

Learn C# In One Day and Learn It Well
C# for Beginners with Hands-On Project

The only book you need to start coding in C# immediately

By Jamie Chan

http://www.learncodingfast.com/csharp

Copyright © 2017 (Revised Edition)

All rights reserved. No part of this publication may be reproduced, distributed, or
transmitted in any form or by any means, including photocopying, recording, or other
electronic or mechanical methods, without the prior written permission of the
publisher, except in the case of brief quotations embodied in critical reviews and
certain other noncommercial uses permitted by copyright law.

Preface

This book is written to help you learn C# FAST and learn it WELL.

The book does not assume any prior background in coding. If you are an absolute
beginner, you'll find that this book explains complex concepts in an easy to
understand manner. If you are an experienced coder but new to C#, this book will
provide you with enough depth to start coding in C# immediately.

All examples in the book are carefully chosen to demonstrate each concept so that
you can gain a deeper understanding of the language. Topics are carefully selected to
give you a broad exposure to C#, while not overwhelming you with information
overload. These topics include object-oriented programming concepts, error handling
techniques, file handling techniques and more.

In addition, as Richard Branson puts it: "The best way of learning about anything is
by doing". This book comes with a project where you’ll be guided through the coding
of a simple payroll software from scratch. The project uses concepts covered in the
book and gives you a chance to see how it all ties together.

You can download the source code for the project and all the sample programs in this
book at

http://www.learncodingfast.com/csharp

http://www.learncodingfast.com/csharp
http://www.learncodingfast.com/csharp

Contact Information

I would love to hear from you.
For feedback or queries, you can contact me at jamie@learncodingfast.com.

mailto:jamie@learncodingfast.com

More Books by Jamie

Python: Learn Python in One Day and Learn It Well

Java: Learn Java in One Day and Learn It Well

http://mybook.to/Python
http://myBook.to/javainoneday

CSS: Learn CSS in One Day and Learn It Well

http://mybook.to/CSS

Table of Contents

Chapter 1: Introduction to C#
What is C#?
Why Learn C#?

Chapter 2: Getting ready for C#
Installing Visual Studio Community
Your First C# Program
Basic Structure of a C# Program
Directive
Namespace
The Main() Method
Comments

Chapter 3: The World of Variables and Operators
What are variables?
Data Types in C#
int
byte
float
double
decimal
char
bool
Naming a Variable
Initializing a Variable
The Assignment Sign
Basic Operators
More Assignment Operators
Type Casting In C#

Chapter 4: Arrays, Strings and Lists
Array
Array Properties and Methods
String
String Properties and Methods
Lists
List Properties and Methods
Value Type vs. Reference Type

Chapter 5: Making our Program Interactive
Displaying Messages to Users
Escape Sequences
Accepting User Input
Converting a String to a Number
Putting it all Together

Chapter 6: Making Choices and Decisions
Condition Statements
Control Flow Statements
If Statement
Inline If
Switch Statement
For Loop
Foreach Loop
While Loop
Do while
Jump Statements
Break
Continue
Exception Handling
Specific Errors

Chapter 7: Object-Oriented Programming Part 1
What is Object-Oriented Programming?
Writing our own class
Fields
Properties
Methods
Constructors
Instantiating an Object
Static Keyword
Advanced Method Concepts
Using Arrays and Lists
Using params keyword
Passing Value Type vs Reference Type Parameters

Chapter 8: Object-Oriented Programming Part 2
Inheritance
Writing the Parent Class

Writing the Child Class
The Main() method
Polymorphism
GetType() and typeof()
Abstract Classes and Methods
Interfaces
Access Modifiers Revisited

Chapter 9: Enum and Struct
Enum
Struct

Chapter 10: LINQ

Chapter 11: File Handling
Reading a Text File
Writing to a Text File

Project – A Simple Payroll Software
Overview
The Staff Class
Fields
Properties
Constructor
Method
The Manager : Staff Class
Fields
Properties
Constructor
Method
The Admin : Staff Class
Fields
Property
Constructor
Method
The FileReader Class
The PaySlip Class
Fields
Enum
Constructor
Methods

The Program Class
The Main() Method

Thank You

Appendix A – Project Answer

Chapter 1: Introduction to C#

Welcome to C# programming and thank you so much for picking up this book!

Whether you are a seasoned programmer or a complete novice, this book is written to
help you learn C# programming fast. Topics are carefully selected to give you a broad
exposure to C# while not overwhelming you with information overload.

By the end of the book, you should have no problem writing your own C# programs.
In fact, we will be coding a simple payroll software together as part of the project at
the end of the book. Ready to start?

First, let’s answer a few questions:

What is C#?

C#, pronounced as C Sharp, is an object-oriented programming language developed
by Microsoft in the early 2000s, led by Anders Hejlsberg. It is part of the .Net
framework and is intended to be a simple general-purpose programming language
that can be used to develop different types of applications, including console,
windows, web and mobile applications.

Like all modern programming languages, C# code resembles the English language
which computers are unable to understand. Therefore, C# code has to be converted
into machine language using what is known as a compiler (refer to footnote). The
compiler that we’ll be using in this book is the free Visual Studio Community 2017
provided by Microsoft.

Why Learn C#?

C# has syntax and features that resemble other programming languages like Java and
C++. As such, if you have any prior programming experience, you will find learning
C# a breeze. Even if you are totally new to programming, C# is designed to be easy
to learn (unlike C or C++) and is a great first language to learn.

In addition, C# is part of the .Net framework. This framework includes a large library
of pre-written code that programmers can use without having to write everything
from scratch. This allows programmers to rapidly develop their applications in C#,
making C# the ideal language to work with if you are on a tight schedule.

Lastly, C# is an object-oriented programming (OOP) language. Object-oriented
programming is an approach to programming that breaks a programming problem
into objects that interact with each other. We’ll be looking at various object-oriented
programming concepts in this book. Once you master C#, you will be familiar with
these concepts. This will make it easier for you to master other object-oriented
programming languages in future.

Ready to dip your toes into the world of C# programming? Let’s get started.

Footnote:
The conversion of a C# program into machine language is actually a bit more complicated than this. Visual
Studio Community merely converts a C# program into MIL, which stands for Microsoft Intermediate Language.
This MIL code is then converted into machine language by a virtual execution system known as the Common
Language Runtime. For more information, you can check out https://msdn.microsoft.com/en-
us/library/z1zx9t92.aspx. Nonetheless, for our purpose, we do not need to know these intricate details to develop
our own C# programs.

https://msdn.microsoft.com/en-us/library/z1zx9t92.aspx

Chapter 2: Getting ready for C#

Installing Visual Studio Community

Before we can start developing applications in C#, we need to download Visual
Studio Community. As mentioned in Chapter 1, Visual Studio Community (VSC) is a
free complier provided by Microsoft.

In fact, VSC is more than just a compiler. It is an Integrated Development
Environment (IDE) that includes a text editor for us to write our code and a debugger
to help us identify programming errors.

To download VSC, go to https://www.visualstudio.com/vs/community/.

Click on the “Download VS Community 2017” button to download the file. Once you
have downloaded the file, double click to install VSC. You’ll be presented with the
screen below. Select “.Net desktop development” to proceed.

https://www.visualstudio.com/vs/community/

Once you finish installing the IDE, you are ready to start coding your first C#
program.

Your First C# Program

To write our first program, let’s create a folder on our desktop and name it “C#
Projects”. We will save all our C# projects to this folder.

Next, launch VSC and select File > New > Project…. (You may have to search for
“Visual Studio 2017” if you cannot find VSC.) The first program that we are going to
write is a console application. Console applications refer to programs that have no

graphical user interface.

From the New Project dialog box, select “Visual C#” (on the left) and select “Console
App (.Net Framework)” in the main box.

Name this program “HelloWorld” and save it in the “C# Projects” folder created
earlier. You can use the “Browse…” button to browse to the correct folder. Finally,
click OK to create the project.

You will be presented with a default template that VSC created for you automatically.

Replace the code in the template with the code below. Note that line numbers are

added for reference and are not part of the actual code. You may want to bookmark
this page for easy reference later when we discuss the program. Due to the small
screen sizes of most mobile devices, the code may look jumbled up if you are
viewing it on a Kindle, tablet or mobile phone. If you have problems reading the
code, you can try changing your screen to landscape mode. Alternatively, you can
download the source code for this sample program and all other sample programs in
this book at http://www.learncodingfast.com/csharp.

1 using System;

2 using System.Collections.Generic;

3 using System.Linq;

4 using System.Text;

5 using System.Threading.Tasks;

6

7 namespace HelloWorld

8 {

9

10 //A Simple Program to display the words Hello World

11

12 class Program

13 {

14 static void Main(string[] args)

15 {

16 Console.WriteLine("Hello World");

17 Console.Read();

18 }

19 }

20 }

I strongly encourage that you type the code yourself to get a better feel for how VSC
works. As you type, you will notice that a box appears near the cursor with some help
messages occasionally. That is known as Intellisense. For instance, when you type a
period (.) after the word “Console”, a dropdrop list appears to let you know what you
can type after the period. This is one of the features of VSC to help make coding
easier for programmers.

After you finish typing, you can execute this program by clicking on the “Start”
button at the top menu (refer to image below).

http://www.learncodingfast.com/csharp

If your program fails to run, VSC will inform you of the error in the “Output
Window”. Double clicking on the error moves the cursor to where the error is.
Double check your code against the code above to rectify the error and run the
program again.

If all goes well and your program runs successfully, a black window will appear with
the words “Hello World” in white. This black window is known as the console. Press
Enter to close the window.

That’s it! You have successfully coded your first program. Give yourself a pat on the
shoulders.

If you navigate to your “C# Projects” folder now, you’ll find a folder named
“HelloWorld”. Within the folder, you’ll find another “HelloWorld” folder and a

“HelloWorld.sln” file. This .sln file is the solution file. Whenever you need to reopen
a project, this is the file to open. If the text editor does not display your code when
you open the solution file, simply double click on the “Program.cs” file in the
“Solution Explorer” on the right (refer to the previous image) to open it.

The executable file (.exe) of your code can be found in the HelloWorld > HelloWorld
> bin > Debug folder.

Basic Structure of a C# Program

Now, let us do a quick run-through of the basic program that you have just coded.

Directive

From line 1 to 5, we have a few statements that start with the word using. These
statements are known as directives. They tell the compiler that our program uses a
certain namespace.

For instance, the first line

using System;

tells the compiler that our program uses the System namespace.

Namespace

A namespace is simply a grouping of related code elements. These elements include
classes, interfaces, enums and structs etc (we’ll cover each of these elements in
subsequent chapters).

C# comes with a large amount of pre-written code that are organised into different
namespaces. The System namespace contains code for methods that allow us to
interact with our users. We use two of these methods in our program - the
WriteLine() and Read() methods. The other namespaces are not needed in our
program. However, since these namespaces are included in the default template, we’ll
leave it in our code.

In addition to the pre-written namespaces provided by Microsoft, we can also declare
our own namespaces.

One advantage of declaring namespaces is that it prevents naming conflicts. Two or
more code elements can have the same name as long as they belong to different
namespaces. For instance, the code below defines two namespaces, both of which
contain a class named MyClass. This is allowed in C# as the two classes belong to
different namespaces (First and Second).

namespace First

{

class MyClass

{

}

}

namespace Second

{

class MyClass

{

}

}

In our example, we declared one namespace - HelloWorld.

The HelloWorld namespace starts on line 7, with an opening curly brace on line 8. It
ends on line 20 with a closing curly brace. Curly braces are used extensively in C# to
indicate the start and end of a code element. All opening braces in C# must be closed
with a corresponding closing brace.

Within the HelloWorld namespace, we have the Program class which starts on line 12
and ends on line 19. Within the Program class, we have the Main() method that starts
on line 14 and ends on line 18.

The Main() Method

The Main() method is the entry point of all C# console applications. Whenever a
console application is started, the Main() method is the first method to be called.

In this book, whenever you are asked to try out a certain code segment, you should
create a new “Console Application” and type the given code segment into the Main()
method (between the curly braces). You can then run the program to test the code.

Notice the words “string[] args” inside the parenthesis of our Main() method? This
means the Main() method can take in an array of strings as input. Do not worry about
this for the moment. We’ll cover these topics in subsequent chapters.

In our example, the Main() method contains two lines of code. The first line

Console.WriteLine(“Hello World”);

displays the line “Hello World” (without the quotes) on the screen.

The second line

Console.Read();

waits for a key press from the user before closing the window. You have to add this
line to the end of the Main() method for all applications that you write in this book.

Both of the statements above end with a semi-colon. This is common for most
statements in C#. After the Console.Read() statement, we end our code with three
closing braces to close the earlier opening braces.

That’s it! There’s all there is to this simple program.

Comments

We’ve covered quite a bit in this chapter. You should now have a basic understanding
of C# programming and be reasonably comfortable with VSC. Before we end this
chapter, there’s one more thing to learn - comments.

If you refer back to our “HelloWorld” example and look at line 10, you should notice
that this line starts with two forward slashes (//).

//A Simple Program to display the words Hello World

This line is actually not part of the program. It is a comment that we write to make
our code more readable for other programmers. Comments are ignored by the
compiler.

To add comments to our program, we type two forward slashes (//) in front of each
line of comment like this

// This is a comment

// This is another comment

// This is yet another comment

Alternatively, we can also use /* … */ for multiline comments like this

/* This is a comment

This is also a comment

This is yet another comment

*/

Comments can also be placed after a statement, like this:

Console.Read(); //reads the next character

Chapter 3: The World of Variables and Operators

Now that you are familiar with VSC and have written your first program, let’s get
down to the real stuff. In this chapter, you’ll learn all about variables and operators.
Specifically, you’ll learn what variables are and how to name, declare and initialize
them. You’ll also learn about the common operations that we can perform on them.

What are variables?

Variables are names given to data that we need to store and manipulate in our
programs. For instance, suppose your program needs to store the age of a user. To do
that, we can name this data userAge and declare the variable userAge using the
following statement:

int userAge;

The declaration statement first states the data type of the variable, followed by its
name. The data type of a variable refers to the type of data that the variable will store
(such as whether it’s a number or a piece of text). In our example, the data type is
int, which refers to integers. The name of our variable is userAge.
After you declare the variable userAge, your program will allocate a certain area of
your computer's storage space to store this data. You can then access and modify this
data by referring to it by its name, userAge.

Data Types in C#

There are a number of commonly used data types in C#.

int

int stands for integer (i.e. numbers with no decimal or fractional parts) and holds
numbers from -2,147,483,648 to 2,147,483,647. Examples include 15, 407, -908,
6150 etc.

byte

byte also refers to integral numbers, but has a narrower range from 0 to 255.

Most of the time, we use int instead of byte for integral numbers. However, if you
are programming for a machine that has limited memory space, you should use byte
if you are certain the value of the variable will not exceed the 0 to 255 range.

For instance, if you need to store the age of a user, you can use the byte data type as
it is unlikely that the user’s age will ever exceed 255 years old.

float

float refers to floating point numbers, which are numbers with decimal places such
as 12.43, 5.2 and -9.12.

float can store numbers from -3.4 x 1038 to +3.4 x 1038. It uses 8 bytes of storage
and has a precision of approximately 7 digits. This means that if you use float to
store a number like 1.23456789 (10 digits), the number will be rounded off to
1.234568 (7 digits).

double

double is also a floating point number, but can store a much wider range of numbers.
It can store numbers from (+/-)5.0 x 10-324 to (+/-)1.7 x 10308 and has a precision of
about 15 to 16 digits.

double is the default floating point data type in C#. In other words, if you write a
number like 2.34, C# treats it as a double by default.

decimal

decimal stores a decimal number but has a smaller range than float and double.
However, it has a much greater precision of approximately 28-29 digits.

If your program requires a high degree of precision when storing non integral
numbers, you should use a decimal data type. An example is when you are writing a
financial application where precision is very important.

char

char stands for character and is used to store single Unicode characters such as ‘A’,
‘%’, ‘@’ and ‘p’ etc.

bool

bool stands for boolean and can only hold two values: true and false. It is
commonly used in control flow statements. We’ll cover control flow statements in
Chapter 6.

Naming a Variable

A variable name in C# can only contain letters, numbers or underscores (_).
However, the first character cannot be a number. Hence, you can name your variables
userName, user_name or userName2 but not 2userName.

In addition, there are some reserved words that you cannot use as a variable name
because they already have preassigned meanings in C#. These reserved words include
words like Console, if, while etc. We’ll learn about each of them in subsequent
chapters.

Finally, variable names are case sensitive. username is not the same as userName.

There are two conventions when naming a variable in C#. We can either use the
camel case notation or use underscores. Camel casing is the practice of writing
compound words with mixed casing, capitalising the first letter of each word except
the first word (e.g. thisIsAVariableName). This is the convention that we’ll be using
in the rest of the book. Alternatively, another common practice is to use underscores
(_) to separate the words. If you prefer, you can name your variables like this:
this_is_a_variable_name.

Initializing a Variable

Every time you declare a new variable, you need to give it an initial value. This is
known as initializing the variable. You can change the value of the variable in your
program later.

There are two ways to initialize a variable. You can initialize it at the point of
declaration or initialize it in a separate statement.

The examples below show how you can initialize a variable at the point of
declaration:

Example 1

These examples show how you can initialize byte and int variables.

byte userAge = 20;

int numberOfEmployees = 510;

As byte and int are for data with no decimal places, you will get an error if you
write something like

byte userAge2 = 20.0;

20.0 is not the same as 20 in C#.

Example 2

The next examples show how you can initialize double, float and decimal variables
with integral values. Although these data types are for numbers with decimal parts,
we can also use them to store integral values as shown below.

double intNumberOfHours = 5120;

float intHourlyRate = 60;

decimal intIncome = 25399;

Example 3

The examples below show how you can initialize double, float and decimal
variables with non integers.

double numberOfHours = 5120.5;

float hourlyRate = 60.5f;

decimal income = 25399.65m;

As mentioned previously, the default data type for a number with decimal places is
double.

Hence, in the examples above, when you initialize hourlyRate, you need to add ‘f’
as a suffix after 60.5 to explicitly tell the compiler to change 60.5 to a float.

Similarly, when you initialize income, you need to add ‘m’ as a suffix to change
25399.65 into a decimal data type.

Example 4

A char data type can only contain a single character. When we initialize a char
variable, we need to enclose that character in single quotes. An example is:

char grade = ‘A’;

Example 5

A bool variable can only be either true or false. The example below shows how
you can initialize a bool variable.

bool promote = true;

Example 6

In addition to initializing variables individually, you can also initialize multiple
variables in the same statement as long as they are of the same data type. The
following example shows how this can be done. Note that the two variables are
separated with a comma and the statement ends with a semi-colon.

byte level = 2, userExperience = 5;

The six examples above show how you can initialize a variable at the point of
declaration. Alternatively, you can choose to initialize a variable in a separate
statement. An example is shown below:

byte year; //declare the variable

year = 20; //initialize it

The Assignment Sign

The = sign in programming has a different meaning from the = sign we learned in
Math. In programming, the = sign is known as an assignment sign. It means we are
assigning the value on the right side of the = sign to the variable on the left. A good
way to understand a statement like year = 20 is to think of it as year <- 20.

In programming, the statements x = y and y = x have very different meanings.

Confused? An example will likely clear this up.

Suppose we have two variables x and y and

x = 5; y = 10;

If you write

x = y;

your Math teacher is probably going to be upset at you since x is not equal to y.

However, in programming, this is fine. This statement means we are assigning the
value of y to x (think of it as x <- y). It is alright to assign the value of a variable to
another variable. In our example, the value of x is now changed to 10 while the value
of y remains unchanged. In other words, x = 10 and y = 10 now.

Now suppose we change the values of x and y back to

x = 5; y = 10;

If you now write

y = x;

it means you are assigning the value of x to y (think of it as y <- x). Mathematically,
x = y and y = x mean the same thing. However, this is not so in programming. Here,
the value of y is changed to 5 while the value of x remains unchanged. In other
words, x = 5 and y = 5 now.

Basic Operators

Besides assigning an initial value to a variable or assigning another variable to it, we
can also perform the usual mathematical operations on variables. Basic operators in
C# include +, -, *, / and % which represent addition, subtraction, multiplication,
division and modulus respectively.

Example

Suppose x = 7, y = 2

Addition: x + y = 9
Subtraction: x - y = 5
Multiplication: x*y = 14

Division: x/y = 3 (rounds down the answer to the nearest integer)
Modulus: x%y = 1 (gives the remainder when 7 is divided by 2)

In C#, division gives an integer answer if both x and y are integers. However, if either
x or y is a non integer, we will get a non integer answer. For instance,

7 / 2 = 3
7.0 / 2 = 3.5
7 / 2.0 = 3.5
7.0 / 2.0 = 3.5

In the first case, when an integer is divided by another integer, you get an integer as
the answer. The decimal portion of the answer, if any, is truncated. Hence, we get 3
instead of 3.5.

In all other cases, the result is a non integer as at least one of the operands is a non
integer.

More Assignment Operators

Besides the = sign, there are a few more assignment operators in C# (and most
programming languages). These include operators like +=, -= and *=.

Suppose we have the variable x, with an initial value of 10. If we want to increment x
by 2, we can write

x = x + 2;

The program will first evaluate the expression on the right (x + 2) and assign the
answer to the left. So eventually the statement above becomes x <- 12.

Instead of writing x = x + 2, we can also write x += 2 to express the same meaning.
The += sign is actually a shorthand that combines the assignment sign with the
addition operator. Hence, x += 2 simply means x = x + 2.

Similarly, if we want to do a subtraction, we can write x = x - 2 or x -= 2. The
same works for all the 5 operators mentioned in the section above.

Most programming languages also have the ++ and –– operators. The ++ operator is
used when you want to increase the value of a variable by 1. For instance, suppose

int x = 2;

If you write

x++;

the value of x becomes 3.

There is no need to use the = sign when you use the ++ operator. The statement x++;
is equivalent to

x = x + 1;

The ++ operator can be placed in front of or behind the variable name. This affects the
order in which tasks are performed.

Suppose we have an integer named counter. If we write

Console.WriteLine(counter++);

the program first prints the original value of counter before incrementing counter by
1. In other words, it executes the tasks in this order

Console.WriteLine(counter);

counter = counter + 1;

On the other hand, if we write

Console.WriteLine(++counter);

the program first increments counter by 1 before printing the new value of counter.
In other words, it executes the tasks in this order

counter = counter + 1;

Console.WriteLine(counter);

In addition to the ++ operator, we also have the –– operator (two minus signs). This
operator decreases the value of the variable by 1.

Type Casting In C#

Sometimes in our program, it is necessary to convert from one data type to another,

such as from a double to an int. This is known as type casting.

To convert one numeric data type to another, we just need to add (new data type) in
front of the data that we want to convert.

For instance, we can cast a non integer into an integer like this:

int x = (int) 20.9;

When we cast 20.9 into an integer, the resulting value is 20, not 21. The decimal
portion is truncated after the conversion.

We can also cast a double into a float or a decimal. Recall that we mentioned
earlier that all non integers are treated as double by default in C#? If we want to
assign a number like 20.9 to a float or decimal, we need to add the ‘f’ and ‘m’
suffixes respectively. Another way to do it is to use a cast, like this:

float num1 = (float) 20.9;

decimal num2 = (decimal) 20.9;

The values of num1 and num2 will both be 20.9.

In addition to casting between numeric types, we can also do other types of casting.
We’ll explore some of these conversions in subsequent chapters.

Chapter 4: Arrays, Strings and Lists

In the previous chapter, we covered some of the basic data types that are commonly
used in C#. Besides these basic data types, C# also comes with a few advanced data
types. In this chapter, we are going to cover three advanced data types: arrays, strings
and lists. In addition, we are going to discuss the difference between a value data type
and a reference data type.

Array

An array is simply a collection of data that are normally related to each other.
Suppose we want to store the ages of 5 users. Instead of storing them as user1Age,
user2Age, user3Age, user4Age and user5Age, we can store them as an array.

An array can be declared and initialized as follows:

int[] userAge = {21, 22, 23, 24, 25};

int indicates that this variable stores int values.
[] indicates that the variable is an array instead of a normal variable.
userAge is the name of the array.
{21, 22, 23, 24, 25} are the five integers that the array stores.

In addition to declaring and initializing an array at the point of declaration, we can
declare an array first and initialize it later. To do that, we need to use the new
operator:

int[] userAge2;

userAge2 = new [] {21, 22, 23, 24, 25};

The first statement declares the array. The second statement initializes it with the
integers 21, 22, 23, 24 and 25.

Finally, we can also declare an array and initialize it with default values. To do that,
we write:

int[] userAge3 = new int[5];

This statement declares an array of 5 integers (as indicated by the number 5 inside the
square brackets []). As we did not specify the values of these 5 integers, C#

automatically initializes them to the default value. The default value for integers is 0.
Hence, the array becomes {0, 0, 0, 0, 0}.

You can update the individual values in the array by accessing them using their
indexes. Indexes always start with a value of ZERO, not 1. This is a common practice
in almost all programming languages, such as Python and Java. The first value of the
array has an index of 0, the next has an index of 1 and so forth. Supposed the array
userAge is currently {21, 22, 23, 24, 25}. To update the first value of the array,
we write

userAge[0] = 31;

the array becomes {31, 22, 23, 24, 25}.

If we type

userAge[2] = userAge[2] + 20;

the array becomes {31, 22, 43, 24, 25}. That is, 20 is added to the third element.

Array Properties and Methods

C# comes with a number of useful properties and methods that we can use with an
array.

We’ll learn more about properties and methods in Chapter 7 when we discuss classes.
For now, all we have to know is that to use a property or method, we need to use the
dot (.) operator. To use a property, we type the property name after the dot. To use a
method, we type the method name after the dot operator, followed by a pair of
parenthesis ().

Length

The Length property of an array tells us the number of items the array has.

For instance, if we have

int [] userAge = {21, 22, 26, 32, 40};

userAge.Length is equal to 5 as there are 5 numbers in the array.

Copy()

The Copy() method allows you to copy the contents of one array into another array,
starting from the first element.

In C#, a method may have many different variations. For instance, the Copy() method
comes in four different variations. The example below discusses one of the four
variations. If you learn how to use one variation, you can figure out how to use the
other Copy() methods with relative ease.

Whenever we use a method, we need to put a pair of parenthesis () after the method
name. Some methods require certain data for it to work. These data are known as
arguments. We include these arguments in the pair of parenthesis. The Copy()
method requires three arguments.

Suppose you have

int [] source = {12, 1, 5, -2, 16, 14};

and

int [] dest = {1, 2, 3, 4};

You can copy the first three elements of source into dest by using the statement
below:

Array.Copy(source, dest, 3);

The first argument is the array that provides the values to be copied. The second is the
array where the values will be copied into. The last argument specifies the number of
items to copy.

In our example, our dest array becomes {12, 1, 5, 4} while the source array
remains unchanged.

Sort()

The Sort() method allows us to sort our arrays. It takes in an array as the argument.

Suppose you have

int [] numbers = {12, 1, 5, -2, 16, 14};

You can sort this array by writing

Array.Sort(numbers);

The array will be sorted in ascending order. Thus, numbers becomes {-2, 1, 5, 12,
14, 16}.

IndexOf()

We use the IndexOf() method to determine if a certain value exists in an array. If it
exists, the method returns the index of the first occurrence of that value. If it does not
exist, the method returns -1.

For instance, if you have

int [] numbers = {10, 30, 44, 21, 51, 21, 61, 24, 14};

you can find if the value 21 exists in the array by writing

Array.IndexOf(numbers, 21);

The method returns the index of the first value found, which is 3 in this case since 21
is the fourth element in the array. You can then assign the answer to a variable like
this:

int ans = Array.IndexOf(numbers, 21);

The value of ans is thus 3. If you write

ans = Array.IndexOf(numbers, 100);

the value of ans is -1 as 100 does not exist in the numbers array.

We’ve covered some of the more commonly used array methods in this section. For a
complete list of all the array methods available in C#, check out this page
https://msdn.microsoft.com/en-us/library/system.array_methods(v=vs.110).aspx

String

Next, let us look at the string data type. A string is a piece of text. An example of a
string is the text “Hello World”.

https://msdn.microsoft.com/en-us/library/system.array_methods(v=vs.110).aspx

To declare and initialize a string variable, you write

string message = “Hello World”;

where message is the name of the string variable and “Hello World” is the string
assigned to it. Note that you need to enclose the string in double quotes (“).

You can also assign an empty string to a variable, like this:

string anotherMessage = “”;

Finally, we can join two or more strings using the concatenate sign (+) and assign
them to a variable. For instance, we can write

string myName = “Hello World, ” + “my name is Jamie”;

This is the same as

string myName = “Hello World, my name is Jamie”;

String Properties and Methods

Like arrays, strings come with a number of properties and methods.

Length

The Length property of a string tells us the total number of characters the string
contains.

To find the length of the string “Hello World”, we write

“Hello World”.Length

We will get the value 11 as “Hello” and “World” both have 5 characters each. When
you add the space between the two words, you get a total length of 11.

Substring()

The Substring() method is used to extract a substring from a longer string.

It requires two arguments. The first tells the compiler the index of the starting

position to extract and the second tells the compiler the length.

Suppose we declare a string variable message and assign the string “Hello World”
to it.

string message = “Hello World”;

We can then use message to call the Substring() method as shown below.

string newMessage = message.Substring(2, 5);

Substring(2, 5) extracts a substring of 5 characters from message, starting from
index 2 (which is the third letter as indexes always start from 0).

The resulting substring is then assigned to newMessage.

newMessage is thus equal to “llo W”.

message, on the other hand, is not changed. It remains as “Hello World”.

Equals()

We can use the Equals() method to compare if two strings are identical.

If we have two strings as shown below

string firstString = “This is Jamie”;

string secondString = “Hello”;

firstString.Equals(“This is Jamie”);

returns true while

firstString.Equals(secondString);

returns false as the two strings (firstString and secondString) are not equal.

Split()

The Split() method splits a string into substrings based on an array of user-defined
separators. After splitting the string, the Split() method returns an array that
contains the resulting substrings.

The Split() method requires two arguments - an array of strings that act as
separators and a second argument to specify whether you want to remove empty
strings from the result.

Suppose you want to split the string “Peter, John; Andy, ,David” into substrings, you
can do it as follows (line numbers are added for reference):

1 string [] separator = {“, ”, “; ”};

2 string names = “Peter, John; Andy, , David”;

3 string [] substrings = names.Split(separator,

StringSplitOptions.None);

On Line 1, we first declare an array of two strings to act as separators. The first string
is a comma followed by a space and the second is a semi-colon followed by a space.

On Line 2, we assign the string that we want to split to the names variable. On Line 3,
we use the names variable to call the Split() method and assign its result to the
substrings array.

The result of the code above is the following array

{“Peter”, “John”, “Andy”, “” , “David”}

This array contains an empty string as there is a space between the comma after
“Andy” and the comma before “David” in the original string. If you want to remove
the empty string from the result, you have to change Line 3 to

string [] substrings = names.Split(separator,

StringSplitOptions.RemoveEmptyEntries);

The substrings array thus becomes

{“Peter”, “John”, “Andy”, “David”}

As usual, we’ve only covered a number of the more commonly used string methods.
For a complete list of all the string methods available in C#, check out this page
https://msdn.microsoft.com/en-us/library/system.string_methods(v=vs.110).aspx

Lists

Now, let us look at the last data type in this chapter – lists. A list stores values like an

https://msdn.microsoft.com/en-us/library/system.string_methods(v=vs.110).aspx

array, but elements can be added or removed at will.

An array can only hold a fixed number of values. If you declare

int [] myArray = new int[10];

myArray can only hold 10 values. If you write myArray[10] (which refers to the 11th
value since array index starts from zero), you will get an error.

If you need greater flexibility in your program, you can use a list.

To declare a list of integers, we write

List<int> userAgeList = new List<int>();

userAgeList is the name of the list.
List is a keyword to indicate that you are declaring a list.
The data type is enclosed in angle brackets < >.

You can choose to initialize the list at the point of declaration like this

List<int> userAgeList = new List<int> {11, 21, 31, 41};

To access the individual elements in a list, we use the same notation as when we
access elements in an array. For instance, to access the first element, you write
userAgeList[0]. To access the third element, you write userAgeList[2].

List Properties and Methods

The list data type also comes with a large number of properties and methods.

Add()

You can add members to a list using the Add() method.

userAgeList.Add(51);

userAgeList.Add(61);

userAgeList now has 6 members: {11, 21, 31, 41, 51, 61}.

Count

To find out the number of elements in the list, use the Count property.

userAgeList.Count gives us 6 as there are 6 elements in the list at the moment.

Insert()

To add members at a specific position, use the Insert() method.

To insert a member at the 3rd position, you write

userAgeList.Insert(2, 51);

where 2 is the index and 51 is the value you want to insert.

userAgeList now becomes {11, 21, 51, 31, 41, 51, 61}.

Remove()

To remove members from the list, use the Remove() method. The Remove() method
takes in one argument and removes the first occurrence of that argument. For
instance, if we write

userAgeList.Remove(51);

userAgeList becomes {11, 21, 31, 41, 51, 61}. Only the first ‘51’ is removed.

RemoveAt()

To remove a member at a specific location, use the RemoveAt() method. For instance,
to remove the 4th item (index 3), you write

userAgeList.RemoveAt(3);

where 3 is the index of the item to be removed.

userAgeList now becomes {11, 21, 31, 51, 61}.

Contains()

To check if a list contains a certain member, use the Contains() method.

To check if userAgeList contains ‘51’, we write

userAgeList.Contains(51);

We will get true as the result.

Clear()

To remove all items in a list, use the Clear() method. If we write

userAgeList.Clear();

we will have no elements left in the list.

For a complete list of all the list methods available in C#, check out this page
https://msdn.microsoft.com/en-us/library/s6hkc2c4(v=vs.110).aspx

Value Type vs. Reference Type

Now that we are familiar with strings, arrays and lists, let us discuss an important
concept regarding data types in C#.

All data types in C# can be classified as either a value type or a reference type. The
data types discussed in Chapter 3 are value types. Those discussed in this chapter are
reference types.

A value data type is a variable that stores its own data.

When we write

int myNumber = 5;

the variable myNumber stores the actual value 5.

A reference type, on the other hand, does not store the actual data. Instead, it stores a
reference to the data. It does not tell the compiler what the value of the data is; it tells
the compiler where to find the actual data.

An example of a reference type is a string. When you write a statement like

string message = “Hello”;

https://msdn.microsoft.com/en-us/library/s6hkc2c4(v=vs.110).aspx

the variable message actually does not store the string “Hello”.

Instead, the string “Hello” is created and stored elsewhere in the computer’s memory.
The variable message stores the address of that memory location.

That’s all that we need to know about reference types at the moment. As this is a
book for beginners, we will not go into details about why reference types are
necessary. Just be aware that there is a difference between value types and reference
types; the former stores a value while the latter stores an address.

Chapter 5: Making our Program Interactive

Now that we have covered the basics of variables and data types, let us write a
program that makes use of them. In this chapter, we’ll learn how to accept input from
users, store the data in a variable and display messages to our users. Ready?

Displaying Messages to Users

To display messages to our users, we use the Write() or WriteLine() method
provided by C#, available in the System namespace.

The difference between WriteLine() and Write() is that Writeline() moves the
cursor down to the next line after displaying the message while Write() does not.

If we write

Console.WriteLine(“Hello ”);

Console.WriteLine(“How are you?”);

we’ll get

Hello

How are you?

If we write

Console.Write(“Hello ”);

Console.Write(“How are you?”);

we’ll get

Hello How are you?

Note that in the examples above, we added the word Console in front of the method
name whenever we call the WriteLine() or Write() method. This is because both
methods are static methods of the Console class. We’ll talk more about static
methods in Chapter 7.

If you find it troublesome to add the word Console whenever you use these two
methods, you can add the directive

using static System.Console;

to the start of your program. If you do that, you can simply write

WriteLine(“Hello World”);

instead of

Console.WriteLine(“Hellow World”);

whenever you use any of the static methods in the Console class. This is a new
feature in C# 6 (the latest version of C#) and is available only if you use the latest
IDE (i.e. Visual Studio 2017). For the rest of our examples, we’ll stick to the first
method for backwards compatibility.

We have already seen an example of how we can use the WriteLine() method when
we wrote the “Hello World” program in Chapter 2. Let us now look at more
examples. In the examples below, we’ll focus on the WriteLine() method. The
Write() method works exactly the same way.

Example 1

To display a simple string, we write

Console.WriteLine(“Hello, how are you?”);

Output

Hello, how are you?

Example 2

To display the value of a variable, we pass in the variable name as an argument. For
instance, suppose we have

int userAge = 30;

we display the value of userAge by writing

Console.WriteLine(userAge);

Output

30

Note that we do not enclose the variable name (userAge) in double quotes. If we
write

Console.WriteLine(“userAge”);

we’ll get

userAge

as the output instead.

Example 3

To combine two or more strings and display them, we use the concatenation (+) sign
mentioned in the previous chapter.

For instance, if we write

Console.WriteLine(“Hello, ” + “how are you?” + “ I love C#.”);

we’ll get

Hello, how are you? I love C#.

Example 4

We can also use the concatenation sign to combine a string and a variable. Suppose
we have

int results = 79;

The statement

Console.WriteLine(“You scored ” + results + “ marks for your test.”);

gives us

You scored 79 marks for your test.

Again, we do not enclose the variable name in double quotes. Else we will get

You scored results marks for your test.

Example 5

In addition to using the concatenation sign to combine strings and variables, we can
use placeholders. Suppose we have

int results = 79;

If we write

Console.WriteLine(“{0}! You scored {1} marks for your test.”, “Good

morning”, results);

we will get

Good morning! You scored 79 marks for your test.

In this example, we passed in three arguments to the WriteLine() method, separated
by commas.

The three arguments are

1) “{0}! You scored {1} marks for your test.”
2) “Good morning”
3) results

The first is the string that will be displayed. Within the string, the curly braces act as
placeholders and will be replaced by the arguments that follow.

{0} is a placeholder for the next argument, which is the string “Good morning” in this
case.

{1} is a placeholder for the variable results.

Therefore the output is

Good morning! You scored 79 marks for your test.

If you wrote

Console.WriteLine(“{1}! You scored {0} marks for your test.”, “Good

morning”, results);

you’ll get

79! You scored Good morning marks for your test.

Of course, such a statement makes no sense. However, it demonstrates how
placeholders are replaced by the corresponding arguments.

We can specify how we want numeric values to be displayed when using
placeholders. This is done using a format specifier, such as the C and F specifiers.

The F specifier specifies the number of decimal places a number should be displayed
with.

If we write

Console.WriteLine(“The number is {0:F3}.”, 123.45678);

we’ll get

The number is 123.457.

The F3 specifier rounds the number 123.45678 off to 123.457. Note that there should
not be any space before the specifier. In other words, it has to be {0:F3} and not {0:
F3}.

The C specifier is for formatting currencies; it adds the “$” symbol in front of the
number and displays the number with 2 decimal places. In addition, it separates every
thousand with a comma.

If you write

Console.WriteLine(“Deposit = {0:C}. Account balance = {1:C}.”, 2125,

12345.678);

you’ll get

Deposit = $2,125.00. Account balance = $12,345.68

Example 6

We can also use Console.WriteLine() to print the result of a method.

In Chapter 4, we learned how to use the Substring() method to extract a substring
from a longer string. In that example, we assigned the result to another string.
Alternatively, we can use Console.WriteLine() to display the result without
assigning it a variable.

For instance, if you write

Console.WriteLine(“Microsoft”.Substring(1, 3));

The output

icr

will be displayed on the screen.

Besides displaying the result of a method, Console.WriteLine() can also be used to
display the value of a property. If we write

Console.WriteLine(“Hello World”.Length);

the value

11

will be displayed on the screen.

Escape Sequences

Sometimes in our programs, we may need to print some special “unprintable”
characters such as a tab or a newline. In this case, you need to use the \ (backslash)
character to escape characters that otherwise have a different meaning.

For instance to print a tab, we type the backslash character before the letter t, like
this: \t.

Without the \ character, the letter “t” will be printed. With it, a tab is printed. Hence,
if you type

Console.WriteLine(“Hello\tWorld”);

you’ll get

Hello World

Other common uses of the backslash character include:

To prints a newline (\n)

Example

Console.WriteLine(“Hello\nWorld”);

Output

Hello

World

To print the backslash character itself (\\)

Example

Console.WriteLine(“\\”);

Output

\

To print double quotes (\”) so that the double quote does not end the string

Example

Console.WriteLine(“I am 5’9\” tall”);

Output

I am 5’9” tall

Accepting User Input

Now that we know how to display messages to our users, let us look at how we can
accept input from them.

To accept user input, we can use either the Read() or ReadLine() method.

Read()reads the next character from standard input while ReadLine() reads a line of
characters. Standard input refers to the standard device that users use to enter data,
which is usually the keyboard. ReadLine() is more commonly used than Read()
when getting user inputs.

The example below shows how we can use the ReadLine() method to read input
from users.

string userInput = Console.ReadLine();

The ReadLine() method reads in user input as a string. Hence, in the example above,
we assign the result of Console.ReadLine() to a string variable called userInput.

We can then use

Console.WriteLine(userInput);

to print out the input that the user entered.

Converting a String to a Number

Sometimes, it is necessary to convert the input that users entered into a numeric data
type so that you can perform calculations on it. C# provides us with a number of
methods to do the conversion. The methods that we use are found in the Convert
class, which is also grouped under the System namespace.

To convert a string to an integer, we use the ToInt32() method. For instance, if we
have

string userInput = Console.ReadLine();

and the user keys in 20, userInput will be equal to “20” (which is a string and not an
integer because of the double quotes).

We can then use

int newUserInput = Convert.ToInt32(userInput);

to convert the string to the integer 20 and assign it to an int variable. We can now
perform the usual mathematical operations on this new int variable.

Besides converting a string to an integer, we can also convert a string to a decimal,
float or double using the ToDecimal(), ToSingle() and ToDouble() methods
respectively.

Putting it all Together

Now let us put everything that we’ve learned together to write a complete program.
We’ll modify the “Hello World” program that we wrote in Chapter 2. Instead of just
saying hello to the world, we want the world to know our names and ages too.

First, fire up Visual Studio Community and create a new Visual C# Console
Application project. Name the project “HelloWorldAgain”.

Type the following code segment into the Main() method (line numbers are added for
reference).

1 string userName = "";

2 int userAge = 0;

3 int currentYear = 0;

4

5 Console.Write("Please enter your name: ");

6 userName = Console.ReadLine();

7 Console.Write("Please enter your age: ");

8 userAge = Convert.ToInt32(Console.ReadLine());

9 Console.Write("Please enter the current year: ");

10 currentYear = Convert.ToInt32(Console.ReadLine());

11

12 Console.WriteLine("Hello World! My name is {0} and I am {1} years

old. I was born in {2}.", userName, userAge, currentYear - userAge);

Run the program and enter the following information

Please enter your name: Jamie

Please enter your age: 39

Please enter the current year: 2015

The program should give you the following output

Hello World! My name is Jamie and I am 39 years old. I was born in

1976.

This program should be quite easy to understand. However, there are two points to
mention about the program.

Firstly, Line 10 shows an example of how we can use two methods within the same
statement. When we write

userAge = Convert.ToInt32(Console.ReadLine());

the Console.ReadLine() method is executed first as it is within a pair of parenthesis
(). This is similar to how operations within parenthesis have a higher order of
precedence when we evaluate a mathematical expression. For instance, when we
evaluate 3 * (5 + 9), we have to add 5 to 9 first before multiplying the answer to 3
(i.e. 3*14).

After Console.ReadLine() is executed, the value entered by the user is converted to
an integer using Convert.ToInt32().

Suppose the user entered 39.

Convert.ToInt32(Console.ReadLine())

becomes

Convert.ToInt32(“39”).

The result of Convert.ToInt32(“39”) is the integer 39. This integer is then assigned
to variable userAge.

The next thing to point out about the program is Line 12 as shown below:

Console.WriteLine(“Hello World! My name is {0} and I am {1} years old.

I was born in {2}.”, userName, userAge, currentYear - userAge);

Notice that the last argument (currentYear - userAge) involves a Mathematical
operation? This is allowed in C#. WriteLine() will perform the subtraction and
display the result of the calculation.

Chapter 6: Making Choices and Decisions

Congratulations on making it this far. We’ve come a long way. You now know the
different data types in C# and are able to code a simple program that interacts with
users.

In this chapter, we are going to cover another fundamental concept in programming;
we’ll learn how to control the flow of a program using control flow statements.

Specifically, we will learn about the if statement, the inline if statement, the switch
statement, the for loop, the foreach loop, the while loop and the do while loop. In
addition, we will also learn about the try-catch-finally statement that controls the
flow of the program when an error occurs.

However, before we go into these control tools, we have to first look at condition
statements.

Condition Statements

Most control flow statements involve evaluating a condition statement. The program
will proceed differently depending on whether the condition is met.

The most common condition statement is the comparison statement. If we want to
compare whether two variables are the same, we use the == sign (double =). For
instance, if you write x == y, you are asking the program to check if the value of x is
equal to the value of y. If they are equal, the condition is met and the statement
evaluates to true. Else, the statement evaluates to false.

In addition to evaluating whether one value is equal to another, there are other
comparison operators that we can use in our condition statements.

Not equal (!=)

Returns true if the left is not equal to the right

5 != 2 is true
6 != 6 is false

Greater than (>)

Returns true if the left is greater than the right

5 > 2 is true
3 > 6 is false

Smaller than (<)

Returns true if the left is smaller than the right

1 < 7 is true
9 < 6 is false

Greater than or equal to (>=)

Returns true if the left is greater than or equal to the right

5 >= 2 is true
5 >= 5 is true
3 >= 6 is false

Smaller than or equal to (<=)

Returns true if the left is smaller than or equal to the right

11 <= 7 is true
7 <= 7 is true
9 <= 6 is false

We also have three logical operators (&&, ||, !) that are useful if we want to combine
multiple conditions.

The AND operator (&&)

Returns true if all conditions are met

5==5 && 2>1 && 3!=7 is true
5==5 && 2<1 && 3!=7 is false as the second condition (2<1) is false

The OR operator (||)

Returns true if at least one condition is met.

5==5 || 2<1 || 3==7 is true as the first condition (5==5) is true
5==6 || 2<1 || 3==7 is false as all conditions are false

Control Flow Statements

Now that we are familiar with condition statements, let us proceed to learn how we
can use these statements to control the flow of a program.

If Statement

The if statement is one of the most commonly used control flow statements. It allows
the program to evaluate if a certain condition is met, and to perform the appropriate
action based on the result of the evaluation. The structure of an if statement is as
follows (line numbers are added for reference):

1 if (condition 1 is met)

2 {

3 do Task A

4 }

5 else if (condition 2 is met)

6 {

7 do Task B

8 }

9 else if (condition 3 is met)

10 {

11 do Task C

12 }

13 else

14 {

15 do Task E

16 }

Line 1 tests the first condition. If the condition is met, everything inside the pair of
curly braces that follow (lines 2 to 4) will be executed. The rest of the if statement
(from line 5 to 16) will be skipped.

If the first condition is not met, you can use the else if statements that follow to test
more conditions (lines 5 to 12). There can be multiple else if statements. Finally,
you can use the else statement (lines 13 to 16) to execute some code if none of the
preceding conditions are met.

To fully understand how the if statement works, add the following code to the
Main() program in the VSC template.

int userAge;

Console.Write("Please enter your age: ");

userAge = Convert.ToInt32(Console.ReadLine());

if (userAge < 0 || userAge > 100)

{

Console.WriteLine("Invalid Age");

Console.WriteLine("Age must be between 0 and 100");

}

else if (userAge < 18)

Console.WriteLine("Sorry you are underage");

else if (userAge < 21)

Console.WriteLine("You need parental consent");

else

{

Console.WriteLine("Congratulations!");

Console.WriteLine("You may sign up for the event!");

}

The program first prompts the user for his age and stores the result in the userAge
variable.

Next the statement

if (userAge < 0 || userAge > 100)

checks if the value of userAge is smaller than zero or greater than 100. If either of the
conditions is true, the program will execute all statements within the curly braces
that follow. In this example, it’ll print “Invalid Age”, followed by “Age must be
between 0 and 100”.

On the other hand, if both conditions are false, the program will test the next
condition - else if (userAge < 18). If userAge is less than 18 (but more than or
equal to 0 since the first condition is not met), the program will print “Sorry you are
underage”.

You may notice that we did not enclose the statement

Console.WriteLine(“Sorry you are underage”);

in curly braces. This is because curly braces are optional if there is only one statement

to execute.

If the user did not enter a value smaller than 18, but entered a value greater than or
equal to 18 but smaller than 21, the next else if statement will be executed. In this
case, the message “You need parental consent” will be printed.

Finally, if the user entered a value greater than or equal to 21 but smaller than or
equal to 100, the program will execute the code in the else block. In this case, it will
print “Congratulations” followed by “You may sign up for the event!”.

Run the program five times and enter -1, 8, 20, 23 and 121 respectively for each run.
You’ll get the following outputs:

Please enter your age: -1

Invalid Age

Age must be between 0 and 100

Please enter your age: 8

Sorry you are underage

Please enter your age: 20

You need parental consent

Please enter your age: 23

Congratulations!

You may sign up for the event!

Please enter your age: 121

Invalid Age

Age must be between 0 and 100

Inline If

An inline if statement is a simpler form of an if statement that is very convenient if
you want to assign a value to a variable depending on the result of a condition. The
syntax is:

condition ? value if condition is true : value if condition is false;

For instance, the statement

3>2 ? 10 : 5;

returns the value 10 since 3 is greater than 2 (i.e. the condition 3 > 2 is true). This

value can then be assigned to a variable.

If we write

int myNum = 3>2 ? 10 : 5;

myNum will be assigned the value 10.

Switch Statement

The switch statement is similar to an if statement except that it does not work with a
range of values. A switch statement requires each case to be based on a single value.
Depending on the value of the variable used for switching, the program will execute
the correct block of code.

The syntax of a switch statement is as follows:

switch (variable used for switching)

{

case firstCase:

 do A;

 break (or other jump statements);

case secondCase:

 do B;

 break (or other jump statements);

case default:

 do C;

 break (or other jump statements);

}

You can have as many cases as you want when using a switch statement. The
default case is optional and is executed if no other case applies.

When a certain case is satisfied, everything starting from the next line is executed
until a jump statement is reached. A jump statement is a statement that instructs the
compiler to jump to another line in the program. We’ll look at jump statements in
greater depth later. The most commonly used jump statement is the break; statement.

Let’s look at an example of how the switch statement works.

1 Console.Write("Enter your grade: ");

2 string userGrade = Console.ReadLine();

3

4 switch (userGrade)

5 {

6 case "A+":

7 case "A":

8 Console.WriteLine("Distinction");

9 break;

10 case "B":

11 Console.WriteLine("B Grade");

12 break;

13 case "C":

14 Console.WriteLine("C Grade");

15 break;

16 default:

17 Console.WriteLine("Fail");

18 break;

19 }

The program first prompts the user for his grade.

If grade is “A+” (Line 6), the program executes the next statement until it reaches the
break; statement. This means it’ll execute Line 7 to 9. Thus the output is
“Distinction”.

If grade is “A” (Line 7), the program executes Line 8 and 9. Similarly, the output is
“Distinction”.

If grade is not “A+” or “A”, the program checks the next case. It keeps checking from
top to bottom until a case is satisfied. If none of the cases applies, the default case is
executed.

If you run the code above, you’ll get the following output for each of the input
shown:

Enter your grade: A+

Distinction

Enter your grade: A

Distinction

Enter your grade: B

B Grade

Enter your grade: C

C Grade

Enter your grade: D

Fail

Enter your grade: Hello

Fail

For Loop

The for loop executes a block of code repeatedly until the test condition is no longer
valid.

The syntax for a for loop is as follows:

for (initial value; test condition; modification to value)

{

//Do Some Task

}

To understand how the for loop works, let’s consider the example below.

1 for (int i = 0; i < 5; i++)

2 {

3 Console.WriteLine(i);

4 }

The main focus of the for loop is Line 1:

for (int i = 0; i < 5; i++)

There are three parts to it, each separated by a semi-colon.

The first part declares and initializes an int variable i to zero. This variable serves as
a loop counter.

The second part tests if i is smaller than 5. If it is, the statements inside the curly
braces will be executed. In this example, the curly braces are optional as there is only
one statement.

After executing the WriteLine() statement, the program returns to the last segment in
Line 1. i++ increments the value of i by 1. Hence, i is increased from 0 to 1.

After the increment, the program tests if the new value of i is still smaller than 5. If it
is, it executes the WriteLine() statement once again.

This process of testing and incrementing the loop counter is repeated until the
condition i < 5 is no longer true. At this point, the program exits the for loop and
continues to execute other commands after the for loop.

The output for the code segment is:

0

1

2

3

4

The output stops at 4 because when i is 5, the WriteLine() statement is not executed
as 5 is not smaller than 5.

The for loop is commonly used to loop through an array or a list. For instance, if we
have

int[] myNumbers = { 10, 20, 30, 40, 50 };

we can use a for loop and the Length property of the array to loop through the array
as shown below.

for (int i = 0; i < myNumbers.Length; i++)

{

Console.WriteLine(myNumbers[i]);

}

As myNumbers.Length is equal to 5, this code runs from i = 0 to i = 4. If we run the
code, we’ll get the following output:

10

20

30

40

50

Foreach Loop

In addition to for loops, we can also use a foreach loop when working with arrays
and lists. A foreach loop is very useful if you want to get information from an array
or list, without making any changes to it.

Suppose you have

char[] message = { ‘H’, ‘e’, ‘l’, ‘l’, ‘o’ };

You can use the following code to display the elements of the array.

foreach (char i in message)

Console.Write(i);

In the code above, we have a char variable i that is used for looping. Each time the
loop runs, an element in the message array is assigned to the variable i. For instance,
the first time the loop runs, the character ‘H’ is assigned to i.

The line

Console.Write(i);

then prints out the letter ‘H’.

The second time the loop runs, the character ‘e’ is assigned to i. The line

Console.Write(i);

prints out the letter ‘e’.

This continues until all the elements in the array have been printed.

While Loop

Like the name suggests, a while loop repeatedly executes instructions inside the loop
while a certain condition remains valid. The structure of a while statement is as
follows:

while (condition is true)

{

do A

}

Most of the time when using a while loop, we need to first declare a variable to
function as a loop counter. Let’s call this variable counter. The code below shows an
example of how a while loop works.

int counter = 5;

while (counter > 0)

{

Console.WriteLine(“Counter = {0}”, counter);

counter = counter – 1;

}

If you run the code, you’ll get the following output

Counter = 5

Counter = 4

Counter = 3

Counter = 2

Counter = 1

A while statement has a relatively simple syntax. The statements inside the curly
braces are executed as long as counter > 0.

Notice that we have the line counter = counter – 1 inside the curly braces? This
line is crucial. It decreases the value of counter by 1 each time the loop is run.

We need to decrease the value of counter by 1 so that the loop condition (counter >
0) will eventually evaluate to false. If we forget to do that, the loop will keep
running endlessly, resulting in an infinite loop. The program will keep printing
counter = 5 until you somehow kill the program. Not a pleasant experience
especially if you have a large program and you have no idea which code segment is
causing the infinite loop.

Do while

The do while loop is similar to the while loop with one main difference - the code
within the curly braces of a do while loop is executed at least once. Here’s an
example of how a do while loop works.

int counter = 100;

do {

Console.WriteLine(“Counter = {0}”, counter);

counter++;

} while (counter<0);

As the test condition (while (counter<0)) is placed after the closing curly brace, it
is tested after the code inside the curly braces is executed at least once.

If you run the code above, you will get

Counter = 100;

After the WriteLine() statement is executed for the first time, counter is
incremented by 1. The value of counter is now 101. When the program reaches the
test condition, the test fails as counter is not smaller than 0. The program will then
exit the loop. Even though the original value of counter does not meet the test
condition (counter < 0), the code inside the curly braces is still executed once.

Note that for a do while statement, a semi-colon (;) is required after the test
condition.

Jump Statements

We’ve now covered most of the control flow statements in C#. Next, let us look at
jump statements.

A jump statement is a statement that instructs the program to deviate from its normal
flow sequence and jump to another line of code. Jump statements are commonly used
in loops and other control flow statements.

Break

The break keyword causes the program to exit a loop prematurely when a certain
condition is met. We have already seen how the break keyword can be used in a
switch statement. Now, let us look at an example of how the break keyword can be
used in a for loop.

Consider the code segment below:

1 int i = 0;

2

3 for (i = 0; i < 5; i++)

4 {

5 Console.WriteLine("i = {0}", i);

6 if (i == 2)

7 break;

8 }

In this example, we used an if statement inside a for loop. It is very common for us
to ‘mix-and-match’ various control tools in programming, such as using a while loop
inside an if statement or using a for loop inside a while loop. This is known as a

nested control statement.

If you run the code segment above, you will get the following output.

i = 0

i = 1

i = 2

Notice that the loop ends prematurely at i = 2?

Without the break keyword, the loop should run from i = 0 to i = 4 because the
loop condition is i < 5. However with the break keyword, when i = 2, the
condition on line 6 evaluates to true. The break keyword on line 7 then causes the
loop to end prematurely.

Continue

Another commonly used jump keyword is the continue keyword. When we use
continue, the rest of the loop after the keyword is skipped for that iteration. An
example will make it clearer.

If you run the code segment below

for (int i = 0; i<5; i++)

{

Console.WriteLine(“i = {0}”, i);

if (i == 2)

continue;

Console.WriteLine(“I will not be printed if i=2.\n”);

}

You will get the following output:

i = 0

I will not be printed if i=2.

i = 1

I will not be printed if i=2.

i = 2

i = 3

I will not be printed if i=2.

i = 4

I will not be printed if i=2.

When i = 2, the line after the continue keyword is not executed. Other than that,
everything runs as per normal.

Exception Handling

We’ve now learned how to control the flow of a program under ‘normal’
circumstances using control flow statements and jump statements. Before we end this
chapter, we need to look at one last control statement, the try-catch-finally
statement. The try-catch-finally statement controls how the program proceeds
when an error occurs. The syntax is as follows:

try

{

do something

}

catch (type of error)

{

do something else when an error occurs

}

finally

{

do this regardless of whether the try or catch condition is met.

}

You can have more than one catch blocks. In addition, the finally block is optional.

Let’s consider an example.

int numerator, denominator;

Console.Write("Please enter the numerator: ");

numerator = Convert.ToInt32(Console.ReadLine());

Console.Write("Please enter the denominator: ");

denominator = Convert.ToInt32(Console.ReadLine());

try

{

Console.WriteLine("The result is {0}.", numerator/denominator);

}

catch (Exception e)

{

Console.WriteLine(e.Message);

}

finally

{

Console.WriteLine(“---- End of Error Handling Example ----”);

}

If you run the code and enter 12 and 4, you’ll get the message

The result is 3.

---- End of Error Handling Example ----

In this example, the code in the try block executes successfully. After the code in the
try block is executed, the code in the finally block is executed.

Now suppose you enter 12 and 0 instead. You’ll get

Attempted to divide by zero.

---- End of Error Handling Example ----

In this case, the code in the catch block is executed instead. This is because when the
program tries to execute the statement in the try block, an error occurs since you
cannot divide a number by zero. Hence, the statement in the catch block is executed.
In addition, the code in the finally block is also executed. The finally block is
always executed regardless of whether the try or catch block is executed.

The catch block allows us to specify the type of error that it should catch. In this
case, we are trying to catch a general error. Therefore, we write

catch (Exception e)

where Exception refers to the class that the error belongs to and e is the name given
to the error.

The Exception class handles all general errors and has a property called Message that
explains the reason for the exception. To display that property, we write

Console.WriteLine(e.Message);

Specific Errors

In addition to the Exception class that handles general errors, we also have other
classes that can handle more specific errors. This is useful if you want to perform
specific tasks depending on the error caught. For instance, you may want to display
your own error message.

Try running the code below:

int choice = 0;

int[] numbers = { 10, 11, 12, 13, 14, 15 };

Console.Write("Please enter the index of the array: ");

try

{

choice = Convert.ToInt32(Console.ReadLine());

Console.WriteLine("numbers[{0}] = {1}", choice, numbers[choice]);

}catch (IndexOutOfRangeException)

{

Console.WriteLine("Error: Index should be from 0 to 5.");

}catch (FormatException)

{

Console.WriteLine("Error: You did not enter an integer.");

}catch (Exception e)

{

Console.WriteLine(e.Message);

}

If you enter

10

You will get

Index was outside the bounds of the array.

Index should be from 0 to 5.

If you enter

Hello

You will get

Input string was not in a correct format.

You did not enter an integer.

The first error is a IndexOutOfRangeException exception and was handled by the
first catch block. This exception occurs when you try to access an element of an
array with an index that is outside its bounds.

The second error is a FormatException exception and was handled by the second

catch block. The FormatException exception occurs when the format of an
argument is invalid. In our example, Convert.ToInt32("Hello") generated a
FormatException exception as the argument “Hello” cannot be converted into an
integer. In contrast, if you entered 4, Convert.ToInt32(“4”) will not generate a
FormatException exception as the string “4” can be converted into an integer.

After the two specific catch blocks, we have one more catch block to catch any
general errors that we did not pre-empt.

This example above shows two of the many exceptions in C#. For a complete list of
all exceptions, refer to https://msdn.microsoft.com/en-
us/library/system.systemexception.aspx.

https://msdn.microsoft.com/en-us/library/system.systemexception.aspx

Chapter 7: Object-Oriented Programming Part 1

We have covered a fair bit so far. In the next two chapters, we are going to look at
another important concept in programming – the concept of object-oriented
programming.

In this chapter, we’ll learn what object-oriented programming is and how to write our
own classes and create objects from them. In addition, we’ll also discuss the concept
of fields, properties, constructors and methods.

What is Object-Oriented Programming?

Simply stated, object-oriented programming is an approach to programming that
breaks a programming problem into objects that interact with each other.

Objects are created from templates known as classes. You can think of a class as the
blueprint of a building. An object is the actual “building” that we build based on the
blueprint.

Writing our own class

To write our own class, we use the class keyword, following by the name of the
class.

For instance, to create a Staff class, we write

class Staff {

//Contents of the class

//including fields, properties and methods

}

It is common practice to use PascalCasing when naming our classes. PascalCasing
refers to the practice of capitalizing the first letter of each word, including the first
word (e.g. ThisIsAClassName). This is the convention that we’ll be following in the
book.

The content of the class is enclosed within the pair of curly braces that follow the
class name. Contents of a class include constructors, destructors, constants, fields,
methods, properties, indexers, operators, events, delegates, interfaces, structs and
other classes.

We’ll cover some of the more common elements of a class in this chapter, namely
fields, methods, properties and constructors.

To understand what these are, let’s build a class from scratch.

First, create a new Console Application project in Visual Studio Community and
name this project “ClassDemo ”.

Study the code that is automatically generated for you. Notice that inside the
ClassDemo namespace, VSC has already created a class called Program for you?
Inside the Program class, we have the Main() method.

By default, the Main() method (which is the starting point for all C# applications) is
put into the Program class created by VSC. If we want, we can change the name of
the Program class to something else, but the Main() method must be called Main().
The Main() method must be present in all C# programs.

In this chapter, we are going to add a second class to the ClassDemo namespace.
We’ll call this new class Staff and add fields, properties and methods to the class.
The complete code for this chapter can be downloaded at
http://www.learncodingfast.com/csharp.

Let’s first declare the class. Add the following code just before the line class
Program in our auto-generated code.

class Staff

{

}

We now have two classes in our project: Staff and Program.

Fields

Inside the Staff class, add the following lines:

private string nameOfStaff;

private const int hourlyRate = 30;

private int hWorked;

Here, we declare one string variable (nameOfStaff) and two int variables
(hourlyRate and hWorked). These variables are known as fields of the class. A field

http://www.learncodingfast.com/csharp

is simply a variable that is declared inside a class. Like any other variables, they are
used to store data.

Notice that there is a word private in front of each declaration statement? This is
known as an access modifier. Access modifiers are like gate keepers, they control
who has access to that field (i.e. who can read and modify the value of that field).

A field can either be private, public, protected or internal. In our case, we
declared the three fields as private. This means they can only be accessed from
within the Staff class itself.

There are two reasons why we do not want the three fields to be accessible outside
the class.

The first reason is that there is no need for other classes to know about those fields. In
our case, the field hourlyRate is only needed within the Staff class. We have a
method inside the Staff class that uses the field hourlyRate to calculate the monthly
salary of an employee. Other classes do not use the hourlyRate field at all. Hence, it
is appropriate to declare hourlyRate as private so as to hide this field from other
classes.

This is known as encapsulation. Encapsulation enables an object to hide data and
behaviour from other classes that do not need to know about them. This makes it
easier for us to make changes to our code in future if necessary. We can safely change
the value of hourlyRate inside Staff class without affecting other classes.

The second reason for declaring a field as private is that we do not want other
classes to freely modify them. This helps to prevent the fields from being corrupted.

We’ll talk more about access modifiers in the next chapter.

In addition to the private keyword, we also added the const keyword when we
declared the hourlyRate field.

private const int hourlyRate = 30;

The const keyword indicates that the value cannot be changed after it is created. Any
variable that is declared as const must be initialized at the point of declaration. In our
example, we initialized hourlyRate to 30. This value cannot be changed
subsequently anywhere in the code.

Properties

Next, let us look at properties.

A property is commonly used to provide access to a private field in cases where the
field is needed by other classes. This may sound like a contradiction. Earlier, we
mentioned that we use private fields so that other classes do not have access to them.
If that is the case, why are we allowing access to them via properties?

One of the main reasons is that using properties gives us greater control over what
rights other classes have when assessing these private fields. We’ll see how to do that
later.

For now, let us first learn how to declare a property.

Add the following lines of code to our Staff class, just after the line private int
hWorked;.

public int HoursWorked

{

get

{

return hWorked;

}

set

{

if (value > 0)

 hWorked = value;

else

 hWorked = 0;

}

}

We declared our property as

public int HoursWorked

{

}

The access modifier is public as we want other classes to have access to this
property.

The data type is int because this property is used to provide access to the private int
field hWorked. hWorked is known as the backing field of the property.

The name of the property is HoursWorked. We normally use PascalCasing for
property names.

A property contains two special methods known as accessors. The first accessor is a
getter and the second is a setter.

The basic getter simply returns the value of the private field. Hence, we write

get

{

return hWorked;

}

where return is a keyword and hWorked is the name of the backing field.

The setter sets the value of the private field. We write

set

{

if (value > 0)

hWorked = value;

else

hWorked = 0;

}

value is a keyword when it used inside a setter. It refers to the value that is on the
right side of the assignment statement when users use the property to set the value of
the private field. We’ll learn how to do that later.

Inside the setter, we did a simple check using an if statement. We checked if value is
more than zero. If it is, we assign it to hWorked. Else, we set hWorked to zero. This
setter demonstrates how we can use properties to control what values can be assigned
to our private field.

By default, getter and setter have the same access level as the property itself (public
in this case). Hence, we do not need to specify them. However, if you do not want the
setter to have the same access level as the property, you can declare the setter as
private so that other classes cannot modify your private field:

private set

{

}

The property is then a read-only property outside the Staff class. Its value can only
be set within the Staff class itself.

Auto-implemented Properties

Note that in cases where no additional logic is required in the getter and setter, C#
provides us with a shorthand to declare the property. This is known as an auto-
implemented property.

To declare an auto-implemented property, we write

public int HoursWorked { get; set; }

This is equivalent to

private int hWorked;

public int HoursWorked

{

get

{

return hWorked;

}

set

{

hWorked = value;

}

}

When you use this shorthand, you do not have to declare a private field. The compiler
will create an anonymous private backing field for you automatically.

If you want to make the property read-only, you can set the setter to private like
this:

public int HoursWorked { get; private set; }

Methods

Next, let us look at methods.

A method is a code block that performs a certain task.

Let’s add a simple method to our Staff class.

public void PrintMessage()

{

Console.WriteLine(“Calculating Pay…”);

}

This method is declared as

public void PrintMessage()

{

}

The method declaration first states the accessibility level of the method. Here we
declared the method as public so that the method is accessible everywhere in the
program (not just within the Staff class).

Next, we state the return type of the method. A method may return a certain result
after performing its task. If the method does not return any result, we use the void
keyword like in our example.

Finally, we state the name of the method (PrintMessage in our example).

The parenthesis () after the method name is where we include the parameters of the
method. Parameters are names given to data that we pass in to the method in order for
it to perform its task. If the method requires no data (like in our example), we just add
a pair of empty parenthesis after the method name.

After we declare the method, we define what it does inside the pair of curly braces
that follow. This is known as implementing the method. In our example, the
PrintMessage() method simply prints the line “Calculating Pay…”.

That’s all there is to the PrintMessage() method.

Next, let us move on to a more complex method. This second method calculates the
pay of each employee and returns the result of the calculation. Add the following
lines of code to Staff.

public int CalculatePay()

{

PrintMessage();

int staffPay;

staffPay = hWorked * hourlyRate ;

if (hWorked > 0)

return staffPay;

else

return 0;

}

This method is declared as

public int CalculatePay()

{

}

The int keyword indicates that this method returns a value that is of int type.

Inside the curly braces, we have the statement

PrintMessage();

This is known as calling the PrintMessage() method. When the program reaches this
statement, it will execute the PrintMessage() method first and print the line
“Calculating Pay…” before executing the rest of the CalculatePay() method. This
example demonstrates how you can call one method inside another method.

Next, we declare a local variable called staffPay and assign the product of the
private fields hourlyRate and hWorked to it.

A method can access all the fields and properties that are declared inside the class. In
addition, it can declare its own variables. These are known as local variables and only
exist within the method. An example is the staffPay variable in our example.

After assigning the staffPay variable, we use an if statement to determine what
result the method should return.

A method usually has at least one return statement. return is a keyword that is used
to return an answer from the method. There can be more than one return statement in
a method. However, once the method executes a return statement, the method will
exit.

In our example, if hWorked is greater than zero, the program will execute the
statement

return staffPay;

and exit the method. This return value can then be assigned to a variable. For
instance, if hWorked is 10 and hourlyRate is 20, we can use the statement

int pay = CalculatePay();

to assign the result of CalculatePay() to the variable pay. The value of pay will then
be 200.

On the other hand, if hWorked is less than or equal to zero, the program will execute
the statement

return 0;

and exit the method. The value of pay will be 0.

Overloading

In C# (and most other languages), you can create two methods of the same name as
long as they have different signatures. This is known as overloading. The signature of
a method refers to the name of the method and the parameters that it has.

Add the following method below the previous CalculatePay() method.

public int CalculatePay(int bonus, int allowance)

{

PrintMessage();

if (hWorked > 0)

return hWorked * hourlyRate + bonus + allowance;

else

return 0;

}

The signature of the first method is CalculatePay() while that of the second method
is CalculatePay(int bonus, int allowance).

This second method has two parameters - bonus and allowance. It calculates the pay
of the employees by adding the values of these two parameters to the product of
hWorked and hourlyRate. In this example, we did not use a local variable to store the
result of hWorked * hourlyRate + bonus + allowance. We simply return the result
of the computation directly. This is perfectly fine. We’ll learn how to use this method
later.

The ToString() method

Finally, before we move on to the next section, we need to write one more method –
the ToString() method.

The ToString() method is a special method that returns a string that represents the
current class. In C#, all classes come with a pre-defined ToString() method.
However, it is customary (and expected of us) to override this method. Overriding a
method simply means writing our own version of the method.

Typically, the ToString() method that we write displays the values of the fields and
properties of the class. Add the following code to the Staff class:

public override string ToString()

{

return "Name of Staff = " + nameOfStaff + ", hourlyRate = " +

hourlyRate + ", hWorked = " + hWorked;

}

As you can see, the ToString() method returns a string type. The string that it
returns contains information about the Staff class. The override keyword in the
method declaration indicates that this method overrides the default method. We’ll
discuss more about the override keyword in the next chapter.

Constructors

Now, let us look at constructors.

A constructor is a special method that is used to ‘construct’ an object from the class
template. It is the first method that is called whenever we create an object from our
class. Constructors are commonly used to initialize the fields of the class.

A constructor always has the same name as the class (Staff in our case) and does not
return any value. We do not need to use the void keyword when declaring a
constructor.

Add the following lines to our Staff class.

public Staff(string name)

{

nameOfStaff = name;

Console.WriteLine("\n" + nameOfStaff);

Console.WriteLine("--------------------------");

}

In this constructor, we first initialize the field nameOfStaff with the string that is
passed in to the constructor (name). We then display the value of nameOfStaff on the
screen and underline it with a series of dashes.

Like any other methods, we can have more than one constructor as long as the
signature is different. We can add another constructor to our class.

public Staff(string firstName, string lastName)

{

nameOfStaff = firstName + " " + lastName;

Console.WriteLine("\n" + nameOfStaff);

Console.WriteLine("--------------------------");

}

This constructor has two parameters - firstName and lastName. The first line
concatenates the two strings and assigns the resulting string to nameOfStaff. The next
two lines print nameOfStaff on the screen and underline it with a series of dashes.

Declaring a constructor is optional. If you do not declare your own constructor, C#
creates one for you automatically. The default constructor simply initializes all the
fields in the class to default values, which is normally zero for numeral fields and
empty string for string fields.

Instantiating an Object

Now that we know how to create a class, let’s look at how we can make use of the
class to create an object. This process is known as instantiating an object. An object is
also known as an instance.

To recap, our Staff class has the following components:

Fields

private const int hourlyRate

private string nameOfStaff

private int hWorked

Properties

public int HoursWorked

Methods

public void PrintMessage()

public int CalculatePay()

public int CalculatePay(int bonus, int allowance)

public override string ToString()

Constructors

public Staff(string name)

public Staff(string firstName, string lastName)

We shall instantiate a Staff object in the Main() method inside the Program class.

The syntax for instantiating an object is

ClassName objectName = new ClassName(arguments);

Add the following lines inside the curly braces of the Main() method in the Program
class.

int pay;

Staff staff1 = new Staff("Peter");

staff1.HoursWorked = 160;

pay = staff1.CalculatePay(1000, 400);

Console.WriteLine("Pay = {0}", pay);

Here, we use the first constructor (with one parameter) to create our staff1 object.

Once we create the object, we can use the dot operator after the object’s name to
access any public field, property or method in the Staff class. Note that we need to
use the dot operator here as we are trying to access members of the Staff class from
the Program class. The dot operator is necessary whenever we want to access a field,
property or method from another class.

If you are accessing members of the same class, you do not need to use the dot
operator. An example is when we called the PrintMessage() method from the
CalculatePay() method earlier. We did not use the dot operator as both methods are
from the same class.

After creating our staff1 object, the next line shows how we can use the public
EmployeeType property to assign a value to the hWorked field.

staff1.HoursWorked = 160;

If we try to access the private field hWorked directly by writing

staff1.hWorked = 160;

we will get an error as hWorked is a private field and is therefore only accessible
within the Staff class.

To call the CalculatePay() method, we write

staff1.CalculatePay(1000, 400);

In this example, as we have the numbers 1000 and 400 inside the parenthesis, we are
using the second CalculatePay() method. We are passing in the values 1000 and
400 to the parameters bonus and allowance respectively. The values that we passed
in are known as arguments. The program then uses that method to calculate the pay
and return the answer. This answer is assigned to the variable pay.

Finally, we use the Console.WriteLine() method to display the value of pay on the
screen.

If you run the code above, you will get

Peter

Calculating Pay...

Pay = 6200

Play around with the code a bit to get a better feel of how classes work. Try adding
the following lines of code

Staff staff2 = new Staff("Jane", "Lee");

staff2.HoursWorked = 160;

pay = staff2.CalculatePay();

Console.WriteLine("Pay = {0}", pay);

If you run the code above, you will get

Jane Lee

Calculating Pay...

Pay = 4800

Finally, let’s create a third object to demonstrate how data validation works when we
use properties. Add the following lines of code.

Staff staff3 = new Staff("Carol");

staff3.HoursWorked = -10;

pay = staff3.CalculatePay();

Console.WriteLine("Pay = {0}", pay);

Here, we tried to set the HoursWorked property to -10, which is an invalid value. The
setter of that property sets the value to zero instead. If you run this code, you will get

Carol

Calculating Pay...

Pay = 0

Static Keyword

We’ve covered some pretty complicated concepts in this chapter. I strongly suggest
that you download the complete program for this chapter from
http://www.learncodingfast.com/csharp and play around with it. Study the code and
make sure you fully understand the topics covered in this chapter so far before
moving on.

In this section, we’ll look at another keyword that is sometimes used when we declare
classes or class members (i.e. methods, fields, properties, constructors etc).

Previously, we looked at how we can use the Staff class to create our staff1,
staff2 and staff3 objects. However, there are some classes or class members that
can be accessed without the need to create any objects. These are known as static
classes or class members and are declared using the static keyword.

Consider the following class:

1 class MyClass

2 {

3 //Non static members

4 public string message = "Hello World";

5 public string Name { get; set; }

6 public void DisplayName()

7 {

8 Console.WriteLine(“Name = {0}”, Name);

9 }

10

11 //Static members

http://www.learncodingfast.com/csharp

12 public static string greetings = "Good morning";

13 public static int Age { get; set; }

14 public static void DisplayAge()

15 {

16 Console.WriteLine("Age = {0}", Age);

17 }

18 }

MyClass contains one non static field message, one non static property Name and one
non static method DisplayName() (lines 4 to 9).

It also contains one static field greetings, one static property Age and one static
method DisplayAge() (lines 12 to 17).

To access the non static members of MyClass from another class, we need to
instantiate an object as before:

MyClass classA = new MyClass();

Console.WriteLine(classA.message);

classA.Name = “Jamie”;

classA.DisplayName();

However, to access the static members, we do not need to create any object. We
simply use the class name to access them as shown below.

Console.WriteLine(MyClass.greetings);

MyClass.Age = 39;

MyClass.DisplayAge();

If you run the code above, you will get the following output

Hello World

Name = Jamie

Good Morning

Age = 39

In addition to having static methods, fields, properties and constructors, we can also
have static classes. A static class can only contain static members. An example is
shown below.

static class MyStaticClass

{

public static int a = 0;

public static int B{get; set;}

}

Some of the pre-written classes in C# are declared as static classes. An example is
the Console class. We do not need to create a Console object when using methods
from the Console class. We simply write Console.WriteLine(“Hello World”);.

Advanced Method Concepts

Now that you are familiar with classes, let us move on to some advanced concepts
regarding the declaration and use of methods in a class. These concepts are more
complex and may require more than one reading to fully understand them.

Using Arrays and Lists

Previously, we learned how to use basic data types like int and float as parameters
to a method. In addition to using basic data types, we can also use arrays and lists.

To use an array as a parameter, we add a square bracket [] after the parameter’s data
type in the method declaration. An example is shown below.

public void PrintFirstElement(int[] a)

{

Console.WriteLine("The first element is {0}.\n", a[0]);

}

To call this method, we need to declare an array and pass it in as an argument to the
method:

int[] myArray = {1, 2, 3, 4, 5};

PrintFirstElement(myArray);

The next example shows how we can use a list as a parameter.

public void PrintFirstListElement(List<int> a)

{

Console.WriteLine(“The first list element is {0}.\n”, a[0]);

}

To call the method, we need to declare a list and pass it in as an argument to the
method.

List<int> myList = new List<int> {1, 2, 3};

PrintFirstListElement(myList);

In addition to using arrays or lists as parameters to a method, we can also return an
array or list from a method. To return an array from a method, we add a square
bracket [] after the return type in the method declaration.

public int[] ReturnUserInput()

{

int[] a = new int[3];

for (int i = 0; i < a.Length; i++)

{

Console.Write("Enter an integer: ");

a[i] = Convert.ToInt32(Console.ReadLine());

Console.WriteLine("Integer added to array.\n");

}

return a;

}

To use this method, we need to declare an array and assign the method’s result to it.

int[] myArray2 = ReturnUserInput ();

To return a list from a method, we use the List<> keyword as the return type in the
method declaration. An example is

public List<int> ReturnUserInputList()

{

List<int> a = new List<int>();

int input;

for (int i = 0; i < 3; i++)

{

Console.Write("Enter an integer: ");

input = Convert.ToInt32(Console.ReadLine());

Console.WriteLine("Integer added to list.\n");

a.Add(input);

}

return a;

}

To use this method, we need to declare a list and assign the method’s result to it.

List<int> myList2 = ReturnUserInputList();

Using params keyword

Next, let’s explore the params keyword. The params keyword is useful when we do

not know the number of arguments a method has. For instance, we may have a
method that prints a series of names, but we do not know how many names there are
in advance. In cases like this, we can use an array as the parameter and add the
params keyword in front of it.

An example is

public void PrintNames(params string[] names)

{

for (int i = 0; i < names.Length; i++)

{

Console.Write(names[i] + “ “);

}

Console.WriteLine();

}

To use this method, we can pass in any number of strings as arguments.

Example

PrintNames(“Peter”);

PrintNames(“Yvonne”, “Jamie”);

PrintNames(“Abigail”, “Betty”, “Carol”, “David”);

Output

Peter

Yvonne Jamie

Abigail Betty Carol David

Note that no additional parameters are permitted after the params keyword in a
method declaration, and only one params keyword is permitted in a method
declaration.

Hence, the following method declaration is fine

public void PrintNames2(int a, double b, params int[] ages)

but the following declarations are not

public void PrintNames3(int a, params string[] names, double b)

public void PrintNames4(params string[] names, params int[] ages)

PrintNames3 is not allowed because double b comes after params string[] names.

PrintNames4 is not allowed because there are two params keywords.

Passing Value Type vs Reference Type Parameters

I hope you now have a good understanding of how classes and methods work. Before
we end this chapter, I’d like to revisit the concept of value data types and reference
data types. In Chapter 4, we learnt that there are two main categories of data types in
C# - value types and reference types. There is a difference when you pass in a value
type variable to a method vs a reference type variable.

When you pass in a value type variable, any change made to the value of that variable
is only valid within the method itself. Once the program exits the method, the change
is no longer valid.

On the other hand, if you pass in a reference type variable, any change made to the
variable is valid even after the method ends.

Consider the class below:

class MethodDemo

{

public void PassByValue(int a)

{

a = 10;

Console.WriteLine("a inside method = {0}", a);

}

public void PassByReference(int[] b)

{

b[0] = 5;

Console.WriteLine("b[0] inside method = {0}", b[0]);

}

}

Within the class, we have two methods. The first method accepts a value type
variable and tries to change the value of that variable. It then prints the value of the
variable.

The second method accepts an array (reference type) and tries to change the value of
the first element in the array. It then prints the value of that element.

In our Main() program, suppose we have the following lines of code:

int a = 2;

int[] b = { 1, 2, 3 };

MethodDemo obj = new MethodDemo();

Console.WriteLine("a before = {0}", a);

obj.PassByValue(a);

Console.WriteLine("a after = {0}", a);

Console.WriteLine("\n\n");

Console.WriteLine("b[0] before = {0}", b[0]);

obj.PassByReference(b);

Console.WriteLine("b[0] after = {0}", b[0]);

If you run the program, you will get

a before = 2

a inside method = 10

a after = 2

b[0] before = 1

b[0] inside method = 5

b[0] after = 5

The value of a stays the same before and after the method call; the change is only
valid inside the method itself.

On the other hand, the value of b[0] changes after the method call.

Be aware of this difference when you pass in a value type variable to a method (e.g.
int, float etc) vs a reference type variable (such as an array or list).

Chapter 8: Object-Oriented Programming Part 2

Now, let us move on to some of the more advanced topics in object-oriented
programming. In this chapter, we’ll learn about inheritance, polymorphism, abstract
classes and interfaces.

Inheritance

Inheritance is one of the key concepts of object-oriented programming. Simply stated,
inheritance allows us to create a new class from an existing class so that we can
effectively reuse existing code.

Writing the Parent Class

Suppose we are writing a program for a fitness club that has two types of membership
– VIP and Normal. To do that, let’s create a class called Member first.

class Member

{

protected int annualFee;

private string name;

private int memberID;

private int memberSince;

}

Member contains one protected field and three private fields. A protected field is a
field that is only accessible within the class in which it is declared and any class that
is derived from it. We’ll talk about derived classes very soon.

Next, let us write a ToString() method to display the values of the four fields.

public override string ToString()

{

return "\nName: " + name + "\nMember ID: " + memberID + "\nMember

Since: " + memberSince + "\nTotal Annual Fee: " + annualFee;

}

Finally, let’s add two constructors to the Member class.

public Member()

{

Console.WriteLine("Parent Constructor with no parameter");

}

public Member(string pName, int pMemberID, int pMemberSince)

{

Console.WriteLine("Parent Constructor with 3 parameters");

name = pName;

memberID = pMemberID;

memberSince = pMemberSince;

}

The first constructor merely prints the line “Parent Constructor with no parameter”.

The second constructor is more interesting. It prints the line “Parent Constructor with
3 parameters” and assigns its parameters to the three private fields in the Member
class.

Writing the Child Class

Now, let us learn how to derive a class from the Member class. Derived classes are
known as child classes, while the classes from which they are derived are known as
parent classes or base classes.

A derived class inherits all the public and protected members from the parent class. In
other words, it can use those fields, properties and methods as if they are part of its
own code.

Our parent class (Member) has the following contents:

Fields

protected int annualFee

private string name

private int memberID

private int memberSince

Methods

public override string ToString()

Constructors

public Member()

public Member(string pName, int pMemberID, int pMemberSince)

We shall derive two classes – NormalMember and VIPMember – from the Member class.

First, let’s declare the child class NormalMember. We indicate that it is derived from
the Member class using a colon (:) like this

class NormalMember : Member

{

}

Now, we need to write the constructor for the child class. The constructor of a child
class is built upon the parent’s constructor. Whenever we create a child object, the
parent class constructor is always called first.

There are two ways to create a child constructor. The first way is to simply declare it
like any other constructor.

public NormalMember()

{

Console.WriteLine("Child constructor with no parameter");

}

When we declare our constructor as above, C# looks for a parameterless constructor
(i.e. a constructor with no parameter) in the parent class and calls that first before
executing the code in the child constructor. If you use this constructor to create a
child object, the following two lines will be displayed on the screen

Parent Constructor with no parameter

Child constructor with no parameter

The first line is from the parent constructor while the second line is from the child
constructor.

The second way to declare a child constructor is to use the colon sign (:) and the base
keyword to call a non parameterless constructor in the parent class. An example is
shown below:

public NormalMember(string remarks) : base (“Jamie”, 1, 2015)

{

Console.WriteLine("Remarks = {0}", remarks);

}

When we call a non parameterless constructor in the parent class, we need to pass in
values to its parameters. In the example above, we passed in the values “Jamie”, 1

and 2015 to the parent constructor. These values are then assigned to the fields name,
memberID and memberSince in the base class respectively.

In this example, we passed in fixed values as arguments to the base constructor.
However, a better way is to pass in the arguments through the child constructor. The
example below shows how this can be done. Replace the previous constructor with
the constructor below:

public NormalMember(string remarks, string name, int memberID, int

memberSince) : base (name, memberID, memberSince)

{

Console.WriteLine("Child Constructor with 4 parameters");

Console.WriteLine("Remarks = {0}", remarks);

}

This new child constructor has four parameters. The first parameter is a string
parameter called remarks. This parameter is used inside the child constructor.

The second, third and fourth parameters are not used in the child constructor. Instead,
they are passed in as arguments to the parent constructor based on their names. For
instance, the second parameter in the child constructor (string name) is passed in as
the first argument to the parent constructor (name).

When we create a child object with this constructor, we write something like

NormalMember myChildMember = new NormalMember(“Special Rate”, "James",

1, 2010);

The base constructor with 3 parameters is called and executed first. The values
“James”, 1 and 2010 are passed to the base constructor. Behind the scene, these
values are assigned to the fields name, memberID and memberSince in the base class
respectively.

After executing the base constructor, the child constructor will be executed. The
string “Special Rate” is assigned to remarks and displayed on the screen.

When you run the code, you will get the following output

Parent Constructor with 3 parameters

Child Constructor with 4 parameters

Remarks = Special Rate

Now that we have created the constructors for our child class, let us move on to create

a method to calculate the annual fee of a normal member. The code is simply

public void CalculateAnnualFee()

{

annualFee = 100 + 12*30;

}

When we write “annualFee” in the code above, we are accessing the protected field
annualFee in the parent class. Recall that a child class has access to all public and
protected fields in its parent class? Hence, the child class can use this field as if it is
its own field. The child class does not need to create an instance of the parent class in
order to access its protected fields.

That’s all for our child class NormalMember. The class has the following contents:

Fields

Inherited from parent class:
protected int annualFee

Methods

Inherited from parent class:
public override string ToString()

Declared in child class:
public void CalculateAnnualFee()

Constructors

public NormalMember()

public NormalMember(string remarks, string name, int memberID, int

memberSince)

Next, let us write another class that inherits from Member. This time, the derived class
is called VIPMember. The code is shown below.

class VIPMember : Member

{

public VIPMember(string name, int memberID, int memberSince) : base

(name, memberID, memberSince)

{

Console.WriteLine("Child Constructor with 3 parameters");

}

public void CalculateAnnualFee()

{

annualFee = 1200;

}

}

This class has one constructor (with 3 parameters) and one method
CalculateAnnualFee(). The CalculateAnnualFee() method here uses a different
formula for calculating annual fee from the CalculateAnnualFee() method in the
NormalMember class. It is alright for the two methods to share the same name (and
signature) as they are in different classes.

VIPMember class has the following contents:

Fields

Inherited from parent class:
protected int annualFee

Methods

Inherited from parent class:
public override string ToString()

Declared in child class:
public void CalculateAnnualFee()

Constructors

public VIPMember(string name, int memberID, int memberSince)

The Main() method

Now that we have written the three classes that we need, let’s write the code for the
Main() method.

First, we’ll create two objects from the two derived classes.

NormalMember mem1 = new NormalMember("Special Rate", "James", 1, 2010);

VIPMember mem2 = new VIPMember("Andy", 2, 2011);

mem1 is created using the 4 parameters constructor from the NormalMember class.
mem2 is created using the 3 parameters constructor from the VIPMember class.

Next, we’ll use the CalculateAnnualFee() methods in the respective classes.

mem1.CalculateAnnualFee();

mem2.CalculateAnnualFee();

As mem1 is an instance of the NormalMember class, the CalculateAnnualFee()
method from that class is executed. The annual fee for mem1 is thus 100 + 12*30 =
460. For mem2, the annual fee is 1200 as it uses the method from the VIPMember class.

Finally, let’s use the ToString() method from the parent class (Member) to display the
information on our screen. We write

Console.WriteLine(mem1.ToString());

Console.WriteLine(mem2.ToString());

Since the ToString() method belongs to the parent class and is public, both mem1 and
mem2 have inherited the method and are thus able to use it in the Main() method. This
facilitates code reuse as we do not need to rewrite the ToString() method for both
the child classes.

You’ll get the following output when you run the program:

Parent Constructor with 3 parameters

Child Constructor with 4 parameters

Message = Special Rate

Parent Constructor with 3 parameters

Child Constructor with 3 parameters

Name: James

Member ID: 1

Member Since: 2010

Total Annual Fee: 460

Name: Andy

Member ID: 2

Member Since: 2011

Total Annual Fee: 1200

Polymorphism

Now that we have seen an example of how inheritance works, let us move on to
discuss another topic that is closely related to inheritance - the concept of
polymorphism. Polymorphism refers to a program’s ability to use the correct method

for an object based on its run-time type.

The best way to explain polymorphism is through an example. Let’s expand on our
Fitness club example above.

First, delete all the code in the previous Main() method and add the following lines:

Member[] clubMembers = new Member[5];

clubMembers[0] = new NormalMember("Special Rate", "James", 1, 2010);

clubMembers[1] = new NormalMember("Normal Rate", "Andy", 2, 2011);

clubMembers[2] = new NormalMember("Normal Rate", "Bill", 3, 2011);

clubMembers[3] = new VIPMember("Carol", 4, 2012);

clubMembers[4] = new VIPMember("Evelyn", 5, 2012);

Here, we declare an array of Member type and add 5 members to it. The first three
members are instances of the NormalMember class while the last two are instances of
the VIPMember class.

Although clubMembers is declared to be an array of Member type, we can assign
instances of NormalMember and VIPMember to it as they are child classes of the Member
class. We do not need to declare separate arrays for NormalMember and VIPMember
objects.

Next, we’ll use a foreach loop to calculate the annual fee of each member and
display the information.

To do that, we write

foreach (Member m in clubMembers)

{

m.CalculateAnnualFee();

Console.WriteLine(m.ToString());

}

If you try to run the program at this stage, you’ll get an error that says Member does
not contain a definition for ‘CalculateAnnualFee’. This is because clubMembers is
declared to be an array of Member type. Hence, the complier tries to execute the
CalculateAnnualFee() method in the Member class when we write
m.CalculateAnnualFee(). An error occurs because we do not have such a method in
our Member parent class; we only have it in the two child classes. To rectify this error,
we have to add the following method to our parent class.

public void CalculateAnnualFee()

{

annualFee = 0;

}

Now run the program and pay attention to the “Total Annual Fee” for each member.
What do you notice? It should all show $0. This means the CalculateAnnualFee()
method that is invoked is the one in the parent class. This is not surprising as
clubMembers is declared to be of Member type.

If you want the child method to be invoked instead, you have to make two changes.

First, you need to declare the parent method as virtual, like this

public virtual void CalculateAnnualFee()

{

annualFee = 0;

}

The virtual keyword tells the compiler that this method may be overridden in
derived classes. When the compiler encounters this keyword, it’ll look for the same
method in the derived class and execute that method instead.

Next, in the derived class, you have to declare that your method overrides the method
in the parent class using the override keyword, like this

//In VIPMember child class

public override void CalculateAnnualFee()

{

annualFee = 1200;

}

//In NormalMember child class

public override void CalculateAnnualFee()

{

annualFee = 100 + 12 * 30;

}

Now if you run the program again, the annual fee for the first three members
(NormalMember) and the last two members (VIPMember) will be $460 and $1200
respectively.

This is the result of polymorphism. At run time (i.e. when the program runs), the
program determines that the first three members of clubMembers are of NormalMember
type and executes the CalculateAnnualFee() method from that class. It also
determines that the last two members are of VIPMember type and executes the method

from that class.

Polymorphism simply means that at run time, the program is smart enough to use the
CalculateAnnualFee() method from the correct child class even when that object is
declared to be of Member type.

We say that the runtime type of the first three elements of clubMembers is
NormalMember while the runtime type of the last two elements is VIPMember. The
declared type of all the 5 elements is Member.

GetType() and typeof()

In the previous example, we let the program determine the run time type of each
member of the clubMembers array and invoke the correct CalculateAnnualFee()
method. However, sometimes, it may be necessary for us to determine the runtime
type of each individual member ourselves when we code. We’ll see an example of
that later in our project.

The if statement below shows how you can determine whether the first element of
the clubMember array is of VIPMember type at run time:

if (clubMembers[0].GetType() == typeof(VIPMember))

Console.WriteLine(“Yes”);

else

Console.WriteLine(“No”);

The GetType() method returns the runtime type of an object.

The typeof() method takes the name of a data type (e.g. int, float, or the name of a
class) and returns the type of that name, which we can then compare with the result of
the GetType() method on the left.

If you run the code above, you’ll get “No” as the output since clubMembers[0] is not
of VIPMember type.

Abstract Classes and Methods

Now that we are familiar with inheritance (and polymorphism), let us move on to
discuss two special types of “parent class” in C# - abstract classes and interfaces.

First, let’s look at abstract classes.

An abstract class is a special type of class that is created strictly to be a base class for
other classes to derive from. They cannot be instantiated. In other words, if
FourWheelVehicles is an abstract class, the statement

FourWheelVehicle myVeh = new FourWheelVehicle();

will give you an error as you cannot create an object of an abstract class.

Abstract classes may have fields, properties and methods just like any other classes.
However, they cannot have static members. In addition, abstract classes can have a
special type of method known as abstract methods. Abstract methods are methods
that have no body and MUST be implemented in the derived class. They can only
exist in abstract classes. In a way, an abstract method is like a contract. If you want to
ensure that any class that inherits your class implements a certain method, you can
declare the class as an abstract class and the method as an abstract method.

To declare an abstract class, simply add the abstract keyword before the keyword
class like this:

abstract class MyClass

{

}

To declare an abstract method inside an abstract class, add the abstract keyword
before the return type, like this:

public abstract void MyAbstractMethod();

As abstract methods have no body, we end the declaration with a semi-colon (;).

To implement an abstract method in the derived class, we use the override keyword,
like this.

public override void MyAbstractMethod()

{

}

The code below shows an example of an abstract class.

1 using System;

2 using System.Collections.Generic;

3 using System.Linq;

4 using System.Text;

5 using System.Threading.Tasks;

6

7 namespace AbstractClassDemo

8 {

9 class Program

10 {

11 static void Main(string[] args)

12 {

13 //MyAbstractClass abClass = new MyAbstractClass();

14 ClassA a = new ClassA();

15 a.PrintMessage();

16 a.PrintMessageAbstract();

17 Console.Read();

18 }

19 }

20

21 abstract class MyAbstractClass

22 {

23 private string message = "Hello C#";

24 public void PrintMessage()

25 {

26 Console.WriteLine(message);

27 }

28 public abstract void PrintMessageAbstract();

29 }

30

31 class ClassA : MyAbstractClass

32 {

33 public override void PrintMessageAbstract()

34 {

35 Console.WriteLine("C# is fun!");

36 }

37 }

38 }

The abstract class is from Line 21 to 29. It contains a private field message and a
public method PrintMessage(). It also contains an abstract method
PrintMessageAbstract() on line 28. Lines 31 to 37 show the derived class which
implements the abstract method (lines 33 to 36).

If you run the program above, you will get

Hello C#

C# is fun!

Notice that Line 13 is commented out with the // sign? If you remove the two slashes,
you will get an error as an abstract class cannot be instantiated.

Interfaces

Next, let’s look at interfaces. Interfaces are much like abstract classes in that they
cannot be instantiated and must be inherited. However, interfaces are more
conceptual than abstract classes. They can only contain methods with no bodies. In
addition, they cannot contain fields but can contain properties. Interfaces also cannot
have static members. When a child class inherits an interface, we say that it
implements the interface.

One of the key differences between an abstract class and an interface is that a class
can only inherit one abstract class but can implement multiple interfaces. We won’t
be showing an example of multiple interfaces implementation as that is an advanced
topic beyond the scope of this book.

The code below shows an example of how a class can implement one interface. It is
common to start the name of an interface with the letter I. All properties and methods
in an interface are public, so there is no need to add any access modifiers to them.

1 using System;

2 using System.Collections.Generic;

3 using System.Linq;

4 using System.Text;

5 using System.Threading.Tasks;

6

7 namespace InterfaceDemo

8 {

9 class Program

10 {

11 static void Main(string[] args)

12 {

13 ClassA a = new ClassA();

14 a.MyNumber = 5;

15 a.InterfaceMethod();

16 Console.Read();

17 }

18 }

19

20 interface IShape

21 {

22 int MyNumber

23 {

24 get;

25 set;

26 }

27 void InterfaceMethod();

28 }

29

30 class ClassA : IShape

31 {

32

33 private int myNumber;

34 public int MyNumber

35 {

36 get

37 {

38 return myNumber;

39 }

40 set

41 {

42 if (value < 0)

43 myNumber = 0;

44 else

45 myNumber = value;

46 }

47 }

48

49 public void InterfaceMethod()

50 {

51 Console.WriteLine("The number is {0}.", MyNumber);

52 }

53 }

54 }

The interface is declared on lines 20 to 28. On lines 22 to 26, we declared a property
and on line 27, we declared a method.

ClassA implements the IShape interface. The property is implemented on lines 33 to
47 where we declared a private backing field (myNumber) for the property and
implemented some control rules.

The method is implemented on lines 49 to 52. We do not need to use the override
keyword when implementing a method that belongs to an interface.

If you run this program, you’ll get

The number is 5.

Access Modifiers Revisited

Now that we have covered various topics related to inheritance, let us take a second
look at the concept of access modifiers in object oriented programming. Earlier, we
learnt that an access modifier is like a gate-keeper. It controls who has access to a
certain field, property or method. C# comes with 4 access modifiers: private,

public, protected and internal.

Anything declared as internal is only accessible within the current assembly. As we
won’t be covering assemblies in this book, we will not be demonstrating how
internal works.

To understand how private, public and protected work, let’s consider the example
below. We’ll be using fields to demonstrate the concept. The same applies to methods
and properties.

Suppose we have a class with three fields:

class ClassA

{

private int privateNum = 1;

public int publicNum = 2;

protected int protectedNum = 3;

}

If ClassB is derived from ClassA,

class ClassB:ClassA

{

public void PrintMessages()

{

//This is ok

Console.WriteLine(publicNum);

//This is ok

Console.WriteLine(protectedNum);

//This is NOT ok

Console.WriteLine(privateNum);

}

}

the first two WriteLine() statements will not give us any error as a derived class can
access any public and protected fields in the parent class.

However, the third statement gives us an error as privateNum is a private field and is
thus only accessible in ClassA itself.

If a class is not derived from ClassA, we need to instantiate a ClassA object in order
to access the public field of ClassA. However, even with a ClassA object, we cannot

access the private and protected fields of ClassA. In the example below, ClassC is not
derived from ClassA. Hence, the first WriteLine() statement will not give us any
error but the second and third statements will.

class ClassC

{

ClassA a = new ClassA();

public void PrintMessages()

{

//This is ok

Console.WriteLine(a.publicNum);

//This is NOT ok

Console.WriteLine(a.protectedNum);

//This is NOT ok

Console.WriteLine(a.privateNum);

}

}

In short, anything that is declared as public is accessible everywhere; there are no
restrictions on accessing public members. On the other hand, anything declared as
private is only accessible within the class in which it is declared. Anything declared
as protected is accessible within the class in which it is declared and any class that is
derived from it.

Chapter 9: Enum and Struct

In Chapter 3 and 4, we looked at some built in data types provided by C#. These
include value types like int, float and double and reference data types like arrays,
strings and lists. In addition, we also looked at how you can write your own classes in
Chapter 7 and 8. A class can be considered to be an advanced user-defined data type
that groups a set of related fields, properties and methods into a logical unit.

In this chapter, we are going to look at two more user-defined data types in C# –
enum and struct.

Enum

An enum (which stands for enumerated type) is a special data type that allows
programmers to provide meaningful names for a set of integral constants.

To declare an enum, we use the enum keyword followed by the name of the enum.
The members of the enum are enclosed in a set of curly braces and separated by
commas.

An example is shown below:

enum DaysOfWeek

{

Sun, Mon, Tues, Wed, Thurs, Fri, Sat

}

Note that we do not put a semi-colon at the end of the last member.

After declaring the DaysOfWeek enum, we can declare and initialize a DaysOfWeek
variable like this:

DaysOfWeek myDays = DaysOfWeek.Mon;

The name of the variable is myDays. If we write

Console.WriteLine(myDays);

we’ll get

Mon

By default, each member in the enum is assigned an integer value, starting from zero.
That is, in our example, Sun is assigned a value of 0, Mon is 1, Tues is 2 and so on.

As members of an enum are essentially integers, we can cast a DaysOfWeek variable
into an int and vice versa. For instance,

Console.WriteLine((int)myDays);

gives us the integer 1 while

Console.WriteLine((DaysOfWeek)1);

gives us Mon.

If you want to assign a different set of integers to your enum members, you can do
the following

enum DaysOfWeekTwo

{

Sun = 5, Mon = 10, Tues, Wed, Thurs, Fri, Sat

}

Now, Sun is assigned a value of 5 and Mon is assigned 10. As we did not assign
values for Tues to Sat, consecutive numbers after 10 will be assigned to them. That is
Tues = 11, Wed = 12 and so on.

All enums are stored internally as integers (int). If you want to change the
underlying data type from int to another data type, you add a colon after the enum
name, followed by the desired data type. Any integer data type is allowed except for
char. An example is

enum DaysOfWeekThree : byte

{

Sun, Mon, Tues, Wed, Thurs, Fri, Sat

}

Of course, if you use a byte data type, you cannot do something like

enum DaysOfWeekFour : byte

{

Sun = 300, Mon, Tues, Wed, Thurs, Fri, Sat

}

as the range for byte is from 0 to 255.

There are two main reasons for using enums. The first is to improve the readability of
your code. The statement

myDays = DaysOfWeek.Mon;

is more self-explanatory than the statement

myDays = 1;

The second reason is to restrict the values that a variable can take. If we have a
variable that stores the days of a week, we may accidentally assign the value 10 to it.
This can be prevented when we use an enum as we can only assign the pre-defined
members of the enum to the variable.

Struct

Now, let’s look at the struct data type.

A struct is similar to a class in many aspects. Like classes, they contain elements like
properties, constructors, methods and fields and allow you to group related members
into a single package so that you can manipulate them as a group.

To declare a struct, you use the struct keyword. An example is:

1 struct MyStruct

2 {

3 //Fields

4 private int x, y;

5 private AnotherClass myClass;

6 private Days myDays;

7

8 //Constructor

9 public MyStruct(int a, int b, int c)

10 {

11 myClass = new AnotherClass();

12 myClass.number = a;

13 x = b;

14 y = c;

15 myDays = Days.Mon;

16 }

17

18 //Method

19 public void PrintStatement()

20 {

21 Console.WriteLine("x = {0}, y = {1}, myDays = {2}", x, y,

myDays);

22 }

23 }

24

25 class AnotherClass

26 {

27 public int number;

28 }

29

30 enum Days { Mon, Tues, Wed }

The struct is declared from lines 1 to 23. On line 4, we declared two private int
fields for the struct. On line 5, we declared another private field called myClass. This
field is an instance of the class AnotherClass. On line 6, we declared an enum
variable myDays. The two fields (myClass and myDays) are specially included in this
example to demonstrate how we can include a class instance and an enum variable as
the fields of a struct. Structs (and classes) can contain enum variables and instances of
other structs and classes as fields.

After declaring the fields, we declared the constructor for the struct (lines 9 to 16),
followed by a method to print the values of x, y and myDays. (lines 19 to 22).

After declaring the struct, we declared the class AnotherClass on lines 25 to 28 and
the enum Days on line 30. In this example, we declared the class and enum outside
the struct myStruct. However, it is possible for us to declare the enum or class inside
the struct itself. An enum, struct or class can be nested inside another struct or class.
We’ll look at an example of an enum declared inside a class when we work through
the project at the end of the book.

To use the struct above, we can add the following code to our Main() method:

MyStruct example = new MyStruct(2, 3, 5);

example.PrintStatement();

If we run the code, we’ll get

x = 3, y = 5, myDays = Mon

There are two main differences between a struct and a class. Firstly, the struct data
type does not support inheritance. Hence you cannot derive one struct from another.
However, a struct can implement an interface. The way to do it is identical to how it
is done with classes. Refer to Chapter 8 for more information.

The second difference between structs and classes is that structs are value types while
classes are reference types.

For a complete list of differences between a struct and a class, check out the
following page:
https://msdn.microsoft.com/en-us/library/saxz13w4.aspx

https://msdn.microsoft.com/en-us/library/saxz13w4.aspx

Chapter 10: LINQ

LINQ stands for Language-Integrated Query and is an interesting feature of C# that
allows you to query data in your program. In this chapter, we’ll cover a brief
introduction to LINQ followed by two examples of how LINQ can be used.

Let’s first learn how to write a LINQ query. The typical syntax for a LINQ query is

from… where… orderby… select

Let’s suppose we have an array of numbers and we want to select all even numbers
from the array. We can do that easily with LINQ.

First, let’s declare the array.

int[] numbers = { 0, 1, 2, 3, 4, 5, 6 };

Next, we write a LINQ query as follows:

var evenNumQuery =

from num in numbers

where (num % 2) == 0

select num;

The query is from the second to the fourth line. Readers who have experience with
SQL will probably find this query quite familiar. The query consists of three parts.
The first part

from num in numbers

states that we are performing the query on the numbers array. num is the name that we
use to represent the individual items in the array. The next line

where (num % 2) == 0

tests the individual items to determine if the remainder of num divided by 2 is zero. If
it is, num is an even number. The third line

select num;

selects all elements that satisfy this criteria.

This result is then assigned to the variable evenNumQuery, which is declared to be of
var type. var is a special data type that we use whenever we want the complier to
determine the data type itself. This is necessary because in our example, the data type
of evenNumQuery is quite complex; we are better off letting C# figure the data type
out for us.

After we create the query statement, we can execute the query by writing

foreach (int i in evenNumQuery)

{

Console.WriteLine("{0} is an even number", i);

}

If you run this code, you will get

0 is an even number

2 is an even number

4 is an even number

6 is an even number

That’s it. That’s how easy it is to use LINQ. Let us now move on to a more complex
example of LINQ.

Suppose you have a Customer class with Name, Phone, Address and Balance as its
properties and a constructor to initialize each of these properties.

We can create a list of Customer objects in our Main() method using the code below.

List<Customer> customers = new List<Customer>();

customers.Add(new Customer("Alan", "80911291", "ABC Street", 25.60m));

customers.Add(new Customer("Bill", "19872131", "DEF Street", -32.1m));

customers.Add(new Customer("Carl", "29812371", "GHI Street", -12.2m));

customers.Add(new Customer("David", "78612312", "JKL Street", 12.6m));

Now suppose we want to search for all customers with negative account balances, we
can use the following LINQ query.

var overdue =

from cust in customers

where cust.Balance < 0

orderby cust.Balance ascending

select new { cust.Name, cust.Balance };

This query is similar to the first query, with two main differences. Here, we used two

additional keywords, orderby and ascending, to arrange the results in ascending
order.

In addition, we used the new keyword in the select statement. The new keyword is
needed whenever we want to select more than one field from the objects.

To execute and print the results, we can use the foreach loop below:

foreach (var cust in overdue)

Console.WriteLine("Name = {0}, Balance = {1}", cust.Name,

cust.Balance);

We will get

Name = Bill, Balance = -32.1

Name = Carl, Balance = -12.2

Chapter 11: File Handling

Cool! We’ve come to the last chapter of the book before the project. In this chapter,
we’ll learn how to read and write to an external file.

In Chapter 5 previously, we learned how to get input from users using the
ReadLine() method. However, in some cases, getting users to enter data into our
program may not be practical, especially if our program needs to work with large
amounts of data. In cases like this, a more convenient way is to prepare the needed
information as an external file and get our programs to read the information from the
file.

C# provides us with a number of classes to work with files. The classes that we are
going to look at in this chapter are the File, StreamWriter and StreamReader
classes. All three classes are available in the System.IO namespace. To use the
methods in this chapter, you have to add the directive

using System.IO;

to the start of your code.

Reading a Text File

To read data from a text file, we use the StreamReader class.

Suppose we want to read data from the file “myFile.txt” located on the C drive. The
example below shows how to do it.

1 string path = “c:\\myFile.txt”;

2 using (StreamReader sr = new StreamReader(path))

3 {

4 while (sr.EndOfStream != true)

5 {

6 Console.WriteLine(sr.ReadLine());

7 }

8

9 sr.Close();

10 }

On line 1, we first declare a string variable path and assign the path of the file to the
variable.

string path = “c:\\myFile.txt”;

Note that we have to use double slashes \\ when writing the path. This is because if
we only use a single slash, the compiler will think the single slash is the beginning of
an escape sequence and interpret \m as an escape sequence. This will result in an
error.

On line 2, we create a StreamReader instance. The StreamReader constructor takes in
one argument – the path of the file to be read.

StreamReader sr = new StreamReader(path)

Notice that we create this StreamReader instance inside a pair of parenthesis that
follows the word using on line 2?

The using keyword here is different from the one that we use when writing a
directive.

The using keyword here ensures that the Dispose() method is always called. The
Dispose() method is a pre-written method in the System namespace that closes or
releases any unmanaged resources such as files and streams once they are no longer
needed. When we use the using keyword, we ensure that the Dispose() method is
called even if an exception occurs and prevents our code from reaching Line 9 where
we manually close the file. It is good practice to always use the using keyword
whenever you are dealing with files. The code to read and close the file is enclosed
within curly braces { } after the using statement.

From lines 4 to 7, we use a while loop to read the text file line by line.

while (sr.EndOfStream != true)

{

Console.WriteLine(sr.ReadLine());

}

EndOfStream is a property of the StreamReader class that returns true when the end
of the file is reached. As long as the end of file is not reached, the while loop will
continue to run.

Inside the while loop, we have the statement

Console.WriteLine(sr.ReadLine());

sr.ReadLine() reads a line from the text file and returns it as a string. This string is

then printed onto the screen using the Console.WriteLine() method.

Finally, after we finish reading the file, we close the file so that other programs may
use it. You should always close your file once you no longer need it.

sr.Close();

That’s it. That’s how you read a text file in C#. Pretty straightforward right?

However, there is one problem with the code above. This code will generate an error
if the file “myFile.txt” cannot be found. We have two options here.

Option 1: try…catch

The first option is to use a try…catch statement as shown below:

1 try

2 {

3 using (StreamReader sr = new StreamReader(path))

4 {

5 while (!sr.EndOfStream)

6 {

7 Console.WriteLine(sr.ReadLine());

8 }

9 sr.Close();

10 }

11 }catch (FileNotFoundException e)

12 {

13 Console.WriteLine(e.Message);

14 }

From lines 1 to 11, we try to open, read and close the file in the try block.

From lines 11 to 14, we use a catch block to catch the FileNotFoundException
exception if the file is not found. Inside the catch block, we print an error statement
to inform users that the file is not found.

Option 2: File.Exists()

The second method to deal with a “file not found” scenario is to use the Exists()
method in the File class. As the name suggests, the Exists() method checks if a file
exists. The File class is a pre-written class in the System.IO namespace that provides
static methods for the creation, copying, deletion, moving, and opening of a single
file.

To use the Exists() method, we use an if statement to check if the file exists before
using a StreamReader to open and read the file.

if (File.Exists(path))

{

using (StreamReader sr = new StreamReader(path))

{

while (!sr.EndOfStream)

{

Console.WriteLine(sr.ReadLine());

}

sr.Close();

}

}else

{

//Do something else

}

In the else block, we can write code to create the file if it is not found.

As you can see, the two methods for dealing with cases where the file is missing are
quite similar. However, the File.Exists() method is the preferred method as it is
faster than the try…catch statement.

Writing to a Text File

Next, let us look at how to write to a text file.

To write to a text file, we use the StreamWriter class.

If you want to append data to an existing file, you create a StreamWriter instance
like this

StreamWriter sw = new StreamWriter(path, true);

where path is the path of the file and true indicates that we want to append the data.

If you want to overwrite any existing data in the file, you create a StreamWriter
instance like this

StreamWriter sw = new StreamWriter(path);

When we create the StreamWriter instance, the constructor looks for the file at the

given path. If the file is not found, it creates the file.

After we instantiate our StreamWriter object, we can start writing to our file using
the WriteLine() method as shown below:

sw.WriteLine(“It is easy to write to a file.”);

After we finish writing to the file, we have to close the file by writing

sw.Close();

Note that when you write to a text file, it is also good practice to enclose your code in
a using statement. The code below shows a complete example of how all these come
together.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.IO;

namespace FileDemo

{

class Program

{

static void Main(string[] args)

{

//declaring the path to the file

string path = "myfile.txt";

//Writing to the file

using(StreamWriter sw=new StreamWriter(path, true))

{

sw.WriteLine("ABC");

sw.WriteLine("DEF");

sw.Close();

}

//Reading from the file

if (File.Exists(path))

{

using(StreamReader sr=new StreamReader(path))

{

while (!sr.EndOfStream)

{

Console.WriteLine(sr.ReadLine());

}

sr.Close();

}

}

Console.Read();

}

}

}

In this example, we choose to append data to our file when we write to it. When you
run this program for the first time, you will get

ABC

EFG

as the file output and screen display. If you run it for the second time, you will get

ABC

EFG

ABC

EFG

As the full path of “myfile.txt” is not given in this example, the text file will be
created in the same folder as the .exe file, which is in the FileDemo > FileDemo >
Debug > Bin folder.

Project – A Simple Payroll Software

Congratulations!

We have now completed the core concepts in C#. In this final chapter, we are going
to get our feet wet by coding a complete console application that generates the salary
slips of a small company.

Ready?

Overview

First, let’s create a new console application and name it CSProject.

This application consists of six classes as shown below.

Staff

Manager : Staff

Admin : Staff

FileReader

PaySlip

Program

The Staff class contains information about each staff in the company. It also
contains a virtual method called CalculatePay() that calculates the pay of each staff.

The Manager and Admin classes inherit the Staff class and override the
CalculatePay() method.

The FileReader class contains a simple method that reads from a .txt file and creates
a list of Staff objects based on the contents in the .txt file.

The PaySlip class generates the pay slip of each employee in the company. In
addition, it also generates a summary of the details of staff who worked less than 10
hours in a month.

Finally, the Program class contains the Main() method which acts as the main entry
point of our application.

The Staff Class

First, let’s start with the Staff class. The Staff class contains basic information
about an employee and provides a method for calculating basic pay. It serves as a
parent class from which two other classes will be derived.

Fields

This class has one private float field called hourlyRate and one private int field
called hWorked. Try declaring these fields yourself.

Properties

Next, declare three public auto-implemented properties for the class. The properties
are TotalPay, BasicPay and NameOfStaff.

TotalPay is a float property and has a protected setter. BasicPay is a float
property and has a private setter. NameOfStaff is a string property and has a
private setter. The getters of all three properties are public. Hence, you do not need
to declare the access modifiers of these getters as they have the same access level as
the properties.

In addition to these three auto-implemented methods, the Staff class also has a
public property called HoursWorked. The backing field for this property is the
hWorked field.

This property has a getter that simply returns the value of hWorked. The setter checks
if the value set for HoursWorked is greater than 0. If it is, it assigns value to hWorked.
If it is not, it assigns 0 to hWorked. Try declaring this property yourself. You can refer
to Chapter 7 for help.

Constructor

The Staff class has a public constructor with two parameters, name (string) and
rate (float). Inside the constructor, we assign the two parameters to the property
NameOfStaff and the field hourlyRate respectively. Try coding this constructor
yourself.

Method

Now, let’s write the methods for the class.

First, we’ll code a virtual method called CalculatePay().

CalculatePay() is public, has no parameters and does not return a value. The
method does three things:

First, it prints the line “Calculating Pay…” on the screen. Next, it assigns the value of
hWorked*hourlyRate to the BasicPay property. Finally, it assigns the value of
BasicPay to the TotalPay property. In other words, BasicPay and TotalPay will
have the same value. Try coding this method yourself.

Finally, write a ToString() method to display the values of the fields and properties
of the Staff class. That’s all there is to the Staff class.

The table below shows a summary of the Staff class.

Fields

private float hourlyRate

private int hWorked (backing field for HoursWorked)

Properties

public float TotalPay

public float BasicPay

public string NameOfStaff

public int HoursWorked

Constructor

public Staff(string name, float rate)

Methods

public virtual void CalculatePay()

public override string ToString()

The Manager : Staff Class

Next, let’s move on to code the Manager class.

Fields

The Manager class is a child class of the Staff class. It has one private const field
called managerHourlyRate that is of float type. Try declaring this field and
initializing it with a value of 50.

Properties

Manager also has a public auto-implemented property called Allowance. Allowance
is of int type and has a private setter. Try coding this property.

Constructor

Now, let’s declare the constructor for Manager. The Manager class has a public
constructor with a string parameter, name.

The task of the constructor is to call the base constructor and pass the parameter name
and the field managerHourlyRate to the base constructor. Other than that, the child
constructor does nothing. Hence, there is nothing within the curly braces of the child
constructor. Try coding this constructor yourself. You can refer to the Manager class
summary below for help if you have problems coding the constructor.

Method

Next, let’s code a method to override the CalculatePay() method in the Staff class.
As Manager is derived from Staff, it has access to the BasicPay, TotalPay and
HoursWorked properties declared in the Staff class.

In addition, Manager also has its own property – Allowance. We’ll be making use of
these four properties in this method.

First, let’s declare the method. CalculatePay() is public and does not return any
value. We have to use the override keyword when declaring this method as it
overrides the CalculatePay() method in the Staff class.

Within the CalculatePay() method in the Manager class, we shall first call the
CalculatePay() method in the parent class and use it to set the values of BasicPay
and TotalPay. To call a virtual method in the parent class, you have to use the base
keyword. Add the following line to your CalculatePay() method.

base.CalculatePay();

This calls the CalculatePay() method in the base (parent) class, which sets the
values of BasicPay and TotalPay. After setting the values of these two properties,
let’s go on to set the value of Allowance. We’ll set the value to 1000.

Next, we want to change the value of TotalPay. Based on the CalculatePay()
method in the base class, TotalPay is equal to BasicPay, both of which are equal to
the product of hWorked and hourlyRate.

However, in the Manager child class, we want to update the value of TotalPay by
adding an allowance to it. Suppose a manager is paid an allowance of $1000 if he/she
worked more than 160 hours within that month. Try using an if statement to update
the value of TotalPay based on the value of HoursWorked.

After updating the value of TotalPay, the CalculatePay() method is complete.

Finally, we need to code the ToString() method for the Manager class. Try coding
this method.

Once you are done, the Manager class is complete. The table below shows a summary
of the Manager class.

Fields

private const float managerHourlyRate

Properties

public int Allowance

Constructor

public Manager(string name) : base(name, managerHourlyRate)

Methods

public override void CalculatePay()

public override string ToString()

The Admin : Staff Class

The next class is the Admin class which is also derived from the Staff class.

Fields

The Admin class has two private const fields: overtimeRate and adminHourlyRate.
Both fields are of float type. Try declaring these two fields and initializing them
with the values 15.5 and 30 respectively.

Property

Next, try declaring a public auto-implemented property, Overtime.

Overtime is of float type and has a private setter.

Constructor

Now, let’s declare the constructor. Similar to the constructor of the Manager class, the
constructor of the Admin class is public and has one string parameter, name. Its job
is to simply call the base constructor and pass the parameter name and the field
adminHourlyRate to the base constructor.

Method

Finally, we are ready to code the CalculatePay() method for the Admin class. The
CalculatePay() method in the Admin class is very similar to the method in the
Manager class. Let’s first declare the method.

Next, within the curly braces, we use the CalculatePay() method of the base class to
set the BasicPay and TotalPay properties of an admin staff.

After setting the values of these two properties, we check if HoursWorked is greater
than 160. If it is, we’ll update the value of the TotalPay property.

Suppose an admin staff is paid an overtime pay on top of the basic pay if he/she
worked more than 160 hours. Try using an if statement to update the TotalPay
property of an admin staff.

The overtime pay is calculated with the following formula

Overtime = overtimeRate * (HoursWorked - 160);

where overtimeRate is a private field in the Admin class and Overtime is a property
in the same class. HoursWorked is a property inherited from the Staff class.

Done?

Great! Now, go on to code the ToString() method. With that, the Admin class is
complete. The table below shows a summary of the class.

Fields

private const float overtimeRate

private const float adminHourlyRate

Properties

public float Overtime

Constructor

public Admin(string name) : base(name, adminHourlyRate)

Methods

public override void CalculatePay()

public override string ToString()

The FileReader Class

Now, we are ready to code the FileReader class. The FileReader class is relatively
straightforward.

It consists of one public method called ReadFile() that has no parameter. The
method returns a list of Staff objects. The method declaration is as follows:

public List<Staff> ReadFile()

{

}

The ReadFile() method reads from a .txt file that consists of the names and positions
of the staff. The format is:

Name of Staff, Position of Staff

An example is:

Yvonne, Manager

Peter, Manager

John, Admin

Carol, Admin

The name of the text file is “staff.txt” and is stored in the same folder as the .exe file.
Create this file yourself using Notepad and store it in the CSProject > CSProject >
Bin > Debug folder where the .exe file is located.

Now, we can start coding the ReadFile() method. We first declare four local
variables named myStaff, result, path and separator as shown below.

List<Staff> myStaff = new List<Staff>();

string[] result = new string[2];

string path = "staff.txt";

string[] separator = {“, ”};

Next, we check if the file “staff.txt” exists using an if statement and the
File.Exists() method. You need to add the directive

using System.IO;

in order to use the File.Exists() method.

If the file exists, we use a StreamReader object to read the text file line by line.
(Refer to Chapter 11 if you need help with this.) Each time we read a line, we use the
Split() method (refer to Chapter 4) to split the line into two parts and store the result
in the result array. For instance, when we read the first line, the Split() method
splits it into two strings “Yvonne” and “Manager”. Hence, result[0] = “Yvonne”
and result[1] = “Manager”.

Based on the value of result[1], we use an if statement to create a Manager object
if the value of result[1] is “Manager” or an Admin object if the value is “Admin”.
We add these objects to the list myStaff.

After we finish reading the file, we close the file using the Close() method.

If the file does not exist, we display a message to inform users of the error.

Finally, we return the list myStaff to the caller after the if-else statement.

That’s all there is to the FileReader class. We do not need to declare a constructor
for this class. We’ll just use the default constructor that C# creates for us
automatically. The summary for the FileReader class is shown below:

Methods

public List<Staff> ReadFile()

The PaySlip Class

Now, let’s code the PaySlip class. This class is slightly different from the other
classes we’ve seen so far. In addition to having fields, properties, methods and
constructors, the PaySlip class also has an enum called MonthsOfYear.

Fields

First, let’s declare the fields. The class has two private int fields named month and
year. Try declaring them.

Enum

Next, we shall declare an enum named MonthsOfYear inside the PaySlip class.
MonthsOfYear represents the twelve months of the year, where JAN = 1, FEB = 2 etc.
Try declaring this enum yourself. You do not need to specify any access modifier for
this enum. An enum declared inside a class is private by default.

Constructor

Now, try adding a constructor to the PaySlip class. The constructor is public and has
two int parameters payMonth and payYear. Inside the constructor, we assign the two
parameters to the private fields month and year respectively.

Methods

Next, let us code the GeneratePaySlip() method. This method takes in a list of
Staff objects and does not return anything. The method declaration is

public void GeneratePaySlip(List<Staff> myStaff)

{

}

Inside the method, we declare a string variable called path. Next, still within the
GeneratePaySlip() method, we use a foreach loop to loop through the elements in
myStaff. This can be done as follows:

foreach (Staff f in myStaff)

{

}

Everything that follows from here for the GeneratePaySlip() method is to be coded
within the curly braces of the foreach loop.

First, we assign a value to the path variable based on the name of the staff.

Recall that the Staff class has a property called NameOfStaff?

Suppose NameOfStaff = “Yvonne”, we want to assign the string “Yvonne.txt” to the
path variable.

How would you do that? Try coding it yourself. (Hint: You can use f.NameOfStaff
to access the staff’s name and use the + operator to concatenate the “.txt” extension)

After assigning a value to path, we want to instantiate a StreamWriter object to write
to the file at the path specified by the path variable, overwriting any existing content
on the file so that each pay slip generated does not contain content from the previous
month. Refer to Chapter 11 if you have forgotten how to use the StreamWriter class.
Let’s call the StreamWriter object sw.

We can then proceed to use a series of sw.WriteLine() statements to generate the
pay slip of each employee.

A typical payslip for a manager looks like this:

1 PAYSLIP FOR DEC 2010

2 ==========================

3 Name of Staff: Yvonne

4 Hours Worked: 1231

5

6 Basic Pay: $61,550.00

7 Allowance: $1,000.00

8

9 ==========================

10 Total Pay: $62,550.00

11 ==========================

The numbers on the left are added for reference and are not part of the actual pay slip.

A typical payslip for an admin staff looks similar except for line 7. For an admin
staff, line 7 will read something like:

Overtime Pay: $1,286.50

Let us now look at how to generate this payslip.

To write line 1, we need to access the month and year fields in the class. As month is
an integer, we need to cast it into a MonthsOfYear enum value so that it will be
written as DEC instead of 12. The statement below shows how line 1 can be written.

sw.WriteLine("PAYSLIP FOR {0} {1}", (MonthsOfYear)month, year);

Line 2 is easy to write. It is simply made up of a series of equal signs (=). Try coding
it yourself.

To write lines 3 and 4, we need to access the NameOfStaff and HoursWorked
properties in the Staff class. The statement below shows how it can be done for line
3.

sw.WriteLine("Name of Staff: {0}", f.NameOfStaff);

Try coding line 4 yourself.

Next, we use a sw.WriteLine(“”); statement to print an empty line.

To write line 6, we need to access the BasicPay property in the Staff class. In
addition, we also need to use the C specifier to display the BasicPay property in
currency notation (refer to Chapter 5). Try it yourself.

Line 7 is harder as we need to determine the runtime type of the current object in the
foreach loop. We learned how to do that in Chapter 8. If the current instance is a
Manager object, we access and print the Allowance property in the Manager class. In
order to access the Allowance property in the Manager class, we need to cast f into a
Manager object by writing

((Manager)f).Allowance

If the current instance is an Admin object, we access and print the Overtime property
in the Admin class. Try coding line 7 yourself.
Line 8 is another empty line and line 9 is made up of a series of equal signs. Line 10
shows the total pay of the current staff, which we can get from the TotalPay property
of the Staff class. Finally, line 11 is another line made up of equal signs. Try coding
these lines yourself.

Last but not least, after generating the pay slip for each staff, we need to close the file
using the sw.Close() method.

That brings us to the end of the GeneratePaySlip() method. Once you have finished
coding this method, we can move on to the next method in the PaySlip class.

The next method generates a summary of employees who worked less than 10 hours
in that month. Let’s call this method GenerateSummary().

Like the GeneratePaySlip() method, the GenerateSummary() method is public,
takes in a list of Staff objects and does not return any value. Try declaring this
method yourself.

Inside the GenerateSummary() method, we use LINQ to select all employees who
worked less than 10 hours in that month. We want to know the NameOfStaff and
HoursWorked properties for these employees. In addition, we want to arrange the
result in ascending order based on NameOfStaff. Try coding this LINQ statement
yourself and assigning the result to a var variable called result. You can refer to
Chapter 10 for help.

Done?

Good.

Next, let us declare a string variable path and assign the string “summary.txt” to it.

Now we are ready to write to “summary.txt”. Declare a StreamWriter instance to
write to this file. A typical “summary.txt” file looks like this (numbers on the left are
added for reference):

1 Staff with less than 10 working hours

2

3 Name of Staff: Carol, Hours Worked: 2

4 Name of Staff: Peter, Hours Worked: 6

Lines 1 and 2 should be quite easy to code. Try coding them yourself.

To print lines 3 and 4, we need to use a foreach loop to loop through each element in
the result variable obtained from the LINQ statement. Try coding this yourself.

After displaying the result, you can close the “summary.txt” file using the Close()
method.

That’s it for our GenerateSummary() method.

After coding the GenerateSummary() method, we simply need to code the
ToString() method and our PaySlip class is complete. The table below shows a
summary of the PaySlip class.

Fields

private int month

private int year

Enum

enum MonthsOfYear

Constructor

public PaySlip(int payMonth, int payYear)

Methods

public void GeneratePaySlip(List<Staff> myStaff)

public void GenerateSummary(List<Staff> myStaff)

public override string ToString()

The Program Class

We’ve now come to the most important part of the project – the Program class. The
Program class only has one method – the Main() method.

The Main() Method

First, let us declare four local variables for the Main() method. The first is a list of
Staff objects. We shall call this list myStaff. The next is a FileReader object called
fr. The remaining two are int variables. Let’s call them month and year and
initialize them to zero. Try declaring these local variables yourself.

Now, we shall use a while loop and a try catch statement to prompt users to input
the year for the payslip. The loop will repeatedly prompt users to enter the year until
it gets a valid value.

To do that, we use the while loop below:

1 while (year == 0)

2 {

3 Console.Write("\nPlease enter the year: ");

4

5 try

6 {

7 //Code to convert the input to an integer

8 }

9 catch (FormatException)

10 {

11 //Code to handle the exception

12 }

13 }

Inside the try block (Line 7), we read the value that the user entered and try to
convert it to an integer. We then assign it to the variable year. If it is successful, year
will no longer be zero and the while loop will exit. Try coding the try block
yourself.

If the conversion is not successful, we catch the error in the catch block to prevent
the program from crashing. Try coding an error message in the catch block (Line
11). When conversion is unsuccessful, year remains as zero and the while loop
continues. Users will be repeatedly prompted to enter the year until they enter a valid
value.

Once you are done with this while block, you can move on to code the while block
to prompt users to enter the month. The while block for the month variable is very
similar to the one for the year variable. However, we want to do more checks for the
month variable.

In the try block, we first try to convert the input to an integer and assign it to the
month variable. If it is successful, we use an if statement to check if month is less
than 1 or greater than 12. If it is, the input is invalid. We’ll display an error message

to inform users that they have entered an invalid value. In addition, we’ll also reset
month to zero so that the while loop will repeat itself. Try coding this try block
yourself.

After coding the try block, you can proceed to code the catch block which simply
informs users of the error.

Done? Good.

Next, we shall add items to our myStaff list. We do that by using the fr object to call
the ReadFile() method in the FileReader class and assigning the result to myStaff.

We can then start to calculate the pay for each staff. We’ll use the following for loop
for this.

for (int i = 0; i < myStaff.Count; i++)

{

try

{

}

catch (Exception e)

{

}

}

Within the for loop, we use a try catch statement. In the try block, we do the
following:

First, prompt the user to enter the number of hours worked for each staff. An example
of a prompt is

Enter hours worked for Yvonne:

where “Yvonne” is the name of the staff. You need to access the NameOfStaff
property for each staff by writing myStaff[i].NameOfStaff.

Next, read the input, try to convert it to an integer and assign it to the HoursWorked
property of the Staff object.

After that, we call the CalculatePay() method on the Staff object to calculate the
pay of that staff.

Finally, we use the ToString() method to get information about the Staff object and

display this information on the screen using the Console.WriteLine() method.

Try coding this try block yourself.

Next in the catch block, we try to catch any errors that might occur. Within this
catch block, we simply display an error message and reduce the value of i by one
(i--;) so that the for loop will iterate again for the current Staff object instead of
moving on to the next element in myStaff.

Try coding this catch block yourself.

With that, we’ve come to the end of the for loop. We are now ready to generate the
pay slips for each staff. To do that, we need to first declare and instantiate a PaySlip
object. Let’s call that object ps. We pass in the variables month and year to the
constructor when instantiating the object.

Next, we use the ps object to invoke the GeneratePaySlip() and
GenerateSummary() methods and pass in myStaff as the argument. Finally, we add a
Console.Read(); statement to prevent the console from closing immediately after
the program ends.

Done?

If you have successfully coded the Main() program, give yourself a pat on the
shoulders. You have just coded a complete program in C#! Well done!

If you have problems coding it, keep trying. You can refer to the suggested solution
in Appendix A for reference.

Once you are done coding the Main()method, you are ready to run your program.
Excited? Let’s do it!

Click on the “Start” button to run the program and key in the values requested. The
pay slips generated can be found in the same folder as the .exe file, which is in the
CSProject > CSProject > Bin > Debug folder. Try making errors and keying in
alphabetical letters instead of numbers. Play around with the program to see how it
works. Does everything work as expected? If it does, great! You have done an
excellent job! Try to think of ways to improve the software. For instance, you can
include more checks to ensure that users entered the correct values for year and
HoursWorked.

If your code does not work, compare it with the sample answer and try to figure out
what went wrong. You’ll learn a lot by analysing your mistakes. Problem solving is
where the fun lies and where the reward is the greatest. Have fun and never give up!
The sample answer can be found in Appendix A.

Thank You

We’ve come to the end of the book. Thank you for reading this book and I hope you
have enjoyed the book. More importantly, I sincerely hope the book has helped you
master the fundamentals of C# programming.

I know you could have picked from a dozen of books on C# programming, but you
took a chance with this book. Thank you once again for downloading this book and
reading all the way to the end. Please try the exercises and the project. You’ll learn a
lot by doing.

Now I’d like to ask for a “small” favor. Could you please take a minute or two to
leave a review for this book on Amazon?

This feedback will help me tremendously and will help me continue to write more
guides on programming. If you like the book or have any suggestions for
improvement, please let me know. I will be deeply grateful. :)

Last but not least, remember you can download the source code for the project at
http://www.learncodingfast.com/csharp.

You can also contact me at jamie@learncodingfast.com.

http://www.learncodingfast.com/csharp
mailto:jamie@learncodingfast.com

Appendix A – Project Answer

The source code for this program can be downloaded at
http://www.learncodingfast.com/csharp.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.IO;

namespace CSProject

{

 class Program

 {

 static void Main(string[] args)

 {

 List<Staff> myStaff = new List<Staff>();

 FileReader fr = new FileReader();

 int month = 0, year = 0;

 while (year == 0)

 {

 Console.Write("\nPlease enter the year: ");

 try

 {

 year = Convert.ToInt32(Console.ReadLine());

 }

 catch (Exception e)

 {

 Console.WriteLine(e.Message + " Please try again.");

 }

 }

 while (month == 0)

 {

 Console.Write("\nPlease enter the month: ");

 try

 {

 month = Convert.ToInt32(Console.ReadLine());

 if (month < 1 || month > 12)

 {

 Console.WriteLine("Month must be from 1 to 12. Please

try again.");

http://www.learncodingfast.com/csharp

 month = 0;

 }

 }

 catch (Exception e)

 {

 Console.WriteLine(e.Message + " Please try again.");

 }

 }

 myStaff = fr.ReadFile();

 for (int i = 0; i< myStaff.Count; i++)

 {

 try

 {

 Console.Write("\nEnter hours worked for {0}: ",

myStaff[i].NameOfStaff);

 myStaff[i].HoursWorked =

Convert.ToInt32(Console.ReadLine());

 myStaff[i].CalculatePay();

 Console.WriteLine(myStaff[i].ToString());

 }

 catch (Exception e)

 {

 Console.WriteLine(e.Message);

 i--;

 }

 }

 PaySlip ps = new PaySlip(month, year);

 ps.GeneratePaySlip(myStaff);

 ps.GenerateSummary(myStaff);

 Console.Read();

 }

 }

 class Staff

 {

 private float hourlyRate;

 private int hWorked;

 public float TotalPay { get; protected set; }

 public float BasicPay { get; private set; }

 public string NameOfStaff { get; private set; }

 public int HoursWorked

 {

 get

 {

 return hWorked;

 }

 set

 {

 if (value > 0)

 hWorked = value;

 else

 hWorked = 0;

 }

 }

 public Staff(string name, float rate)

 {

 NameOfStaff = name;

 hourlyRate = rate;

 }

 public virtual void CalculatePay()

 {

 Console.WriteLine("Calculating Pay...");

 BasicPay = hWorked * hourlyRate;

 TotalPay = BasicPay;

 }

 public override string ToString()

 {

 return "\nNameOfStaff = " + NameOfStaff

 + "\nhourlyRate = " + hourlyRate + "\nhWorked = " + hWorked

 + "\nBasicPay = " + BasicPay + "\n\nTotalPay = " +

TotalPay;

 }

 }

 class Manager : Staff

 {

 private const float managerHourlyRate = 50;

 public int Allowance { get; private set; }

 public Manager(string name) : base(name, managerHourlyRate) { }

 public override void CalculatePay()

 {

 base.CalculatePay();

 Allowance = 1000;

 if (HoursWorked > 160)

 TotalPay = BasicPay + Allowance;

 }

 public override string ToString()

 {

 return "\nNameOfStaff = " + NameOfStaff + "\nmanagerHourlyRate

= "

 + managerHourlyRate + "\nHoursWorked = " + HoursWorked +

"\nBasicPay = "

 + BasicPay + "\nAllowance = " + Allowance + "\n\nTotalPay =

" + TotalPay;

 }

 }

 class Admin : Staff

 {

 private const float overtimeRate = 15.5f;

 private const float adminHourlyRate = 30f;

 public float Overtime { get; private set; }

 public Admin(string name) : base(name, adminHourlyRate) { }

 public override void CalculatePay()

 {

 base.CalculatePay();

 if (HoursWorked > 160)

 Overtime = overtimeRate * (HoursWorked - 160);

 }

 public override string ToString()

 {

 return "\nNameOfStaff = " + NameOfStaff

 + "\nadminHourlyRate = " + adminHourlyRate + "\nHoursWorked =

" + HoursWorked

 + "\nBasicPay = " + BasicPay + "\nOvertime = " + Overtime

 + "\n\nTotalPay = " + TotalPay;

 }

 }

 class FileReader

 {

 public List<Staff> ReadFile()

 {

 List<Staff> myStaff = new List<Staff>();

 string[] result = new string[2];

 string path = "staff.txt";

 string[] separator = { ", " };

 if (File.Exists(path))

 {

 using (StreamReader sr = new StreamReader(path))

 {

 while (!sr.EndOfStream)

 {

 result = sr.ReadLine().Split(separator,

StringSplitOptions.RemoveEmptyEntries);

 if (result[1] == "Manager")

 myStaff.Add(new Manager(result[0]));

 else if (result[1] == "Admin")

 myStaff.Add(new Admin(result[0]));

 }

 sr.Close();

 }

 }else

 {

 Console.WriteLine("Error: File does not exist");

 }

 return myStaff;

 }

 }

 class PaySlip

 {

 private int month;

 private int year;

 enum MonthsOfYear { JAN = 1, FEB = 2, MAR, APR, MAY, JUN, JUL,

AUG, SEP, OCT, NOV, DEC }

 public PaySlip(int payMonth, int payYear)

 {

 month = payMonth;

 year = payYear;

 }

 public void GeneratePaySlip(List<Staff> myStaff)

 {

 string path;

 foreach (Staff f in myStaff)

 {

 path = f.NameOfStaff + ".txt";

 using (StreamWriter sw = new StreamWriter(path))

 {

 sw.WriteLine("PAYSLIP FOR {0} {1}", (MonthsOfYear)month,

year);

 sw.WriteLine("====================");

 sw.WriteLine("Name of Staff: {0}", f.NameOfStaff);

 sw.WriteLine("Hours Worked: {0}", f.HoursWorked);

 sw.WriteLine("");

 sw.WriteLine("Basic Pay: {0:C}", f.BasicPay);

 if (f.GetType() == typeof(Manager))

 sw.WriteLine("Allowance: {0:C}",

((Manager)f).Allowance);

 else if (f.GetType() == typeof(Admin))

 sw.WriteLine("Overtime: {0:C}", ((Admin)f).Overtime);

 sw.WriteLine("");

 sw.WriteLine("====================");

 sw.WriteLine("Total Pay: {0:C}", f.TotalPay);

 sw.WriteLine("====================");

 sw.Close();

 }

 }

 }

 public void GenerateSummary(List<Staff> myStaff)

 {

 var result

 = from f in myStaff

 where f.HoursWorked < 10

 orderby f.NameOfStaff ascending

 select new { f.NameOfStaff, f.HoursWorked };

 string path = "summary.txt";

 using (StreamWriter sw = new StreamWriter(path))

 {

 sw.WriteLine("Staff with less than 10 working hours");

 sw.WriteLine("");

 foreach (var f in result)

 sw.WriteLine("Name of Staff: {0}, Hours Worked: {1}",

f.NameOfStaff, f.HoursWorked);

 sw.Close();

 }

 }

 public override string ToString()

 {

 return "month = " + month + "year = " + year;

 }

 }

}

	Chapter 1: Introduction to C#
	What is C#?
	Why Learn C#?
	Chapter 2: Getting ready for C#
	Installing Visual Studio Community
	Your First C# Program
	Basic Structure of a C# Program
	Directive
	Namespace
	The Main() Method
	Comments
	Chapter 3: The World of Variables and Operators
	What are variables?
	Data Types in C#
	int
	byte
	float
	double
	decimal
	char
	bool
	Naming a Variable
	Initializing a Variable
	The Assignment Sign
	Basic Operators
	More Assignment Operators
	Type Casting In C#
	Chapter 4: Arrays, Strings and Lists
	Array
	Array Properties and Methods
	String
	String Properties and Methods
	Lists
	List Properties and Methods
	Value Type vs. Reference Type
	Chapter 5: Making our Program Interactive
	Displaying Messages to Users
	Escape Sequences
	Accepting User Input
	Converting a String to a Number
	Putting it all Together
	Chapter 6: Making Choices and Decisions
	Condition Statements
	Control Flow Statements
	If Statement
	Inline If
	Switch Statement
	For Loop
	Foreach Loop
	While Loop

