a Composite Collider
2D to the Layer_Water Tilemap. Adding the Composite Collider 2D will
automatically add a Rigidbody 2D component as well. Set the Rigidbody
2D Body Type to Static, because we don’t want the ocean tiles moving
anywhere when they collide with the player. Last, check the “Used by
Composite” box in the Tilemap Collider 2D to combine all the individual
tile colliders into one efficient collider.

Press the Play button and notice how the player can no longer walk
into the water. What we’ve done here with Colliders is really nothing new.
You've done this sort of thing earlier in this chapter when we worked with
Tilemap Colliders.

140

CHAPTER 4 WORLD BUILDING

Summary

In this chapter we’ve covered some core concepts in making 2D games
with Unity. We learned how to turn sprites into Tile Palettes and used them
to paint Tilemaps. We've used colliders to prevent the player from walking
through objects and how to tweak them for a better player experience.

We learned how to configure the Camera to achieve a balance between
scaling, art size, and resolution, which is very important in 2D pixel-art
style games. One of the most valuable tools we covered in this chapter
was Cinemachine—a powerful tool for automating camera movements. If
you're interested in learning more about Cinemachine, https://forum.
unity.comis a great place to ask questions and learn from the people who
created it! In Chapter 5, you're going to see all of what we've learned so far
come together and you'll start to feel as if you're really making a game.

141

https://forum.unity.com
https://forum.unity.com

CHAPTER 5

Assembling the Nuts
and Bolts

We've learned a lot so far about the tools Unity provides to build games,
and now we're going to start putting it all together. In this chapter, we’ll
build the C# class structure used for the Player, Enemies, and any other
characters that might pop up in a game. We'll also create a few prefabs
that the player can pick up, including coins and power-ups, and learn how
to specify which object collisions our game logic cares about and which

it doesn’t. We'll review an important Unity-specific tool called Scriptable
Objects, as well as cover techniques for leveraging them to build a clean,
scalable game architecture.

Character Class

In this section, we're going to lay the groundwork for the class structure
used for every character, enemy, or player in our game. There are certain
traits that every “living” character in our game will have, such as the
concept of health.

Health points or “hit-points” are used to measure how much damage
a character can take before dying. Hit-points is a carry-over term from the
old days of tabletop war gaming, but present-day games of every genre
typically have a concept of hit-points or health points.

© Jared Halpern 2019 143
J. Halpern, Developing 2D Games with Unity, https://doi.org/10.1007/978-1-4842-3772-4_5

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

In Figure 5-1, a screenshot from the game Castle Crashers, developed
by The Behemoth, demonstrates an example of how many games choose
to visually represent a characters remaining hit-points. This screenshot
shows a common technique: a red hit-point or health-bar, underneath
each character name on the top of the screen.

Figure 5-1. Hit-points are indicated as red bars of varying length on
top of the screen

For now, we're just going to keep track of hit-points, but eventually
we'll build our own health bar to visually represent our player’s remaining
health.

Create a new folder under Scripts called MonoBehaviours. Because
we'll be creating more MonoBehaviours, it makes sense to give them their
own folder. Move the MovementController script into this folder, because
it inherits from MonoBehaviour.

Inside the MonoBehaviours folder, create a new C# script called
Character. Double-click the Character script to open it in our Editor.

144

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

We're going to build a generic Character class from which our
Player and Enemy classes will inherit. This Character class will contain
functionality and properties common to all character types in our game.
Enter the following code and don’t forget to save when you're finished.
As usual, don’t type in the line comments.

using UnityEngine;

/11
public abstract class Character : MonoBehaviour {

/12
public int hitPoints;
public int maxHitPoints;

}
/11

We'll use the Abstract modifier in C# to indicate that this class cannot
be instantiated and must be inherited by a subclass.

/12

Track the characters current hitPoints as well as the maximum
number of hit-points. There is a limit to how “healthy” a character can get.
Make sure to save this script when you're finished.

Player Class

Next we're going to create the basic Player class. In our MonoBehaviours
folder, create a new C# script called Player. This Player class will start out
extremely simple, but we’ll add functionality to it as we go along.

145

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

Enter the following code. We've removed the Start() and Update()
functions.

using UnityEngine;

/11
public class Player : Character
{
// Empty, for now.
}
/11

All we want to do for now is inherit from the Character class to gain
properties like hitPoints.

Save the script then switch back to the Unity Editor.

Select the Player prefab. Drag and drop the Player script into the Player
object and set its properties as seen in Figure 5-2. Give the player 5 hit-
points and 10 maximum hit-points to start with.

v .. [Player (Script) a 3 o,
Script Player Q
Hit Points 5 |
Max Hit Points 10 |

Figure 5-2. Configure our Player script

We're starting the player with less than their max hit-points because
later in this chapter, we're going to build the functionality where the player
can pick up heart power-ups to increase their health.

146

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

Focus on Prefabs

Life isn’t all fun and games for our adventurer and even intrepid heroes
need to make a living somehow. Let’s create some coins in the scene for
her to pick up.

From the downloaded game assets folder for this book, select the
spritesheet titled, “hearts-and-coins32x32.png’, which totally sounds like
an 1980s glam-rock metal band, and drag it into the Assets » Sprites »
Obijects folder.

The Import Settings in the Inspector should be set to the following:

Texture Type: Sprite (2D and UI)
Sprite Mode: Multiple

Pixels Per Unit: 32

Filter Mode: Point (no filter)

Ensure the Default button is selected at the bottom
and set Compression to: None

Press the Apply button, and then open the Sprite Editor.
From the Slice menu, select Grid By Cell Size and set the Pixel Size to
width: 32, height: 32. Press Apply and close the Sprite Editor.

Create a Coin Prefab

In this section, we’re going to create the Coin prefab itself.

Create a new GameObject in the project view and rename it to
CoinObject. Select the four individual coin sprites from the sliced heart-
coin-fire spritesheet and drag them onto the CoinObject to create a new
animation. Follow the same steps from Chapter 3 when we created the
Player and Enemy animations. Rename the animation clip to “coin-spin”
and save it to the Animations » Animations folder. Rename the generated
Controller, “CoinController” and move it to the Controllers folder.

147

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

In the Sprite Renderer component, click the little dot next to the
“Sprite” form and select a Sprite to use when previewing this component
in the Scene view.

Create a new Sorting Layer by selecting the Sorting Layer drop-down
menu in the Sprite Renderer component, click “Add Sorting Layer’, then
add a new layer called, “Objects” between the Ground and Characters
layers.

Select the CoinObject again and set its Sorting Layer to: Objects.

To allow the player to pick up coins, we need to configure two aspects
of the CoinObject:

1. Some way to detect that the player has collided with
the coin

2. A custom Tag on the coin that says it can be picked up

Set Up the Circle Gollider 2D

Select the CoinObject again and add a Circle Collider 2D component to it.
A Circle Collider 2D is a type of primitive collider that we’ll use to detect
when a player runs into the coin. Set the Radius of the Circle Collider 2D
to: 0.17, so it’s approximately the same size as the Sprite.

The script logic we're about to write requires the player to move
through the coin to pick it up. To allow this, we’ll use the Circle Collider
2D a bit differently than we’ve used other Colliders. If we simply added a
Circle Collider 2D to the CoinObject, the player wouldn’t be able to walk
through it. We want the Circle Collider 2D on the CoinObject to act as a
sort of “trigger” and detect when another Collider interacts with it. We
don’t want the Circle Collider 2D to stop the other Collider from moving
through it.

To use the Circle Collider 2D as a trigger, we need to ensure the “Is
Trigger” property is checked as seen in Figure 5-3.

148

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

v @ [/ Circle Collider 2D o
Edit Collider
Material 'None (Physics Material 2D) o
Is Trigger
Used By Effector -
Offset X 0 lY|o |
Radius M i -
» Info

Figure 5-3. Check the Is Trigger box on the Circle Collider

Set Up a Custom Tag

We also want to add a Tag to the CoinObject that a script can use to detect
if another object can be picked up.

Let’s create a new tag from the Tags & Layers menu called,
“CanBePickedUp”:

1. Select the CoinObject from the Project view

2. On the top-left of the Inspector, select “Add Tag”
from the Tags menu.

3. Create the CanBePickedUp tag

4. Select the CoinObject again and set its Tag to:
CanBePickedUp

We're ready to create the prefab.

Create a prefab from the CoinObject by dragging it into the prefabs
folder. You can delete the CoinObject from the Project view after you've
created the prefab.

149

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

In summary, the steps to create an interactable prefab:
1. Create a GameObject and rename it.

2. Add sprites for the prefab animation. This will attach
a Sprite Renderer Component to the GameODbiject.

3. Setthe prefab’s Sprite property. This sprite will be
used to represent the prefab in the Scene.

4. Setthe Sorting Layer so the prefab is visible and
rendered in the correct order.

5. Add a Collider 2D component appropriate to the
shape of the sprite.

6. Depending on type of prefab you're creating, set: Is
Trigger on the Collider.

7. Create tag called CanBePickedUp and set tag of
object to CanBePickedUp.

8. Change the Layer if needed.
9. Drag GameObject to prefabs folder to use as prefab.

10. Delete the original GameObject from the Hierarchy
view.

Tip Drag and Drop a Coin prefab into the scene then select it.
Uncheck the Is Trigger box on the Coin prefabs for a second. Notice
how the text “Is Trigger” turns a bold blue. This is Unity’s way of
reminding us that this value has only been changed on this instance
of the prefab. If we want to save this setting for all instances of

the prefab, press the Apply button at the top-right of the Inspector.
Make sure to check Is Trigger when you’re done, so the coin prefab
behaves properly.

150

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

Layer-Based Collision Detection

We want to give the player in our RPG the ability to pick up coins by
walking into them. Our game will also have enemies walking around the
map, but we want the enemies to walk right through the coins without
picking them up.

As we discussed in Chapter 3, Layers are used to define collections of
GameODbijects. Collider components that are attached to GameObjects on
the same Layer will be aware of each other and can interact. We can create
logic based off of these interactions to do things such as pick up objects.

There’s also a technique to make Collider components on different
layers aware of each other. This approach uses a Unity feature called
Layer-Based Collision Detection.

We'll use this feature so that the player and coin colliders, despite
being on different layers, are aware of each other. We'll also configure
things so that the enemy colliders aren’t aware of the coins because they
can’t pick them up. If two colliders aren’t aware of each other, they won’t
interact. The enemy will walk right through the coins without picking
them up.

To see this feature in action, first we need to create and assign Layers to
the relevant GameObijects.

We learned how to create new Layers in Chapter 3, but if you need a
refresher:

1. Select the CoinObject in the Hierarchy

2. Inthe Inspector, select the Layer drop-down menu
3. Select: “Add Layer”

4. Create a new Layer called: “Consumables”

5. Create another Layer called: “Enemies”

151

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

The Consumables layer will be used for items such as coins, hearts,
and other objects that we want the player to consume. The Enemies layer
will be used for: you guessed it—enemies.

After creating the two new Layers, the Inspector should look like
Figure 5-4.

© Inspector | ille Palette g o
\} Tags & Layers - &

b Tags
b Sorting Layers
WV Layers

‘ Builtin Layer 0 Default
Builtin Layer 1 TransparentFX

Builtin Layer 2 Ignore Raycast

Builtin Layer 3

Builtin Layer 4 Water
Builtin Layer 5 Ul

Builtin Layer 6

Builtin Layer 7

User Layer 8 ‘Blocking]
User Layer 9 'Consumables |
User Layer 10 Enemies I

Figure 5-4. Add an Enemies Layer

Go to the Edit menu » Project Settings » Physics 2D. Look at the
Layer Collision Matrix on the bottom of the Physics2DSettings view.
This is where we'll configure the layers to allow the enemies to walk right
through coins, power-ups, and whatever else we choose.

152

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

By checking and unchecking boxes in the intersection of a column
and a row, we can configure which layers are aware of each other and will
interact. Colliders on objects from different layers can interact if the box at
the intersection of the two layers is checked.

We want to configure the player and coin objects so their colliders are
aware of each other. We want the enemy colliders to be unaware of the
coin colliders.

Uncheck the box at the intersection between Consumables and
Enemies so it resembles Figure 5-5. Objects in the Enemies layer will no
longer have an interaction triggered by colliding with an object on the
Consumables layer. The two different layers are now unaware of each
other. We haven’t scripted the enemies to walk around the level yet—that
comes later. But when we do, the enemies won’t be aware of the coins
because the two layers are not configured to interact.

¥ Layer Collision Matrix

a]qewnsuo:)
uppolg

=
1)
=
w
=]
o
-
1]
=
i

sag wauj
191BM
[&)1sedhey aioub)

mtns

Default (¥ (¥ ¥ (¢ (¥ [V (¢ [v
TransparentFX (v
Ignore Raycast [/ [+ A

<
«

Water [+ [+
ul v
Blocking v
Consumables [
Enemies

Figure 5-5. The Layer Collision Matrix allows us to configure layer
interactions

153

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

Select the CoinObject prefab and change its layer to be: Consumables.
While we're at it, select the EnemyObject prefab in the Prefabs folder and
change its layer to be: Enemies.

Now drag a CoinObject prefab somewhere onto the scene.

Press play and walk the character over to the coin. You'll notice that the
player can walk through the coin. The CoinObject is on the Consumables
layer, and the Player is on the Blocking layer. Because we left the box
for these layers checked in the Collision Matrix, the layers are aware of
each other when their respective objects collide. We're going to use this
awareness to script logic allowing the player to pick up coins.

Triggers and Scripting

As we touched on earlier, Colliders aren’t used only to detect that two
objects have run into one another. Colliders also can be used to define
arange around an object and to detect that another GameObject has
entered that range. When another GameObject is within range, scripted
behaviors can be triggered accordingly.

The “Is Trigger” property is used to detect when another
object has entered the range defined by the Collider. When the
player’s collider touches the coin’s circle collider, the method: void
OnTriggerEnter2D(Collider2D collision) is automatically called
on both objects attached to the colliders. We can use this method to
customize the behavior that should occur when two objects collide.
Because we're setting Is Trigger, the colliders do not prevent the player
from walking through the coin any more.

Open the Player.cs script and add the following method toward the
bottom.

// 1
void OnTriggerEnter2D(Collider2D collision)

{

154

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

/12
if (collision.gameObject.CompareTag("CanBePickedUp"))
{
/13
collision.gameObject.SetActive(false);
}
}

Let’s go through this method implementation.
/11

OnTriggerEnter2D() is called whenever this object overlaps with a
trigger collider.

// 2

Use the collision to retrieve the gameObject that the player has
collided with. Examine the tag of the collided gameObject. If that tag is
“CanBePickedUp” then continue execution inside the if-statement.

/13

We know that the other GameODbject can be picked up, so we'll create
the impression that the object has been picked up and hide it in the scene.
We're not actually scripting the functionality to pick the object up yet—that
comes later.

Press Save in Visual Studio, then go back to the Unity Editor and press
play. Walk the player over to the coin in your scene and watch as the coin
disappears when the player touches it.

To summarize, when the player collides with the coin, the Colliders
detect the interaction, the script logic determines if this object can be
picked up, and if so, we set the coin to be inactive. Pretty neat!

155

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

Tip Make sure to press Save whenever you make changes to a
script, or the changes won’t be compiled in the Unity Editor and won’t
be reflected in your game. It’s very common to make a quick change
then flip back to Unity and wonder why you don’t see anything
different happening.

Scriptable Objects

Scriptable Objects are an important concept to learn for any Unity game

developer looking to build a clean game architecture. Scriptable Objects

can be thought of reusable data containers that are defined via C# script,

generated via the Asset menu, and saved in a Unity project as Assets.
There are two primary use cases for Scriptable Objects:

e Reducing memory usage by storing a reference to a
single instance of the Scriptable Object asset. This is
done instead of making a copy of all the values of each
object every time you use it and thereby increasing the
memory usage.

o Predefined pluggable data sets.

To explain the first use case, let’s think about a contrived example:

Imagine that we created a prefab with a string property containing
the entire text of this book. Each time we created another instance of that
prefab, we would also create a new copy of the entire text of this book.
As you can imagine, this approach would start to use up memory in your
game rather quickly.

If we used a Scriptable Object inside that prefab to hold the entire text
of this book, then each time we created a new instance of the prefab, it
would in turn reference the same exact copy of this book text. We could

156

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

spawn as many copies of the prefab as we’d like, and the memory used by
the book text would remain the same.

Regarding the first use case, an important item to remember when
using Scriptable Objects is that each time we reference a Scriptable
Object asset, we are referring to the same Scriptable Object in memory.

A consequence of this approach is that if we change any data in this
Scriptable Object reference, we would change the data in the Scriptable
Object asset itself, and those changes would remain when we stopped
running our game. If we wanted to change any values on the Scriptable
Object asset during runtime without permanently changing the original
data, then we should make a copy of it in memory first.

Unity developers also frequently use Scriptable Objects in their game
architecture to define pluggable data sets. Data sets can be defined to
describe items that a player may find in a store or inventory system.
Scriptable Objects also can be used to define properties such as attack and
defense levels in a digital version of a card game.

Scriptable Objects inherit from the ScriptableObject class, (which in
turn inherits from Object), not MonoBehaviour, so we don’t have access
to the Start() and Update() methods. These methods wouldn't really
make sense to use anyway because Scriptable Objects are used to store
data. Because Scriptable Objects don’t inherit from MonoBehaviour, they
can’t be attached to GameODbjects. Instead of attaching to GameObjects,
a common way to use Scriptable Objects is to create a reference to them
from inside Unity scripts that do inherit from MonoBehaviour.

Creating a Scriptable Object

We're going to create a Scriptable Object called “Item” to hold data about
objects that the player can consume or pick up. We'll reference this
Scriptable Object in a script that derives from MonoBehaviour and attach
that script to the Item'’s prefab. When a player collides with the prefab, we’ll
grab a reference to the Scriptable Object and give the impression that the

157

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

item has been picked up by deactivating it. Eventually we will add these
objects to an Inventory we’ll build.

Create a folder in the Scripts directory called, “Scriptable Objects”.
Then right-click and create a new script called Item.

Type the following into Item.cs, and don’t forget to save when you're
done. As usual, we’ll explain what the code does in detail.

using UnityEngine;
/11

[CreateAssetMenu(menuName = "Item")]

/12
public class Item : ScriptableObject {

/13
public string objectName;

/1 4
public Sprite sprite;

/15
public int quantity;

/1 6
public bool stackable;

/17
public enum ItemType

{
COIN,

HEALTH

158

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

// 8
public ItemType itemType;

Let’s go through the Item script:
/11

CreateAssetMenu creates an entry in the Create submenu, as seen in
Figure 5-6. This allows us to easily create instances of the Item Scriptable
Object.

Folder

C# Script

Shader B
Testing
Playables [
Assembly Definition
TextMeshPro >

v

Scene
Prefab

Anidia Mivar

Figure 5-6. Instantiate instances of Item from the Create Submenu

These Scriptable Object instances are actually stored in the project as
separate asset files and their properties can be modified on the object itself
via the Inspector.

159

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS
/12

Inherit from ScriptableObject, not Monobehaviour.
/13

The field: objectName, can serve a few different purposes. It will certainly
come in handy for debugging, and perhaps your game will display the name

of an Item in a storefront, or another game character will mention it.
/1 4
Store a reference to the Item’s Sprite, so we can display it in the game.
/15
Keep track of the quantity of this specific Item.
/] 6

Stackable is a term used to describe how multiple copies of identical
items can be stored in the same place and can be interacted with by the
player at the same time. Coins are an example of a Stackable item. We
set the Boolean Stackable property to indicate if an item is Stackable.

If an item is not Stackable, then multiple copies of that item cannot be
interacted with simultaneously.

/17

Define an enum used to indicate the type of an item. Although
objectName may be displayed to the player at points within the game,
properties of ItemType will never be shown to the player and will only be
used by game logic to internally identify the object. Continuing with our
Coin item example, your game may have different types of coins, but they
will all be classified as the ItemType: Coin.

7

Create a property called itemType using the ItemType enum.

160

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

Build the Consumable Script

Scriptable Objects don’t inherit from MonoBehaviour so they can’t be
attached to GameObjects. We're going to write a small script that inherits
from MonoBehaviour with a property holding a reference to Item. Because
this script will inherit from MonoBehaviour, it can be attached to a
GameObject. In the MonoBehaviours folder, right-click and create a new
C# script called, “Consumable”.

using UnityEngine;

/11
public class Consumable : MonoBehaviour {

/72
public Item item;

}
/11

Inherit from MonoBehaviour so we can attach this script to a
GameObiject.

// 2

When the Consumable script is added to a GameObject, we’ll assign
an Item to the item property. This will store a reference to the Scriptable
Object asset in the Consumable script. Because we've declared it public,
it’s still accessible from other scripts.

As mentioned earlier, if we change any data in this Scriptable Object
reference, we would change the data in the Scriptable Object asset itself,
and those changes would remain when we stopped running our game. If
we wanted to change any values on the Scriptable Object during runtime
without changing the original data, then we should make a copy of it first.

Save the Consumable script and switch back to the Unity Editor.

161

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

Assembling Our Item

Select the CoinObject prefab and drag the Consumable script onto it. We
need to set the Consumable Item property seen in Figure 5-7 to an Item
Scriptable Object. We're going to create an Item Scriptable Object to attach.

v o [¥ Consumable (Script) o %
Script .. Consumable o
Consumable Item None (Item))

Figure 5-7. Consumable Item is of type Item, which is a Scriptable Object

In the Scriptable Objects folder, right-click and Select Create » Item, at
the very top of the Asset menu to create an Item Scriptable Object. If you'd
prefer to use the menu bar at the top of the Unity Editor, you can select
Assets » Create » Item.

Rename the Scriptable Object, “Item”. Ensure the Item Scriptable
Object is selected, and then examine the Unity Inspector. Change the
settings for the Item to Figure 5-8. Name the object, “coin’; check off
Stackable and select COIN from the Item Type drop down.

© Inspector

Coin

Script . Item | @
Object Name ‘coin]
Sprite =_hearts-and-coins32x32_4 @ ©
Quantity 0 |
Stackable ¥4
Item Type [COIN m

Figure 5-8. Set the properties of the Coin Item

162

CHAPTER S5 ASSEMBLING THE NUTS AND BOLTS

Set the sprite property to the sprite named: “hearts-and-coins32x32_4,
as seen in Figures 5-8 and 5-9. This sprite is a clear representation of the
Item and will be used when we want to show the Item in a static context,
such as in an inventory toolbar. This is different from how we’ve been
displaying animated sprites when they appear in a Scene.

Figure 5-9. Select a sprite to represent the Coin Item

Go back to the Consumable script in the Coin prefab, and set
Consumable Item to our Coin Item, as seen in Figure 5-10.

Figure 5-10. Set Consumable Item to our new Coin Item

163

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

Player Collisions

Our Player class already has logic for detecting a collision with a Coin
prefab, but now we want to grab a reference to the Scriptable object, so
we can hide it when the player runs into it. This will serve as the effect of
adding the Coin to the player's inventory.

Inside the Player class, in the OnTriggerEnter2D method, change the
existing if-statement we wrote earlier, to resemble the following:

if (collision.gameObject.CompareTag("CanBePickedUp"))
{

/11

// Note: This should all be on a single line
Item hitObject = collision.gameObject.
GetComponent<Consumable>().item;

/l 2
if (hitObject != null)
{
/13
print("it: " + hitObject.objectName);
collision.gameObject.SetActive(false);
}
}

There’s a lot going on here, so we'll cover it piece by piece. Overall, our
goal is to retrieve a reference to the Item (a Scriptable Object) inside the
Consumable class and assign it to hitObject.

// 1

First we grab a reference to the gameObject attached to the collision.
Remember that every collision will have a GameObject that it collided

164

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

with attached to the collision. At this point in our game, the gameObject
will be a coin, but later on it might be any type of GameObject with the tag,
“CanBePickedUp”

We call GetComponent () on the gameObject and pass in the Script
name, “Consumable” to retrieve the attached Consumable script component.
We attached the Consumable script earlier. Finally we retrieve the property
called item from the Consumable component and assign it to hitObject.

/12

Check to see if the hitObject is null. If the hitObject is not null, then
we’ve managed to successfully retrieve the hitObject. If the hitObject is
null, do nothing. Safety checks like this help to avoid bugs down the road.

/13

To ensure that we've retrieved the item, print out the objectName
property, which we set earlier in the Inspector.

Save the script and switch back to the Unity Editor. Press the play button
and walk the player into a coin. You should see the text in Figure 5-11 print
out in the console.

Figure 5-11. The collision with the coin has been properly detected

Creating a Heart Power-Up

Now that we know how to create Scriptable Objects, let’s create another
object that the player can pick up: a heart power-up. Use the sprites that
we sliced earlier from the “hearts-and-coins32x32.png” sprite-sheet.

165

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

Let’s review the steps to create a prefab.

1.

10.

11.

166

Create a GameObject and rename it to
“HeartObject”.

Add sprites for the prefab animation. Use the sprites
titled: “hearts-and-coins32x32” ending in 0, 1, 2, and
3. Name the newly created animation, “heart-spin”
and save it to the Animations » Animations folder.

Create a prefab out of the HeartObject by dragging
it into the prefabs folder, then deleting the original
object out of the Hierarchy.

Select the Heart prefab in the folder and set the
prefab’s Sprite property. This property is used when
previewing in the Scene.

On the Sprite Renderer component, set the Sorting
Layer to Objects so the prefab is visible.

Add a Collider 2D component. We can use a Circle
Collider, Box, or Polygon 2D, but for the heart
shaped sprite, a Polygon 2D will work best. Edit the
collider shape if needed.

Depending on type of prefab you're creating, set: Is
Trigger on the Collider.

Set the Tag on the GameObject. We'll use:
CanBePickedUp, for this prefab.

Change Layer to, “Consumables.”
Drag GameObiject to prefabs folder to use as prefab.

Delete the original GameObject from the Hierarchy

view.

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

Tip If you select multiple sprites for an animation at the same time,
you can preview them in the Inspector. We’ve selected all four heart
sprites at the same time in Figure 5-12.

4 Sprites

hearts-and-coins32x32_0 hearts-and-coins32x32_1

hearts-and-coins32x32_2 hearts-and-coins32x32_3

Previewing 4 of 4 Objects

Figure 5-12. Preview multiple sprites at a time in the Inspector

167

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

Click and drag a heart prefab somewhere onto the scene (Figure 5-13).

Figure 5-13. A heart prefab, waiting to be picked up

We're going to set up the Heart prefab so that it contains a reference
to a Scriptable Object the same way the Coin prefab does. Add the
Consumable script to the Heart prefab by selecting the prefab, then
pressing the “Add Component” button and typing, “Consumable”.

Now we need to create a new instance of the Item Scriptable Object.
This new instance will be its own asset, to be stored in the Project view,
along with all the other assets in our project.

Open the Scriptable Objects folder in the Project view. Right-click, then
select Create » Item, and then rename the created Item, “Heart” Select the
Heart Item and change the settings to what we have in Figure 5-14.

168

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

© Inspector o=
Heart - 8
Script Item | ®
Object Name ‘heart |
Sprite = hearts-and-coins32x32.0 | ©
Quantity 1 |
Stackable (]

Item Type [HEALTH ™

Figure 5-14. Settings for the Heart Scriptable Object

We've named the new Heart Item, “heart’, given it a sprite that we'll
use when displaying in the inventory later on, and set its quantity to 1. This
value will be used to increment the player’s hit-points when the player
picks up the heart. We're also setting the Item Type to HEALTH. Don’t click
Stackable, because hearts won't be stored in the player’s inventory and will
instead be immediately consumed.

Because we have the Consumable Script on the Heart prefab, we can
press the circle next to the Consumable Item property and add our new
Heart Item, as seen in Figure 5-15.

v . [¥ Consumable (Script))-8
Script Consumable (o]
Consumable Item [Heart (item))

Figure 5-15. Assign the Heart Item to the Consumable Item property

That'’s it! If you press play and walk the player into the heart prefab on
screen, you should see the text in Figure 5-16 print out in the console.

169

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

Figure 5-16. Logging confirmation that the player ran into the heart
prefab

We want to increment the player’s hitPoints every time she picks up a
heart. Switch back to Visual Studio and open up the Player class.

Change the OnTriggerEnter2D() method to the following. Some of this
code has been discussed earlier in this chapter, so we won’t cover it again.

void OnTriggerEnter2D(Collider2D collision)

{
if (collision.gameObject.CompareTag("CanBePickedUp"))

{

Item hitObject = collision.gameObject.
GetComponent<Consumable>().item;

if (hitObject != null)

{

print("Hit: " + hitObject.objectName);
/11

switch (hitObject.itemType)

{
/1 2

case Item.ItemType.COIN:
break;

/13

case Item.ItemType.HEALTH:

170

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

AdjustHitPoints(hitObject.quantity);

break;
default:
break;
}
collision.gameObject.SetActive(false);
}
}
}
/1 4
public void AdjustHitPoints(int amount)
{
/15
hitPoints = hitPoints + amount;
print("Adjusted hitpoints by: " + amount + ". New
value: " + hitPoints);
}

Let’s go through this code.
/71

Use a switch statement to pattern match the hitObject property:
itemType, with the ItemType enum defined in the Item class. This allows
us script specific behaviors when colliding with each ItemType.

/12

In the case where the hitObject is of type COIN, don’t do anything just
yet. We're going to learn how to pick up coins when we build an Inventory.

/13

171

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

In the case where the player runs into an item of type HEALTH, call
the method AdjustHitPoints(int amount) that we're about to write. This
method takes a parameter of type int, which we’ll get from the hitObject
property quantity.

/1 4

This method will adjust the player’s hit-points by the amount in
the parameter. There are two main advantages in putting the hit-point
adjustment logic into a separate function, rather than placing the logic
inside the switch statement.

The first advantage is clarity. Clear code is easier to read and
understand, and thus tends to be less buggy. We want to keep the intention
and organization of our code as clear as possible at all times.

The second advantage is that by putting the logic into a function, we
can easily invoke it from other places. In theory there may be situations
when a player’s hit-points are adjusted by things other than running into a
HEALTH Item.

/15

Add the amount parameter to the existing hit-point count, and then
assign the result to hitPoints. This method also can be used to decrement
hitPoints by passing in a negative number for the amount parameter. We’ll
use this when the Player takes damage.

Save the Player script and switch back to the Unity Editor.

Press Play and make the Player run into the Heart prefab. You should
see the message in Figure 5-17 output in the console.

172

CHAPTER 5 ASSEMBLING THE NUTS AND BOLTS

Figure 5-17. Adjust the Player’s hitPoints

Summary

In this chapter, we've started to assemble the various Unity elements into
working game mechanics. We've built the foundational C# scripts that

will be used for all character types in our game, as well as created several
types of prefabs that the player can interact with. Collision detection is

a fundamental aspect of game development, and we’ve learned about

the tools the Unity Engine provides to detect and customize collision
detection. We've also learned about Scriptable Objects, which are reusable
data containers that make our game architecture cleaner.

173

CHAPTER 6

Health and Inventory

This chapter is a big one. We'll tie everything we’ve learned so far together
to build a health bar to track the players’ hit-points. Besides leveraging
Game Obijects, Scriptable Objects, and Prefabs, we'll learn about some new
Unity component types, such as the Canvas and UI Elements.

No RPG would be complete without an inventory system, so we'll
build one, along with an on-screen inventory bar that will display all the
objects the player is holding. This will be an intense chapter, with lots of
scripting and prefabs, but by the end of it you'll feel much more confident
in building out your own game components.

Creating a Health Bar

As we discussed in the Character Class section of Chapter 5, many video
games have the concept of character hit-points and a health bar to track
health. We're going build a health bar to track the health levels of our
intrepid player.

Canvas Objects

Our health bar will use something called a Canvas as the main Game
Object. What is a Canvas? A Canvas is specific type of Unity Object
responsible for rendering user-interface, or “Ul” Elements in a Unity
Scene. Every Ul Element in a Unity scene needs to be the child object of a

© Jared Halpern 2019 175
J. Halpern, Developing 2D Games with Unity, https://doi.org/10.1007/978-1-4842-3772-4_6

CHAPTER6 HEALTH AND INVENTORY

Canvas object. A scene may have multiple Canvas objects, and if a Canvas
does not exist when a new UI Element is created, then one will be created
and the new UI Element will be added as a child of that Canvas.

Ul Elements

Ul Elements are game objects that encapsulate specific, commonly needed
user-interface functionality such as buttons, sliders, labels, a scroll bar, or
input field. Unity allows developers to build out custom user-interfaces
quickly by offering premade UI Elements instead of requiring that the
developer create them from scratch.

One thing to note about UI Elements is that they use a Rect Transform
instead of a regular Transform component. Rect Transforms are identical
to regular Transforms except that in addition to position, rotation, and
scale, they also have width and height. Width and Height are used to
specify the dimensions of the rectangle.

Building the Health Bar

Right-click anywhere in the Hierarchy view and select UI » Canvas. This
creates two objects automatically: a Canvas and an EventSystem. Rename
the Canvas object, “HealthBarObject”.

The EventSystem is a way for the user to interact directly with Objects
using the Mouse or other input devices. We don’t need it at the moment, so
you can delete it.

Select the HealthBarObject and look for the Canvas component. Be
sure that Render Mode is set to Screen Space Overlay and check the box
that says Pixel Perfect.

Setting Render Mode to Screen Space Overlay ensures that Unity
renders Ul Elements on top of the scene. If the screen is resized, the
Canvas containing the UI Elements will automatically resize itself. The

Canvas component sets its own Rect Transform settings and cannot be

176

CHAPTER6 HEALTH AND INVENTORY

changed. If you need a UI Element to be smaller, you resize the element
itself, not the Canvas.

Now that we've created a Canvas object, let’'s make sure that all the
UI Elements, such as the health bar we're building, always have the same
relative size on the screen.

Select the HealthBarObject and look for the Canvas Scaler component.
Set the UI Scale Mode to: Scale With Screen Size, as seen in Figure 6-1 and
set the Reference Pixels Per Unit to 32.

v || ¥ canvas Scaler (Script) o &
Ul Scale Mode | Scale With Screen Size t)
Reference Resolution X 800 'Y 600 |
Screen Match Mode [Match Width Or Height al
Match O IO

Width Height !

Reference Pixels Per Unit 32 |
Figure 6-1. Setting Ul Scale Mode

This ensures that the Canvas size scales appropriately with the screen
size.

It’s time to import the sprites that we’ll use for the Health Bar. Create a
new subfolder in the Sprites folder called, “Health Bar” We'll put all of our
Health Bar related sprites in this folder. Now drag the spritesheet called,
“HealthBar.png” into the folder we just created.

Select the HealthBar spritesheet and use the following import settings
in the Inspector:

Texture Type: Sprite (2D and UI)
Sprite Mode: Multiple

Pixels Per Unit: 32

177

CHAPTER6 HEALTH AND INVENTORY

Filter Mode: Point (no filter)

Ensure the Default button is selected at the bottom
and set Compression to: None

Press the Apply button, and then open the Sprite Editor.

From the Slice menu, be sure that “Type” is set to: Automatic. We're
going to let the Unity Editor detect the boundaries of these sprites.

Press Apply to slice the sprites, and then close the Sprite Editor.

Next we're going to add an Image object, which is a UI Element, to the
HealthBarObject. Select the HealthBarObject, right-click, and go to UI »
Image object to create an Image.

This Image object will act as the background Image for our HealthBar.
Rename the object, “Background”. Click on the dot next to Source Image
and select the sliced image titled, “HealthBar_4" As you can see in
Figure 6-2, the image will initially look square.

Figure 6-2. The Background image before adjusting the size

With the Background object selected, change the Rect Transform
Width to: 250 and Height to: 50.

Press “W” to use the Toolbar shortcut for the Move tool. Using the
handles, move the Background object to the top-right corner of the Canvas
as seen in Figure 6-3.

178

CHAPTER6 HEALTH AND INVENTORY

m| ©Inspector | Tile Palette i
L o |Background] Static ¥
Tag | Untagged 4| Layer |0 s
¥ Rect Transform 3o
center Pos X Pos Y Pos Z
, . 266.7 189.1 o
3 ‘ﬂﬂ’ Width Height
L 250 50
* Anchors
Pivor x[05 |y[os
Rotation X0 Y0 zZ0
Scale X1 Jx1 lz1
¥ 5 Canvas Renderer Q 30,
Cull Transparent Mesh [
¥ "y & Image (Script) ["EEY
Source Image _- HealthBar_3.]
Calor | .4
Material None (Material) =]
Raycast Target w
Image Type | Simale s]
Preserve Aspect]
5et Native Sie |

Figure 6-3. After resizing and moving the health bar

Anchors

You may have noticed the star-like symbol in the center of Figure 6-2 and
in Figure 6-4. This symbol is made up of four small triangular handles
representative of a property specific to UI Elements called the Anchor
Points.

Figure 6-4. The Anchor Points for the selected Ul Element

179

CHAPTER6 HEALTH AND INVENTORY

As designated by the blue lines in Figure 6-5, each diamond in the
Anchor Points corresponds to a corner of the Rect Transform of the UI
Element. The top-left Anchor Point diamond corresponds to the top-left
corner of the UI Element, and so forth.

Figure 6-5. The four Anchor Points correspond to the four corners of
the Ul Element

Each corner of a UI Element will always be rendered with the same
distance relative to its respective Anchor Point. This ensures that Ul
Elements are always in the same location, scene to scene. The ability to set
a consistent distance between Anchor Points and UI Elements becomes
especially helpful when the size of the Canvas scales along with the size of
the screen.

By adjusting the location of the Anchor Points, we can be sure that
the health bar always appears in the top-right corner of the screen. We’ll
position the Anchor Points to show a small margin between the screen
edges and the health bar, irrespective of how big the screen is.

180

CHAPTER 6 HEALTH AND INVENTORY

Adjusting the Anchor Points

Select the Background object. In the Rect Transform component, press on
the Anchor Presets icon highlighted in Figure 6-6.

Figure 6-6. The Anchor Presets button

Pressing on the icon should give you a menu of Anchor Presets, as seen
in Figure 6-7. By default, the middle-center is selected. This explains why
the Background object’s Anchors appear in the middle of the Canvas.

181

CHAPTER6 HEALTH AND INVENTORY

Figure 6-7. The default Anchor Presets are: middle-center

We want to anchor the Health Bar relative to the top-right corner of the
screen at all times. Select the Anchor Preset setting in the column titled,
“right” and the row titled, “top” You'll see a white box surrounding the
selected Anchor Preset, as seen in Figure 6-8.

182

CHAPTER 6 HEALTH AND INVENTORY

Figure 6-8. Select top-right Anchor Presets

Press the Anchor Preset icon to close it and notice how the Anchor
Points have now moved to the top-right corner of the Canvas (Figure 6-9).

183

CHAPTER6 HEALTH AND INVENTORY

Figure 6-9. Anchor Presets are now in the top-right of the Canvas

We've left a little bit of space between the health bar and the corner
of the Canvas, and the Anchor Points are all collected in the top-right.
Regardless of how much we scale the screen size, the health bar will always
be situated in that exact spot.

Tip The Anchor Points will not appear if the Rect Transform
component is collapsed in the Inspector. If you don’t see Anchor
Points when a Ul Element is selected, make sure to click the little
arrow to the left of “Rect Transform” to expand the component if it’s
collapsed.

Ul Image Masks

Right-click on the Background object and create another Image object.
Because we're creating this Image object while selecting the Background
object, it will be created as a “child” object. It’s the same type of object as
the Background Image object, but we'll be using it a bit differently. The
child Image object will act as a mask. This mask works a bit differently than
a mask you might wear on Halloween. In fact, it works exactly the opposite
of a Halloween mask. Instead of hiding what’s underneath it, this mask will

184

CHAPTER6 HEALTH AND INVENTORY

only show portions of any underlying child images that fit the shape of the
mask. The underlying image in this case will be the health meter and will
be added as a child object.

Select the Image object and rename it, “BarMask”. Set the Source
Image to: HealthBar_3. It should look like Figure 6-10.

Figure 6-10. After setting the Source Image for the HealthBar Mask

As you can see in Figure 6-10, child objects that are UI Elements also
have Anchor Points, but these Anchor Points are relative to their parent
object. The Anchor Points of the BarMask are centered by default with
respect to the Background object.

With the BarMask object selected, resize the Rect Transform to Width:
240 and Height: 30. We want to make the BarMask a bit smaller than the
health bar dimensions to show a margin around the actual health meter.

Press “W” to use the Toolbar shortcut for the Move tool. Move the
BarMask into position as seen in Figure 6-11. If you prefer to enter the
location manually on the Rect Transform, you can set Pos X: 0, Pos Y: 6.

185

CHAPTER6 HEALTH AND INVENTORY

Figure 6-11. Move the BarMask into position

With the BarMask object still selected, click the Add Component button
in the Inspector and add a “Mask” component, as seen in Figure 6-12.

(Q mask @)

Search

20 Rect Mask 2D
[} sprite Mask
New script 5

Add Component

Figure 6-12. Add a Mask component to the BarMask object
186

CHAPTER6 HEALTH AND INVENTORY

This is the component that will do the actual masking. Any child object
of a parent containing a Mask will be masked automatically.

Right-click on BarMask and add a child UI Element of type: Image.
This is the same process we followed earlier when we created the BarMask.
Call this child Image Object: “Meter”. Set its Source Image to: HealthBar_0
as seen in Figure 6-13 and change the Width to: 240 and Height to: 30.

Figure 6-13. Set the dimensions for the Meter Image object

Because Meter is the same size as BarMask and was created as a child
object, you won't have to reposition it.

The spritesheet images included with the assets for this book include
several alternate meter images. We're using the solid green meter in this
example, but feel free to choose your favorite.

Select the Meter object and on the Image component, change the
Image Type to: Filled. Then change the Fill Method to: Horizontal, and the
Fill Origin to: Left. These settings will ensure that the health bar fills from
the left to the right, horizontally.

With the Meter object selected, slide the Fill Amount slider to the left
slowly. As seen in Figure 6-14, you should see the meter slowly shrink in
size, indicating that the player is losing hit-points.

187

CHAPTER6 HEALTH AND INVENTORY

¥ " o Image (Seripy) ("EXY
Source Image HealthBar 0 (-]
Color —-— 17
Material None (Material) o
Raycast Target]
Image Type Fiicd
Fill Method Yeor rontal

Fill Origin Left
Fill Amount
Preserve Aspect

[
0.686

et Natw Side

Figure 6-14. Move the Fill Amount to the left to simulate that the
Player is losing hit-points

We will write code to update the Meter’s Fill Amount programmatically

to indicate the remaining number of hit-points.

Tip It's important to understand how Ul Elements are rendered.
The order in which objects appear in the Hierarchy view is the order
in which they’ll be rendered. The top-most objects in the Hierarchy
will be rendered first and the bottom last, resulting in the top-most
objects appearing in the background.

Importing Custom Fonts

It’s very likely that you'll want to use custom fonts in your project. Luckily,
it’s very simple to import and use custom fonts in Unity. This project
includes a freely available custom font with a retro style called Silkscreen.
Silkscreen is a typeface created by Jason Kottke.

Right-click on the Assets folder in the Project view and create a new
folder called, “Fonts”.

188

CHAPTER6 HEALTH AND INVENTORY

Open the directory on your local computer where you saved the Assets
files for this chapter and look in the Fonts folder. Locate the .zip file titled,
“silkscreen.zip” and double-click it to unzip it. Unzipping it will have
created another folder called, “silkscreen” and inside that folder, you'll see
afile called, “slkscr.ttf”.

Drag and drop that font file, “slkscr.ttf”} into the Fonts folder in your
Unity project to import it. Unity will detect the file type and make the font
available in any relevant Unity components.

Adding Hit-Points Text

Right-click on the Background object and select from the menu: UI » Text,
to add a Text UI Element as a child of the Background. Rename the object
to, “HPText”. This Text object will show the number of remaining hit-points.
On the Rect Transform component of HPText, set the Width to: 70, and
Height to: 16. On the Text component of HPText, change the Font Size to
16, and the Color to white. Change the Font to “slkscr’, which is the custom
silkscreen font we just imported. Set the Paragraph Horizontal and Vertical
Alignment to left and center, respectively, as seen in Figure 6-15.

189

CHAPTER6 HEALTH AND INVENTORY

¥ T ¥ Text (Script) 3o,
Text

F*: 100

Character
Font |l slkscr | e
Font Style [Normal +]
Font Size 16
Line Spacing 1
Rich Text 4
Paragraph

Alignment =sHElE =M

Figure 6-15. Configuring the Text component

The health bar image has a little tray on the bottom that provides a
backdrop and improves the visibility of the text. Move the HPText object
onto the tray so that it resembles Figure 6-16.

Figure 6-16. Move the HPText object into the tray

Change the HPText Anchor Points to be bottom-left, as seen in
Figure 6-17.

190

CHAPTER 6 HEALTH AND INVENTORY

Figure 6-17. Set the HPText Anchor Points to bottom-left

We want to make sure the HPText remains the same distance from the
left and bottom of its parent object.

Drag the HealthBarObject into the prefabs folder to create a prefab and
rename the prefab: HealthBarObject. Do not delete the HealthBarObject
from the Hierarchy view—we’ll be working with it later.

Eventually we're going to create a reference to the HealthBarObject
prefab inside the Player object, so that the Player script can easily find it.
But first we have to build the Health Bar Script.

191

CHAPTER6 HEALTH AND INVENTORY

Scripting the Health Bar

The Player class inherits the property: hitPoints, from the Character class.
Right now, hitPoints is just a regular type: integer. We're going to leverage
the power of Scriptable Objects to share hit-points data between the health
bar and the player class.

The plan is to create an instance of this HitPoints Scriptable Object
and save the asset to the ScriptableObjects folder. We’ll add a HitPoints
property to the Player class and create a separate HealthBar script
containing a HitPoints property as well. Because both scripts contain a
reference to the same Scriptable Object asset: HitPoints, the hit-points
data will be shared between both of these scripts automatically.

Aswe build this functionality, keep in mind that we are making changes to
sections of the code that will temporarily break things and cause the game not
to compile. This is normal—think of it as taking apart a car engine to upgrade
a part, then putting the engine back together again. The engine won’t run
while disassembled, but once it’s put back together, it'll run better than before.

In the Scriptable Objects folder, right-click and create a new script
called, HitPoints, and update it to use the following code.

Scriptable Object: HitPoints

using UnityEngine;

/11
[CreateAssetMenu(menuName = "HitPoints")]
public class HitPoints : ScriptableObject

{

/1 2
public float value;

}
/11

192

CHAPTER6 HEALTH AND INVENTORY

We used the same technique in Chapter 5. CreateAssetMenu creates an
entry in the Create submenu, which allows us to easily create instances of
the HitPoints Scriptable Object. These instances are saved as assets in the
Unity Project.

/] 2

Use a float to hold the hit-points. We’ll need to assign a float to the
Image object property: Fill Amount, in the Meter object of our health bar,
so it makes our lives a bit easier to start with a float.

Update the Character Script

We need to make a small change to the Character script to utilize the
HitPoints script that we just created. In the Character script, change the line:

public int hitPoints;
To:
public HitPoints hitPoints;

We've changed the type from: int, to our newly created Scriptable
Object: HitPoints.
And change the type of maxHitPoints from int to float:

public float maxHitPoints;

Because we're using a Tloat inside the HitPoints object to store the
current value, we've changed maxHitPoints in the Character script to
float as well.

Add the following additional property:

public float startingHitPoints;

We'll use this property to set the number of hit-points a character
starts with.

193

CHAPTER6 HEALTH AND INVENTORY

Update the Player Script

Add the following two properties anywhere above the Start() method.

/11
public HealthBar healthBarPrefab;

/12
HealthBar healthBar;

/71

Used to store a reference to the HealthBar prefab. We'll use this
reference as a parameter to Instantiate() we instantiate a copy of the
HealthBar prefab.

/12

Used to store a reference to the instantiated HealthBar.
Inside the existing Start () method, add the following lines:

/71
hitPoints.value = startingHitPoints;

/12
healthBar = Instantiate(healthBarPrefab);

/11

The Start() method will only be called once—when the script is
enabled. We want to start the player off with startingHitPoints, so we
assign it to the current hitPoints.value.

// 2

Instantiate a copy of the Health Bar prefab and store a reference to it in
memory.

194

CHAPTER6 HEALTH AND INVENTORY

There’s one important thing that we didn’t do when we scripted the
logic to pick up hearts and increment a player’s hit-points. The player’s
current hit-points should never exceed their maximum allowable hit-
points. We’ll add that logic now.

Change the OnTriggerEnter2D() method to:

void OnTriggerEnter2D(Collider2D collision)

{
if (collision.gameObject.CompareTag("CanBePickedUp"))
{
Item hitObject = collision.gameObject.
GetComponent<Consumable>().item;
if (hitObject != null)
{
/11
bool shouldDisappear = false;
switch (hitObject.itemType)
{
case Item.ItemType.COIN:
/12
shouldDisappear = true;
break;
case Item.ItemType.HEALTH:
/13
shouldDisappear =
AdjustHitPoints(hitObject.quantity);
break;
default:
break;
}
/1 4

195

CHAPTER6 HEALTH AND INVENTORY

if (shouldDisappear)

{
collision.gameObject.SetActive(false);
}
}
}
}
/15
public bool AdjustHitPoints(int amount)
{
/1 6
if (hitPoints.value < maxHitPoints)
{
/17
hitPoints.value = hitPoints.value + amount;
/1 8
print("Adjusted HP by: " + amount + ". New value: " +
hitPoints.value);
/79
return true;
}
// 10
return false;
}
/11
This value will be set to indicate that the object in the collision should
disappear.
/12

196

CHAPTER6 HEALTH AND INVENTORY

Any coins the player collides with should disappear by default, to give
the illusion that they've been picked up and added to a player’s inventory.
We'll be creating a player inventory in the next section so this line will

suffice for now.
// 3

We're about to add additional logic to “cap” the hit-point quantity
at: maximumHitPoints—a property that the Player class inherits from
Character class. The AdjustHitPoints() method, referred to in the
following, will return true if the hit-points were adjusted, and false if they
were not.

Although a player’s health bar is full, AdjustHitPoints () will return
false and any hearts that they’'ve run into won’t be “picked up” and will

remain active in the Scene.
// 4

If AdjustHitPoints() returned true, then the prefab object should
disappear. The way that we’ve designed this logic, any new items that we
add to the switch statement in the future can also set the shouldDisappear
value to make the object disappear.

/15

The AdjustHitPoints() method will return type: bool, indicating if
hitPoints was successfully adjusted.

/] 6

Check if the current hit-points are less than the maximum allowed hit-
points.

/17

Adjust the player’s current hitPoints by amount. This approach will
also allow for negative adjustments.

197

CHAPTER 6 HEALTH AND INVENTORY
/18

Print out a method to help in debugging. This is optional.
/19

Return true to indicate that the hit-points were adjusted.
// 10

Return false to indicate that the player’s hit-points were not adjusted.

Create the HealthBar Script

Right-click in the MonoBehaviours folder HealthBar:script, creation and
create a new C# called HealthBar. Use the following code to create the
health bar script.

using UnityEngine;
/11
using UnityEngine.UI;

public class HealthBar : MonoBehaviour

{

/12
public HitPoints hitPoints;

/13
[HideInInspector]
public Player character;

/1 4
public Image meterImage;

198

CHAPTER6 HEALTH AND INVENTORY

/15
public Text hpText;

/] 6
float maxHitPoints;

void Start()

{
/17
maxHitPoints = character.maxHitPoints;
}
void Update()
{
/1 8
if (character != null)
{
/79
meterImage.fillAmount = hitPoints.value /
maxHitPoints;
// 10
hpText.text = "HP:" + (meterImage.fillAmount * 100);
}
}
}
/11
Importing the UnityEngine.UI namespace is required to work with Ul
Elements.
/12

199

CHAPTER6 HEALTH AND INVENTORY

A reference to the same HitPoints asset (a Scriptable Object) that the
player prefab refers to. This data container allows us to share data between
the two objects automatically.

/13

We'll need a reference to the current Player object to retrieve the
maxHitPoints. This reference will be set programmatically instead of via
the Unity Editor, so it makes sense to hide it in the Inspector to eliminate
confusion.

We use [HideInInspector] to hide this public property in the
Inspector. The brackets syntax for [HideInInspector] indicates that it’s an
Attribute. Attributes allow additional behaviors to methods and variables.

/1 4

We created this property for convenience and simplicity, so that we
don’t have to search through various child objects to find the Meter Image
object. We'll set this in the Unity Editor by dragging and dropping the
Meter object into this property, once the HealthBar script is attached.

/15

This is another property created for convenience and simplicity. We’ll
set this in the Unity Editor by dragging and dropping the HPText object
into this field.

/1 6

Because the maximum number of hit-points won’t be changing in our

current game design, we'll cache it in a local variable.

/17

200

CHAPTER6 HEALTH AND INVENTORY

Retrieve and store the maximum hit-points for the Character.
/18

Check to make sure the reference to character is not null before we try
to do anything with it.

/79

The Fill Amount property of the Image requires that the value be
between 0 and 1. We convert the current hit-points into a percentage by
dividing the current hit-points by the maximum hit-points, and then assign
the result to the Meter’s Fill Amount property.

// 10

Modify the HPText Text property to show the hit-points remaining as a
whole number. Multiply the fillAmount by 100 (e.g., .40 = HP: 40, or .80 =
HP: 80).

Tip As you're building out the architecture for your game, think
about whether a public variable needs to be visible in the Unity Editor,
or if it will be set programmatically. If it will be set programmatically,
use the [HideInInspector] attribute to save yourself some
confusion down the road when you inspect a prefab and can’t recall if
a property needs to be set.

There’s one last bit we need to add. Go back to the Player script and
inside the existing Start() method, add the following line:

healthBar.character = this;

201

CHAPTER6 HEALTH AND INVENTORY

This line sets the Player character property inside healthBar
to the instantiated Player. We've saved this for last so that you can see
the connection between the code we just added to HealthBar and the
Player script. The HealthBar script uses this player object to retrieve the
maxHitPoints property.

Configure the Health Bar Component

Switch back to the Unity Editor and select the HealthBarObject from
the Prefabs folder in the Project view. Add the Health Bar script to the
HealthBar object.

The properties we've just created should be blank, as shown in
Figure 6-18.

¥ ¢ ¥ Health Bar (Script) O 3%
Script HealthBar o
Hit Points ‘None (Hit Points) | ©
Meter Image None (Image) | o
Hp Text ‘None (Text) G

Figure 6-18. Health Bar script before setting the properties

In the Scriptable Objects folder, right-click and use the menu option
we created: Create » HitPoints to create a new instance of the HitPoints
object. Rename it: “HitPoints’, as shown in Figure 6-19. This HitPoints
object is an actual asset, saved in the project folder.

202

CHAPTER6 HEALTH AND INVENTORY

Assets » Scripts » ScriptableObjects »

Coin

Heart Asset
HitPoints/

& HitPoints

ce Item

Figure 6-19. Creating a HitPoints asset from a Scriptable Object

With the HealthBarObject selected, drag the HitPoints object onto the
Hit Points property, as shown in Figure 6-20.

v - |¥/ Health Bar (Script) - 8
Script HealthBar (o]
Hit Points | HitPoints (HitPoints) e
Meter Image [None (Image) (o]
Hp Text 'None (Text) C

Figure 6-20. Drag the HitPoints object to the property

Asyou can see, the HitPoints property is now bold. As we discussed
earlier, this is the Unity Editor’s way of reminding us that we’ve only changed
this specific instance of a prefab. If we want to apply the change to all
instances of the prefab, we must press the Apply button on the upper right of
the Inspector. Keep in mind that there may be circumstances in the future,
in which you wouldn’t want to apply a change to every existing prefab.

We're about to set the properties we created in the Health Bar script,
which was added to HealthBarObject. The properties such as HitPoints
hitPoints and Text hpText in the script will actually be set to reference
some of the child objects of HealthBarObject.

Select the HealthBarObject and click the little dots next to each of the
properties in the Health Bar script. Select the appropriate value for each
property, as seen in Figure 6-21. When you're done, press the Apply button
in the Inspector.

203

CHAPTER6 HEALTH AND INVENTORY

v ¢ ¥ Health Bar (Script) b« 8
Script HealthBar (o]
Hit Points "& HitPoints (HitPoints))
Meter Image "4 Meter (Image) | o
Hp Text | 7 HPText (Text) o

Figure 6-21. Set the Meter Image and Hp Text using the respective
objects on the health bar

Select the PlayerObject prefab in the Prefabs folder. Drag the HitPoints
Scriptable Object that we created into the Hit Points property on the Player
script. Remember that we're using this same HitPoints object in the Health
Bar object. Hit-points data is being shared between two separate objects
like magic.

Set the properties in the Player script as follows: Starting Hit Points to
6, Max Hit Points to 10, and drag the HealthBarObject to set the Health Bar
Prefab property as shown in Figure 6-22.

v o [¥ Player (Script) =0
Script Player (o]
Hit Points @ Hitpoints (HitPoints)]o
Starting Hit Points 6 |
Max Hit Points 10 |
Character Category [PLAYER s
Health Bar Prefab .. HealthBarObject (HealthBar) | o

Figure 6-22. Setting the Health Bar Prefab property to the
HealthBarObject prefab

Let’s summarize what we’ve just built.

o When the player collides with a heart,
AdjustHitPoints() increments the value inside the
HitPoints object.

204

CHAPTER 6 HEALTH AND INVENTORY

o The HealthBar script also has a property called
hitPoints that references the same HitPoints object
as the Player. HealthBar inherits from MonoBehaviour,
which means it calls the Update () method with every
frame.

e Inthe Update() method of the HealthBar script, we
check the current value inside HitPoints and set the
Fill Amount on the Meter Image. This adjusts the visual
appearance of the health meter.

It's time to test out the Health Bar. Make sure you've saved all of
the Unity Scripts, and press apply on the HealthBarObject to apply the
changes. Delete the HealthBarObject to delete it from the Hierarchy.

Press Play and walk the player around to pick up hearts. The health bar
should add up 10 points each time the player picks up a heart, as seen in
Figure 6-23.

Figure 6-23. The health bar will add points every time the player
collects a heart

205

CHAPTER6 HEALTH AND INVENTORY

Congratulations! You've built a health bar!

Tip If you need to work with an object in the Hierarchy or Project
view but want to keep a different object visible in the Inspector,

click the lock icon as seen in Figure 6-24 to keep the original object
visible. Locking an object makes it a bit easier to work when you
need to drag and set other objects as properties. To unlock the object,
simply press the lock icon again.

© Inspector il P & .=
@ HealthBarObject () Static ¥

Tag | Untagged ¢ | Layer [ul :)
Prefab | Select | Revert | Apply J

Figure 6-24. Use the lock button to keep the object open in the
Inspector

Inventory

Many video games have the concept of an inventory—a place to store
things that the player picks up. In this section, we're going to create an
Inventory Bar containing several Item Slots to hold items. A script will be
attached to the Inventory Bar that will manage the players’ inventory as
well as the appearance of the Inventory Bar itself. We'll turn the Inventory
Bar into a prefab and store a reference to it in the Player object, just as we
did with the Health Bar.

Right-click anywhere in the Hierarchy view and select UI » Canvas;
this will create two objects: a Canvas and an EventSystem. Rename the
Canvas object, “InventoryObject” and delete the EventSystem.

206

CHAPTER6 HEALTH AND INVENTORY

With InventoryObject selected, check: Pixel Perfect in the Canvas
component, and set the UI Scale Mode property to: Scale with Screen Size,
just as we did earlier for the Health Bar.

Right-click InventoryObject again and select Create Empty.

This will create an empty UI Element. Rename the empty Element:
“InventoryBackground”.

Tip If you can’t see the object you’re working with, double-click
it in the Hierarchy view to center it in the Scene. Double-click the
InventoryBackground object to center it.

Be sure InventoryBackground is selected and press the Add
Component button. Search for and add the Horizontal Layout Group, as
seen in Figure 6-25.

Add Component
(2, horizontal| @)
Search
New script »

Figure 6-25. Add a Horizontal Layout Group

The Horizontal Layout Group component will automatically arrange
for all of its subviews to be placed alongside each other horizontally.

With InventoryObject selected, create an empty GameObject child and
rename it: “Slot”.

A Slot object will display a single Item, or a quantity of “Stackable”
Items. When our game is running, we’re going to programmatically
instantiate five copies of the Slot prefab.

207

CHAPTER6 HEALTH AND INVENTORY

Each Slot parent object will contain four child objects: a background
Image, a tray Image, an item Image, and a Text object.

Select the Slot object and set its Width and Height in the Rect
Transform component to 80 and 80 as seen in Figure 6-26.

Slot | Qstatic~
Tag [Untagged + | Layer | Ul t]
Prefab | Select [Revert | Apply |
¥ Rect Transform a8,
center Pos X Pos Y Pos Z
) -354 | 186 0 |
3| HH Width Height
I B |80]
» Anchors
Pivot x[0.5 |v[o5 |
Rotation X0 |Y |0 |z o |
Scale X 0.625 Y 0.625 | Z 0.625 |

Figure 6-26. Set the Slot element dimensions to 80 x 80

The Pos X and Pos Y of your Slot element will probably differ
from Figure 6-26 and that’s fine because we’ll be instantiating these
programmatically anyway.

Right-click the Slot object and select UI » Image to create an Image
child object. Rename the child object: “Background”. Right-click the Slot
object and create another Image named: “ItemImage”. Background and
ItemImage should both be children of Slot.

Now we are going to add a little “tray” in which we’ll place the
Stackable items quantity text. Select the Background object and create
an Image child object. Rename the Image object: “Tray” Right-click on
Tray and select UI » Text to create a Text child object, rename this object:
“QtyText”.

When you're done, the Slot structure should look like Figure 6-27.

208

CHAPTER6 HEALTH AND INVENTORY

¥ InventoryObject
InventoryBackground
W Slot
V¥ Background
Vv Tray
QtyText
Itemimage

Figure 6-27. Setting up the Tray and QtyText children

It's important that all of these objects are in the correct order in the
Hierarchy. Ordering them as we see Figure 6-27 will ensure that the
background renders first, and the ItemImage, Tray, and QtyText render
on top of it. If you've accidentally created an object with the wrong parent
object, just click and drag it onto the correct parent.

Import the Inventory Slot Image

Create a new folder under Sprites called, “Inventory”. In the local directory
where you downloaded the assets for this chapter, select the spritesheet
called, “InventorySlot.png” from the Spritesheets folder. Drag it into the
Sprites/Inventory folder in the Project view.

Select the InventorySlot spritesheet and use the following import
settings in the Inspector:

Texture Type: Sprite (2D and UI)
Sprite Mode: Multiple

Pixels Per Unit: 32

Filter Mode: Point (no filter)

Ensure the Default button is selected at the bottom
and set Compression to: None

Press the Apply button, and then open the Sprite Editor.

209

CHAPTER6 HEALTH AND INVENTORY

From the Slice menu, be sure that “Type” is set to: Automatic. We'll let
the Unity Editor detect the boundaries of these sprites.
Press Apply to slice the sprites and close the Sprite Editor.

Configure the Inventory Slot

The Inventory Slot consists of a few different items, each with their own
configuration. Once configured, we’ll turn the Inventory Slot into its own
prefab and detach it from the main InventoryObject.

Configure the ltemimage

Select the ItemImage object in the Slot. In the Rect Transform component,
change the Width and Height to 80.

Disable the Image by checking the box in the upper-left of the
component in the Inspector. We're going to enable it once we place an
image in the slot. The Image component of ItemImage should resemble
Figure 6-28.

v %4 [JI1mage (Script) a3 o,
Source Image |None (Sprite) | @
Color [| 2
Material ‘None (Material) I
Raycast Target 4

Figure 6-28. Disable the Image component of ItemImage

We disable the image because if no source image is provided to an
Image component, the Image component will default to the default color.
We don’t want to show a giant empty white box, so instead we disable the
Image component until we have a Source Image to show.

210

CHAPTER 6 HEALTH AND INVENTORY

Configure the Background

Select the Background object and ensure the Image component settings
are set up as seen in Figure 6-29. Use “InventorySlot_0" as the Source
Image and make sure Image Type is set to Simple.

Figure 6-29. Configure the Slot’s Background

Set the Width and Height of the Background'’s Rect Transform
component to 80 and 80, as seen in Figure 6-30.

Figure 6-30. Setting the Width and Height of the Background

211

CHAPTER6 HEALTH AND INVENTORY

Configure the Tray

Select the Tray object and change its Width and Height to 48 x 32. Set
the Image component’s Source Image to: “InventorySlot_1" as seen in

Figure 6-31.
v %, ¥ Image (Script) ol -8
Source Image |_=.InventorySlot_1]
Color Vi
Material None (Material) o
Raycast Target v
Image Type [simple]
Preserve Aspect J

| Set Native Size

Figure 6-31. Setting the Tray image

Because the Tray was added as a child object of Background, it was
automatically set to a Pos X and Pos Y of 0 and 0, as seen in Figure 6-32.

.= | ©®Inspector | Tile Palette 2=
- L v=
¥ Tray [_] Static *
Tag Untagged : Layer | ul
Prefab | Select | Revert] Apply
Rect Transform @ =
center Pos X Pos Y Pos Z

0 0 0
Eﬂ Width Height

Anchors

Pivot X 0.5 Y 0.5

Rotation X0 'Y 0 Z0
Scale X1 1¥ (1 Z|1

Figure 6-32. Default placement of the Tray

212

CHAPTER6 HEALTH AND INVENTORY

Set the Tray’s Anchor Points to bottom-right, then change the Pos X and
Pos Y to 0 and 0 again. This should result in the Tray’s center being moved
to the bottom-right corner of its parent object, as seen in Figure 6-33.

© Inspector | Tile Palette S
o Tray (] Static =
Tag | Untagged ¢ | Layer | Ul ¢
Prefab Select | Revert | Apply |
v Rect Transform @ = o
__ right Pos X Pos Y Pos Z
g 0 0 0
g] Width Height
s | 48 32 R
» Anchors
Pivot X 0.5 Y 0.5
Rotation X0 YO0 Zo
Scale X|1 a1l Z(1

Figure 6-33. Anchor Points set to bottom-right, and Pos X, Y to: 0, 0

Configure QtyText—the Quantity Text

Text objects are used to display noninteractable text to the user. They're
helpful for displaying text in-game, debugging, and designing custom
GUI controls. The Text object in our Inventory will be used to display the
quantity of Stackable Items, such as coins, in a Slot.

Select the Text component and change its Width to 25 and Height to
20. In the Text (Script) component, change the text to “00” We're changing
the text to 00 to help us see the location of the text. Set the font to “slkscr”
(our custom Silkscreen font) and leave the Font Style as Normal. Change
the Font Size to 16, the color to White, and the alignment to what we see in
Figure 6-34.

213

CHAPTER6 HEALTH AND INVENTORY

v 7 |& Text (Script) Q=%

Text

00

Character
Font slkscr @
Font Style | Normal s
Font Size 16
Line Spacing 1
Rich Text 4

Paragraph

Alignment iE—E—§| |E=E
Align By Geometry [|
Horizontal Overflov| Wrap B +]

Vertical Overflow | Truncate £.]
Best Fit]
Color | | #
Material None (Material) [0}
Raycast Target ¥4

Figure 6-34. Configuring the Text component inside the Text object

Because the QtyText object is a child of Tray, we’ll leave the Anchor
Points at their default: middle-center. There’s no need to move them.

Once you're satisfied with the placement of the Text, disable the Text
component by unchecking the box in the top-left of the Text component
on the Text object. We're disabling the Text because we don’t want to show
a quantity until we have multiple stackable items occupying the same Slot.
We'll enable the component programmatically.

Create the Prefabs

Now that all the child elements are in place, we're going to make a prefab
out of just the Slot. We’ll programmatically instantiate copies of this prefab
and use them to populate the Inventory Bar.

Select the highlighted item: Slot, as seen in Figure 6-35 and drag that
into the prefabs folder to create a Slot prefab. Make sure you don’t select
the entire InventoryObject—we just want to create a prefab out of the Slot.
We’ll come back and use this prefab in just a little while.

214

CHAPTER6 HEALTH AND INVENTORY

¥ InventoryObject
InventoryBackground

¥ Background
¥ Tray

QtyText
Itemimage

Figure 6-35. Select and drag Slot into the prefabs folder to create a
prefab

Once you've created a prefab out of the Slot, delete the Slot
from the Hierarchy view, so that only the InventoryObject and
InventoryBackground remain. It should resemble Figure 6-36.

¥ InventoryObject
InventoryBackground

Figure 6-36. After creating a Slot prefab and removing the Slot from
its parent

Last but not least, click and drag the InventoryObject into the prefabs
folder to create a prefab, and then delete it from the Hierarchy.

Build the Slot Script

We're going to build a simple script to hold a reference to the Text object
inside the Slot. This script will be attached to each Slot object.

Select the Slot prefab in the Project view and add a new script to it
called: “Slot” Use the following code in the script:

using UnityEngine;
using UnityEngine.UI;

215

CHAPTER6 HEALTH AND INVENTORY

// 1
public class Slot : MonoBehaviour {

/12
public Text qtyText;

}
/11

Inherit from MonoBehaviour so that we can attach this script to the
Slot object.

// 2

A reference to the Text object inside the Slot. We'll set this in the Unity
Editor.

Save this script and switch back to the Unity Editor. We want to set
the Qty Text property that we just created on the Slot script. The problem
is, if we select the Slot prefab in the Project view, we can only see the
Background and ItemImage children, as seen in Figure 6-37.

Assets » Prefabs
. CoinObject
"y EnemyObject
» " HealthBarObject
./ HeartObject
» ¢ InventoryObject
"/ PlayerObject
V¥ W Slot
"y Background
Wy Itemimage

Figure 6-37. We cannot see the Tray or QtyText child objects when
selected in the Project view

216

CHAPTER6 HEALTH AND INVENTORY

This limitation was deliberately put in place by the Unity designers to
discourage a developer from making references to objects deep inside the
nested parent-child hierarchy.

To see all of the child objects of a prefab in the Unity Editor, we need
to temporarily instantiate a copy. Drag the Slot prefab onto the Hierarchy
view or into the Scene to create an instance of the Slot temporarily.

If we select the newly instantiated copy in the Project view, we can see
all of the Slot’s child objects once again as seen in Figure 6-38.

V¥ Slot
¥ Background
¥ Tray

QtyText
IltemIimage

Figure 6-38. View of all of the Slot prefabs children

You won’t be able to actually view the Slot prefab in the Scene because
it’s not the child of a Canvas object at the moment. That’s okay—all we
need right now is to be able to access the QtyText object

Set the Qty Text property on the Slot script by clicking the little dot next
to it, as seen in Figure 6-39.

¥ o« Slot (Script) = &
Script Slot ©
Qty Text |7 QtyText (Text) | o

Figure 6-39. Setting the Qty Text property of the Slot script

Having a reference to the QtyText object in the script makes it much
easier to find later without having to keep track of indexes. Referencing an
object by a specific index is also a somewhat fragile way of doing things. If
the order was to change, or an additional component was added, the index
would change and the script would no longer work properly.

217

CHAPTER6 HEALTH AND INVENTORY

Press the Apply button in the top-right corner of the Inspector to apply
the changes to the Slot prefab, then delete the prefab from the Hierarchy view.

Create the Inventory Script

The next step is to write a script to manage the player’s inventory, as well
as the appearance of the Inventory Bar. This script will be attached to
the InventoryObject. The Inventory script is going to be more complex
than any of the classes we’'ve worked on so far but think of this as an
opportunity to learn a lot and practice your scripting skills.

We'll also create a script to hold a reference to the QtyText and attach
that script to the Slot prefab.

In the Project view, in the MonoBehaviours folder, create a new subfolder
called, “Inventory”. Inside the Inventory folder, right-click and create a new
C# Script called, “Inventory” Double-click to open in Visual Studio.

Replace the default code inside Inventory with the following.

Set-Up Properties
First, we want to set up the properties for the Inventory class.

using UnityEngine;
using UnityEngine.UI;

public class Inventory : MonoBehaviour

{
/11

public GameObject slotPrefab;
/12

public const int numSlots = 5;
/13

Image[] itemImages = new Image[numSlots];

218

CHAPTER6 HEALTH AND INVENTORY

/1 4
Item[] items = new Item[numSlots];

/15
GameObject[] slots = new GameObject[numSlots];

public void Start()

{
// Empty for now
}
}

/71

Store a reference to the Slot prefab, which we’ll attach in the Unity
Editor. Our Inventory script will instantiate multiple copies of this prefab to
use as the Inventory Slots.

/12

The Inventory Bar will contain five slots. We use the const keyword
because we should not dynamically modify this number at runtime
because several instance variables in the script rely on it.

/13

Instantiate an array called itemImages of size numSlots (5). This
array will hold Image components. Each Image component has a Sprite
property. When the player adds an Item to their Inventory, we set this
Sprite property to the Sprite referenced in the Iltem. The Sprite will be
displayed in the Slot in the Inventory Bar. Remember that Items in our
game are really just Scriptable Objects, or data containers, bundling
together information.

219

CHAPTER6 HEALTH AND INVENTORY

/1 4

The items array will hold references to the actual Item, of type
Scriptable Objects, that the player has picked up.

/75

Each index in the slots array will reference a single Slot prefab. These
Slot prefabs were dynamically instantiated at runtime. We'll use these
references to find the Text object inside a Slot.

Instantiate the Slot Prefabs

Add the following method to the Inventory class. This method is
responsible for dynamically creating the Slot objects from the prefab.

public void CreateSlots()

{
/11
if (slotPrefab != null)
{
/12
for (int i = 0; i < numSlots; i++)
{
/13
GameObject newSlot = Instantiate(slotPrefab);
newSlot.name = "ItemSlot " + 1i;
/1 4
newSlot.transform.SetParent(gameObject.transform.
GetChild(0).transform);
/15

slots[i] = newSlot;

220

CHAPTER6 HEALTH AND INVENTORY

// 6
itemImages[i] = newSlot.transform.GetChild(1).
GetComponent<Image>();
}
}
}
/11

Check to make sure that we’ve set the Slot prefab via the Unity Editor,
before we try to use it programmatically.

/12
Loop through the number of slots.
/13

Instantiate a copy of the Slot prefab and assign it to newSlot. Change
the name of the instantiated GameObject to “ItemSlot ” and append the
index number to the end. Name is a property intrinsic to every GameObject.

/1 4

This script will be attached to InventoryObject. The InventoryObject
prefab has a single child object: Inventory.

Set the Parent of the instantiated Slot to the child object at index 0
of InventoryObject. The child object at index 0 is: Inventory, as seen in
Figure 6-40.

InventoryObject
Inventory

Child Index: 0

Figure 6-40. Inventory is a child object of InventoryObject at index: 0

221

CHAPTER 6 HEALTH AND INVENTORY
/15

Assign this new Slot object to the slots array at the current index.
/] 6

The child object at index 1 of the Slot is an ItemImage. We retrieve
the Image component from that ItemImage child and assign it to the
itemImages array. The Source Image of this Image component is what will
appear in the Inventory Slot when the player picks up the item. Figure 6-41
illustrates how ItemImage is at index: 1.

» Background
Itemimage

Child Index: 1

Figure 6-41. ItemImage is a child object of Slot at index: 1

Fill in the Start() Method

Let’s fill in the Start () method. This is a short one.

public void Start()

{
// 1

CreateSlots();
}

// 1

Call the method we wrote earlier to instantiate the Slot prefabs and set
up the Inventory Bar.

222

CHAPTER6 HEALTH AND INVENTORY

The Addltem Method
Next we'll build out the method to actually add an item to the Inventory.
/11
public bool AddItem(Item itemToAdd)
{
/12
for (int i = 0; i < items.Length; i++)
{
/13
if (items[i] != null && items[i].itemType == itemToAdd.
itemType && itemToAdd.stackable == true)
{
// Adding to existing slot
/1 4
items[i].quantity = items[i].quantity + 1;
/15
Slot slotScript = slots[i].gameObject.
GetComponent<Slot>();
/1 6
Text quantityText = slotScript.qtyText;
/117
quantityText.enabled = true;
/1 8
quantityText.text = items[i].quantity.ToString();
/19
return true;
}

223

CHAPTER6 HEALTH AND INVENTORY

// 10
if (items[i] == null)
{
// Adding to empty slot
// Copy item & add to inventory. copying so we don’t change
original Scriptable Object

// 11
items[i] = Instantiate(itemToAdd);
// 12
items[i].quantity = 1;
// 13
itemImages[i].sprite = itemToAdd.sprite;
/1 14
itemImages[i].enabled = true;
return true;
}
}
// 15

return false;

Because this is a longer method, the individual lines of code are
included above each explanation, so you don’t have to keep flipping pages
back and forth.

// 1
public bool AddItem(Item itemToAdd)

The method AddItem will take a single parameter of type Item. This
is the item to be added to the Inventory. This method also returns a bool
indicating if the item was successfully added to the Inventory.

224

CHAPTER6 HEALTH AND INVENTORY

// 2
for (int i = 0; i < items.Length; i++)

Loop through all the indexes in the items array.
/13

These three conditions pertain to Stackable Items. Let’s go through this
if-statement:

items[i] != null
Check if the current index is not null.
items[i].itemType == itemToAdd.itemType

Check if the itemType of the Item is equal to the itemType of the Item
we want to add to the Inventory.

itemToAdd.stackable == true

Check if the item to add is Stackable.

These three conditions combined will have the effect of checking to see
if the current item in the index, if one exists, is of the same type the player
wants to add. If it is the same type, and it’s a Stackable item, then we want
to add the new item to the stack of existing items.

/1 4
items[i].quantity = items[i].quantity + 1;

Because we are stacking this Item, increment the quantity at the

current index in the items array.

/15
Slot slotScript = slots[i].GetComponent<Slot>();

225

CHAPTER6 HEALTH AND INVENTORY

When we instantiate a Slot prefab, what we’re really doing is creating
a GameObject with the Slot script attached to it. This line will grab a
reference to the Slot script. The Slot script contains a reference to the
QtyText child Text object.

/1 6
Text quantityText = slotScript.qtyText;

Grab a reference to the Text object.

/17
quantityText.enabled = true;

Because we're adding a stackable object to a slot already containing a
stackable object, we now have multiple objects in a Slot. Enable the Text
object that we’ll use to display the quantity.

/78
quantityText.text = items[i].quantity.ToString();

Each Item object has a quantity property of type int. ToString() will
convert the type: int, into the type: String, so that it can be used to set the
text property of the Text object.

/19
return true;

Because we were able to add an object to the inventory, return true to
indicate success.

// 10
if (items[i] == null)

Check if the current index of the items array contains an item. If it’s
null, then we’re going to add newItem to this slot.

226

CHAPTER6 HEALTH AND INVENTORY

Because we're looping through the items array linearly each time,
once we hit an index with a null item, that means we’ve looped through all
the already held items. So we’'re either adding the first item of a particular
itemType, or the item we're trying to add isn’t Stackable.

Note that if we want to add the functionality to drop objects in the
future, we’ll have to modify this logic slightly. We would add the logic that
says: when removing object from a Slot, shift all remaining objects left and
leave no null Slots.

// 11
items[i] = Instantiate(itemToAdd);

Instantiate a copy of the itemToAdd and assign it to the items array.

// 12
items[i].quantity = 1;

Set the quantity on the Item object to 1.

// 13
itemImages[i].sprite = itemToAdd.sprite;

Assign the Sprite from the itemToAdd, to the Image object in the
itemImages array. Note that this is the sprite we assigned earlier with the
following line, when we set up the slots in CreateSlots(): itemImages[i]
= newSlot.transform.GetChild(1).GetComponent<Image>();

/] 14
itemImages[i].enabled = true;
return true;

Enable the itemImage and return true to indicate the itemToAdd
was successfully added. Recall that we had originally disabled the image
because if no source image is provided to an Image component, the Image
component will default to the default color. Because we have assigned a
Sprite, we enabled the Image component.

227

CHAPTER6 HEALTH AND INVENTORY

// 15
return false;

If neither of the two if-statements resulted in adding the itemToAdd to
the Inventory, then the Inventory must be full. Return false to indicate the
itemToAdd was not added.

Save the Inventory script and go back to the Unity Editor.

Select the InventoryObject and attach the Inventory Script to it via the
Inspector. Drag the Slot prefab into the Slot Prefab property in the Inventory
Script. There’s no need to press the Apply button because we're modifying
the InventoryObject prefab directly, instead of an instance of the prefab.

Update the Player Script

We've built this great inventory system but the player object is completely
unaware that it exists. Open the Player script and add the following
properties: inventoryPrefab and inventory, then add the Instantiate(i
nventoryPrefab) line anywhere inside the existing Start () method:

/11
public Inventory inventoryPrefab;

/] 2
Inventory inventory;

public void Start()

{

/13
inventory = Instantiate(inventoryPrefab);
hitPoints.value = startingHitPoints;
healthBar = Instantiate(healthBarPrefab);
healthBar.character = this;

}

228

CHAPTER6 HEALTH AND INVENTORY
// 1

Store a reference to the Inventory prefab. We're going to use this in the
Unity Editor in just a moment.

/12
Used to store a reference to the Inventory once it’s instantiated.

/13

Instantiate the Inventory prefab. This line will store a reference to the
prefab in the inventory variable. We store this reference so that we don’t
have to search for the Inventory each time we want to use it.

One Last Thing ...

Inside the existing OnTriggerEnter2D(Collider2D collision) method,
change the switch statement to look like the following:

switch (hitObject.itemType)

{
case Item.ItemType.COIN:
/11
shouldDisappear = inventory.AddItem(hitObject);
/12
shouldDisappear = true;
break;
case Item.ItemType.HEALTH:
shouldDisappear = AdjustHitPoints(hitObject.quantity);
break;
default:
break;
}

229

CHAPTER6 HEALTH AND INVENTORY
// 1

Call the AddItem() method on the local inventory instance and pass
ithitObject as a parameter. Assign the result to shouldDisappear. If you
recall back when we updated the Player script while building the Health
Bar, if shouldDisappear is true, then the gameObject the player collided
with will be set to inactive. Thus, if the object was added to the inventory,
then the original object will disappear from the Scene.

/12

Remove this line, as we no longer need it.

Save the Player script and switch back to the Unity Editor.

Select the Player prefab and drag the newly created InventoryObject
prefab into the Inventory Prefab property of the Player script. It should
look like Figure 6-42.

v - (¥ Player (Script) o o
Script Player (o]
Hit Points ' HitPoints (HitPoints) | @
Starting Hit Points 6 |
Max Hit Points 10 |
Character Category | PLAYER o
Inventory Prefab [- InventoryObject (Inventory)] [o]
Health Bar Prefab .. HealthBarObject (HealthBar) | ©

Figure 6-42. Assign the InventoryObject to the Inventory Prefab
property

Add a few more Coins for the player to pick up by dragging and
dropping the CoinObject prefab onto the Scene.

Now press the play button. Walk the player around the map and pick
up coins. Notice how the quantity counter text appears when you're
holding more than one coin, as seen in Figure 6-43.

230

CHAPTER 6 HEALTH AND INVENTORY

Figure 6-43. The player is officially rich ... so very rich

Summary

Whew! Well that was quite a lot to take in but think about how much
we’ve accomplished. We've put Scriptable Objects and prefabs to use,
and even learned about the Canvas and Ul Elements. This chapter had us
writing more C# than ever, and we learned a few tricks to keep our game
architecture clean. We have a functioning Inventory and Health Bar, and
our game is starting to look like a proper RPG.

231

CHAPTER 7

Characters,
Coroutines,
and Spawn Points

This chapter will see us building some central components important to
any video game. We'll build a Game Manager responsible for coordinating
and running the game logic, such as spawning the player when she dies.
We'll also build a Camera Manager to ensure the camera is always set up
properly. We'll be getting deeper into Unity and learning how to do things
programmatically instead of relying on the Unity Editor. Doing things
programmatically can make your game architecture more flexible and save
you time in the long run. Throughout this chapter, you'll also learn some
useful features of C# and the Unity Editor that will make your life easier

and your code cleaner.

Create a Game Manager

Up until this point we've been creating bits and pieces of the game without
any coordinating logic between these pieces. We're going to create a Game
Manager script or “class” that will be responsible for running the game
logic such as spawning the player if she is killed by her enemies.

© Jared Halpern 2019 233
J. Halpern, Developing 2D Games with Unity, https://doi.org/10.1007/978-1-4842-3772-4_7

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

Singletons

Before we start writing the RPGGameManager script, let’s learn about

a software design pattern called the Singleton. Singletons are used in
situations where your application needs one and only one instance of a
particular class to be created for the lifetime of the application. Singletons
can be helpful when you have a single class that provides functionality
used by several other classes in your game, such as coordinating game
logic in a Game Manager class. Singletons can provide a public unified
point of access to this class and its functionality. They also offer lazy
instantiation, meaning they are created the first time they are accessed.

Before we start thinking about Singletons as the savior to our game
development architecture, let's touch on some of the downsides of
Singletons.

Although Singletons can provide a unified access point to
functionality, this also means that the Singleton holds globally accessible
values with indeterminate state. Any piece of code in your entire game
can access and set the data inside the Singleton. Although this might seem
like a good thing, imagine trying to figure out which one of the 20 different
classes accessing a Singleton was setting a specific property to an incorrect
value. That'’s the stuff of nightmares.

Another downside to using a Singleton is that we have far less control
over the precise timing of the Singletons instantiation. For example
imagine that our game is in the middle of a very graphically oriented
section of code, when all of a sudden a Singleton that we'd hoped was
created earlier in the game, is instantiated. The game stutters, affecting the
end-users experience.

There are several other well-argued pros and cons for Singletons, and
you should read up on them and make your own decisions about when to
use them. When used sparingly, a Singleton can certainly make your life

easier.

234

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

It makes sense to implement our RPGGameManager class as
a Singleton because at any point in time, we’ll only want one class
coordinating the game logic. We won’t have any performance issues
because we're accessing and initializing the RPGGameManager when the
Scene loads.

Every Singleton contains logic to prevent other instances of the
Singleton from being created, thus maintaining its status as a single
unique instance. We'll review some of that logic later when we create the
RPGGameManager class.

Creating the Singleton

Create a new GameObject in the Hierarchy and rename it:
“RPGGameManager”. Then create a new folder under Scripts called:
“Managers”.

Create a new C# script called “RPGGameManager” and move it to the
Managers folder. Add the script to the RPGGameManager object.

Open the RPGGameManager script in Visual Studio and use the
following code to build out the RPGGameManager class:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class RPGGameManager : MonoBehaviour

{

/11
public static RPGGameManager sharedInstance = null;

void Awake()
{

235

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

// 2
if (sharedInstance != null && sharedInstance != this)
{
/13
Destroy(gameObject);
}
else
{
/1 4
sharedInstance = this;
}
}
void Start()
{
/15
SetupScene();
}
/1 6
public void SetupScene()
{
// empty, for now
}
}
// 1

A static variable: sharedInstance is used to access the Singleton
object. The singleton should only be accessed through this property.

It’s important to understand that static variables belong to the
class itself(RPGGameManager), not a specific instance of the class. A
consequence of belonging to the Class itself is that only one copy of
RPGGameManager . sharedInstance exists in memory.

236

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

If we create two RPGGameManager objects in the Hierarchy view, the
second one to be initialized would share the same sharedInstance with the
first RPGGameManager. This scenario would be inherently confusing, so
we'll take steps to prevent it from happening.

The syntax for retrieving a reference to sharedInstance:

RPGGameManager gameManager = RPGGameManager.sharedInstance;
/12

We only ever want one instance of the RPGGameManager to exist ata
time. Check if sharedInstance is already initialized and not equal to this
current instance. It’s possible for this scenario to occur if you somehow
create multiple copies of the RPGGameManager in the Hierarchy, or if you
programmatically instantiate copies of the RPGGameManager prefab.

/13

If sharedInstance is initialized and not equal to the current instance,
then destroy it. There should be only one instance of RPGGameManager.

/1 4

If this is the only instance, then assign the sharedInstance variable to
the current object.

/15

Consolidate all the logic to setup a scene inside a single method.
This makes it easier to call again in the future from places other than the
Start() method.

/] 6

The SetupScene() method is empty for the time being, but that will
soon change.

237

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

Build a GameManager Prefab

Let’s create a RPGGameManager prefab. Follow the same process we've
always used to create prefabs out of GameObijects:

1. Dragthe RPGGameManager GameObject from the
Hierarchy view into the prefabs folder in the Project
view, to create a prefab.

2. Normally we would delete the original
RPGGameManager object from the Hierarchy View.
This time, keep it in the Hierarchy view because
we’re not finished working with it.

We've created a centralized management class responsible for running
the game. Because it’s a singleton, there will only be one instance of the
RPGGameManager class in existence at a time.

Spawn Points

We want to be able to create or “spawn” characters—a player, or an enemy,
at a specific location in the scene. If we're spawning enemies, then we may
also want to spawn them at a regular interval as well. To accomplish this,
we're going to create a Spawn Point prefab and attach a script to it with the
spawning logic.

Right-click in the Hierarchy view, create an empty GameObject, and
rename it: “SpawnPoint”.

Add a new C# script to the SpawnPoint object we just created called:
“SpawnPoint” Move the script to the MonoBehaviours folder.

238

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS
Open the SpawnPoint script in Visual Studio and use the following code:
using UnityEngine;

public class SpawnPoint : MonoBehaviour

{
/11
public GameObject prefabToSpawn;
/12
public float repeatInterval;
public void Start()
{
/13
if (repeatInterval > 0)
{
/1 4
InvokeRepeating("SpawnObject"”, 0.0f, repeatInterval);
}
}
/15
public GameObject SpawnObject()
{
/1 6
if (prefabToSpawn != null)
{
/17
return Instantiate(prefabToSpawn, transform.
position, Quaternion.identity);
}

239

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

/] 8
return null;

}
/11

This could be any prefab that we want to spawn once or at a consistent
interval. We'll set this to be the player or enemy prefab in the Unity Editor.

// 2

If we want to spawn the prefab at a regular interval, we’ll set this
property in the Unity Editor.

/13

If the repeatInterval is greater than 0 then we're indicating that the
object should be spawned repeatedly at some preset interval.

/1 4

Because the repeatInterval is greater than 0, we use
InvokeRepeating() to spawn the object at regular, repeated intervals.
The method signature for InvokeRepeating() takes three parameters: the
method to call, the time to wait before invoking the first time, and the time
interval to wait between invocations.

/15

SpawnObject() is responsible for actually instantiating the prefab and
“spawning” the object. The method signature indicates that it will return
a result of type: GameObject, which will be an instance of the spawned
object. We set the access modifier of this method to: public, so that it can
be called externally.

240

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

/1 6

Check to make sure we've set the prefab in the Unity Editor before we
instantiate a copy to avoid errors.

/17

Instantiate the prefab at the location of the current SpawnPoint object.
There are a few different types of Instantiate methods used to instantiate
prefabs. The specific method we’re using takes a prefab, a Vector3
indicating the position, and a special type of data structure called a
Quaternion. Quaternions are used to represent rotations, and Quaternion.
identity represents “no rotation.” So we instantiate the prefab at the
position of the SpawnPoint and without a rotation. We won'’t be getting
into Quaternions as they can get pretty complex and are beyond the scope
of this book.

Return a reference to the new instance of the prefab.

/18

If the prefabToSpawn is null, then this Spawn Point was probably not
configured properly in the editor. Return null;

Build a Spawn Point Prefab

Here’s the plan: we'll set up a SpawnPoint for the player first, just to see
how all the pieces fit together, and then we’ll set up a SpawnPoint for
enemies. To build a generic SpawnPoint, add the script we just wrote to the
SpawnPoint GameObject, and then create a prefab out of it.

241

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

Follow the following process to create a prefab out of the SpawnPoint
GameObiject:

1. Dragthe SpawnPoint GameObject from the
Hierarchy view into the prefabs folder in the Project
view, to create a prefab.

2. Delete the original SpawnPoint object from the
Hierarchy View.

Drag the SpawnPoint prefab onto the Scene where you'd like the Player
to appear. Rename the new instance of Spawn Point, “PlayerSpawnPoint”
as seen in Figure 7-1. Do not press the Apply button, as we don’t want to
apply this change to the prefab itself—only this instance.

© Inspector
[PlayerSpawnPoint | [Static
Tag | Untagged ¢ | Layer | Default ¢
Prefab | Select | Revert [Apply J

Figure 7-1. Rename the Spawn Point

As you can see in Figure 7-2, the location of the Spawn Point is barely
visible in the Scene. Because there is no Sprite attached to the GameODbject
instance, it’s difficult to see.

242

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

Figure 7-2. GameODbjects without a Sprite are sometimes difficult to
see in the Scene view

Tip To make Spawn Points easier to locate in the Scene while the
game isn’t running, select the Spawn Point then press the Icon at the
top-left of the inspector as seen in Figure 7-3.

243

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

|) Static =
¢ | Layer | Default t)

Revert | Apply |

FEES
0

© Inspector

N\327¢ Y -2.6077 Z

00000009 | \ YO z/o
\ Y1 1z[1]

ipt] R

i . SpawnPoint | (o]

Prefab To Spawn None (Game Object) | @

Repeat Interval 0 |
[Add Component]

Figure 7-3. Select the icon in the Inspector

Choose an icon to visually represent the selected object in the Scene.
You should see the selected icon appear over the object in the scene, as

seen in Figure 7-4.

Figure 7-4. Using an icon to make an object easier to find in a Scene

244

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

These icons also can be made visible during runtime by selecting the
Gizmos button in the upper-right corner of the Game window, as seen in
Figure 7-5.

Figure 7-5. Use the Gizmos button to set the icon visible during
runtime

Configure the Player Spawn Point

We still have to configure the Spawn Point so it knows what prefab to
spawn. Set the “Prefab To Spawn” property in the attached Spawn Point
script to the PlayerObject prefab by dragging the PlayerObject prefab to the
respective property as seen in Figure 7-6. Leave the Repeat Interval set to 0
because we only want to spawn the player once.

245

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

v . [¥ Spawn Point (Script) - 8
Script SpawnPoint (o]
Prefab To Spawn .sPlayerObject o
Repeat Interval 0 {

Figure 7-6. Configure the Spawn Point script

Because the plan is to use the PlayerSpawnPoint to spawn the player,
delete the Player instance from the Hierarchy view.

Press Play and you'll immediately notice that nothing happens. The
player is nowhere to be seen. This is because we're not actually calling the
SpawnObject () method of the SpawnPoint class anywhere yet. Let’s modify
the RPGGameManager to call SpawnObject().

Switch back to the Unity Editor and open the RPGGameManager class.

Spawn the Player

Add the following property to the top of the class:

public class RPGGameManager : MonoBehaviour

{
/71
public SpawnPoint playerSpawnPoint;
// ...Existing code from the RPGGameManager class...
}
/11

The playerSpawnPoint property will hold a reference to the Spawn
Point specifically designated for the player. We're keeping a reference to
this specific Spawn Point because we’ll want the ability to re-spawn the
player when they meet an untimely demise

246

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS
Add the following method:

public void SpawnPlayer()

{
/71
if (playerSpawnPoint != null)
{
/12
GameObject player = playerSpawnPoint.SpawnObject();
}
}
/11
Checkif the playerSpawnPoint property is not null before we try to use it.
/12

Call the SpawnObject () method on the playerSpawnPoint.
SpawnObject to Spawn the player. Store a local reference to the instantiated
player, which we’ll be using shortly.

In the SetupScene() method of RPGGameManager, add a single line:

public void SetupScene()
{

// 1
SpawnPlayer();

}
// 1

This will invoke the SpawnPlayer () method we just wrote.

247

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

Finally we need to configure the RPGGameManager instance in the
Hierarchy view with a reference to the Player Spawn Point. Drag and drop
the PlayerSpawnPoint from the Hierarchy view, into the Player Spawn
Point property in the RPGGameManager instance, as seen in Figure 7-7.

v . [¥ RPG Game Manager (Script) - 8
Script RPGGameManager (0

Player Spawn Point | .. PlayerSpawnPoint (Sp| ©

Figure 7-7. Set the Player Spawn Point property to the
PlayerSpawnPoint instance

Press Play and you should see the Player object appear in the scene at
the location of the Player Spawn Point.

In Summary

1. Spawn Points are used to determine what type of
object to spawn and the location to spawn in. We've
configured the Player Spawn Point instance to
reference the PlayerObject prefab.

2. Configure a reference to the Player Spawn Point in
the RPGGameManager instance.

3. Inthe SetupScene() method of RPGGameManager,
call the SpawnObject () method of the Player Spawn
Point class.

248

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

A Spawn Point for Enemies

Let’s build a Spawn Point to spawn enemies. Because we've already built a

Spawn Point prefab, this will be quick.

1.

2.

Drag and Drop a SpawnPoint prefab into the Scene.
Rename it EnemySpawnPoint.

— (Optional) Change the icon to red, so we can view it
easily in the Scene view

Set the “Prefab to Spawn” property to the Enemy
prefab.

Set the Repeat Interval to 10 (seconds), to spawn an
Enemy every 10 seconds.

After configuring the Enemy Spawn Point, the Scene should resemble

Figure 7-8.

249

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

Figure 7-8. An instance of SpawnPoint configured to spawn Enemies
with a custom red icon to make it easily visible

Press Play and watch as Enemies spawn every 10 seconds. We haven’t
written any artificial intelligence yet to make the Enemies move around or
attack, so the player is safe for the time being.

As you walk the player around the map, you may have noticed
that something is off. The camera no longer follows the player around!
Catastrophe! This is because we’re now spawning the Player dynamically,
instead of setting the Player prefab instance in the Cinemachine Virtual
Camera—follow property. The Virtual Camera has no follow target and
thus remains in the same place.

250

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

Camera Manager

To restore the behavior where the camera follows the player as she walks
around the map, we’re going to create a Camera Manager class and have
the Game Manager use it to ensure the Virtual Camera is properly set up.
This Camera Manager will be useful in the future as a centralized place for
configuring camera behavior instead of embedding that camera code in
various places throughout our app.

Create a new GameObject in the Hierarchy and rename it:
RPGCameraManager. Create a new script called RPGCameraManager and
add it to the RPGCameraManager object. Open the script in Visual Studio.

We'll use the Singleton pattern again, just as we did for the
RPGGameManager earlier in this chapter.

Use the following code for the RPGCameraManager class:

using UnityEngine;

/11
using Cinemachine;

public class RPGCameraManager : MonoBehaviour {

public static RPGCameraManager sharedInstance = null;

/12
[HideInInspector]
public CinemachineVirtualCamera virtualCamera;
/13
void Awake()
{
if (sharedInstance != null && sharedInstance != this)
{
Destroy(gameObject);
}

251

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

else
{
sharedInstance = this;
}
/1 4
GameObject vCamGameObject = GameObject.
FindWithTag("VirtualCamera");
/75
virtualCamera = vCamGameObject.GetComponent<Cinemachine
VirtualCamera>();
}
}
/11

Import the Cinemachine namespace so the RPGCameraManager gains
access to the Cinemachine classes and data types.

// 2

Store a reference to the Cinemachine Virtual Camera. Make it
public so that other classes can access it. Because we'll be setting it
programmatically, use the [HideInInspector] attribute so that it doesn’t
appear in the Unity Editor.

/13
Implement the Singleton pattern.
/1 4

Find the VirtualCamera GameObject in the current Scene. In the
following line, we’ll get a reference to its Virtual Camera component. We'll
also need to create this tag in the Unity Editor and configure the Virtual
Camera to use it.

252

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

Remember that GameODbjects can have multiple components attached
to them, with each component providing different functionality. This is
known as the “Composition” design pattern.

/15

All of the Virtual Camera’s properties such as the Follow target and
Orthographic Size can be configured via script as well as the Unity Editor.
Save a reference to the Virtual Camera Component, so we can control
these Virtual Camera properties programmatically.

Create a prefab out of the RPGCameraManager but keep an instance in
the Hierarchy view.

Using the Camera Manager

In the RPGGameManager class, add the following property to the top of
the class:

public RPGCameraManager cameraManager;

We’re making this property public because we're going to set it via
the Unity Editor. The RPGGameManager will use this reference to the
RPGCameraManager when it spawns the player, as you'll see in the
following code.

Still inside the RPGGameManager class, change the SpawnPlayer ()
method to the following:

public void SpawnPlayer()

{
if (playerSpawnPoint != null)

{
GameObject player = playerSpawnPoint.SpawnObject();

253

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

/11
cameraManager.virtualCamera.Follow = player.transform;

}
/11

We've added this line to SpawnPlayer (). Set the Follow property of the
virtualCamera to the transform of the player object. This will instruct the
Cinemachine Virtual Camera to follow the player once again as she walks
around the map.

Switch back to the Unity Editor and select the RPGGameManager
instance in the Hierarchy. We're going to configure the Game Manager to
use the Camera Manager.

Drag the RPGCameraManager instance into the Camera Manager
property of the RPGGameManager in the Hierarchy, as seen in Figure 7-9.

v . |¥ RPG Game Manager (Script) - 8

Script RPGGameManager o]
Player Spawn Point . PlayerSpawnPoint (Sp. ©
Camera Manager - - RPGCameraManager (©

Figure 7-9. Set the Camera Manager property

There’s one last thing to do before our Virtual Camera will follow the
player again: set the Tag on the Virtual Camera so the RPGCameraManager
script can find it.

Select the Virtual Camera object in the Hierarchy view. By default, the
Virtual Camera will be named: CM vcaml. Click the Tag drop-down menu
in the Inspector. If you need a refresher on the location of the Tag drop-
down menu, take a look at Figure 7-10.

254

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

© Inspector | Tile Palette g |
¥ CMvcaml (L] Static ¥

¥ . Transform - -8
Position X |-3.7494]Y [-0.4165Z[-10 |
Rotation X 0 |Y |0 |z|0 |
Scale X1 |Y|1 |Z|1 |

Figure 7-10. The Tag drop-down menu

Add a Tag called, “VirtualCamera” to the Tag listing. Then select
the Virtual Camera object again in the Hierarchy and set the Tag to the
VirtualCamera Tag you just created (Figure 7-11).

¥ CM vcaml | CJ Static =
Tag [VirtualCamera 4 | Layer | Default ad
¥ . Transform it < 8
Position X -3.7494 Y -0.4165 Z -10
Rotation X 0 |Y[O Z|[0
Scale X [1 J¥[1 |z[T]

Figure 7-11. Set the Tag to VirtualCamera so the
RPGCameraManager script can find it

Press Play again and walk the player around the map. The camera
should once again follow the player as she walks around the map.

255

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

Character Class Design

If you recall back in Chapter 6, we designed a class called: Character. At the
moment, only the Player class inherits from Character, but in the future
every class that inherits from Character will require the ability to inflict
damage on other Characters, have damage inflicted on it, and even die.
The remainder of this chapter will involve designing and augmenting the
Character, Player, and Enemy classes.

The Virtual Keyword

The “virtual” keyword in C# is used to declare that classes, methods,
or variables will be implemented in the current class but can also be
overridden in an inheriting class if the current implementation is not
sufficient.

In the following code, we're building the basic functionality to kill a
Character but inheriting classes may require additional functionality on
top of this.

Because all Characters in our game are mortal, we'll provide a method
to kill them in the parent class. Add the following to the bottom of the
Character class:

/11
public virtual void KillCharacter()

{
/12

Destroy(gameObject);
}

/] 1
This method will be called when the characters hit-points reach zero.

/] 2

256

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

Calling Destroy(gameObject) will Destroy the current GameObject
and remove it from the Scene when the Character is killed.

The Enemy Class

Part of being a hero is facing adversity and possibly danger. In this section,
we're going to build out an Enemy Class and give it the ability to harm our
player.
In Chapter 6, we used a neat trick with Scriptable Objects to build
a Scriptable Object called HitPoints that shares data instantly with the
Player’s Health Bar. The Character class contains a property of a type of
HitPoints thatis used by the Player class that inherits from Character.
Because the enemies in our game won'’t have on-screen health bars,
they don’t require a HitPoints ScriptableObject. Only the Player, who has
a Health Bar, needs access to a HitPoints ScriptableObject. Thus we can
simplify the way we keep track of hit-points in the Enemy class by simply
using aregular float variable to track hit-points instead.

Refactoring

To simplify our class architecture, we're going to refactor some code.
Refactoring code is simply a term for restructuring existing code without
changing its behavior.

Open the Character class and Player class in Visual Studio. Move the
hitPoints variable from the Character class to the Player class, toward the
top where we have the existing properties:

public HitPoints hitPoints;

Select the EnemyObject prefab and add a script to it called: Enemy.
Open the Enemy script in Visual Studio. Remove the default code inside
the Enemy class and replace it with the following.

257

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS
using UnityEngine;

/71
public class Enemy : Character

{

/] 2
float hitPoints;

}
/11

Our Enemy class inherits from Character, which means it gets access to
public properties and methods in the Character class.

/12

A simplified hitPoints variable of type float.

After these code changes, our Player class will continue to use the
HitPoints ScriptableObject we created in Chapter 6. We've also created an
Enemy class containing a simplified way of keeping track of hit-points. The
Enemy class also gained access to the existing properties in the Character
class pertaining to hit-points: startingHitPoints and maxHitPoints.

Tip When refactoring code, it’s best to keep the changes small
then test to ensure correct behavior so as to minimize the chance of
incorporating new bugs. An iterative cycle of making small changes,
then testing, is a good way to maintain your sanity.

The Internal Access Modifier

Notice that we've omitted any access modifier keyword (public, private)
in front of the hitPoints variable in the Enemy class. In C# the absence
of an access modifier means the internal access modifier will be used by

258

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

default. The internal access modifier restricts access to the variable or
method to within the same “assembly.” Assembly is a term used in C# that
can be thought of as encompassing the C# project.

Coroutines

We're going to pause for a moment from building out the Character and
Enemy class to talk about an important and useful feature of Unity. When
calling a method in Unity, the method runs until completion then returns
to the original point of invocation. Everything that happens inside a
regular method must happen within a single frame in the Unity Engine.

If your game calls a method that would ideally run longer than a single
frame, Unity will actually force the entire method to be called within that
frame. When that happens, you won’t get the result you're looking for. It’s
even possible that the results of a method that should run over the space
of several seconds won'’t even be visible to the user because it'll run and be
completed within a single frame.

To solve this dilemma, Unity offers something called: Coroutines.
Coroutines can be thought of as functions that can be paused mid-way
through execution, and then resume executing in the next frame. Long-
running methods that are intended to execute over the course of multiple
frames are often implemented as Coroutines.

Declaring Coroutines is as straightforward as using the return type:
IEnumerator and including a line instructing the Unity engine to pause
or “yield” somewhere within the method body. It is this yield line that
tells the engine to pause execution and return to the same spot in the
subsequent frame.

259

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

Invoking Coroutines

A hypothetical Coroutine called RunEveryFrame() can be started by
enclosing it in the method StartCoroutine() as follows:

StartCoroutine(RunEveryFrame());

Pausing or “Yielding” Execution

RunEveryFrame() will run up until it reaches a yield statement, at which
point it will pause until the next frame, then resume execution. A yield
statement could look like:

yield return null;

A Complete Coroutine

The following RunEveryFrame() method is just an example of a Coroutine.
Don’t add it to your code anywhere but make sure that you understand

how it works:

public IEnumerator RunEveryFrame()

{
// 1
while(true)
{
print("I will print every Frame.");
yield return null;
}
}
/71

260

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

We're enclosing the print and yield statement in awhile() loop to
keep the method running indefinitely, that is, to make it long-running and
span multiple frames.

Coroutines with Time Intervals

Coroutines also can be used to call code at regular time intervals, such as
every 3 seconds, instead of every frame. Instead of using yield return
null to pause, we use yield return new WaitForSeconds() and passa
time-interval parameter in this next example:

public IEnumerator RunEveryThreeSeconds()

{
while (true)
{
print("I will print every three seconds.");
yield return new WaitForSeconds(3.0f);
}
}

When this sample Coroutine reaches the yield statement, execution
will pause for 3 seconds, then resume. The print statement will be invoked
and print every three seconds indefinitely, due to the while() loop.

We're going to write some Coroutines to build out the functionality in
the Character, Player, and Enemy classes.

The Abstract Keyword

The “abstract” keyword in C# is used to declare that classes, methods,
or variables cannot be implemented in the current class and must be
implemented by an inheriting class.

261

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

The Enemy and Player class both inherit from the Character class. By
putting the definition of the following methods in the Character class, we
require the Enemy and Player class to implement them before the game
will compile and run.

Add the following "using" statement to the top of the Character class.
We'll need to import System.Collections to work with Coroutines.

using System.Collections;
Then add the following underneath the KillCharacter () method:

// 1
public abstract void ResetCharacter();

/12
public abstract IEnumerator DamageCharacter(int damage, float
interval);

/1
Set the character back to its original starting state, so it can be used again.
/12

Called by other Characters to damage the current character. Takes an
amount to damage the character by and a time interval. The time interval
can be used in situations when damage is recurring.

As discussed earlier, the return type: IEnumerator is required in a
Coroutine. IEnumerator is part of the System.Collections namespace
that is why we had to add the import line: using System.Collections
earlier.

Remember that all abstract methods must be implemented before the
code will compile and run. Because the method is in the parent class of
both Player and Enemy, we’ll have to implement both methods in both
classes.

262

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

Implementing the Enemy Class

Now that we're experts in Coroutines and we’ve built out the Character
class, we're going to implement the abstract methods starting with the
DamageCharacter() Coroutine.

Imagine a scenario in our game where an enemy runs into the
player, and the player doesn’t move out of the way. Our game logic says
that as long as the enemy keeps in contact with the player, the enemy
will continue to damage her. Another scenario where damage would be
applied at regular intervals is if the player walked over molten lava. That’s
just science.

To implement this scenario, we've declared the DamageCharacter ()
method as a Coroutine to allow the method to apply damage at regular
intervals. In the implementation of DamageCharacter () we will leverage:
yield return new WaitForSeconds() to pause execution for a specified
amount of time.

The DamageCharacter() method

Add the following import to the top of the class:
using System.Collections;

We need to import System.Collections to work with Coroutines.
Implement the DamageCharacter () method inside the Enemy class:

/11
public override IEnumerator DamageCharacter(int damage, float
interval)

{

/]2
while (true)

{

263

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

/13
hitPoints = hitPoints - damage;
/1 4
if (hitPoints <= float.Epsilon)
{
/15
KillCharacter();
break;
}
// 6
if (interval > float.Epsilon)
{
yield return new WaitForSeconds(interval);
}
else
{
/17
break;
}
}
}
/11

When implementing an abstract method in a derived (inheriting)
class, use the override keyword to indicate the method is overriding the
KillCharacter() method from the base (parent) class.

This method takes two parameters: damage and interval. Damage is
the amount of damage to inflict on the Character, and interval is the time
to wait between inflicting damage. Passing an interval =0, as we'll see, will
inflict damage a single time then return.

264

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS
/12

This while() loop will continue inflicting damage until the character
dies, or if the interval =0, it will break and return.

/13

Subtract the amount of damage inflicted from the current hitPoints
and set the result to hitPoints.

/1 4

After adjusting the Enemy’s hitPoints, we’d like to check if the
hitPoints are less than 0. However, hitPoints is of type: float, and
floating-point arithmetic is prone to rounding errors due to the way
floats are implemented under the hood. For this reason, in some cases
it’s better to compare a float value to: float.Epsilon, which is defined as
the “smallest positive value greater than zero” on the current system. For
purposes of enemy life and death, if the hitPoints are less than float.
Epsilon, then the character has “zero” health.

/15

If hitPoints is less than float.Epsilon (effectively 0), then the enemy
has been vanquished. Call KillCharacter() then break out of the while()
loop.

/] 6

If interval is greater than float.Epsilon, then we want to yield
execution, wait for interval seconds, then resume executing the while()
loop. In this scenario, the loop will only exit when the character dies.

265

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS
/17

If interval is not greater than float.Epsilon (effectively equal to 0),
then this break statement will be hit, the while() loop will be broken, and
the method will return. The parameter interval will be zero in situations
where damage is not continuous, such as a single hit.

Let’s implement the rest of the abstract methods declared in the
Character class.

In the Enemy class:

ResetCharacter()

Lets build out the method to set the Character variables back to their
original state. It's important to do this if we want to use the Character
object again after it dies. This method can also be used to set up the
variables when the Character is first created.

// 1
public override void ResetCharacter()

{
/12

hitPoints = startingHitPoints;

}
/11

Because the Enemy class inherits from the Character class, we
override the ResetCharacter() declaration in the parent class.

/12

When resetting the character, set the current hit-points to
startingHitPoints. We set startingHitPoints on the prefab itself in the
Unity Editor.

266

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

Calling ResetCharacter() in OnEnable()

The Enemy class inherits from Character, which inherits from
MonoBehaviour. The OnEnable() method is part of the MonoBehaviour
class. If OnEnable() is implemented in a class, it will be called every time
an object becomes both enabled and active. We will use OnEnable() to
ensure that certain things occur every time an Enemy object becomes both
enabled and active.

private void OnEnable()
{

// 1
ResetCharacter();

}
/11

Call the method we just wrote to reset the enemy. At the moment,
“resetting” the enemy just means setting it's hitPoints to startingHitPoints,
but we could also include other things in ResetCharacter () as well.

KillCharacter()

Because we've implemented KillCharacter() as a virtual method in
the Character class, and Enemy inherits from Character, there’s no need
to implement it in the Enemy class. Enemy doesn’t require any additional
functionality beyond what the Character implementation provides.

Updating the Player Class

Next we'll implement the abstract methods in the Player class. Open the
Player class in Visual Studio and use the following code to implement the
abstract methods from the Character parent class.

267

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS
Add the following import to the top of the class:
using System.Collections;

Then add the following method to the Player class:

/71
public override IEnumerator DamageCharacter(int damage, float
interval)

{
while (true)
{
hitPoints.value = hitPoints.value - damage;
if (hitPoints.value <= float.Epsilon)
{
KillCharacter();
break;
}
if (interval > float.Epsilon)
{
yield return new WaitForSeconds(interval);
}
else
{
break;
}
}
}
/] 1

268

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS
Implement the DamageCharacter() method, as we did in the Enemy class.

public override void KillCharacter()
{
// 1

base.KillCharacter();

/12
Destroy(healthBar.gameObject);
Destroy(inventory.gameObject);

}
/11

Use the base keyword to refer to the parent or “base” class that
the current class inherits from. Calling base.KillCharacter() calls
the KillCharacter() method inside the parent class. The parent
KillCharacter () method destroys the current gameObject associated with
the player.

/] 2

Destroy the health bar and inventory associated with the Player.

Refactoring Prefab Instantiation

In Chapter 6, we were initializing instances of the health bar and inventory
prefabs inside the Start() method. This was before we had the method:
ResetCharacter(). Remove the following three lines from Start() and
place them inside ResetCharacter() as seen in the following:

Remove these three lines from Start():

inventory = Instantiate(inventoryPrefab);
healthBar = Instantiate(healthBarPrefab);
healthBar.character = this;

269

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

Then create the method ResetCharacter() as in the following,
overriding the abstract method in the Character parent class:

public override void ResetCharacter()

{

/11
inventory = Instantiate(inventoryPrefab);
healthBar = Instantiate(healthBarPrefab);
healthBar.character = this;

/12
hitPoints.value = startingHitPoints;

}
/11

The three lines we removed from the Start() method. These three lines
initialize and set up the health bar and inventory.

/12

Set the hit-points of the Player to the starting hit-points value.
Remember—because the starting hit-points is public, we can set it in the
Unity Editor.

Review

Let’s review what we've just built:

o The Character class provides basic functionality for all
the various character types in our game including the
Player and her Enemies.

270

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

o Character class functionality includes:
— Basic functionality for killing a character
— An abstract method definition for resetting a character

— An abstract method definition for damaging a character

Using What We’ve Built

We've built out some pretty core functionality but we’re not actually using
it yet. The enemy has methods that can damage the player, but they’'re
not being invoked at the moment. To see the DamageCharacter() and
KillCharacter() methods in action, we're going to add functionality to
the Enemy class that will invoke the DamageCharacter() method when the
Player runs into it.

In the Enemy class, add these two variables to the top of the class:

/11
public int damageStrength;

/12
Coroutine damageCoroutine;

/11

Set in the Unity Editor, this variable will determine how much damage

the enemy will do when it runs into the Player.
/12

References to running Coroutines can be saved to a variable and
stopped at a later time. We'll use damageCoroutine to store a reference to
the DamageCharacter () Coroutine so we can stop it later on.

271

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

OnCollisionEnter2D

OnCollisionEnter2D() is a method included with all MonoBehaviours
and is called by the Unity Engine whenever the current objects Collider2D
makes contact with another Collider2D.

/11
void OnCollisionEnter2D(Collision2D collision)

{

/12
if(collision.gameObject.CompareTag("Player"))

{

/13
Player player = collision.gameObject.
GetComponent<Player>();
/1 4
if (damageCoroutine == null)
{
damageCoroutine = StartCoroutine(player.
DamageCharacter(damageStrength, 1.0f));
}
}
}
/11

The collision details are passed as the parameter: collision, into
OnCollisionEnter2D().

/12

We want to write game logic such that Enemies can only damage the
Player. Compare the Tag on the object that the enemy has collided with to
see if it’s the Player object.

272

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS
/13

At this point we've determined that the other object is the Player, so
retrieve a reference to the Player component.

/1 4

Check to see if this Enemy is already running the DamageCharacter()
Coroutine. If it is not, then start the Coroutine on the player object. Pass
into DamageCharacter() the damageStrength and the interval, because
the enemy will continue to damage the player for as long as they are in
contact.

We're doing something here that we haven’t seen before. We're storing
areference to the running Coroutine in the variable damageCoroutine. We
can call StopCoroutine() and pass it the parameter: damageCoroutine, to
stop the Coroutine at any time.

OnCollisionExit2D

OnCollisionExit2D() is called when another object’s Col1ider2D stops
touching the current MonoBehaviour object’s Collider2D.

/11
void OnCollisionExit2D(Collision2D collision)

{

/12
if (collision.gameObject.CompareTag("Player"))

{

/13
if (damageCoroutine != null)

{

273

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

/1 4
StopCoroutine(damageCoroutine);
damageCoroutine = null;
}
}
}
/] 1

The collision details are passed as the parameter: collision, into
OnCollisionEnter2D().

/] 2

Check the Tag on the object that the enemy has stopped colliding with,
to see if it’s the Player object.

/13

If damageCoroutine is not null, that means the coroutine is running
and should be stopped, then set to null.

/1 4

Stop the damageCoroutine that is actually DamageCharacter() and set
it to null. This stops the Coroutine immediately.

Configure the Enemy Script

Flip back to the Unity Editor and configure the Enemy script as seen in
Figure 7-12. Remember that the Damage Strength is how much damage
the Enemy will cause to the Player when it runs into her.

274

CHAPTER 7 CHARACTERS, COROUTINES, AND SPAWN POINTS

v .. [« Enemy (Script) =
Script Enemy (o]
Starting Hit Points 2 |
Max Hit Points 2 {
Character Category | ENEMY ¢]

|

Damage Strength 1
Figure 7-12. Configure the Enemy Script

Press Play and walk the Player over to an Enemy Spawn Point. Run the
Player into an Enemy and you'll notice that the Player takes some damage,
but also pushes the Enemy away. This is because both the Player and the
Enemy have RigidBody2D components attached to them and are under
the control of Unity’s Physics Engine.

Eventually the Enemy will chase after the Player, but for now, push the
Enemy into the corner and maintain contact with it. Watch as the health
bar decreases down to 0 until the inventory, health bar, and the player

disappear off the screen.

Summary

Our sample game is really starting to come together. We've created an
architecture for the various types of characters throughout the game and
picked up a few pointers on using C# in the process. Our game now has a
central game manager responsible for setting up a Scene, spawning the
player, and ensuring the camera is set up properly. We've learned how to
write code to control the Camera programmatically, where we previously
had to set up the Camera via the Unity Editor. We built a Spawn Point

to spawn different character types, and learned about Coroutines, an
important tool in the Unity developer’s toolbox.

275

CHAPTER 8

Artificial Intelligence
and Slingshots

This chapter covers a lot but by the end, you'll have a functioning
prototype of a game. We'll build some interesting features such as a
reusable artificial intelligence component with chasing behavior. Our
courageous Player also will finally receive her weapon of choice: a
slingshot, to defend herself with. You'll learn a widely used optimization
technique in game programming called Object Pooling, as well as put
some of that high-school math to use that you never thought you'd need.
This chapter also demonstrates the usage of Blend Trees, which are a more
efficient way of doing animations and better for your game architecture in
the long-term. We’ll wrap things up by showing you how to compile your
game to run outside of Unity and talk a little bit about what’s next in your

game programming adventures.

The Wander Algorithm

In this section we’ll leverage what we’ve learned about Coroutines to write
a script that makes an enemy wander randomly around the board. If the
enemy detects that the Player is close-by, the enemy will pursue her until
she runs away, kills the enemy, or the player dies.

© Jared Halpern 2019 277
J. Halpern, Developing 2D Games with Unity, https://doi.org/10.1007/978-1-4842-3772-4_8

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

The Wander algorithm may sound complicated but when we break it
down step-by-step, you'll see that it’s all very achievable.

Figure 8-1 is a diagram of the Wander algorithm. We’ll implement each
part in stages and explain as we go along, so you won't feel overwhelmed.

Start Wander Routine

In Pursuit

Wait for Direction
Change Interval
(seconds)

Choose New
Destination

Kill Player or
Player out of sight

Currently
Moving

Spot the

Player True

Move Towards
New Destination

Stop Moving

Figure 8-1. The Wander algorithm

Getting Started

Select the Enemy prefab and drag it into the scene to make our lives easier.
Select the EnemyObject and add a CircleCollider2D component to it.
Check the Is Trigger box on the Circle Collider and set the radius of the
collider to be: 1. The Circle Collider should look like Figure 8-2.

278

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

© Inspector
& |EnemyObject | O Static =
Tag [Enemy i | Layer | Enemi |

Prefab [Selee | Reven | Apply |

» - Transform -
» - ¥/ Sprite Renderer ol
» . [/ Animator o
» M ¥/ Box Collider 2D 38,
»~* Rigidbody 2D 38

" b .- [¥ Enemy (Script) 3 &,
" v @ [Circle Collider 2D 38,

Edit Collider

Material None (Physics Materia @
Is Trigger “

Used By Effector []

Offset
X0 — 1v[0
| Radius. 1
» Info

Figure 8-2. Set Is Trigger and Radius

This Circle Collider represents how far the Enemy can “see.” In other
words, when the Player’s collider crosses the Circle Collider, the Enemy
can see the Player. Remember how trigger colliders work: because we've
checked the Is Trigger box on the Circle Collider, it can pass through other
objects. The Enemy will “see” the Player cross the collider, then change
course and pursue her.

Create the Wander Script

We'll create the Wander script as a MonoBehaviour so it can be re-used
and attached to other GameObjects in the future besides the Enemy.

Add a new Script called: “Wander”. Open the script in Visual Studio
and add the following:

/11
using System.Collections;
using UnityEngine;

279

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

/12

[RequireComponent (typeof(Rigidbody2D))]
[RequireComponent (typeof(CircleCollider2D))]
[RequireComponent (typeof(Animator))]

public class Wander : MonoBehaviour

{

}
/11

We'll be using Coroutines and IEnumerator in the Wander algorithm.
As mentioned in Chapter 7, IEnumerator is part of the System.Collections
namespace, so we import it here.

// 2

Ensure that whatever GameObject we attach the Wander script to in
the future has a Rigidbody2D, a CircleCollider2D, and an Animator. All
three of these components are necessary for the Wander script.

By using RequireComponent, any script that this script is attached to will
automatically have the required component added if it is not already present.

Wander Variables

Next we're going to sketch out the variables needed for the Wander
algorithm. Add the following variables to the Wander class:

/11
public float pursuitSpeed;
public float wanderSpeed;
float currentSpeed;

/12
public float directionChangeInterval;

280

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

/13
public bool followPlayer;

/] 4
Coroutine moveCoroutine;

/15
Rigidbody2D rb2d;
Animator animator;

/1 6
Transform targetTransform = null;

/17
Vector3 endPosition;

/1 8
float currentAngle = 0;

/11

These three variables will be used to set the speed at which the Enemy
pursues the Player, the general wandering speed when not in pursuit, and
the current speed that will be one of the previous two speeds.

/] 2

The directionChangeIntervalis setvia the Unity Editor and will be
used to determine how often the Enemy should change wandering direction.

/13

This script can be attached to any Character in the game to add
wandering behavior. You may want to eventually create a type of Character
that doesn’t chase the player and only wanders about. The followPlayer
flag can be set to turn on and off the player-chasing behavior.

281

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS
/1 4

The variable moveCoroutine is where we’ll save a reference to
the currently running movement Coroutine. This Coroutine will be
responsible for moving the Enemy a little bit each frame, toward the
destination. We need to save a reference to the Coroutine because at some
point we'll need to stop it, and to do that we need a reference.

/15
The RigidBody2D and Animator attached to the GameODbject.
/1 6

We use targetTransformwhen the Enemy is pursuing the Player. The
script will retrieve the transform from the PlayerObject and assign it to
targetTransform.

/17
The destination where the Enemy is wandering.
/18

When choosing a new direction to wander, a new angle is added to the
existing angle. That angle is used to generate a vector, which becomes the
destination.

Build Out Start()

Now that we have all the variables we'll need for the moment, let’s build
the Start() method.

void Start()

{
/11

animator = GetComponent<Animator>();

282

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

/12

currentSpeed = wanderSpeed;
/13

rb2d = GetComponent<Rigidbody2D>();
/1 4

StartCoroutine(WanderRoutine());

}

/11

Grab and cache the Animator component attached to the current
GameObiject.

/12

Set the current speed to wanderSpeed. The Enemy starts off wandering
at a leisurely pace.

/13

We'll need a reference to the Rigidbody2D to actually move the enemy.
Store a reference instead of retrieving it every time we need it.

/1 4

Start the WanderRoutine() Coroutine, the entry point into the Wander
algorithm. We'll write WanderRoutine() next.

The Wander Coroutine

The WanderRoutine() Coroutine contains all of the high-level logic from
the Wander Algorithm described in Figure 8-1 seen earlier in this chapter,
aside from the pursuit logic. We'll still need to write some of the methods
called from within WanderRoutine() but this Coroutine is the brains of the
Wander Algorithm.

283

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

// 1
public IEnumerator WanderRoutine()
{
/12
while (true)
{
/13
ChooseNewEndpoint();
/74
if (moveCoroutine != null)
{
/15
StopCoroutine(moveCoroutine);
}
/1 6
moveCoroutine = StartCoroutine(Move(rb2d,
currentSpeed));
/17
yield return new WaitForSeconds(directionChangeInterval);
}
}
// 1

This method is a Coroutine because it’ll doubtlessly run over multiple
frames.

284

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS
/12

We want the Enemy to wander indefinitely, so we’ll use while(true) to
loop through the steps indefinitely.

/13

The ChooseNewEndpoint () method does exactly what it sounds like.
It chooses a new endpoint but doesn’t start the Enemy moving toward it.
We'll write this method next.

/1 4

Check if the Enemy is already moving by checking if moveCoroutine
is null or has a value. If it has a value then the Enemy may be moving, so

we'll need to stop it first before moving in a new direction.
/15
Stop the currently running movement Coroutine.

/1 6

Start the Move () Coroutine and save a reference to it in moveCoroutine.
The Move () Coroutine is responsible for actually moving the Enemy. We'll
write it shortly.

/17

Yield execution of the Coroutine for directionChangeInterval
seconds, then start the loop over again and choose a new endpoint.

Choosing a New Endpoint

We've written out the starting point and the Wander Coroutine, so it’s

time to start filling in the methods called by the WanderCoroutine(). The
ChooseNewEndpoint () method is responsible for choosing a new endpoint
at random for the Enemy to travel to.

285

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

// 1
void ChooseNewEndpoint()
{
/72
currentAngle += Random.Range(0, 360);
/13
currentAngle = Mathf.Repeat(currentAngle, 360);
/1l 4
endPosition += Vector3FromAngle(currentAngle);
}
// 1

Make this method private by omitting the access modifier, because it’ll
only be needed inside the Wander class.

// 2

Choose arandom value between 0 and 360 to represent a new
direction to travel toward. This direction is represented as an angle, in
degrees. We add it to the current angle.

/13

The method Mathf.Repeat(currentAngle, 360) will loop the value:
currentAngle so that it’s never smaller than 0, and never bigger than 360.
We're effectively keeping the new angle in the range of degrees: 0 to 360,
then replacing the currentAngle with the result.

/1 4

Call a method to convert an Angle to a Vector3 and add the result to
the endPosition. The variable endPosition will be used by the Move ()
Coroutine, as we'll soon see.

286

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Angles to Radians to Vectors!

This method takes an angle parameter in degrees, converts it to radians,
and returns a directional Vector3 used by the ChooseNewEndpoint ().

Vector3 Vector3FromAngle(float inputAngleDegrees)
{

/11
float inputAngleRadians = inputAngleDegrees * Mathf.Deg2Rad;

/1 2
return new Vector3(Mathf.Cos(inputAngleRadians),
Mathf.Sin(inputAngleRadians), 0);

}
/11

Convert the input angle from degrees to radians by multiplying by the
degrees-to-radians conversion constant. Unity provides this constant so
we can do quick conversions.

/] 2

Use the input angle in radians to create a normalized directional vector
for the enemy direction.

Enemy Walk Animation

Up until this point, the Enemy only had one animation: idle. It’s time to
utilize the Enemy walking animation clip we created way back in Chapter 3.

Select the Enemy prefab then open the Animation window as seen in
Figure 8-3.

287

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Scene (9 Animation #2 Animator T
| Layers || Paramerers | @ | Base Layer Auto Live Link
(orMame e S
List is Empty

Animations/Controllers/EnemyController.controller

e

\ssets » Prefabs »
o AmmoObject
Bl Consumables
w Door
" PlayerObject
1 SpawnPoint
-u

Figure 8-3. The Animator window with the EnemyObject selected

If the Idle state is the default state, it will be colored Orange. If it isn’t
the default state, right-click on the “enemy-idle-1” state and select: Set as
Layer Default State.

As you can see, the enemy-walk-1 state exists, with an animation clip,
butisn’t being used at the moment. The plan is to create an Animation
Parameter and use that parameter to switch between the idle and walking
state.

Click on the plus-symbol in the Parameters section of the Animator
and select Bool, as seen in Figure 8-4.

288

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

x Layers “ Parameters | ® Base Lay
{arName D+,
List is Empty [Float

Int
Bool

Figure 8-4. Select Bool to create an Animation Parameter of type:
Bool

Name this parameter: “isWalking’, as seen in Figure 8-5.

I Layers || Parameters] >
forName) +,

Figure 8-5. Create the isWalking Bool parameter

Our Wander script will use this parameter to switch the Enemy’s
animation state between idle and walking. To keep things simple, the
walking animation will serve as a stand-in for running, when in pursuit of
the Player, as well as leisurely walking.

Right-click on enemy-idle-1 state and select: Make Transition. Create
a transition between the idle state and the walking state. Then create
another transition between the walking state and the idle state. When
you're done, the Animator State window should look like Figure 8-6.

289

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

e n #3 Animaror R
Base Layer | Auto Live Link |

Figure 8-6. Create transitions between the idle and walk states

Click on the transition state going from enemy-idle-1 to enemy-walk-1,
and use the following settings, as seen in Figure 8-7.

Has Exit Time]
¥ Settings
Exit Time 0.4

Fixed Duration O

Transition Duration 0 |
Transition Offset 0 |
Interruption Source | Current State Then Next State
Ordered Interruptio [+

-
e

Figure 8-7. Transition settings

Click on the transition from enemy-walk-1 to enemy-idle-1 and
configure it using the same settings from Figure 8-7 as well.

Set up each transition to use the Animation Parameter: isWalking, that
we just created. Set the condition: isWalking to true, in the transition from
enemy-idle-1 to enemy-walk-1 as seen in Figure 8-8.

290

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Conditions

= |isWalking |~ (true 3

+ - |
Figure 8-8. IfisWalking == true, this condition is met

Set isWalking to false, in the enemy-walk-1 to enemy-idle-1 transition.

That'’s it! The Enemy walking animation is set up. To use the new
animation state, we just need to change isWalking to true, in our Move()
Coroutine, as you'll soon see.

Press Apply in the Inspector to apply these changes to all the Enemy
prefabs.

The Move() Coroutine

The Move () Coroutine is responsible for moving a RigidBody2D at a given
speed from its current location to the endPosition variable.
Add the following method to the Wander script.

public IEnumerator Move(Rigidbody2D rigidBodyToMove, float
speed)
{

/71
float remainingDistance = (transform.position -
endPosition).sqrMagnitude;

/12
while (remainingDistance > float.Epsilon)

{

291

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

/13
if (targetTransform != null)
{
endPosition = targetTransform.position;
}
/1 4
if (rigidBodyToMove != null)
{
//5
animator.SetBool("isWalking", true);
/1 6
Vector3 newPosition = Vector3.
MoveTowards(rigidBodyToMove.position, endPosition,
speed * Time.deltaTime);
/17
rb2d.MovePosition(newPosition);
/1 8
remainingDistance = (transform.position -
endPosition).sqrMagnitude;
}
/19
yield return new WaitForFixedUpdate();
}
// 10

animator.SetBool("isWalking", false);

292

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

/71

The equation: (transform.position - endPosition) resultsina
Vector3. We use a property called: sqrMagnitude, which is available on the
Vector3 type, to retrieve the rough distance remaining between the current
position of the Enemy and the destination. Using the sqrMagnitude
property is a Unity-provided approach to performing quick Vector
magnitude calculations.

/12

Check that the remaining distance between the current location
and the endPosition is greater than float.Epsilon, which is effectively
equivalent to zero.

/13

When the Enemy is in pursuit of the Player, the value targetTransform
will be set to the Players transform instead of null. We then overwrite
the original value of the endPosition to use targetTransforminstead.
When the Enemy moves, it will move toward the Player, instead of toward
the original endPosition. Because the targetTransformis actually the
Player’s transform, it will be constantly updated with the Players new
position. This allows the Enemy to dynamically follow the Player.

/1 4

The Move () method requires a RigidBody2D and uses it to move
the Enemy. Before we go any further, ensure that we actually have a
RigidBody2D to move.

/15

Set the Animation Parameter: isWalking, of type Bool, to true. This
will initiate the state transition to the walking state and play the Enemy
walking animation.

293

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS
/] 6

The Vector3.MoveTowards method is used to calculate the movement
for a RigidBody2D. It doesn’t actually move the RigidBody2D. The
method takes three parameters: a current position, an end position, and
the distance to move in the frame. Remember that the variable: speed
will change, depending on whether the Enemy is in pursuit or leisurely
wandering around the Scene. That value will be changed in the pursuit
code, which we haven’t written yet.

/17

Use MovePosition() to move the RigidBody2D to the newPosition,
calculated in the previous line.

/1 8

Use the sqrMagnitude property to update the distance remaining.
/79

Yield execution until the next Fixed Frame update.
// 10

The Enemy has reached endPosition and waiting for a new direction
to be selected, so change the Animation State to idle.
Save this script and switch back to the Unity Editor.

Configure Wander Script

Select the Enemy prefab and configure the Wander script to look like
Figure 8-9. Set the Pursuit Speed to a slightly faster speed than the Wander
Speed. The Direction Change Interval is how often the Wander Algorithm
will call ChooseNewEndpoint () to choose a new direction to wander in.

294

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

¥ o [+ Wander (Script) o &
Script Wander @
Pursuit Speed 1.4
Wander Speed 0.8
Direction Change Interval 3
Follow Player (v

Figure 8-9. Use these settings in the Wander script

Press Apply in the Inspector then delete the EnemyObject out of the
Hierarchy view.

Now press play. Notice how the enemy wanders around the scene. If
the Player walks up close to an enemy they won'’t pursue her yet. We're
going to add the Pursuit logic next.

OnTriggerEnter2D()

So we’ve implemented nearly all of the Wander algorithm except for the
Pursuit logic. In this section we’ll write some simple logic to plug into the
Wander algorithm to make the Enemy pursue the Player.

The Pursuit logic hinges on the OnTriggerEnter2D() method, which is
provided with every MonoBehaviour. As we learned in Chapter 5, Trigger
Colliders (colliders with the Is Trigger property set) can be used to detect
that another GameODbject has entered the collider. When this occurs, the
OnTriggerEnter2D() method is called on the MonoBehaviours involved in
the collision.

When the Player enters the CircleCollider2D attached to the Enemy,
the Enemy can “see” the Player and should pursue her.

295

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Let’s write that logic.

void OnTriggerEnter2D(Collider2D collision)

{
// 1
if (collision.gameObject.CompareTag("Player") &&
followPlayer)
{
/12
currentSpeed = pursuitSpeed;
/13
targetTransform = collision.gameObject.transform;
/1 4
if (moveCoroutine != null)
{
StopCoroutine(moveCoroutine);
}
/15
moveCoroutine = StartCoroutine(Move(rb2d,
currentSpeed));
}
}
/11

Check the tag on the object in the collision to see if it’s the
PlayerObject. Also check that followPlayer is current true. This variable is
set via the Unity Editor and used to turn on and off the pursuit behavior.

/12

At this point, we've determined that the collision is with the Player,
so change the currentSpeed to the pursuitSpeed.

296

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

/13

Set targetTransform equal to the Player’s transform. The Move ()
coroutine will check if targetTransformis not null, and then use it as the
new value of endPosition. This is how the Enemy continuously pursues the
Player instead of wandering aimlessly.

/1 4

If the Enemy is currently moving, the moveCoroutine will not be null. It
needs to be stopped before started again.

/15

Because endPosition is now set to the PlayerObject’s transform,
calling Move () will move the Enemy toward the player.

OnTriggerExit2D()

Provided the Enemy pursuitSpeed is less than the Player movementSpeed,
the Player can outrun any Enemy. As the Player runs away from the Enemy,
she will exit the Enemy Trigger Collider, causing the OnTriggerExit2D() to
be called. When this occurs, the Enemy effectively loses sight of the Player
and resumes wandering aimlessly.

This method is nearly identical to OnTriggerEnter2D() with just a few
tweaks.

void OnTriggerExit2D(Collider2D collision)
{

// 1
if (collision.gameObject.CompareTag("Player"))

{

/12
animator.SetBool("isWalking", false);

297

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

/13
currentSpeed = wanderSpeed;
/1 4
if (moveCoroutine != null)
{
StopCoroutine(moveCoroutine);
}
/15
targetTransform = null;
}
}
/11

Check the tag to see if the Player is leaving the collider.
/12

The Enemy is confused after losing sight of the Player and pauses for a
moment. Set isWalking to false, to change the animation to idle.

/13

Set the currentSpeed to the wanderSpeed, to be used the next time the
Enemy starts moving.

/1 4

Because we want the Enemy to stop pursuing the Player, we need to
stop the moveCoroutine.

/15

The Enemy is no longer following the Player, so set the
targetTransformto null.
Save this script and flip back to Unity Editor. Press Play.

298

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Move the Player into sight of the Enemy and notice how the Enemy will
pursue her until she runs out of sight.

Gizmos

Unity supports the creation of visual debugging and setup tools called
Gizmos. These tools are created via a set of methods and only appear in
the Unity Editor. They won't appear in your game when it’s compiled and
running on a user’s hardware.

We're going to create two Gizmos to aid in visually debugging the
Wander algorithm. The first Gizmo we’ll create will show a wire outline of
the Circle Collider 2D, used to detect when the Player is within sight of the
Enemy. This Gizmo will make it easier to see when the pursuit behavior is
supposed to begin.

Add the following variable toward the top of the Wander class, where
we have the other variables:

CircleCollider2D circleCollider;

Then add the following line to Start(). It can be placed anywhere
within the method:

circleCollider = GetComponent<CircleCollider2D>();

This line retrieves the CircleCollider2D component of the current
Enemy object. We'll use it to draw a circle on-screen to visually represent
the current circle collider.

To implement the Gizmo, implement the method provided by
MonoBehaviour called OnDrawGizmos ():

void OnDrawGizmos()

{

/11
if (circleCollider != null)
{

299

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

/12
Gizmos.DrawWireSphere(transform.position,
circleCollider.radius);
}
}
/11

Be sure that we have a reference to the Circle Collider before we try to
use it.

/12

Call Gizmos .DrawhWireSphere() and provide a position and a radius for
it, to draw a sphere.

Save the script and flip back to the Unity Editor. Be sure the Gizmos
button is pressed, and then press Play. Notice the Enemy Gizmo surrounding
the Enemy as it wanders about, as seen in Figure 8-10. The circumference
and position of this Gizmo corresponds to the CircleCollider2D.

Figure 8-10. A Gizmo representing the CircleCollider2D
surrounding the Enemy

300

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

If you don’t see the Circle Gizmo appear, make sure you have Gizmos
enabled in the upper-right corner of the Game window, as seen in
Figure 8-11.

Figure 8-11. Enable Gizmos

It would be easier to see how the Wander algorithm moves an Enemy
toward a location if we had a line showing an Enemy’s destination. Let’s
draw a line on-screen from the current Enemy position to the end position.

We'll use the Update () method so the line is draw with every frame.

void Update()

{
// 1

Debug.DrawLine(rb2d.position, endPosition, Color.red);

301

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS
// 1

The result of the method Debug.DrawLine() is visible when Gizmos are
enabled. The method takes a current position, an end position, and a line
color.

As we can see in Figure 8-12, a red line is drawn from the center of the
Enemy to the destination (endPosition).

Figure 8-12. Ared line is drawn from the Enemy position to the end
point

Self-Defense

Our brave player will be armed with nothing more than her wits to guide
her and a slingshot for defense. Each press of the mouse button will have
our player fire off a single round of slingshot ammo toward the location
of the mouse click. We'll script the behavior of the ammo so that as it
flies through the air, it travels along an arc toward the target instead of a
straight line.

302

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Classes Needed

We'll need a combination of three different classes to give the player the
ability to defend herself.

The Weapon class will encapsulate the slingshot functionality. This
class will be attached to the Player prefab and will be responsible for a few
different things:

e Determining when the mouse button is pressed and
using the location of the button press as the target

o Switching from the current animation to the firing
animation

o Creating ammunition and moving it toward the target

We'll need a class to represent the ammunition fired from the
slingshot. This Ammo class will be responsible for:

¢ Determining when the attached Ammo GameObject
collides with an Enemy

o Keeping track of how much damage it causes when it
collides with an Enemy

We’ll also build an Arc class responsible for moving the Ammo
GameObject in an exaggerated arc from the starting position to the end
position. Otherwise the ammo would travel in a straight line.

Ammo Class

At the moment, we want the Ammo in our game to only damage Enemies,
but you could just as easily extend the functionality in the future to damage
other things as well. Each AmmoObject will expose a property in the

Unity Editor describing the amount of damage it causes. We'll turn the
AmmoObject into a prefab. If you ever wanted to provide the player with

303

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

two different types of Ammao, it’s a simple task to create a second Ammo
prefab, change the Sprite on it and the damage done.

Create a new GameODbject in the Project hierarchy and rename it,
“AmmoObject” We're going to create the AmmoODbject, configure it, write
the script, and then turn it into a prefab.

Import the Assets

From the assets you've downloaded to accompany this book, drag the
spritesheet titled, “Ammo.png” into the Assets » Sprites » Objects folder.

Select the Ammo spritesheet and use the following import settings in
the Inspector:

Texture Type: Sprite (2D and UI)
Sprite Mode: Single

Pixels Per Unit: 32

Filter Mode: Point (no filter)

Be sure the Default button is selected at the bottom
and set Compression to: None

Press the Apply button.
The Unity Editor will automatically detect the sprite boundaries, so
there’s no need to open the Sprite Editor or slice the sprite.

Add Components, Set Layers

Add a Sprite Renderer component to AmmoODbject.

On the Sprite Renderer, set the Sorting Layer to: Characters, and set the
Sprite property to: Ammo. Ammo is the sprite we just imported.

Add a CircleCollider2D to the AmmoObject. Be sure the “Is Trigger”
setting is checked and set the Radius to 0.2. If you need to adjust the

304

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Collider, click the Edit Collider button and move the handles until you're
satisfied that the collider surrounds the Ammo sprite.

Create a new Layer called, “Ammo” and use it to set the Layer on
AmmoObject as seen in Figure 8-13.

© inspector | Tile Palette 1 ds

& AmmoObject | []Static ¥

Tag | Untagged ¢ | Layer | Ammo $

Figure 8-13. Set the Layer to: Ammo

Update the Layer Collision Matrix

If you recall back in Chapter 5, we learned about Layer-Based Collision
Detection. To summarize, two colliders in different Layers will only interact
if the Layer Collision Matrix is configured so that they're aware of each other.

Go to the Edit Menu » Project Settings » Physics 2D and configure the
Layer Collision Matrix to look like Figure 8-14.

= o
o S 5
S fox) e
5 R
53 22
) -
S3sg2 ==%
E2raciEbk3
Default | (W v v/ [+ (v [+ [/
TransparentfFX[|V ML
Ignore Raycast [| v ¥ ¥ ¥ & [«
Water[|V V¥«
VAN A~ AN
Blocking [| (¥ &
Consumables [][]«
Enemies (¥ (¥
Ammo [

Figure 8-14. Configure the Ammo Layer

305

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

We want to allow an Ammo collider to interact with an Enemy collider,
but not interact with any other colliders. Back in Chapter 5, we configured
Enemies to use the Enemies Layer, and we’ve configured AmmoObject to
use the Ammo Layer.

Build the Ammo Script

Add a new Script to AmmoObject called, “Ammo”. Open the Ammo script
in Visual Studio.
Use the following code to build out the Ammo class.

using UnityEngine;

public class Ammo : MonoBehaviour

{
/11
public int damageInflicted;
/12
void OnTriggerEnter2D(Collider2D collision)
{
/13
if (collision is BoxCollider2D)
{
/1 4
Enemy enemy = collision.gameObject.
GetComponent<Enemy>();
/15

StartCoroutine(enemy.DamageCharacter(damageInflict
ed, 0.0f));

306

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

// 6
gameObject.SetActive(false);

}
/11

The amount of damage the ammunition will inflict on an Enemy.
/12

Called when another object enters the Trigger Collider attached to
the Ammo GameODbiject. A Trigger Collider is simply a Collider with the: Is
Trigger property set. In this case, it's a CircleCollider2D.

/13

It’s important to check if we hit the BoxCollider2D inside the enemy.
Remember that the Enemy also has a CircleCollider2D thatis used in the
Wander script to detect if the Player is nearby. The BoxCollider2D is the
collider we use to detect objects that actually collide with the Enemy.

/1 4

Retrieve the Enemy script component of the gameObject from the
collision.

/15

Start the Coroutine to damage the Enemy. If you recall from Chapter 7,
the method signature for DamageCharacter () looks like this:

DamageCharacter(int damage, float interval)

The first parameter: damage, is the amount of damage to inflict on the
Enemy. The second parameter: interval, is the time to wait between
inflicting damage. Passing interval = 0 will inflict damage a single time.

307

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

We pass the variable damageInflicted, an instance variable on the Ammo
class that will be set via the Unity Editor, as the first parameter.

/] 6

Because the ammo has struck the Enemy, set the gameObject of the
AmmoObject to be inactive.

Why are we are setting the gameObject to be inactive instead of calling
Destroy(gameObject) and getting rid of it altogether?

Good question—glad you asked. We're setting AmmoObject to be
inactive so we can use a technique called Object Pooling to maintain good
performance in our game.

Before We Forget ... Make the AmmoObject
Prefab

One last thing before we get into Object Pooling—Ilet’s turn the
AmmoObject into a prefab. Follow the same process we've always used to
create prefabs out of GameObjects:

1. Drag AmmoObject from the Hierarchy view into the
prefabs folder to create a prefab.

2. Delete the original AmmoODbject from the Hierarchy
View.

Object Pooling

If your game has a large number of objects being instantiated then
destroyed in a short amount of time, you might see pauses in gameplay,
slowdowns, and overall poor performance. This is because Instantiating
and Destroying objects in Unity is more performance intensive than
simply activating and deactivating objects. Destroying an object will invoke

308

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Unity’s internal memory cleanup process. Invoking this process repeatedly
in short succession, especially in memory constrained environments such
as mobile devices or the web, can affect performance. These effects on
performance won'’t show up with a small number of objects, but if your
game involves spawning a large number of enemies or bullets, you'll want
to consider a more optimized approach.

To avoid the performance issues associated with object creation and
destruction, we'll use an optimization technique called Object Pooling.

To use Object Pooling, pre-instantiate multiple copies of an object for the
Scene ahead of time, de-activate them, and add them to an object pool.
When the Scene requires an object, loop through the object pool and
return the first inactive object found. When the Scene is finished using the
object, place it inactive, and return it to the object pool to be re-used by the
Scene in the future.

Simply put, Object Pooling reuses objects, minimizing performance
degradation due to runtime memory allocation and cleanup. Objects will
initially be set to inactive, and only activated when used. When the scene is
done using an object, the object is set inactive once again, signaling that it
can be re-used when needed.

By clicking the mouse button repeatedly, the slingshot weapon will
fire multiple rounds in quick succession. This is a textbook scenario where
object pooling would improve runtime performance.

The following are the three key steps in using Object Pooling in Unity:

e Pre-instantiate a collection (a “pool”) of objects ahead
of time before they’re needed and set them inactive

e When gameplay needs an object, instead of
instantiating a new object, grab an inactive object from
the pool and activate it

e When finished using the object, simply place it inactive
to return it to the pool

309

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Building the Weapon Class

We're going to create and store the Ammo object pool inside the Weapon
class. As described earlier, this class will encompass the slingshot
functionality as well as eventually control the animations showing the
Player firing the slingshot.

We'll start off building the basic slingshot functionality by creating the
Object Pool to hold Ammo.

Select the PlayerObject prefab and add a new script called, “Weapon’”.
Open this script in Visual Studio. Use the following code to begin building
the Weapon class.

/71
using System.Collections.Generic;
using UnityEngine;

/12
public class Weapon : MonoBehaviour
{
/13

public GameObject ammoPrefab;
/1 4

static List<GameObject> ammoPool;
/15

public int poolSize;
/1 6

void Awake()

{

310

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

/17
if (ammoPool == null)
{
ammoPool = new List<GameObject>();
}
// 8
for (int i = 0; i < poolSize; i++)
{
GameObject ammoObject = Instantiate(ammoPrefab);
ammoObject.SetActive(false);
ammoPool.Add(ammoObject);
}
}
}
/11

We’ll need to import System.Collections.Generic so we can use the
List data structure. A variable of type: List, will be used to represent the
object pool—the collection of pre-instantiated objects.

// 2

Weapon inherits from MonoBehaviour and thus can be attached to a
GameObiject.

/13

The property ammoPrefab will be set via the Unity Editor and used to
instantiate copies of the AmmoODbject. These copies will be added to a
pool of objects in the Awake () method.

/1 4

The property ammoPool of type: List is used to represent the object
pool.

311

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

A List in C# is an ordered collection of strongly typed objects. Because
they’re strongly typed, you must declare ahead of time what type of object
the List will hold. Attempting to insert any other type of object will result
in an error when compiling, and your game will not run. This List is
declared to hold only GameObjects.

The variable ammoPool is a static variable. If you recall from Chapter 7,
static variables belong to the class itself, and only one copy exists in memory.

/15

The poolSize property allows us to set the number of objects to be
pre-instantiated in the object pool. Because this property is public, it can
be set and easily tweaked via the Unity Editor.

/1 6

The code to create the Object Pool and pre-initialize the AmmoObijects
will be contained in the Awake () method. Awake () is called one time in the
lifetime of a script: when the script is being loaded.

/17

Check to see if the ammoPool object pool has been initialized already.
If it has not been initialized, create a new ammoPool of type: List to hold
GameObjects.

7

Create a loop using poolSize as the upper limit. On each iteration of
the loop, instantiate a new copy of ammoPrefab, set it to be inactive, and
add it to the ammoPool.

The Object Pool (ammoPool) has been created and is ready for use in
a Scene. As you'll soon see, whenever the Player uses her slingshot to fire
ammo, we'll grab an inactive AmmoObject from ammoPool and activate
it. When the Scene is done using the AmmoODbiject, it’s deactivated and
returned to ammoPool.

312

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Stubbing-0ut Methods

Method stubs are substitutes for code that hasn’t been developed yet.
They also can be helpful for figuring out the required methods for specific
functionality. Let’s stub-out the various methods we’ll need for the rest of
the basic weapon functionality.

Add the following code to the Weapon class.

/71
void Update()

{

/1 2
if (Input.GetMouseButtonDown(0))

{

/13
FireAmmo();

}

/1 4
GameObject SpawnAmmo(Vector3 location)

{
// Blank, for now...

}

/15
void FireAmmo()

{
// Blank, for now...

313

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

// 6
void OnDestroy()
{
ammoPool = null;
}
// 1

Inside the Update() method, check every frame to see if the user has
clicked the mouse to fire the slingshot.

/12

The GetMouseButtonDown() method is part of the Input class and takes
a single parameter. This method will check if the left mouse button has
been clicked and released. The method parameter, 0, indicates that we are
interested in the first (left) mouse button. If we were interested in the right
mouse button, we would pass the value: 1 instead.

/13

Because the left mouse button has been clicked, call the FireAmmo()
method, which we're about to write.

/1 4

The SpawnAmmo () method will be responsible for retrieving and
returning an AmmoObject from the object pool. The method takes
a single parameter: location, indicating where to actually place the
retrieved AmmoODbject. SpawnAmmo () returns a GameObject—the activated
AmmoObject retrieved from the ammoPool Object Pool.

/15

FireAmmo() will be responsible for moving the AmmoObject from
the starting location where it was spawned in SpawnAmmo (), to the end-
position where the mouse button was clicked.

314

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

/1 6

Set the ammoPool = null to destroy the Object Pool and free up
memory. The OnDestroy () method comes with MonoBehaviour and will be
called when the attached GameObject is destroyed.

The SpawnAmmo Method

The SpawnAmmo method will loop through the collection or “pool” of pre-
instantiated AmmoObjects and find the first inactive object. It will then
activate the AmmoODbiject, set the transform.position, then return the
AmmoODbiject. If no inactive AmmoObjects exist, it returns null. Because
the ammo pool was initialized with a set number of AmmoODbijects, there

is an inherent limit on the number of AmmoObjects that can be on-screen
at once. This limitation can be tweaked via changing the poolSize in the
Unity Editor.

Tip The best way to figure out the ideal number of Objects to
pre-instantiate in the Object Pool is by playing your game a lot, then
tweaking the number accordingly.

Let’s implement the SpawnAmmo() method in the Weapon class.

public GameObject SpawnAmmo(Vector3 location)
{

// 1
foreach (GameObject ammo in ammoPool)

{

/] 2
if (ammo.activeSelf == false)

{

315

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

/13
ammo. SetActive(true);
/1 4
ammo.transform.position = location;
/15
return ammo;
}
}
/] 6
return null;
}
/11

Loop through the pool of pre-instantiated objects.
/12

Check if the current object is inactive.
/13

We've found an inactive object, so set it to be active.

/1 4

Set the transform.position on the object to the parameter: location.
When we call SpawnAmmo (), we'll pass a location to make it appear as
though the AmmoObject was fired from the slingshot.

/15
Return the active object.

/1 6

No inactive object was found, so all objects from the pool are currently
being used. Return null.

316

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

The Arc Class and Linear Interpolation

The Arc script will be responsible for actually moving the AmmoODbiject.
We want the ammunition to travel in an arc toward the target. We’ll create
a new MonoBehaviour called, “Arc” to contain this functionality. Because
we're creating Arc as a separate MonoBehaviour, we can attach this script
to other GameObjects in the future to make them travel in an arc as well.

To keep things simple, we'll implement the Arc script to travel in a
straight line at first. After we have things working, we’ll add a small tweak
to make the Ammo travel in a nice-looking arc.

Select the AmmoObject prefab in the Project view and add a new
script called: “Arc” to it. Open the Arc script in Visual Studio and write the
following code:

using System.Collections;
using UnityEngine;

/11
public class Arc : MonoBehaviour
{
/12
public IEnumerator TravelArc(Vector3 destination, float
duration)
{
/13
var startPosition = transform.position;
/1 4
var percentComplete = 0.0f;
/15

while (percentComplete < 1.0f)

{

317

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

// 6
percentComplete += Time.deltaTime / duration;
/17
transform.position = Vector3.Lerp(startPosition,
destination, percentComplete);
// 8
yield return null;
}
/79
gameObject.SetActive(false);
}
}
/11

Because Arc is a MonoBehaviour, it can be attached to GameObjects.
// 2

TravelArc() is the method that will move the gameObject along an arc.
It makes sense to design TravelArc() as a Coroutine because it will execute
over the course of several frames. TravelArc() takes two parameters:
destination and duration. The definitions are as follows: destinationis
the end position and duration is the desired amount of time to move the
attached gameObject from the starting position to destination.

/13

Grab the current gameObject’s transform.position and assign it to
startPosition. We will use startPosition in the position calculation.

/1 4

The percentComplete is used in the Lerp, or Linear Interpolation,
calculation used later in this method. We'll explain its usage then.

318

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS
/15

Check that the percentComplete is less than 1.0. Think of 1.0
as the decimal form of 100%. We only want this loop to run until
percentComplete is 100%. This will make sense when we explain Linear
Interpolation in the next line.

/1 6

We want to move the AmmoObject smoothly toward its destination.
The distance the Ammo will travel each frame is dependent on the
duration we want the movement to take place over, and the time already
elapsed.

The amount of time elapsed since the last frame, divided by the
total desired duration of the movement, equals a percentage of the total
duration.

Take a look at this line again: percentComplete += Time.
deltaTime / duration;

Time.deltaTime is the amount of time elapsed since the last frame
was drawn. The result in that line: percentageComplete, is what we get
when we add the percentage of total duration, to the previous percentage
complete, to get the total percentage of the duration that has been
completed thus far.

We'll use this total percentage complete in the next line to move the
AmmoODbject smoothly.

/17

To achieve the effect where the AmmoODbject appears to move
smoothly between two points at a constant speed, we use a widely
used technique in game programming called Linear Interpolation.
Linear Interpolation requires a starting position, an end position, and
a percentage. When we use Linear Interpolation to determine the
distance to travel per frame, the percentage parameter of the Linear

319

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Interpolation method: Lexp(), is the percentage of duration completed
(percentComplete).

Using the duration percentComplete in the Lerp() method means that
no matter where we fire the AmmoODbject, it will take the same amount of
time to get there. This is obviously unrealistic for a real-world simulation
but for a video game we can suspend the real-world rules.

The Lerp() method will return a point between the start and end,
based on this percentage. We assign the result to the transform.position
of the AmmoODbiject.

// 8
Pause execution of the Coroutine until the next frame.
// 9

If the arc has reached its destination, deactivate the attached
gameObject.
Don’t forget to save this script!

Screen Points and World Points

Before we write the next method, we should talk about Screen Points and
World Points.

Screen Space is the space that is actually visible on-screen and is
defined in pixels. For example, our Screen Space is currently 1280 x 720 or
1280 pixels horizontally by 720 pixels vertically.

World Space is the actual game world and has no limitations in terms of
size. Its size is theoretically infinite and defined in units. We configured the
camera to map world units to screen units when we set the PPU in Chapter 4.

When we move objects around our game, because they can move
anywhere and aren’t limited to only moving on screen, we move them with
respect to World Space. Unity provides some handy methods to convert
from Screen to World Space.

320

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

The FireAmmo Method

Now that we’ve built out the Arc component to move the AmmoODbiject,
switch back to the Weapon class and let’s implement the FireAmmo()
method using the following code.

First, add the following variable to the top of the Weapon class, after
the poolSize variable. This variable will be used to set the velocity of the
ammo fired from the slingshot:

public float weaponVelocity;
Then use the following code to implement the FireAmmo() method:

void FireAmmo()

{

/71

Vector3 mousePosition = Camera.main.

ScreenToWorldPoint (Input.mousePosition);
/12

GameObject ammo = SpawnAmmo(transform.position);
/13

if (ammo != null)

{
/1 4

Arc arcScript = ammo.GetComponent<Arc>();

/15

float travelDuration = 1.0f / weaponVelocity;

321

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

// 6
StartCoroutine(arcScript.TravelArc(mousePosition,
travelDuration));

}
/11

Because the mouse uses Screen Space, we convert the mouse position
from Screen Space to World Space.

/12

Retrieve an activated AmmoODbject from the Ammo Object Pool via the
SpawnAmmo () method. Pass the current weapon'’s transform.position as
the starting position for the retrieved AmmoODbject.

/13

Check to make sure SpawnAmmo () returned an AmmoODbiject.
Remember, it’s possible that SpawnAmmo () returns null if all the pre-
instantiated objects are already in use.

/1 4

Retrieve a reference to the Arc component of the AmmoODbject and
save it to the variable arcScript.

/15

The value weaponVelocity will be set in the Unity Editor. Dividing 1.0
by weaponVelocity results in a fraction that we'll use as the travel duration
for an AmmoODbject. For example, 1.0 / 2.0 = 0.5, so the Ammo will take
half a second to travel across the screen to its destination.

This formula results in speeding up the velocity of ammunition when
the destination is further away. Imagine a scenario where the Player was

322

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

firing at something close-by. If we didn’t ensure that the travel time always
took 0.5 seconds regardless of distance to travel, it’s possible that the
ammo would fire from the slingshot to the enemy so quickly that you really
wouldn't see it. If we were making a first-person shooter, that might be ok.
But in our RPG, we'd like to visibly see the ammo fired from the slingshot at
all times. It simply seems more “fun” this way.

/] 6

Call the TravelArc method we wrote earlier on arcScript. Recall the
method signature: TravelArc(Vector3 destination, float duration).
For the destination parameter, pass the location of the mouse-click. For
the duration parameter, pass travelDuration that we calculated in the
previous line:

float travelDuration = 1.0f / weaponVelocity;

Recall that duration parameter in TravelArc() is used to
determine how long it will take for the AmmoObject to travel from the
starting location to the destination. We're going to set the value of
weaponVelocity when we configure the Weapon Script in the next step.

Configure the Weapon Script

We're nearly done! Just a few more things to tidy up before the player can
use the slingshot. Save the Weapon script, switch to the Unity Editor, and
select the PlayerObject. Because we've already added the Weapon script
to the PlayerObject, drag the AmmoODbject prefab into the Ammo Prefab
property on the Weapon script. Set the Pool Size to 7, and the Weapon
Velocity to 2 as seen in Figure 8-15.

323

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

v .+ [¥ Weapon (Script) - o
Script Weapon Q
Ammo Prefab '\ AmmoObject | e
Pool Size 7 [
Weapon Velocity 2 [

Figure 8-15. Configure the Weapon script

We've chosen to use 0.5 for the Weapon Velocity because it feels like
a natural amount of time for a slingshot bullet to travel. Feel free to tweak
this value to something that seems natural and fun to you.

We're ready to go. Press Play and click on an Enemy to fire the slingshot
and rain down pixelated death.

Fantastic! The slingshot fires ammo, but it doesn’t travel in an arc. Let’s
fix that.

Arcing

Switch back to the Arc script in Visual Studio. We're going to tweak the
script a bit to make the Arc script live up to its name and actually travel in
an arc trajectory.

Revise the while() loop in the Arc script to resemble the following:

while (percentComplete < 1.0f)
{

// Leave this existing line alone.
percentComplete += Time.deltaTime / duration;

/11
var currentHeight = Mathf.Sin(Mathf.PI *
percentComplete);

324

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

/12
transform.position = Vector3.Lerp(startPosition,
destination, percentComplete) + Vector3.up *
currentHeight;

// Leave these existing lines alone.
percentComplete += Time.deltaTime / duration;
yield return null;

}
/11

To understand what’s happening here, we’ll need a tiny bit of high-
school trigonometry. The “period” of a wave is the time it takes to
complete one complete cycle. The period of a sine wave is (2 * i), and half
the period of a sine wave is just (i) as per Figure 8-16.

TH6—y

Period

+08

0.25n 0.5m 0.75n n 1.25n 1.5n 1.75n 2n

i Half Period

Figure 8-16. The sine curve

By passing the result of (percentComplete x Mathf.PI) to the sine
function, we are effectively traveling PI distance down the sine curve every
duration second. The resultis assigned to currentHeight.

325

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS
/12

Vector3.up is a Unity-provided variable representing Vector3(0, 1, 0).
Adding Vector3.up * currentHeight to the result of Vector3.Lerp()
adjusts the position so that instead of traveling in a straight line, the
AmmoObject moves up then down along the Y axis toward the endPosition.

Save the script, return to the Unity Editor, and press Play. Fire the
slingshot and notice how it travels in an arc.

You'll notice that we're not actually playing any type of firing animation
as the Player shoots her slingshot. We'll fix that in the next section.

Animating the Slingshot

We've created a weapon and written the code to fire it, but the Player
looks a bit odd because she just stands there as the ammo mysteriously
materializes and goes flying at the target. In this section, we’re going to
build functionality to play the animations of the player firing the slingshot.
You'll also learn a new approach to simplifying the animation state
management.

To keep things simple, we'll start by applying this new state
management approach to the walking animations because we’re already
familiar with how that state machine works, and how the animations
should look. Once we’re comfortable with the new approach, we'll apply it
to firing the slingshot.

Animation and Blend Trees

Back in Chapter 3 we set up an Animation State Machine for the Player
consisting of animation states containing animation clips. These states
were connected by transitions, which we controlled by setting animation
parameters on the Animator component.

The state machine for the player currently resembles Figure 8-17.

326

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Figure 8-17. The Player Animation State Machine

Because the player can walk in four different directions, it stands to
reason that she can fire the slingshot in four different directions as well. If
we added another four animations states for the four firing directions, this
state machine would start to look rather crowded. If we eventually wanted
to add even more states to the state machine, things would quickly become
difficult to manage, visually confusing, and slow down development overall.

Fortunately, Unity provides us with a solution—enter: Blend Trees.

Blend Trees

Game programming frequently requires blending between two animations,
such as when a character is walking, then gradually begins to run. Blend
Trees can be used to smoothly blend multiple animations into one smooth
animation. Although we won’t be blending multiple animations in our
game, Blend Trees also have a secondary use that we’ll be using.

When used as part of an Animation State Machine, Blend Trees can be
used to transition smoothly from one animation state to another. The Blend
Tree can bundle together various animations into a single node, making your
game architecture cleaner and more manageable. A Blend Tree is controlled
by variables that are configured in the Unity Editor and set in code.

327

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

We're going to create two Blend Trees. As we're already familiar with
the walking animation state machine, the first Blend Tree we create will
be used to re-create the walking states. We'll also update the Player’s
MovementController code to use this Blend Tree. Rebuilding something
familiar will be a good way to get comfortable with Blend Trees.

Once we have the walking Blend Tree working, we'll add the four firing
states as their own Firing Blend Tree and update the Weapon class to use
the Firing Blend Tree.

Clean Up the Animator

It’s time to say goodbye to the old way of managing animation state.
With the PlayerObject selected, open the Animator view. Delete the four
original player walking states from the Animation State Machine. Remove
the transition between Any State and Idle State, as we won't need that
anymore either.

When you're done, the Animator view should look like Figure 8-18.

| Base Layer

Figure 8-18. The Animator view with the old player walking states
removed

328

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

We're going to create a Blend Tree node that will act as a sort of
container for the various walking animation states within it. The Blend
Tree node containing all four walking animations will appear as a single
node in the Animator view. As you can imagine, this approach makes it
much easier for the developer to visualize and manage the states as their

number grows.

Build the Walking Blend Tree

1. Right-clickin the Animator window and select:
Create State » from New Blend Tree.

2. Select the created Blend Node and change its name

in the Inspector to: “Walk Tree”.

3. Double-click the Walk Tree node to view the Blend
Tree Graph.

The Blend Tree should look like Figure 8-19.

Figure 8-19. An empty Blend Tree Graph

4. Select the Blend Tree node and change the Blend
Type in the Inspector to: 2D Simple Diectional.
We'll talk more about Blend Types after we finish
configuring the Blend Tree.

329

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

5. Select the Blend Tree node, right-click, and select:
Add Motion. A Metion holds a reference to an
animation clip and corresponding input parameters.
When we use a Blend Tree for Transitions, the input
parameters are used to determine what motion
should be played.

6. Inthe Inspector, click the dot (Figure 8-20) next to
the Motion we just added to open the Select Motion

selector.
© inspecror | ile palestel G
'Blend Tree | @ &
Blend Type | 2D Simple Directional i)
Parameters 'Blend [~ /Blend [~]
~ Motion Pos X Pos Y
=None (Motion) -0 IO

Figure 8-20. Click the dot to open the Select Motion selector

7. With the Select Motion selector open, select the
player-walk-east animation clip. The Motion should
now look like Figure 8-21.

330

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

© inspector | Tilepalee A
é lBien_a_ Tree

Blend Type

Figure 8-21. Use the player-walk-east animation clip in the Motion

8. Add three more motions and add the following
animation clips: player-walk-south, player-walk-
west, and player-walk-north, as seen in Figure 8-22.

 Motion Pos X Pos Y '] Q_-
= [@player-walk-east | o [0 /o] [] @
= [@player-walk-south @ [0 /[0 | @ | ©
= [Hplayer-walk-west | © [0 o | [| ©
— [Hplayer-walk-north) © [0 170 min | @

. |

Figure 8-22. Four Motions with four animation clips in the Blend
Tree

The Animator window should look like Figure 8-23 when all four
motions have been added. Each motion appears as a child node of the
Blend Tree node.

331

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Figure 8-23. Blend Tree with four Motion nodes, containing
animation clips

Layers, All the Way Down

What we’ve done here is wrap up all four animation states into a
container—a Blend Tree node. This Blend Tree node sits inside a sublayer
of the Base Layer. If you click the Base Layer button in the top-left of the
Animator view, as seen in Figure 8-24, the Animator view will return to the
“Base Layer” and show a single Blend Tree node. When working with the
Animator, you can nest layers inside layers inside layers, if it serves your
architecture.

e —
Base Layer Walk Tree

Figure 8-24. Click the Base Layer button to go back to the base
Animator view

332

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

As we can see in Figure 8-25, this simplified approach to managing
state will keep your game architecture clean and manageable in the future.
The Walk Blend Tree is a single node in the Animator.

Base Layer

Figure 8-25. The Base Layer in the Animator with a single Blend Tree
(Walk Tree) node

A Note About Blend Types

Blend Types are used to describe how the Blend Tree should blend motions.
As you know, we're not actually blending motions so the term Blend Type is
a bit misleading. We're transitioning between them, so we’ve configured the
Blend Tree to use the 2D Simple Directional Blend. This blend type takes
two parameters, and works best with animations that represent different
directions, such as walk north, walk south, and so forth. Because we're
using the Blend Tree to transition between walking north, south, east, and
west, the 2D Simple Directional Blend is perfect for our use case.

Animation Parameters

We've worked with Animation Parameters in the past, when we first
configured the Animation State Machine for the Player and created the
“AnimationState” parameter.

333

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Delete the AnimationState parameter on the left of the Animator
window. We've already deleted the animation transitions that depend on
it. We're going to replace this parameter and the associated states with a
Blend Tree and its own parameters. These parameters will be used in the
code we'll write in the Weapon class.

Create these three Animation Parameters. Capitalization matters,
because we’ll be referring to these in code:

o isWalking of type: Bool
o xDir of type: Float
o yDir of type: Float

The parameter: Blend was created when the Animator was created.
Feel free to delete that parameter, as we won'’t be needing it.

The Animation Parameters section of the Animator should look like
Figure 8-26.

#% Animator

| Layers || Parameters ®
(crName D+

= isWalking)

= xDir 0.0

— on

Figure 8-26. New animation parameters for the walking blend tree

Tip When creating Animation Parameters, a common source of
error is to create them with the wrong data type.

334

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Use the Parameters

With the Blend Tree selected, select the xDir and yDir parameters from the
dropdown in the Inspector as seen in Figure 8-27. We're about to use these
two parameters in the next step.

© Inspector e Palette =

@ [Blend Tree |

8 Blend Type | 2D Simple Directional 2)
Parameters xDir '~ | lyDir

Figure 8-27. Choose the parameters: xDir and yDir from the drop-
down menu

With the Blend Tree node selected, look at the Visualization Window
in the Inspector, underneath the Parameters. The Visualization Window
will automatically appear once you've added more than one motion to the
Blend Tree.

Imagine a Cartesian coordinates plane with (0, 0) running through the
center of the window (Figure 8-28). The four coordinates (1,0), (0, -1), (-1,
0), and (0, 1) can be mapped accordingly to the ends of the dotted lines
in the following. The purpose of the Visualization Window is to help the
developer visualize the configuration.

335

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Two or more of the positions are too close to each
other.

0, 1)
Iy-axis
|

(-1, ?_) _ " x-azas_

Motion Pos X
= [Bplayer-walk-east | © [0
= [@player-walk-south © [0
= [@player-walk-west | © [0
= [@player-walk-north] © [0

Figure 8-28. Imagine a Cartesian coordinate plane

In Figure 8-28, there are four blue dots clustered together at 0, 0 that
you can’t see because they’re covered by the red center dot. Each one of
those dots represents one of the four motions that we added earlier.

Set the Pos X and Pos Y for the first motion so that the blue dot
representing the player-walk-east motion is located at Position: (1, 0), as
seen in Figure 8-29.

336

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Figure 8-29. Set the positions X and Y for all four motions

We also want to set the X and Y positions for the other three motions
accordingly. For example, the player-walk-south motion positions should
be set to (0, -1). Set the positions for all four motions as seen in Figure 8-29.

Ok, but Why?

So we've set up the Blend Tree to use our animation parameters, and taken
care to set the Pos X and Pos Y for each motion, but what’s it all for?

As we mentioned at the beginning of this section, we can manage 2D
state transitions in a Blend Tree by setting the variables on the animator

337

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

component. This is just like when we set the variables on the Animation
State Machine in Chapter 3.

In other words, to use the Blend Tree, we'll write code similar to the
following. Don’t write this code in any class at the moment—it’s just for

illustrative purposes.
// 1
movement.x = Input.GetAxisRaw("Horizontal");

movement.y

Input.GetAxisRaw("Vertical");

/] 2
animator.SetBool("isWalking", true);

/13
animator.SetFloat("xDir", movement.x);
animator.SetFloat("yDir", movement.y);

/11

Grab the input values from the user. The variable: movement is of type:
Vector2.

/12

Set the Animation Parameter: isWalking, to signify the Player is
walking. This will transition to the Walking Blend Tree.

/13

Set the Animation Parameters used by the Blend Tree to transition into
a specific Motion. These are of type: Float because the movement Vector2
contains Floats.

When the user presses to the right, the input values will be (0, 1). We
set this on the Animator, and the Blend Tree plays the player-walk-right

animation clip.

338

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Loop Time

Select each one of the four child nodes of the blend tree and if it is not
checked by default, check the Loop Time property as seen in Figure 8-30.
This property tells the Animator to continuously loop the animation clip
when in this state.

© Inspector e

E player—walk—east - 5

Length 0.333 12 FPS
o:p Time _+Q
Loop Pose O
Cycle Offset 0

Curves Pos: 0 Quaternion: 0 Euler: 0 Scale: 0 Muscles: 0
Generic: 0 PPtr: 1

Curves Total: 1, Constant: 0 (0.0%) Dense: 0 (0.0%) Stream: 1
(100.0%)

2.6 KB

Figure 8-30. Check the Loop Time property

If we didn’t check this box, the animation would play through once
and then stop.

Create the Transitions

Last but not least, we need to create the transitions between the Idle state
and the new Walking Blend Tree.

Right-click on the Idle State node in the Animator and select: Make
Transition. Connect the transition to the Walking Blend Tree. Select the
transition and use the following settings:

Has Exit Time: unchecked
Fixed Duration: unchecked

Transition Duration: 0

339

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Transition Offset: 0
Interruption Source: None

Create a Condition using the isWalking variable we created. Set it to: true.
Create another transition between the Walking Blend Tree and the
Idle state. Select the transition and use the same settings as earlier, except
when you create the isWalking condition, set it to: false.

Updating the Movement Controller

It’s time to put the Walking Blend Tree to use. Open the
MovementController class.

Remove all of the following code from MovementController, as we
won’t need it anymore:

string animationState = "AnimationState";
And also remove the entire CharStates enum:

enum CharStates

{
walkEast = 1,
walkSouth = 2,
// etc
}

Replace the existing UpdateState() method with:

void UpdateState()
{

/71
if (Mathf.Approximately(movement.x, 0) && Mathf.
Approximately(movement.y, 0))

{

340

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

// 2
animator.SetBool("isWalking", false);
}
else
{
/13
animator.SetBool("isWalking", true);
}
/1 4

animator.SetFloat("xDir", movement.x);
animator.SetFloat("yDir", movement.y);

}
// 1

Check if the movement vector is approximately equal to 0, indicating
the player is standing still.

/12
Because the player is standing still, set isWalking to false.
/13

Otherwise movement. x, movement.y, or both, are non-zero numbers,
which means the player is moving.

/1 4

Update the animator with the new movement values.

Save this script and switch back to the Unity Editor. Press play and walk
the Player around the scene. You've gotten rid of the old animation states
and rebuilt the walking animations using a Blend Tree.

341

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Import the Fight Sprites

The first step is to import the sprites used for the Player fight animations.
Drag the spritesheet called, “PlayerFight32x32.png” into the Sprites »
Player folder.

Select the Player Fight spritesheet and use the following import
settings in the Inspector:

Texture Type: Sprite (2D and UI)
Sprite Mode: Multiple

Pixels Per Unit: 32

Filter Mode: Point (no filter)

Be sure the Default button is selected at the bottom
and set Compression to: None

Press the Apply button, then open the Sprite Editor.
From the Slice menu, select Grid By Cell Size and set the Pixel Size to 32.
Press Apply and close the Sprite Editor.

Create Animation Clips

The next step is to create the animation clips. In previous chapters, we
created animation clips by selecting the sprites for each frame of the
animation, then dragging them onto the GameObject. Unity would
automatically create an animation clip and add an animation controller if
one didn'’t already exist.

We're going to create animation clips a little differently this time
because we’'ll be creating a Blend Tree to manage the animations.

Go to the Sprites » Player folder and expand the spritesheet that we
just sliced. Select the first four frames, as seen in Figure 8-31. These sprites
correspond with the Player pulling back the slingshot and firing it.

342

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Assets » Sprites » Player
» i Plaver32x32
v iiiipy

4 Sprites

pO leerFighﬁZxBZ 4
¢ PlayerFight32x32_5
__PlayerFight32x32_6
+ PlayerFight32x32_7
‘-: PlayerFight32x32_8
s ‘lerFighﬂ\Zin? 9
.. PlayerFight32x32_10
+_ PlayerFight32x32_11
PlayerFight32x32_12

iFAssets/Sprites /Player/PlayerFight32x Om——— |

Figure 8-31. Select the first four player fight sprites in the Project view

Right-click and select Create » Animation as seen in Figure 8-32.

Lens Flare
Reveal in Finder R'ender Texture
Open Lightmap Parameters
Delete Custom Render Texture
R Sprite Atlas
Open Scene Additive Sprites >
' Tile

Import New Asset... ”
Import Package > Animator Controller

Export Package...

Find References In Scene Animator Override Controller
Select Dependencies Avatar Mask

Refresh sgr ~ limeline

Figure 8-32. Creating an animation manually

Rename the created animation: “player-fire-east” Select the next four
sprites and follow the same steps. Name the resulting animation: “player-
fire-west”.

343

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

The firing north animation only has two frames: “PlayerFight32x32_8"
and “PlayerFight32x32_9”. Use those frames to create “player-fire-north”.

The firing south animation has three frames: “PlayerFight32x32_10’,
“PlayerFight32x32_11’) and “PlayerFight32x32_12" Use those frames to
create “player-fire-south”

Move all the animation clips we just created to the Animations »
Animations folder.

Build the Fighting Blend Tree

1. Right-clickin the Animator window and select:
Create State » From New Blend Tree.

2. Select the created Blend Node and change its name
in the Inspector to: “Fire Tree”.

3. Double-click Fire Tree to view the Blend Tree Graph

on its own layer.

4. Select the Blend Tree node and change the Blend
Type in the Inspector to: 2D Simple Directional.

5. Select the Blend Tree node, right-click, and select:
Add Motion.

6. Inthe Inspector, click the dot next to the Motion we
just added to open the Select Motion selector.

7. Select the player-fire-east animation clip.

8. Add 3 more motions and add the animation clips for
player-fire-south, player-fire-west, and player-fire-
north.

344

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

9. Create the following Animation Parameters:
isFiring (type: Bool), fireXDir (type: Float),
fireYDir (type: Float), and delete the Blend

parameter.

10. Configure the Blend Tree to use the Animation
Parameters in the drop-down box, as seen in
Figure 8-33.

Parameters fireXDir ~ fireYDir .
Figure 8-33. Configure the Animation Parameters

11. SetPos X and PosY for each Motion as seen in

Figure 8-34.
Motion Pos X Pos Y Rt P
= B player-fire-east | @ [1 0 | [1 |
— [B player-fire-south | © [0 [1-1 | [1]
— (B player-fire-west | © [-1 |0 | [1 |
= | @ player-fire-north | @ |0 IE [|1]

Figure 8-34. Set Pos X and Pos Y for each Motion

12. Do not check the loop time box in the Blend Tree
child nodes. We want to play a firing animation only
once.

345

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

13. Create the transition between the Idle state and the
new Fire Blend Tree. Select the transition and use

the following settings:

Has Exit Time: unchecked
Fixed Duration: unchecked
Transition Duration: 0
Transition Offset: 0

Interruption Source: None

Create a Condition in the transition using the isFiring variable we

created. Set it to: true.

14. Create another transition between the Fire Blend
Tree and the Idle state. Select the transition and

use the same settings as earlier, except for two

differences:

— When you create the isFiring condition, set it to: false.

— Check the Exit Time property and set the value for Exit

Time to: 1.

Exit Time

The Exit Time property on a transition is used to tell the animator after
what percentage of the animation has played should the transition take
effect. By setting the Exit Time property on the fire » idle transition to:
1, we are saying we want 100% of the firing animation to play before

transitioning.

346

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Update the Weapon Class

The next step is to update the Weapon class to take advantage of the Fire
Blend Tree we just built.
Add the RequireComponent attribute to the top of the Weapon class:

[RequireComponent (typeof(Animator))]
public class Weapon : MonoBehaviour

The code we're about to add requires an Animator component, so
make sure there’s always one available.

Add the Variables

We'll need a few additional variables to animate the player. Add the
following variables to the top of the Weapon class.

/11
bool isFiring;

/12
[HideInInspector]
public Animator animator;

/13
Camera localCamera;

/1 4
float positiveSlope;
float negativeSlope;

347

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

//'5
enum Quadrant

{
East,

South,
West,
North

}
/11

A bool to describe if the Player currently firing the slingshot.
/12

Use the [HideInInspector] attribute along with the public accessor
so the animator can be accessed from outside this class but won’t show
up in the Inspector. There’s no reason to show animator in the Inspector
because we plan to programmatically retrieve a reference to the Animator
component.

/13

Use localCamera to store a reference to the Camera so we don’t have to

retrieve it each time we need it.
// 4

Store the slope of the two lines used in the quadrant calculation we’ll
do later in this chapter.

/15

An enum used to describe the direction the Player is firing in.

348

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Start()

Add the Start () method, which we'll use to initialize and set variables that
we’'ll need throughout the Weapon class.

void Start()

{
/] 1
animator = GetComponent<Animator>();
/12
isFiring = false;
/13
localCamera = Camera.main;
}
/] 1

Optimize by grabbing a reference to the Animator component so we

don’t have to retrieve it every time we need it.
/12

Set the isFiring variable to false to start with.
/13

Grab and save a reference to the local Camera so we don’t have to
retrieve it each time it’s needed.

349

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Update Update()

Make two small changes to the Update() method as seen in the following:

void Update()

{
if (Input.GetMouseButtonDown(0))

{

/11
isFiring = true;
FireAmmo();

}

/] 2
UpdateState();

}
/11

When the left mouse button has been pressed and lifted, set the
isFiring variable to true. This variable will be checked inside the
UpdateState() method.

/12

The UpdateState() method will update the animation state every
frame, regardless of whether the user has pressed the mouse button or not.
We'll write this method shortly.

Determining Direction

To determine which animation clip to play, we need to determine the
direction that the user clicked relative to the Player. It wouldn’t look very
good if the user clicked west of the player, only to play the animation firing
the slingshot east.

350

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

To determine the direction the user clicked in, we will divide the
screen into four quadrants: North, South, East, and West. We should think
of all user clicks as being relative to the player, so these four quadrants are
centered on the player as seen in Figure 8-35.

Screen

North

West East

South

Figure 8-35. Four quadrants based on the current player location

We can check which quadrant the user clicked in to determine the
direction the player fires the slingshot, and the proper animation clip to play.

Dividing the screen into quadrants based on the player location
makes sense, but how do we actually programmatically determine which
quadrant the user clicked in?

Think back to the slope-intercept form for a line from your high-school
math days:

y=mx+Db,

where:

m = slope (can be a positive slope or a negative slope)

x and y are the coordinates of a point

b = is the y-intercept, or the point where the line crosses the y-axis.

351

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

This form allows us to find any point along a line. As we saw in
Figure 8-35, we've created two lines by dividing the screen into quadrants.
If we think about the user clicking the mouse on any point in the screen,
we can imagine another set of two lines emerging from that clicked point.

Here's the trick: we can determine what quadrant the user clicked in
based on whether or not the positive sloped line from the mouse-click is
above or below the player’s positive sloped line. Likewise, we check if the
negative sloped line from the mouse-click is above or below the player's
negative sloped line.

Take a look at Figure 8-36 for help in visualizing this. Remember that
lines slanting upward have a positive slope, and lines slanting downward
have a negative slope.

Screen
-
-
.
-
-
-
-
-
-
’
S -
S ¢ PR
~ S 0 -
\\ 9@/@"1@,}(. -,
AN - S, Lo’
Se Taes 0'(. s
S L Ne PR
~ .. .
s\ ~. ,,
~ -
~ N ”
RS >
~ -7 North
~ L4 ~ .
~ i Ss -7
S0 . A ’,/
ﬁ S ”
A \\\ N -
P ~ West East
P ~ L. .
- N .- .
. ~ .- R
-, ~ s S
’/ \\ P ‘\\
. Higher than Positive < N
P . Sloped Line o - South

Figure 8-36. Clicking in the west quadrant

Two lines with equivalent slopes mean that the lines run parallel to
each other.

352

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

To check if one line is above another line with an equivalent slope, we
simply compare their y-intercepts. As seen in Figure 8-36, if the y-intercept
of the mouse-click line is below the negative player line but above the
positive player line, then the user clicked in the west quadrant.

There’s a few things you should internalize about this approach. If the
player were standing in the exact center of the screen, each line would
go from corner to corner. As the player moves around the scene, the lines
move with her. The visible size of the quadrants change, but the slopes
of the two lines dividing the screen remain the same. The slope of each
line remains constant because the screen size never changes—only her
location changes.

When we write the code, we'll rearrange the slope-intercept form
y = mx + b to make it easier to compare the y-intercepts. Because we're
comparing y-intercepts, we need to solve for b. So the rearranged form is:
b=y -mx.

Let’s continue writing the code.

The Slope Method

Given two points in a line, the standard equation for calculating the slope
ofalineis: (y2 -yl) / (x2 - x1) = m, where m = slope.

Written out, that’s: the second y-coordinate minus the first y-
coordinate, divided by the second x-coordinate minus the first x-
coordinate.

Add the following method to the Weapon class to calculate the slope of
aline:

float GetSlope(Vector2 pointOne, Vector2 pointTwo)
{

return (pointTwo.y - pointOne.y) / (pointTwo.x - pointOne.x);

353

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Calculate the Slopes

Let’s put the GetSlope() method to use. Add the following to the Start()
method.

// 1

Vector2 lowerLeft = localCamera.ScreenToWorldPoint(new
Vector2(0, 0));

Vector2 upperRight = localCamera.ScreenToWorldPoint(new
Vector2(Screen.width, Screen.height));

Vector2 upperlLeft = localCamera.ScreenToWorldPoint(new
Vector2(0, Screen.height));

Vector2 lowerRight = localCamera.ScreenToWorldPoint(new
Vector2(Screen.width, 0));

/12
positiveSlope = GetSlope(lowerLeft, upperRight);
negativeSlope = GetSlope(upperLeft, lowerRight);
/11

Create four Vectors to represent the four corners of the Screen. Unity
Screen Coordinates (which are different from the GUI coordinates we used
to create the Inventory and Health Bars) start with (0,0) in the lower-left.

We also convert each point from Screen to World Coordinates before
assigning it. We do this because the slopes we're about to calculate will be
used in relation to the Player. The Player moves around in World Space,
which uses World Coordinates. As we described earlier in this chapter, the
World Space is the actual game world, and has no limitations in terms of size.

// 2

Use the GetSlope() method to get the slope of each line. One line goes
from the lower-left to the upper-right, and the other line goes from the
upper-left to the lower-right. Because the screen size will remain the same,

354

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

so too will the slope. We calculate the slope and save the result to a variable
so we don’t have to recalculate it each time we need it.

Comparing y-Intercepts

The HigherThanPositiveSlopeline() method is where we calculate if the
mouse-click is higher than the positive-sloped line running through the
Player. Add the following to the Weapon class.

bool HigherThanPositiveSlopelLine(Vector2 inputPosition)

{

/11
Vector2 playerPosition = gameObject.transform.position;

/12
Vector2 mousePosition = localCamera.ScreenToWorldPoint(input
Position);

/13
float yIntercept = playerPosition.y - (positiveSlope *
playerPosition.x);

/1 4
float inputIntercept = mousePosition.y - (positiveSlope *
mousePosition.x);

/15
return inputIntercept > yIntercept;

}

/71

Save a reference to the current transform.position for clarity. This
script is attached to the Player object, so this will be the Players position.

355

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS
/12

Convert the inputPosition, which is the mouse position, to World
Space and save a reference.

//3

Rearrange y = mx + b a bit to solve for b. This will make it easy to
compare the y-intercept of each line. The form on this line is: b =y - mx.

/1 4

Using the rearranged form: b = y - mx, find the y-intercept for the
positive sloped line created by the inputPosition (the mouse).

/15

Compare the y-intercept of the mouse-click to the y-intercept of the
line running through the player and return if the mouse-click was higher.

HigherThanNegativeSlopeLine()

The HigherThanNegativeSlopelLine() method is identical to
HigherThanPositiveSlopeline() except we compare the y-intercept of
the mouse-click to the negative-sloped line running through the Player.
Add the following to the Weapon class.

bool HigherThanNegativeSlopelLine(Vector2 inputPosition)

{

Vector2 playerPosition = gameObject.transform.position;
Vector2 mousePosition = localCamera.ScreenToWorldPoint(inpu
tPosition);

float yIntercept = playerPosition.y - (negativeSlope *
playerPosition.x);

356

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

float inputIntercept = mousePosition.y - (negativeSlope *
mousePosition.x);

return inputIntercept > yIntercept;

We'll forgo the explanation of the HigherThanNegativeSlopelLine()
method because it’s nearly identical to the previous method.

The GetQuadrant() method

The GetQuadrant () method is responsible for determining which
of the four quadrants the user has tapped in and returning a
Quadrant. It utilizes the HigherThanPositiveSlopeLine() and
HigherThanNegativeSlopeline() methods that we wrote earlier.

// 1
Quadrant GetQuadrant()

{

/12
Vector2 mousePosition = Input.mousePosition;
Vector2 playerPosition = transform.position;

/13
bool higherThanPositiveSlopeline

HigherThanPositiveSlopel
ine(Input.mousePosition);

bool higherThanNegativeSlopeline
ine(Input.mousePosition);

HigherThanNegativeSlopel

/1 4
if ('higherThanPositiveSlopeline &&
higherThanNegativeSlopeline)

{

357

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

/15
return Quadrant.East;

}
else if (!higherThanPositiveSlopelLine &&

'higherThanNegativeSlopeLine)
{

return Quadrant.South;

}
else if (higherThanPositiveSlopelLine 88&

higherThanNegativeSlopeLine)
{

return Quadrant.West;

}

else

{

return Quadrant.North;

}
/11

Return a Quadrant describing where the user clicked.
/12

Grab references to where the user clicked and the current player

position.
/13

Check if the user clicked above (higher than) the positive sloped and
negative sloped lines.

358

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS
/1 4

If the user’s click is not higher than the positive sloped line, but is
higher than the negative sloped line, the user clicked in the east quadrant.
If this doesn’t quite make sense yet, refer back to Figure 8-36.

/15

Return the Quadrant.East enum.
The rest of the if-statements check the remaining three quadrants and
return their respective Quadrant values.

The UpdateState() Method

The UpdateState() method checks if the Player is firing, checks which
quadrant the user clicked in, and updates the Animator so the Blend Tree
can show the correct animation clip.

void UpdateState()

{
/11
if (isFiring)
{
/12
Vector2 quadrantVector;
/13
Quadrant quadEnum = GetQuadrant();
/1 4

switch (quadEnum)
{

359

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

/15

case Quadrant.East:
quadrantVector = new Vector2(1.0f, 0.0f);
break;

case Quadrant.South:
quadrantVector = new Vector2(0.0f, -1.0f);
break;

case Quadrant.West:
quadrantVector = new Vector2(-1.0f, 1.0f);
break;

case Quadrant.North:
quadrantVector = new Vector2(0.0f, 1.0f);
break;

default:
quadrantVector = new Vector2(0.0f, 0.0f);
break;

// 6
animator.SetBool("isFiring", true);

/17
animator.SetFloat("fireXDir", quadrantVector.x);
animator.SetFloat("fireYDir", quadrantVector.y);

/1 8
isFiring = false;
}

else

{

360

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

/79
animator.SetBool("isFiring", false);

}
/11

Inside the Update() method, we check if the user clicked the mouse
button. If so, the isFiring variable is set equal to true.

// 2
Create a Vector2 to save the values that we’ll pass to the Blend Tree.
/13

Call GetQuadrant() to determine which quadrant the user clicked in
and assign the result to quadEnum.

/] 4
Switch on the quadrant (quadEnum).
/15

If the quadEnum is East, assign the quadrantVector the values (1, 0) in a
new Vector2.

/1 6

Set the isFiring parameter inside the animator to true, so it
transitions to the Fire Blend Tree.

/17

Set the fireXDir and fireYDir variables in the animator, to the
corresponding value for the quadrant the user clicked in. These variables
will be picked up by the Fire Blend Tree.

361

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

/18

Set isFiring back to false. The animation will play all the way through
before stopping, because we set Exit Time in the transition to 1.

/79

If isFiring is false, set the isFiring parameter inside the animator to
false as well.

Save the Weapon script and return to the Unity Editor.

Press the Play button and click the mouse in various places around
the scene to fire the slingshot. Notice how the Player animation shows her
firing the slingshot in a specific direction, then returning to the idle state.

Flicker When Damaged

When a character is damaged in a video game, it’s helpful to have a visual
effect signifying that they've been damaged. To add a bit of polish to our
game, let’s create an effect to tint any character red for just a moment,
perhaps one-tenth of a second, to show that they’ve been injured. This
flickering effect will take place over several frames so it makes sense to
implement as a Coroutine.

Open the Character class and add the following code to the bottom:

public virtual IEnumerator FlickerCharacter()

{

/71
GetComponent<SpriteRenderer>().color = Color.red;

/] 2
yield return new WaitForSeconds(0.1f);

362

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

/13
GetComponent<SpriteRenderer>().color = Color.white;

}
/11

Assigning Color.red to the SpriteRenderer component will tint the
sprite red.

// 2
Yield execution for 0.1 seconds.
// 3

By default, the SpriteRenderer uses a tint color of white. Change the
SpriteRenderer tint back to the default color.

Update the Player and Enemy Classes

Open the Player and Enemy class and update the DamageCharacter()
method in each class to look like the following. When updating
DamageCharacter(), be sure to add the StartCoroutine call to the top of
the while() loop.

public override IEnumerator DamageCharacter(int damage, float
interval)

{
while (true)

{

363

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

// 1
StartCoroutine(FlickerCharacter());

//... Pre-existing code
/11

Start the FlickerCharacter () Coroutine to tint momentarily tint the
Character red.

That's it! Press Play and fire the slingshot at an Enemy. It should flash
red momentarily when hit. If an Enemy manages to catch up to the Player
and damage her, she’ll flicker red as well.

Building for Platforms

In this section, we're going to learn how to compile your game to run on
several platforms outside of the Unity Editor.

Go to File » Build Settings in the Menu Bar. You should be presented
with a screen that looks like Figure 8-37.

364

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Figure 8-37. The Build Settings screen

The Build Settings screen allows you to choose a target Platform, adjust
a few settings, choose which Scenes to include in the build, and then
create the build. If your game consists of multiple scenes, click the Add
Open Scenes button to add them.

We'll select Mac OS X but if you're working on a PC, that should
already be selected.

Press the Build button. Choose a name for the binary and a location to
save it, then press the Save button. Unity will create the build and let you
know when it’s successful.

365

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

To play your game, go to the location you saved it in and double-click
the icon. When presented with the screen shown in Figure 8-38, be sure
you select the correct resolution for the computer you're using. If you use

the wrong resolution, your game may appear choppy.

@ Developing2DGamesWithUnity Configuration

Screen resolution Graphics Quality

800 x 600

1024 x 768 Very Low

1280 x 800 Low

1440 x 900 © Medium

1680 x 1050 High

2048 x 1280 Very High

2560 x 1600 i

2880 x 1800 e
Windowed

Graphics device to use Automatic o

Only show this dialog if the option key is down

Quit Save and Quit

Figure 8-38. Select the resolution for your computer

366

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

This screen also allows the user to select the graphics quality, which is
important if they have an older machine.
Press the Play! button to play your game!

Exiting the Game

All good things must come to an end, and at some point, the user will want
to quit your game. In this section, we’ll learn how to build functionality
that allows the user to press the Escape key to exit your game.

This game-ending functionality will not work when playing the game
inside the Unity Editor—it’s only meant for when you’ve built your game to
run outside the editor.

Open the RPGGameManager class and add the following:

void Update()

{
if (Input.CGetKey("escape"))
{
Application.Quit();
}
}

The Update () method will check with every frame to see if the user has
pressed the escape key. If so, quit the application.

Summary

Whew—we’ve covered a lot in this chapter. You've used Coroutines to
build intelligent chasing behavior and in doing so, constructed the first
real challenge for the gamer. The player can die now and needs to be
able to defend herself, so we built a slingshot that fires ammunition at
the Enemies. The slingshot utilizes a widely used optimization technique

367

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

called Object Pooling. We took advantage of some high-school level
trigonometry for the trajectory arc. We learned about Blend Trees and how
they can help us to better organize our game architecture and streamline
the state machine if we want to add additional animations in the future.
We also learned how simple it is to build our game for the PC or Mac and
run it outside of Unity.

You probably have some ideas about how to change around and
improve your game. The great thing is: you now have the skills to do so!
Experiment, break things, tinker with the scripts, read the documentation,
and examine other people’s code to learn from it. The only limitations to
what you can build is how much effort you're willing to put into it.

What’s Next

You may be wondering what'’s next—how do you advance your game
development knowledge and build better games. A great place to start is by
engaging with the game developer community.

Communities

No one is born an expert at anything. The key to becoming a better
developer is learning from more experienced developers. You never want
to be the best developer in the room. And if you are, make sure the other
developers are great as well so you can learn from them.

Meetup.com is a great place to find monthly game developer
gatherings. Meetup also has listings for the Official Unity User Group
Meetups. It’s possible that your city has a Unity Meetup and you didn’t
know about it. There are Official Unity Users Groups all over the world. If
there isn’t a local Unity Meetup in your city or town, consider starting one!

368

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Discord is a voice and text chat application designed specifically for
gamers. It’s also a great place to virtually meet developers as well. Discord
communities can answer questions as well as provide helpful interactions
with the community. Sometimes game developers will create their own
Discord server dedicated to their game, where they gather feedback, gather
bug reports, and distribute early builds.

Any discussion of community would be remiss without mentioning
Twitter. Twitter can be helpful for getting the word out and marketing your
game as well as connecting with other Unity developers.

Reddit maintains two active sub-reddits of use to game developers: /r/
unity2d and /r/gamedev. These sub-reddits can be a great place to post
demos of your work and gather feedback, as well as engage in discussion
with other passionate game developers. The /r/gamedev sub-reddit also

has its own Discord server.

Learn More

Unity hosts a wide range of frequently updated educational content on
their site at: https://unity3d.com/learn/. The content ranges from
absolute beginner to advanced, so you should definitely check it out.

This website: https://80.1v, has great articles on a wide variety of
subjects that are of interest to game developers. Some articles are Unity-
specific while others are more generic techniques.

YouTube also can be helpful for learning new techniques, though the
quality of content can vary widely. Many talks from past Unity conferences
can be easily found on YouTube.

Where to Find Help

Everyone at some point will run into a problem that no matter what, they
just can’t seem to solve. For that situation, there are several important
resources to know about.

369

https://unity3d.com/learn/
https://80.lv

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

Unity Answers (https://answers.unity.com) is a helpful resource,
structured for questions and answers (Q&A) instead of extended
discussions. For example, a question might be titled: “Trouble debugging
this movement script.”

The Unity Forums (https://forum.unity.com) are active message-
boards frequented by Unity employees and other game developers. The
Forums are designed for discussions around topics rather than straight-up
Q&aA interactions. You'll find plenty of helpful “What are some techniques
for optimizing this” discussions, with more back and forth than you'd find
in Unity Answers.

Last but not least, https://gamedev.stackexchange.comis part of the
Stack Exchange network of Q&A websites. It’s not as busy as the Unity sites,
but absolutely worth your time if you run into an issue.

Game Jams

Game Jams are hackathons for building video games. They usually
have a time constraint such as 48 hours, which is meant to put pressure
on participants to focus on only what is necessary in a game as well as
encourage creativity. Game jams need all types of participants: artists,
programmers, game designers, sound designers, and writers. Sometimes
game jams have a specific theme, which is usually kept secret ahead of time.
Game jams can be a fantastic way to meet local (or remote) game
developers, push yourself, expand your knowledge, and walk away
with (hopefully) a finished game. The Global Game Jam (https://
globalgamejam.org) is a yearly global game jam with various sites around
the world and hundreds of participants. Ludum Dare (https://1djam.com)
is a weekend-long game jam that runs every four months. Both of these
game jams are great to participate in if you want to see and make some
amazing games. Another good place to find online game jams is itch.io/

jams.

370

https://answers.unity.com
https://forum.unity.com
https://gamedev.stackexchange.com
https://globalgamejam.org
https://globalgamejam.org
https://ldjam.com

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

News and Articles

Gamasutra.com is the standard bearer as far as game news, jobs, and
industry happenings. Another good site is indiegamesplus.com with news,
reviews, and interviews with indie game developers.

Games and Assets

As we mentioned way back in Chapter 1, the Unity Asset Store contains
thousands of free and paid game assets, as well as scripts, textures, and
shaders. The common criticism that you should be aware of with regards
to the Asset Store is that games made strictly with assets from the store
tend to look “same-y.”

Itch.io is a widely known community for publishing indie games
as well as assets. You can upload games you've made, play other indie
games for free, or support other developers by purchasing their games.
Itch.io is also a great place to buy art or sound assets for your game.
Gamejolt.com is similar to itch.io, but focuses entirely on indie games,
and doesn’t have assets.

OpenGameArt.org has a tremendous amount of user-posted game art
that is available under a variety of licenses.

Beyond!

If you've stuck with me this long, then you have the tenacity to read
through a several hundred page programming book. This tenacity will
serve you well in game programming, because although there are plenty
of examples and books out there teaching the fundamentals of game
programming, the really unique and fun games often involve elements for
which there is no tutorial. Building interesting and fun games can be very

371

CHAPTER 8 ARTIFICIAL INTELLIGENCE AND SLINGSHOTS

difficult, but there are few other creative ventures as rewarding. The most
important thing to remember about getting better at game programming
is to keep making games! Game development is just like any other
discipline—if you keep practicing, one day you'll look back to where you
started and amaze yourself.

372

Index

A

AAA game development studios, 8
Ammo class
Ammo layer, configuration, 305
AmmoObiject, 308
import assets, 304
layer collision matrix (see
Layer-based collision
detection)
script, build, 306-307
Sprite Renderer
component, 304-305
Animation
Can Transition to Self, 82
clips, creation, 342-344
components, 46, 47
conditions, 82
creation, 46
dragging sprites,
PlayerObijects, 45
Exit Time, 82, 346
Fixed Duration, 82
Has Exit Time, 82
parameter, 78, 288
AnimationState, 80
animator window, 79
CharStates, 86
condition, settings, 82

© Jared Halpern 2019

hard-coding, 86

inspector window, 88

MovementController.cs
script, 82-85

names and types,
displaying, 89

SetInteger() method, 87

transition, configuration, 81

trigger state changes, 82
SetInteger() method, 87
state objects, 75

player-idle, default, 76

transition, creation, 77-78

window organization, 76
transition duration, 82

Animation Controller, 46, 48-49
Animator State Machine
Any state, 50, 77
controller, 49
Entry state, 50
Layer Default State, 76
Make Transition, 77
speed, changing, 53
window, 49
Anisotropic filtering, 106
Anti-aliasing, 106
Arcing, 324-326
Awake() method, 312

373

J. Halpern, Developing 2D Games with Unity, https://doi.org/10.1007/978-1-4842-3772-4

https://doi.org/10.1007/978-1-4842-3772-4

INDEX

B

Bethesda Game Studios, 8
Blend trees
animation
parameters, 333-334, 338
animator view, 328
base layer, 332-333
build, walking blend tree, 329
coding, 338
creation, 328
2D state transitions, 337
loop time property, 339
MovementController class
(see Movement Controller)
parameters, 335-337
player-walk-right
animation clip, 338
transitions, creation, 327, 339-340
types, 333
walking animation states, 329
Blend types, 333
Blizzard Entertainment, 8
Boolean stackable property, 160

C

C#, 10,17, 66
abstract keyword, 145, 261, 270
base keyword, 269
casting, 88
comments, 67
const keyword, 219
enumerated constants, 86
internal access modifier, 258

374

List, data structure, 312
namespaces, 68
override keyword, 264, 270
using keyword, 68
Camera manager
character class design, 256
property, 254
RPGCameraManager
class, 251-253, 255
virtual keyword, 256
Canvas, 175
Canvas Scaler, 177
Pixel Perfect, 207
Reference Pixels Per Unit, 177
Render Mode, 176
UI Scale Mode, 177, 207
Character class, 144-145, 271
ChooseNewEndpoint() method, 285
angles to radians, 287
directional vector, 287
enemy walk animation, 287
Gizmos, 299-302
Move() Coroutine, 291, 293-294
OnTriggerEnter2D(), 295-297
OnTriggerExit2D(), 297-298
Wander script, 294-295
Cinemachine
Adam Myhill, 110
installation
component, 113
unity 2017, 111-112
unity 2018, 112-113
virtual camera (see Virtual
camera)

Circle collider 2D, 148-149
Colliders, 54-55, 106, 130-132,
151, 153-155
Communities, 368-369
Composite collider, 134-136
Console view, 21
Consumable script, 161
Consumables layer, 154
Coroutines
abstract methods, 262
DamageCharacter()
method, 263, 265-266
Enemy class, 263
explanation, 259
IEnumerator, 262, 280
KillCharacter(), 267
OnEnable() method, 267
ResetCharacter() declaration, 266
return type, 259
RunEveryFrame(), 260
StopCoroutine(), 273
storing references, 271
time intervals, 261
while() loop, 261
yield statement, 260
Cross-platform compilation, 2
Custom Editor, 22
Custom Fonts, 188

D

DamageCharacter()
method, 263, 265-266,
271, 363

INDEX

Data-oriented design, 35
Dynamic rigidbody, 56

E

Edit Mode, 26-27
Enemy class
access modifier
keyword, 258
DamageCharacter(), 263
HitPoints, 257
player’s health bar, 257
refactoring code, 257-258
Entity-Component design, 33-35
EventSystem, 176
Exiting game, 367
Exit Time property, 346

F

FireAmmo()

method, 314, 321-323
First-person shooter (FPS), 8
FixedUpdate() method, 70, 73
Flickering effect, 362
float.Epsilon, 265
Framerate, 73

G

Game engines
Adrian Carmack, 8
advantages, 1
blast furnace, 5

375

INDEX

Game engines (cont.)
Chip Morningstar, 6
component-based
architecture, 2
cross-platform compilation, 2
description, 1
functionality, 3
historically, 6-7
impact, 8
John Carmack, 8
John Romero, 8
Maniac Mansion, 7
proprietary in-house game
engine, 9
Ron Gilbert, 6
SCUMM game engine, 7
Tom Hall, 8
types, 3
Wolfenstein 3D engine, 8
Game jams, 370
Game manager, 233
GameObiject, 19-20, 24, 31
add script, 74

Animation Controller, 46, 48-49

entity-component
design, 33-35
hierarchy view, 32
icons for visibility, 244
“parent-child”
relationship, 19-20
Prefabs
folder, 63-64
instances, 65
transform component, 35

376

Game play code, 2
Game View, 19
GetAxisRaw() method, 73, 87
GetComponent()
method, 73, 165
GetMouseButtonDown()
method, 314
GetQuadrant() method, 357-359
GetSlope() method, 354
Git, 16
Gizmos, 245, 299-302
OnDrawGizmos(), 299

H

Handle position controls, 24-26
Health bar
anchor points, 179-184
building, 176
background image,
adjusting, 178
resizing, 179
UI Scale Mode,
setting, 177
canvas object, 175-176
character script, 193
component, 202-206
custom fonts, 188
Fill Amount, 201
hit-points, 189
HPText anchor object, 191
HPText object, 190
text component,
configuration, 190

image masks, 184
BarMask, 185
components, 186
meter object, 187
source image, 185
player script
AdjustHitPoints()
method, 197
Start() method, 194
scriptable objects, 192-193
script, creation, 198-202
Ul elements, 176
HealthBarObject, 176-178, 191,
202,203
Health points, 143
HidelnInspector
attribute, 200, 348
Hierarchy Window, 19-20
HigherThanNegativeSlopeLine()
method, 356
HigherThanPositiveSlopeLine()
method, 355
hitObject property, 171
Hit-points, 144-145
HitPoints script, 192

IEnumerator, see Coroutines
Image component, 210
Inspector window, 21
locking, 206
preview multiple
sprites, 167

INDEX

Inventory script
AddItem() method, 223-226,
230-231
Player Script, updation, 228-229
properties, 218-219
slot Prefabs, 220-222
Start() method, 222
Inventory slot
configuration
background, 211
ItemImage, 210
QtyText, 213-214
tray object, 212-213
Prefabs, creation, 214-215
script, building, 215, 217
Is Trigger property, 123, 154, 278, 304

J

Jittering effect, 125

K

Kinematic rigidbody, 56

L

Layer-based collision
detection, 305
collider components, 151
configuration, 153
enemies layer, addition, 152
layer, creation, 151
usage, 151

377

INDEX

Layer collision matrix, 305
Layers
blocking, 59
collision detection, 58
drop-down menu, 58
sorting, 59, 148
addition, 61
characters, 62
orthographic
perspective, 60
window, 58
Lerp() method, 320
Linear Interpolation, 319
Lucasfilm Games, 7

M, N
Materials, Sprite2D, 129-130
Method stubs, 313
MonoBehaviour, 69, 144
MonoDevelop, 17
Move() Coroutine, 291, 293-294
Movement Controller, 82
animation clips,
creation, 342-344
CharStates enum, 340
direction determination,
350, 352-353
Exit Time property, 346
fighting blend tree,
build, 344-346
GetQuadrant()
method, 357-359, 361
GetSlope() method, 354

378

HigherThanNegative
SlopeLine() method, 356
HigherThanPositive
SlopeLine() method, 355
movement vector, 341
player fight spritesheet, 342
quadrants, player location, 351
slope method, 353
Start() method, 349
Update() method, 350
UpdateState()
method, 340, 359-362
variables to animate player, 347
y-intercept, 355-356
Weapon class, update, 347
Move() method, 293
MovePosition(), 294

O

Object pooling, 308-309
ammoPool, 312
description, 308
poolSize (see Weapon class)
OnCollisionEnter2D() method, 272
OnCollisionExit2D() method, 273
OnDestroy() method, 315
OnTriggerEnter2D()
method, 154, 295-297
OnTriggerExit2D()
method, 297-298
Orthographic cameras
custom resolution, 110
3D projects, 107

screen resolution, 107, 109
size, 107
Orthographic size, 253

PQ

Pixels Per Unit (PPU), 40, 127
Platforms, building, 364-366
Player animation state
machine, 327
Player class, 145-146
DamageCharacter()
methods, 271
enemy script,
configuration, 274-275
OnCollisionEnter2D()
method, 272-273
OnCollisionExit2D()
method, 273-274
ResetCharacter(), 269-270
updation, 267, 269
Play Mode, 26-27
Play, Pause, and Step
controls, 26
Prefabs, 64, 147, 227, 228
advantages, 63
circle collider 2D, set up,
148-149
coin, creation, 147-148
custom tag, set up, 149-150
import settings, 147
SpawnPoint GameObject, 242
Primitive collider, 54
Project Window, 20

INDEX

R

Raycasting, 8
Refactoring, 257
Renderer component, 102
RequireComponent attribute, 347
ResetCharacter(), 269
Rigidbody 2D component, 140
dynamic, 56
Freeze Rotation, 134
kinematic, 56
static, 56
RPGCameraManager, see Camera
manager
RPGGameManager, see Singletons

S

Scene, 31, 38
Saving, 38

Scene view, 19

Screen Coordinates, 354

Screen Space, 320

Script
GetAxisRaw() method, 74
MonoBehaviour class, 70
MovementController, 66-67
movementSpeed, 72
UnityEngine namespace, 69

Scriptable objects
consumable item, 162-163
consumable script, build, 161
CreateAssetMenu, 158-159
creation, 157, 159, 160

379

INDEX

Scriptable objects (cont.)
heart power-up,
creation, 165-166
heart prefab, 168
multiple sprites, 168
OnTriggerEnter2D()
method, 170-171
player’s hit-points, 172
prefab settings, 169
player collisions, 164-165
ScriptableObiject class, 157
string property, 156
use cases, 156
Script Editor, 17
SCUMM game engine, 7
Separation of concerns, 33
Singletons
benefits, 234
creation, 235-236
SetupScene() method, 237
Start() method, 237
downsides, 234
GameManager prefab,
build, 238
rationale, 234
RPGGameManager class, 235
software design pattern, 234
unified access point, 234
Slingshots
animations, 326
defense, 302-303
Weapon class (see Weapon
class)
Sorting layers, 101, 102

380

SpawnAmmo() method,
314-316, 322
Spawn points
configuration, 245
InvokeRepeating() method, 240
MonoBehaviours, 238-240
playerSpawnPoint
property, 246
prefab, build, 241
Gizmos button, 245
icon, selection, 244
renaming, 242
scene view, 243
quaternion, 241
repeatInterval, 240
spawn enemies, 249-250
SpawnObject() method, 247
SpawnPlayer() method, 247
Sprite Editor tool
grid by cell size, 42
pixel size, 42
slice button, 42
Sprite Renderer, 37, 46, 102
Sprites, 35
add component, 37
import settings, 39
compression, 40
filter mode, 40
texture type, 40
physics shape, 138-140
Player GameObject, 38-40
pixel size, 42
properties, 41
resulting sliced sprites, 43

scene view, 44
Sprite Selector screen, 43
Stardew Valley, 36
Stabilization, 125-126
Start() method, 70, 349

T

Tags, 57
Text object
alignment, 213
Font Style, 213
Tilemap Collider 2D, 130-132
Tilemap Renderer, 93, 102, 103,
116, 119, 129, 130
Tilemaps, 106
Active Tilemap, 101
characters sorting layer, 105
component, 93
ground layer, 102
material properties, 129
multiple, 101
organization, 92
outdoor objects tile palette, 103
pixel-perfect location, 129
Sprite2D material, 130
Sprite Import Settings, 92
Tile palettes
creation, 93-95
Erase tool, 103
navigating, 96
organization, 93
painting, 96-101
rotate tiles, 103

INDEX

Transform component, 35, 80
Transform tools, 23-24
TravelArc() method, 318, 323
Triggers and scripting, 154-155

U

Ul Elements
Anchor Points, 179-184
BarMask, 184-187
Fill Amount, 187
Fill Method, 187, 188
Rect Transform, 176
render order, 188
Unity
configuration, 14-15, 17
cross-platform support, 10
documentation, 29
drag-and-drop, 10
Editor Extension
functionality, 11
game engine, 10-11
graphics APIs, 10
installation, 13-14
interface, 18
licenses, 10
preferences menu, 28
project structure, 28-29
script editor, 17
Unity Asset Store, 11, 19
Unity Meetup, see Communities
Unity Package Manager, 111, 112
Unity Physics Engine, 54, 56
Unity Screen Coordinates, 354

381

INDEX

UnityScript, 67

Unity Teams, 15

Unity Users Groups, 368

Update() method, 70, 73, 314,
350, 367

UpdateState() method, 359-362

\'

Vector2, 73
Vector3
sqrMagnitude, 293
up keyword, 326
Virtual camera, 252
background color, 117
Body section, 118
Cinemachine Brain, 114
Cinemachine Confiner, 120-122
Bounding Shape 2D, 123
Composite Collider 2D, 122
dead zone, 117-118, 124
polygon collider
2D, 121-123
damping properties, 119
Game Window Guides, 117
post-processing pipeline, 128
target, 115
tracking point, 117
Visual Studio, 17
auto-completion, pop-up, 89
MovementController
script, 66-67

382

W XY Z
Wander algorithm
ChooseNewEndpoint()
method, 285
Circle Collider, 278
Move() Coroutine, 285
pursuit logic, 295
script, creation, 279-280
Start() method, 282-283
trigger and radius, 279
variables, 280-282
WanderRoutine()
Coroutine, 283, 285
Weapon class
ammoPool and
ammoPrefab, 311
Arc class, 317
Arc script, 324-325
Awake() method, 312
code, build, 310-311
FireAmmo() method, 321-323
Lerp() method, 320
linear interpolation, 319
screen points and
world points, 320
SpawnAmmo
method, 315-316
stubbing-out
methods, 314-315
Weapon script,
configuration, 323-324

INDEX

Window views project, 20
asset store, 19 scene view, 19
console, 21 Wolfenstein 3D
game view, 19 engine, 8
hierarchy view, 19 World Space, 320, 354
inspector window, 21 World units, 107, 108

383

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	About This Book
	Chapter 1: Games and Game Engines
	Game Engines—What Are They?
	The First Way to Build a House
	The Second Way to Build a House
	About the First Approach
	About the Second Approach
	In conclusion …

	Game Engines Historically
	Game Engines Today
	The Unity Game Engine
	Summary

	Chapter 2: Introduction to Unity
	Install Unity
	Configure Unity
	On Disk
	In the Cloud

	The Script Editor: Visual Studio
	Navigating the Unity Interface
	Understanding the Different Window Views
	Configure and Customize the Layout
	The Transform Toolset
	Handle Position Controls
	Play, Pause, and Step Controls
	Unity Project Structure
	Unity Documentation
	Summary

	Chapter 3: Foundations
	Game Objects: Our Container Entities
	Entity-Component Design
	Components: Building Blocks
	Sprites
	Animations
	The Animator State Machine

	Colliders
	The Rigidbody Component
	Tags and Layers
	Tags
	Layers
	Sorting Layers

	Introducing: Prefabs
	Scripts: Logic for Components
	State and Animations
	More State Machines
	Animation Parameters

	Summary

	Chapter 4: World Building
	Tilemaps and Tile Palettes
	Creating Tile Palettes
	Painting with Tile Palettes
	The Tile Palette

	Working with Multiple Tilemaps
	Graphics Settings
	The Camera
	Using Cinemachine
	Installing Cinemachine in Unity 2017
	Installing Cinemachine in Unity 2018
	After Installing Cinemachine

	Virtual Cameras
	Cinemachine Confiner

	Stabilization
	Materials
	Colliders and Tilemaps
	Tilemap Collider 2D
	Composite Colliders
	Editing Physics Shapes

	Summary

	Chapter 5: Assembling the Nuts and Bolts
	Character Class
	Player Class
	Focus on Prefabs
	Create a Coin Prefab
	Set Up the Circle Collider 2D
	Set Up a Custom Tag

	Layer-Based Collision Detection
	Triggers and Scripting
	Scriptable Objects
	Creating a Scriptable Object
	Build the Consumable Script
	Assembling Our Item
	Player Collisions
	Creating a Heart Power-Up
	Summary

	Chapter 6: Health and Inventory
	Creating a Health Bar
	Canvas Objects
	UI Elements
	Building the Health Bar
	Anchors
	Adjusting the Anchor Points
	UI Image Masks
	Importing Custom Fonts
	Adding Hit-Points Text
	Scripting the Health Bar
	Scriptable Object: HitPoints
	Update the Character Script
	Update the Player Script
	Create the HealthBar Script
	Configure the Health Bar Component

	Inventory
	Import the Inventory Slot Image
	Configure the Inventory Slot
	Configure the ItemImage
	Configure the Background
	Configure the Tray
	Configure QtyText—the Quantity Text
	Create the Prefabs
	Build the Slot Script

	Create the Inventory Script
	Set-Up Properties
	Instantiate the Slot Prefabs
	Fill in the Start() Method
	The AddItem Method
	Update the Player Script
	One Last Thing …

	Summary

	Chapter 7: Characters, Coroutines, and Spawn Points
	Create a Game Manager
	Singletons
	Creating the Singleton
	Build a GameManager Prefab

	Spawn Points
	Build a Spawn Point Prefab
	Configure the Player Spawn Point
	Spawn the Player
	In Summary
	A Spawn Point for Enemies

	Camera Manager
	Using the Camera Manager
	Character Class Design
	The Virtual Keyword

	The Enemy Class
	Refactoring
	The Internal Access Modifier

	Coroutines
	Invoking Coroutines
	Pausing or “Yielding” Execution
	A Complete Coroutine
	Coroutines with Time Intervals
	The Abstract Keyword
	Implementing the Enemy Class
	The DamageCharacter() method
	ResetCharacter()
	Calling ResetCharacter() in OnEnable()
	KillCharacter()

	Updating the Player Class
	Refactoring Prefab Instantiation
	Review
	Using What We’ve Built
	OnCollisionEnter2D
	OnCollisionExit2D
	Configure the Enemy Script

	Summary

	Chapter 8: Artificial Intelligence and Slingshots
	The Wander Algorithm
	Getting Started
	Create the Wander Script
	Wander Variables
	Build Out Start()
	The Wander Coroutine

	Choosing a New Endpoint
	Angles to Radians to Vectors!
	Enemy Walk Animation
	The Move() Coroutine
	Configure Wander Script
	OnTriggerEnter2D()
	OnTriggerExit2D()
	Gizmos

	Self-Defense
	Classes Needed

	Ammo Class
	Import the Assets
	Add Components, Set Layers
	Update the Layer Collision Matrix
	Build the Ammo Script
	Before We Forget ... Make the AmmoObject Prefab

	Object Pooling
	Building the Weapon Class
	Stubbing-Out Methods
	The SpawnAmmo Method
	The Arc Class and Linear Interpolation
	Screen Points and World Points
	The FireAmmo Method
	Configure the Weapon Script
	Arcing

	Animating the Slingshot
	Animation and Blend Trees

	Blend Trees
	Clean Up the Animator
	Build the Walking Blend Tree
	Layers, All the Way Down
	A Note About Blend Types
	Animation Parameters
	Use the Parameters
	Ok, but Why ?
	Loop Time
	Create the Transitions

	Updating the Movement Controller
	Import the Fight Sprites
	Create Animation Clips
	Build the Fighting Blend Tree
	Exit Time
	Update the Weapon Class
	Add the Variables
	Start()
	Update Update()
	Determining Direction
	The Slope Method
	Calculate the Slopes
	Comparing y-Intercepts
	HigherThanNegativeSlopeLine()
	The GetQuadrant() method
	The UpdateState() Method

	Flicker When Damaged
	Update the Player and Enemy Classes

	Building for Platforms
	Exiting the Game
	Summary
	What’s Next
	Communities
	Learn More
	Where to Find Help
	Game Jams
	News and Articles
	Games and Assets

	Beyond!

	Index

