 Chemavamgg Creen criestee:
DevOps with
Kubernetes

Accelerating software delivery with container
orchestrators

o B

DevOps with Kubernetes

Accelerating software delivery with container orchestrators

Hideto Saito
Hui-Chuan Chloe Lee
Cheng-Yang Wu

BIRMINGHAM - MUMBAI

DevOps with Kubernetes

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2017

Production reference: 1121017

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78839-664-6

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Hideto Saito
Hui-Chuan Chloe Lee
Cheng-Yang Wu

Copy Editors
Laxmi Subramanian
Safis Editing

Reviewer Project Coordinator
Guang Ya Liu Shweta H Birwatkar
Proofreader Commissioning Editor
Safis Editing Gebin George
Acquisition Editor Indexer

Chandan Kumar Pratik Shirodkar
Content Development Editor Graphics

Dattatraya More

Tania Dutta

Technical Editor
Jovita Alva

Production Coordinator
Shantanu Zagade

About the Authors

Hideto Saito has around 20 years of experience in the computer industry. In 1998, while
working for Sun Microsystems Japan, he was impressed with Solaris OS, OPENSTEP, and
Sun Ultra Enterprise 10000 (AKA StarFire). Then, he decided to pursue the UNIX and
MacOS X operation systems.

In 2006, he relocated to southern California as a software engineer to develop products and
services running on Linux and MacOS X. He was especially renowned for his quick
Objective-C coding when he was drunk.

He is also an enthusiastic fan of Japanese anime, drama, and motor sports, and loves
Japanese Otaku culture.

Hui-Chuan Chloe Lee is a DevOps and software developer. She has worked in the software
industry on a wide range of projects for over 5 years. As a technology enthusiast, Chloe
loves trying and learning new technologies, which makes her life happier and more
fulfilled. In her free time, she enjoys reading, traveling, and spending time with the people
she loves.

Cheng-Yang Wu has been tackling infrastructure and system reliability since he received
his master’s degree in computer science from the National Taiwan University. His laziness
prompted him to master DevOps skills to maximize his efficiency at work in order to
squeeze in writing code for fun. He enjoys cooking as it's just like working with software—a
perfect dish always comes from balanced flavors and fine-tuned tastes.

About the Reviewer

Guang Ya Liu is a Senior Software Architect in IBM CSL (China System Lab) and now
focuses on cloud computing, data center operating systems and container technology, he is
also a Member of IBM Academy of Technology. He used to be a OpenStack Magnum Core
Member from 2015 to 2017, and now act as Kubernetes Member and Apache Mesos
Committer & PMC Member. Guang Ya is also the organizer for Mesos, Kubernetes and
OpenStack Xi'an Meetup and successfully held many meetups for those open source
projects in China. He also holds two US patents related to cloud and six publised IPs. Visit
his GitHub here: https://github.com/gyliu513.

https://github.com/gyliu513
https://github.com/gyliu513
https://github.com/gyliu513
https://github.com/gyliu513
https://github.com/gyliu513
https://github.com/gyliu513
https://github.com/gyliu513
https://github.com/gyliu513
https://github.com/gyliu513

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details. At www.PacktPub.com, you can also read a
collection of free technical articles, sign up for a range of free newsletters and receive
exclusive discounts and offers on Packt books and eBooks.

. Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1788396642.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1788396642
https://www.amazon.com/dp/1788396642
https://www.amazon.com/dp/1788396642
https://www.amazon.com/dp/1788396642
https://www.amazon.com/dp/1788396642
https://www.amazon.com/dp/1788396642
https://www.amazon.com/dp/1788396642
https://www.amazon.com/dp/1788396642
https://www.amazon.com/dp/1788396642
https://www.amazon.com/dp/1788396642
https://www.amazon.com/dp/1788396642
https://www.amazon.com/dp/1788396642
https://www.amazon.com/dp/1788396642

Table of Contents

Preface

Chapter 1: Introduction to DevOps
Software delivery challenges
Waterfall and physical delivery
Agile and electrical delivery
Software delivery on the cloud
Continuous Integration
Continuous Delivery
Configuration management
Infrastructure as code
Orchestration
Trend of microservices
Modular programming
Package management
MVC design pattern
Monolithic application
Remote Procedure Call
RESTful design
Microservices
Automation and tools
Continuous Integration tool
Continuous Delivery tool
Monitoring and logging tool
Communication tool
Public cloud
Summary

Chapter 2: DevOps with Container
Understanding container
Resource isolation
Linux container concept
Containerized delivery
Getting started with container
Installing Docker for Ubuntu
Installing Docker for CentOS
Installing Docker for macOS
Container life cycle
Docker basics

Layer, image, container, and volume

Table of Contents

Distributing images
Connect containers
Working with Dockerfile
Writing your first Dockerfile
Dockerfile syntax
Organizing a Dockerfile
Multi-containers orchestration
Piling up containers
Docker Compose overview
Composing containers
Summary

Chapter 3: Getting Started with Kubernetes
Understanding Kubernetes
Kubernetes components
Master components
API server (kube-apiserver)
Controller Manager (kube-controller-manager)
etcd
Scheduler (kube-scheduler)
Node components
Kubelet
Proxy (kube-proxy)
Docker
Interaction between Kubernetes master and nodes
Getting started with Kubernetes
Preparing the environment
kubectl
Kubernetes resources
Kubernetes objects
Namespace
Name
Label and selector
Annotation
Pods
ReplicaSet (RS) and ReplicationController (RC)
Deployments
Services
Volumes
Secrets
ConfigMap
Using ConfigMap via volume
Using ConfigMap via environment variables
Multi-containers orchestration

Summary

Chapter 4: Working with Storage and Resources
Kubernetes volume management
Container volume lifecycle

[ii]

Table of Contents

Sharing volume between containers within a pod

Stateless and stateful applications

Kubernetes Persistent Volume and dynamic provisioning
Persistent Volume claiming the abstraction layer

Dynamic Provisioning and StorageClass

A problem case of ephemeral and persistent setting
Replicating pods with a Persistent Volume using StatefulSet

Persistent Volume example
Elasticsearch cluster scenario
Elasticsearch master node
Elasticsearch master-eligible node
Elasticsearch data node
Elasticsearch coordinating node

Kubernetes resource management
Resource Quality of Service
Configuring the BestEffort pod
Configuring as the Guaranteed pod
Configuring as Burstable pod
Monitoring resource usage

Summary

Chapter 5: Network and Security
Kubernetes networking
Docker networking
Container-to-container communications
Pod-to-pod communications
Pod communication within the same node
Pod communication across nodes
Pod-to-service communications
External-to-service communications
Ingress
Network policy
Summary

Chapter 6: Monitoring and Logging

Inspecting a container

Kubernetes dashboard
Monitoring in Kubernetes

Application

Host

External resources

Container

Kubernetes

Getting monitoring essentials for Kubernetes
Hands-on monitoring

Meeting Prometheus

127
128
130
132
135
138
144
145
145
147
147
147
147
153
154
157
158
160
162
165

166
166
167
170
171
172
173
176
179
181
186
189

190
190
191
193
193
194
195
195
196
196
199
200

[iii]

Table of Contents

Deploying Prometheus
Working with PromQL
Discovering targets in Kubernetes
Gathering data from Kubernetes
Seeing metrics with Grafana
Logging events
Patterns of aggregating logs
Collecting logs with a logging agent per node
Running a sidecar container to forward logs
Ingesting Kubernetes events
Logging with Fluentd and Elasticsearch
Extracting metrics from logs
Summary

Chapter 7: Continuous Delivery
Updating resources
Triggering updates
Managing rollouts
Updating DaemonSet and StatefulSet
DaemonSet
StatefulSet
Building a delivery pipeline
Choosing tools
Steps explained
env
script
after_success
deploy
Gaining deeper understanding of pods
Starting a pod
Liveness and readiness probes
Init containers
Terminating a pod
Handling SIGTERM

SIGTERM is not forwarded to the container process
SIGTERM doesn't invoke the termination handler

Container lifecycle hooks
Placing pods
Summary

Chapter 8: Cluster Administration
Kubernetes namespaces
Default namespaces
Create a new namespace
Context

Create a context
Switch the current context

200
201
202
205
206
208
208
208
210
211
212
215
216

217
217
218
220
222
223
224
224
225
226
226
227
228
229
232
232
233
235
236
237

237
239

239
241
242

244
244
245
245

246
247
247

[iv]

Table of Contents

ResourceQuota 248
Create a ResourceQuota for a namespace 248
Request pods with default compute resource limits 251

Delete a namespace 252
Kubeconfig 253
Service account 254
Authentication and authorization 255
Authentication 256
Service account authentication 256

User account authentication 257
Authorization 258
Attribute-based access control (ABAC) 259
Role-based access control (RBAC) 260
Roles and ClusterRoles 260
RoleBinding and ClusterRoleBinding 262
Admission control 264
Namespace life cycle 264
LimitRanger 264
Service account 264
PersistentVolumelLabel 264
DefaultStorageClass 265
ResourceQuota 265
DefaultTolerationSeconds 265
Taints and tolerations 265
PodNodeSelector 267
AlwaysAdmit 267
AlwaysPulllmages 267
AlwaysDeny 268
DenyEscalatingExec 268
Other admission controller plugins 268
Summary 268
Chapter 9: Kubernetes on AWS 269
Introduction to AWS 269
Public cloud 270
API and infrastructure as code 270
AWS components 272
VPC and subnet 272
Internet gateway and NAT-GW 274
Security group 278

EC2 and EBS 279

Route 53 285

ELB 287

S3 289
Setup Kubernetes on AWS 290
Install kops 291

[v]

Table of Contents

Run kops
Kubernetes cloud provider
L4 LoadBalancer
L7 LoadBalancer (ingress)
StorageClass
Maintenance Kubernetes cluster by kops

Summary

Chapter 10: Kubernetes on GCP
Introduction to GCP
GCP components
VPC
Subnets
Firewall rules
VM instance
Load balancing
Health check
Backend service
Creating a LoadBalancer
Persistent Disk
Google Container Engine (GKE)
Setting up your first Kubernetes cluster on GKE
Node pool
Multi zone cluster
Cluster upgrade
Kubernetes cloud provider
StorageClass
L4 LoadBalancer
L7 LoadBalancer (ingress)
Summary

Chapter 11: What's Next
Exploring the possibilities of Kubernetes
Mastering Kubernetes
Job and CronJob
Affinity and anti-affinity between pods and nodes
Auto-scaling of pods
Prevention and mitigation of pod disruptions
Kubernetes federation
Cluster add-ons
Kubernetes and communities
Kubernetes incubator
Helm and charts
Gravitating towards a future infrastructure
Docker swarm mode
Amazon EC2 container service
Apache Mesos
Summary

291
294
295
297
299
301

302

303
303
304
304
306
307
308
313
315
315
316
319
320
321
323
326
328
330
330
331
332

336

337
337
337
338
338
338
339
339
340
341
342
342
345
345
346
347

349

[vil

Table of Contents

Index 350

[vii]

Preface

This book walks you through a journey of learning fundamental concept and useful skills
for DevOps, containers and Kubernetes.

What this book covers

Chapter 1, Introduction to DevOps, walks you through the evolution from the past to what
we call DevOps today and the tools that you should know. Demand for people with
DevOps skills has been growing rapidly over the last few years. It has accelerated software
development and delivery speed and has also helped business agility.

Chapter 2, DevOps with Container, helps you learn the fundamentals and container
orchestration. With the trend of microservices, container has been a handy and essential
tool for every DevOps because of its language agnostic isolation.

Chapter 3, Getting Started with Kubernetes, explores the key components and API objects in
Kubernetes and how to deploy and manage containers in a Kubernetes cluster. Kubernetes
eases the pain of container orchestration with a lot of killer features, such as container
scaling, mounting storage systems, and service discovery.

Chapter 4, Working with Storage and Resources, describes volume management and also
explains CPU and memory management in Kubernetes. Container storage management can
be hard in a cluster.

Chapter 5, Network and Security, explains how to allow inbound connection to access
Kubernetes services and how default networking works in Kubernetes. External access to
our services is necessary for business needs.

Chapter 6, Monitoring and Logging, shows you how to monitor a resource's usage at
application, container, and node level using Prometheus. This chapter also shows how to
collect logs from your applications, as well as Kubernetes with Elasticsearch, Fluentd, and
Kibana stack. Ensuring a service is up and healthy is one of the major responsibilities of
DevOps.

chapter 7, Continuous Delivery, explains how to build a Continuous Delivery pipeline with
GitHub/DockerHub/TravisCI. It also explains how to manage updates, eliminate the
potential impact when doing rolling updates, and prevent possible failure. Continuous
Delivery is an approach to speed up your time-to-market.

Preface

Chapter 8, Cluster Administration, describes how to solve the preceding problems with the
Kubernetes namespace and ResourceQuota and how to do access control in Kubernetes.
Setting up administrative boundaries and access control to Kubernetes cluster are crucial to
DevOps.

Chapter 9, Kubernetes on AWS, explains AWS components and shows how to provision
Kubernetes on AWS. AWS is the most popular public cloud. It brings the infrastructure
agility and flexibility to our world.

Chapter 10, Kubernetes on GCP, helps you understand the difference between GCP and
AWS, and the benefit of running containerized applications in hosted service from
Kubernetes’ perspective. Google Container Engine in GCP is a managed environment for
Kubernetes.

Chapter 11, What’s Next?, introduces other similar technologies, such as Docker Swarm
mode, Amazon ECS, and Apache Mesos and you’ll have an understanding of which the best
approach is for your business. Kubernetes is open. This chapter will teach you how to get in
touch with Kubernetes community to learn ideas from others.

What you need for this book

This book will guide you through the methodology of software development and delivery
with Docker container and Kubernetes using macOS and public cloud (AWS and GCP). You
will need to install minikube, AWSCLI, and the Cloud SDK to run the code samples present
in this book.

Who this book is for

This book is intended for DevOps professionals with some software development
experience who are willing to scale, automate, and shorten software delivery to the market.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Mount
the downloaded webStorm-10*.dmg disk image file as another disk in your system."

[2]

Preface

Any command-line input or output is written as follows:

$ sudo yum -y —-q install nginx
$ sudo /etc/init.d/nginx start
Starting nginx:

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "The shortcuts in this book
are based on the Mac OS X 10.5+ scheme."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply email feedback@packtpub.com, and mention the
book's title in the subject of your message. If there is a topic that you have expertise in and
you are interested in either writing or contributing to a book, see our author guide at
www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

[31]

http://www.packtpub.com/authors

Preface

Downloading the example code

You can download the example code files for this book from your account at http://www.
packtpub. com. If you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files emailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your email address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSOk D=

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR / 7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/DevOpswithKubernetes. We also have other code bundles from our rich
catalog of books and videos available at https://github.com/PacktPublishing/. Check
them out!

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https://www.packtpub.com/sites/default/files/
downloads/DevOpswithKubernetes_ColorImages.pdf.

[4]

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/DevOpswithKubernetes
https://github.com/PacktPublishing/DevOpswithKubernetes
https://github.com/PacktPublishing/DevOpswithKubernetes
https://github.com/PacktPublishing/DevOpswithKubernetes
https://github.com/PacktPublishing/DevOpswithKubernetes
https://github.com/PacktPublishing/DevOpswithKubernetes
https://github.com/PacktPublishing/DevOpswithKubernetes
https://github.com/PacktPublishing/DevOpswithKubernetes
https://github.com/PacktPublishing/DevOpswithKubernetes
https://github.com/PacktPublishing/DevOpswithKubernetes
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/devOpswithkubernetes_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/devOpswithkubernetes_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/devOpswithkubernetes_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/devOpswithkubernetes_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/devOpswithkubernetes_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/devOpswithkubernetes_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/devOpswithkubernetes_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/devOpswithkubernetes_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/devOpswithkubernetes_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/devOpswithkubernetes_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/devOpswithkubernetes_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/devOpswithkubernetes_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/devOpswithkubernetes_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/devOpswithkubernetes_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/devOpswithkubernetes_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/devOpswithkubernetes_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/devOpswithkubernetes_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/devOpswithkubernetes_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/devOpswithkubernetes_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/devOpswithkubernetes_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/devOpswithkubernetes_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/devOpswithkubernetes_ColorImages.pdf

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[5]

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/su%20target=
https://www.packtpub.com/books/content/su%20target=
https://www.packtpub.com/books/content/su%20target=
https://www.packtpub.com/books/content/su%20target=
https://www.packtpub.com/books/content/su%20target=
https://www.packtpub.com/books/content/su%20target=
https://www.packtpub.com/books/content/su%20target=
https://www.packtpub.com/books/content/su%20target=
https://www.packtpub.com/books/content/su%20target=
https://www.packtpub.com/books/content/su%20target=
https://www.packtpub.com/books/content/su%20target=
https://www.packtpub.com/books/content/su%20target=
https://www.packtpub.com/books/content/su%20target=
https://www.packtpub.com/books/content/su%20target=

Introduction to DevOps

Software delivery cycle has been getting shorter and shorter, while on the other hand,
application size has been getting bigger and bigger. Software developers and IT operators
are under the pressure to find a solution to this. There is a new role, called DevOps, which
is dedicated to support software building and delivery.

This chapter covers the following topics:

¢ How has software delivery methodology changed?
e What is microservice, and why do people adopt this architecture?
e How does DevOps support to build and deliver the application to the user?

Software delivery challenges

Building a computer application and delivering it to the customer has been discussed and
has evolved over time. It is related to Software Development Life Cycle (SDLC); there are
several types of processes, methodologies, and histories. In this section, we will describe its
evolution.

Waterfall and physical delivery

Back in the 1990s, software delivery was adopted by a physical method, such as a floppy
disk or a CD-ROM. Therefore, SDLC was a very long-term schedule, because it was not
easy to (re)deliver to the customer.

Introduction to DevOps Chapter 1

At that moment, a major software development methodology was a waterfall model, which
has requirements/design/implementation/verification/maintenance phases as shown in the
following diagram:

Requirements

Design

Implementation \

Verification

‘\

Maintenance

In this case, we can't go back to the previous phase. For example, after starting or finishing
the Implementation phase, it is not acceptable to go back to the Design phase (to find a
technical expandability issue, for example). This is because it will impact the overall
schedule and cost. The project tends to proceed and complete to release, then it goes to the
next release cycle including a new design.

It perfectly matches the physical software delivery because it needs to coordinate with
logistics management that press and deliver the floppy/CD-ROM to the user. Waterfall
model and physical delivery used to take a year to several years.

Agile and electrical delivery

A few years later, the internet became widely accepted, and then software delivery method
also changed from physical to electrical, such as online download. Therefore, many
software companies (also known as dot-com companies) tried to figure out how to shorten
the SDLC process in order to deliver the software that can beat the competitors.

Many developers started to adopt new methodologies such as incremental, iterative, or
agile models and then deliver to the customer faster. Even if new bugs are found, it is now
easier to update and deliver to the customer as a patch by electrical delivery. Microsoft
Windows update was also introduced since Windows 98.

[7]

Introduction to DevOps Chapter 1

In this case, the software developer writes only a small logic or module, instead of the entire
application in one shot. Then, it delivers to the QA, and then the developer continues to add
a new module and finally delivers it to the QA again.

When the desired modules or functions are ready, it will be released as shown in the
following diagram:

-
T

This model makes the SDLC cycle and the software delivery faster and also easy to be
adjust during the process, because the cycle is from a few weeks to a few months which is
small enough to make a quick adjustment.

Although this model is currently favoured by the majority, at that moment, application
software delivery meant software binary, such as EXE program which is designed to be
installed and run on the customer's PC. On the other hand, the infrastructure (such as
server and network) is very static and set up beforehand. Therefore, SDLC doesn't tend to
include these infrastructures in the scope yet.

Software delivery on the cloud

A few years later, smartphones (such as iPhone) and wireless technology (such as Wi-Fi and
4G network) became widely accepted, and software application also changed from binary
to the online service. The web browser is the interface of the application software, which
need not be installed anymore. On the other hand, infrastructure becomes dynamic, since
the application requirement keeps changing and the capacity needs to grow as well.

[81]

Introduction to DevOps Chapter 1

Virtualization technology and Software Defined Network (SDN) make the server machine
dynamic. Now, cloud services such as Amazon Web Services (AWS) and Google Cloud
Platform (GCP) can be easy to create and manage dynamic infrastructures.

Now, infrastructure is one of the important components and being within a scope of
Software Development Delivery Cycle, because the application is installed and runs on the
server side, rather than a client PC. Therefore, software and service delivery cycle takes
between a few days to a few weeks.

Continuous Integration

As discussed previously, the surrounding software delivery environment keeps changing;
however, the delivery cycle is getting shorter and shorter. In order to achieve rapid delivery
with higher quality, the developer and QA start to adopt some automation technologies.
One of the popular automation technologies is Continuous Integration (CI). CI contains
some combination of tools, such as Version Control Systems (VCS), build server, and
testing automation tools.

VCS helps the developer to maintain program source code onto the central server. It
prevents overwriting or conflict with other developers' code and also preserves the history.
Therefore, it makes it easier to keep the source code consistent and deliver to the next cycle.

The same as VCS, there is a centralized build servers that connects VCS to retrieve the
source code periodically or automatically when the developer updates the code to VCS, and
then trigger a new build. If the build fails, it notifies the developer in a timely manner.
Therefore, it helps the developer when someone commits the broken code into the VCS.

Testing automation tools are also integrated with build server that invoke the unit test
program after the build succeeds, then notifies the result to the developer and QA. It helps
to identify when somebody writes a buggy code and stores to VCS.

The entire flow of Cl is as shown in the following diagram:

Testing
o—1 Automation
Tools

Developer Continuous Integration

[91]

Introduction to DevOps Chapter 1

CI helps both the developer and the QA not only to increase the quality, but also to shorten
archiving an application or module package cycle. In an age of electrical delivery to the
customer, CI is more than enough. However, because delivery to the customer means to
deploy to the server.

Continuous Delivery

CI plus deployment automation is the ideal process for the server application to provide a
service to customers. However, there are some technical challenges that need to be resolved.
How to deliver a software to the server? How to gracefully shutdown the existing
application? How to replace and rollback the application? How to upgrade or replace if the
system library also needs to change? How to modify the user and group settings in OS if
needed? and so on.

Because the infrastructure includes the server and network, it all depends on an
environment such as Dev/QA/staging/production. Each environment has different server
configuration and IP address.

Continuous Delivery (CD) is a practice that could be achieved; it is a combination of CI
tool, configuration management tool, and orchestration tool:

Testing

Automation
Tools

Developer Continuous Integration

Continuous Delivery

Configuration management

The configuration management tool helps to configure an OS including the user, group, and
system libraries, and also manages multiple servers that keep consistent with the desired
state or configuration if we replace the server.

[10]

Introduction to DevOps Chapter 1

It is not a scripting language, because scripting language performs to execute a command
based on the script line by line. If we execute the script twice, it may cause some error, for
example, attempt to create the same user twice. On the other hand, configuration
management looks at the state, so if user is created already, the configuration management
tool doesn't do anything. But if we delete a user accidentally or intentionally, the
configuration management tool will create the user again.

It also supports to deploy or install your application to the server. Because if you tell the
configuration management tool to download your application, then set it up and run the
application, it tries to do so.

In addition, if you tell the configuration management tool to shut down your application,
then download and replace to a new package if available, and then restart the application, it
keeps up to date with the latest version.

Of course, some of the users want to update the application only when it is required, such
as blue-green deployments. The configuration management tool allows you to trigger to
execute manually too.

Blue-green deployments is a technique that prepares the two sets of
application stack, then only one environment (example: blue) is servicing
to the production. Then when you need to deploy a new version of
application, deploy to the other side (example: green) then perform the
final test. Then if it works fine, change the load balancer or router setting
to switch the network flow from blue to green. Then green becomes a
production, while blue becomes dormant and waiting for the next version
deployment.

Infrastructure as code

The configuration management tool supports not only OS or Virtual Machine, but also
cloud infrastructure. If you need to create and configure a network, storage, and Virtual
Machine on the cloud, it requires some of the cloud operations.

But the configuration management tool helps to automate the setup cloud infrastructure by
configuration file, as shown in the following diagram:

[11]

Introduction to DevOps Chapter 1

o B

(o e .
E * Server Server
Configuration . .

Database Database

_ subnet AN subnet J
o /

Configuration management has some advantage against maintaining an operation manual
Standard Operation Procedure (SOP). For example, maintaining a configuration file using
VCS such as Git, you can trace the history of how the environment setting has changed.

It is also easy to duplicate the environment. For example, you need an additional
environment on cloud. If you follow the traditional approach, (that is, to read the SOP
document to operate the cloud), it always has a potential human error and operation error.
On the other hand, we can execute the configuration management tool that creates an
environment on cloud quickly and automatically.

Infrastructure as code may or may not be included in the CD process,
because infrastructure replacement or update cost is higher than just
replacing an application binary on the server.

Orchestration

The orchestration tool is also categorized as one of the configuration management tools.
However its more intelligent and dynamic when configuring and allocating the cloud
resources. For example, orchestration tool manages several server resources and networks,
and then when the administrator wants to increase the application instances, orchestration
tool can determine an available server and then deploy and configure the application and
network automatically.

[12]

Introduction to DevOps Chapter 1

Although orchestration tool is beyond the SDLC, it helps Continuous Delivery when it
needs to scale the application and refactor the infrastructure resource.

Overall, the SDLC has been evolved to achieve rapid delivery by several processes, tools,
and methodologies. Eventually, software (service) delivery takes anywhere from a few
hours to a day. While at the same time, software architecture and design has also evolved to
achieve large and rich applications.

Trend of microservices

Software architecture and design also keep evolving, based on the target environment and
volume of the application's size.

Modular programming

When the application size is getting bigger, developers tried to divide by several modules.
Each module should be independent and reusable, and should be maintained by different
developer teams. Then, when we start to implement an application, the application just
initializes and uses these modules to build a larger application efficiently.

The following example shows what kind of library Nginx (https://www.nginx.com) uses on
CentOS 7. It indicates that Nginx uses OpenSSL, POSIX thread library, PCRE the regular
expression library, z1ib the compression library, GNU c library, and so on. So, Nginx didn't
reinvent to implement SSL encryption, regular expression, and so on:

$ /usr/bin/ldd /usr/sbin/nginx
linux-vdso.so.l => (0x00007££d496d79000)
libdl.so.2 => /1lib64/libdl.so.2 (0x00007£d96d61c000)
libpthread.so.0 => /1ibé64/libpthread.so.0
(0x00007£d96d400000)
libecrypt.so.1l => /1ib64/libcrypt.so.1
(0x00007£d96d1c8000)
libpcre.so.l => /1ib64/libpcre.so.l (0x00007£d96c£67000)
libssl.so0.10 => /1lib64/libssl.so.10 (0x00007£d96cc£9000)
libcrypto.so.10 => /1ibé64/libcrypto.so.10
(0x00007£d96c90e000)
libz.so0.1 => /1ib64/1libz.so.1 (0x00007£d96c6£8000)
libprofiler.so.0 => /1ib64/libprofiler.so.0
(0x00007£d96c4e4000)
libc.so.6 => /1lib64/libc.so.6 (0x00007£d96c122000)

[13]

https://www.nginx.com

Introduction to DevOps Chapter 1

The 1dd command is included in the glibc-common package on CentOS.

Package management

Java language and several lightweight programming languages such as Python, Ruby, and
JavaScript have their own module or package management tool. For example, Maven
(http://maven.apache.orgq) for Java, pip (https://pip.pypa.io) for Python, RubyGems
(https://rubygems.org) for Ruby and npm (https://www.npmjs.com) for JavaScript.

Package management tool allows you to register your module or package to the centralized
or private repository, and also allows to download the necessary packages. The following
screenshot shows Maven repository for AWS SDK:

@ ® < (im} mvnrepository.com/artifact/com.amazonaws/aws-java-sdk/1.11.125 <
Maven itory: com » j dk » 1.11.125
MVNRePosiTorY Search
Indexed Artifacts (6.22M) Home » com.amazonaws » aws-java-sdk » 1.11.125

e AWS SDK For Java » 1.11.125

3104k The Amazon Web Services SDK for Java provides Java APIs for building software on
AWS' cost-effective, scalable, and reliable infrastructure products. The AWS Java
SDK allows developers to code against APIs for all of Amazon's infrastructure web
services (Amazon S3, Amazon EC2, Amazon SQS, Amazon Relational Database
Service, Amazon AutoScaling, etc).

Popular Categories

License Apache 2.0
Aspect Oriented .
Categories Cloud Computing
Actor Frameworks
HomePage https://aws.amazon.com/sdkforjava
Application Metrics
Date (Apr 29, 2017)
Build Tools
o Files Download (JAR) (2 KB)
Bytecode Libraries
Command Line Parsers Repositories m
Cache Implementations Used By 578 artifacts

Cloud Computing . y i i § i
[Maven ” Gradle ‘ SBT] Ivy] Grape ‘ Leiningen] Euildr]

Code Analyzers

Collections <!-- https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk -->
X) <dependency>
Configuration Libraries <groupld>com.amazonaws</groupld>

<artifactid>aws-java-sdk</artifactid>
<version>1.11.125</version>
Date and Time Utilities </dependency>

Core Utilities

Dependency Injection

[14]

http://maven.apache.org
https://pip.pypa.io
https://rubygems.org
https://www.npmjs.com

Introduction to DevOps

Chapter 1

When you add some particular dependencies to your application, Maven downloads the
necessary packages. The following screenshot is the result you get when you add aws-
java-sdk dependency to your application:

fors
forg
forg
fors
forg
fara
fors
forg
fara
(o
forg

[oa
(o
forg
fard
forg
forg
fard
forg
forg

fard
forg
forg
fors
forg
forg
fors
forg
forg
fors

|omg

¥V vV vV VvV YV Y YV Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y VYYYYY

[Project E 8% | ©% Navigator Ju Junit . O

-

&

aws-java-sdk-cognitoidp-1.11.125.jar - /Users
aws-java-sdk-discovery-1.11.125.jar - [Users/:
aws-java-sdk-applicationautoscaling-1.11.125
aws-java-sdk-snowball-1.11.125.jar - /Users/s
aws-java-sdk-rekognition-1.11.125.jar - /User:
aws-java-sdk-polly-1.11.125.jar - /Users/saito,
aws-java-sdk-lightsail-1.11.125.jar - [Users/sa
aws-java-sdk-stepfunctions-1.11.125.jar - /Us
aws-java-sdk-health-1.11.125.jar - /Users/sait
aws-java-sdk-costandusagereport-1.11.125.ja
aws-java-sdk-codebuild-1.11.125.jar - /Users/
aws-java-sdk-appstream-1.11.125.jar - /Users
aws-java-sdk-shield-1.11.125.jar - /Users/saiti
aws-java-sdk-batch-1.11.125.jar - /Users/saitc
aws-java-sdk-lex-1.11.125.jar - /Users/saito/.n
aws-java-sdk-mechanicalturkrequester-1.11.1!
aws-java-sdk-organizations-1.11.125.jar - /Us
aws-java-sdk-workdocs-1.11.125.jar - [Users/:
aws-java-sdk-core-1.11.125 jar - [Users/saito/
commons-logging-1.1.3.jar - /Users/saito/. m2/
httpclient-4.5.2.jar - /Users/saito/.m2/repositol
httpcore-4.4.4.jar - /Users/saito/.m2repository
commons-codec-1.9.jar - /Users/saito/.m2/rep
ion-java-1.0.2.jar - /Users/saito/.m2/repository
jackson-databind-2.6.6.jar - /Users/saito/.m2/r
jackson-annotations-2.6.0.jar - [Users/saito/.m
jackson-core-2.6.6.jar - /Users/saito/.m2/repos
jackson-dataformat-cbor-2.6.6.jar - /Users/sail
joda-time-2.8.1.jar - /Users/saito/.m2/repositol
aws-java-sdk-models-1.11.125.jar - [Users/sal
aws-java-sdk-swf-libraries-1.11.22.jar - /User:

Modular programming helps you to increase software development speed and reduce it to
reinvent the wheel, so it is the most popular way to develop a software application now.

[15]

Introduction to DevOps Chapter 1

However, applications need more and more combination of modules, packages, and
frameworks, as and when we keep adding a feature and logic. This makes the application
more complex and larger, especially server-side applications. This is because it usually
needs to connect to a database such as RDBMS, as well as an authentication server such as
LDAP, and then return the result to the user by HTML with the appropriate design.

Therefore, developers have adopted some software design patterns in order to develop an
application with a bunch of modules within an application.

MVC design pattern

One of the popular application design patterns is Model View and Controller (MVC). It
defines three layers. View layer is in charge of user interface (UI) input output (I/O).
Model layer is in charge of data query and persistency such as load and store to database.
Then, the Controller layer is in charge of business logic that is halfway between View and
Model:

View

Business Logic | Business Logic

il

Model

DEVELE]

There are some frameworks that help developers to make MVC easier, such as Struts
(https://struts.apache.org/), SpringMVC
(https://projects.spring.io/spring-framework/), Ruby on Rails
(http://rubyonrails.org/), and Django (https://www.djangoproject.com/). MVC is one
of the successful software design pattern that is used for the foundation of modern web
applications and services.

[16]

https://struts.apache.org/
https://projects.spring.io/spring-framework/
http://rubyonrails.org/
https://www.djangoproject.com/

Introduction to DevOps Chapter 1

MVC defines a border line between every layer which allows many developers to jointly
develop the same application. However, it causes side effects. That is, the size of the source
code within the application keeps getting bigger. This is because database code (Model),
presentation code (View), and business logic (Controller) are all within the same VCS
repository. It eventually makes impact on the software development cycle, which gets
slower again! It is called monolithic, which contains a lot of code that builds a giant exe/war
program.

Monolithic application

There is no clear measurement of monolithic application definition, but it used to have
more than 50 modules or packages, more than 50 database tables, and then it needs more
than 30 minutes to build. When it needs to add or modify one module, it affects a lot of
code, therefore developers try to minimize the application code change. This hesitation
causes worse effects such that sometimes the application even dies because no one wants to
maintain the code anymore.

Therefore, the developer starts to divide monolithic applications in to small pieces of
application and connect via the network.

Remote Procedure Call

Actually, dividing an application in to small pieces and connecting via the network has
been attempted back in the 1990s. Sun Microsystems introduced Sun RPC (Remote
Procedure Call). It allows you to use the module remotely. One of popular Sun RPC
implementers is Network File System (NFS). CPU OS versions are independent across NFS
client and NFS server, because they are based on Sun RPC.

The programming language itself also supports RPC-style functionality. UNIX and C
language have the rpcgen tool. It helps the developer to generate a stub code, which is in
charge of network communication code, so the developer can use the C function style and
be relieved from difficult network layer programming.

Java has Java Remote Method Invocation (RMI) which is similar to Sun RPC, but for Java,
RMI compiler (rmic) generates the stub code that connects remote Java processes to invoke
the method and get a result back. The following diagram shows Java RMI procedure flow:

[17]

Introduction to DevOps Chapter 1

Client code Remote code

public void doSomething(){ public int add(int x, int y) {

RemoteObj rObj = Naming.lookup(“xxx"); return x + y;
int result = rObj.add(1,1); }
}

Stub Skeleton

Network

Objective C also has distributed object and .NET has remoting, so most of the modern
programming languages have the capability of Remote Procedure Call out of the box.

These Remote Procedure Call designs have the benefit to divide an application into multiple
processes (programs). Individual programs can have separate source code repositories. It
works well although machine resource (CPU, memory) was limited during 1990s and 2000s.

However, it was designed and intended to use the same programming language and also
designed for client/server model architecture, instead of a distributed architecture. In
addition, there was less security consideration; therefore, it is not recommended to use over
a public network.

In the 2000s, there was an initiative web services that used SOAP (HTTP/SSL) as data
transport, using XML as data presentation and service definition Web Services Description
Language (WSDL), then used Universal Description, Discovery, and Integration (UDDI)
as the service registry to look up a web services application. However, as the machine
resources were not rich and due to the complexity of web services programming and
maintainability, it is not widely accepted by developers.

RESTful design

Go to 2010s, now machine power and even the smartphone have plenty of CPU resource, in
addition to network bandwidth of a few hundred Mbps everywhere. So, the developer
starts to utilize these resources to make application code and system structure as easy as
possible making the software development cycle quicker.

[18]

Introduction to DevOps Chapter 1

Based on hardware resources, it is a natural decision to use HTTP/SSL as RPC transport, but
from having experience with web services difficulty, the developer makes it simple as
follows:

e By making HTTP and SSL/TLS a standard transport

¢ By using HTTP method for Create/Load/Upload/Delete (CLUD) operation, such
as GET/POST/PUT/DELETE

¢ By using URI as the resource identifier such as: user ID 123 as /user/123/
¢ By using JSON as the standard data presentation

It is called RESTful design, and that has been widely accepted by many developers and
become de facto standard of distributed applications. RESTful application allows any
programming language as it is HTTP-based, so the RESTful server is Java and client Python
is very natural.

It brings freedom and opportunities to the developer that its easy to perform code
refactoring, upgrade a library and even switch to another programming language. It also
encourages the developer to build a distributed modular design by multiple RESTful
applications, which is called microservices.

If you have multiple RESTful applications, there is a concern on how to manage multiple
source code on VCS and how to deploy multiple RESTful servers. However, Continuous
Integration, and Continuous Delivery automation makes a lower bar to build and deploy a
multiple RESTful server application easier.

Therefore, microservices design is getting popular for web application developers.

Microservices

Although the name is micro, it is actually heavy enough compared to the applications from
1990s or 2000s. It uses full stack of HTTP/SSL server and contains entire MVC layers. The
microservices design should care about the following topics:

e Stateless: This doesn't store user session to the system, which helps to scale out
easier.

¢ No shared datastore: The microservice should own the datastore such as
database. It shouldn't share with the other application. It helps to encapsulate the
backend database that is easy to refactor and update the database scheme within
a single microservice.

[19]

Introduction to DevOps Chapter 1

¢ Versioning and compatibility: The microservice may change and update the API
but should define a version and it should have backward compatibility. This
helps to decouple between other microservices and applications.

e Integrate CI/CD: The microservice should adopt CI and CD process to eliminate
management effort.

There are some frameworks that can help to build the microservice application such as
Spring Boot (https://projects.spring.io/spring-boot/) and Flask
(http://flask.pocoo.org). However, there are a lot of HTTP-based frameworks, so the
developer can feel free to try and choose any preferred framework or even programming
language. This is the beauty of the microservice design.

The following diagram is a comparison between monolithic application design and
microservices design. It indicates that microservice (also MVC) design is the same as
monolithic, which contains interface layer, business logic layer, model layer, and datastore.

But the difference is that the application (service) is constructed by multiple microservices
and that different applications can share the same microservice underneath:

Monolithic Microservices

View

Controller

L I I

Controller Controller Controller

Business Logic Business Logic Business Logic

Model Model Model

Model

Database HEVELET DEVELETT DEVELETS

The developer can add the necessary microservice and modify an existing microservice
with the rapid software delivery method that won't affect an existing application (service)
anymore.

[20]

https://projects.spring.io/spring-boot/)
https://projects.spring.io/spring-boot/)
http://flask.pocoo.org)
http://flask.pocoo.org)

Introduction to DevOps Chapter 1

It is a breakthrough to an entire software development environment and methodology that
is getting widely accepted by many developers now.

Although Continuous Integration and Continuous Delivery automation process helps to
develop and deploy multiple microservices, the number of resources and complexity, such
as Virtual Machine, OS, library, and disk volume and network can't compare with
monolithic applications.

Therefore, there are some tools and roles that can support these large automation
environments on the cloud.

Automation and tools

As discussed previously, automation is the best practice to achieve rapid software delivery
and solves the complexity to manage many microservices. However, automation tools are
not an ordinary IT/infrastructure applications such as Active Directory, BIND (DNS), and
Sendmail (MTA). In order to achieve automation, there is an engineer who should have
both developer skill set to write a code, especially scripting language, and infrastructure
operator skill set such as VM, network, and storage.

DevOps is a clipped compound of development and operations that can have an ability to
make automation processes such as Continuous Integration, Infrastructure as code, and
Continuous Delivery. DevOps uses some DevOps tools to make these automation
processes.

Continuous Integration tool

One of the popular VCS tools is Git (https://git-scm.com). The developer uses Git to
check-in and check-out the code all the time. There are some hosting Git service: GitHub
(https://github.com) and Bitbucket (https://bitbucket.org). It allows you to create and
save your Git repositories and collaborate with other users. The following screenshot is a
sample pull request on GitHub:

[21]

https://git-scm.com
https://github.com)
https://github.com)
https://bitbucket.org

Introduction to DevOps Chapter 1

® ® < 1] & GitHub, Inc. github.com/TrendMicroDCS/opsworks-recipes, (v}] a
Add recipes that send Omnibus logs to AWS Kinesis by hidetosaito - Pull Request #18 - TrendMicroDCS/opsworks-recipes -+
O This repository Pull requests Issues Gist
[] TrendMicroDCS | opsworks-recipes @Unwatch~ 20 HStar 2 YFork 6
Code Issues 0 T Pull requests 0 Projects 0 Wiki Pulse Graphs

Add recipes that send Omnibus logs to AWS Kinesis Gt

R CUCECN hidetosaito merged 3 commits into TrendMicrobcs:master frOM hidetosaito:master on Nov 30, 2015

& Conversation 0 0-Commits 3 Files changed 3
Changes from all commits ~ 3 files~ +61-0 EEEER Unified Split Review changes v
34 mEEEE Omnibus/recipes/aws-kinesis-agent.rb View [

+remote_file "#{Chef::Config[:file_cache_path]}/aws-kinesis-agent-1.8-1.amznl.noarch.rpm" do

+ source "https://s3.amazonaws.com/streaming-data-agent/aws-kinesis-agent-1.@-1.amznl.noarch.rpm”
+ action :create

+ notifies :install, 'rpm_package[aws-kinesis-agent]"

+end

+

+

+rpm_package "aws-kinesis-agent" do

+ source "#{Chef::Config[:file_cache_path]}/aws-kinesis-agent-1.@-1.amznl.noarch.rpm"

The build server has a lot of variation. Jenkins (https://jenkins.io) is one of well-
established applications, which is the same as TeamCity
(https://www.jetbrains.com/teamcity/).In addition to build server, you also have
hosted services, the Software as a Service (SaaS) such as Codeship
(https://codeship.com) and Travis CI (https://travis-ci.org). SaaS has the strength to
integrate with other SaaS tools.

Build server is capable of invoking an external command such as a unit test program;
therefore, build server is a key tool within CI pipeline.

[22]

https://jenkins.io
https://www.jetbrains.com/teamcity/)
https://www.jetbrains.com/teamcity/)
https://codeship.com)
https://codeship.com)
https://travis-ci.org)
https://travis-ci.org)

Introduction to DevOps Chapter 1

The following screenshot is a sample build using Codeship; it checks out the code from
GitHub and invokes Maven to build (mvn compile)and unit testing (mvn test):

B

|[_I|

[] 8 < M #@ Codeship, Inc. app.codeship.com/projects/65311/builds/55 &

Codeship « jiramediator/master « Hideto Saito + Codeship

(3'} Hideto Saito Dashboard Projects Subscription Settings Support .

b4

Merge pull request #4 from msfuko/master CMDEV-36 change the upload key context as d... SUCCESS
sp013719 - jiramediator/master - 6b6c2d9 - 2 yearsago - 0:55

O Exporting Environment

@ git clone --branch 'master’ --depth 50 git@github.com: TrendMicroDCS/jiramediator.git ~/src/github.com/TrendMicroDC.
(3) cdclone

O git checkout -gf 6b6c2d94206e5005a97c7a7fe58dfb844208fef2

Preparing Dependency Cache

Preparing Virtual Machine

mvn validate

mvn compile

mvn test

®©® @ @ @ ®

Continuous Delivery tool

There are a variety of configuration management tools such as Puppet
(nttps://puppet.com), Chef (https://www.chef.io), and Ansible
(https://www.ansible.com), which are the most popular in configuration management.

AWS OpsWorks (https://aws.amazon.com/opsworks/) provides a managed Chef platform.
The following screenshot is a Chef recipe (configuration) of installation of Amazon
CloudWatch Log agent using AWS OpsWorks. It automates to install CloudWatch Log
agent when launching an EC2 instance:

[23]

https://puppet.com
https://www.chef.io
https://www.ansible.com
https://aws.amazon.com/opsworks/

Introduction to DevOps Chapter 1

o0e® < [im] @ GitHub, Inc. github.com/TrendMicroDCS/opsworks-recipes ¢ th ()
opsworks-recipes/install.rb at master - TrendMicroDCS/opsworks-recipes -+
O This repository Pull requests Issues Gist A +- ¢
L] TrendMicroDCS / opsworks-recipes @ Unwatch~ 20 o Star 2 YFork 6
<> Code Issues 0 Pull requests 0 Projects 0 Wiki Pulse Graphs
Branch: master v opsworks-recipes / cloudwatch-logs / recipes / install.rb Find file Copy path
MBS A initial import 9314204 on Sep 2, 2014

0 contributors

Executable File 14 lines (11 sloc) 429 Bytes Raw Blame History [

directory "/opt/aws/cloudwatch" do
recursive true

end

remote_file "/opt/aws/cloudwatch/awslogs-agent-setup.py” do
source "https://s3.amazonaws.com/aws-cloudwatch/downloads/latest/awslogs-agent-setup.py”
mode "@755"

end

execute "Install CloudWatch Logs agent" do
command " /opt/aws/cloudwatch/awslogs-agent-setup.py -n -r us-east-1 -c /tmp/cwlogs.cfg”
not_if { system "pgrep -f aws-logs-agent-setup” }

end

AWS CloudFormation (https://aws.amazon.com/cloudformation/) helps to achieve
infrastructure as code. It supports the automation for AWS operation, for example, to
perform the following functions:

Creating a VPC.

Creating a subnet on VPC.

Creating an internet gateway on VPC.

Creating a routing table to associate a subnet to the internet gateway.
Creating a security group.

Creating a VM instance.

NSOk »h =

Associating a security group to a VM instance.

[24]

https://aws.amazon.com/cloudformation/)
https://aws.amazon.com/cloudformation/)

Introduction to DevOps Chapter 1

The configuration of CloudFormation is written by JSON as shown in the following
screenshot:

ove < M & GitHub, Inc. github.com/kubernetes-cookbook/cloudforms o 0 [ul

cloudformation/6-4-kBs-vpc-sample.json at master - kubernetes-cookbook/cloudformation +

n msfuko Add 6-4 cloudformation template e@562c4 on May 7, 2016

1 contributor

526 lines (526 sloc) 12.9 KB Raw Blame History (J »

{
"AWSTemplateFormatVersion":"2010-89-89",
"Description”:"Kubernetes Cookbook CloudFormation Sample - VPC",
“Parameters”:{
"Prefix":{
“Description”:“Prefix of resources”,
"Type":"String",
"Default”:"KubernetesSample”,
"MinLength":"1",
"MaxLength": "24",
"ConstraintDescription”:"Length is too long"
b
"CIDRPrefix":{
"Description”:"Network cidr prefix",
"Type":"String",
“Default":"10.0",
"MinLength":"1",
"MaxLength":"8",
"ConstraintDescription”:"Length is too long"
}
L
“Resources”:{
"WPC" i {
“Type":"AWS: :EC2::VPC",
“"Properties”:{
"CidrBlock":{

"Fn::Join":[

It supports parameterize, so it is easy to create an additional environment with different
parameters (for example, VPC and CIDR) using a JSON file with the same configuration. In
addition, it supports the update operation. So, if there is a need to change a part of the
infrastructure, there's no need to recreate. CloudFormation can identify a delta of
configuration and perform only the necessary infrastructure operations on behalf of you.

[25]

Introduction to DevOps Chapter 1

AWS CodeDeploy (https://aws.amazon.com/codedeploy/) is also a useful automation
tool. But focus on software deployment. It allows the user to define. The following are some
actions onto the YAML file:

1. Where to download and install.

2. How to stop the application.

3. How to install the application.

4. After installation, how to start and configure an application.

The following screenshot is an example of AWS CodeDeploy configuration file
appspec.yml:

[NON appspec.yml (~/Downloads/SampleApp_Linux) - VIM
1 Bersion:
2 os: linux
3 files:
4 - source: /index.html
5 destination: /var/www/html/
6 hooks:
7 BeforeInstall:
8 - location: scripts/install_dependencies
9 timeout:
10 runas: root
11 - location: scripts/start_server
12 timeout:
13 runas: root
14 ApplicationStop:
15 - location: scripts/stop_server
16 timeout:
17 runas: root
18

Monitoring and logging tool

Once you start to manage some microservices using a cloud infrastructure, there are some
monitoring tools that help you to manage your servers.

[26]

https://aws.amazon.com/codedeploy/)
https://aws.amazon.com/codedeploy/)

Introduction to DevOps Chapter 1

Amazon CloudWatch is the built-in monitoring tool on AWS. No agent installation is
needed; it automatically gathers some metrics from AWS instances and visualizes for
DevOps. It also supports to set an alert based on the criteria that you set. The following
screenshot is an Amazon CloudWatch metrics for EC2 instance:

® ® < m console.aws.amazen.com/ec2fv2/home?region=us-east-1#Instanc & [+] Ul (m]
EC2 Management Consale +
Resource Groups ~) EC2 OpsWorks > VPC DynamoD [\ Hideto Saito~ N. Virginia ~ Support ~
EC2 Dashboard Launch Instance Actions v o 0 0
Events {
Tags Q (2] 1todof4
Reports
Limits Name - D - Type - ilability Zone ~ State « IPv4 Public IP
=) INSTANGES @ CentOST i-09a5783/6... t2.micro us-gast-1d & stopped
Instances
Spot Requests

Reserved Instances
Scheduled Instances
Dedicated Hosts

Disk Writes (Bytes) Disk Write Operations (Operations) Network In (Bytes)

= IMAGES 0.28 0.25

AMIs 0 ‘— . 0

510 5/10 5/10 5/10 510 5/10 o
Bundle Tasks 05:00 07:00 05:00 o7:00 05:00 07:00
Volumes Network Out (Bytes) Network Packets In (Count) Network Packets Out (Count)
Snapshots
1,000 6 8
=) NETWORK & SECL 750 | . /I\‘ 6 ﬁ
Security Groups S00 H \”/\/\,J I| 4 f '\I
2 \ J
i 250 I ‘ 2 \
Elastic IPs : |) r "\J\,\/
Placement Groups o v .
5110 5/10 510 5010 510 510 5/10 510 5110
Key Pairs 5:00 06:00 07:00 05:00 06:00 07:00 05:00 06:00 07:00

Network Interfaces

@ Feedback (@ English

Privacy Policy Terms of Use

Amazon CloudWatch also supports to gather an application log. It requires installing an
agent on EC2 instance; however, centralized log management is useful when you need to
start managing multiple microservice instances.

ELK is a popular combination of stack that stands for Elasticsearch
(https://www.elastic.co/products/elasticsearch), LOgStaSh
(https://www.elastic.co/products/logstash), and Kibana
(https://www.elastic.co/products/kibana). Logstash helps to aggregate the application
log and transform to JSON format and then send to Elasticsearch.

[27]

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/logstash
https://www.elastic.co/products/kibana

Introduction to DevOps Chapter 1

Elasticsearch is a distributed JSON database. Kibana can visualize the data, which is stored
on Elasticsearch. The following example is a Kibana, which shows Nginx access log:

o0 e < im] 52.207.251.112:5601/#/discover?_g=(refreshinterval:(display:0' (4] M)l

Discover - Kibana 4

mycalc-access

Selected Fields March 28th 2016, 15:44:14.222 - March 29th 2016, 21:00:00.000 — by 30 minutes

Available Fields

Count
o N & @ @ B

@timestamp
@version I I I
_id
17:00 20:00 23:00 02:00 05:00 08:00 11:00 14:00 17:00 20:00
_index @timestamp per 30 minutes
_type ~
auth .
Time _source
lientil
Elen » March 29th 2016, 15:02:29.102 message: 192.168.19.1 - - [29/Mar/2016 22:02:29] "GET /addition/3/5 HTTP/
host 1.1" 200 - R@version: 1 @timestamp: March 29th 2016, 15:02:29.102 host:
httpversion my-calc-elk-rc-r8915 clientip: 192.168.19.1 ident: - auth: -
ident timestamp: 29/Mar/2016 22:02:29 verb: GET request: /addition/3/5
httpversion: 1.1 response: 200 id: AVPEZKPE-nsurdMANEKR tvna: 100s
message
request » March 29th 2016, 15:02:24.155 npessage: 192.168.19.1 - - [29/Mar/2016 22:02:24] "GET / HTTP/1.1" 200 -
response @version: 1 @timestamp: March 29th 2016, 15:02:24.155 host: my-calc-elk
& -rc-r8915 clientip: 192.168.19.1 ident: - auth: - timestamp: 29/Mar/20
16 22:02:24 verb: GET request: / httpversion: 1.1 response: 200 _id:
timestamp

AVPEZSEN-nsvrdMONEKD tvn 1005 index: mveale-access

Grafana (https://grafana.com) is another popular visualization tool. It used to be
connected with time series database such as Graphite (https://graphiteapp.org) or
InfluxDB (https://www.influxdata.com). Time series database is designed to store the
data, which is flat and de-normalized numeric data such as CPU usage and network traffic.
Unlike RDBMS, time series database has some optimization to save the data space and
faster query for numeric data history. Most of DevOps monitoring tools are using time
series database in the backend.

[28]

https://grafana.com
https://graphiteapp.org)
https://graphiteapp.org)
https://www.influxdata.com)
https://www.influxdata.com)

Introduction to DevOps Chapter 1
The following example is a Grafana that shows Message Queue Server statistics:
oD e < [im] il O
Grafana - Rabbit MQ LAS. +

£% Rabbit MQ LAS -

Message Ack Messages Delivered

== lasrabbitmq01-prod Cument:
= lasrabbitmq02-prod Current: 1
= |asrabbitmq03-prod Current: 1

== |asrabbitmq01-prod Current: 4
= |asrabbitmq02-prod Current: 1
= lasrabbitmq03-prod Current: 1

Total Messages Published Total Messages Redliver

MWMMWUMA\WW

00) 20:00

== lasrabbitmq03-prod Current: 21 Total: 35.629 K == lasrabbitmq01-prod Current: 0 Total: 0
= lasrabbitmq02-prod Current: 0 Total: 0

= lasrabbitmq03-prod Current: 0 Total: 0

Communication tool

ut ¥ @ Lasl

Messages Published

= [asrabt 2 20:00 22:00 00:00
— lasrabbitmq02-prod: 4 bitmq01-prod Current: 1.00
= 1 bitmq02-prod Curent: 1.00

= iasraobitmq03-prod Current: 1.00

Total Messages Delivered

20:00 22:00 00:00
== lasrabbitmq01-prod Current: 164 Total: 116.227 K

= lasrabbitmq02-prod Current: 84 Total: 116.039 K
= lasrabbitmq03-prod Current: 84 Total: 116.203 K

Once you start to use several DevOps tools as we saw earlier, you need to go back and forth
to visit several consoles to check whether CI and CD pipelines work properly or not. For

example, consider the following points:

1. Merge the source code to GitHub.
2. Trigger the new build on Jenkins.

3. Trigger AWS CodeDeploy to deploy the new version of the application.

These events need to be tracked by time sequence, and if there are some troubles, DevOps
needs to discuss it with the developer and QA to handle the cases. However, there are some
over-communication needs, because DevOps needs to capture the event one by one and
then explain, probably via e-mail. It is not efficient and in the meantime the issue is still

going on.

[29]

Introduction to DevOps Chapter 1

There are some communication tools that help to integrate these DevOps tools and anyone
can join to look at the event and comment to each other. Slack (https://slack.com)and
HipChat (https://www.hipchat.com) are the most popular communication tools.

These tools support to integrate to SaaS services so that DevOps can see the event on the
single chat room. The following screenshot is a Slack chat room that integrates with Jenkins:

&
=]

[] ® < (i & trendmicrodcs.slack.com/messages/COHMRN10S/ (v} (4]

Jjenkins-ci | TrendMicroDCS Slack =+

TrendMicroDCS #ienkins-ci
€ ! & (@ Qsearch @ v
detosa | 26| %0 | Adda topic

January 2é6th, 2016

All Threads

ga-vsphere-worker-staging - #26 dcsrd-docker-registry.trendmicro.com/vsphere-

worker:v26 desrd-docker-registry.trendmicro.com/vsphere-worker:latest Failure

after 1 min 19 sec (Open)

jenkins-ci @ jenkins
randon qa-vsphere-worker-staging - #28 Started by user ChengYang Wu (DCS-RD-TW)
(Open)

DIREC
slackbot

I qga-vsphere-worker-staging - #28 Starting... after 3 sec and counting (Open)

@ jenkins

qa-vsphere-worker-staging - #28 dcsrd-docker-registry.trendmicro.com/vsphere-
waorker:v28 dcsrd-docker-registry.trendmicro.com/vsphere-worker:latest Back to
normal after 6 min 48 sec (Open)

@ jenkins
I qa-ss-worker-staging - #6 Started by user ChengYang Wu (DCS-RD-TW) (Open)

| qa-ss-worker-staging - #6 Started by changes from Carol Hsu (DCS-RD-TW) (2

+ Invite people file(s) changed) (Open)

Public cloud

CI CD and automation work can be achieved easily when used with cloud technology.
Especially public cloud API helps DevOps to come up with many CI CD tools. Public cloud
such as Amazon Web Services (https://aws.amazon.com) and Google Cloud Platform
(https://cloud.google.com) provides some APIs to DevOps to control the cloud
infrastructure. DevOps can be a relief from capacity and resource limitation, just pay as you
go whenever the resource is needed.

[30]

https://slack.com
https://www.hipchat.com
https://aws.amazon.com)
https://aws.amazon.com)
https://cloud.google.com)
https://cloud.google.com)

Introduction to DevOps Chapter 1

Public cloud will keep growing the same way as software development cycle and
architecture design; these are best friends and the important key to achieve your
application/service to success.

The following screenshot is a web console for Amazon Web Services:

L] ® < M & console.aws.amazon.com/ec2/v2/home?region=us-east-1] (4] th (m]
EC2 Management Console +
|‘| Services v Resource Groups ~ P OpsWorks = VPC [l Hideto Saito ~ N. Virginia ~ Support ~
EC2 Dashboard Resources ' Account Attributes
Events 1
. You are using the following Amazon EC2 resources in the US East (N. Virginia) region: Supported Platforms
ags
Reports 0 Running Instances 0 Elastic IPs VPC
Limits 0 Dedicated Hosts 0 Snapshots Default VPC
2 Volumes 0 Load Balancers vpc-cae29dae
=] INST CES
1 Key Pairs 3 Security Groups
Instances ¥ Y P Resource ID length
Spot Requests 0 Placement Groups menagement
Reserved Instances - 3
Scheduled Instances Just need a simple virtual private server? Get everything you need to jumpstart Additional Information
Dedicated Hosts your project - compute, storage, and networking - for a low, predictable price. Getting Started Guide

Try Amazon Lightsail for free.
Documentation

AMIs All EC2 Resources

Create Instance
Bundle Tasks Forums
- P To start using Amazon EC2 you will want to launch a virtual server, known as an Amazon Pricing
- ’ e EC2 instance. Contact Us
Volumes
Snapshots Launch Instance
AWS Marketplace
=/ NETW _':':'(' & SECURITY Note: Your instances will launch in the US East (N. Virginia) region Find free software trial products
Security Groups)
) . c. c, in the AWS Marketplace from
Elastic IPs Service Health Scheduled Events the EC2 Launch Wizard. Or try
Placement Groups these popular AMIs:

Service Status: US East (N. Virginia):

s Pmtam

@ Feedback (@ English Z r ved Privacy Policy ~ Terms of Use

Google Cloud Platform also has a web console as shown here:

[31]

Introduction to DevOps Chapter 1

G
(-}
Q

o0 e® < il & console.cloud.google.com/home/dashboard?project=devor

Home - DevOps with Kubernetes

+* DevOps with Kubernetes (=}

#' CUSTOMIZE

DASHBOARD ACTIVITY

©® Projectinfo {2t Compute Engine Google Cloud
DevOps with Kubernetes CPU (%) ~ Platform status
Project ID: devops-with-kubernetes @ Google BigQuery incident #18028

#61105234762 BigQuery import jobs pending

Began at 2017-05-09 (22:38:00)
. . There is no data for this chart
- Manage project settings All times are US/Pacific

Data provided by
status.cloud.google.com

Resources ~» Goto Cloud status dashboard

E} Compute Engine .
Go to the Compute Engine

1 instance
- dashboard
] Cloud Storage = BiIIing
3 buckets
$0.00
I APls Approximate charges so far this
month
Requests (requests/sec)
-
= Trace ~> View detailed charges
Open “t 15.cloud.google.com” in a new tab 0.2 \\. —\

Both cloud services have a free trial period that DevOps engineer can use to try and
understand the benefits of cloud infrastructure.

Summary

In this chapter, we have discussed the history of software development methodology,
programming evolution and DevOps tools. These methodologies and tools support quicker
software delivery cycle. Microservice design also helps continuous software update.
However, microservice makes complexity of environment management.

The next chapter will describe the Docker container technology, which helps to compose
microservice application and manage it in a more efficient and automated way.

[32]

DevOps with Container

We are already familiar with a lot of DevOps tools that help us automate tasks and manage
configuration at different stages of application delivery, but challenges still exist as
applications become more micro and diverse. In this chapter, we will add another swiss
army knife to our tool belt, namely Container. In doing so, we will seek to acquire the
following skills:

¢ Container concepts and fundamentals

¢ Running Docker applications

¢ Building Docker applications with Dockerfile

¢ Orchestrating multiple containers with Docker Compose

Understanding container

The key feature of container is isolation. In this section, we will elaborate how container
achieves it and why it matters in the software development life cycle to help establish a
proper understanding of this powerful tool.

Resource isolation

When an application launches, it consumes CPU time, occupies memory space, links to its
dependent libraries, and may write to disk, transmit packets, and access other devices.
Everything it uses up is a resource, and is shared by all the programs on the same host. The
idea of container is to isolate resources and programs to separate boxes.

DevOps with Container Chapter 2

You may have heard such terms as para-virtualization, Virtual Machines (VMs), BSD jails,
and Solaris containers, which can also isolate the resources of a host. However, since their
designs differ, they are fundamentally distinct but provide a similar isolation concept. For
example, the implementation of a VM is for virtualizing the hardware layer with a
hypervisor. If you want to run an application on a Virtual Machine, you have to install a full
operating system first. In other words, the resources are isolated between guest operating
systems on the same hypervisor. In contrast, container is built on top of Linux primitives,
which means it can only run in an operating system with those capabilities. BSD jails and
Solaris containers also work in a similar fashion on other operating systems. The isolation
relationship of container and VMs is illustrated in the following diagram. Container isolates
an application at the OS-layer, while VM-based separation is achieved by the operating
system.

Linux container concept

Container comprises several building blocks, the two most important being namespaces
and cgroups (control groups). Both of them are Linux kernel features. Namespaces provide
logical partitions of certain kinds of system resources, such as mounting point (mnt),
process ID (PID), network (net), and so on. To explain the concept of isolation, let's look at
some simple examples on the pid namespace. The following examples are all from Ubuntu
16.04.2 and util-linux 2.27.1.

[34]

DevOps with Container Chapter 2

When we type ps axf, we will see a long list of running processes:

$ ps axf
PID TTY STAT TIME COMMAND
2 ? S 0:00 [kthreadd]
32 [0:42 _ [ksoftirqd/0]
5 2 S< 0:00 _ [kworker/0:0H]
72] 8:14 _ [rcu_sched]
8 ?] 0:00 _ [rcu_bh]

ps is a utility to report current processes on the system. ps axf is to list
all processes in forest.

Now let's enter a new pid namespace with unshare, which is able to disassociate a process
resource part-by-part to a new namespace, and check the processes again:

$ sudo unshare —--fork —--pid —--mount-proc=/proc /bin/sh
$ ps axf
PID TTY STAT TIME COMMAND
1 pts/0 s 0:00 /bin/sh
2 pts/0 R+ 0:00 ps axf

You will find the pid of the shell process at the new namespace becoming 1, with all other
processes disappearing. That is to say, you have created a pid container. Let's switch to
another session outside the namespace, and list the processes again:

$ ps axf // from another terminal
PID TTY COMMAND

25744 pts/0 _ unshare —-fork —--pid —--mount-proc=/proc

/bin/sh

25745 pts/0 _ /bin/sh

3305 *? /sbin/rpcbind -f -w

6894 2 /usr/sbin/ntpd -p /var/run/ntpd.pid -g -u
113:116

You can still see the other processes and your shell process within the new namespace.

With the pid namespace isolation, processes in different namespaces cannot see each other.
Nonetheless, if one process eats up a considerable amount of system resources, such as
memory, it could cause the system to run out of memory and become unstable. In other
words, an isolated process could still disrupt other processes or even crash a whole system
if we don't impose resource usage restrictions on it.

[35]

DevOps with Container Chapter 2

The following diagram illustrates the PID namespaces and how an out-of-memory (OOM)
event can affect other processes outside a child namespace. The bubbles are the process in
the system, and the numbers are their PID. Processes in the child namespace have their own
PID. Initially, there is still free memory available in the system. Later, the processes in the
child namespace exhaust the whole memory in the system. The kernel then starts the OOM
killer to release memory, and the victims may be processes outside the child namespace:

Parent PID Namespace

Il Free Memory Used Memory

0O0M happened;

some processes outside child
namespace are killed.

Il Free Memory Used Memory

[36]

DevOps with Container Chapter 2

In light of this, cgroups is utilized here to limit resource usage. Like namespaces, it can set
constraint on different kinds of system resources. Let's continue from our pid namespace,
stress the CPU with yes > /dev/null, and monitor it with top:

$ yes > /dev/null & top

$ PID USER PR NI VIRT RES SHR S %CPU $MEM
TIME+ COMMAND
3 root 20 0 6012 656 584 R 100.0 0.0
0:15.15 yes
1 root 20 0 4508 708 632 s 0.0 0.0
0:00.00 sh
4 root 20 0 40388 3664 3204 R 0.0 0.1
0:00.00 top

Our CPU load reaches 100% as expected. Now let's limit it with the CPU cgroup. Cgroups
are organized as directories under /sys/fs/cgroup/ (switch to the host session first):

$ 1s /sys/fs/cgroup

blkio cpuset memory perf_event
cpu devices net_cls pids
cpuacct freezer net_cls,net_prio systemd
cpu, cpuacct hugetlb net_prio

Each of the directories represents the resources they control. It's pretty easy to create a
cgroup and control processes with it: just create a directory under the resource type with
any name, and append the process IDs you'd like to control to tasks. Here we want to
throttle the CPU usage of our yes process, so create a new directory under cpu and find out
the PID of the yes process:

$ ps x | grep yes
11809 pts/2 R 12:37 yes
$ mkdir /sys/fs/cgroup/cpu/box && \
echo 11809 > /sys/fs/cgroup/cpu/box/tasks

We've just added yes into the newly created CPU group box, but the policy remains unset,
and processes still run without restriction. Set a limit by writing the desired number into the
corresponding file and check the CPU usage again:

$ echo 50000 > /sys/fs/cgroup/cpu/box/cpu.cfs_quota_us

$ PID USER PR NI VIRT RES SHR S %CPU $MEM
TIME+ COMMAND
3 root 20 0 6012 656 584 R 50.2 0.0
0:32.05 yes
1 root 20 0 4508 1700 1608 s 0.0 0.0
0:00.00 sh
4 root 20 0 40388 3664 3204 R 0.0 0.1

[37]

DevOps with Container Chapter 2

0:00.00 top
The CPU usage is dramatically reduced, meaning that our CPU throttle works.

These two examples elucidate how Linux container isolates system resources. By putting
more confinements in an application, we can definitely build a fully isolated box, including
filesystem and networks, without encapsulating an operating system within it.

Containerized delivery

To deploy applications, the configuration management tool is often used. It's true that it
works well with its modular and code-based configuration design until the application
stacks grow complex and diverse. Maintaining a large configuration manifest base is
complicated. When we want to change one package, we'll have to deal with entangled and
fragile dependencies between the system and application packages. It's not uncommon that
some applications break inadvertently after upgrading an unrelated package. Moreover,
upgrading the configuration management tool itself is also a challenging task.

In order to overcome such a conundrum, immutable deployments with pre-baked VM
images are introduced. That is, whenever we have any update on the system or application
packages, we'll build a full VM image against the change and deploy it accordingly. It
solves a certain degree of package problems because we are now able to customize runtimes
for applications that cannot share the same environments. Nevertheless, doing immutable
deployment with VM images is costly. From another point of view, provisioning a VM for
the sake of isolating applications rather than insufficient resources results in inefficient
resource utilization, not to mention the overhead of booting, distributing, and running a
bloating VM image. If we want to eliminate such inefficiency by sharing VM to multiple
applications, we'll soon realize that we will run into further trouble, namely, resource
management.

Container, here, is a jigsaw piece that snugly fits the deployment needs. A manifest of a
container can be managed within VCS, and built into a blob image; no doubt the image can
be deployed immutably as well. This enables developers to abstract from actual resources,
and infrastructure engineers can escape from their dependency hell. Besides, since we only
need to pack up the application itself and its dependent libraries, its image size would be
significantly smaller than a VM's. Consequently, distributing a container image is more
economical than a VM's. Additionally, we have already known that running a process
inside a container is basically identical to running it on its Linux host and as such almost no
overhead will be produced. To summarize, container is lightweight, self-contained, and
immutable. This also gives a clear border to distinguish responsibilities between
applications and infrastructure.

[38]

DevOps with Container Chapter 2

Getting started with container

There are many mature container engines such as Docker (https://www.docker.com) and
rkt (https://coreos.com/rkt) that have already implemented features for production
usages, so you don't need to start building one from scratch. Besides, the Open Container
Initiative (https://www.opencontainers.org), an organization formed by container
industry leaders, has framed some container specifications. Any implementation of those
standards, regardless of the underlying platform, should have similar properties as OCI
aims to provide, with seamless experience of containers across a variety of operating
systems. In this book, we will use the Docker (community edition) container engine to
fabricate our containerized applications.

Installing Docker for Ubuntu

Docker requires a 64-bit version of Yakkety 16.10, Xenial 16.04LTS, and Trusty 14.04LTS.
You can install Docker with apt-get install docker.io, butit usually updates more
slowly than the Docker official repository. Here are the installation steps from Docker
(https://docs.docker.com/engine/installation/linux/dockerfce/ubuntu/#installf

docker—ce):
1. Make sure you have the packages to allow apt repositories; get them if not:

$ sudo apt—-get install apt-transport-https ca-certificates curl
software—-properties—common

2. Add Docker's gpg key and verify if its fingerprint matches 9pCc8 5822 9FC7
DD38 854A E2D8 8D81 803C OEBF CD88:

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo

apt-key add -
$ sudo apt-key fingerprint OEBFCD88

3. Set up the repository of amd64 arch:

$ sudo add—apt-repository "deb [arch=amdé64]
https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"

4. Update the package index and install Docker CE:

$ sudo apt-—-get update
$ sudo apt-get install docker-ce

[39]

https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://coreos.com/rkt
https://coreos.com/rkt
https://coreos.com/rkt
https://coreos.com/rkt
https://coreos.com/rkt
https://coreos.com/rkt
https://coreos.com/rkt
https://coreos.com/rkt
https://coreos.com/rkt
https://www.opencontainers.org
https://www.opencontainers.org
https://www.opencontainers.org
https://www.opencontainers.org
https://www.opencontainers.org
https://www.opencontainers.org
https://www.opencontainers.org
https://www.opencontainers.org
https://www.opencontainers.org
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce

DevOps with Container Chapter 2

Installing Docker for CentOS

CentOS 7 64-bit is required to run Docker. Similarly, you can get the Docker package from
CentOS's repository via sudo yum install docker. Again, the installation steps from
Docker official guide (https://docs.docker.com/engine/installation/linux/docker—ce/
centos/#install—using—the—repository)areasfoﬂovv&

1. Install the utility to enable yum to use the extra repository:
$ sudo yum install -y yum-utils

2. Set up Docker's repository:

$ sudo yum-config-manager —--—-add-repo
https://download.docker.com/linux/centos/docker—-ce.repo

3. Update the repository and verify if the fingerprint matches:
060A 61C5 1B55 8ATF 742B 77AA C52F EB6B 621E 9F35:
$ sudo yum makecache fast

4. Install Docker CE and start it:

$ sudo yum install docker-ce
$ sudo systemctl start docker

Installing Docker for macOS

Docker wraps a micro Linux moby with the hypervisor framework to build a native
application on macOS, which means we don't need third-party virtualization tools to
develop Docker in Mac. To benefit from the Hypervisor framework, you must upgrade
your macOS to 10.10.3 or above.

Download the Docker package and install it:
https://download.docker.com/mac/stable/Docker.dmg

Likewise, Docker for Windows requires no third-party tools. Check here

for the installation guide:
https://docs.docker.com/docker-for-windows/install

[40]

https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://docs.docker.com/engine/installation/linux/docker-ce/centos/#install-using-the-repository
https://download.docker.com/mac/stable/Docker.dmg
https://docs.docker.com/docker-for-windows/install

DevOps with Container Chapter 2

Now you are in Docker. Try creating and running your first Docker container; run it with
sudo if you are on Linux:

$ docker run alpine 1s
bin dev etc home lib media mnt proc root run sbin srv sys tmp usr var

You will see that you're under a root directory instead of your current one. Let's check the
processes list again:

$ docker run alpine ps aux
PID USER TIME COMMAND
1 root 0:00 ps aux

It is isolated, as expected. You are all ready to work with container.

Alpine is a Linux distribution. Since it's really small in size, many people
use it as their base image to build their application container.

Container life cycle

Using containers is not as intuitive as the tools that we are used to work with. In this
section, we will go through Docker usages from the most fundamental ideas to the extent
that we are able to benefit from containers.

Docker basics

When docker run alpine 1s isexecuted, what Docker did behind the scenes is:

1. Find the image alpine locally. If not found, Docker will try to find and pull it
from the public Docker registry to the local image storage.

2. Extract the image and create a container accordingly.

3. Execute the entry point defined in the image with commands, which are the
arguments after the image name. In this example, it is 1s. The entry point by
defaultis /bin/sh -c on the Linux-based Docker.

4. When the entry point process is exited, the container then exits.

[41]

DevOps with Container Chapter 2

An image is an immutable bundle of codes, libraries, configurations, and everything needed
to run an application. A container is an instance of an image, which would actually be
executed during runtime. You can use the docker inspect IMAGE and docker inspect
CONTAINER commands to see the difference.

Sometimes when we need to enter a container for checking the image or updating
something inside, we'll use the option -i and -t (--interactive and --tty). Besides,
option —-d (--detach) enables you to run a container in detached mode. If you would like
to interact with a detached container, exec and attach commands can do us a favor. The
exec command allows us run a process in a running container, and attach works, as per
its literal meaning. The following example demonstrates how to use them:

$ docker run alpine /bin/sh -c "while :;do echo
'meow~"';sleep 1;done"

meow~

meow~

Your Terminal should be flooded with meow~ now. Switch to another Terminal and run
docker ps,a command to get the status of containers, to find out the name and ID of the
meowing container. Both the name and ID here are generated by Docker, and you can
access a container with either of them. As a matter of convenience, the name can be
assigned upon create or run with the ——name flag;:

$ docker ps
CONTAINER ID IMAGE (omitted) NAMES

d51972e5fc8c alpine ce zen_kalam
$ docker exec -it d51972e5fc8c /bin/sh

/ # ps
PID USER TIME COMMAND
1 root 0:00 /bin/sh -c while :;do echo
'meow~"';sleep 1;done
27 root 0:00 /bin/sh
34 root 0:00 sleep 1
35 root 0:00 ps

/ # kill -s 2 1
$ // container terminated

[42]

DevOps with Container Chapter 2

Once we get in the container and inspect its processes, we will see two shells: one is
meowing and another one is where we are. Kill it with ki11 -s 2 1 inside the container
and we'll see the whole container stopped as the entry point is exited. Finally, let's list the
stopped containers with docker ps -a, and clean them up with docker rm
CONTAINER_NAME or docker rm CONTAINER_ID. Since Docker 1.13, the docker system
prune command has been introduced, which helps us clean up stopped containers and
occupied resources with ease.

Layer, image, container, and volume

We know that an image is immutable; a container is ephemeral, and we know how to run
an image as a container. Nevertheless, there's still a missing step on packing an image.

An image is a read-only stack that consists of one or more layers, and a layer is a collection
of files and directories in the filesystem. To improve the disk size usage, layers are not
locked to only one image but shared among images; which means that Docker simply stores
only one copy of a base image locally regardless of how many images are derived from it.
You can utilize the docker history [image] command to understand how an image is
built. For example, there's only one layer in an Alpine Linux image if you type docker
history alpine.

Whenever a container is created, it adds a writable layer on top of the base image. Docker
adopts the copy-on-write (COW) strategy on the layer. That is to say, a container reads
against the layers of the base image where the target files are stored, and copies the file to
its own writable layer if the file is modified. Such an approach prevents containers created
from the same image intervening with each other. The docker diff [CONTAINER]
command shows the difference between the container and its base image in terms of
filesystem states. For example, if /etc/hosts in the base image is modified, Docker copies
the file to the writable layer, and it will also be the only one file in the output of docker
diff.

[43]

DevOps with Container Chapter 2

The following diagram illustrates the hierarchical structure of Docker's images:

Container | | Container Container
db_sv_1 db_sv_2 web_sv_1

[W
MysQL JAVA

It's important to note that data in the writable layer is deleted along with its container. To
persist data, you commit the container layer with the docker commit [CONTAINER]
command as a new image, or mount data volumes into a container.

A data volume allows a container's reading and writing to bypass Docker's filesystem, and
it can be on a host's directory or other storages, such as Ceph or GlusterFS. Therefore, any
disk I/O against the volume can operate at native speeds depending on the underlying
storage. Since the data is persistent outside a container, it can be reused and shared by
multiple containers. Mounting a volume is done by specifying the —v(--volume) flag at
docker runordocker create. The following example mounts a volume under /chest
in the container, and leaves a file there. Afterwards, we use docker inspect to locate the
data volume:

$ docker run --name demo -v /chest alpine touch /chest/coins
$ docker inspect demo

"Mounts": [
{
"Type": "volume",
"Name" : (hash-digits),
"Source":"/var/lib/docker/volumes/ (hash-
digits) /_data",

"Destination": "/chest",
"Driver": "local",
"Mode m”e. nn

. 14

$ 1ls /var/lib/docker/volumes/ (hash-digits)/_data
coins

[44]

DevOps with Container Chapter 2

The default t ty path of moby Linux provided by Docker CE on macOS is
under:
~/Library/Containers/com.docker.docker/Data/com.docker.dr
iver.amd64-linux/tty.

You can attach to it with screen.

One use case of data volumes is sharing data between containers. To do so, we first create a
container and mount volumes on it, and then mount one or more containers and reference
the volume with —~volumes-from flag. The following examples create a container with a
data volume, /share-vol. Container A can put a file into it, and container B can read it as
well:

$ docker create —--name box -v /share-vol alpine nop
c53e3e498ab05b19al12d554£fad4545310e6de6950240c£7a28£42780£382c649

$ docker run —--name A —--volumes-from box alpine touch /share-vol/wine
$ docker run —--name B —--volumes-from box alpine 1ls /share-vol

wine

In addition, data volumes can be mounted under a given host path, and of course the data
inside is persistent:

$ docker run --name hi -v $(pwd) /host/dir:/data alpine touch /data/hi
$ docker rm hi

$ 1ls $(pwd) /host/dir

hi

Distributing images

Registry is a service that stores, manages, and distributes images. Public services, such as
Docker Hub (https://hub.docker.com) and Quay (https://quay.io), converge all kinds of
pre-built images of popular tools, such as Ubuntu and Nginx, and custom images from
other developers. The Alpine Linux we have used many times is actually pulled from
Docker Hub (https://hub.docker.com/_/alpine). Absolutely, you can upload your tool
onto such services and share with everyone as well.

If you need a private registry, but for some reason you don't want to
subscribe to paid plans of registry service providers, you can always set
up one on your own with registry (https://hub.docker.com/_/registry).

[45]

https://hub.docker.com
https://quay.io
https://hub.docker.com/_/alpine
https://hub.docker.com/_/registry

DevOps with Container Chapter 2

Before provisioning a container, Docker will try to locate the specified image in a rule
indicated in the image name. An image name consists of three sections
[registry/]name[:tag], and it's resolved with the following rules:

If the registry field is left out, search for the name on Docker Hub

If the registry field is a registry server, search the name for it
You can have more than one slash in a name
The tag defaults to 1atest if it's omitted

For example, an image name such as gcr.io/google-containers/guestbook:v3
instructs Docker to download v3 of google-containers/guestbook from gcr.io
Likewise, if you want to push an image to a registry, tag your image in the same manner
and push it. To list the images you currently own in the local disk, use docker images,
and remove an image with docker rmi [IMAGE]. The following example shows how to
work between different registries: Download an nginx image from Docker Hub, tag it to a
private registry path, and push it accordingly. Notice that though the default tag is 1atest,
you have to tag and push it explicitly.

$ docker pull nginx

Using default tag: latest

latest: Pulling from library/nginx
££3d52d8£55f: Pull complete

Status: Downloaded newer image for nginx:latest

$ docker tag nginx localhost:5000/comps/prod/nginx:1.14

$ docker push localhost:5000/comps/prod/nginx:1.14

The push refers to a repository [localhost:5000/comps/prod/nginx]

878lec54bal4: Pushed

1.14: digest: sha256: (64-digits—hash) size: 948

$ docker tag nginx localhost:5000/comps/prod/nginx

$ docker push localhost:5000/comps/prod/nginx

The push refers to a repository [localhost:5000/comps/prod/nginx]

878lec54bal4: Layer already exists
latest: digest: sha256: (64-digits—hash) size: 948

[46]

DevOps with Container Chapter 2

Most registry services ask for authentications if you are going to push images. The docker
login is designed for this purpose. Sometimes you may receive an image not found
error when attempting to pull an image, even though the image path is valid. It's very
likely that you are unauthorized with the registry that keeps the image. To resolve this
problem, log in first:

$ docker pull localhost:5000/comps/prod/nginx
Pulling repository localhost:5000/comps/prod/nginx
Error: image comps/prod/nginx:latest not found

$ docker login -u letme -p in localhost:5000

Login Succeeded

$ docker pull localhost:5000/comps/prod/nginx
Pulling repository localhost:5000/comps/prod/nginx

latest: digest: sha256: (64—-digits—hash) size: 948

In addition to distributed images via the registry service, there are options to dump images
as a TAR archive, and import them back into the local repository:

docker commit [CONTAINER]:Commits the changes of the container layer into
anew image

docker save —-output [filename] IMAGE1l IMAGE2 ...:Savesone or
more images to a TAR archive

docker load -i [filename]:Loadsatarball image into the local
repository

docker export --output [filename] [CONTAINER]: Exportsa container's
filesystem as a TAR archive

docker import —--output [filename] IMAGE1 IMAGEZ:hnpOﬂsa
filesystem tarball

The commit command with save and export looks pretty much the same. The main
difference is that a saved image preserves files in-between layers even if they are to be
deleted eventually; on the other hand, an exported image squashes all intermediate layers
into one final layer. Another difference is that a saved image keeps metadata such as layer
histories, but those are not available at the exported one. As a result, the exported image is
usually smaller in size.

[47]

DevOps with Container Chapter 2

The following diagram depicts the relationship of states between container and images. The
captions on the arrows are the corresponding sub-commands of Docker:

; removed ! pull push

O S| |
l U

run

......

destroyed |

'
create —> - M 3

commit

epository

1
save load export import

saved.tar exported.tar
Filesystem

Connect containers

Docker provides three kinds of networks to manage communications within containers and
between the hosts, namely bridge, host, and none.

$ docker network 1ls

NETWORK ID NAME DRIVER SCOPE
1224183£2080 bridge bridge local
801dec6d5e30 host host local
£938cd2d644d none null local

By default, every container is connected to the bridge network upon creation. In this mode,
every container is allocated a virtual interface as well as a private IP address, and the traffic
going through the interface is bridged to the host's docker0 interface. Also, other
containers within the same bridge network can connect to each other via their IP address.
Let's run one container that is feeding a short message over port 5000, and observe its
configuration. The —-expose flag opens the given ports to the world outside a container:

$ docker run --name greeter -d —--expose 5000 alpine \

/bin/sh -c "echo Welcome stranger! | nc -1lp 5000"
2069cbd£f37210461bc42c2c40d96e56bd99e075¢c7£fb92326aflec47e64d6b344
$ docker exec greeter ifconfig

[48]

DevOps with Container Chapter 2

ethO Link encap:Ethernet HWaddr 02:42:AC:11:00:02
inet addr:172.17.0.2 Bcast:0.0.0.0 Mask:255.255.0.0

Here the container greeter is allocated with IP 172.17.0. 2. Now run another container
connecting to it with this IP address:

$ docker run alpine telnet 172.17.0.2 5000
Welcome stranger!
Connection closed by foreign host

The docker network inspect bridge command gives configuration
details, such as subnet segments and the gateway information.

On top of that, you can group some containers into one user-defined bridge network. It's
also the recommended way to connect multiple containers on a single host. The user-
defined bridge network slightly differs from the default one, the major difference being that
you can access a container from other containers with its name rather than IP address.
Creating a network is done by docker network create [NW-NAME], and attaching
containers to it is done by the flag ——network [NW-NAME] at the time of creation. The
network name of a container defaults to its name, but it can be given another alias name
with the -—network-alias flag as well:

$ docker network create room
b0cdd64d375b203b24b5142da41701ad9%9ab168b53ad6559e6705d6£82564baea
$ docker run -d ——network room \

—-—-network—alias dad ——name sleeper alpine sleep 60
b5290bcca85b830935a1d0252calbf05d03438ddd226751eea922c72aba66417
$ docker run —--network room alpine ping -c 1 sleeper

PING sleeper (172.18.0.2): 56 data bytes

$ docker run —--network room alpine ping -c 1 dad
PING dad (172.18.0.2): 56 data bytes

The host network works literally according to its name; every connected container shares
the host's network, but it loses the isolation property at the same time. The none network is
a completely separated box. Regardless of ingress or egress, traffic is isolated inside as there
is no network interface attached to the container. Here we attach a container that listens on
port 5000 to the host network, and communicates with it locally:

$ docker run -d --expose 5000 —--network host alpine \
/bin/sh -c "echo im a container | nc -1lp 5000"

[49]

DevOps with Container Chapter 2

ca73774cabal401b91b4blca04d7d5363b6c281a05a32828e293b84795d85b54
$ telnet localhost 5000

im a container

Connection closed by foreign host

If you are using Docker CE for macOS, the host means the moby Linux on
top of the hypervisor framework.

The interaction between the host and three network modes are shown in the following
diagram. Containers in the host and bridge networks are attached with proper network
interfaces and communicate with containers within the same network as well as the outside
world, but the none network is kept away from the host interfaces.

(Host Bridge None \

- e m e mmEmmEm..—-————-

Container 2 Container 3 Container 4

ethO:
172.17.1.2

Container 1

docker0:
172.17.0.1

ethO:
172.17.1.3

docker0:
172.17.0.1

ethO:
192.168.0.1

\ bost Y,

Other than sharing the host network, the flag -p (——publish) [host]:[container], on
creating a container, also allows you to map a host port to a container. This flag implies -
expose, as you'll need to open a container's port in any case. The following command
launches a simple HTTP server at port 80. You can view it with a browser as well.

$ docker run -p 80:5000 alpine /bin/sh -c \

"while :; do echo -e 'HTTP/1.1 200 OK\n\ngood day'|nc -1lp 5000; done"
$ curl localhost

good day

[50]

DevOps with Container Chapter 2

Working with Dockerfile

When assembling an image, whether by a Docker commit or export, optimizing the
outcome in a managed way is a challenge, let alone integrating with a CI/CD pipeline. On
the other hand, Dockerfile represents the building task in the form of as-a-code, which
significantly reduces the complexities of building a task for us. In this section, we will
describe how to map Docker commands into a Dockerfile and go a step further to
optimizing it.

Writing your first Dockerfile

A Dockerfile consists of a series of text instructions to guide the Docker daemon to form a
Docker image. Generally, a Dockerfile is and must be starting with the directive FrROM,
and follows zero or more instructions. For example, we may have an image built from the
following one liner:

docker commit $(\

docker start $(\

docker create alpine /bin/sh -c \
"echo My custom build > /etc/motd" \
))

It roughly equates to the following Dockerfile:

./Dockerfile:

FROM alpine
RUN echo "My custom build" > /etc/motd

Obviously, building with a Dockerfile is more concise and clear.

The docker build [OPTIONS] [CONTEXT] command is the only one command
associated with building tasks. A context can be a local path, URL, or stdin; which denotes
the location of the Dockerfile. Once a build is triggered, the Dockerfile, alongside
everything under the context, will be sent to the Docker daemon beforehand, and then the
daemon will start to execute instructions in the Dockerfile sequentially. Every execution
of instructions results in a new cache layer, and the ensuing instruction is executed at the
new cache layer in the cascade. Since the context will be sent to somewhere that is not
guaranteed to be a local path, it's a good practice to put the Dockerfile, codes, the
necessary files, and a . dockerignore file in an empty folder to make sure the resultant
image encloses only the desired files.

[51]

DevOps with Container Chapter 2

The .dockerignore file is a list indicating which files under the same directory can be
ignored during the building time, and it typically looks like the following file:

./ .dockerignore:

ignore .dockerignore, .git

.dockerignore

.git

exclude all *.tmp files and vim swp file recursively
*% /% tmp

**/[._1*.s[a-w] [a-2]

Generally, docker build will try to find a file named Dockerfile under the context to
start a build; but sometimes we may like to give it another name for some reason. The —f(—-
file) flag is for this purpose. Also, another useful flag, -t (--tag), is able to give an image
of one or more repository tags after an image is built. Say we want to build a Dockerfile
named builder.dck under . /deploy and label it with the current date and the latest tag,
the command will be:

$ docker build -f deploy/builder.dck \
-t my-reg.com/prod/teabreak:$ (date +"%g%m%d") \
-t my-reg.com/prod/teabreak:latest .

Dockerfile syntax

The building blocks of a Dockerfile are a dozen or more directives; most of them are a
counterpart of the functions of docker run/create flags. Here we list the most essential
ones:

e FROM <IMAGE>[:TAG| [@DIGEST]: This is to tell the Docker daemon which
image the current Dockerfile is based on. It's also the one and only instruction
that must be in a Dockerfile, which means that you can have a Dockerfile
that contains only one line. Like all the other image-relevant commands, the tag
defaults to the latest if unspecified.

e RUN:

RUN <commands>
RUN ["executable", "params", "more params"]

[52]

DevOps with Container Chapter 2

The RUN instruction runs one line of a command at the current cache layer, and
commits out the outcome. The main discrepancy between the two forms is in how
the command is executed. The first one is called shell form, which actually
executes commands in the form of /bin/sh -c¢ <commands>; the other form is
called exec form, and it treats the command with exec directly.

Using the shell form is similar to writing shell scripts, thus concatenating multiple
commands by shell operators and line continuation, condition tests, or variable
substitutions are totally valid. But bear in mind that commands are not processed
by bash but sh.

The exec form is parsed as a JSON array, which means that you have to wrap texts
with double quotes and escape reserved characters. Besides, as the command is
not processed by any shell, the shell variables in the array will not be evaluated.
On the other hand, if the shell doesn't exist in the base image, you can still use the
exec form to invoke executables.

e CMD:

CMD ["executable", "params", "more params"]
CMD ["paraml", "param2"]
CMD command paraml param2 ...:

The cMD sets default commands for the built image; it doesn't run the command
during build time. If arguments are supplied at Docker run, the cMD
configurations here are overridden. The syntax rule of CMD is almost identical to
RUN; the first form is the exec form, and the third one is the shell form, which is
the prepend a /bin/sh -c as well. There is another directive in which
ENTRYPOINT interacts with CMD; three forms of cMD actually would be a prepend
with ENTRYPOINT when a container starts. There can be many cMD directives in a
Dockerfile, but only the last one will take effect.

e ENTRYPOINT:

ENTRYPOINT ["executable", "paraml", "param2"]
ENTRYPOINT command paraml param2

[53]

DevOps with Container Chapter 2

These two forms are, respectively, the exec form and the shell form, and the
syntax rules are the same as RUN. The entry point is the default executable for an
image. That is to say, when a container spins up, it runs the executable configured
by the ENTRYPOINT. When the ENTRYPOINT is combined with CMD and docker
run arguments, writing in a different form would lead to very diverse behavior.
Here are the organized rules of their combinations:

e If the ENTRYPOINT is in shell form, then the cMD and Docker run
arguments would be ignored. The command will become:

/bin/sh -c entry_cmd entry_params

e If the ENTRYPOINT is in exec form and the Docker run arguments
are specified, then the CMD commands are overridden. The runtime
command would be:

entry_cmd entry_params run_arguments

e If the ENTRYPOINT is in exec form and only CMD is configured, the
runtime command would become the following for the three
forms:

entry _cmd entry_parms CMD_exec CMD_parms
entry_cmd entry_parms CMD_parms
entry_cmd entry_parms /bin/sh -c CMD_cmd
CMD_parms

e ENV:

ENV key value
ENV keyl=valuel key2=value2

The ENV instruction sets environment variables for the consequent instructions
and the built image. The first form sets the key to the string after the first space,
including special characters. The second form allows us to set multiple variables
in a line, separated with spaces. If there are spaces in a value, either enclose it with
double quotes or escape the space character. Moreover, the key defined with ENV
also takes effect on variables in the same documents. See the following examples
to observe the behavior of ENV:

FROM alpine

ENV key wD # aw

ENV k2=v2 k3=v\ 3 \
kd="v 4"

[54]

DevOps with Container Chapter 2

ENV k_${k2}=5$k3 k5=\"K\=da\"

RUN echo key=$key ;\
echo k2=$k2 k3=$k3 k4=Sk4 ;\
echo k_\${k2}=k_${k2}=$k3 k5=$k5

And the output during the Docker build would be:

———> Running in 738709ef0lad
key=wD # aw

k2=v2 k3=v 3 kd=v 4
k_${k2}=k_v2=v 3 k5="K=da"

e LABEL keyl=valuel key2=value2 ...:The usage of LABEL resembles ENV,
but a label is stored only in the metadata section of the images and is used by
other host programs instead of programs in a container. It deprecates the
maintainer instruction in the following form:

LABEL maintainer=johndoe(@example.com

And we can filter objects with labels if a command has the -f (--filter) flag.
For example, docker images --filter
label=maintainer=johndoe@example.com queries out the images labeled
with the preceding maintainer.

e EXPOSE <port> [<port> ...]:Thisinstruction isidentical to the ——expose
flag at docker run/create, exposing ports at the container created by the
resulting image.

e USER <name |uid>[:<group]|gid>]: The USER instruction switches the user to
run the subsequent instructions. However, it cannot work properly if the user
doesn't exist in the image. Otherwise, you have to run adduser before using the
USER directive.

[55]

DevOps with Container Chapter 2

® WORKDIR <path>: This instruction sets the working directory to a certain path.
The path would be created automatically if the path doesn't exist. It works like cd
in a Dockerfile, as it takes both relative and absolute paths and can be used
multiple times. If an absolute path is followed by a relative path, the result would
be relative to the previous path:

WORKDIR /usr

WORKDIR src

WORKDIR app

RUN pwd

———> Running in 73aff3aedébac
/usr/src/app

———> 4a415e366388

Also, environment variables set with ENV take effect on the path.

® COPY:
COPY <src—-in-context> ... <dest-in-container>
COPY ["<src-in-context>", ... "<dest-in-container>"]

This directive copies the source to a file or a directory in the building container.
The source could be files or directories, as could be the destination. The source
must be within the context path, as only files under the context path will be sent to
the Docker daemon. Additionally, COPY makes use of . dockerignore to filter
files that would be copied into the building container. The second form is for a use
case where the path contains spaces.

e ADD:
ADD <src > ... <dest >
ADD ["<sre>",... "<dest >"]

ADD is quite analogous to COPY in terms of functionality: moving files into an
image. More than copying files, <src> can also be URL or a compressed file. If
<src> is a URL, ADD will download it and copy it into the image. If <src> is
inferred as a compressed file, it will be extracted into <dest> path.

e VOLUME:

VOLUME mount_point_1 mount_point_2
VOLUME ["mount point 1", "mount point 2"]

[56]

DevOps with Container Chapter 2

The VOLUME instruction creates data volumes at the given mount points. Once it
has been declared during build time, any change in the data volume at consequent
directives would not persist. Besides, mounting host directories in a Dockerfile
or docker buildisn't doable because of portability issues: there's no guarantee
that the specified path would exist in the host. The effect of both syntax forms is
identical; they only differ in syntax parsing; The second form is a JSON array, so
characters such as "\ " should be escaped.

e ONBUILD [Other directives]:ONBUILD allows you to postpone some
instructions to later builds in the derived image. For example, we may have the
following two Dockerfiles:

—-—— baseimg -—-

FROM alpine

RUN apk add --no-update git make

WORKDIR /usr/src/app

ONBUILD COPY . /usr/src/app/

ONBUILD RUN git submodule init && \
git submodule update && \
make

--- appimg ---

FROM baseimg

EXPOSE 80

CMD ["/usr/src/app/entry"]

The instruction then would be evaluated in the following order on docker
build:

$ docker build -t baseimg —-f baseimg .
FROM alpine
RUN apk add --no-—update git make
WORKDIR /usr/src/app
$ docker build -t appimg -f appimg .
COPY . /usr/src/app/
RUN git submodule init && \

git submodule update && \

make
EXPOSE 80
CMD ["/usr/src/app/entry"]

[57]

DevOps with Container Chapter 2

Organizing a Dockerfile

Even though writing a Dockerfile is the same as composing a building script, there are
some more factors we should consider to build efficient, secure, and stable images.
Moreover, a Dockerfile itself is also a document, and keeping its readability eases
management efforts.

Say we have an application stack that consists of application codes, a database, and cache,
we'll probably start from a Dockerfile, such as the following:

FROM ubuntu

ADD . /app

RUN apt-get update

RUN apt-get upgrade -y

RUN apt-get install -y redis-server python python-pip mysqgl-server
ADD db/my.cnf /etc/mysql/my.cnf

ADD db/redis.conf /etc/redis/redis.conf

RUN pip install -r /app/requirements.txt

RUN cd /app ; python setup.py

CMD /app/start-—-all-service.sh

The first suggestion is making a container dedicated to one thing and one thing only. So,
we'll remove the installation and configuration at both mysql and redis in this
Dockerfile at the beginning. Next, the code is moved into the container with AbD, which
means we will very likely move the whole code repository into the container. Usually there
are lots of files that are not directly relevant to the application, including VCS files, CI
server configurations, or even build caches, and we probably wouldn't like to pack them
into an image. Thus, using a . dockerignore to filter out those files is suggested as well.
Incidentally, due to the ADD instruction, we could do more than just add files into a build
container. Using COPY is preferred in general, unless there is a real need not to do so. Now
our Dockerfile is simpler, as shown in the following code:

FROM ubuntu

COPY . /app

RUN apt-get update

RUN apt-get upgrade -y

RUN apt-get install -y python python-pip
RUN pip install -r /app/requirements.txt
RUN cd /app ; python setup.py

CMD python app.py

[58]

DevOps with Container Chapter 2

While building an image, the Docker engine will try to reuse the cache layer as much as
possible, which notably reduces the build time. In our Dockerfile, we have to go through
whole updating and dependency installation processes as long as there's any update in our
repository. To benefit from building caches, we'll re-order the directives based on a rule of
thumb: run less frequent instructions first.

Additionally, as we've described before, any change to the container filesystem results in a
new image layer. Even though we deleted certain files in the consequent layer, those files
are still occupied image sizes as they are still being kept at intermediate layers. Therefore,
our next step is to minimize the image layers by simply compacting multiple RUN
instructions. Moreover, to keep the readability of the Dockerfile, we tend to format the
compacted RUN with the line continuation character, "\".

In addition to working with the building mechanisms of Docker, we'd also like to write a
maintainable Dockerfile to make it more clear, predictable, and stable. Here are some
suggestions:

e Use WORKDIR instead of inline cd, and use absolute path for WORKDIR
¢ Explicitly expose the required ports

e Specify a tag for the base image

¢ Use the exec form to launch an application

The first three suggestions are pretty straightforward, aimed at eliminating ambiguity. The
last one is about how an application is terminated. When a stop request from the Docker
daemon is sent to a running container, the main process (PID 1) will receive a stop signal
(SIGTERM). If the process is not stopped after a certain period of time, the Docker daemon
will send another signal (SIGKILL) to kill the container. The exec form and shell form differ
here. In the shell form, the PID 1 process is "/bin/sh -c", not the application. Further,
different shells don't handle signals in the same way. Some forward the stop signal to child
processes while some do not. The shell at Alpine Linux doesn't forward them. As a result, to
stop and clean up our application properly, using the exec form is encouraged. Combining
those principles, we have the following Dockerfile:

FROM ubuntu:16.04

RUN apt-get update && apt—-get upgrade -y \
&& apt—get install -y python python-pip
ENTRYPOINT ["python"]

CMD ["entry.py"l]

EXPOSE 5000

WORKDIR /app

COPY requirements.txt .

RUN pip install -r requirements.txt

[59]

DevOps with Container Chapter 2

COPY . /app

There are still other practices to make a Dockerfile better, including starting from a
dedicated and smaller base image such as Alpine-based ones rather than generic purpose
distributions, using users other than root for security, and removing unnecessary files in
the RUN in which they are joined.

Multi-containers orchestration

As we pack more and more applications into isolated boxes, we'll soon realize that we need
a tool that is able to help us tackle many containers simultaneously. In this section, we'll
move a step up from spinning up simply one single container to orchestrating containers in

a band.

Piling up containers

Modern systems are usually built as a stack made up of multiple components that are
distributed over networks, such as application servers, caches, databases, message queues,
and so on. Meanwhile, a component itself is also a self-contained system with many sub-
components. What's more, the trend of microservices introduces additional degrees of
complexity into such entangled relationships between systems. From this fact, even though
container technology gives us a certain degree of relief regarding deployment tasks,
launching a system is still difficult.

Say we have a simple application called kiosk, which connects to a Redis to manage how
many tickets we currently have. Once a ticket is sold, it publishes an event through a Redis
channel. The recorder subscribes the Redis channel and writes a timestamp log into a
MySQL database upon receiving any event.

For the kiosk and the recorder, you can find the code as well as the Dockerfiles here:
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2. The
architecture is as follows:

[60]

https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter2

DevOps with Container Chapter 2

\ handle ticketing
update tickets &
wh event
MySQL
update da;k /ubs'cribe &
reco rder get event

We know how to start those containers separately, and connect them to each other. Based
on what we have discussed before, we would first create a bridge network, and run the
containers inside:

$ docker
$ docker

$ docker
$ docker

network create kiosk
run -d -p 5000:5000 \
—e REDIS_HOST=lcredis —-—network=kiosk kiosk-example
run —-d —--network-alias lcredis —-—network=kiosk redis
run -d —-e REDIS_HOST=lcredis —e MYSQL_HOST=lmysql \

—e MYSQL_ROOT_PASSWORD=$MYPS —-e MYSQL_USER=root \
——-network=kiosk recorder—-example

$ docker

run -d --network-alias lmysql —e MYSQL _ ROOT_PASSWORD=$MYPS \

——network=kiosk mysql:5.7

Everything works well so far. However, if next time we want to launch the same stack
again, our applications are very likely to start up prior to the databases, and they might fail
if any incoming connection requests any change against the databases. In other words, we
have to consider the startup order in our startup scripts. Additionally, scripts are also inept
with problems such as how to deal with a random components crash, how to manage
variables, how to scale out certain components, and so on.

[61]

DevOps with Container Chapter 2

Docker Compose overview

Docker Compose is the very tool that enables us to run multiple containers with ease, and
it's a built-in tool in the Docker CE distribution. All it does is read docker-compose.yml
(or .yaml) to run defined containers. A docker-compose file is a YAML-based template,
and it typically looks like this:

version: '3’
services:
hello-world:
image: hello-world

Launching it is pretty simple: save the template to docker—compose.yml and use the
docker-compose up command to start it:

$ docker-compose up

Creating network "cwd_default" with the default driver

Creating cwd_hello-world_1

Attaching to cwd_hello-world_1

hello-world_1 |

hello-world_1 | Hello from Docker!

hello-world_1 | This message shows that your installation appears to be
working correctly.

cwd_hello-world_1 exited with code 0
Let's see what docker-compose did behind the up command.

Docker Compose is basically a medley of Docker functions for multiple containers. For
example, the counterpart of docker buildis docker-compose build; the previous one
builds a Docker image, and so the later one builds Docker images listed in the docker-
compose.yml. But there's one thing that needs to be pointed out: the docker-compose
run command is not the correspondent of docker run;it's running a specific container
from the configuration in the docker-compose. yml. In fact, the closest command to
docker runis docker-compose up.

The docker-compose. yml file consists of configurations of volumes, networks, and
services. Besides, there should be a version definition to indicate which version of the
docker-compose format is used. With such an understanding of the template structure,
what the previous hello-world example does is quite clear; it creates a service called
hello-world and it is created by the image hello-world:latest.

[62]

DevOps with Container Chapter 2

Since there is no network defined, docker-compose would create a new network with a
default driver and connect services to the same network as shown in lines 1 to 3 of the
example's output.

Additionally, the network name of a container would be the service's name. You may notice
that the name displayed in the console slightly differs from its original one in the docker-
compose . yml. It's because Docker Compose tries to avoid name conflicts between
containers. As a result, Docker Compose runs the container with the name it generated, and
makes a network-alias with the service name. In this example, both "hello-world" and
"cwd_hello-world_1" are resolvable to other containers within the same network.

Composing containers

As Docker Compose is the same as Docker in many aspects, it's more efficient to
understand how to write a docker-compose.yml with examples than start from docker—
compose syntaxes. Here let's go back to the kiosk-example earlier and start with a
version definition and four services:

version: '3'
services:
kiosk—-example:
recorder—example:
lcredis:
lmysql:

The docker run arguments for the kiosk-example are pretty simple, including a
publishing port and an environment variable. On the Docker Compose side, we fill the
source image, publishing port, and environment variables accordingly. Because Docker
Compose is able to handle docker build, it would build images if those images cannot be
found locally. We are very likely to want to leverage it to further decrease the effort of
image management:

kiosk-example:
image: kiosk-example
build: ./kiosk
ports:
- "5000:5000"
environment:
REDIS_HOST: lcredis

[63]

DevOps with Container

Chapter 2

Converting the Docker run of the recorder-example and redis in the same manner, we

have a template like this:

version: '3'
services:
kiosk-example:
image: kiosk-example
build: ./kiosk
ports:
- "5000:5000"
environment:
REDIS_HOST: lcredis
recorder—example:
image: recorder-example
build: ./recorder
environment:
REDIS_HOST: lcredis
MYSQL_HOST: lmysqgl
MYSQL_USER: root
MYSQL_ROOT_PASSWORD: mysqlpass
lcredis:
image: redis
ports:
- "6379"

For the MySQL part, it requires a data volume to keep its data as well as configurations.
Therefore, in addition to the 1mysql section, we add volumes at the level of services and

an empty map mysgl-vol to claim a data volume:

lmysql:
image: mysql:5.7
environment:
MYSQL_ROOT_PASSWORD: mysqlpass
volumes:
- mysql-vol:/var/lib/mysql
ports:
- "3306"
volumes:
mysqgl-vol:

Combining all of preceding configurations, we have the final template, as follows:

docker—-compose.yml

version: '3’
services:

[64]

DevOps with Container

Chapter 2

kiosk—example:
image: kiosk-example
build: ./kiosk
ports:
- "5000:5000"
environment:
REDIS_HOST: lcredis
recorder—example:
image: recorder-example
build: ./recorder
environment:
REDIS_HOST: lcredis
MYSQL_HOST: 1lmysql
MYSQL_USER: root
MYSQL_ROOT_PASSWORD: mysqglpass
lcredis:
image: redis
ports:
- "6379"
Imysql:
image: mysql:5.7
environment:
MYSQL_ROOT_PASSWORD: mysqlpass
volumes:
- mysql-vol:/var/lib/mysql
ports:
- "3306"
volumes:
mysqgl-vol:

This file is put in the root folder of a project. The corresponding file tree is shown here:

—— docker-compose.yml
—— kiosk
| |—— Dockerfile
I F— app.py
| L—— requirements.txt
L—— recorder

|—— Dockerfile

—— process.py

L—— requirements.txt

Lastly, run docker-compose up to check if everything is fine. And we can check if our

kiosk is up by sending a GET /tickets request.

[65]

DevOps with Container Chapter 2

Writing a template for Docker Compose is nothing more than this. We are now able to run
an application in the stack with ease.

Summary

Starting from the very primitive elements of Linux container to Docker tool stacks, we went
through every aspect of containerizing an application, including packing and running a
Docker container, writing a Dockerfile for code-based immutable deployment, and
manipulating multi-containers with Docker Compose. However, our abilities gained in this
chapter only allow us to run and connect containers within the same host, which limits the
possibility to build larger applications. As such, in the next chapter, we'll meet Kubernetes,
unleashing the power of Container beyond the limits of scale.

[66]

Getting Started with Kubernetes

We've learned the benefits that containers can bring us, but what if we need to scale out our
services for business needs? Is there a way to build services across multiple machines
without dealing with cumbersome network and storage settings? Also, is there any other
easy way to manage and roll out our microservices by different service cycle? That's how
Kubernetes comes into play. In this chapter, we'll learn:

e Kubernetes concept

e Kubernetes components

e Kubernetes resources and their configuration file

e How to launch the kiosk application by Kubernetes

Understanding Kubernetes

Kubernetes is a platform for managing application containers across multiple hosts. It
provides lots of management features for container-oriented applications, such as auto
scaling, rolling deployment, compute resource, and volume management. Same as the
nature of containers, it's designed to run anywhere, so we're able to run it on a bare metal,
in our data center, on the public cloud, or even hybrid cloud.

Getting Started with Kubernetes Chapter 3

Kubernetes considers most of the operational needs for application containers. The
highlights are:

¢ Container deployment
e Persistent storage

Container health monitoring

Compute resource management

Auto-scaling

High availability by cluster federation

Kubernetes is a perfect match for microservices. With Kubernetes, we can create a
Deployment to rollout, rollover, or roll back selected containers (Chapter 7, Continous
Delivery). Containers are considered as ephemeral. We can mount the volume into a
container to preserve the data in a single host world. In the cluster world, a container might
be scheduled to run on any host. How do we make the volume mounting work as
permanent storage seamlessly? Kubernetes Volumes and Persistent Volumes are
introduced to solve that problem (chapter 4, Working with Storage and Resources). The
lifetime of containers might be short. They may be killed or stopped anytime when they
exceed the limit of resource, how do we ensure our services always serve a certain number
of containers? ReplicationController or ReplicaSet in Kubernetes will ensure a certain
number of group of containers are up. Kubernetes even supports liveness probe to help
you define your application health. For better resource management, we can also define the
maximum capacity on Kubernetes nodes and the resource limit for each group of containers
(a.k.a pod). Kubernetes scheduler will then select a node that fulfills the resource criteria to
run the containers. We'll learn this in chapter 4, Working with Storage and Resources.
Kubernetes provides an optional horizontal pod auto-scaling feature. With this feature, we
could scale a pod horizontally by resource or custom metrics. For those advanced readers,
Kubernetes is designed with high availability (HA). We are able to create multiple master
nodes from preventing single point of failure.

Kubernetes components

Kubernetes includes two major players:

e Masters: The Master is the heart of Kubernetes, which controls and schedules all
the activities in the cluster

¢ Nodes: Nodes are the workers that run our containers

[68]

Getting Started with Kubernetes Chapter 3

Master components

The master includes the API server, Controller Manager, scheduler, and etcd. All the
components can run on different hosts with clustering. However, from a learning
perspective, we'll make all the components run on the same node.

Command Line IfF

Data Store I/F

RESTful I/F

Authentication

Endpolnt Service Account

Replication
T Node Controller Controller & Token
Controller

Master components

API server (kube-apiserver)

The API server provides an HTTP/HTTPS server, which provides a RESTful API for all the
components in the Kubernetes master. For example, we could GET resource status, such as
pod, POST to create a new resource and also watch a resource. API server reads and
updates etcd, which is Kubernetes' backend data store.

[69]

Getting Started with Kubernetes Chapter 3

Controller Manager (kube-controller-manager)

The Controller Manager controls lots of different things in the cluster. Replication
Controller Manager ensures all the ReplicationControllers run on the desired container
amount. Node Controller Manager responds when the nodes go down, it will then evict the
pods. Endpoint Controller is used to associate the relationship between services and pods.
Service Account and Token Controller are used to control default account and API access
tokens.

eted

etcd is an open source distributed key-value store (https://coreos.com/etcd). Kubernetes
stores all the RESTful API objects here. etcd is responsible for storing and replicating data.

Scheduler (kube-scheduler)

Scheduler decides which node is suitable for pods to run on, according to the resource
capacity or the balance of the resource utilization on the node. It also considers spreading
the pods in the same set to different nodes.

Node components

Node components need to be provisioned and run on every node, which report the runtime
status of the pod to the master.

master
4
-
R
kubelet proxy

Node components

[70]

https://coreos.com/etcd

Getting Started with Kubernetes Chapter 3

Kubelet

Kubelet is a major process in the nodes, which reports node activities back to kube-
apiserver periodically, such as pod health, node health, and liveness probe. As the
preceding graph shows, it runs containers via container runtimes, such as Docker or rkt.

Proxy (kube-proxy)

Proxy handles the routing between pod load balancer (a.k.a. service) and pods, it also
provides the routing from outside to service. There are two proxy modes, userspace and
iptables. Userspace mode creates large overhead by switching kernel space and user space.
Iptables mode, on the other hand, is the latest default proxy mode. It changes iptables NAT
in Linux to achieve routing TCP and UDP packets across all containers.

Docker

As described in chapter 2, DevOps with Container, Docker is a container implementation.
Kubernetes uses Docker as a default container engine.

Interaction between Kubernetes master and nodes

In the following graph, the client uses kubectl to send requests to the API server; API server
responds to the request, pushes and pulls the object information from etcd. Scheduler
determines which node should be assigned to do the tasks (for example, run pods).
Controller Manager monitors the running tasks and responds if any undesired state occurs.
On the other hand, the API server fetches the logs from pods by kubelet, and is also a hub
between other master components.

etcd servers kubectl

Master

!v v i Ei 'iw

Node Node Node

Interaction between master and nodes

[71]

Getting Started with Kubernetes Chapter 3

Getting started with Kubernetes

In this section, we will learn how to set up a small single-node cluster at the start. Then we'll
get to learn how to interact with Kubernetes via its command-line tool--kubectl. We will go
through all the important Kubernetes API objects and their expression in YAML format,
which is the input to kubect], then kubectl will send the request to the API server
accordingly.

Preparing the environment

The easiest way to start is running minikube (https://github.com/kubernetes/minikube),
which is a tool to run Kubernetes on a single node locally. It supports to run on Windows,
Linux, and macOS. In the following example, we'll run on macOS. Minikube will launch a
VM with Kubernetes installed. Then we'll be able to interact with it via kubectl.

Note that minikube is not suitable for production or any heavy load environment. There are
some limitations by its single node nature. We'll learn how to run a real cluster in chapter
9, Kubernetes on AWS and chapter 10, Kubernetes on GCP instead.

Before installing minikube, we'll have to install Homebrew (https://brew.sh/) and
VirtualBox (https://www.virtualbox.org/) first. Homebrew is a useful package manager
in macOS. We can easily install Homebrew via the /usr/bin/ruby -e "$ (curl -£fsSL
https://raw.githubusercontent .com/Homebrew/install/master/install)" command,
and download VirtualBox from the Oracle website and click to install it.

Then it's time to start! We can install minikube via brew cask install minikube:

// install minikube

brew cask install minikube

==> Tapping caskroom/cask

==> Linking Binary 'minikube-darwin-amdé4' to '/usr/local/bin/minikube’.

minikube was successfully installed!

After minikube is installed, we now can start the cluster:

// start the cluster

minikube start

Starting local Kubernetes v1.6.4 cluster...
Starting VM...

Moving files into cluster...

Setting up certs...

Starting cluster components...

[72]

https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://raw.githubusercontent.com/Homebrew/install/master/install)
https://raw.githubusercontent.com/Homebrew/install/master/install)
https://raw.githubusercontent.com/Homebrew/install/master/install)
https://raw.githubusercontent.com/Homebrew/install/master/install)
https://raw.githubusercontent.com/Homebrew/install/master/install)
https://raw.githubusercontent.com/Homebrew/install/master/install)
https://raw.githubusercontent.com/Homebrew/install/master/install)
https://raw.githubusercontent.com/Homebrew/install/master/install)
https://raw.githubusercontent.com/Homebrew/install/master/install)
https://raw.githubusercontent.com/Homebrew/install/master/install)
https://raw.githubusercontent.com/Homebrew/install/master/install)
https://raw.githubusercontent.com/Homebrew/install/master/install)
https://raw.githubusercontent.com/Homebrew/install/master/install)
https://raw.githubusercontent.com/Homebrew/install/master/install)
https://raw.githubusercontent.com/Homebrew/install/master/install)
https://raw.githubusercontent.com/Homebrew/install/master/install)
https://raw.githubusercontent.com/Homebrew/install/master/install)

Getting Started with Kubernetes Chapter 3

Connecting to cluster...
Setting up kubeconfig...
Kubectl is now configured to use the cluster.

This will launch a Kubernetes cluster locally. At the time of writing, the latest version is
v.1.6.4 minikube. Proceed to start a VM named minikube in VirtualBox. Then it will be
setting up kubeconfig, which is a configuration file to define the context and
authentication settings of the cluster.

With kubeconfig, we're able to switch to different clusters via the kubect 1 command. We
could use the kubectl config view command to see current settings in kubeconfig:

apiVersion: vl
cluster and certificate information
clusters:
— cluster:
certificate—authority—-data: REDACTED
server: https://35.186.182.157
name: gke_devops_cluster
— cluster:
certificate—authority: /Users/chloelee/.minikube/ca.crt
server: https://192.168.99.100:8443
name: minikube
context is the combination of cluster, user and namespace
contexts:
— context:
cluster: gke_devops_cluster
user: gke_devops_cluster
name: gke_devops_cluster
— context:
cluster: minikube
user: minikube
name: minikube
current—-context: minikube
kind: Config
preferences: {}
user information
users:
— name: gke_devops_cluster
user:
auth-provider:
config:
access-token: xxxx
cmd-args: config config-helper —--format=json
cmd-path: /Users/chloelee/Downloads/google-cloud-sdk/bin/gcloud
expiry: 2017-06-08T03:51:112
expiry-key: '{.credential.token_expiry}'

[73]

Getting Started with Kubernetes Chapter 3

token-key: '{.credential.access_token}'
name: gcp
namespace info
— name: minikube
user:
client-certificate: /Users/chloelee/.minikube/apiserver.crt
client-key: /Users/chloelee/.minikube/apiserver.key

Here we know we're currently using minikube context with the same name of cluster and
user. Context is a combination of authentication information and cluster connection
information. You could use kubectl config use-context $context to force switch the
context if you have more than one context.

In the end, we'll need to enable kube-dns addon in minikube. kube-dns is a DNS service
in Kuberentes:

// enable kube-dns addon
minikube addons enable kube-dns
kube-dns was successfully enabled

kubectl

kubect1 is the command to control Kubernetes cluster manager. The most general usage is
to check the version of cluster:

// check Kubernetes version

kubectl version

Client Version: version.Info{Major:"1l", Minor:"6", GitVersion:"v1l.6.2",
GitCommit:"477efc3cbeba7effcal6bdla52fa356e220lelee", GitTreeState:"clean",
BuildDate:"2017-04-19T20:33:11Z", GoVersion:"gol.7.5", Compiler:"gc",
Platform:"darwin/amdé4"}

Server Version: version.Info{Major:"1l", Minor:"6", GitVersion:"v1.6.4",
GitCommit:"d6£433224538d4f9%ca2f7ael9%252e6fcb66a3ae", GitTreeState:"clean",
BuildDate:"2017-05-30T22:03:41Z", GoVersion:"gol.7.3", Compiler:"gc",
Platform:"linux/amdé64"}

We then know our server version is up to date, which is the latest at the time of
writing—version 1.6.4. The general syntax of kubect1 is:

kubectl [command] [type] [name] [flags]

[74]

Getting Started with Kubernetes Chapter 3

The command indicates the operation you want to perform. If you just type kubectl help
in the Terminal, it will show the supported commands. t ype means the resource type. We'll
learn major resource types in the next section. name is how we name our resources. It's
always good practice to have clear and informational naming along the way. For the flags,
if you type kubectl options, it will show all the flags you could pass on.

kubect1 comes in handy and we could always add —-help to get more detailed
information for the specific command. For example:

// show detailed info for logs command

kubectl logs —-help

Print the logs for a container in a pod or specified resource. If the pod
has only one container, the container name is

optional.

Aliases:
logs, log

Examples:
Return snapshot logs from pod nginx with only one container
kubectl logs nginx

Return snapshot logs for the pods defined by label
app=nginx
kubectl logs -lapp=nginx

Return snapshot of previous terminated ruby container logs
from pod web-1
kubectl logs -p —-c ruby web-1

We then get the full supported option in the kubectl logs command.

Kubernetes resources

Kubernetes objects are the entries in the cluster, which are stored in etcd. They represent the
desired state of your cluster. When we create an object, we send the request to API Server
by kubectl or RESTful API. API Server will store the state into etcd and interact with other
master components to ensure the object exists. Kubernetes uses namespace to isolate the
objects virtually, according to different teams, usages, projects, or environments. Every
object has its own name and unique ID. Kubernetes also supports labels and annotation to
let us tag our objects. Labels especially could be used to group the objects together.

[75]

Getting Started with Kubernetes Chapter 3

Kubernetes objects

Object spec describes the desired state of Kubernetes objects. Most of the time, we write an
object spec, and send the spec to the API Server via kubectl. Kubernetes will try to fulfill
that desired state and update object status.

Object spec could be written in YAML (http://www.yaml.org/) or JSON
(http://www.json.org/). YAML is more common in the Kubernetes world. We'll use
YAML format to write object specs in the rest of this book. The following code block shows
a YAML-formatted spec fragment:

apiVersion: Kubernetes API version
kind: object type
metadata:
spec metadata, i.e. namespace, name, labels and annotations
spec:
the spec of Kubernetes object

Namespace

Kubernetes namespace is considered to be an isolation as multiple virtual clusters. Objects
in different namespaces are invisible to each other. This is useful when different teams or
projects are sharing the same cluster. Most of the resources are under a namespace (a.k.a.
namespaced resources); however, some generic resources, such as nodes or namespace
itself, don't belong to any namespace. Kubernetes has three namespaces by default:

e default
¢ kube-system
e kube-public

Without explicitly assigning namespace to the namespaced resource, it will be located in the
namespace under current context. If we never add a new namespace, a default namespace
will be used.

Kube-system namespaces are used by the objects created by the Kubernetes system, such as
addon, which are the pods or services that implement cluster features, such as dashboard.
Kube-public namespaces are newly introduced in Kubernetes 1.6, which is used by a beta
Corﬂroﬂerrnanager(BOOhﬁrapSHylerhttps://kubernetes.io/docs/admin/bootstrapf
tokens), putting the signed cluster location information into the kube-pub1lic namespace,
so this information could be visible to authenticated/unauthenticated users.

[76]

http://www.yaml.org/
http://www.json.org/
http://www.json.org/)
https://kubernetes.io/docs/admin/bootstrap-tokens
https://kubernetes.io/docs/admin/bootstrap-tokens
https://kubernetes.io/docs/admin/bootstrap-tokens

Getting Started with Kubernetes Chapter 3

In the following sections, all the namespaced resources will be located in a default
namespace. Namespace is also very important for resource management and role. We'll
introduce more in Chapter 8, Cluster Administration.

Name

Every object in Kubernetes owns its own name. Object name in one resource is uniquely
identified within the same namespace. Kubernetes uses object name as part of a resource
URL to API Server, so it must be the combination of lower case of alphanumeric characters,
dash and dot, less than 254 characters. Besides object name, Kubernetes also assigns a
unique ID (UID) to every object to distinguish historical occurrences of similar entities.

Label and selector

Labels are a set of key/pair values, used to attach to objects. Labels are designed to specify
meaningful, identifying information for the object. Common usage is micro-service name,
tier, environment, and software version. Users could define meaningful labels that could be
used with selector later. Labels syntax in object spec is:

labels:
Skeyl: $valuel
S$key2: $value2

Along with label, label selector is used to filter the set of objects. Separated by commas,
multiple requirements will be joined by the AND logical operator. There are two ways to
filter:

¢ Equality-based requirement
e Set-based requirement

[77]

Getting Started with Kubernetes Chapter 3

Equality-based requirement supports the operator of =, ==, and ! =. For example, if selector
is chapter=2, version!=0. 1, the result will be object C. If requirement is version=0.1,
the result will be object A and object B. If we write the requirement in supported object
spec, it'll be as follows:

selector:
Skeyl: $valuel

chapter =3 chapter = 2 chapter = 2

phase = draft phase = draft phase = draft

version = 0.1 version = 0.1 version = 0.2

object A object B object C

Selector example

Set-based requirement supports in, notin, and exists (for key only). For example, if
requirement is chapter in (3, 4),version, then object A will be returned. If
requirement is version notin (0.2), !author_info, the result will be object A and
object B. The following is an example if we write to the object spec that supports set-based
requirement:

selector:
matchLabels:
Skeyl: $valuel
matchExpressions:
{key: S$key2, operator: In, values: [$valuel, $value2]}

The requirements of matchLabels and matchExpressions are combined together. It
means the filtered objects need to be true on both requirements.

We will learn along the way in this chapter with ReplicationController, Service, ReplicaSet,
and Deployment.

[781]

Getting Started with Kubernetes Chapter 3

Annotation

Annotation is a set of user-specified key/value pairs, used for specifying non-identifying
metadata. With annotation acts such as normal tagging, for example, a user could add
timestamp, commit hash, or build number to annotation. Some of the kubectl commands
support the ——record option to record the commands that make the changes to the objects
to the annotation. Another use case of annotation is storing the configuration, such as
Kubernetes Deployments
(https://kubernetes.io/docs/concepts/workloads/controllers/deployment)Or(ﬁjﬁcal
[derChlpOds(https://coreos.com/kubernetes/docs/latest/deploy—addons.html)
Annotation syntax is as follows in the metadata section:

annotations:
S$keyl: $valuel
S$key2: $value2

Namespace, name, label, and annotation are located in the metadata
section of object spec. Selector is located in the spec section of selector-
supported resources, such as ReplicationController, service, ReplicaSet,
and Deployment.

Pods

Pod is the smallest deployable unit in Kubernetes. It can contain one or more containers.
Most of the time, we just need one container per pod. In some special cases, more than one
container is included in the same pod, such as Sidecar containers (http://blog.
kubernetes.io/2015/O6/thefdistributedfsystemftoolkitfpatterns.html)fThe
containers in the same pod run in a shared context, on the same node, sharing the network
namespace and shared volumes. Pod is also designed as mortal. When a pod dies for some
reasons, such as getting killed by Kubernetes controller when lacking resources, it won't
recover by itself. Instead, Kubernetes uses controllers to create and manage the desired state
of pods for us.

We could use kubectl explain <resource> to get the detailed description for the
resource by command line. It will show up the fields that the resource supports:

// get detailed info for ‘“pods’

kubectl explain pods

DESCRIPTION:

Pod is a collection of containers that can run on a host. This resource is
created by clients and scheduled onto hosts.

FIELDS:
metadata <Object>

[79]

https://kubernetes.io/docs/concepts/workloads/controllers/deployment
https://coreos.com/kubernetes/docs/latest/deploy-addons.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html
http://blog.kubernetes.io/2015/06/the-distributed-system-toolkit-patterns.html

Getting Started with Kubernetes Chapter 3

Standard object's metadata. More info:
http://releases.k8s.io/HEAD/docs/devel/api-
conventions.md#metadata

spec <Object>
Specification of the desired behavior of the pod.
More info:
http://releases.k8s.io/HEAD/docs/devel/api-
conventions.mdiispec-and-status

status <Object>
Most recently observed status of the pod. This data
may not be up to date.
Populated by the system. Read-only. More info:
http://releases.k8s.io/HEAD/docs/devel/api-
conventions.mdiispec-and-status

apiVersion <string>
APIVersion defines the versioned schema of this
representation of an
object. Servers should convert recognized schemas to
the latest internal
value, and may reject unrecognized values. More info:
http://releases.k8s.io/HEAD/docs/devel/api-
conventions.mdfresources

kind <string>
Kind is a string value representing the REST resource
this object represents. Servers may infer this from
the endpoint the client submits
requests to. Cannot be updated. In CamelCase. More

info:

http://releases.k8s.io/HEAD/docs/devel/api-
conventions.mdiitypes—kinds

In the following example, we'll show how to create two containers in a pod, and
demonstrate how they access each other. Please note that it's neither a meaningful nor
classic Sidecar pattern example. Those are used in very specific scenarios. The following is
just an example of how we access other containers within a pod:

// an example for creating co-located and co-scheduled container by pod
cat 3-2-1_pod.yaml
apiVersion: vl
kind: Pod
metadata:
name: example
spec:

[80]

Getting Started with Kubernetes Chapter 3

containers:
— name: web
image: nginx
— name: centos
image: centos
command: ["/bin/sh", "-c¢", "while : ;do curl http://localhost:80/;
sleep 10; done"]

Pod

localhost (l0) network

Containers inside a Pod are visible via localhost

This spec will create two containers, web and centos. Web is a nginx container
(https://hub.docker.com/_/nginx/). Expose container port 80 by default, since centos
shares the same context with nginx, when doing curl in http://localhost:80/, it should be
able to access nginx.

Next, using the kubectl create command to launch the pod -f option lets kubectl know
using the data in the file:

// create the resource by ‘kubectl create’ - Create a resource by filename
or stdin

kubectl create -f 3-2-1_pod.yaml

pod "example" created

Adding --record=true at the end of the kubect1 command when we
create the resources. Kubernetes will add the latest command while
creating or updating this resource. Therefore, we won't forget which
resources are created by which spec.

[81]

https://hub.docker.com/_/nginx/

Getting Started with Kubernetes Chapter 3

We could use the kubectl get <resource>command to get the current status of the
object. In this case, we use the kubectl get pods command.

// get the current running pods

kubectl get pods

NAME READY STATUS RESTARTS AGE
example 0/2 ContainerCreating 0 1s

Add --namespace=$namespace_name could access the object in different
namespaces. The following is an example to check the pods in the kube-
system namespace, which is used by system-type pods:

kubectl get pods —-—-namespace=kube-system

NAME READY STATUS RESTARTS AGE
kube-addon-manager-minikube 1/1 Running 2 3d
kube-dns-196007617-Jjkk4k 3/3 Running 3 3d

kubernetes-dashboard-3szrf 1/1 Running 1 3d

Most of the objects have their short names, which come in handy when we
use kubectl get <object> to list their status. For example, pods could
be called po, services could be called svc, and deployment could be called
deploy. Type kubectl get to know more.

The status of our example pod is ContainerCreating. In this phase, Kubernetes has
accepted the request, trying to schedule the pod and pulling down the image. Zero
containers are currently running. After waiting a moment, we could get the status again:

// get the current running pods

kubectl get pods

NAME READY STATUS RESTARTS AGE
example 2/2 Running 0 3s

We can see two containers are currently running. Uptime is three seconds. Using kubect1
logs <pod_name> -c <container_name> could get stdout for the container, similar to

docker logs <container_name>

// get stdout for centos

kubectl logs example —-c centos
<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

[82]

Getting Started with Kubernetes Chapter 3

Centos in the pod shares the same networking with nginx via localhost! Kubernetes creates
a network container along with the pod. One of the functions in the network container is to
forward the traffic between containers within a pod. We'll learn more in chapter 5, Network
and Security.

If we specify labels in pod spec, we could use the kubectl get pods -1
<requirement> command to get the pods that are satisfying the
requirements. For example, kubectl get pods -1 'tier in
(frontend, backend) '. Additionally, if we use kubectl pods -
owide, it will list down which pod is running on which nodes.

We could use kubectl describe <resource> <resource_name> to get the detailed
information of a resource:

// get detailed information for a pod
kubectl describe pods example

Name: example

Namespace: default

Node: minikube/192.168.99.100
Start Time: Fri, 09 Jun 2017 07:08:59 -0400
Labels: <none>

Annotations: <none>

Status: Running

IP: 172.17.0.4

Controllers: <none>

Containers:

At this point, we know which node this pod is running on, in minikube we only get a single
node so it won't make any difference. In the real cluster environment, knowing which node
is useful for troubleshooting. We didn't associate any labels, annotations, and controllers for
it:

web:

Container ID:
docker://a90e56187149155dcda23644c536c20£5e039d£f0c174444e 0a8c8

7e8666b102b

Image: nginx

Image ID:
docker://sha256:958a7ae9e56979be256796dabd5845c704£784cd422734184999c£91£24
c2547

Port:

State: Running

Started: Fri, 09 Jun 2017 07:09:00 -0400
Ready: True

[83]

Getting Started with Kubernetes Chapter 3

Restart Count: O
Environment: <none>
Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from
default-token-jdldg (ro)
centos:
Container ID:
docker://778965ad71dd5£075£93¢c90£91fd176a8add4bd35230ae0fabc73cdlc2158£0b
Image: centos
Image ID:
docker://sha256:3bee3060bfc81c061ce7069d£35ce090593bda584d4ef464bc0£38086¢cl
1371d
Port:
Command:
/bin/sh
-c
while : ;do curl http://localhost:80/; sleep 10;
done
State: Running
Started: Fri, 09 Jun 2017 07:09:01 -0400
Ready: True
Restart Count: O
Environment: <none>
Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from default-token-
jdidg (ro)

In the containers section, we'll see there are two containers included in this pod. Their
states, images, and restart count:

Conditions:
Type Status
Initialized True
Ready True
PodScheduled True

A pod has a Podstatus, which including a map of array represents as PodConditions.
The possible key for PodConditions are PodScheduled, Ready, Initialized, and
Unschedulable. Value will be true, false, or unknown. If the pod is not created
accordingly, Podstatus will give us a brief view of which part failed:

Volumes:
default-token-jdldqg:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-jdldg
Optional: false

[84]

Getting Started with Kubernetes Chapter 3

Pod is associated with a service account that provides an identity for processes that are
running a pod. It's controlled by service account and token controller in API Server.

It will mount a read only volume to each container under
/var/run/secrets/kubernetes.io/serviceaccount in a pod that contains a token for
APT access. Kubernetes creates a default service account. We could use the kubectl get
serviceaccounts command to list them:

QoS Class: BestEffort
Node—-Selectors: <none>
Tolerations: <none>

We don't assign any selectors to this pod yet. QoS means Resource Quality of Service.
Toleration is used to restrict how many pods that can use a node. We will learn more in
Chapter 8, Cluster Administration:

Events:
FirstSeen LastSeen Count From SubObjectPath Type
Reason Message
19m 19m 1 default-scheduler Normal Scheduled
Successfully assigned example to minikube
19m 19m 1 kubelet, minikube spec.containers{web}
Normal Pulling pulling image '"nginx"
19m 19m 1 kubelet, minikube spec.containers{web}
Normal Pulled Successfully pulled image "nginx"
19m 19m 1 kubelet, minikube spec.containers{web}
Normal Created Created container with id
a90e56187149155dcda23644c536c20£5e039d£f0c174444e0a8c87e8666b102b
19m 19m 1 kubelet, minikube spec.containers{web}
Normal Started Started container with id
a90e56187149155dcda23644c536c20£5e039d£f0c174444e0a8c87e86
66b102b
19m 19m 1 kubelet, minikube spec.containers{centos}
Normal Pulling pulling image "centos"
19m 19m 1 kubelet, minikube spec.containers{centos}
Normal Pulled Successfully pulled image "centos"
19m 19m 1 kubelet, minikube spec.containers{centos}
Normal Created Created container with id
778965ad71dd5£075£93¢c90£91fd176a8add4bd35230ael0fa6c73cdlc
2158f0b
19m 19m 1 kubelet, minikube spec.containers{centos}
Normal Started Started container with id
778965ad71dd5£075£93¢c90£91£fd176a8add4bd35230ael0fa6c73cdlc
2158f0b

[85]

Getting Started with Kubernetes Chapter 3

By seeing events, we could know what the steps are for Kubernetes to run a node. First,
scheduler assigns the task to a node, here it is named minikube. Then kubelet on minikube
starts pulling the first image and creates a container accordingly. Then kubelet pulls down
the second container and runs.

ReplicaSet (RS) and ReplicationController (RC)

A pod is not self-healing. When a pod encounters failure, it won't recover on its own.
ReplicaSet (RS) and ReplicationController (RC) therefore come into play. Both ReplicaSet
and ReplicationController will ensure a specified number of replica pods are always up and
running in the cluster. If a pod crashes for any reason, ReplicaSet and ReplicationController
will request to spin up a new Pod.

After the latest Kubernetes, ReplicationController is replaced by ReplicaSet gradually. They
share the same concept, just using different requirements for the pod selector.
ReplicationController uses equality-based selector requirements while ReplicaSet uses set-
based selector requirements. ReplicaSet usually is not created by users, but by Kubernetes
Deployments objects, while ReplicationController is created by users ourselves. In this
section, we'll explain the concept for RC first by walking through examples, which is much
easier to understand. Then we'll bring in ReplicaSet at the end.

Pod Pod

project = chapter3 project = chapter3

Desired Count = 2

ReplicationController with desired count 2

[86]

Getting Started with Kubernetes Chapter 3

Let's say we'd like to create a ReplicationController object, with desired count two. It
means we will always have two pods in service. Before we write the spec for
ReplicationController, we'll have to decide pod template first. Pod template is similar to the
spec of pod. In ReplicationController, labels in the metadata section are required.
ReplicationController uses pod selector to select which pods it manages. Labels allow
ReplicationController to distinguish whether all the pods matching the selectors are all on
track.

In this example, we'll create two pods with the labels project, service, and version, as
shown in the preceding figure:

// an example for rc spec

cat 3-2-2_rc.yaml
apiVersion: vl

kind: ReplicationController

metadata:
name: nginx

spec:
replicas: 2
selector:

project: chapter3
service: web
version: "0.1"
template:
metadata:
name: nginx
labels:
project: chapter3
service: web
version: "0.1"
spec:
containers:
— name: nginx
image: nginx
ports:
— containerPort: 80
// create RC by above input file
kubectl create -f 3-2-2_rc.yaml
replicationcontroller "nginx" created

Then we can use kubect1 to get current RC status:

// get current RCs

kubectl get rc

NAME DESIRED CURRENT READY AGE
nginx 2 2 2 5s

[87]

Getting Started with Kubernetes

It shows we have two desired pods, we currently have two pods and two pods are ready.

How many pods do we have now?

// get current running pod
kubectl get pods

NAME READY STATUS RESTARTS AGE
nginx-r3bg6 1/1 Running 0 11s
nginx-sj2£0 1/1 Running 0 11s

It shows we have two pods up and running. As described previously, ReplicationController
manages all the pods matching the selector. If we create a pod with the same label
manually, in theory, it should match the pod selector of the RC we just created. Let's try it

out:

// manually create a pod with same labels
cat 3-2-2_rc_self_ created_pod.yaml
apiVersion: vl
kind: Pod
metadata:
name: our—-nginx
labels:
project: chapter3
service: web
version: "0.1"
spec:
containers:
- name: nginx
image: nginx
ports:
- containerPort: 80
// create a pod with same labels manually
kubectl create —-f 3-2-2_rc_self created_pod.yaml
pod "our-nginx" created

Let's see if it's up and running:

// get pod status
kubectl get pods

NAME READY STATUS RESTARTS AGE
nginx-r3bgé6 1/1 Running 0 4m
nginx-sj2£0 1/1 Running 0 4m
our—-nginx 0/1 Terminating 0 4s

[88]

Getting Started with Kubernetes Chapter 3

It's scheduled, and ReplicationController catches it. The amount of pods becomes three,
which exceeds our desired count. The pod is eventually killed:

// get pod status
kubectl get pods

NAME READY STATUS RESTARTS AGE
nginx-r3bg6 1/1 Running 0 S5m
nginx-sj2£0 1/1 Running 0 S5m

Pod Pod

project = chapter3 project = chapter3

service = web service = web

version = 0.1

Desired Count = 2

ReplicationController makes sure pods are in desired state

If we want to scale on demand, we could simply use kubectl edit <resource>
<resource_name> to update the spec. Here we'll change replica count from 2 to 5:

// change replica count from 2 to 5, default system editor will pop out.
Change ‘“replicas’ number

kubectl edit rc nginx

replicationcontroller "nginx" edited

Let's check RC information:

// get rc information

kubectl get rc

NAME DESIRED CURRENT READY AGE
nginx 5 5 5 5m

[891]

Getting Started with Kubernetes

Chapter 3

// describe RC resource 'nginx’

kubectl describe rc nginx

Name: nginx

Namespace: default

Selector:

Labels: project=chapter3
service=web
version=0.1

Annotations: <none>

Replicas: 5 current / 5 desired

Pods Status:
Pod Template:

We have five pods now. Let's check how RC works:

project=chapter3, service=web, version=0.1

5 Running / 0 Waiting / 0 Succeeded / 0 Failed

Labels: project=chapter3
service=web
version=0.1
Containers:
nginx:
Image: nginx
Port: 80/TCP
Environment: <none>
Mounts: <none>
Volumes: <none>
Events:
FirstSeen LastSeen Count From SubObjectPath Type
Reason Message
34s 34s 1 replication-controller Normal SuccessfulCreate
Created pod: nginx-r3bg6
34s 34s 1 replication-controller Normal SuccessfulCreate
Created pod: nginx-sj2f0
20s 20s 1 replication-controller Normal SuccessfulDelete
Deleted pod: our—-nginx
15s 15s 1 replication-controller Normal SuccessfulCreate
Created pod: nginx—-nlx3v
15s 15s 1 replication-controller Normal SuccessfulCreate
Created pod: nginx-rqt58
15s 15s 1 replication-controller Normal SuccessfulCreate

Created pod:

nginx—-gb3mr

[90]

Getting Started with Kubernetes Chapter 3

By describing the command; we can learn the spec of RC, also the events. At the time we
created nginx RC, it launched two containers by spec. Then we created another pod
manually by another spec, named our-nginx. RC detected that pod matches its pod
selector. Then the amount exceeded our desired count, so it evicted it. Then we scaled out
the replicas to five. RC detected that it didn't fulfill our desired state, launching three pods
to fill the gap.

If we want to delete an RC, simply use the kubect1 command by kubectl delete
<resource> <resource_name>. Since we have a configuration file on hand, we could also
use kubectl delete —-f <configuration_file> to delete the resources listing in the
file:

// delete a rc

kubectl delete rc nginx

replicationcontroller "nginx" deleted

// get pod status

kubectl get pods

NAME READY STATUS RESTARTS AGE
nginx-r3bg6 0/1 Terminating 0 29m

The same concept is brought to ReplicaSet. The following is RS version of 3-2-2.rc.yaml.
Two major differences are:

e The apiversionis extensions/vlbetal at the time of writing

e Selector requirement is changed set-based requirement, with matchLabels and
matchExpressions syntax

Following the same steps with the preceding example should work exactly the same
between RC and RS. This is just an example; however, we shouldn't create RS on our own,
while it should be always managed by Kubernetes deployment object. We'll learn more in
the next section:

// RS version of 3-2-2_rc.yaml
cat 3-2-2_rs.yaml
apiVersion: extensions/vlbetal
kind: ReplicaSet
metadata:

name: nginx
spec:

replicas: 2

selector:

matchLabels:

project: chapter3
matchExpressions:

[91]

Getting Started with Kubernetes Chapter 3

- {key: version, operator: In, values: ["0.1", "0.2"]}
template:
metadata:
name: nginx
labels:
project: chapter3
service: web
version: "0.1"
spec:
containers:
— name: nginx
image: nginx
ports:
— containerPort: 80

Deployments

Deployment is the best primitive to manage and deploy our software in Kubernetes after
version 1.2. It supports gracefully deploying, rolling updating, and rolling back pods and

ReplicaSets. We define our desired update of the software by deployment declaratively, and

then deployment will do it for us progressively.

Before deployment, ReplicationController and kubectl rolling-update were
the major way to implement rolling-update for the software, which is
more imperative and slower. Deployment now becomes the major high-
level object to manage our application.

Let's have a glimpse of how it works. In this section, we'll get a taste of how deployment is
created, how to perform rolling-update and rollback. chapter 7, Continuous Delivery has
more information with practical examples about how we integrate with deployments into
our continuous delivery pipeline.

First, we could use the kubectl run command to create a deployment for us:

// using kubectl run to launch the Pods

kubectl run nginx --image=nginx:1.12.0 --replicas=2 —--port=80
deployment '"nginx" created

// check the deployment status

kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx 2 2 2 2 4h

[92]

Getting Started with Kubernetes Chapter 3

Before Kubernetes 1.2, the kubectl run command would create pods
instead.

There are two pods that are deployed by deployment:

// check if pods match our desired count
kubectl get pods

NAME READY STATUS RESTARTS AGE
nginx-2371676037-2brn5 1/1 Running 0 4h
nginx-2371676037-gjfhp 1/1 Running 0 4h

r------------

The relationship in deployments, ReplicaSets, and pods

If we delete one of the pods, the replaced pod will be scheduled and launched immediately.
That's because deployments creates a ReplicaSet behind the scenes, which will ensure the
number of replicas is matched with our desired count. In general, deployments manage
ReplicaSets, ReplicaSets manage pods. Note that we shouldn't manually manipulate
ReplicaSets that deployments managed, just like there is no sense to change pods directly if
they're managed by ReplicaSets:

// list replica sets

kubectl get rs

NAME DESIRED CURRENT READY AGE
nginx-2371676037 2 2 2 4h

[93]

Getting Started with Kubernetes Chapter 3

We could also expose the port for deployment by the kubect1 command:

// expose port 80 to service port 80

kubectl expose deployment nginx —-port=80 —--target-port=80
service "nginx" exposed

// list services

kubectl get services

NAME CLUSTER-IP EXTERNAL-IP PORT (S) AGE
kubernetes 10.0.0.1 <none> 443 /TCP 3d
nginx 10.0.0.94 <none> 80/TCP 5s

Deployments can be created by spec as well. The previous deployments and service
launched by kubectl can be converted to the following spec:

// create deployments by spec
cat 3-2-3_deployments.yaml
apiVersion: apps/vlbetal
kind: Deployment
metadata:

name: nginx
spec:

replicas: 2

template:

metadata:

labels:
run: nginx
spec:

containers:

- name: nginx
image: nginx:1.12.0
ports:

- containerPort: 80
kind: Service
apiVersion: vl
metadata:

name: nginx
labels:
run: nginx
spec:
selector:
run: nginx
ports:

- protocol: TCP
port: 80
targetPort: 80
name: http

[94]

Getting Started with Kubernetes Chapter 3

// create deployments and service

kubectl create —-f 3-2-3_deployments.yaml
deployment "nginx" created

service "nginx" created

For performing rolling update, we'll have to add rolling update strategy. There are three
parameters used to control the process:

Parameters Description Default
value
Warm-up time. How long a newly created pod is
. considered to be available. By default, Kubernetes

minReadySeconds 0
assumes the application will be available once it is
successfully launched.

maxSurge How many pods can be surged when doing rolling 5%
update process.

naxUnavailable |HOW many pods can be unavailable when doing rolling 5%
update process.

The minReadySecond is an important setting. If our application is not available
immediately when the pod is up, pods are rolling too fast without proper waiting.
Although all the new pods are up, the application might be still warming up; there are
chances a service outage might occur. In the following example, we'll add the configuration
into the Deployment . spec section:

// add to Deployments.spec, save as 3-2-3_deployments_rollingupdate.yaml
minReadySeconds: 3
strategy:

type: RollingUpdate

rollingUpdate:

maxSurge: 1

maxUnavailable: 1

It indicates that we allow one of the pods to be unavailable at a time and one more pod
could be launched when rolling the pods. The warm-up time before proceeding to the next
operation will be three seconds. We can use either kubectl edit deployments nginx
(edit directly) or kubectl replace —-f 3-2-3_deployments_rollingupdate.yaml to
update the strategy.

[95]

Getting Started with Kubernetes Chapter 3

Let's say we want to simulate new software rollout, from nginx 1.12.0 to 1.13.1. We still
could use the preceding two commands to change image version, or use kubectl set
image deployment nginx nginx=nginx:1.13.1 to trigger the update. If we use
kubectl describe to check what's going on, we will see deployments have triggered
rolling updates on ReplicaSets by deleting/creating pods:

// check detailed rs information
kubectl describe rs nginx-2371676037

Name: nginx-2371676037

Namespace: default

Selector: pod-template-hash=2371676037 , run=nginx
Labels: pod-template-hash=2371676037

run=nginx
Annotations: deployment.kubernetes.io/desired-replicas=2
deployment .kubernetes.io/max-replicas=3
deployment .kubernetes.io/revision=4
deployment .kubernetes.io/revision-history=2
Replicas: 2 current / 2 desired
Pods Status: 2 Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:
Labels: pod-template-hash=2371676037
run=nginx

Containers:

nginx:

Image: nginx:1.13.1

Port: 80/TCP

Events:

FirstSeen LastSeen Count From SubObjectPath Type Reason
Message

3m 3m 1 replicaset-controller Normal SuccessfulCreate
Created pod: nginx-2371676037-£2ndj

3m 3m 1 replicaset-controller Normal SuccessfulCreate
Created pod: nginx-2371676037-91c8j

3m 3m 1 replicaset-controller Normal SuccessfulDelete
Deleted pod: nginx-2371676037-£2ndj

3m 3m 1 replicaset-controller Normal SuccessfulDelete

Deleted pod: nginx-2371676037-91c8j

[96]

Getting Started with Kubernetes Chapter 3
Old Deployment Old Deploynent Old Deployment
‘ wait 3 seconds to next action l wait 3 seconds to next action
| |
New Deployment New Deployment
O O—
=~ Timeline

Tllustration of deployments

The preceding figure shows the illustration of the deployment. At a certain point of time,
we have two (desired count) and one (maxSurge) pods. After launching each new pod,
Kubernetes will wait three (minReadySeconds) seconds and then performs the next action.

If we use the command kubectl set image deployment nginx

nginx=nginx:1.12.0 to previous version 1.12.0, deployments will do the

rollback for us.

[97]

Getting Started with Kubernetes Chapter 3

Services

Service in Kubernetes is an abstraction layer for routing traffic to a logical set of pods. With
service, we don't need to trace the IP address of each pod. Service usually uses label selector
to select the pods that it needs to route to (in some cases service is created without selector
in purpose). The service abstraction is powerful. It enables the decoupling and makes

communication between micro-services possible. Currently Kubernetes service supports
TCP and UDP.

Service doesn't care how we create the pod. Just like ReplicationController, it only cares that
the pods match its label selectors, so the pods could belong to different
ReplicationControllers. The following is an illustration:

Service
I
:'"'J"""'I""': :'"'J"""""":
 Pod #replical | Pod #replica2 W } Pod #replical | Pod #replica2 P
: project=chapter3, | project=chapter3, : : project=chapter3, | project=chapter3, :
Bl | T R O
] 1 1 1
: project=chapter3, service=web, version=0.1 : : project=chapter3, service=web, version=0.2 :
- Replication Controller1 1} Replication Controler2 __

Service maps pods via label selector

In the graph, all the pods match the service selector, so service will be responsible to
distribute the traffic into all the pods without explicit assignment.

[98]

Getting Started with Kubernetes Chapter 3

Service types

There are four types of services: ClusterIP, NodePort, LoadBalancer, and ExternalName.

ClusterlP
TERNAL_IP:POR

Service is reachable internally

LoadBalancer includes the features of NodePort and ClusterIP

ClusterIP

ClusterlIP is the default service type. It exposes the service on a cluster-internal IP. Pods in
the cluster could reach the service via the IP address, environment variables, or DNS. In the
following example, we'll learn how to use both native service environment variables and
DNS to access the pods behind services in the cluster.

Before starting a service, we'd like to create two sets of RC shown in the figure:

// create RC 1 with nginx 1.12.0 version
cat 3-2-3_rcl.yaml

apiVersion: vl

kind: ReplicationController

[991]

Getting Started with Kubernetes

Chapter 3

metadata:
name: nginx-1.12
spec:
replicas: 2
selector:

project: chapter3
service: web
version: "0.1"
template:
metadata:
name: nginx
labels:
project: chapter3
service: web
version: "0.1"
spec:
containers:
— name: nginx
image: nginx:1.12.0
ports:
— containerPort: 80
// create RC 2 with nginx 1.13.1 version
cat 3-2-3_rc2.yaml
apiVersion: vl
kind: ReplicationController

metadata:
name: nginx-1.13
spec:
replicas: 2
selector:

project: chapter3
service: web
version: "0.2"
template:
metadata:
name: nginx
labels:
project: chapter3
service: web
version: "0.2"
spec:
containers:
— name: nginx
image: nginx:1.13.1
ports:
— containerPort: 80

[100]

Getting Started with Kubernetes Chapter 3

Then we could make our pod selector, targeting project and service labels:

// simple nginx service
cat 3-2-3_service.yaml
kind: Service
apiVersion: vl
metadata:

name: nginx-service
spec:

selector:

project: chapter3

service: web

ports:

— protocol: TCP
port: 80
targetPort: 80
name: http

// create the RCs

kubectl create -f 3-2-3_rcl.yaml
replicationcontroller "nginx-1.12" created
kubectl create -f 3-2-3_rc2.yaml
replicationcontroller "nginx-1.13" created
// create the service

kubectl create -f 3-2-3_service.yaml
service "nginx-service" created

Since service object might create a DNS label, service name must follow
the combination of characters a-z, 0-9, or - (hyphen). A hyphen at the
beginning or end of a label is not allowed.

Then we could use kubectl describe service <service_name> to check the service
information:

// check nginx-service information
kubectl describe service nginx-service

Name: nginx-service

Namespace: default

Labels: <none>

Annotations: <none>

Selector: project=chapter3, service=web
Type: ClusterIP

IP: 10.0.0.188

Port: http 80/TCP

Endpoints: 172.17.0.5:80,172.17.0.6:80,172.17.0.7:80 + 1 more...
Session Affinity: None

Events: <none>

[101]

Getting Started with Kubernetes Chapter 3

One service could expose multiple ports. Just extend . spec.ports list in
the service spec.

We can see it's a ClusterIP type service, assigned internal IP is 10.0.0.188. Endpoints show
we have four IPs behind the service. Pod IP could be found by the kubectl describe
pods <pod_name> command. Kubernetes creates an endpoints object along with a
service object for routing the traffic to matching pods.

When the service is created with selectors, Kubernetes will create corresponding endpoints
entries and keep updating, which will tell the destination that service routes into:

// list current endpoints. Nginx-service endpoints are created and pointing
to the ip of our 4 nginx pods.
kubectl get endpoints

NAME ENDPOINTS AGE
kubernetes 10.0.2.15:8443 2d
nginx-service 172.17.0.5:80,172.17.0.6:80,172.17.0.7:80 + 1 more... 10s

ClusterIP could be defined within your cluster, though most of the time
we don't explicitly use IP address to access clusters. Using
.spec.clusterIP could do the work.

By default, Kubernetes will expose seven environment variables for each service. In most
cases, the first two will be used for using kube-dns addon to do service discovery for us:

e S{SVCNAME}_SERVICE_HOST

e S{SVCNAME}_SERVICE_PORT

e S{SVCNAME}_PORT

e S{SVCNAME}_PORT_S${PORT}_${PROTOCAL}

e S{SVCNAME}_PORT_S${PORT}_S${PROTOCAL}_PROTO
e S{SVCNAME}_ PORT_S${PORT}_S${PROTOCAL}_PORT
e S{SVCNAME}_PORT_S${PORT}_${PROTOCAL}_ADDR

In the following example, we'll use ${SVCNAME}_SERVICE_HOST in another pod to check if
we could access our nginx pods:

[102]

Getting Started with Kubernetes Chapter 3

environment variable: SNGINX_SERVICE SERVICE HOST:SNGINX_SERVICE SERVICE PORT
or
DNS: nginx-service.default:80

' ClusterlP: tco:/#10.0.0.188:60 ' Pod clusterip-chk

lccecccccemm== e e e ,' '
1 : container port: 80 ¢ container port: 80 L 1 1
= s] . s 1
W Pod #replical | Pod #replica2 M i Pod #replical | Pod #replica2 B
1 1
'l project=chapter3, | project=chapter3, : [l project=chapter3, | project=chapter3, :
[l service=web, service=web, [B service=web, service=web,
(§ version=0.1 version=0.1 1 [§ version=0.2 version=0.2 1
1 1
| 1
1 1 [1
| project=chapter3, service=web, version=0.1 1 1 project=chapter3, service=web, version=0.2 1
1 1
: Replication Controller 1 ' : Replication Controller 2 '

The illustration of accessing ClusterIP via environment variables and DNS names

We'll then create a pod called clusterip-chk to access nginx containers via nginx—
service:

// access nginx service via ${NGINX_SERVICE_SERVICE_HOST}
cat 3-2-3_clusterip_chk.yaml
apiVersion: vl
kind: Pod
metadata:
name: clusterip-chk
spec:
containers:
— name: centos
image: centos
command: ["/bin/sh", "-c¢", "while : ;do curl
http://${NGINX_SERVICE_SERVICE_HOST}:80/; sleep 10; done"]

[103]

Getting Started with Kubernetes Chapter 3

We could check the stdout of cluserip-chk pod via the kubectl logs command:

// check stdout, see if we can access nginx pod successfully
kubectl logs —-f clusterip-chk

% Total % Received % Xferd Average Speed Time Time Time
Current

Dload Upload Total Spent Left
Speed
100 612 100 612 0 0 156k 0 ——:——:1—— ——1——i1—— ——i——:1—-—
199k

<title>Welcome to nginx!</title>

This abstraction level decouples the communication between pods. Pods are mortal. With
RC and service, we can build robust services without caring whether one pod might
influence all micro-services.

With kube-dns addon enabled, the pods in the same cluster and same namespace with
services could access services via services DNS records. Kube-dns creates DNS records for
newly created services by watching the Kubernetes APL. The DNS format for the cluster IP
is $servicename. $namespace, and the port is
$portname$protocal.$servicename.$namespace.Thespecoftheclusterip_chk
pod will be similar with environment variables one. Just changing the URL to
http://nginx-service.default:_http_tcp.nginx-service.default/ inour
previous example, and they should work exactly the same!

NodePort

If the service is set as NodePort, Kubernetes will allocate a port within a certain range on
each node. Any traffic going to nodes on that port will be routed to the service port. Port
number could be user-specified. If not specified, Kubernetes will randomly choose a port
from range 30000 to 32767 without collision. On the other hand, if specified, the user should
be responsible to manage the collision by themselves. NodePort includes the feature of
ClusterIP. Kubernetes assigns an internal IP to the service. In the following example, we'll
see how we create a NodePort service and leverage it:

// write a nodeport type service
cat 3-2-3_nodeport.yaml
kind: Service
apiVersion: vl
metadata:
name: nginx—-nodeport
spec:
type: NodePort

[104]

http://nginx-service.default:_http_tcp.nginx-service.default/

Getting Started with Kubernetes Chapter 3

selector:
project: chapter3
service: web

ports:
- protocol: TCP
port: 80

targetPort: 80
// create a nodeport service
kubectl create -f 3-2-3_nodeport.yaml
service "nginx—-nodeport" created

Then you should be able to access the service via http://${NODE_IP}:80. Node could be
any node. The kube-proxy watches any update of service and endpoints, and updates
iptables rules accordingly (if using default iptables proxy-mode).

If you're using minikube, you could access the service via the minikube
service [-n NAMESPACE] [--url] NAME command. In this example,
it'sminikube service nginx-nodeport.

LoadBalancer

This type is only usable with cloud provider support, such as Google Cloud Platform
(chapter 10, Kubernetes on GCP) and Amazon Web Service (Chapter 9, Kubernetes on AWS).
By creating LoadBalancer service, Kubernetes will provision a load balancer by the Cloud
provider to the service.

ExternalName (kube-dns version >=1.7)

Sometimes we leverage different services in the cloud. Kubernetes is flexible enough to be
hybrid. ExternalName is one of the bridges to create a CNAME for external endpoints into
the cluster.

[105]

Getting Started with Kubernetes Chapter 3

Service without selectors

Service uses selectors to match the pods to direct the traffic. However, sometimes you need
to implement a proxy to be the bridge between Kubernetes cluster and another namespace,
another cluster, or external resources. In the following example, we'll demonstrate how to
implement a proxy for http://www.google.comin your cluster. It's just an example while
the source of the proxy might be the endpoint of your databases or other resources in the
cloud:

database.endpoint via environment variables / DNS

Ilustration of how service without selector works

The configuration file is similar to the previous one, just without the selector section:

// create a service without selectors

cat 3-2-3_service_wo_selector_srv.yaml
kind: Service

apiVersion: vl

metadata:
name: google—proxy
spec:
ports:
- protocol: TCP
port: 80

targetPort: 80
// create service without selectors
kubectl create -f 3-2-3_service_wo_selector_srv.yaml
service "google-proxy" created

No Kubernetes endpoint will be created since there is no selector. Kubernetes doesn't know
where to route the traffic since no selector could match the pods. We'll have to create that
on our own.

[106]

http://www.google.com

Getting Started with Kubernetes Chapter 3

In the Endpoints object, the source addresses can't be DNS name, so we'll use nslookup to
find the current Google IP from the domain, and add them into
Endpoints.subsets.addresses.ip:

// get an IP from google.com
nslookup www.google.com
Server: 192.168.1.1
Address: 192.168.1.1#53
Non—authoritative answer:
Name: google.com
Address: 172.217.0.238
// create endpoints for the ip from google.com
cat 3-2-3_service_wo_selector_endpoints.yaml
kind: Endpoints
apiVersion: vl
metadata:
name: google—proxy
subsets:
— addresses:
- ip: 172.217.0.238
ports:

- port: 80
// create Endpoints
kubectl create —-f 3-2-3_service_wo_selector_endpoints.yaml
endpoints "google—-proxy" created

Let's create another pod in the cluster to access our Google proxy:

// pod for accessing google proxy
cat 3-2-3_proxy-chk.yaml
apiVersion: vl
kind: Pod
metadata:
name: proxy-—-chk
spec:
containers:
— name: centos
image: centos
command: ["/bin/sh", "-c¢", "while : ;do curl -L
http://${GOOGLE_PROXY_ SERVICE_HOST}:80/; sleep 10; done"]
// create the pod
kubectl create -f 3-2-3_proxy-chk.yaml
pod "proxy-chk" created

[107]

Getting Started with Kubernetes Chapter 3

Let's check the stdout from the pod:

// get logs from proxy-chk
kubectl logs proxy-chk

% Total % Received % Xferd Average Speed Time Time Time
Current

Dload Upload Total Spent Left
Speed
100 219 100 219 0 0 2596 0 ——i—=i== ——i——im— ————i——
2607
100 258 100 258 0 0 1931 0 ——i—=i== ——i——im— ————i——
1931
<!doctype html><html itemscope="" itemtype="http://schema.org/WebPage"

lang="en-CA">

Hurray! We can now confirm the proxy works. The traffic to the service will be routed to
the endpoints we specified. If it doesn't work, make sure you add the proper inbound rules
to the network of your external resources.

Endpoints don't support DNS as source. Alternatively, we could use ExternalName, which
doesn't have selectors either. It requires kube-dns version >=1.7.

In some use cases, users need neither load balancing nor proxy
functionalities for the service. In that case, we can set CluterIP =
"None™" as so-called headless services. For more information, please refer

to
https://kubernetes.io/docs/concepts/services—networking/service/

#headless-services.

Volumes

A container is ephemeral, so is its disk. We either use the docker commit [CONTAINER]
command or mount data volumes into a container (Chapter 2, DevOps with Container). In
Kubernetes' world, volume management becomes critical, since pods might run on any
node. Also, ensuring that containers in the same pod could share the same files becomes
extremely hard. This is a large topic in Kubernetes. chapter 4, Working with Storage and
Resources introduces volume management.

[108]

https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services

Getting Started with Kubernetes Chapter 3

Secrets

Secret, just like its name, is an object that stores the secrets in key-value format for
providing sensitive information to pods, which could be a password, access key, or token.
Secret is not landed to the disk; instead, it's stored in a per-node tmpfs filesystem. Kubelet
on the mode will create a tmp£s filesystem to store secret. Secret is not designed to store
large amounts of data due to storage management consideration. The current size limit of
one secret is IMB.

We can create a secret based on a file, directory, or specified literal value by launching
kubectl to create a secret command or by spec. There are three types of secret format:
generic (or opaque, if encoded), docker registry, and TLS.

Generic/opaque is the text that we'll use in our application. Docker registry is used to store
the credential of a private docker registry. TLS secret is used to store the CA certificate
bundle for cluster administration.

The docker-registry type of secret is also called imagePullSecrets, which is
used to pass the password of a private docker registry via kubelet when
pulling the image. This comes in handy so that we don't need to do
docker login for each provisioned node. The command is kubect1
create secret docker-registry <registry_name> —-docker-
server=<docker_server> —--docker-
username=<docker_username> —--docker—
password=<docker_password> —--docker-email=<docker_email>

We'll start with a generic-type of example to show how it works:

// create a secret by command line
kubectl create secret generic mypassword —-—from-file=./mypassword.txt
secret "mypassword" created

The options for creating secrets based on directory and literal value are
pretty similar with the file ones. If specifying a directory after ——from-
file, the files in the directory will be iterated, the file name will be the
secret key if its a legal secret name, and other non-regular files will be
ignored subdirectories, symlinks, devices, pipes. On the other hand, —-
from-literal=<key>=<value> is the option if you want to specify plain
text directly from the command, for example, ——from-
literal=username=root.

[109]

Getting Started with Kubernetes Chapter 3

Here, we create a secret name mypassword from the file mypassword. txt. By default, the
key of the secret is the file name, which is equivalent to the ——from-
file=mypassword=./mypassword.txt option. We could append multiple ——from-file
as well. Using the kubectl get secret <secret_name> -o yaml command could check
out the detailed information of the secret:

// get the detailed info of the secret
kubectl get secret mypassword —o yaml
apiVersion: vl
data:
mypassword: bX1wYXNzd29yZA==
kind: Secret
metadata:
creationTimestamp: 2017-06-13T08:09:35Z
name: mypassword
namespace: default
resourceVersion: "256749"
selfLink: /api/vl/namespaces/default/secrets/mypassword
uid: a33576b0-500£f-11e7-9c45-080027cafd37
type: Opaque

We can see the type of the secret becomes Opaque since the text has been encrypted by
kubectl. It's base64 encoded. We could use a simple bash command to decode it:

echo "bX1wYXNzd29yZA==" | base64 —--decode
mypassword

There are two ways for a pod to retrieve the secret. The first one is by file, and the second
one is by environment variable. The first method is implemented by volume. The syntax is
adding containers.volumeMounts in container specs, and adding a volumes section with
secret configuration.

Retrieving secret via files

Let's see how to read secrets from files inside a pod first:

// example for how a Pod retrieve secret
cat 3-2-3_pod_vol_secret.yaml
apiVersion: vl
kind: Pod
metadata:

name: secret-access
spec:

containers:

— name: centos

image: centos

[110]

Getting Started with Kubernetes Chapter 3

command: ["/bin/sh", "-c", "cat /secret/password-example; done"]
volumeMounts:

— name: secret-vol
mountPath: /secret
readOnly: true

volumes:
— name: secret-vol

secret:
secretName: mypassword
items are optional
items:

- key: mypassword
path: password—-example

// create the pod
kubectl create -f 3-2-3_pod_vol_secret.yaml
pod "secret-access" created

The secret file will be mounted in /<mount_point>/<secret_name> without specifying
itemskey and path, or /<mount_point>/<path> in the pod. In this case, it's under
/secret/password-example. If we describe the pod, we can find there are two mount
points in this pod. First is the read-only volume storing our secret, the second one stores the
credentials to communicate with API servers, which is created and managed by Kubernetes.
We'll learn more in chapter 5, Network and Security:

kubectl describe pod secret-access
Mounts:
/secret from secret-vol (ro)

/var/run/secrets/kubernetes.io/serviceaccount from default-token-
jdidg (ro)

We can delete a secret by using the kubectl delete secret <secret_name> command.

After describing the pod, we can find a FailedMount event, since the volume no longer
exists:

kubectl describe pod secret-access

FailedMount MountVolume.SetUp failed for volume
"kubernetes.io/secret/28889b1d-5015-11e7-9¢c45-080027cafd37-secret-vol"
(spec.Name: "secret-vol") pod "28889b1d-5015-11e7-9c45-080027cafd37" (UID:
"28889b1d-5015-11e7-9c45-080027cafd37") with: secrets "mypassword" not
found

[111]

Getting Started with Kubernetes Chapter 3

Same idea, if the pod is generated before a secret is created, the pod will encounter failure
as well.

We will now learn how to create a secret by command line. Next we'll briefly introduce its
spec format:

// secret example
cat 3-2-3_secret.yaml
apiVersion: vl
kind: Secret
metadata:
name: mypassword
type: Opaque
data:
mypassword: bX1lwYXNzd29yZA==

Since the spec is plain text, we need to encode the secret by our own echo -n <password>
| base64. Please note that the type here becomes Opaque. Following along it should work
the same as the one we create via command line.

Retrieving secret via environment variables

Alternatively, we could use environment variables to retrieve secret, which is more flexible
to use for short credentials, such as a password. This way, applications are able to use
environment variables to retrieve database passwords without tackling files and volumes:

Secret should always be created before the pods that need it. Otherwise
the pods won't get launched successfully.

// example to use environment variable to retrieve the secret
cat 3-2-3_pod_ev_secret.yaml
apiVersion: vl
kind: Pod
metadata:
name: secret—access-ev
spec:
containers:
— name: centos
image: centos
command: ["/bin/sh", "-c", "while : ;do echo $MY_PASSWORD; sleep 10;
done"]
env:
— name: MY_PASSWORD
valueFrom:

[112]

Getting Started with Kubernetes Chapter 3

secretKeyRef:

name: mypassword

key: mypassword
// create the pod
kubectl create -f 3-2-3_pod_ev_secret.yaml
pod "secret-access—ev" created

The declaration is under spec.containers[] .env[]. We'll need the secret name and the
key name. Both are mypassword in this case. The example should work the same with the
one retrieving via files.

ConfigMap

ConfigMap is a mean that is able to leave your configuration outside of a Docker image. It
injects the configuration data as key-values pairs into pods. Its properties are similar to
secret, more specifically, secret is used to store sensitive data, such as password, and
ConfigMap is used to store insensitive configuration data.

Same as secret, ConfigMap could be based on a file, directory, or specified literal value.
With similar syntax/command with secrets, ConfigMap uses kubectl create configmap
instead:

// create configmap

kubectl create configmap example —--from-file=config/app.properties --
from-file=config/database.properties

configmap "example" created

Since two config files are located in the same folder name config, we could pass a
config folder instead of specifying the files one by one. The equivalent command to create
is kubectl create configmap example --from-file=config in this case.

If we describe the ConfigMap, it will show current information:

// check out detailed information for configmap
kubectl describe configmap example

Name: example

Namespace: default

Labels: <none>

Annotations: <none>

Data

app.properties:
name=DevOps—-with—-Kubernetes
port=4420

[113]

Getting Started with Kubernetes Chapter 3

database.properties:

endpoint=k8s.us—east-1.rds.amazonaws.com
port=1521

We could use kubectl edit configmap <configmap_name> to update the configuration
after creation.

We also could use 1iteral as the input. The equivalent commands for the
preceding example will be kubectl create configmap example —-
from-literal=app.properties.name=name=DevOps-with-—
Kubernetes which is not always so practical when we have many
configurations in an app.

Let's see how to leverage it inside a pod. There are two ways to use ConfigMap inside a pod
too: by volume or environment variables.

Using ConfigMap via volume

Similar to previous examples in the secret section, we mount a volume with syntax
configmap, and add volumeMounts inside a container template. The command in centos
will loop to cat ${MOUNTPOINT}/$CONFIG_FILENAME:

cat 3-2-3_pod_vol_configmap.yaml
apiVersion: vl
kind: Pod
metadata:

name: configmap-vol
spec:

containers:

- name: configmap
image: centos

command: ["/bin/sh", "-c¢", "while : ;do cat
/src/app/config/database.properties; sleep 10; done"]
volumeMounts:

— name: config-volume
mountPath: /src/app/config

volumes:
— name: config-volume
configMap:

name: example
// create configmap
kubectl create -f 3-2-3_pod_vol_configmap.yaml
pod "configmap-vol" created
// check out the logs

[114]

Getting Started with Kubernetes Chapter 3

kubectl logs —-f configmap-vol
endpoint=k8s.us—east-1.rds.amazonaws.com
port=1521

We then could use this method to inject our non-sensitive configuration into the pod.

Using ConfigMap via environment variables

For using ConfigMap inside a pod, you'll have to use configMapKeyRef as the value
source in the env section. It will populate whole ConfigMap pairs to environment variables:

cat 3-2-3_pod_ev_configmap.yaml
apiVersion: vl
kind: Pod
metadata:

name: config-ev
spec:

containers:

— name: centos

image: centos

command: ["/bin/sh", "-c¢", "while : ;do echo $DATABASE_ENDPOINT; sleep
10;
done"]
env:
— name: MY PASSWORD
valueFrom:
secretKeyRef:

name: mypassword

key: mypassword
// create configmap
kubectl create -f 3-2-3_pod_ev_configmap.yaml
pod "configmap-ev" created
// check out the logs
kubectl logs configmap-ev
endpoint=k8s.us—-east-1.rds.amazonaws.com port=1521

The Kubernetes system itself also leverages ConfigMap for doing some authentication. For
example, kube-dns uses it to put client CA files. You could check the system ConfigMap by
adding --namespace=kube-system when describing ConfigMaps.

[115]

Getting Started with Kubernetes Chapter 3

Multi-containers orchestration

In this section, we'll revisit our ticketing service: a kiosk web service as frontend, providing

interface for get/put tickets. There is a Redis acting as cache, to manage how many tickets

we have. Redis also acts as a publisher/subscriber channel. Once a ticket is sold, kiosk will

publish an event into it. Subscriber is called recorder, which will write a timestamp and

record it to the MySQL database. Please refer to the last section in chapter 2, DevOps with

Container for the detailed Dockerfile and Docker compose implementation. We'll use
Deployment, Service, Secret, Volume, and ConfigMap objects to implement this
example in Kubernetes. Source code can be found at

https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter3/3-3_kio

sk.
handle ticketing
I Kkiosk-service / NodePort 1
publish event
update tickets
I mysql-service / ClusterlP 1 I redis-service f ClusteriP 1§

Secret
MYSQL_PASSWORD
MYSQL_ROOT_PASSWORD

CGonfigMap subscribe

MYSQL_USER

MYSQL_ DATABASE recorder

An example of kiosk in Kubernetes world

[116]

https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter3/3-3_kiosk
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter3/3-3_kiosk

Getting Started with Kubernetes Chapter 3

We'll need four kinds of pods. Deployment is the best choice to manage/deploy the pods. It
will reduce the pain when we do the deployment in the future by its deployment strategy
feature. Since kiosk, Redis, and MySQL will be accessed by other components, we'll
associate services to their pods. MySQL acts as a datastore, for the simplicity, we'll mount a
local volume to it. Please note that Kubernetes offers a bunch of choices. Please check out
the details and examples in chapter 4, Working with Storage and Resources. Sensitive
information such as our MySQL root and user password, we'll want them to be stored in
secrets. The other insensitive configuration, such as DB name or DB username, we'll leave to
ConfigMap.

We'll launch MySQL first, as recorder depends on it. Before creating MySQL, we'll have to
create corresponding secret and ConfigMap first. To create secret, we need to generate
base64 encrypted data:

// generate base64 secret for MYSQL_PASSWORD and MYSQL_ROOT_PASSWORD

echo -n "pass" | base64
cGFzcw==

echo -n "mysqlpass" | base64
bX1lzcWxwYXNz

Then we're able to create the secret:

cat secret.yaml
apiVersion: vl
kind: Secret
metadata:
name: mysql-user
type: Opaque
data:
password: cGFzcw==
MYSQL_ROOT_PASSWORD
apiVersion: vl
kind: Secret
metadata:
name: mysql-root
type: Opaque
data:
password: bXlzcWxwYXNz
// create mysql secret
kubectl create -f secret.yaml —--record
secret "mysgl-user" created
secret "mysgl-root" created

[117]

Getting Started with Kubernetes Chapter 3

Then we come to our ConfigMap. Here, we put database user and database name as an
example:

cat config.yaml
kind: ConfigMap
apiVersion: vl
metadata:
name: mysqgl-config
data:
user: user
database: db
// create ConfigMap
kubectl create —-f config.yaml —--record
configmap "mysqgl-config" created

Then it's time to launch MySQL and its service:

// MySQL Deployment
cat mysql.yaml
apiVersion: apps/vlbetal
kind: Deployment
metadata:

name: lmysql
spec:

replicas: 1

template:

metadata:

labels:

tier: database

version: "5.7"

spec:

containers:

— name: lmysql
image: mysql:5.7
volumeMounts:

- mountPath: /var/lib/mysql
name: mysql-vol

ports:
— containerPort: 3306
env:
— name: MYSQL_ROOT_PASSWORD
valueFrom:
secretKeyRef:

name: mysql-root
key: password
— name: MYSQL_DATABASE
valueFrom:
configMapKeyRef:

[118]

Getting Started with Kubernetes

Chapter 3

name: mysql-config
key: database
— name: MYSQL_USER
valueFrom:
configMapKeyRef:
name: mysql-config
key: user
— name: MYSQL_PASSWORD
valueFrom:
secretKeyRef:
name: mysql-user
key: password
volumes:
— name: mysql-vol
hostPath:
path: /mysqgl/data
kind: Service
apiVersion: vl
metadata:
name: lmysql-service
spec:
selector:
tier: database
ports:
— protocol: TCP
port: 3306
targetPort: 3306
name: tcp3306

We can put more than one spec into a file by adding three dashes as separation. Here we

mount hostPath /mysqgl/data into pods with the path /var/lib/mysqgl. In the

environment section, we leverage the syntax of secret and ConfigMap by secretKeyRef

and configMapKeyRef.

After creating MySQL, Redis would be the next good candidate, since it is others'

dependency, but it needs no prerequisite:

// create Redis deployment
cat redis.yaml
apiVersion: apps/vlbetal
kind: Deployment

metadata:
name: lcredis
spec:
replicas: 1
template:

[119]

Getting Started with Kubernetes Chapter 3

metadata:
labels:
tier: cache
version: "3.0"
spec:
containers:
— name: lcredis
image: redis:3.0
ports:
— containerPort: 6379
minReadySeconds: 1
strategy:
type: RollingUpdate
rollingUpdate:
maxSurge: 1
maxUnavailable: 1
kind: Service
apiVersion: vl
metadata:
name: lcredis-service
spec:
selector:
tier: cache
ports:
— protocol: TCP
port: 6379
targetPort: 6379
name: tcp6379
// create redis deployements and service
kubectl create -f redis.yaml
deployment "lcredis" created
service "lcredis-service" created

Then it would be a good time to start kiosk:

cat kiosk-example.yaml
apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: kiosk-example
spec:
replicas: 5
template:
metadata:
labels:
tier: frontend
version: "3"

[120]

Getting Started with Kubernetes Chapter 3

annotations:
maintainer: cywu
spec:
containers:
— name: kiosk—-example
image: devopswithkubernetes/kiosk-example
ports:
— containerPort: 5000
env:
— name: REDIS_HOST
value: lcredis-service.default
minReadySeconds: 5
strategy:
type: RollingUpdate
rollingUpdate:
maxSurge: 1
maxUnavailable: 1
kind: Service
apiVersion: vl

metadata:

name: kiosk-service
spec:

type: NodePort

selector:

tier: frontend
ports:

— protocol: TCP

port: 80

targetPort: 5000

name: tcp5000
// launch the spec
kubectl create -f kiosk-example.yaml
deployment "kiosk—example" created
service "kiosk-service" created

Here, we expose 1credis-service.default to environment variables to kiosk pods,
which is the DNS name that kube-dns creates for Service object (referred to as service in
this chapter). Thus, kiosk could access Redis host via environment variables.

[121]

Getting Started with Kubernetes Chapter 3

In the end, we'll create recorder. Recorder doesn't expose any interface to others, so it
doesn't need a Service object:

cat recorder-example.yaml
apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: recorder-example
spec:
replicas: 3
template:
metadata:
labels:
tier: backend
version: "3"
annotations:
maintainer: cywu
spec:
containers:
- name: recorder-example
image: devopswithkubernetes/recorder—example
env:
— name: REDIS_HOST
value: lcredis-service.default
— name: MYSQL_HOST
value: lmysql-service.default
— name: MYSQL_USER
value: root
- name: MYSQL_ROOT_PASSWORD
valueFrom:
secretKeyRef:
name: mysql-root
key: password
minReadySeconds: 3
strategy:
type: RollingUpdate
rollingUpdate:
maxSurge: 1
maxUnavailable: 1
// create recorder deployment
kubectl create —-f recorder-example.yaml
deployment "recorder—example" created

[122]

Getting Started with Kubernetes Chapter 3

Recorder needs to access both Redis and MySQL. It uses root credential that is injected via
secret. Both endpoints for Redis and MySQL are accessed via service DNS name
<service_name>. <namespace>.

We then could check deployment objects:

// check deployment details
kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
kiosk—example 5 5 5 5 1h
lcredis 1 1 1 1 1h
lmysql 1 1 1 1 1h
recorder—-example 3 3 3 3 1h

As expected, we have four deployment objects with different desired count for pods.

As we expose kiosk as NodePort, we should be able to access its service endpoint and see if
it works properly. Assume we have a node, IPis 192.168.99.100, and the NodePort that
Kubernetes allocates is 30520.

If you're using minikube, minikube service [-n NAMESPACE] [--
url] NAME could help you access service NodePort via your default
browser:

// open kiosk console

minikube service kiosk-service

Opening kubernetes service default/kiosk—-service in
default browser...

Then we could know the IP and the port.

We could then create and a get ticket by POST and GET /tickets:

// post ticket

curl -XPOST -F 'value=100' http://192.168.99.100:30520/tickets
SUCCESS

// get ticket

curl -XGET http://192.168.99.100:30520/tickets
100

[123]

Getting Started with Kubernetes Chapter 3

Summary

In this chapter, we learned the basic concept of Kubernetes. We learned Kubernetes master
has kube-apiserver to handle the requests, and controller managers are the control center of
Kubernetes, for example, it ensures our desired container amount is fulfilled, controls the
endpoint to associate pods and services, and controls API access token. We also have
Kubernetes nodes, which are the workers to host the containers, receive the information
from master, and route the traffic based on the configuration.

We then used minikube to demonstrate basic Kubernetes objects, including pod,
ReplicaSets, ReplicationControllers, deployments, services, secrets, and ConfigMap. In the
end, we demonstrated how to combine all the concepts we've learned into kiosk application
deployment.

As we mentioned previously, the data inside containers will be gone when a container is
gone. Therefore, volume is extremely important to persist the data in container world. In
the next chapter, we'll be learning how volume works and its options, how to use persistent
volume, and so on.

[124]

Working with Storage and
Resources

In chapter 3, Getting Started with Kubernetes we introduced the basic function of
Kubernetes. Once you start to deploy some containers by Kubernetes, you need to consider
the application's data lifecycle and CPU/memory resource management.

In this chapter, we will discuss the following topics:

¢ How a container behaves with volume

¢ Introduce Kubernetes volume functionalities

e Best practice and pitfalls of Kubernetes Persistent Volume
e Kubernetes resource management

Kubernetes volume management

Kubernetes and Docker use a local host disk by default. The Docker application may store
and load any data onto the disk, for example, log data, temporary files, and application
data. As long as the host has enough space and the application has necessary permission,
data will exist as long as a container exists. In other words, when a container is closed the
application exits, crashes, and reassigns a container to another host, and the data will be
lost.

Working with Storage and Resources Chapter 4

Container volume lifecycle

In order to understand Kubernetes volume management, you need to understand the
Docker volume lifecycle. The following example is how Docker behaves with a volume
when a container restarts:

//run CentOS Container
$ docker run -it centos

1s
anaconda-post.log dev home 1ibé64 media opt root sbin sys usr
bin etc 1lib lost+found mnt proc run srv tmp var

//create one file (/I_WAS_HERE) at root directory
touch /I_WAS_HERE

1s /

I_WAS_HERE bin etc 1lib lost+found mnt proc run srv tmp
var

anaconda-post.log dev home 1ib64 media opt root sbin sys usr

//Exit container

exit

exit

//re—-run CentOS Container
docker run -it centos

//previous file (/I_WAS_HERE) was disappeared

1s /
anaconda-post.log dev home 1ibé64 media opt root sbin sys usr
bin etc 1lib lost+found mnt proc run srv tmp var

On Kubernetes, it also needs to care pod restart. In the case of a resource shortage,
Kubernetes may stop a container and then restart a container on the same or another
Kubernetes node.

The following example shows how Kubernetes behaves when there is a resource shortage.
One pod is killed and restarted when an out of memory error is received:

//there are 2 pod on the same Node
$ kubectl get pods

NAME READY STATUS RESTARTS AGE
Besteffort 1/1 Running 0 1h
guaranteed 1/1 Running 0 1h

//when application consumes a lot of memory, one Pod has been killed
$ kubectl get pods

NAME READY STATUS RESTARTS AGE
Besteffort 0/1 Error 0 1h

[126]

Working with Storage and Resources Chapter 4

guaranteed 1/1 Running 0 1h

//clashed Pod is restarting
$ kubectl get pods

NAME READY STATUS RESTARTS AGE
Besteffort 0/1 CrashLoopBackOff 0 1h
guaranteed 1/1 Running 0 1h

//few moment later, Pod has been restarted
$ kubectl get pods

NAME READY STATUS RESTARTS AGE
Besteffort 1/1 Running 1 1h
guaranteed 1/1 Running 0 1h

Sharing volume between containers within a pod

Chapter 3, Getting Started with Kubernetes described that multiple containers within the
same Kubernetes pod can share the same pod IP address, network port, and IPC, therefore,
applications can communicate with each other through a localhost network; however, the
filesystem is segregated.

The following diagram shows that Tomcat and nginx are in the same pod. Those
applications can communicate with each other via localhost. However, they can't access
each other's config file:

Tomcat (8080/tcp) nginx (80/tcp)
/usr/local/tomcatf%-» /etc/nginx

Container 1 Container 2

R

Some applications won't affect these scenarios and behavior, but some applications may
have some use cases that require them to use a shared directory or file. Therefore,
developers and Kubernetes administrators need to be aware of the different types of
stateless and stateful applications.

[127]

Working with Storage and Resources Chapter 4

Stateless and stateful applications

In terms of stateless applications, in this case use ephemeral volume. The application on the
container doesn't need to preserve the data. Although stateless applications may write the
data onto the filesystem while a container exists, but it is not important in terms of the
application's lifecycle.

For example, the tomcat container runs some web applications. It also writes an
application log under /usr/local/tomcat/logs/, butit won't be affected if it loses a 1og
file.

However, what if you start to analyze an application log? Need to preserve due to auditing
purpose? In this scenario, Tomcat can still be stateless, but share the
/usr/local/tomcat/logs volume to another container such as Logstash
(https://www.elastic.co/products/logstash). Then Logstash will send a log to the
chosen analytic store, such as Elasticsearch

(https ://www.elastic. co/products/elasticsearch).

In this case, the tomcat container and logstash container must be in the same Kubernetes pod
and share the /usr/local/tomcat/logs volume as follows:

e I |

Jusr/local/tomcat/logs«-«-----eeee » /mnt

Container 1 Container 2

Pod

alhost (lo) networ)

The preceding figure shows how Tomcat and Logstash can share the 1og file using the
Kubernetes empt yDir volume
(https ://kubernetes.io/docs/concepts/storage/volumes/#emptydir).

[128]

https://www.elastic.co/products/logstash
https://www.elastic.co/products/elasticsearch
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/

Working with Storage and Resources Chapter 4

Tomcat and Logstash didn't use network via localhost, but share the filesystem between
/usr/local/tomcat/logs from the Tomcat container and /mnt from the Logstash

container through Kubernetes emptyDir volume:

® ® [chapter4 — -bash — 109x33

-bash

$ cat tomcat-logstash.yaml
apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: tomcat
spec:
replicas: 1
template:
metadata:
labels:
run: tomcat

spec:
containers:
- image: tomcat
name: tomcat
ports:
- containerPort: 8080

env:
- name: UMASK
value: "0022"
volumeMounts:
- mountPath: /usr/local/tomcat/logs
name: tomcat-log
image: logstash
name: logstash
args: ["-e input { file { path => \"/mnt/localhost_access_log.*\" } } output { stdout { codec => ru
bydebug } elasticsearch { hosts => [\"http://elasticsearch-svc.default.svc.cluster.local:9200\"] } }"]
volumeMounts:
- mountPath: /mnt
name: tomcat-log
volumes:
- name: tomcat-log
emptyDir: {}

[129]

Working with Storage and Resources Chapter 4

Let's create tomcat and logstash pod, and then see whether Logstash can see the Tomcat
application log under /mnt:

o0 e chapterd4 — kubectl exec -it tomcat-1439976938-h7kbf -c logstash /binfbash — 108x12

kubectl exec -it tomcat-1439976938-h7kbf -c logstash /bin/bash ar
$ kubectl create -f tomcat-logstash.yaml

deployment "tomcat" created

$

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

tomcat-1439976938-h7kbf 2/2 Running © 11s

$

$ kubectl exec -it tomcat-1439976938-h7kbf -c logstash /bin/bash
root@tomcat-1439976938-h7kbf:/# 1s /mnt

catalina.2017-06-16.log localhost.2017-06-16.log manager.2017-06-16.log
host-manager.2017-06-16.1log localhost_access_log.2017-06-16.txt
Lroot@tomcat—1439976938—h7kbf:/‘#

In this scenario, in the final destination Elasticsearch must be stateful. In terms of stateful
means use Persistent Volume. The Elasticsearch container must preserve the data even if the
container is restarted. In addition, you do not need to configure the Elasticsearch container
within the same pod as Tomcat/Logstash. Because Elasticsearch should be a centralized log
datastore, it can be separate from the Tomcat/Logstash pod and scaled independently.

Once you determine that your application needs a Persistent Volume, there are some
different types of volume and different ways to manage Persistent Volumes.

Kubernetes Persistent Volume and dynamic
provisioning

Kubernetes supports a variety of Persistent Volume. For example, public cloud storage such
as AWS EBS and Google Persistent Disk. It also supports network (distributed) filesystems
such as NFS, GlusterFS, and Ceph. In addition, it can also support a block device such as
iSCSI and Fibre Channel. Based on environment and infrastructure, a Kubernetes
administrator can choose the best match types of Persistent Volume.

[130]

Working with Storage and Resources Chapter 4

The following example is using GCP Persistent Disk as Persistent Volume. The first step is
creating a GCP Persistent Disk and naming it gce-pd-1.

If you use AWS EBS or Google Persistent Disk, the Kubernetes node must
be in the AWS or Google Cloud Platform.

o0e® < m & consale.cloud I ?project=devops-with-kub & [ui] (s}

Compute Engine - DevOps with Kubernetes

Google Cloud Platform 2= 0

{e} Compute Engine & Create a disk
B VMinstances Name
ace-pd1
& Instance groups
Description
[E Instance templates
Used by Kubernetes Persistent Disk
@ Disks 2
Snapshots Zone
us-eastd-b -
B Images
Disk Type
s Committed use discounts Standard persistent disk -
SE Metadata Source type
Image Snapshot | None (blank disk)
@ Health checks —
Size (GB)
0 Zones Ty
® Operations
@ You have entered a volume size of under 200 GB. This may result in
B Quotas reduced performance. Learn more
Estimated performance
<l
Operation Type Read Write

[131]

Working with Storage and Resources Chapter 4

Then specify the name gce-pd-1 in the Deployment definition:

[NON J [] chapter4 — -bash — 80x25
-bash 4
$ cat tomcat-pv.yml
apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: tomcat
spec:
replicas: 1
template:
metadata:
labels:
run: tomcat
spec:
containers:
- image: tomcat
name: tomcat
ports:
- containerPort: 8080
volumeMounts:
- mountPath: /usr/local/tomcat/logs
name: tomcat-log
volumes:
- name: tomcat-log
gcePersistentDisk:
pdName: gce-pd-1
fsType: ext4

It will mount the Persistent Disk from GCE Persistent Disk to /usr/local/tomcat/logs,
which can persist Tomcat application logs.

Persistent Volume claiming the abstraction layer

Specifying a Persistent Volume into a configuration file directly, which makes a tight couple
with a particular infrastructure. In previous example, this was Google Cloud Platform and
also the disk name (gce-pd-1). From a container management point of view, pod definition
shouldn't be locked-in to the specific environment because the infrastructure could be
different based on the environment. The ideal pod definition should be flexible or abstract
the actual infrastructure that specifies only volume name and mount point.

[132]

Working with Storage and Resources

Chapter 4

Therefore, Kubernetes provides an abstraction layer that associates between the pod and the
Persistent Volume, which is called the Persistent Volume Claim (PVC). It allows us to
decouple from the infrastructure. The Kubernetes administrator just needs to pre-allocate a
necessary size of the Persistent Volume in advance. Then Kubernetes will bind between the

Persistent Volume and PVC:

Persistent Persistent
Volume Claim Volume Claim

The following example is a definition of pod that uses PVC; let's reuse the previous example

(gce-pd-1) to register with Kubernetes first:

e0e 1 chapter4 — -bash — 103x20
~bash
$ cat pv-gce-pd-1.yml
apiVersion: "v1"
kind: "PersistentVolume"
metadata:
name: pv-1
spec:
capacity:
storage: "10Gi"
accessModes:
- "ReadWriteOnce"

gcePersistentDisk:
fsType: "ext4"
pdName: "gce-pd-1"

$

$ kubectl create -f pv-gce-pd-1.yml

persistentvolume "pv-1" created

$

$ kubectl get pv

NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS
pv-1 10Gi RWO Retain Available

CLAIM STORAGECLASS REASON AGE
1im

[133]

Working with Storage and Resources Chapter 4

Then, create a PVC that associates with Persistent Volume (pv-1).

Note that setting it as storageClassName: "" means, that it should
explicitly use static provisioning. Some of the Kubernetes environments
such as Google Container Engine (GKE), are already set up with
Dynamic Provisioning. If we don't specify storageClassName: "",
Kubernetes will ignore the existing PersistentVolume and allocates a
new PersistentVolume when creating the PersistentVolumeClaim.

LN] 1 chapter4 — -bash — 106x23
-bash
$ cat pvec-1l.yml
apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: pvc-1
spec:
storageClassName: ""
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi
$
$ kubectl create -f pvc-1l.yml
persistentvolumeclaim "pvc-1" created
$
$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS AGE
pvc-1 Bound pv-1 10G1i RWO 23s
$
$ kubectl get pv
NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM STORAGECLASS REASON
pv-1 10Gi RWO Retain Bound default/pvc-1

[134]

Working with Storage and Resources Chapter 4

Now, tomcat setting has been decoupled from the specific volume to "pvc-1":

[NON) [] chapter4 — -bash — 80x24
-bash +
$ cat tomcat-pvc.yml
apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: tomcat
spec:
replicas: 1
template:
metadata:
labels:
run: tomcat
spec:
containers:
- image: tomcat
name: tomcat
ports:
- containerPort: 8080
volumeMounts:
- mountPath: /usr/local/tomcat/logs
name: tomcat-log
volumes:
- name: tomcat-log
persistentVolumeClaim:
claimName: "pvc-1"

Dynamic Provisioning and StorageClass

PVC gives a degree of flexibility for Persistent Volume management. However, pre-
allocating some Persistent Volumes pools might not be cost efficient, especially in a public
cloud.

[135]

Working with Storage and Resources

Kubernetes also helps this kind of situation by supporting Dynamic Provision for Persistent
Volume. Kubernetes administrator defines the provisioner of the Persistent Volume, which is

called storageClass. Then, the Persistent Volume Claim asks StorageClass to
dynamically allocate a Persistent Volume and then associates it with the PVC:

I

Persistent

Pod 3
(creating)

: Volume Claim 1 |

Storageclass (provisioner = aws-ebs)

I

Persistent
: Volume Claim 2 ;

I

Persistent
: Volume Claim 3!

AWS EBS 3
(creating)

In the following example, AWS EB

Volume, and then attaches to PVC:

Sisused as the storageClass, and then, when creating
the PVC, storageClass dynamically create EBS registers it with Kubernetes Persistent

$ cat storageclass-aw
kind: StorageClass
apiVersion: storage.k
metadata:

name: aws-sc
provisioner: kubernet
parameters:

type: gp2
$
% kubectl create -f s
storageclass "aws-sc"
S
$ kubectl get storage
NAME TYPE
aws-sc kubernetes.

[| chapter4 — -bash — 142x15
-bash

s.yml

8s.70/vl

es.io/aws-ebs

torageclass-aws.yml
created

class

io/aws-ebs

[136]

Working with Storage and Resources Chapter 4

Once storageClass has been successfully created, create a PVC without PV, but specify
the StorageClass name. In this example, this would be "aws-sc", as shown in the
following screenshot:

[JON [chapter4 — -bash —142x19

-bash

$ cat pvc-aws,yml
apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: pvc-aws-1
spec:
storageClassName: "aws-sc"
accessModes:
- ReadWriteOnce

resources:

requests:
storage: 10Gi

$
$ kubectl create -f pvc-aws.yml
persistentvolumeclaim "pvc-aws-1" created
$
$ kubectl get pv
NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM STORAGECLASS REASON
pvc-a25cc8d2-523f-11e7-9daa-0e6cfd524216 186G RWO Delete Bound default/pvc-aws-1 aws-sc

Then, PVC asks StorageClass to create a Persistent Volume automatically on AWS as
follows:

[] ® < [Em} @ console.aws.amazon.com/ec2/v2/home?region=us-east-" ¢ i) [
EC2 Management Console —+
(T] Services v Resource Groups v OpsWorks L VP [\ Hideto Saito v N. Virginia v Support v
EC2 Dashboard Create Volume [JF-XSCUCRY o & 0
Events 4
Tags (), search : dynamic Add filte (2] 1to10f1
Reports
Limits [] Name ~ VolumelD ~ Size ~ Volume Type ~ IOPS > &
=) INSTANCES @ hideto.kBs-devops.net-dynamic-pvc-a25cc8d... vol-00de477... 10 GiB gp2 100 / 3000
Instances
Spot Requests
Reserved Instances
Scheduled Instances Volumes: | vol-00de477c6a9971fd8 (hideto.k8s-devops.net-dynamic-pvc-a25cc8d2-523f-11e7-9daa- 1 = =
Dedicated Hosts 0e6cfd524216)
=] IMAGES
Description Status Checks Monitoring Tags
AMIs
. Feedback Q English o Privacy Policy Terms of Use

[137]

Working with Storage and Resources Chapter 4

Note that a Kubernetes provisioning tool such as kops
(https://github.com/kubernetes/kops) and also Google Container Engine
(https://cloud.google.com/container—engine/)Creahea,Storage(ﬁLasstﬁldefauh.For
example, kops sets up a default storageClass as AWS EBS on an AWS environment. As
well as Google Cloud Persistent disk on GKE. For more information, please refer to Chapter
9, Kubernetes on AWS and chapter 10, Kubernetes on GCP:

//default Storage Class on AWS

$ kubectl get sc

NAME TYPE

default kubernetes.io/aws—ebs
gp2 (default) kubernetes.io/aws-ebs

//default Storage Class on GKE

$ kubectl get sc

NAME TYPE

standard (default) kubernetes.io/gce-pd

A problem case of ephemeral and persistent
setting

You may determine your application as stateless, because datastore function is handled
by another pod or system. However, there are some pitfalls that sometimes applications
actually store important files that you aren't aware of. For example, Grafana
(https://grafana.com/grafana), it connects time series datasources such as Graphite
(https://graphiteapp.org) and InfluxDB
(https://www.influxdata.com/time-series-database/), so that people may determine
whether Grafana is a stateless application.

However, Grafana itself also uses databases to store the user, organization, and dashboard
metadata. By default, Grafana uses SQLite3 components and stores the database as
/var/lib/grafana/grafana.db. Therefore, when a container is restarted, the Grafana
setting will be all reset.

[138]

https://github.com/kubernetes/kops
https://cloud.google.com/container-engine/
https://grafana.com/grafana
https://graphiteapp.org
https://www.influxdata.com/time-series-database/

Working with Storage and Resources Chapter 4

The following example demonstrates how Grafana behaves with ephemeral volume:

[NON) [chapter4 — -bash — 80x30
-bash +
$ cat grafana.yml
apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: grafana
spec:
replicas: 1
template:
metadata:
labels:
run: grafana
spec:
containers:
- image: grafana/grafana
name: grafana
ports:
- containerPort: 3000

apiVersion: vl
kind: Service
metadata:

name: grafana
spec:

ports:

- protocol: TCP
port: 3000
nodePort: 30300

type: NodePort
selector:

run: grafana

[139]

Working with Storage and Resources Chapter 4

Let's create a Grafana organizations named kubernetes org as follows:

o0 @ < M 35.186.189.184:30300/admin/orgs ¢ th (u)

Grafana =+

{9 - @ Admin & Orgs

Organizations

L ET

Main Org.

kubernetes org

Then, look at the Grafana directory, there is a database file
(/var/lib/grafana/grafana.db) timestamp that has been updated after creating a
Grafana organization:

[) [) [chapter4 — kubectl exec -it grafana-2843086309-vhm1g /bin/bash — 80x11
kubectl exec -it grafana-2843086309-vhm1g /bin/bash T

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

grafana-2843086309-vhmlg 1/1 Running © 38s

$
$ kubectl exec -it grafana-2843086309-vhmlg /bin/bash
root@grafana-2843086309-vhmlg: /# 1s -1 /var/lib/grafana

total 112
-rw-r--r—— 1 grafana grafana 99328 Jun 16 04:01 grafana.db
drwxr-xr-x 2 grafana grafana 4096 Jun 16 04:00 plugins

3 grafana grafana 4096 Jun 16 04:01 sessions
Lroot@graFana—2843086309—vhm1g:/#

When the pod is deleted, ReplicaSet will start a new pod and check whether a Grafana
organization exists or not:

[140]

Working with Storage and Resources Chapter 4

O [] 1 chapter4 — kubectl exec -it grafana-2843086309-gp2rh /bin/bash — 80x12
kubectl exec -it grafana-2843086309-gp2rh /bin/bash ar

$ kubectl delete pod grafana-2843086309-vhmlg; kubectl get pods

pod "grafana-2843086309-vhmlg" deleted

NAME READY STATUS RESTARTS AGE
grafana-2843086309-qp2rh 0/1 ContainerCreating 0 0s
grafana-2843086309-vhmlg 1/1 Terminating 0 2m
$

$ kubectl exec -it grafana-2843086309-qp2rh /bin/bash
root@grafana-2843086309-qp2rh:/# 1s -1 /var/lib/grafana
total 168

-rw-r--r-— 1 grafana grafana 99328 Jun 16 04:03 grafana.db
drwxr-xr-x 2 grafana grafana 4096 Jun 16 04:03 plugins
root@grafana-2843086309-qp2rh:/# I

It looks like the sessions directory has disappeared and grafana.db is also recreated by
the Docker image again. Then if you access Web Console, the Grafana organization will
also disappear:

o0 @ < (Em] 35.186.189.88:30300/admin/orgs ¢

Ed

[

Grafana - Home =+

49 - #EAdmin % Orgs

Organizations

Name

Main Org. Z Edit %

How about just using Persistent Volume for Grafana? But using ReplicaSet with Persistent
Volume, it doesn't replicate (scale) properly. Because all of the pods attempt to mount the
same Persistent Volume. In most cases, only the first pod can mount the Persistent Volume,
then another pod will try to mount, and if it can't, it will give up. This happens if the
Persistent Volume is capable of only RWO (read write once, only one pod can write).

[141]

Working with Storage and Resources

Chapter 4

In the following example, Grafana uses Persistent Volume to mount /var/lib/grafana;

however, it can't scale because Google Persistent Disk is RWO:

$ cat grafana-pv.yml
apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: grafana
spec:
replicas: 1
template:
metadata:
labels:
run: grafana
spec:
containers:

[chapter4 — -bash — 80x34
-bash

- image: grafana/grafana

name: grafana
ports:

- containerPort:
volumeMounts:

3000

- mountPath: /var/lib/grafana
name: grafana-data

volumes:
- name: grafana-data
gcePersistentDisk:
pdName: gce-pd-1
fsType: ext4
$

$ kubectl create -f grafana-pv.yml

deployment "grafana" created

$

$ kubectl scale deploy grafana —-replicas=3
error: Scaling the resource failed with: Deployment.apps "grafana" is invalid: s
pec.template.spec.volumes[0].gcePersistentDisk.readOnly: Invalid value: false: m
ust be true for replicated pods > 1; GCE PD can only be mounted on multiple mach

ines if it is read-only; Current resource version 1374730

Even if the Persistent Volume has a capability of RWX (read write many, many pods can
mount to read and write simultaneously), such as NFS, it won't complain if multiple pods

try to bind the same volume. However, we still need to consider whether multiple

application instances can use the same folder/file or not. For example, if it replicates

Grafana to two or more pods, it will be conflicted with multiple Grafana instances that try
to write to the same /var/lib/grafana/grafana.db, and then data could be corrupted,
as shown in the following screenshot:

[142]

Working with Storage and Resources

Chapter 4

ReplicaSet ReplicaSet ReplicaSet

Pod 1 Pod 2 Pod 3
/var/lib/grafana /var/lib/grafana /var/lib/grafana

F
lexport/grafanal/grafana.db

In this scenario, Grafana must use backend databases such as MySQL or PostgreSQL
instead of SQLite3 as follows. It allows multiple Grafana instances to read/write Grafana

metadata properly:

ReplicaSet ReplicaSet ReplicaSet

Pod 1 Pod 2 Pod 3
grafana grafana grafana

Because RDBMS basically supports to connecting with multiple application instances via
network, therefore, this scenario is perfectly suited being used by multiple pods. Note that
Grafana supports using RDBMS as a backend metadata store; however, not all applications

support RDBMS.

For the Grafana configuration that uses MySQL/PostgreSQL, please visit
the online documentation via:
http://docs.grafana.org/installation/configuration/#database.

[143]

http://docs.grafana.org/installation/configuration/#database

Working with Storage and Resources Chapter 4

Therefore, the Kubernetes administrator carefully needs to monitor how an application
behaves with volumes. And understand that in some use cases, just using Persistent
Volume may not help because of issues that might arise when scaling pods.

If multiple pods need to access the centralized volume, then consider using the database as
previously shown, if applicable. On the other hand, if multiple pods need an individual
volume, consider using StatefulSet.

Replicating pods with a Persistent Volume using
StatefulSet

StatefulSet was introduced in Kubernetes 1.5; it consists of a bond between the pod and the
Persistent Volume. When scaling a pod that increases or decreases, pod and Persistent
Volume are created or deleted together.

In addition, pod creation process is serial. For example, when requesting Kubernetes to
scale two additional StatefulSet, Kubernetes creates Persistent Volume Claim 1 and Pod 1
first, and then creates Persistent Volume Claim 2 and Pod 2, but not simultaneously. It
helps the administrator if an application registers to a registry during the application
bootstrap:

StatefulSet StatefulSet StatefulSet

StoragecClass (provisioner = aws-ebs)

Even if one pod is dead, StatefulSet preserves the position of the pod (pod name, IP
address, and related Kubernetes metadata) and also the Persistent Volume. Then, it
attempts to recreate a container that reassigns to the same pod and mounts the same
Persistent Volume.

[144]

Working with Storage and Resources Chapter 4

It helps to keep the number of pods/Persistent Volumes and the application remains online
using the Kubernetes scheduler:

StatefulSet StatefulSet StatefulSet

Pod 2
(restarting)

StatefulSet StatefulSet StatefulSet

Pod 2
(Error)

StorageClass

AWS EBS AWS EBS

StoragecClass

" B
s B e B e

StatefulSet with Persistent Volume requires Dynamic Provisioning and StorageClass
because StatefulSet can be scalable. Kubernetes needs to know how to provision the
Persistent Volume when adding more pods.

Persistent Volume example

In this chapter, there are some Persistent Volume examples that have been introduced.
Based on the environment and scenario, the Kubernetes administrator needs to configure
Kubernetes properly.

The following are some examples that build Elasticsearch clusters using different role nodes
to configure different types of Persistent Volume. They will help you to decide how to
configure and manage the Persistent Volume.

Elasticsearch cluster scenario

Elasticsearch is capable of setting up a cluster by using multiple nodes. As of Elasticsearch
version 2.4, there are several different types, such as master, data, and coordinate nodes
(https ://www.elastic.co/guide/en/elasticsearch/reference/2.4/modules-node. html).
Each node has a different role and responsibility in the cluster, therefore the corresponding
Kubernetes configuration and Persistent Volume should align with the proper settings.

[145]

https://www.elastic.co/guide/en/elasticsearch/reference/2.4/modules-node.html

Working with Storage and Resources Chapter 4

The following diagram shows the components and roles of Elasticsearch nodes. The master
node is the only node in the cluster that manages all Elasticsearch node registration and
configuration. It can also have a backup node (master-eligible node) that can serve as the
master node at any time:

external application
(ex: Kibana)

NodePort:30200

)]
9200/htto 9200/htto

ClusterIP: 9300/tcp

\

!

‘ 9300/tco \

$

9300/tco

9300/tcp

‘ 9300/tcp \

Data nodes hold and operate datastores in Elasticsearch. And the coordinating node
handles HTTP requests from other applications, and then load balances/dispatches to the
data nodes.

[146]

Working with Storage and Resources Chapter 4

Elasticsearch master node

The master node is the only node in the cluster. In addition, other nodes need to point to the
master node because of registration. Therefore, the master node should use Kubernetes
StatefulSet to assign a stable DNS name, such as es-master-1. Therefore, we have to use
the Kubernetes service to assign DNS with a headless mode that assigns the DNS name to
the pod IP address directly.

On the other hand, if the Persistent Volume is not required, because the master node does
not need to persist an application's data.

Elasticsearch master-eligible node

The master-eligible node is a standby for the master node, and therefore there's no need to
create another Kubernetes object. This means that scaling the master StatefulSet that
assigns es—master-2, es-master-3, and es-master-N is enough. When the master node
does not respond, there is a master node election within the master-eligible nodes to choose
and elevate one node as the master node.

Elasticsearch data node

The Elasticsearch data node is responsible for storing the data. In addition, we need to scale
out if greater data capacity and/or more query requests are needed. Therefore, we can use
StatefulSet with Persistent Volume to stabilize the pod and Persistent Volume. On the other
hand, there's no need to have the DNS name, therefore no need to setup Kubernetes service
for Elasticsearch data node.

Elasticsearch coordinating node

The coordinating node is a load balancer role in the Elasticsearch. Therefore, we need to
scale out to handle HTTP traffic from external sources and persisting the data is not
required. Therefore, we can use Kubernetes ReplicaSet with the Kubernetes service to
expose the HTTP to the external service.

[147]

Working with Storage and Resources Chapter 4

The following example shows the commands used when we create all of the preceding
Elasticsearch nodes by Kubernetes:

[NON J [elasticsearch — -bash — 80x21

-bash
$ 1s

es-coordinator.yml es-master.yml
es—-data.yml es-storageclass.yml

$ kubectl create -f es-master.yml

statefulset "es-master" created

service "es-master-svc" created

$

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
es-master-0 1/1 Running 0 13s
$

$ kubectl create -f es-storageclass.yml
storageclass "es-sc" created

$

$ kubectl create -f es-data.yml

statefulset "es-data" created

$

$ kubectl create -f es-coordinator.yml
deployment "es-coordinator" created

service "elasticsearch-svc" created

3

[148]

Working with Storage and Resources Chapter 4

In addition, the following screenshot is the result we obtain after creating the preceding
instances:

[NON | [elasticsearch — -bash — 80x22

-bash
$ kubectl get pods
NAME STATUS RESTARTS
es-coordinator-3248971439-s9xmd Running
es-data-0 Running
es—data-1 Running
es-data-2 Running
es—master-0 Running
$
$ kubectl get deploy
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
es—coordinator 1 1 1 1 6m
$
$ kubectl get statefulset
NAME DESIRED CURRENT AGE
es-data 3 3 9m
es-master 1 1 10m
$

$ kubectl get service

NAME CLUSTER-IP EXTERNAL-IP PORT(S)
elasticsearch-svc 10.15.243.217 <nodes> 9200:30200/TCP
es—-master-svc None <none> 9300/TCP
kubernetes 10.15.240.1 <none> 443 /TCP
ece I elasticsearch — -bash — 151x16
-bash

$ kubectl get storageclass

NAME TYPE

es-sc kubernetes.io/gce-pd

standard (default) kubernetes.io/gce-pd

$

% kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS AGE
es-data-es-data-© Bound pvc-799495f7-524b-11e7-9ac8-42010a960006 1Gi RWO es-sc m
es-data-es-data-1 Bound pvc-952038a4-524b-11e7-9ac8-42010a960006 1Gi RWO es-sc Tm
es-data-es-data-2 Bound pvc-9fcllla8-524b-11e7-9ac8-42010a960006 1G1 RWO es-sc 6m

$

$ kubectl get pv

NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM STORAGECLASS REASON
pvc-799495f7-524b-11e7-9ac8-420102960006 1Gi RWO Delete Bound default/es-data-es-data-@ es-sc
pvc-952038a4-524b-11e7-9ac8-42010a960006 1Gi RWO Delete Bound default/es-data-es-data-1 es-sc
pvc-9fcllla8-524b-11e7-9ac8-42010a960006 1Gi RWO Delete Bound default/es-data-es-data-2 es-sc

[149]

Working with Storage and Resources Chapter 4

In this case, external service (Kubernetes node:30020) is an entry point for external
applications. For testing purposes, let's install elasticsearch-head
(https://github.com/mobz/elasticsearch-head) to visualize the cluster information.

Connect Elasticsearch coordination node to install the elasticsearch-head plugin:

@® O @ [elasticsearch — kubectl exec -it es-coordinator-3248971439-s9xmd /bin/bash — 80x20
kubectl exec -it es-coordinator-3248971439-s9xmd /bin/bash

$ kubectl exec —it es-coordinator-3248971439-s9xmd /bin/bash
< bin/plugin 1install mobz/elasticsearch-head

-> Installing mobz/elasticsearch-head...
Trying https://github.com/mobz/elasticsearch-head/archive/master.zip ...
Downloading

Verifying https://github.com/mobz/elasticsearch-head/archive/master.zip checksum
s if available ...

NOTE: Unable to verify checksum for downloaded plugin (unable to find .shal or .
md5 file to verify)

Installed head 1into /usr/share/elasticsearch/plugins/head
root@es-coordinator-3248971439-s9xmd: /usr/share/elasticsearch#

[150]

https://github.com/mobz/elasticsearch-head

Working with Storage and Resources

Chapter 4

Then, access any Kubernetes node, URL as
http://<kubernetes-node>:30200/_plugin/head. The following UI contains the
cluster node information:

o ® < i}
Elasticsearch
Overview | Indices = Browser

http://35.186.171.85:30200/

Structured Query [+]

Cluster Overview

Collector

Green Goblin

Linio~ Y ctions -

Susan Storm

Vincente
Linfo Y sctions ~

Whiteout
L into Y actions ~]

® ¢ > e O

size: 28.8ki (57.7ki)
docs: 12 (24)

Linio <Y hctions -

logstash-2017.06.15

2][3](4]

0] [x]

ol[1]2][EI

35.186.171.95:30200/_plugin/head] & (4] i [w)
elasticsearch-head +
connect elasticsearch [EliSICHNEaENNGICeIOIGIEONN
Any Request [+] E
——

The star icon indicates the Elasticsearch master node, the three black bullets are data nodes
and the white circle bullet is the coordinator node.

[151]

Working with Storage and Resources Chapter 4

In this configuration, if one data node is down, no service impact will occur, as shown in the
following snippet:

//simulate to occur one data node down
$ kubectl delete pod es-data-0
pod "es-data-0" deleted

o0 e® < i} 35.186.171.95:30200/_plugin/head/ & o t)
elasticsearch-head +
E|asticsea I'Ch http://35.186.171.95:30200/ connect elasticsearch cluster health: yellow (7 of 10)
Overview Indices Browser = Structured Query [+] @ Any Request [+] E
Cluster Overview | | | 1 A | m:

logstash-2017.06.15
size: 28.8ki (40.8ki)

docs: 12 (18)

p -
Unassigned
Collector
[info ~ J Actions ~ |

Susan Storm

Vincerll;e

® ¢ X O p

A few moments later, the new pod mounts the same PVC, which preserved es-data-0
data. And then the Elasticsearch data node registers to master node again, after which the
cluster health is back to green (normal), as shown in the following screenshot:

[152]

Working with Storage and Resources Chapter 4

o0e® < i} 35.186.171.95:30200/_plugin/head]] [l

G
©

elasticsearch-head +

Elasticsearch rwssisimsssono comec: elasticsearch [ESISRNSHERIGRSSRIOGHION

Overview Indices = Browser = Structured Query [+] @ Any Request [+]

Cluster Overview | ! | ! | | :j
logstash-2017.06.15

size: 28.8ki (57.8ki)
docs: 12 (24)

9 Y
Collective Man
Pl 2](3][4]

C_ollet_:tor

| Info ~ J Actions ~]

Susan Storm

[Info ~ X Actions ~

e [0] 4
—

® ¢ > O @

Due to StatefulSet and Persistent Volume, the application data is not lost on es-data-0. If
you need more disk space, increase the number of data nodes. If you need to support more
traffic, increase the number of coordinator nodes. If a backup of the master node is required,
increase the number of master nodes to make some master-eligible nodes.

Overall, the Persistent Volume combination of StatefulSet is very powerful, and can make
the application flexible and scalable.

Kubernetes resource management

Chapter 3, Getting Started with Kubernetes mentioned that Kubernetes has a scheduler that
manages Kubernetes node and then determines where to deploy a pod. When node has
enough resources such as CPU and memory, Kubernetes administrator can feel free to
deploy an application. However, once it reaches its resource limit, the Kubernetes scheduler
behaves different based on its configuration. Therefore, the Kubernetes administrator has to
understand how to configure and utilize machine resources.

[153]

Working with Storage and Resources Chapter 4

Resource Quality of Service

Kubernetes has the concept of Resource QoS (Quality of Service), which helps an
administrator to assign and manage pods by different priorities. Based on the pod's setting,
Kubernetes classifies each pod as:

¢ Guaranteed pod
¢ Burstable pod
e BestEffort pod

The priority would be Guaranteed > Burstable > BestEffort, which means if the BestEffort
pod and the Guaranteed pod exist in the same node, then when one of the pods consumes
memory and to causes a node resource shortage, one of the BestEffort pods will be
terminated to save the Guaranteed pod.

In order to configure Resource QoS, you have to set the resource request and/or resource
limit in the pod definition. The following example is a definition of resource request and
resource limit for nginx:

$ cat burstable.yml
apiVersion: vl
kind: Pod

metadata:

name: burstable-pod

spec:

containers:

- name: nginx
image: nginx
resources:

requests:
cpu: 0.1
memory: 10Mi
limits:
cpu: 0.5
memory: 300Mi

[154]

Working with Storage and Resources Chapter 4

This example indicates the following;:

Type of resource definition | Resource name [Value | Mean

requests cpu 0.1 At least 10% of 1 CPU core
memory 10Mi [Atleast 10 Mbytes of memory

limits cpu 0.5 Maximum 50 % of 1 CPU core
memory 300Mi | Maximum 300 Mbyte of memory

For the CPU resource, acceptable value expressions for either cores (0.1, 0.2 ... 1.0, 2.0) or
millicpu (100m, 200m ... 1000m, 2000m). 1000 m is equivalent to 1 core. For example, if
Kubernetes node has 2 cores CPU (or 1 core with hyperthreading), there are total of 2.0
cores or 2000 millicpu, as follows:

CPU1

CPU 2

If you run the nginx example (requests.cpu: 0.1), it occupies at least 0.1 core, as shown
in the following figure:

CPU 1

[155]

Working with Storage and Resources Chapter 4

As long as the CPU has enough spaces, it may occupy up to 0.5 cores (1imits.cpu: 0.5),
as shown in the following figure:

You can also see the configuration by using the kubectl describe nodes command as
follows:

[] [] [gos — -bash — 166x12
-bash +
Name CPU Requests CPU Limits

default burstable-pod 100m (16%)

kube-system fluentd-gep-v2.0-g7wi8 106m (16%) 206M1 (33%) 386Mi (5%)

kube-system kube-proxy-gke-stable-cluster-micro-pool-1-6981e66d-gmlf 100m (16%) 0 (8%) 0 (%) 8 (%)
Allocated resources:

(Total limits may be over 180 percent, i.e., overcommitted.)
CPU Requests CPU Limits Memory Requests Memory Limits

300m (30%) 508m (50%) 210M1 (35%) 600M1 (186%)
Events: <none>

Note that it shows a percentage that depends on the Kubernetes node's spec in the
preceding example; as you can see the node has 1 core and 600 MB memory.

On the other hand, if it exceeds the memory limit, the Kubernetes scheduler determines that
this pod is out of memory, and then it will kill a pod (0OMKilled):

//Pod is reaching to the memory limit

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
burstable-pod 1/1 Running 0 10m

//got OOMKilled

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
burstable-pod 0/1 OOMKilled 0 10m

//restarting Pod
$ kubectl get pods

NAME READY STATUS RESTARTS AGE
burstable-pod 0/1 CrashLoopBackOff 0 1im
//restarted

$ kubectl get pods

[156]

Working with Storage and Resources Chapter 4

NAME READY STATUS RESTARTS AGE
burstable-pod 1/1 Running 1 12m

Configuring the BestEffort pod

The BestEffort pod has the lowest priority in the Resource QoS configuration. Therefore, in
case of a resource shortage, this pod will be the first one to be terminated. The use case of
using BestEffort would be a stateless and recoverable application such as:

e Worker process
e Proxy or cache node

In the case of a resource shortage, this pod should yield CPU and memory resource to other
higher priority pods. In order to configure a pod as the BestEffort pod, you need to set
resource limit as 0, or not specify resource limit. For example:

//no resource setting
$ cat besteffort-implicit.yml
apiVersion: vl
kind: Pod
metadata:

name: besteffort
spec:

containers:

- name: nginx

image: nginx

//resource limit setting as 0
$ cat besteffort-explicit.yml
apiVersion: vl
kind: Pod
metadata:
name: besteffort
spec:
containers:
- name: nginx
image: nginx
resources:
limits:
cpu: 0
memory: O

[157]

Working with Storage and Resources Chapter 4

Note that the resource setting is inherited by the namespace default setting. Therefore, if
you intend to configure the pod as the BestEffort pod using the implicit setting, it might not
configure as BestEffort if the namespace has a default resource setting as follows:

[) ® i gos — -bash — 105x30
-bash +

$ kubectl get namespace

NAME STATUS AGE

blank-namespace Active 50s

default Active 8d

kube-public Active 8d

kube-system Active 8d

$
$|kubectl describe namespace default

Name: default
Labels: <none>
Annotations: <none>
Status: Active

No resource quota.

Resource Limits

Type Resource Min Default Request|Default Limit Max Limit/Request Ratio
Container -

5

$[kubectl describe namespace blank-namespace |

Name: blank-namespace

Labels: <none>

Annotations: <none>

Status: Active

No resource quota.

No resource limits.

E

In this case, if you deploy to the default namespace using implicit setting, it applies a
default CPU request as request.cpu: 0.1 and then it becomes Burstable. On the other
hand, if you deploy to blank-namespace, apply request.cpu: 0, and then it will
become BestEffort.

Configuring as the Guaranteed pod

Guaranteed is the highest priority in Resource QoS. In the case of a resource shortage, the
Kubernetes scheduler will try to retain the Guaranteed pod to the last.

[158]

Working with Storage and Resources Chapter 4

Therefore, the usage of a Guaranteed pod would be a mission critical node such as:

¢ Backend database with Persistent Volume
¢ Master node (such as Elasticsearch master node and HDFS name node)

In order to configure as the Guaranteed pod, explicitly set the resource limit and resource
request as the same value, or only set the resource limit. However, again, if the namespace
has default resource setting, it might cause different results:

$ cat guaranteed.yml
apiVersion: vl
kind: Pod
metadata:

name: guaranteed-pod
spec:

containers:

— name: nginx
image: nginx
resources:

limits:

cpu: 0.3
memory: 350Mi
requests:

cpu: 0.3
memory: 350Mi

$ kubectl get pods
NAME READY STATUS RESTARTS AGE

guaranteed-pod 1/1 Running 0 52s

$ kubectl describe pod guaranteed-pod | grep -i gos
QoS Class: Guaranteed

Because Guaranteed pod has to set resource limit, if you are not 100% sure about the
necessary CPU/memory resource of your application, especially maximum memory usage;
you should use Burstable setting to monitor the application behavior for a while. Otherwise
Kubernetes scheduler might terminate a pod (00MKilled) even if the node has enough

memory.

[159]

Working with Storage and Resources Chapter 4

Configuring as Burstable pod

The Burstable pod has a higher priority than BestEffort, but lower than Guaranteed. Unlike
Guaranteed pod, resource limit setting is not mandatory; therefore pod can consume CPU
and memory as much as possible while node resource is available. Therefore, it is good to
be used by any type of application.

If you already know the minimal memory size of an application, you should specify request
resource, which helps Kubernetes scheduler to assign to the right node. For example, there
are two nodes that have 1 GB memory each. Node 1 already assigns 600 MB memory and
node 2 assigns 200 MB memory to other pods.

If we create one more pod that has a resource request memory as 500 MB, then Kubernetes
scheduler assigns this pod to node 2. However, if the pod doesn't have a resource request,
the result will vary either node 1 or node 2. Because Kubernetes doesn't know how much
memory this pod will consume:

600 Mi requested 400 Mi Available

requests.
memory:
500Mi

800 Mi Available

[160]

Working with Storage and Resources Chapter 4

There is still important behavior of Resource QoS to discuss. The granularity of Resource
QoS unit is pod level, not a container level. This means, if you configure a pod that has two
containers, you intend to set container A as Guaranteed (request/limit are same value), and
container B is Burstable (set only request). Unfortunately, Kubernetes configures this pod as
Burstable because Kubernetes doesn't know what the limit of container B is.

The following example demonstrate that failed to configure as Guaranteed pod, it
eventually configured as Burstable:

// supposed nginx is Guaranteed, tomcat as Burstable...
$ cat guaranteed-fail.yml

apiVersion: vl

kind: Pod

metadata:

name: burstable-pod

spec:

containers:

- name: nginx
image: nginx
resources:

limits:
cpu: 0.3
memory: 350Mi
requests:
cpu: 0.3
memory: 350Mi

- name: tomcat
image: tomcat
resources:

requests:
cpu: 0.2
memory: 100Mi

$ kubectl create —-f guaranteed-fail.yml
pod "guaranteed-fail" created

//at the result, Pod is configured as Burstable
$ kubectl describe pod guaranteed-fail | grep —-i gos
QoS Class: Burstable

[161]

Working with Storage and Resources Chapter 4

Even though, change to configure resource limit only, but if container A has CPU limit only,
then container B has memory limit only, then result will also be Burstable again because
Kubernetes knows only either limit:

//nginx set only cpu limit, tomcat set only memory limit
$ cat guaranteed-fail2.yml
apiVersion: vl
kind: Pod
metadata:
name: guaranteed-fail2
spec:
containers:
— name: nginx
image: nginx
resources:
limits:
cpu: 0.3
- name: tomcat
image: tomcat
resources:
requests:
memory: 100Mi

$ kubectl create -f guaranteed-fail2.yml
pod "guaranteed-fail2" created

//result is Burstable again
$ kubectl describe pod |grep -i gos
QoS Class: Burstable

Therefore, if you intend to configure pod as Guaranteed, you must set all containers as
Guaranteed.

Monitoring resource usage

When you start to configure to set a resource request and/or limit, your pod may not be
scheduled to deploy by Kubernetes scheduler due to insufficient resources. In order to
understand allocatable resources and available resources, use the kubectl describe

nodes command to see the status.

[162]

Working with Storage and Resources Chapter 4

The following example shows one node that has 600 MB memory and one core CPU. So
allocatable resources are as follows:

[NON)] gos — saito@gke-stable-cluster-micro-pool-1-6981e66d-47c7:~ — -bash — 112x19
saito@gke-stable-cluster-micro-pool-1-6981e66d-47c7:~ — -bash
Addresses: 10.150.0.7,35.186.189.88,gke-stable-cluster-micro-pool-1-6981e66d-47c7
Capacity:
cpu: 1
memory : 608356K1i
110

1
memory: 608356Kii
pods: 110

System Info:

Machine ID: 264835d12e1e9386a67¢c9d2c1969c714
System UUID: 264835D1-2E1E-9386-A67C-9D2C1969C714
Boot ID: cd7782b3-0d2f-47ef-9f95-4ff0d3902be7
Kernel Version: 4.4,.35+

0S Image: Container-Optimized 0S from Google
Operating System: Tinux

Architecture: amd64

Container Runtime Version: docker://1.11.2

Kubelet Version: v1l.6.4

However, this node already runs some Burstable pod (use resource request) already as
follows:

[] ® qos — saito@gke-stable-cluster-micro-pool-1-6981e66d-47¢7:~ — -bash — 112x19
saito@gke-stable-cluster-micro-pool-1-6981e66d-47¢c7:~ — -bash

kube-system fluentd-gcp-v2.0-s9wh4 100m (1@

0 (0%) 200Mi (33%) 300Mi (50%)

kube-system heapster-v1.3.0-2541477364-vzcve 138m (13

%) 138m (13%) 302456Ki (49%) 302456Ki (49%)

kube-system kube-dns-autoscaler-2528518105-8p57v 20m (2%0

(0%) 10Mi (1%) 0 (%)

kube-system kube-proxy-gke-stable-cluster-micro-pool-1-6981e66d-47c7 100m (1@

) 0 (0%) 0 (0%) 0 (%)

kube-system kubernetes-dashboard-2917854236-6981d 106m (10

%) leom (10%) 50Mi (8%) 560Mi (8%)

kube-system 17-default-backend-1044750973-g20g7 10m (1%1

em (1%) 20Mi (3%) 20Mi (3%)

Allocated resources:
(Total limits may be over 100 percent, i.e., overcommitted.)
CPU Requests CPU Limits Memory Requests|Memory Limits

468m (46%) 248m (24%) 589176Ki (96%) |681336Ki (111%)

5

[163]

Working with Storage and Resources Chapter 4

The available memory is limited as approximately 20 MB. Therefore, if you submit
Burstable pod that request more than 20 MB, it is never scheduled, as shown in the
following screenshot:

[NON } 1 gos — -bash — 80x22
-bash +

$ cat burstable2.yml
apiVersion: vl
kind: Pod
metadata:

name: burstable-pod
spec:

containers:

- name: nginx

image: nginx
resources:
requests:
cpu: 0.1
memory: 30Mi

$
$ kubectl create -f burstable2.yml
pod "burstable-pod" created
$
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
burstable-pod 0/1 Pending (0] 4s
$
$ kubectl describe pod

[164]

Working with Storage and Resources Chapter 4

The error event can be captured by the kubectl describe podcommand:

[NN] | gos — -bash — 80x22

-bash

Conditions:
Type Status
PodScheduled False
Volumes:
default-token-xj95q:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-xj95q
Optional: false
QoS Class: Burstable
Node-Selectors: <none>

Tolerations: node.alpha.kubernetes.io/notReady=:Exists:NoExecute for 300s
node.alpha.kubernetes.io/unreachable=:Exists:NoExecute for 300s

Events:
FirstSeen LastSeen From SubObjectPath T
Reason Message

default-scheduler

arning FailedScheduling No nodes are available that match all of
the following predicates:: [Insufficient memory (1)|.
s 1

In this case, you need to add more Kubernetes nodes to support more resources.

Summary

In this chapter, we have covered Stateless and Stateful applications that use ephemeral
volume or Persistent Volume. Both have pitfalls when an application restarts or a pod
scales. In addition, Persistent Volume management on Kubernetes has been kept enhanced
to make it easier, as you can see from such tools as StatefulSet and Dynamic Provisioning.

Also, Resource QoS helps Kubernetes scheduler to assign a pod to the right node based on
request and limit based on priorities.

The next chapter will introduce Kubernetes network and security, which configures pod
and services more easier, and makes them scalable and secure.

[165]

Network and Security

We've learned how to deploy containers with different resources in Kubernetes in chapter
3, Getting Started with Kubernetes, and know how to use volume to persist the data, dynamic
provisioning, and different storage classes. Next, we'll learn how Kubernetes routes the
traffic to make all of this possible. Networking always plays an important role in the
software world. We'll describe the networking from containers on a single host, multiple
hosts and finally to Kubernetes.

¢ Docker networking

¢ Kubernetes networking
¢ Ingress

e Network policy

Kubernetes networking

There are plenty of choices you can use to implement networking in Kubernetes.
Kubernetes itself doesn't care how you implement it, but you must meet its three
fundamental requirements:

¢ All containers should be accessible to each other without NAT, regardless of
which nodes they are on

e All nodes should communicate with all containers
¢ The IP container should see itself the same way as the others see it

Before getting into anything further, we'll first review how does the default container
networking works. That's the pillar of the network to make all of this possible.

Network and Security Chapter 5

Docker networking

Let's review how Docker networking works before getting into Kubernetes networking. In
Chapter 2, DevOps with Container, we learned three modes of container networking, bridge,
none, and host.

Bridge is the default networking model. Docker creates and attaches virtual Ethernet device
(also known as veth) and assigns network namespace to each container.

The network namespace is a feature in Linux, which is logically another
copy of a network stack. It has its own routing tables, arp tables, and
network devices. It's a fundamental concept of container networking.

Veth always comes in a pair, one is in network namespace and the other is in the bridge.
When the traffic comes into the host network, it will be routed into the bridge. The packet
will be dispatched to its veth, and will go into the namespace inside the container, as shown
in the following figure:

- EE s E RS-

docker0 (bridge):
172.17.1.0/16

eth0: 192.168.0.1
\ Host J

[167]

Network and Security Chapter 5

Let's take a closer look. In the following example, we'll use a minikube node as the docker
host. Firstly, we'll have to use minikube ssh to ssh into the node because we're not using
Kubernetes yet. After we get into the minikube node, let's launch a container to interact
with us:

// launch a busybox container with ‘top’ command, also, expose container
port 8080 to host port 8000.

docker run -d -p 8000:8080 —-—name=busybox busybox top
737e4d87ba86633£39b4e541£f15cd077d688alc8bfb83156d38566£c5c81£469

Let's see the implementation of outbound traffic within a container. docker exec
<container_name or container_id> canrunacommand in a running container. Lets
use ip link list to list down all the interfaces:

// show all the network interfaces in busybox container
// docker exec <container_name> <command>
docker exec busybox ip link list
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gdisc noqueue glen 1
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: sitO@NONE: <NOARP> mtu 1480 gdisc noop glen 1
link/sit 0.0.0.0 brd 0.0.0.0
53: ethO@if54: <BROADCAST, MULTICAST, UP, LOWER_UP, M—DOWN>
mtu 1500 gdisc noqueue
link/ether 02:42:ac:11:00:07 brd ff:ff:ff:ff:££f:£ff

We can see that we have three interfaces inside the busybox container. One is with ID 53
with the name eth0@i£54. The number after if is the other interface ID in the pair. In this
case, the pair ID is 54. If we run the same command on the host, we could see the veth in
the host is pointing to the eth0 inside the container:

// show all the network interfaces from the host

ip link list

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gdisc noqueue
state UNKNOWN mode DEFAULT group default glen 1
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: ethO: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc
pfifo_fast state UP mode DEFAULT group default glen
1000
link/ether 08:00:27:ca:£fd:37 brd ff:ff:ff:ff:ff:ff

54: vethfeec36a@if53: <BROADCAST,MULTICAST, UP, LOWER_UP>
mtu 1500 gdisc noqueue master dockerO state UP mode
DEFAULT group default
link/ether ce:25:25:9e:6c:07 brd ff:ff:ff:ff:ff:ff link-netnsid 5

[168]

Network and Security Chapter 5

We have a veth on the host named vethfeec36a@if53. It pairs with eth0@i£54 in the
container network namespace. The veth 54 is attached to the docker0 bridge, and
eventually accesses the internet via eth0. If we take a look at the iptables rules, we can find a
masquerading rule (also known as SNAT) on the host that Docker creates for outbound
traffic, which will make internet access available for containers:

// list iptables nat rules. Showing only POSTROUTING rules which allows
packets to be altered before they leave the host.

sudo iptables -t nat -nL POSTROUTING

Chain POSTROUTING (policy ACCEPT)

target prot opt source destination

MASQUERADE all -- 172.17.0.0/16 0.0.0.0/0

On the other hand, for the inbound traffic, Docker creates a custom filter chain on
prerouting and creates forwarding rules in the DOCKER filter chain dynamically. If we
expose a container port 8080 and map it to a host port 8000, we can see we're listening to
port 8000 on any IP address (0.0.0.0/0), which will then be routed to container port
8080:

// list iptables nat rules

sudo iptables -t nat -nL

Chain PREROUTING (policy ACCEPT)

target prot opt source destination

DOCKER all -- 0.0.0.0/0 0.0.0.0/0 ADDRTYPE
match dst-type LOCAL

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

DOCKER all -- 0.0.0.0/0 1127.0.0.0/8 ADDRTYPE
match dst-type LOCAL

Chain DOCKER (2 references)

target prot opt source destination
RETURN all -- 0.0.0.0/0 0.0.0.0/0
DNAT tecp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:8000

to0:172.17.0.7:8080

Now we know how packet goes in/out of containers. Let's have a look at how containers in
a pod communicates with each other.

[169]

Network and Security Chapter 5

Container-to-container communications

Pods in Kubernetes have their own real IP addresses. Containers within a pod share
network namespace, so they see each other as localhost. This is implemented by the network
container by default, which acts as a bridge to dispatch the traffic for every container in a
pod. Let's see how this works in the following example. Let's use the first example from
Chapter 3, Getting Started with Kubernetes, which includes two containers, nginx and

centos inside one pod:

#cat 5-1-1_pod.yaml
apiVersion: vl
kind: Pod
metadata:
name: example
spec:
containers:
— name: web
image: nginx
— name: centos
image: centos
command: ["/bin/sh", "-c¢", "while : ;do curl http://localhost:80/;
sleep 10; done"]
// create the Pod
#kubectl create -f 5-1-1_pod.yaml
pod "example" created

Then, we will describe the pod and see its container ID:

kubectl describe pods example

Name: example
Node: minikube/192.168.99.100
Containers:

web:

Container ID: docker://
d9bd923572ab186870284535044e7£3132d5cacllecb18576078b9¢c7bae86c73

Image: nginx
centos:
Container ID: docker:

//£4c019d289d4b958cdl7ecbe9fe22a5ce5952cb380c8cad£9299e10bf5e94a0f
Image: centos

[170]

Network and Security Chapter 5

In this example, web is with container ID d9bd923572ab and centos is with container ID
£4c019d289d4. If we go into the node minikube/192.168.99.100 using docker ps, we
can check how many containers Kubernetes actually launches since we're in minikube,
which launches lots of other cluster containers. Check out the latest launch time by
CREATED column, where we will find that there are three containers that have just been
launched:

docker ps

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS

NAMES

£4c019d289d4 36540£359ca3 "/bin/sh -c
'while : " 2 minutes ago Up 2 minutes
k8s_centos_example_default_9843fc27-677b-11e7-9a8c-080027cafd37_1
d9bd923572ab ed4e6d42c70b3 "nginx -g
'daemon off" 2 minutes ago Up 2 minutes
k8s_web_example_default_9843fc27-677b-11e7-9a8c-080027cafd37_1
4ddd3221cc4’7 gcr.io/google_containers/pause—amd64:3.0 "/pause"
2 minutes ago Up 2 minutes

There is an additional container 4ddd3221cc47 that was launched. Before digging into
which container it is, let's check the network mode of our web container. We will find that
the containers in our example pod are running in containers with mapped container mode:

docker inspect d9bd923572ab | grep NetworkMode
"NetworkMode" :
"container:4ddd3221cc4792207cela2b3bac5d758a5c7ae321634436fa3e6dd627a31ca76

"
4

4ddd3221cc47 container is the so-called network container in this case, which holds
network namespace to let web and centos containers join. Containers in the same network
namespace share the same IP address and same network configuration. This is the default
implementation in Kubernetes to achieve container-to-container communications, which is
mapped to the first requirement.

Pod-to-pod communications

Pod IP addresses are accessible from other pods no matter which nodes they're on. This fits
the second requirement. We'll describe the pods' communication within the same node and
across nodes in the upcoming section.

[171]

Network and Security Chapter 5

Pod communication within the same node

Pod-to-pod communication within the same node goes through the bridge by default. Let's
say we have two pods, which have their own network namespaces. When pod1 wants to
talk to pod2, the packet passes through pod1's namespace to the corresponding veth pair
vethXXXX and eventually goes to the bridge. The bridge then broadcasts the destination IP
to help the packet find its way, vethYYYY responses. The packet then arrives at pod2:

- ----——-——-——--

bridge
172.17.1.0/16

eth0: 192.168.0.1

\Node

However, Kubernetes is all about clusters. How does traffic get routed when the pods are in
different nodes?

[172]

Network and Security Chapter 5

Pod communication across nodes

According to the second requirement, all nodes must communicate with all containers.
Kubernetes delegates the implementation to the container network interface (CNI). Users
could choose different implementations, by L2, L3, or overlay. Overlay networking is one of
the common solutions, known as packet encapsulation. It wraps a message before leaving
the source, gets delivered, and unwraps the message at the destination. This leads to a
situation where overlay increases the network latency and complexity. As long as all the
containers can access each other across nodes, you're free to use any technology, such as L2
adjacency or L3 gateway. For more information about CNI, refer to its spec
(https://github.com/containernetworking/cni/blob/master/SPEC.md):

‘---

bridge
172.17.1.0/16

bridge
172.17.2.0/16

eth0: 192.168.0.1

[173]

https://github.com/containernetworking/cni/blob/master/SPEC.md

Network and Security Chapter 5

Let's say we have a packet from pod1 to pod4. The packet leaves from container interface
and reaches to the veth pair, then passes through the bridge and node's network interface.
Network implementation comes into play in step 4. As long as the packet could be routed to
the target node, you are free to use any options. In the following example, we'll launch
minikube with the ~-network-plugin=cni option. With CNI enabled, the parameters will
be passed through kubelet in the node. Kubelet has a default network plugin, but you could
probe any supported plugin when it starts up. Before starting minikube, you could use
minikube stop firstif it's been started or minikube delete to delete the whole cluster
thoroughly before doing anything further. Although minikube is a single node
environment, which might not completely represent the production scenario we'll
encounter, this just gives you a basic idea of how all of this works. We will learn the
deployment of networking options in the real world in chapter 9, Kubernetes on AWS and
Chapter 10, Kubernetes on GCP.

// start minikube with cni option
minikube start —--network-plugin=cni

Kubectl is now configured to use the cluster.

When we specify the network-plugin option, it will use the directory specified in —-
network-plugin-dir for plugins on startup. In the CNI plugin, the default plugin
directory is /opt/cni/net .d. After the cluster comes up, let's log in to the node and see
the setting inside via minikube ssh:

minikube ssh
$ ifconfig

mybridge Link encap:Ethernet HWaddr OA:58:0A:01:00:01
inet addr:10.1.0.1 Bcast:0.0.0.0
Mask:255.255.0.0

We will find that there is one new bridge in the node, and if we create the example pod
again by 5-1-1_pod. yml, we will find that the IP address of the pod becomes 10.1.0.x,
which is attaching to mybridge instead of docker0.

kubectl create -f 5-1-1_pod.yaml
pod "example" created
kubectl describe po example

Name: example

Namespace: default

Node: minikube/192.168.99.100

Start Time: Sun, 23 Jul 2017 14:24:24 -0400
Labels: <none>

[174]

Network and Security Chapter 5

Annotations: <none>
Status: Running
IP: 10.1.0.4

Why is that? That's because we specify that we'll use CNI as the network plugin, and
docker0 will not be used (also known as container network model or libnetwork). CNI
creates a virtual interface, attaches it to the underlay network, and sets the IP address and
routes and maps it to the pods' namespace eventually. Let's take a look at the configuration
located at /etc/cni/net.d/:

#
{

}

cat /etec/cni/net.d/k8s.conf

"name": "rkt.kubernetes.io",
"type": "bridge",
"bridge": "mybridge",
"mtu": 1460,
"addIf": "true",
"isGateway": true,
"ipMasq": true,
"ipam": {
"type": "host-local",
"subnet": "10.1.0.0/16",
"gateway": "10.1.0.1",
"routes": [
{
"dst": "0.0.0.0/0"
}
1
}

In this example, we use the bridge CNI plugin to reuse the L2 bridge for pod containers. If
the packet is from 10.1.0.0/16, and its destination is to anywhere, it'll go through this
gateway. Just like the diagram we saw earlier, we could have another node with CNI
enabled with 10.1.2.0/16 subnet, so that ARP packets could go out to the physical
interface on the node that the target pod is located at. It then achieves pod-to-pod
communication across nodes.

[175]

Network and Security Chapter 5

Let's check the rules in iptables:

// check the rules in iptables
sudo iptables -t nat -nL

Chain POSTROUTING (policy ACCEPT)

target prot opt source destination

KUBE-POSTROUTING all -- 0.0.0.0/0 0.0.0.0/0 /*
kubernetes postrouting rules */

MASQUERADE all -- 172.17.0.0/16 0.0.0.0/0
CNI-25df152800e33f7b16£fc085a all -- 10.1.0.0/16 0.0.0.0/0

/* name: "rkt.kubernetes.io" id:
"328287949eb4d4483a3a8035d65¢cc326417ae7384270844e59¢c2f4e963d87e18" */
CNI-£1931fed74271104c4d10006 all -- 10.1.0.0/16 0.0.0.0/0
/* name: "rkt.kubernetes.io" id:
"08c562ff4d67496fdaelc08facb2766ca30533552b8bd0682630£203b18£8c0a" */

All the related rules have been switched to 10.1.0.0/16 CIDR.

Pod-to-service communications

Kubernetes is dynamic. Pods are created and deleted all the time. The Kubernetes service is
an abstraction to define a set of pods by label selectors. We normally use the service to
access pods instead of specifying a pod explicitly. When we create a service, an endpoint
object will be created, which describes a set of pod IPs that the label selector in that service
has selected.

In some cases, endpoint object will not be created with service creation.
For example, services without selectors will not create a corresponding
endpoint object. For more information, refer to the service without
selectors section in Chapter 3, Getting Started with Kubernetes.

[176]

Network and Security

Chapter 5

Then, how does traffic get from pod to the pod behind service? By default, Kubernetes uses
iptables to perform the magic by kube-proxy. This is explained in the following figure.

-

_

172.17.1.0/24

ethO:
172.17.1.2

bridge
172.17.1.0/16

Fr= L]
‘iptables !

192.168.0.1

~N

J

Let's reuse the 3-2-3_rc1.yaml and 3-2-3_nodeport .yaml examples from Chapter 3,
Getting Started with Kubernetes, to observe the default behavior:

// create two pods with nginx and one service to observe default
networking. Users are free to use any other kind of solution.

kubectl create -f 3-2-3_rcl.yaml
replicationcontroller "nginx-1.12" created
kubectl create -f 3-2-3_nodeport.yaml
service "nginx—-nodeport" created

[177]

Network and Security Chapter 5

Let's observe iptable rules and see how this works. As shown next, our service IP is
10.0.0.167, two pods IP addresses underneath are 10.1.0.4and 10.1.0.5.

// kubectl describe svc nginx—-nodeport

Name: nginx-nodeport

Namespace: default

Selector: project=chapter3, service=web
Type: NodePort

IP: 10.0.0.167

Port: <unset> 80/TCP

NodePort: <unset> 32261/TCP
Endpoints: 10.1.0.4:80,10.1.0.5:80

Let's get into minikube node by minikube ssh and check its iptable rules:
sudo iptables -t nat -nL

Chain KUBE-SERVICES (2 references)

target prot opt source destination
KUBE-SVC-37ROJ3MK6RKFMQ2B tcp -- 0.0.0.0/0 10.0.0.167
/* default/nginx-nodeport: cluster IP */ tcp dpt:80

KUBE-NODEPORTS all -- 0.0.0.0/0 0.0.0.0/0 /*

kubernetes service nodeports; NOTE: this must be the last rule in this
chain */ ADDRTYPE match dst-type LOCAL

Chain KUBE-SVC-37ROJ3MK6RKFMQ2B (2 references)

target prot opt source destination
KUBE-SEP-SVVBOHTYP7PAP3J5 all - 0.0.0.0/0 0.0.0.0/0

/* default/nginx-nodeport: */ statistic mode random probability
0.50000000000

KUBE-SEP-AYS7I6ZPYFC6YNNF all - 0.0.0.0/0 0.0.0.0/0

/* default/nginx-nodeport: */

Chain KUBE-SEP-SVVBOHTYP7PAP3J5 (1 references)

target prot opt source destination

KUBE-MARK-MASQ all -- 10.1.0.4 0.0.0.0/0 /*
default/nginx-nodeport: */

DNAT tcp -- 0.0.0.0/0 0.0.0.0/0 /*

default/nginx-nodeport: */ tcp to:10.1.0.4:80
Chain KUBE-SEP-AYS7I6ZPYFC6YNNF (1 references)

target prot opt source destination

KUBE-MARK-MASQ all -- 10.1.0.5 0.0.0.0/0 /*
default/nginx-nodeport: */

DNAT tcp -- 0.0.0.0/0 0.0.0.0/0 /*

default/nginx-nodeport: */ tcp to:10.1.0.5:80

[178]

Network and Security Chapter 5

The key point here is that the service exposes the cluster IP to outside traffic from the target
KUBE-SVC-37ROJ3MK6RKFMQ2B, which links to two custom chains KUBE-SEP -
SVVBOHTYP7PAP3J5 and KUBE-SEP-AYS7I6ZPYFC6YNNFE with statistic mode random
probability 0.5. This means, iptables will generate a random number and tune it based on
the probability distribution 0.5 to the destination. These two custom chains have the DNAT
target set to the corresponding pod IP. The DNAT target is responsible for changing the
packets' destination IP address. By default, conntrack is enabled to track the destination and
source of connection when the traffic comes in. All of this results in a routing behavior.
When the traffic comes to service, iptables will randomly pick one of the pods to route, and
modify the destination IP from service IP to real pod IP, and un-DNAT to go all the way
back.

External-to-service communications

The ability to serve external traffic to Kubernetes is critical. Kubernetes provides two API
objects to achieve this:

o Service: External network LoadBalancer or NodePort (L4)
o Ingress: HITP(S) LoadBalancer (L7)

For ingress, we'll learn more in the next section. We'll focus on L4 first. Based on what we've
learned about pod-to-pod communication across nodes, how the packet goes in and out
between service and pod. The following figure shows how it works. Let's say we have two
services, one service A has three pods (pod a, pod b, and pod c) and another service B gets
only one pod (pod d). When the traffic comes in from LoadBalancer, the packet will be
dispatched to one of the nodes. Most of the cloud LoadBalancer itself is not aware of pods
or containers. It only knows about the node. If the node passes the health check, then it will
be the candidate for the destination. Assume that we want to access service B, it currently
only has one pod running on one node. However, LoadBalancer sends the packet to another
node that doesn't have any of our desired pods running. The traffic route will look like this:

[179]

Network and Security Chapter 5

-~

- --——----- -

e e EEEEEE--——--

The packet routing journey will be:

1.

LoadBalancer will choose one of the nodes to forward the packet. In GCE, it
selects the instance based on a hash of the source IP and port, destination IP and
port, and protocol. In AWS, it's based on a round-robin algorithm.

Here, the routing destination will be changed to pod d (DNAT) and forward it to
the other node similar to pod-to-pod communication across nodes.

Then, comes service-to-pod communication. The packet arrives at pod d with the
response accordingly.

Pod-to-service communication is manipulated by iptables as well.
The packet will be forwarded to the original node.

The source and destination will be un-DNAT to LoadBalancer and client, and
sent all the way back.

goes into a node, Kubernetes will route the pods on that node, if any.

In Kubernetes 1.7, there is a new attribute in service called
0 externalTrafficPolicy. You can set its value to local, then after the traffic

[180]

Network and Security Chapter 5

Ingress

Pods and services in Kubernetes have their own IP; however, it is normally not the interface
you'd provide to the external internet. Though there is service with node IP configured, the
port in the node IP can't be duplicated among the services. It is cuambersome to decide
which port to manage with which service. Furthermore, the node comes and goes, it
wouldn't be clever to provide a static node IP to external service.

Ingress defines a set of rules that allows the inbound connection to access Kubernetes
cluster services. It brings the traffic into the cluster at L7, allocates and forwards a port on
each VM to the service port. This is shown in the following figure. We define a set of rules
and post them as source type ingress to the API server. When the traffic comes in, the
ingress controller will then fulfill and route the ingress by the ingress rules. As shown in the
following figure, ingress is used to route external traffic to the kubernetes endpoints by
different URLs:

(")

Pod Ingress Controller

/lechoserver

fwelcome

nginx nginx echoserver echoserver
Pod Pod Pod Pod

- _J

[181]

Network and Security Chapter 5

Now, we will go through an example and see how this works. In this example, we'll create
two services named nginx and echoserver with ingress path /welcome and
/echoserver configured. We can run this in minikube. The old version of minikube
doesn't enable ingress by default; we'll have to enable it first:

// start over our minikube local

minikube delete && minikube start
// enable ingress in minikube

minikube addons enable ingress
ingress was successfully enabled

// check current setting for addons in minikube
minikube addons list

- registry: disabled

— registry-creds: disabled

— addon-manager: enabled

— dashboard: enabled

— default-storageclass: enabled

— kube-dns: enabled

— heapster: disabled

— ingress: enabled

Enabling ingress in minikube will create an nginx ingress controller and a ConfigMap to
store nginx configuration (refer to
https://github.com/kubernetes/ingress/blob/master/controllers/nginx/README.md),
and a RC and service as default HTTP backend for handling unmapped requests. We could
observe them by adding ——namespace=kube-systemin the kubect1l command. Next, let's
create our backend resources. Here is our nginx Deployment and Service:

cat 5-2-1_nginx.yaml
apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: nginx
spec:
replicas: 2
template:
metadata:
labels:
project: chapter5
service: nginx
spec:
containers:

- name: nginx
image: nginx
ports:

- containerPort: 80

[182]

https://github.com/kubernetes/ingress/blob/master/controllers/nginx/README.md)

Network and Security Chapter 5

kind: Service
apiVersion: vl
metadata:
name: nginx
spec:
type: NodePort
selector:
project: chapter5
service: nginx

ports:
— protocol: TCP
port: 80

targetPort: 80
// create nginx RS and service
kubectl create -f 5-2-1_nginx.yaml
deployment "nginx" created
service "nginx" created

We'll then create another service with RS:

// another backend named echoserver
cat 5-2-1_echoserver.yaml
apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: echoserver
spec:
replicas: 1
template:
metadata:
name: echoserver
labels:
project: chapter5
service: echoserver
spec:
containers:
— name: echoserver
image: gcr.io/google_containers/echoserver:1.4
ports:
— containerPort: 8080
kind: Service
apiVersion: vl
metadata:
name: echoserver
spec:
type: NodePort

[183]

Network and Security Chapter 5

selector:
project: chapter5
service: echoserver

ports:
- protocol: TCP
port: 8080

targetPort: 8080
// create RS and SVC by above configuration file
kubectl create -f 5-2-1_echoserver.yaml
deployment "echoserver" created
service "echoserver" created

Next, we'll create the ingress resource. There is an annotation named
ingress.kubernetes.io/rewrite-target. This is required if the service requests are

coming from the root URL. Without a rewrite annotation, we'll get 404 as response. Refer to
https://github.com/kubernetes/ingress/blob/master/controllers/nginx/configurati

on.md#annotations for more supported annotation in nginx ingress controller:

cat 5-2-1_ingress.yaml
apiVersion: extensions/vlbetal
kind: Ingress
metadata:
name: ingress—example
annotations:
ingress.kubernetes.io/rewrite-target: /
spec:
rules:
— host: devops.k8s
http:
paths:
- path: /welcome
backend:
serviceName: nginx
servicePort: 80
- path: /echoserver
backend:
serviceName: echoserver
servicePort: 8080
// create ingress
kubectl create —-f 5-2-1_ingress.yaml
ingress "ingress-example" created

[184]

https://github.com/kubernetes/ingress/blob/master/controllers/nginx/configuration.md#annotations
https://github.com/kubernetes/ingress/blob/master/controllers/nginx/configuration.md#annotations

Network and Security Chapter 5

In some cloud providers, service LoadBalancer controller is supported. It
could be integrated with ingress via the
status.loadBalancer.ingress syntax in the configuration file. For

more information, refer to
https://github.com/kubernetes/contrib/tree/master/service-loadba

lancer.

Since our host is set to devops . k8s, it will only return if we access it from that hostname.
You could either configure the DNS record in the DNS server, or modify the hosts file in
local. For simplicity, we'll just add a line with the ip hostname format in the host file:

// normally host file located in /etc/hosts in linux
sudo sh -c "echo ‘minikube ip’' devops.k8s >> /etc/hosts"

Then we should be able to access our service by the URL directly:

curl http://devops.k8s/welcome
<title>Welcome to nginx!</title>

// check echoserver

curl http://devops.k8s/echoserver
CLIENT VALUES:
client_address=172.17.0.4
command=GET

real path=/

query=nil

request_version=1.1
request_uri=http://devops.k8s:8080/

The pod ingress controller dispatches the traffic based on the URL path. The routing path is
similar to external-to-service communication. The packet hops between nodes and pods.
Kubernetes is pluggable. Lots of third-party implementation is going on. We only scratch
the surface here while iptables is just a default and common implementation. Networking
evolves a lot in every single release. At the time of this writing, Kubernetes had just released
version 1.7.

[185]

https://github.com/kubernetes/contrib/tree/master/service-loadbalancer
https://github.com/kubernetes/contrib/tree/master/service-loadbalancer

Network and Security Chapter 5

Network policy

Network policy works as a software firewall to the pods. By default, every pod could
communicate with each other without any boundaries. Network policy is one of the
isolations you could apply to the pods. It defines who can access which pods in which port
by namespace selector and pod selector. Network policy in a namespace is additive, and
once a pod has policy on, it denies any other ingress (also known as default deny all).

Currently, there are multiple network providers that support network policy, such as Calico
(https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/),
Romana (https://github.com/romana/romana), Weave Net
(https://www.weave.works/docs/net/latest/kube-addon/#npc), Contiv
(http://contiv.github.io/documents/networking/policies.html) and Trireme
(https://github.com/aporeto—inc/trireme—kubernetes).Lhersarefreetochooseany
options. For simplicity, we're going to use Calico with minikube. To do that, we'll have to
launch minikube with the ——network-plugin=cni option. Network policy is still pretty
new in Kubernetes at this point. We're running Kubernetes version v.1.7.0 with v.1.0.7
minikube ISO to deploy Calico by self-hosted solution
(http://docs.projectcalico.org/vl.5/getting-started/kubernetes/installation/hos
ted/). First, we'll have to download a calico.yaml (https://github.com/projectcalico/
calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.
yaml) file to create Calico nodes and policy controller. et cd_endpoints needs to be
configured. To find out the IP of etcd, we need to access localkube resources.

// find out etcd ip

minikube ssh -- "sudo /usr/local/bin/localkube —--host-ip"

2017-07-27 04:10:58.941493 I | proto: duplicate proto type registered:
google.protobuf.Any

2017-07-27 04:10:58.941822 I | proto: duplicate proto type registered:
google.protobuf.Duration

2017-07-27 04:10:58.942028 I | proto: duplicate proto type registered:
google.protobuf.Timestamp

localkube host ip: 10.0.2.15

The default port of etcd is 2379. In this case, we modify etcd_endpoint in calico.yaml
from http://127.0.0.1:2379tohttp://10.0.2.15:2379:

// launch calico

kubectl apply -f calico.yaml

configmap "calico-config" created

secret '"calico-etcd-secrets" created
daemonset "calico-node" created

deployment "calico-policy-controller" created
job "configure-calico" created

[186]

https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/
https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/
https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/
https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/
https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/
https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/
https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/
https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/
https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/
https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/
https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/
https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/
https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/
https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/
https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/
https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/
https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/
https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/
https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/
https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/
https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/
https://www.projectcalico.org/calico-network-policy-comes-to-kubernetes/
https://github.com/romana/romana)
https://www.weave.works/docs/net/latest/kube-addon/#npc)
https://www.weave.works/docs/net/latest/kube-addon/#npc)
http://contiv.github.io/documents/networking/policies.html)
http://contiv.github.io/documents/networking/policies.html)
https://github.com/aporeto-inc/trireme-kubernetes
http://docs.projectcalico.org/v1.5/getting-started/kubernetes/installation/hosted/
http://docs.projectcalico.org/v1.5/getting-started/kubernetes/installation/hosted/
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)
https://github.com/projectcalico/calico/blob/master/v2.4/getting-started/kubernetes/installation/hosted/calico.yaml)

Network and Security Chapter 5

// list the pods in kube-system
kubectl get pods —-namespace=kube-system

NAME READY STATUS RESTARTS
AGE

calico—-node-ss243 2/2 Running 0

1m

calico-policy—-controller—-2249040168-r2270 1/1 Running 0

1m

Let's reuse 5-2-1_nginx.yaml as the example:

kubectl create -f 5-2-1_nginx.yaml
replicaset "nginx" created

service "nginx" created

// list the services

kubectl get svc

NAME CLUSTER-IP EXTERNAL-IP PORT (S) AGE
kubernetes 10.0.0.1 <none> 443/TCP 47m
nginx 10.0.0.42 <nodes> 80:31071/TCP Sm

We will find that our nginx service has IP 10.0.0.42. Let's launch a simple bash and use
wget to see if we can access our nginx:

kubectl run busybox -i -t --image=busybox /bin/sh
If you don't see a command prompt, try pressing enter.
/ # wget —--spider 10.0.0.42

Connecting to 10.0.0.42 (10.0.0.42:80)

The --spider parameter is used to check whether the URL exists. In this case, busybox can
access nginx successfully. Next, let's apply a NetworkPolicy to our nginx pods:

// declare a network policy
cat 5-3-1_networkpolicy.yaml
kind: NetworkPolicy
apiVersion: networking.k8s.io/vl
metadata:
name: nginx—networkpolicy
spec:
podSelector:
matchLabels:
service: nginx
ingress:
- from:
— podSelector:
matchLabels:
project: chapter5

[187]

Network and Security Chapter 5

We can see some important syntax here. The podSelector is used to select pods, which
should match the labels of the target pod. Another one is
ingress[].from[].podSelector, which is used to define who can access these pods. In
this case, all the pods with project=chapter5 labels are eligible to access the pods with
server=nginx labels. If we go back to our busybox pod, we're unable to contact nginx
anymore because right now, the nginx pod has NetworkPolicy on. By default, it is deny all,
so busybox won't be able to talk to nginx:

// in busybox pod, or you could use ‘kubectl attach <pod_name> —-c busybox -
i -t° to re-—attach to the pod

wget —--spider —--timeout=1 10.0.0.42

Connecting to 10.0.0.42 (10.0.0.42:80)

wget: download timed out

We could use kubectl edit deployment busybox to add the label project=chaper5
into busybox pods.

Refer to the labels and selectors section in chapter 3, Getting Started with
Kubernetes if you forget how to do so.

After that, we can contact nginx pod again:

// inside busybox pod
/ # wget —--spider 10.0.0.42
Connecting to 10.0.0.42 (10.0.0.42:80)

With the help of the preceding example, we have an idea how to apply network policy. We
could also apply some default polices to deny all or allow all by tweaking the selector to
select nobody or everybody. For example, deny all behavior could be achieved as follows:

cat 5-3-1_np_denyall.yaml
apiVersion: networking.k8s.io/vl
kind: NetworkPolicy
metadata:

name: default-deny
spec:

podSelector:

[188]

Network and Security Chapter 5

This way, all pods that don't match labels will deny all other traffic. Alternatively, we could
create a NetworkPolicy whose ingress is listed from everywhere. Then the pods running
in this namespace could be accessed by anyone else.

cat 5-3-1_np_allowall.yaml
apiVersion: networking.k8s.io/vl
kind: NetworkPolicy
metadata:

name: allow-all
spec:

podSelector:

ingress:

- {}

Summary

In this chapter, we have learned how containers communicate with each other as it is
essential, and we introduced how pod-to-pod communication works. Service is an
abstraction to route the traffic to any of the pods underneath, if label selectors match. We
learned how service works with pod by iptables magic. We got to know how packet routes
from external to a pod and the DNAT, un-DAT tricks. We also learned new API objects
such as ingress, which allow us to use the URL path to route to different services in the
backend. In the end, another object NetworkPolicy was introduced. It provides a second
layer of security, acting as a software firewall rule. With network policy, we can make
certain pods communicate only with certain pods. For example, only data retrieval service
can talk to the database container. All of these things make Kubernetes more flexible,
secure, and powerful.

Until now, we've learned the basic concepts of Kubernetes. Next, we'll get a clearer
understanding of what is happening inside your cluster by monitoring cluster metrics and
analyzing applications and system logs for Kubernetes. Monitoring and logging tools are
essential for every DevOps, which also play an extremely important role in dynamic
clusters such as Kubernetes. So we'll get an insight into the activities of the cluster, such as
scheduling, deployment, scaling, and service discovery. The next chapter will help you
better understand the act of operating Kubernetes in the real world.

[189]

Monitoring and Logging

Monitoring and logging are a crucial part of a site's reliability. We've learned how to
leverage various controllers to take care of our application, and about utilizing service
together with Ingress to serve our web applications. Next, in this chapter, we'll learn how to
keep track of our application by means of the following topics:

¢ Getting status snapshot of a container

¢ Monitoring in Kubernetes

e Converging metrics from Kubernetes by Prometheus
e Concepts of logging in Kubernetes

¢ Logging with Fluentd and Elasticsearch

Inspecting a container

Whenever our application behaves abnormally, we will definitely want to know what
happened, using all means, such as checking logs, resource usage, processes watchdog, or
even getting into the running host directly to dig problems out. In Kubernetes, we have
kubectl get and kubectl describe that can query deployment states, which will help
us determine if an application has crashed or works as desired.

Monitoring and Logging Chapter 6

Further, if we want to know what is going on from the outputs of an application, we also
have kubectl logs that redirects a container's stdout to our Terminal. For CPU and
memory usage stats, there's also a top-like command we can employ, kubectl top.
kubectl top node, which gives an overview of the resource usages of nodes, and
kubectl top pod <POD_NAME> which displays per-pod usage:

kubectl top node

NAME CPU (cores) CPU% MEMORY (bytes) MEMORY$%
node-1 42m 4% 273Mi 12%
node-2 152m 15% 1283Mi 75%

kubectl top pod mypod—name-2587489005-xq72v

NAME CPU (cores) MEMORY (bytes)
mypod—-name-2587489005-xq72v Om OMi

To use kubectl top, you'll need Heapster deployed in your cluster. We'll
discuss this later in the chapter.

What if we leave something such as logs inside a container and they are not sent out
anywhere? We know there's a docker exec execute command inside a running container,
but it's unlikely that we have access to nodes every time. Fortunately, kubect1 allows us to
do the same thing with the kubect1l exec command. Its usage is similar to the Docker one.
For example, we can run a shell inside the container in a pod like this:

$ kubectl exec -it mypod-name-2587489005-xq72v /bin/sh
/ #

/ # hostname
mypod—-name-2587489005-xqg72v

It's pretty much the same as logging onto a host by SSH, and it enables us to troubleshoot
with tools we are familiar with, as we've done in non-container worlds.

Kubernetes dashboard

In addition to the command-line utility, there is a dashboard that aggregates almost every
information we have just discussed on a decent web-ULI:

[191]

Monitoring and Logging Chapter 6
= kubernetes Workloads > Deployments + CREATE
Admin

CPU usage Memory usage @
Namespaces
Nodes 0.001 703 Ki
0.001 _ 625Ki
Persistent Volumes = 8) 23:11
g 0.0008 2 469Ki B Memory Usage 636 Ki
Storage Classes &g =
9 S 0.0005 ‘g 33K
O 0.0003 2 156Ki
Namespace 0 0
23:08 23:15 23:22 23:08 23:15 23:22
default Time Time
Workloads
Deployments Deployments
Replica Sets Name Labels Pods Age Images
Replication Controllers app: test-env
0 imworking 1/1 6 days alpine H

Daemon Sets cat: test-env
Stateful Sets

Jobs

It's in fact a general purpose graphical user interface of a Kubernetes cluster, as it also
allows us to create, edit, and delete resources. Deploying it is quite easy; all we need to do is
apply a template:

$ kubectl create -f \
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/
kubernetes—dashboard.yaml

This template is for the Kubernetes cluster with RBAC (role-based access control) enabled.
Check the dashboard's project repository (https://github.com/kubernetes/dashboard) if
you need other deployment options. Regarding RBAC, we'll talk about this in chapter s,
Cluster Administration. Many managed Kubernetes services, such as Google Container
Engine, pre-deployed the dashboard in the cluster so that we don't need to install it on our
own. To determine whether the dashboard exists in our cluster or not, use kubect1
cluster—-info.

[192]

https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://raw.githubusercontent.com/kubernetes/dashboard/v1.6.3/src/deploy/kubernetes-dashboard.yaml
https://github.com/kubernetes/dashboard

Monitoring and Logging Chapter 6

We'll see kubernetes-dashboard is running at ... if it's installed. The service for the
dashboard deployed with the default template or provisioned by cloud providers is usually
ClusterIP. In order to access it, we'll need to establish a proxy between our terminal and
Kubernetes' API server with kubectl proxy. Once the proxy is up, we are then able to
access the dashboard at http://localhost:8001/ui. The port 8001 is the default port of
kubectl proxy.

As with kubectl top, you'll need Heapster deployed in your cluster to
see the CPU and memory stats.

Monitoring in Kubernetes

Since we now know how to examine our applications in Kubernetes, it's quite natural that
we should have a mechanism to do so constantly to detect any incident at the first
occurrence. To put it another way, we need a monitoring system. A monitoring system
collects metrics from various sources, stores and analyzes data received, and then responds
to exceptions. In a classical setup of application monitoring, we would gather metrics from,
at the very least, three different layers of our infrastructure to ensure our service's
availability as well as quality.

Application

The data we're concerned with at this level involves the internal states of an application,
which can help us determine what's going on inside our service. For example, the following
screenshot is from Elasticsearch Marvel

(https ://www.elastic.co/guide/en/marvel/current/introduction. html), called
Monitoring from version 5 onward), which is a monitoring solution for an Elasticsearch
cluster. It brings together the information about our cluster, particularly Elasticsearch
specific metrics:

[193]

https://www.elastic.co/guide/en/marvel/current/introduction.html

Monitoring and Logging Chapter 6

~all Marvel - Overview [iBsvsiopment iral

e e

I CLUSTER SUMMARY & % b =

Name: Nodes: 10 Indices: 1 Shards: 7 Data: 2.06 GB CPU: 6 Memory: 25.53 GB / 57.67 GB
Up time: 225.8d Version: 1.7.6

DOCUMENT COUNT e & & + x SEARCHREQUESTRATE & @ # <+ x INDEXING

REQUEST RATE
250K

220K F— 0.040
150 K
100K
50K
0
0 10:00 10:20 10:30 10:40 2 0 0.000
07-07 07-07 07-07 07-07 07-07 0O7-07 74 07 7-07 - 07-07 09:50 1000 10:10 10:20 10:30 10:40
07-Q7 07-07 0707 0O7-07 0O7-07

NODES @&

Filter nodes... 10 of 10 nodes /0 sciected /Last 10m

Deshboard OS CPU (%) Load (1m) JVM Mem (%)

In addition, we would leverage profiling tools in conjunction with tracing tools to
instrument our program, which augments dimensions that enables us to inspect our service
in a finer granularity. Especially nowadays, an application might be composed of dozens of
services in a distributed way. Without utilizing tracing tools, such as OpenTracing
(http://opentracing.io) implementations, identifying performance culprits can be
extremely difficult.

Host

Collecting tasks at the host level is usually performed by agents provided by the monitoring
framework. The agent extracts and sends out comprehensive metrics about a host such as
loads, disks, connections, or stats of processes that assist in determining a host's health.

[194]

http://opentracing.io

Monitoring and Logging Chapter 6

External resources

Aside from the aforementioned two components, we also need to check dependent
components' statuses. For instance, say we have an application that consumes a queue and
executes corresponding tasks; we should also take care about the metrics, such as the queue
length and the consuming rate. If the consuming rate is low and the queue length keeps
growing, our application is supposedly hitting trouble.

These principles also apply to containers on Kubernetes, as running a container on a host is
almost identical to running a process. Nonetheless, due to the fact that there is a subtle
distinction between the way containers on Kubernetes and on traditional hosts utilize
resources, we still need to take the differences into consideration when employing a
monitoring strategy. For instance, containers of an application on Kubernetes would spread
across multiple hosts, and also would not always be on the same hosts. It would be grueling
to produce a consistent recording of one application if we are still adopting the host-centric
monitoring approach. Therefore, rather than observing resource usages at the host level
only, we should pile a container layer to our monitoring stack. Moreover, since Kubernetes
is, in reality, the infrastructure to our applications, we absolutely should take it into account
as well.

Container

As mentioned, metrics collected at the container level and what we get at the host level are
pretty much the same thing, particularly the usage of system resources. Notwithstanding
the seeming redundancy, it's the very key which facilitates us to resolve difficulties on
monitoring moving containers. The idea is quite simple: what we need to do is attach
logical information to metrics, such as pod labels or their controller name. In this way,
metrics coming out from containers across distinct hosts could be meaningfully grouped.
Consider the following diagram; say we want to know how many bytes transmitted (tx) on
App 2, we could sum up tx metrics over the App 2 label and it yields 20 MB:

Node 1: tx = 50 MB

App 1 App 2 App 3
tx = 20 MB tx =10 MB tx=5MB

Node 2: tx = 40 MB

App 2
tx =10 MB

tx of App 2: sum(tx{app="App 2"}) =20 MB

[195]

Monitoring and Logging Chapter 6

Another difference is that metrics on CPU throttling are reported at container level only. If
performance issues are encountered at a certain application but the CPU resource on the
host is spare, we can check if it's throttled with the associated metrics.

Kubernetes

Kubernetes is responsible for managing, scheduling, and orchestrating our applications.
Accordingly, once an application has crashed, Kubernetes is certainly one of the first places
we would want to look. In particular, when the crash happens after rolling out a new
deployment, the state of associated objects would be reflected instantly on Kubernetes.

To sum up, components that should be monitored are illustrated in the following diagram:

—o

}a: pplication activities External
resources

}:objecf state

Application
% } resource utilization
_ Container

Kubernetes

w e ..
resource utilization

Host

—o

Getting monitoring essentials for Kubernetes

For every layer of the monitoring stack, we can always find a counterpart collector. For
instance, at the application level, we can dump metrics manually; at the host level, we
would install a metrics collector on every box; as for Kubernetes, there are APIs for
exporting the metrics that we are interested in, and, at the very least, we have kubect1 at

hand.

[196]

Monitoring and Logging Chapter 6

When it comes to the container level collector, what options do we have? Perhaps installing
the host metrics collector inside the image of our application does the job, but we'll soon
realize that it could make our container way too clumsy in terms of size as well as resource
utilizations. Fortunately, there's already a solution for such needs, namely cAdvisor
(https://github.com/google/cadvisor), the answer to the container level metrics
collector. Briefly speaking, cAdvisor aggregates the resource usages and performance
statistics of every running container on a machine. Notice that the deployment of cAdvisor
is one per host instead of one per container, which is more reasonable for containerized
applications. In Kubernetes, we don't even care about deploying cAdvisor, as it has already
been embedded into kubelet.

cAdvisor is accessible via port 4194 on every node. Prior to Kubernetes 1.7, the data
gathered by cAdvisor was able to be collected via the kubelet port (10250/10255) as well.
To access cAdvisor, we can access the instance port 4194 or through kubectl proxy at
http://localhost:8001/api/vl/nodes/<nodename>:4194/proxy/ Or access
http://<node-ip>:4194/ directly.

The following screenshot is from the cAdvisor Web UL You will see a similar page once
connected. For viewing the metrics that cAdvisor grabbed, visit the endpoint, /metrics.

Usage

Overview

Processes
User PID PPID Start Time CPU % MEM % RSS Virtual Size Status Running Time Command Container
root 19,869 19,854 Jul0é 18.00 37.80 644.03 MiB 717.37 MiB Ssl 15:26:51 prometheus /kubepods/besteffort/
root 19,005 1 Jul0é 4.10 4.60 78.84 MiB 781.51 MiB ssl 03:35:09 kubelet /system.slice/kubele
root 19,905 19,873 Juloé 0.80 6.40 110.60 MiB 531.14 MiB s1 00:44:57 fluentd /kubepods/burstable/p
root 19,026 1 Juloé 0.60 1.90 33.77 MiB 852.80 MiB Ssl 00:31:27 docker /system.slice/docke
root 19,795 19,779 Julos 0.20 0.50 9.59 MiB 185.68 MiB Ssl 00:14:21 node_exporter /kubepods/pod21524c05
root 19,321 19,316 Juloé 0.10 0.90 16.33 MiB 50.00 MiB 51 00:08:52 kube-proxy /kubepods/burstable/p
root 19,609 19,576 Juloé 0.10 1.00 17.34 MiB 41.84 MiB Ssl 00:06:25 kube-dns /kubepods/burstable/p
nobody 19,730 19,698 Jul0é 0.10 0.80 14.72 MiB 36.26 MiB Ssl 00:09:50 sidecar /kubepods/burstable/p
root 1 0 Juloé 0.00 0.20 3.58 MiB 94.09 MiB Ss 00:00:07 systemd
root 2 0 Jul0é 0.00 0.00 0.00 B 0.00 B s 00:00:00 kthreadd
root 3 2 Jul0é 0.00 0.00 0.00 B 0.00 B s 00:00:51 ksoftirqgd/0
root 5 2 Julo0é 0.00 0.00 0.00 B 0.00 B 8< 00:00:00 kworker/0:0H
root 7 2 Jul0é 0.00 0.00 0.00 B 0.00 B s 00:02:27 rcu_sched
root 8 2 Jul0é 0.00 0.00 0.00 B 0.00 B S 00:00:00 rcu_bh

[197]

https://github.com/google/cadvisor

Monitoring and Logging Chapter 6

Another important component in the monitoring pipeline is Heapster
(https://github.com/kubernetes/heapster). It retrieves monitoring statistics from every
node, specifically kubelet on nodes processing, and writes to external sinks afterward. It
also exposes aggregated metrics via the REST API. The function of Heapster sounds rather
redundant with cAdvisor, but they play different roles in the monitoring pipeline in
practice. Heapster gathers cluster-wide statistics; cAdvisor is a host-wide component. That
is to say, Heapster empowers a Kubernetes cluster with the basic monitoring ability. The
following diagram illustrates how it interacts with other components in a cluster:

Master

Kubelet Kubelet

Node

kubectl top

dashboard
—

As a matter of fact, it's unnecessary to install Heapster if your monitoring framework offers
a similar tool that also scrapes metrics from kubelet. However, since it's a default
monitoring component in Kubernetes' ecosystem, many tools rely on it, such as kubect1
top and the Kubernetes dashboard mentioned earlier.

Before deploying Heapster, check if the monitoring tool you're using is supported as a
Heapster sink in this document:
https://github.com/kubernetes/heapster/blob/master/docs/sink-configuration.md.

If not, we can just have a standalone setup and make the dashboard and kubectl top
work by applying this template:
$ kubectl create -f \

https://raw.githubusercontent.com/kubernetes/heapster/master/deploy/kube-co
nfig/standalone/heapster—-controller.yaml

[198]

https://github.com/kubernetes/heapster
https://github.com/kubernetes/heapster/blob/master/docs/sink-configuration.md

Monitoring and Logging Chapter 6

Remember to apply this template if RBAC is enabled:

$ kubectl create -f \
https://raw.githubusercontent.com/kubernetes/heapster/master/deploy/kube-co
nfig/rbac/heapster-rbac.yaml

After Heapster is installed, the kubect1l top command and the Kubernetes dashboard
should display resource usages properly.

While cAdvisor and Heapster focus on physical metrics, we also want the logical states of
objects being displayed on our monitoring dashboard. kube-state-metrics (https://github.
com/kubernetes/kube-state-metrics) is the very piece that completes our monitoring
stack. It watches Kubernetes masters and transforms the object statues we see from
kubectl get or kubectl describe to metrics in Prometheus format (https://
prometheus.io/docs/instrumenting/exposition_formats/). Aslong as the monitoring
system supports this format, we can scrape the states into the metrics storage and be alerted
on events such as unexplainable restart counts. To install kube-state-metrics, first download
the templates inside the kubernetes folder under the project repository(https://github.
com/kubernetes/kube-state-metrics/tree/master/kubernetes), and then apply them:

$ kubectl apply -f kubernetes

Afterwards, we can view the states inside a cluster in the metrics on its service endpoint:

http://kube-state-metrics.kube-system:8080/metrics

Hands-on monitoring

So far, we've learned lots of principles to fabricate an impervious monitoring system in
Kubernetes toward a robust service, and it's time to implement a pragmatic one. Because
the vast majority of Kubernetes components expose their instrumented metrics on a
conventional path in Prometheus format, we are free to use any monitoring tool with which
we are acquainted as long as the tool understands the format. In this section, we'll set up an
example with an open-source project, Prometheus (https://prometheus.io), whichis a
platform-independent monitoring tool. Its popularity in Kubernetes' ecosystem is for not
only its powerfulness but also for its being backed by the Cloud Native Computing
Foundation (https://www.cncf.io/), who also sponsors the Kubernetes project.

[199]

https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://github.com/kubernetes/kube-state-metrics/tree/master/kubernetes
https://github.com/kubernetes/kube-state-metrics/tree/master/kubernetes
https://github.com/kubernetes/kube-state-metrics/tree/master/kubernetes
https://github.com/kubernetes/kube-state-metrics/tree/master/kubernetes
https://github.com/kubernetes/kube-state-metrics/tree/master/kubernetes
https://github.com/kubernetes/kube-state-metrics/tree/master/kubernetes
https://github.com/kubernetes/kube-state-metrics/tree/master/kubernetes
https://github.com/kubernetes/kube-state-metrics/tree/master/kubernetes
https://github.com/kubernetes/kube-state-metrics/tree/master/kubernetes
https://github.com/kubernetes/kube-state-metrics/tree/master/kubernetes
https://github.com/kubernetes/kube-state-metrics/tree/master/kubernetes
https://github.com/kubernetes/kube-state-metrics/tree/master/kubernetes
https://github.com/kubernetes/kube-state-metrics/tree/master/kubernetes
https://github.com/kubernetes/kube-state-metrics/tree/master/kubernetes
https://github.com/kubernetes/kube-state-metrics/tree/master/kubernetes
https://github.com/kubernetes/kube-state-metrics/tree/master/kubernetes
https://github.com/kubernetes/kube-state-metrics/tree/master/kubernetes
https://github.com/kubernetes/kube-state-metrics/tree/master/kubernetes
https://github.com/kubernetes/kube-state-metrics/tree/master/kubernetes
https://github.com/kubernetes/kube-state-metrics/tree/master/kubernetes
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://prometheus.io
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/

Monitoring and Logging Chapter 6

Meeting Prometheus

The Prometheus framework comprises several components, as illustrated in the following
diagram:

Grafana

Application

/metrics
Prometheus
/metrics server

Alert
manager

As with all other monitoring frameworks, Prometheus relies on agents scraping out
statistics from the components of our system, and those agents are the exporters at the left
of the diagram. Besides this, Prometheus adopts the pull model on metrics collecting, which
is to say that it's not receiving metrics passively, but actively pulls data back from the
metrics' endpoints on exporters. If an application exposes a metric's endpoint, Prometheus
is able to scrape that data as well. The default storage backend is an embedded LevelDB,
and can be switched to other remote storages such as InfluxDB or Graphite. Prometheus is
also responsible for sending alerts according to pre-configured rules to Alert manager.
Alert manager handles alarm sending tasks. It groups alarms received and dispatches them
to tools that actually send messages, such as email, Slack, PagerDuty, and so on. In addition
to alerts, we would also like to visualize collected metrics for getting a quick overview of
our system, and Grafana is what comes in handy here.

Deploying Prometheus

The templates we've prepared for this chapter can be found here:
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6

[200]

https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6

Monitoring and Logging Chapter 6

Under 6-1_prometheus are manifests for this section, including a Prometheus deployment,
exporters, and related resources. They'll be settled at a dedicated namespace, monitoring,
except components required to work in kube-system namespaces. Please review them
carefully, and now let's create resources in the following order:

$ kubectl apply —-f monitoring-ns.yml
$ kubectl apply —-f prometheus/config/prom-config-default.yml
$ kubectl apply —-f prometheus

Usages of resources are confined to a relatively low level at provided setups. If you'd like to
use them in a more formal way, adjusting parameters according to actual requirements is
recommended. After the Prometheus server is up, we can connect to its Web-UI at port
9090 by kubectl port-forward. We can use NodePort or Ingress to connect to the UI if
modifying its service (prometheus/prom-svc.yml) accordingly. The first page we will see
when entering the Ul is Prometheus' expression browser, where we build queries and
visualize metrics. Under the default settings, Prometheus will collect metrics from itself. All
valid scraping targets can be found at path /targets. To speak to Prometheus, we have to
gain some understanding of its language: PromQL.

Working with PromQL

PromQL has three data types: instant vector, range vector, and scalar. An instant vector is a
time series of data sampled; a range vector is a set of time series containing data within a
certain time range; a scalar is a numeric floating value. Metrics stored inside Prometheus
are identified with a metric name and labels, and we can find the name of any collected
metric with the drop-down list next to the Execute button on the expression browser. If we
query Prometheus with metric names, say http_requests_total, we'll get lots of results
as instant vectors match the name but with different labels. Likewise, we can also query a
particular set of labels only with {} syntax. For example, the query
{code="400",method="get"} means that we want any metric that has the label code,
method equals to 400, and get respectively. Combining names and labels in a query is also
valid, such as http_requests_total{code="400", method="get"}. PromQL grants us
the detective ability to inspect our applications or systems from all kinds of clues so long as
related metrics are collected.

[201]

Monitoring and Logging Chapter 6

In addition to the basic queries just mentioned, there's so much more to PromQL, such as
querying labels with regex and logical operators, joining and aggregating metrics with
functions, and even performing operations between different metrics. For instance, the
following expression gives us the total memory consumed by a kube-dns deployment in
the kube-system namespace:

sum (container_memory_usage_bytes{namespace="kube-system", pod_name=~"kube-
dns—(\\d+)-.*"}) / 1048576

More detailed documents can be found at Prometheus' official site
(https://prometheus.io/docs/querying/basics/),anditceﬁahﬁblShoukiheh)youto
unleash the power of Prometheus.

Discovering targets in Kubernetes

Since Prometheus only pulls metrics from endpoints it knows, we have to explicitly tell it
where we'd like to collect data from. Under the path /config is the page that lists current
configured targets to pull. By default, there would be one job that collects the current
metrics about Prometheus itself, and it's in the conventional scraping path, /metrics. We
would see a very long text page if connecting to the endpoint:

$ kubectl exec -n monitoring prometheus-1496092314-jctr6 —-— \

wget —-qO - localhost:9090/metrics

HELP go_gc_duration_seconds A summary of the GC invocation durations.
TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 2.4032e-05
go_gc_duration_seconds{quantile="0.25"} 3.7359e-05
go_gc_duration_seconds{quantile="0.5"} 4.1723e-05

This is just the Prometheus metrics format we've mentioned several times. Next time when
we see any page like this, we will know it's a metrics endpoint.

The default job to scrape Prometheus is configured as a static target. However, with the fact
that containers in Kubernetes are created and destroyed dynamically, it's really troublesome
to find out the exact address of a container, let alone set it on Prometheus. In some cases, we
may utilize service DNS as a static metrics target, but this still cannot solve all cases.
Fortunately, Prometheus helps us overcome the problem with its ability to discover services
inside Kubernetes.

[202]

https://prometheus.io/docs/querying/basics/

Monitoring and Logging Chapter 6

To be more specific, it's able to query Kubernetes about the information of running services,
and adds or deletes them to the target configuration accordingly. Four kinds of discovery
mechanisms are currently supported:

e The node discovery mode creates one target per node, and the target port would
be kubelet's port by default.

¢ The service discovery mode creates a target for every service object, and all
defined ports in a service would become a scraping target.

¢ The pod discovery mode works in a similar way to the service discovery role,
that is, it creates targets per pod and for each pod it exposes all the defined
container ports. If there is no port defined in a pod's template, it would still create
a scraping target with its address only.

¢ The endpoints mode discovers endpoint objects created by a service. For
example, if a service is backed by three pods with two ports each, then we'll have
six scraping targets. In addition, for a pod, not only ports that expose to a service
but also other declared container ports would be discovered.

The following diagram illustrates four discovery mechanisms: the left ones are the resources
in Kubernetes, and those in the right list are targets created in Prometheus:

80 Discovery roles and targets

service:
-svc: 80

8080 8080 endpoints:
- pod-1: 8080 - pod-2:8080
pod-1-ep pod-2-ep - pod-1:9090 - pod-2: 9090
pod:
- pod-1: 8080 - pod-3:9090
- pod-1:9090
- pod-2: 8080
- pod-2: 9090

9090 9090 9090

node:
-node-1: 10255

[203]

Monitoring and Logging Chapter 6

Generally speaking, not all exposed ports are served as a metrics endpoint, so we certainly
don't want Prometheus to grab everything in our cluster but collect marked resources only.
To achieve this, Prometheus utilizes annotations on resource manifests to distinguish which
targets are to be grabbed. The annotation format is as follows:

¢ On pod: If a pod is created by a pod controller, remember to set Prometheus
annotations in the pod spec rather than in the pod controller:

e prometheus.io/scrape: true indicates that this pod should be
pulled.

e prometheus.io/path: Set this annotation to the path that exposes
metrics; it only needs to be set if the target pod is using a path other
than /metrics.

e prometheus.io/port:If the defined port is different from the
actual metrics port, override it with this annotation.

* On service: Since endpoints are mostly not created manually, endpoint discovery
uses the annotations inherited from a service. That is to say, annotations on
services effect service and endpoint discovery modes simultaneously. As such,
we'd use prometheus.io/scrape: 'true' to denote endpoints created by a
service that are to be scraped, and use prometheus.io/probe: 'true' totaga
service with metrics. Moreover, prometheus.io/scheme designates whether
http or https is used. Other than that, the path and port annotations also work
here.

The following template snippet indicates Prometheus' endpoint discovery role, but the
service discovery role to create targets on pods is selected at: 9100 /prom.

apiVersion: vi1
kind: Service
metadata:
annotations:
prometheus.io/scrape: 'true'
prometheus.io/path: '/prom'
spec:
ports:
- port: 9100

The template prom-config-k8s.yml under our example repository contains the
configuration to discover Kubernetes resources for Prometheus. Apply it with:

$ kubectl apply —-f prometheus/config/prom-config-k8s.yml

[204]

Monitoring and Logging Chapter 6

Because it's a ConfigMap, it takes seconds to become consistent. Afterwards, reload
Prometheus by sending a SIGHUP to the process:

$ kubectl exec -n monitoring ${PROM_POD_NAME} -- kill -1 1

The provided template is based on this example from Prometheus' official repository; you
can find out more usages here:

https://github.com/prometheus/prometheus/blob/master/documentation/examples/pro
metheus—kubernetes.yml

Also, the document page describes in detail how the Prometheus configuration works:

https://prometheus.io/docs/operating/configuration/

Gathering data from Kubernetes

The steps for implementing the five monitoring layers discussed earlier in Prometheus are
quite clear now: installing exporters, annotating them with appropriate tags, and then
collecting them on auto-discovered endpoints.

The host layer monitoring in Prometheus is done by the node exporter
(https://github.com/prometheus/node_exporter). [ts Kubernetes manifest can be found
under the examples for this chapter, and it contains one DaemonSet with a scrape
annotation. Install it with:

$ kubectl apply -f exporters/prom-node-exporter.yml
Its corresponding configuration will be created by a pod discovery role.

The container layer collector should be cAdvisor, and it has already been installed in
kubelet. Consequently, discovering it with the node mode is the only thing what we need to
do.

Kubernetes monitoring is done by kube-state-metrics, which was also introduced
previously. One even better thing is that it comes with Prometheus annotations, and this
means that we don't need to do anything additional to configure it.

[205]

https://github.com/prometheus/prometheus/blob/master/documentation/examples/prometheus-kubernetes.yml
https://github.com/prometheus/prometheus/blob/master/documentation/examples/prometheus-kubernetes.yml
https://prometheus.io/docs/operating/configuration/
https://github.com/prometheus/node_exporter

Monitoring and Logging Chapter 6

Up to this point, we've already set up a strong monitoring stack based on Prometheus. With
respect to the application and external resources monitoring, there are extensive exporters
in the Prometheus ecosystem to support monitoring various components inside our system.
For instance, if we need statistics of our MySQL database, we could just install MySQL
Server Exporter (https ://github.com/prometheus /mysqld_exporter), which offers
comprehensive and useful metrics.

In addition to those metrics already described, there are some other useful metrics from
Kubernetes components that play a significant part in a variety of aspects:

e Kubernetes API server: The API server exposes its state at /metrics, and this
target is enabled by default.

¢ kube-controller-manager: This component exposes metrics on port 10252, but
it's invisible on some managed Kubernetes services such as Google Container
Engine (GKE). If you're on a self-hosted cluster, applying
"kubernetes/self/kube-controller-manager-metrics-svc.yml" creates
endpoints for Prometheus.

e kube-scheduler: It uses port 10251, and it's not visible on clusters by GKE as
well. "kubernetes/self/kube-scheduler-metrics-svc.yml" is the template
for creating a target to Prometheus.

¢ kube-dns: There are two containers in a kube-dns pod, dnsmasg and sky-dns,
and their metrics ports are 10054 and 10055 respectively. The corresponding
template is kubernetes/self/ kube-dns-metrics-svc.yml.

e etcd: The eted cluster also has a Prometheus metrics endpoint on port 4001. If
your etcd cluster is self-hosted and managed by Kubernetes, you can take
"kubernetes/self/etcd-server.yml" as a reference.

e Nginx ingress controller: The nginx controller publishes metrics at port 10254.
But the metrics contain only limited information. To get data such as connection
counts by host or by path, you'll need to activate the vt s module in the controller
to enhance the metrics collected.

Seeing metrics with Grafana

The expression browser has a built-in graph panel that enables us to see the visualized
metrics, but it's not designed to serve as a visualization dashboard for daily routines.
Grafana is the best option for Prometheus. We've discussed how to set up Grafana in
Chapter 4, Working with Storage and Resources, and we also provide templates in the
repository for this chapter; both options do the job.

[206]

https://github.com/prometheus/mysqld_exporter

Monitoring and Logging Chapter 6

To see Prometheus metrics in Grafana, we have to add a data source first. The following
configurations are required to connect to our Prometheus server:

e Type: "Prometheus”
e Url: http://prometheus-svc.monitoring: 9090
e Access: proxy

Once it's connected, we can import a dashboard to see something in action. On Grafana's
sharing page (https://grafana.com/dashboards?dataSource=prometheus) are rich off-the-
shelf dashboards. The following screenshot is from the dashboard #1621:

Network I/0 pressure
500 kBps

250 kBps
0Bps

-250 kBps
_——- _—_. . —_ —,—_—_— .

-500 kBps
14:10:30 14:11:00 14:11:30 14:12:00 14 0 14:13:30 14:14:00 14:14:30 14:15:00

Cluster memory usage Cluster CPU usage (1m avg) Cluster filesystem usage

Used Total Used Total Used Total

3.60 GiB 4.99 GiB 0.19 cores 3.00 cores 20.18 GiB 30.52 GiB

Pods CPU usage (1m avg)

== prometheus-1496092314-jctré

= es-logging-151424845-r97tm

= fluentd-gcp-v2.0-bwwBm

= fluentd-gep-v2.0-5kg8j
fluentd-gcp-v2.0-rpvm3
kube-dns-1759312207-2v801

Because the graphs are drawn by data from Prometheus, we are capable of plotting any
data with which we are concerned as long as we master PromQL.

[207]

https://grafana.com/dashboards?dataSource=prometheus

Monitoring and Logging Chapter 6

Logging events

Monitoring with quantitative time series of a system status enables us to briskly dig out
which components in our system failed, but it's still inadequate to diagnose with the root
cause under syndromes. As a result, a logging system that gathers, persists, and searches
logs is certainly helpful for uncovering the reason why something went wrong by means of
correlating events with the anomalies detected.

In general, there are two main components in a logging system: the logging agent and the
logging backend. The former is an abstract layer to a program. It gathers, transforms, and
dispatches logs to the logging backend. A logging backend warehouses all logs received. As
with monitoring, the most challenging part of building a logging system for Kubernetes is
ascertaining how to gather logs from containers to a centralized logging backend. Typically,
there are three ways to send out logs to a program:

e Dumping everything to stdout/stderr
e Writing 1og files
¢ Sending logs to a logging agent or logging the backend directly; programs in

Kubernetes are also able to emit logs in the same manner so long as we
understand how log streams flow in Kubernetes

Patterns of aggregating logs

For programs that log to a logging agent or backend directly, whether they are inside
Kubernetes or not doesn't matter on the whole, as they technically don't output logs
through Kubernetes. As for other cases, we'd use the following two patterns to centralize
logs.

Collecting logs with a logging agent per node

We know messages we retrieved via kubectl logs are streams redirected from
stdout/stderr of a container, but it's obviously not a good idea to collect logs with
kubectl logs. Actually, kubectl logs gets logs from kubelet, and kubelet aggregates
logs to the host path, /var/log/containers/, from the container engine underneath.

[208]

Monitoring and Logging Chapter 6

Therefore, setting up logging agents on every node and configuring them to tail and
forward 1og files under the path are just what we need for converging standard streams of
running containers, as shown in the following diagram:

Logging
Pod Pod agent —

In practice, we'd also configure a logging agent to tail logs from the system and Kubernetes,
components under /var/log on masters and nodes such as:

® kube-proxy.log

e kube—-apiserver.log

® kube-scheduler.log

® kube-controller—-manager.log

e ctcd.log

Aside from stdout/stderr, if logs of an application are stored as files in the container and
persisted via the hostPath volume, a node logging agent is capable of passing them to a
node likewise. However, for each exported 1og file, we have to customize their
corresponding configurations in the logging agent so that they can be dispatched correctly.
Moreover, we also need to name 1og files properly to prevent any collision and take care of
log rotation on our own, which makes it an unscalable and unmanageable logging
mechanism.

[209]

Monitoring and Logging Chapter 6

Running a sidecar container to forward logs

Sometimes it's just difficult to modify our application to write logs to standard streams
rather than 1og files, and we wouldn't want to face the troubles brought about by logging
to hostPath volumes. In such a situation, we could run a Sidecar container to deal with
logging within only one pod. In other words, each application pod would have two
containers sharing the same emptyDir volume so that the Sidecar container can follow logs
from the application container and send them outside their pod, as shown in the following
diagram:

Although we don't need to worry about management of 1og files anymore, chores such as
configuring logging agents for each pod and attaching metadata from Kubernetes to log
entries still takes extra effort. Another choice is leveraging the Sidecar container to
outputting logs to standard streams instead of running a dedicated logging agent like the
following pod; the application container unremittingly writes messages to
/var/log/myapp.log, and the Sidecar tails myapp . 1og in the shared volume.

—-—-—-6-2_logging-sidecar.yml—--—-
apiVersion: vl
kind: Pod
metadata:
name: myapp
spec:
containers:
- image: busybox
name: application
args:
- /bin/sh
- -c
- >
while true; do
echo "$(date) INFO hello" >> /var/log/myapp.log ;

[210]

Monitoring and Logging Chapter 6

sleep 1;
done
volumeMounts:
— name: log
mountPath: /var/log
— name: sidecar
image: busybox
args:
- /bin/sh
- -c
- tail -fn+l /var/log/myapp.log
volumeMounts:
— name: log
mountPath: /var/log
volumes:
— name: log
emptyDir: {}

Now we can see the written log with kubectl logs:

$ kubectl logs —-f myapp —-c sidecar
Tue Jul 25 14:51:33 UTC 2017 INFO hello
Tue Jul 25 14:51:34 UTC 2017 INFO hello

Ingesting Kubernetes events

The event messages we saw at the output of kubectl describe contain valuable
information and complement the metrics gathered by kube-state-metrics, which allows us
to know what exactly happened to our pods or nodes. Consequently, it should be part of
our logging essentials together with system and application logs. In order to achieve this,
we'll need something to watch Kubernetes API servers and aggregate events into a logging
sink. And there is eventer that does what we need to events.

Eventer is part of Heapster, and it currently supports Elasticsearch, InfluxDB, Riemann, and
Google Cloud Logging as its sink. Eventer can also output to stdout directly in case the
logging system we're using is not supported.

Deployment of eventer is similar to deploying Heapster, except for the container startup
commands, as they are packed in the same image. The flags and options for each sink type
can be found here:
(https://github.com/kubernetes/heapster/blob/master/docs/sink-configuration.md).

[211]

https://github.com/kubernetes/heapster/blob/master/docs/sink-configuration.md

Monitoring and Logging Chapter 6

Example templates we provided for this chapter also include eventer, and it's configured to
work with Elasticsearch. We'll describe it in the next section.

Logging with Fluentd and Elasticsearch

Thus far we've discussed various conditions on the logging we may encounter in the real
world, and it's time to roll up our sleeves to fabricate a logging system with what we have
learned.

The architecture of a logging system and a monitoring system are pretty much the same in
some ways--collectors, storages, and the user-interface. The corresponding components
we're going to set up are Fluentd/eventer, Elasticsearch, and Kibana, respectively.
Templates for this section can be found under 6-3_efk, and they'd be deployed to the
namespace monitoring from the previous part.

Elasticsearch is a powerful text search and analysis engine, which makes it an ideal choice
for persisting, processing, and analyzing logs from everything running in our cluster. The
Elasticsearch template for this chapter uses a very simple setup to demonstrate the concept.
If you'd like to deploy an Elasticsearch cluster for production use, leveraging the StatefulSet
controller and tuning Elasticsearch with the proper configuration, as we discussed in
Chapter 4, Working with Storage and Resources, is recommended. Let's deploy Elasticsearch
with the following template
(https://github.com/DevOps7with7Kubernetes/examples/tree/master/chapter6/673_ef
k/):

$ kubectl apply -f elasticsearch/es-config.yml
$ kubectl apply -f elasticsearch/es-logging.yml

Elasticsearch is ready if there's a response from es-logging-svc: 9200.

The next step is setting up a node logging agent. As we'd run it on every node, we definitely
want it as light as possible in terms of resource usages of a node, hence Fluentd

(www. fluentd.org) is opted for. Fluentd features in lower memory footprints, which makes
it a competent logging agent for our needs. Furthermore, since the logging requirement in
the containerized environment is very focused, there is a sibling project, Fluent Bit
(fluentbit.io), which aims to minimize the resource usages by trimming out functions
that wouldn't be used for its target scenario. In our example, we would use the Fluentd
image for Kubernetes (https://github.com/fluent/fluentd-kubernetes-daemonset) to
conduct the first logging pattern we mentioned previously.

[212]

https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6/6-3_efk/
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6/6-3_efk/
http://www.fluentd.org
https://github.com/fluent/fluentd-kubernetes-daemonset

Monitoring and Logging Chapter 6

The image is already configured to forward container logs under /var/log/containers
and logs of certain system components under /var/log. We are absolutely able to further
customize its logging configuration if need be. Two templates are provided here: f1uentd-
sa.yml is the RBAC configuration for the Fluentd DaemonSet, fluentd-ds.yml:

$ kubectl apply -f fluentd/fluentd-sa.yml
$ kubectl apply -f fluentd/fluentd-ds.yml

Another must-have logging component is eventer. Here we prepared two templates for
different conditions. If you're on a managed Kubernetes service where Heapster is already
deployed, the template for a standalone eventer, eventer-only.yml, is used in this case.
Otherwise, consider the template of running Heapster in combination with eventer in the
same pod:

$ kubectl apply -f heapster-eventer/heapster-eventer.yml
or
$ kubectl apply -f heapster-eventer/eventer-only.yml

To see logs emitted to Elasticsearch, we can invoke the search API of Elasticsearch, but
there's a better option, namely Kibana, a web interface that allows us to play with
Elasticsearch. The template for Kibana is elasticsearch/kibana-logging.yml under
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6/6-3_efk

/.

$ kubectl apply -f elasticsearch/kibana-logging.yml

Kibana in our example is listening to port 5601. After exposing the service out of your
cluster and connecting to it with any browser, you can start to search logs from Kubernetes.
The index name of the logs sent out by eventer is heapster-*, and it's logstash-* for
logs forwarded by Fluentd. The following screenshot shows what a log entry looks like in
Elasticsearch.

[213]

https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6/6-3_efk/
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter6/6-3_efk/

Monitoring and Logging Chapter 6

The entry is from our earlier example, myapp, and we can find that the entry is already
tagged with handy metadata on Kubernetes.

L

0

PR 1 02:00 05:00 08:00 11:00 14:00 17:00 20:00 23:00
@timestamp per minute

Available Fields -3 Time kubernetes.pod_name
Popular » July 25th 2017, 22:14:59.000 [myapp|
t kubernetes.po... ~ July 25th 2017, 22:15:30.000 |/myapp
© @timestamp

Table JSON View surrounding documents View single document
t _id — .
t _index © @timestamp @ @ M * July 25th 2017, 22:15:30.000
_score t _id Qam AV16G1IM3_etRFDK1kgos
t _type t _index Qam Jlogstash-2017.07.25
t docker.contain... # _score i 3.857

t _type Qam fluentd

-

kubernetes.co...
t docker.container_id Qaem 25d7f4a141769c50976838666870f161003773e40988al4eeObedb2a771ec555
kubernetes.host

~

t kubernetes.container_name @ @ @ sidecar
t kubernetes.ma...
t kubernetes.host aQam gke-stable-cluster-default-pool-adc4ab2e-62zp
t kubernetes.na... .
t kubernetes.master_url Qam https://10.15.240.1:443/api
t log
t stream .
t kubernetes.pod_id Qam 7dbeeald-7143-11e7-8a11-42010a960013
t tag

t kubernetes.pod_name @Qam myapp

t log Qam Tue Jul 25 14:15:29 uTC 2017 INFO hello
t stream Qald

t tag Qam

*
*
*
*

t kubernetes.namespace_name @ @ [% default
*
*
*
%k stdout
*

kubernetes.var.log.containers.myapp_default_sidecar-25d7f4a141769c5
0976838666870f161003773e40988al4eeObedb2a771ec555.10g

[214]

Monitoring and Logging Chapter 6

Extracting metrics from logs

The monitoring and logging system we built around our application on top of Kubernetes is

shown in the following diagram:
m
Fluentd App

Elasticsearch é - MO EGETS
Node
‘ Heapster kube-state- |
<— —
eventer metrics

Kubernetes
The logging part and the monitoring part look like two independent tracks, but the value of
the logs is much more than a collection of short texts. They are structured data and emitted
with timestamps as usual; as such, the idea to transform logs into time-series data is
promising. However, although Prometheus is extremely good at processing time-series
data, it cannot ingest texts without any transformation.

An access log entry from HTTPD looks like this:
10.1.8.10 - - [07/Jul/2017:16:47:12 0000] "GET /ping HTTP/1.1" 200 68.

It consists of the request IP address, time, method, handler, and so on. If we demarcate log
segments by their meanings, counted sections can then be regarded as a metric sample like
this: "10.1.8.10": 1, "GET": 1, "/ping": 1, "200": 1.

Tools such as mtail (https://github.com/google/mtail) and Grok Exporter
(https://github.com/fstab/grok_exporter) count log entries and organize those numbers
to metrics so that we can further process them in Prometheus.

[215]

https://github.com/google/mtail
https://github.com/fstab/grok_exporter

Monitoring and Logging Chapter 6

Summary

At the start of this chapter, we described how to get the status of running containers quickly
by means of built-in functions such as kubect 1. Then we expanded the discussion to
concepts and principles of monitoring, including why it is necessary to do monitoring, what
to monitor, and how to monitor. Afterwards, we built a monitoring system with
Prometheus as the core, and set up exporters to collecting metrics from Kubernetes. The
fundamentals of Prometheus were also introduced so that we can leverage metrics to gain
more understanding of our cluster as well as the applications running inside. On the
logging part, we mentioned common patterns of logging and how to deal with them in
Kubernetes, and deployed an EFK stack to converge logs. The system we built in this
chapter facilitates the reliability of our service. Next, we are advancing to set up a pipeline
to deliver our product continuously in Kubernetes.

[216]

Continuous Delivery

Topics we've discussed so far enable us to run our services in Kubernetes. With the
monitoring system, we've gained more confidence in our service. The next thing we'd like
to achieve to set our service on course is how to deliver our latest features as well as
ameliorations to our service continuously in Kubernetes, and we'll learn it with the
following topics in this chapter:

e Updating Kubernetes resources
e Setting up a delivery pipeline
¢ Techniques to improve the deployment process

Updating resources

The property of Continuous Delivery is as what we described in chapter 1, Introduction to
DevOps, a set of operations including the Continuous Integration (CI) and ensuing
deployment tasks. The CI flow comprises elements like version control systems, buildings,
and different levels of automated tests. Tools to implement CI functions are usually at the
application layer which can be independent to underlying infrastructure, but when it comes
to achieving deployment, understanding and dealing with infrastructure is inevitable since
the deployment tasks are tightly bound to the platform that our application is running on.
In the environment that software runs on physical or virtual machines, we'd utilize
configuration management tools, orchestrators, and scripts to deploy our software.
However, if we're running our service on an application platform like Heroku, or even in
the Serverless pattern, designing the deployment pipeline would be a totally different story.
All in all, the goal of deployment tasks is about making sure our software works properly in
the right places. In Kubernetes, it's about how to rightly update resources, in particular,
pods.

Continuous Delivery Chapter 7

Triggering updates

In chapter 3, Getting Started with Kubernetes, we've discussed the rolling update mechanism
of pods of a Deployment. Let's recap what'd happen after the update process is triggered:

1.

3.

The Deployment creates a new ReplicaSet with 0 pod according to the updated
manifest.

The new Replicaset is scaled up gradually while the previous ReplicaSet
keeps shrinking.

The process ends after all the old pods are replaced.

Such a mechanism is done automatically by Kubernetes, and it exempts us from
supervising the updating process. To trigger it, all we need to do is inform Kubernetes that
the pod specification of a Deployment is updated, that is to say, modifying the manifest of
one resource in Kubernetes. Suppose we have a Deployment my-app (see ex-

deployment .yml under the example directory for this section), we can modify the manifest
with the sub commands of kubect1 as follows:

kubectl patch: Patches a manifest of an object partially according to the input
JSON parameter. If we'd like to update the image of my-app from alpine:3.5 to
alpine:3.6,it'd be:

$ kubectl patch deployment my-app -p
'{"spec":{"template":{"spec":{"containers":[{"name": "app", "image":"
alpine:3.6"}1}}}}!

kubectl set:Makes changes to certain properties of an object. This is a shortcut
to change some properties directly, image of a Deployment is one of the
properties it supports:

$ kubectl set image deployment my-app app=alpine:3.6

kubectl edit:Opens an editor and dumps the current manifest so that we can
edit it interactively. The modified one would take effect immediately after being
saved.

[218]

Continuous Delivery Chapter 7

® kubectl replace: Replaces one manifest with another submitted template file.
If a resource is not created yet or contains properties that can't be changed, it
yields errors. For instance, there are two resources in our example template ex-
deployment .yml, namely the Deployment my-app and its Service my-app-svc.
Let's replace them with a new specification file:

$ kubectl replace -f ex-deployment.yml

deployment "my—-app" replaced

The Service "my—-app-svc" is invalid: spec.clusterIP: Invalid value:
"": field is immutable

$ echo $?

1

After they are replaced, we'd see the error code would be 1 even though the result
is expected, that is, updating the Deployment rather than the Service. Such
behavior should be noticed especially when composing automation scripts for the
CI/CD flow.

e kubectl apply: Applies the manifest file anyway. In other words, if a resource
exists in Kubernetes, then it'd be updated, otherwise it'd be created. When
kubectl apply is used to create resources, it's roughly equal to kubect1
create --save-config in functionality. The applied specification file would be
saved to the annotation field kubectl.kubernetes.io/last—applied-
configuration accordingly, and we can manipulate it with sub commands
edit-last-applied, set—last—applied, and view—last—applied. For
example, we can view the template we've submitted previously, no matter what
the actual content of ex-deployment .yml become with:

$ kubectl apply -f ex—deployment.yml view-last-applied

The saved manifest information would exactly be the same as what we've sent,
unlike the one we retrieve via kubectl get —-o yaml/json which contains an
object's live status, in addition to specifications.

Although in this section we only focus on manipulating a Deployment, but the commands
here also work for updating all other Kubernetes resources like Service, Role, and so on.

Changes to ConfigMap and secret usually take seconds to propagate to
pods.

[219]

Continuous Delivery Chapter 7

The recommended way to interact with an Kubernetes' API server is by kubect1.If you're
under a confined environment, there are also REST APIs for manipulating resources of
Kubernetes. For example, the kubectl patch command we used before would become as
follows:

$ curl -X PATCH -H 'Content-Type: application/strategic-merge-patch+json' -
—-data
'{"spec":{"template":{"spec":{"containers":[{"name":"app", "image":"alpine:3
-6"}1}}}}’
'"https://$KUBEAPI/apis/apps/vlbetal/namespaces/default/deployments/my—app’

Here the variable $KUBEAPT is the endpoint of the API server. See API references for more
information: https://kubernetes.io/docs/api-reference/vl.7/.

Managing rollouts

Once the rollout process is triggered, Kubernetes would silently complete all tasks behind
the backdrop. Let's try some hands-on experiments. Again, the rolling update process won't
be triggered even if we've modified something with the commands mentioned earlier,
unless the associated pod's specification is changed. The example we prepared is a simple
script that would respond to any request with its hostname and the Alpine version it runs
on. We first create the Deployment, and check its response in another Terminal constantly:

$ kubectl apply -f ex-deployment.yml

deployment "my-—-app" created

service "my—-app-svc" created

$ kubectl proxy

Starting to serve on 127.0.0.1:8001

// switch to another terminal #2

$ while :; do curl
localhost:8001/api/vl/proxy/namespaces/default/services/my—app-svc:80/;
sleep 1;

done
my—-app—-3318684939-pwh41-v-3.5.2 is running...
my—-app—-3318684939-smdOt-v-3.5.2 is running...

[220]

https://kubernetes.io/docs/api-reference/v1.7/

Continuous Delivery Chapter 7

Now we change its image to another version and see what the responses are:

$ kubectl set image deployment my-app app=alpine:3.6
deployment "my—-app" image updated

// switch to terminal #2
my—-app—-99427026-7r51r-v-3.6.2 is running...
my—-app—-3318684939-pwh4l-v-3.5.2 is running...

Messages from version 3.5 and 3.6 are interleaved until the updating process ends. To
immediately determine the status of updating processes from Kubernetes rather than
polling the service endpoint, there's kubectl rollout for managing the rolling update
process, including inspecting the progress of ongoing updates. Let's see the acting rollout
with sub command status:

$ kubectl rollout status deployment my-app
Waiting for rollout to finish: 3 of 5 updated replicas are available...
Waiting for rollout to finish: 3 of 5 updated replicas are available...
Waiting for rollout to finish: 4 of 5 updated replicas are available...
Waiting for rollout to finish: 4 of 5 updated replicas are available...
deployment "my—-app" successfully rolled out

At this moment, the output at Terminal #2 should be all from version 3.6. The sub command
history allows us to review previous changes of the deployment:

$ kubectl rollout history deployment my-app
REVISION CHANGE-CAUSE

1 <none>

2 <none>

However, the CHANGE-CAUSE field doesn't show any useful information that helps us to
know the detail of the revision. To leverage it, add a flag ——record after every command
that leads to a change, such as what we've introduced earlier. Certainly, kubectl create
also support the record flag.

Let's make some change to the Deployment, say, modifying the environment variable DEMO
of pods of my-app. As it causes a change in the pod's specification, a rollout would start
right away. This sort of behavior allows us to trigger an update without building a new
image. For simplicity's sake, we use patch to modify the variable:

$ kubectl patch deployment my-app -p
'{"spec":{"template":{"spec":{"containers":[{"name":"app", "env": [{"name":"D
EMO", "value":"1"}1}]1}}}}' —--record

deployment "my-app" patched

$ kubectl rollout history deployment my-app

deployments "my-app"

[221]

Continuous Delivery Chapter 7

REVISION CHANGE-CAUSE

1 <none>
2 <none>
3 kubectl patch deployment my-—-app —-—

patch={"spec":{"template": {"spec": {"containers":
[{"name" :"app", "env": [{"name" : "DEMO", "value":"1"}]1}]1}}}} —-record=true

The CHANGE-CAUSE of REVISION 3 notes the committed command clearly. Nonetheless,
only the command would be recorded, which means any modification by
edit/apply/replace wouldn't be marked down explicitly. If we'd like to get the manifest
of former versions, we could retrieve the saved configuration as long as our changes are
made with apply.

For all kinds of reasons, sometimes we want to roll back our application even if the rollout
is successful to a certain extent. It can be achieved by the sub command undo:

$ kubectl rollout undo deployment my-app
deployment "my-app" rolled back

The whole process is basically identical to updating, that is, applying the previous manifest,
and performing a rolling update. Also, we can utilize the flag ——to-
revision=<REVISION#> to rollback to a specific version, but only retained revisions are
able to be rolled back. Kubernetes determines how many revisions it would keep according
to the revisionHistoryLimit parameter in Deployment objects.

The progress of an update is controlled by kubectl rollout pause and kubectl
rollout resume. As their names indicate, they should be used in pairs. The pause of a
Deployment implicates not only stopping of an ongoing rollout, but also freezing any
rolling updates even if the specification is modified unless it's resumed.

Updating DaemonSet and StatefulSet

Kubernetes supports various ways to orchestrate pods for different kinds of workloads. In
addition to Deployments, there are Daemonset and statefulset for long-running, non-
batch workloads. As pods they spawned have more constraint than Deployments, we
should know caveats on handling their updates

[222]

Continuous Delivery Chapter 7

DaemonSet

DaemonSet is a controller designed for system daemons as its name suggests.
Consequently, a Daemonset launches and maintains exactly one pod per node, this is to
say, the total number of pods by a DaemonSet is adhered to a number of nodes in a cluster.
Due to such limitations, updating a Daemonset is not as straightforward as updating a
Deployment. For instance, Deployment has a maxSurge parameter
(.spec.strategy.rollingUpdate.maxSurge) that controls how many redundant pods
over desired numbers can be created during updates. But we can't employ the same
strategy for the pod as a DaemonSet usually occupies host's resources like ports. It could
result in errors if we have two or more system pods simultaneously on a node. As such, the
update is in the form that a new pod is created after the old pod is terminated on a host.

Kubernetes implements two update strategies for DaemonSet, namely OnDelete and
rollingUpdate. An example demonstrates how to write a template of Daemonset is at
7-1_updates/ex-daemonset .yml. The update strategy is set at path
.spec.updateStrategy.type, and its default is OnDelete in Kubernetes 1.7, and it
becomes rollingUpdate since Kubernetes 1.8:

e OnDelete: Pods are only updated after they are deleted manually.

e rollingUpdate: It actually works like onDelete but the deletion of pods is
performed by Kubernetes automatically. There is one optional parameter
.spec.updateStrategy.rollingUpdate.maxUnavailable, which is akin to
the one in Deployment. Its default value is 1, which means Kubernetes replaces
one pod at a time node by node.

The trigger of the rolling update process is identical to a Deployment's. Moreover, we can
also utilize kubectl rollout to manage rollouts of our DaemonsSet. But pause and

resume are not supported.

Rolling updates for Daemonset are only available at Kubernetes 1.6 and
onward.

[223]

Continuous Delivery Chapter 7

StatefulSet

The updating of StatefulsSet and DaemonsSet are pretty much the same -- they don't
create redundant pods during an update, and their update strategies also behave in a
similar way. There is also a template file at 7-1_updates/ex-statefulset.yml for
practice. The option of update strategy is set at path . spec.updateStrategy.type:

e OnDelete: Pods are only updated after they are manually deleted.

e rollingUpdate: Like every rolling update, Kubernetes deletes and creates pods
in a controlled fashion. But Kubernetes knows the order matters in
StatefulSet, so it would replace pods in reverse ordinal. Say we have three
podsin a StatefulSet, and they are my-ss-0, my-ss-1, my-ss-2 respectively.
The update order is then starting from my-ss-2 to my-ss—-0. The deletion process
does not respect the pod management policy, that is to say, even if we set the pod
management policies to Parallel, the updating would still be performed one by
one.

The only parameter for type rollingUpdate is partition
(.spec.updateStrategy.rollingUpdate.partition). Ifit's specified, any
pod with its ordinal less than the partition number would keep its current version
and wouldn't be updated. For instance, if we setit to 1 ina StatefulSet with 3
pods, only pod-1 and pod-2 would be updated after a rollout. This parameter
allows us to control the progress at certain degrees and it's particularly handy for
scenarios such as waiting for data synchronization, testing the release with a
canary, or maybe we just want to stage an update.

Pod management policies and rolling updates are two features
implemented in Kubernetes 1.7 and later.

Building a delivery pipeline

Implementing a continuous delivery pipeline for containerized applications is quite simple.
Let's remember what we have learnt about Docker and Kubernetes so far and organize
them into the CD pipeline. Suppose we've done our code, Dockerfile, and corresponding
Kubernetes templates. To deploy them to our cluster, we'd go through the following steps:

1. docker build: Produces an executable immutable artifact.
2. docker run: Verifies if the build works with some simple test.

[224]

Continuous Delivery Chapter 7

docker tag: Tags the build with meaningful versions if it's good.
docker push: Moves the build to the artifacts repository for distribution.
kubectl apply: Deploys the build to a desired environment.

AN U

kubectl rollout status:tracks the progress of deployment tasks.

That's all for a simple but viable delivery pipeline.

Choosing tools

To make the pipeline ship builds continuously, we need at least three kinds of tools, namely
version control systems, build servers, and a repository for storing container artifacts. In
this section, we will set a reference CD pipeline based on the Saa$S tools we've introduced in
previous chapters. They are GitHub (https://github.com), Travis CI (https://travis-
ci.org), and Docker Hub (nttps://hub.docker.com), all of them are free to open source
projects. There are numerous alternatives for each tool we used here, like GitLab for VCS, or
hosting a Jenkins for CI. The following diagram is our CD flow based on the three services
earlier:

1. push
o

docker registry

commit codes trigger . :
—> > build 3..pull
dockerfiles ¢ T v

developer

Github Travis CI

Kubernetes test

templates >
2. invoke

Kubernetes

The workflow begins from committing codes into a repository on GitHub, and the commit
would invoke a build job on Travis CI. Our Docker image is built at this stage. Meanwhile,
we often run different levels of tests on the CI server to ensure that the quality of build is
solid. Further, as running an application stack by Docker Compose or Kubernetes is easier
than ever, we are capable of running tests involving many components in a build job.
Afterwards, the verified image is tagged with identifiers and pushed to the public Docker
Registry service, Docker Hub.

[225]

https://github.com
https://github.com
https://travis-ci.org
https://travis-ci.org
https://hub.docker.com
https://hub.docker.com

Continuous Delivery Chapter 7

No blocks in our pipeline are dedicated to deployment tasks. Instead, we rely on Travis CI
to deploy our builds. As a matter of fact, the deployment task is merely applying
Kubernetes templates on certain builds after the image is pushed. Finally, the delivery is
finished after the rolling update process by Kubernetes ends.

Steps explained

Our example, my-app is a web service that echoes OK constantly, and the code as well as the
files for deployment are committed in our repository over in GitHub here:
(https://github.com/DevOps-with-Kubernetes/my-app).

Before configuring our builds on Travis CI, let's create an image repository at Docker Hub
first for later use. After signing in to Docker Hub, press the huge Create Repository at top-
right, and then follow the steps on screen to create one. Image registry of my-app for
pushing and pulling is at devopswithkubernetes/my-app
(https://hub.docker.com/r/devopswithkubernetes/my—app/).

Connecting Travis CI with a GitHub repository is quite simple, all we need to do is
authorize Travis CI to access our GitHub repositories, and enable Travis CI to build the
repository at the profile page (https://travis—ci.org/profile).

The definition of a job in Travis Cl is configured in a file . travis.yml placed under the
same repository. It's a YAML format template consisting of blocks of shell scripts that tell
what Travis CI should do during a build. Explanations on blocks of our .travis.yml
(https://github.com/DevOps7witthubernetes/myfapp/blob/master/.travis.yml)are
the following:

enyv

This section defines environment variables that are visible throughout a build:

DOCKER_REPO=devopswithkubernetes/my—-app
BUILD_IMAGE_PATH=${DOCKER_REPO}:b${TRAVIS_BUILD_ NUMBER}
RELEASE_IMAGE_PATH=${DOCKER_REPO}:${TRAVIS_TAG}
RELEASE_TARGET_NAMESPACE=default

Here we set some variables that might be changed like the namespace and the docker
registry path to where the built image is going. Besides, there're also metadata about a build

passed from Travis CI in the form of environment variables, and they are documented here:
https://docs.travis—ci.com/user/environment-variables/#Default-Environment-

variables. For example, TRAVIS_BUILD_NUMBER represents the number of the current
build, and we use it as an identifier to distinguish our images across builds.

[226]

https://github.com/DevOps-with-Kubernetes/my-app
https://hub.docker.com/r/devopswithkubernetes/my-app/
https://travis-ci.org/profile
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/.travis.yml
https://docs.travis-ci.com/user/environment-variables/#Default-Environment-Variables
https://docs.travis-ci.com/user/environment-variables/#Default-Environment-Variables

Continuous Delivery Chapter 7

The other one source of environment variables is configured manually on Travis CI.
Because the variables configured there would be hidden publicly, we stored some sensitive
data such as credentials to Docker Hub and Kubernetes there:

Environment Variables

Notice that the values are not escaped when your builds are executed. Special characters (for bash) should be escaped accordingly.

CI_ENV_K8S_CA sssevcsssnsesene
CI_ENV_K8S_MASTER sevsesessnsecene
CI_ENV_K8S_SA_TOKEN sessessssssssene
CI_ENV_REGISTRY_PASS sssevcsssnsesene
CI_ENV_REGISTRY_USER sevsesessnsecene

Every CI tool has own best practices to deal with secrets. For instance, some CI tools also
allow us to save variables in the CI server, but they would still be printed in the building
logs, so we're unlikely to save secrets in the CI server in such cases.

script

This section is where we run builds and tests:

docker build -t my-app .

docker run ——-rm ——name app -dp 5000:5000 my-app

sleep 10

CODE=$ (curl -IXGET -so /dev/null -w "%{http_code}" localhost:5000)
'"[${CODE} -eq 200] && echo "Image is OK"'

docker stop app

As we're on Docker, the build is only one line of script. Our test is quite simple as well--
launching a container with the built image and making some requests against it to
determine its correctness and integrity. Definitely, we can do everything such as adding
unit tests, doing the multi-stage build, or running an automated integration test to better the
resultant artifacts in this stage.

[227]

Continuous Delivery Chapter 7

after_success

This block is executed only if the previous stage ends without any error. Once it comes here,
we are good to publish our image:

docker login -u ${CI_ENV_REGISTRY_USER} -p "${CI_ENV_REGISTRY_PASS}"
docker tag my-app ${BUILD_IMAGE_PATH}
docker push ${BUILD_IMAGE_PATH}
if [[${TRAVIS_TAG} =~ “rel.*$]]; then
docker tag my-app ${RELEASE_IMAGE_PATH}
docker push ${RELEASE_IMAGE_PATH}
fi

Our image tag trivially uses the build number on Travis CI, but using the hash of a commit,
or version numbers to tag an image is common, too. However, using the default tag latest
is strongly discouraged as it could result in version confusion such as running two different
images but they have the same name. The last conditional block is publishing the image on
certain branch tags, and it's not actually needed, for we just want to keep building and
releasing on a separate track. Remember to authenticate to Docker Hub before pushing an
image.

Kubernetes decides whether the image should be pulled by the
imagePullPolicy:
https://kubernetes.io/docs/concepts/containers/images/#updating-

images.

Because we set our project deploys to actual machines only on a release, a build may stop
and be returned at that moment. Let's see the log of this build: https://travis-
ci.org/DevOps-with-Kubernetes/my-app/builds/268053332. The log retains scripts that
Travis CI executed and outputs from every line of the script:

$ docker login -u ${CI_ENV_REGISTRY_USER} -p "${CI_ENV_REGISTRY_PASS}" after_success.1
$ docker tag my-app ${BUILD_IMAGE_PATH} after_success.2
$ docker push ${BUILD_IMAGE_PATH} after_success.3
$ if [[${TRAVIS_TAG} =~ Arel.*$]1]; then after_success, 4

Skipping a deployment with the script provider because a custom condition was not met
Skipping a deployment with the script provider because this is not a tagged commit

Done. Your build exited with @.

As we can see, our build is successful, so the image is then published here:

https://hub.docker.com/r/devopswithkubernetes/my—app/tags/.

[228]

https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://travis-ci.org/DevOps-with-Kubernetes/my-app/builds/268053332
https://travis-ci.org/DevOps-with-Kubernetes/my-app/builds/268053332
https://hub.docker.com/r/devopswithkubernetes/my-app/tags/

Continuous Delivery Chapter 7

The build refers to tag b1, and we can run it outside the CI server now:

$ docker run —--name test -dp 5000:5000 devopswithkubernetes/my-app:bl
72£0e£f501dc4c86786a81363e278973295a1£67555eebal02a8d25e488831813

$ curl localhost:5000

OK

deploy

Although we can achieve a fully automated pipeline from end to end, we'd often encounter
situations to hold up deploying builds due to business reasons. As such, we tell Travis CI to
run deployment scripts only when we release a new version.

To manipulate resources in our Kubernetes cluster from Travis CI, we'll need to grant
Travis CI sufficient permissions. Our example uses a service account cd-agent under
RBAC mode to create and update our deployments on behalf of us. Later chapters will have

more descriptions on RBAC. The templates for creating the account and permissions are at:
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter7/7-

2_service-account-for-ci-tool. The account is created under namespace cd, and it's
authorized to create and modify most kinds of resources across namespaces.

Here we use a service account that is able to read and modify most
resources across namespaces, including secrets of the whole cluster. Due
to security concerns, its always encouraged to restrict permissions of a
service account to resources the account actually used, or it could be a
potential vulnerability.

Because Travis CI sits outside our cluster, we have to export credentials from Kubernetes so
that we can configure our CI job to use them. Here we provide a simple script to help export
those credentials. The script is at: https://github.com/DevOps-with-
Kubernetes/examples/blob/master/chapter7/get—-sa-token.sh.

$./get-sa-token.sh —--namespace cd --account cd-agent
API endpoint:

https://35.184.53.170

ca.crt and sa.token exported

$ cat ca.crt | baseé64

LSOtLsicC...

$ cat sa.token

eyJhbGei. ..

[229]

https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter7/7-2_service-account-for-ci-tool
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter7/7-2_service-account-for-ci-tool
https://github.com/DevOps-with-Kubernetes/examples/blob/master/chapter7/get-sa-token.sh
https://github.com/DevOps-with-Kubernetes/examples/blob/master/chapter7/get-sa-token.sh

Continuous Delivery Chapter 7

Corresponding variables of exported API endpoint, ca.crt, and sa.token are
CI_ENV_K8S_MASTER, CI_ENV_K8S_CA, and CI_ENV_K8S_SA_TOKEN respectively. The
client certificate (ca.crt) is encoded to base64 for portability, and it will be decoded at our
deployment script.

TTKEdepkﬁnnentscﬂpt(https://github.com/DevOps—with—Kubernetes/my—
app/blob/master/deployment /deploy. sh) downloads kubect1 first, and configures
kubect1 with environment variables accordingly. Afterwards, the image path of the
current build is filled in the deployment template, and the templates are applied. Finally,
after the rollout is finished, our deployment is done.

Let's see the entire flow in action.

As soon as we publish a release at GitHub:

https://github.com/DevOps-with-Kubernetes/my-app/releases/tag/rel.0.3

Latest release ’ re|.0.3: dumb OKer

©rel.0.3

.0- 0a84b6b falau released this 15 minutes ago

Add app and files for deployment

Travis CI starts to build our job right after that:

Current Branches Build History Pull Requests Build #2

Commit 0a84béb Running for -
Comparerel.0.3
Branch rel.0.3

@ ChengYangWu authored and committed

[230]

https://github.com/DevOps-with-Kubernetes/my-app/blob/master/deployment/deploy.sh
https://github.com/DevOps-with-Kubernetes/my-app/blob/master/deployment/deploy.sh
https://github.com/DevOps-with-Kubernetes/my-app/releases/tag/rel.0.3

Continuous Delivery Chapter 7

The built image is pushed onto Docker Hub after a while:

PUBLIC REPOSITORY

devopswithkubernetes/my-app ¥

Repo Info Tags Collaborators Webhooks Settings
Tag Name Compressed Size Last Updated
rel.0.3 30 MB a minute ago

At this point, Travis CI should start to run deployment tasks, let's see the building log to
know the status of our deployment:

https://travis—-ci.org/DevOps—with-Kubernetes/my—app/builds/268107714

Deploying application
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 68.9M 100 68.9M) 254M () eofeofee =of=mfos =of=mfen k]
Cluster "mycluster” set.
User "mysa" set.
Context "myctxt" created.
Switched to context "myctxt".
deployment "my-app" created
service "my-app-svc" created
Waiting for rollout to finish:
Waiting for rollout to finish:

of 3 updated replicas available...
of 3 updated replicas available...
Waiting for rollout to finish: @ of 3 updated replicas available...
Waiting for rollout to finish: @ of 3 updated replicas available. ..
deployment "my-app" successfully rolled out

]
0
0
0

[231]

https://travis-ci.org/DevOps-with-Kubernetes/my-app/builds/268107714

Continuous Delivery Chapter 7

As we can see, our application has rolled out successfully, and it should start to welcome
everyone with OK:

$ kubectl get deployment

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
my—-app 3 3 3 3 30s

$ kubectl proxy &

$ curl localhost:8001/api/vl/namespaces/default/services/my—app-
svc:80/proxy/

OK

The pipeline we built and demonstrated in this section is a classical flow to deliver codes
continuous in Kubernetes. Nonetheless, as the work style and cultures vary from team to
team, designing a tailor-made continuously delivery pipeline for your team rewards
efficiency boosts.

Gaining deeper understanding of pods

Although the birth and the death are merely a wink during a pod's lifetime, they are the
most fragile point of a service. Common situations in the real world such as routing
requests to an unready box, or brutally cutting all in-flight connections to a terminating
machine, are all what we want to avoid. As a result, even Kubernetes takes care of most
things for us, and we should know how to configure it correctly to gain more confident in
deploying.

Starting a pod

By default, Kubernetes transfers a pod's state to Running as soon as a pod launches. If the
pod is behind a service, the endpoint controller registers an endpoint to Kubernetes
immediately. Later on kube-proxy observes the change of endpoints and add rules to
iptables accordingly. Requests from the outside world now go to pods. Kubernetes makes
the pod registration lightning fast, so the changes are that the request goes to pods prior to
an application's readiness, especially on bulky software. On the other hand, if a pod fails
while running, we should have an automatic way to remove it instantly.

The minReadySeconds field of Deployment and other controllers doesn't
postpone a pod from becoming ready. Instead, it delays a pod from
becoming available, which is meaningful during a rollout process: a
rollout is successful only when all pods are available.

[232]

Continuous Delivery Chapter 7

Liveness and readiness probes

A probe is an indicator to a container's health. It judges the health through periodically
performing a diagnostic action against a container via kubelet:

¢ Liveness probe: Indicates whether a container is alive or not. If a container fails
on this probe, kubelet kills it and may restart it based on the restartPolicy of a

pod.
* Readiness probe: Indicates whether a container is ready for incoming traffic. If a
pod behind a service is not ready, its endpoint won't be created until the pod is

ready.

retartPolicy tells how Kubernetes treats a pod on failures or
terminations. It has three modes: Always, OnFailure, or Never. Default
is set to Always.

Three kinds of action handlers can be configured to perform against a container:

e exec: Executes a defined command inside the container. Considered to be
successful if the exit code is 0.

e tcpSocket: Tests a given port via TCP, successful if the port is opened.

® httpGet: Performs an HTTP GET to the IP address of target container. Headers in
the request to be sent is customizable. This check is considered to be healthy if the
status code satisfies: 400 > CODE >= 200.

Additionally, there are five parameters to define a probe's behavior:

e initialDelaySeconds: How long kubelet should be waiting for before the first
probing.

® successThreshold: A container is considered to be healthy when getting
consecutive times of probing successes passed this threshold.

e failureThreshold: Same as preceding but defines the negative side.

e timeoutSeconds: The time limitation of a single probe action.

® periodSeconds: Intervals between probe actions.

[233]

Continuous Delivery Chapter 7

The following code snippet demonstrates the usage of a readiness probe, the full template is
here: https://github.com/DevOps-with—
Kubernetes/examples/blob/master/chapter7/7-3_on_pods/probe.yml

containers:
— name: main
image: devopswithkubernetes/my-app:b5
readinessProbe:
httpGet:
path: /
port: 5000
periodSeconds: 5
initialDelaySeconds: 10
successThreshold: 2
failureThreshold: 3
timeoutSeconds: 1
command:

How the probe behaves is illustrated in the following diagram:

Real L. . . .
Readiness init in service out of service
0 5 10 15 20 25 30 33 40 45
Readiness
in K8s not ready ready not ready

The upper timeline is a pod's real readiness, and another line below is its readiness from
Kubernetes' view. The first probing executes 10 seconds after the pod is created, and the
pod is regarded as ready after 2 probing successes. A few seconds later, the pod goes out of
service due to an unknown reason, and it becomes unready after the next three failures. Try
to deploy the preceding example and observe its output:

Pod is created at 1505315576
starting server at 1505315583.436334
1505315586.443435 GET / HTTP/1.1
1505315591.443195 GET / HTTP/1.1
1505315595.869020 GET /from—-tester
1505315596.443414 GET / HTTP/1.1

[234]

https://github.com/DevOps-with-Kubernetes/examples/blob/master/chapter7/7-3_on_pods/probe.yml
https://github.com/DevOps-with-Kubernetes/examples/blob/master/chapter7/7-3_on_pods/probe.yml
https://github.com/DevOps-with-Kubernetes/examples/blob/master/chapter7/7-3_on_pods/probe.yml
https://github.com/DevOps-with-Kubernetes/examples/blob/master/chapter7/7-3_on_pods/probe.yml

Continuous Delivery Chapter 7

1505315599.871162 - GET /from-tester
stopping server at 1505315599.964793
1505315601 readiness test fail#l
1505315606 readiness test fail#2
1505315611 readiness test fail#3

In our example file, there is another pod tester which is constantly making requests to our
service, and the log entries /from-tester in our service is caused by the tester thereof.
From tester's activity logs, we can observe that the traffic from the tester is stopped after
our service becomes unready:

$ kubectl logs tester
1505315577 - nc: timed out
1505315583 — nc: timed out
1505315589 - nc: timed out
1505315595 - OK

1505315599 - OK

1505315603 - HTTP/1.1 500
1505315607 - HTTP/1.1 500
1505315612 - nc: timed out
1505315617 — nc: timed out
1505315623 - nc: timed out

Since we didn't configure the liveness probe in our service, the unhealthy container
wouldn't be restarted unless we kill it manually. Therefore, in general, we would use both
probes together so as to make the healing process automated.

Init containers

Even though initialDelaySeconds allows us to block a pod for some time prior to
receiving traffic, it's still limited. Imagine that if our application is serving a file that fetches
from somewhere upon initializing, the ready time might differ a lot depending on the file
size. Hence, the Init containers come in handy here.

Init containers are one or more containers that start prior to application containers and run
one by one to completion in order. If any container fails, it's subject to the restartPolicy
of a pod and starts over again, till all containers exited with code 0.

[235]

Continuous Delivery Chapter 7

Defining Init containers is akin to regular containers:

spec:
containers:
- name: my-app
image: <my-app>
initContainers:
— name: init-my-app
image: <init-my-app>

They only differ in:

e Init containers don't have readiness probes as they'd run to completion

¢ The port defined in init containers wouldn't be captured by the service in front of
the pod

¢ The request/limit of resources are calculated with max (sum (regular
containers), max(init containers)), which means if one of init
containers sets a higher resource limit than other init containers as well as the
sum of resource limit of all regular containers, Kubernetes schedules the pod
according to the init container's resource limit

The usefulness of init containers is more than blocking the application containers. For
instance, we can utilize them to configure an image by sharing an emptyDir volume to Init
containers and application containers, instead of building another image that only runs
awk/sed on the base image, mounts and consume secrets in an Init container rather than in
application containers.

Terminating a pod

The sequence of shutdown events is similar to events while starting a pod. After receiving a
deletion invocation, Kubernetes sends SIGTERM to the pod to be deleted, and the pod's state
becomes Terminating. Meanwhile, Kubernetes removes the endpoint of that pod to stop
further requests if the pod is backing a service. Occasionally, there are pods that aren't
quitting at all. It could be the pods don't honor SIGTERY, or simply because their tasks
aren't completed. Under such circumstances, Kubernetes would send a SIGKILL to forcibly
kill those pods after the termination periods. The period length is set at
.spec.terminationGracePeriodSeconds under pod specification. Nonetheless, even
though Kubernetes has mechanisms to reclaim such pods anyway, we still should make
sure our pods can be closed properly.

[236]

Continuous Delivery Chapter 7

Besides, like in starting a pod, here we also need to take care of a case that might affect our
service, that is, the process which is serving requests in a pod closed prior to the
corresponding iptables rules are entirely removed.

Handling SIGTERM

Graceful termination is not a new idea, it's a common practice in programming, and
especially important for business- critical missions.

The implementation principally includes three steps:

1. Add a handler to capture termination signals.

2. Do everything required in the handler, such as returning resources, releasing
distribution locks, or closing connections.

3. Program shutdown. Our previous example demonstrates the idea: closing the
controller thread on SIGTERM in the handler graceful_exit_handler. The
code can be found here
(https://github.com/DevOps-with-Kubernetes/my-app/blob/master/app.py).

As a matter of fact, common pitfalls that fail a graceful exit are not on the program side:

SIGTERM is not forwarded to the container process

In chapter 2, DevOps with Container, we've learned that there are two forms to invoke our
program when writing a Dockerfile, namely the shell form and the exec form, and the shell
to run the shell form commands is default to /bin/sh on Linux containers. Let's see the
foﬂovvﬁqgexannphe(https://github.com/DevOps—with—

Kubernetes/examples/tree/master/chapter7/7-3_on_pods/graceful_docker):

——— Dockerfile.shell-sh —-—-
FROM python:3-alpine

EXPOSE 5000

ADD app.py -

CMD python -u app.py

We know that the signal sent to a container would be caught by the PID 1 process inside
the container, so let's build and run it.

$ docker run -d --rm —--name my-app my-app:shell-sh
8962005£3722131£820e750e72d0eb5caf08222bfbdc5d25b6£587de0f6£5£3F
$ docker logs my-app

starting server at 1503839211.025133

$ docker kill --signal TERM my-app

[237]

https://github.com/DevOps-with-Kubernetes/my-app/blob/master/app.py
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter7/7-3_on_pods/graceful_docker
https://github.com/DevOps-with-Kubernetes/examples/tree/master/chapter7/7-3_on_pods/graceful_docker

Continuous Delivery Chapter 7

my—app
$ docker ps —-filter name=my-app —-—-format '{{.Names}}'
my—app

Our container is still there. Let's see what happened inside the container:

$ docker exec my-app ps

PID USER TIME COMMAND

1 root 0:00 /bin/sh -c python -u app.py
5 root 0:00 python —u app.py

6 root 0:00 ps

The PID 1 process is the shell itself, and it doesn't forward our signal to the sub process
apparently. In this example, we're using Alpine as the base image which uses ash as the
default shell. If we execute anything with /bin/sh, it's linked to ash actually. Similarly, the
default shell in Debian family is dash, which doesn't forward signals as well. There is still a
shell that forwards signals, such as bash. To leverage bash, we can either install an extra
shell, or switch the base image to distributions that use bash. But both of them are rather
cumbersome.

Instead, there are still options to fix the signal problem without using bash. One is running
our program with exec in the shell form:

CMD exec python —-u app.py

Our process will replace the shell process and thus become the PID 1 process. Another
choice and also the recommended one is writing Dockerfile in EXEC form:

CMD [prthon " , ney" , "app .PY "]

Let's try the example again with the one in EXEC form:

——-Dockerfile.exec-sh——-

FROM python:3-alpine

EXPOSE 5000

ADD app.py -

CMD ["python", "-u", "app.py" 1

$ docker run -d —-rm —--name my—app my-app:exec-sh
5114cabae9%fcec530a2£68703d5bc910d988cb28acfede2689ae5eebdfd46441
$ docker exec my—app ps

PID USER TIME COMMAND
1 root 0:00 python —u app.py
5 root 0:00 ps

$ docker kill --signal TERM my-app && docker logs —-f my-app
my-app

[238]

Continuous Delivery Chapter 7

starting server at 1503842040.339449
stopping server at 1503842134.455339

The EXEC form works like a charm. As we can see, the processes in the container is what
we would anticipate, and our handler now receives SIGTERM correctly.

SIGTERM doesn't invoke the termination handler

In some cases, the termination handler of a process is not triggered by SIGTERM. For
instance, sending a SIGTERM to nginx actually causes a fast shutdown. To gracefully close a
nginx controller, we have to send SIGQUIT with nginx -s quit instead.

The full list of supported actions on the signal of nginx is listed here:
http://nginx.org/en/docs/control.html.

Now another problem arises--how do we send signals other than SIGTERM to a container on
deleting a pod? We can modify the behavior of our program to trap SIGTERM, but there's
nothing we can do about a popular tool like nginx. For such a situation, the life cycle hook is
capable of solving the problem.

Container lifecycle hooks

Lifecycle hooks are event-aware actions performs against a container. They work like a
single Kubernetes probing action, but they'll only be fired at least once per event during a
container's lifetime. Right now, there are two events supported:

e PostStart: Executes right after a container is created. Since this hook and the
entry point of a container are fired asynchronously, there is no guarantee that the
hook would be executed before the container starts. As such, we're unlikely to
use it to initialize resources for a container.

e PreStop: executes right before sending SIGTERM to a container. One difference to
PostStart hook is that the Prestop hook is a synchronous call, in other words,
SIGTERM is only sent after a PresStop hook exited.

So, our nginx shutdown problem is able to be trivially solved with a Prestop hook:

containers:
— name: main
image: nginx

[239]

http://nginx.org/en/docs/control.html

Continuous Delivery Chapter 7

lifecycle:
preStop:
exec:
command: ["nginx", "-s", "quit"]

Additionally, an important property of hooks is they could affect the state of a pod in
certain ways: a pod won't be running unless its Post Start hook exited successfully; a pod
is set to terminating immediately on deletion, but SIGTERM won't be sent unless the
PreStop hook exited successfully. Therefore, for the case we mentioned earlier, the
container quits before its iptables rules are removed, we can resolve it by the Prestop
hook. The following figure illustrates how to use the hook to eliminate the unwanted gap:

Pod deletion without PreStop

removing rules

endpoint removed

SIGTERM Pod unwanted gap
sent deleted

Pod deletion with PreStop

removing rules
endpoint removed
PreStop PreStop Pod
starts ends deleted
SIGTERM
sent

The implementation is just adding a hook that sleeps for few seconds:

containers:
— name: main
image: my-app
lifecycle:
preStop:
exec:
command: ["/bin/sh", "-¢", "sleep 5"]

[240]

Continuous Delivery Chapter 7

Placing pods

Most of time we don't really care about which node our pods is running on as scheduling
pods is a fundamental feature of Kubernetes. Nevertheless, Kubernetes is not aware of
factors such as geographical location of a node, availability zones, or machine types when
scheduling a pod. Moreover, at times we'd like to deploy pods that run testing builds in an
isolated instance group. As such, to complete the scheduling, Kubernetes provides different
levels of affinities that allows us to actively assign pods to certain nodes.

The node selector of a pod is the simplest way to place pods manually. It's similar to pod
selectors of service. A pod would only be put on nodes with matching labels. The field is set
at . spec.nodeSelector. For example, the following snippet of a pod spec schedules the
pod to nodes with label purpose=sandbox, disk=ssd.

spec:
containers:
— name: main
image: my-app
nodeSelector:
purpose: sandbox
disk: ssd

Checking labels on nodes is the same as how we check other resources in Kubernetes:

$ kubectl describe node gke-my-cluster-ins-49e8f52a-1z41

Name: gke-my—-cluster—-ins—-49e8£f52a-1z41
Role:
Labels: beta.kubernetes.io/arch=amdé4

beta.kubernetes.io/fluentd-ds-ready=true
beta.kubernetes.io/instance-type=gl-small
beta.kubernetes.io/os=linux
cloud.google.com/gke—-nodepool=ins
failure-domain.beta.kubernetes.io/region=us-
centrall
failure—-domain.beta.kubernetes.io/zone=us-
centrall-b
kubernetes.io/hostname=gke-my-cluster-ins-—
49e8£f52a-1z41

[241]

Continuous Delivery Chapter 7

As we can see, there are already labels on our node. Those labels are set by default, and the
default labels are as follows:

e kubernetes.io/hostname

e failure-domain.beta.kubernetes.io/zone

e failure-domain.beta.kubernetes.io/region
® beta.kubernetes.io/instance-type

e beta.kubernetes.io/os

® beta.kubernetes.io/arch

If we'd like to label a node to make our example pods scheduled, we can either update the
manifest of the node or use the shortcut command kubectl label:

$ kubectl label node gke-my-cluster-ins-49e8f52a-1z41 \
purpose=sandbox disk=ssd

node "gke-my-cluster-ins-49e8f52a-1z41" labeled

$ kubectl get node —--selector purpose=sandbox,disk=ssd

NAME STATUS AGE VERSION

gke—-my—-cluster—-ins—-49e8£f52a-1z41 Ready 5d v1.7.3

Aside from placing pods to a node, a node is able to reject pods as well, that is, taints and
tolerations, and we will learn it at the next chapter.

Summary

In this chapter, we've discussed topics not only on building a continuous delivery pipeline,
but also on techniques to strengthen our every deployment task. The rolling update of pods
is a powerful tool that performs updates in a controlled fashion. To trigger a rolling update,
what we need to do is update the pod's specification. Although the update is managed by
Kubernetes, we can still control it with kubectl rollout.

[242]

Continuous Delivery Chapter 7

Later on, we fabricated an extensible continuous delivery pipeline by
GitHub/DockerHub/Travis-CI. Next, we moved our steps to learn more about the life of
pods to prevent any possible failure, including using the readiness and liveness probe to
protect a pod, initializing a pod with Init containers, handling SIGTERM properly by writing
Dockerfile in the exec form, leveraging life cycle hooks to stall a pod's readiness as well
as its termination for the iptables rules to be removed at the right timing, and assigning
pods to specific nodes with node selectors.

In the next chapter, we'll learn how to segment our cluster with logical boundaries to share
resource more stable and secure in Kubernetes.

[243]

Cluster Administration

We've learned most of our basic DevOps skills with Kubernetes in previous chapters, from
how to containerize our application to deploying our containerized software into
Kubernetes seamlessly via continuous deployment. Now, it's time to have a deeper insight
into how to administer a Kubernetes cluster.

In this chapter, we'll learn:

e How to utilize namespaces to set administrative boundaries
¢ Using kubeconfig to switch between multiple clusters

e Kubernetes authentication

¢ Kubernetes authorization

While minikube is a fairly simple environment, we will use the Google Container Engine
(GKE) and self-hosted cluster in AWS as the example, instead of minikube in this chapter.
For the detailed setting, please refer to chapter 9, Kubernetes on AWS, and Chapter 10,
Kubernetes on GCP.

Kubernetes namespaces

Kubernetes has a namespace concept to divide the resources from a physical cluster to
multiple virtual clusters. In this way, different groups could share the same physical cluster
with isolation. Each namespace provides:

¢ A scope of names; object name in each namespace is unique
e Policies to ensure trusted authentication
¢ Ability to set up resource quotas for resource management

Cluster Administration Chapter 8

Namespaces are ideal for different teams or projects in the same company, so different
groups can have their own virtual clusters, which have the resource isolation but share the
same physical cluster. Resources in one namespace are invisible from other namespaces.
Different resource quotas could be set to different namespaces and provide different levels
of QoS. Note that not all objects are in a namespace, such as nodes and Persistent Volumes,
which belong to entire clusters.

Default namespaces

By default, Kubernetes has three namespaces: default, kube-systemand kube-public.
The default namespace contains the objects which are created without specifying any
namespace, and kube-system contains the objects which are created by Kubernetes
systems, usually used by the system components, such as Kubernetes dashboard or
Kubernetes DNS. The kube-public is newly introduced in 1.6, which intends to locate the
resources that everybody can access. It mainly focuses on public ConfigMap now, such as
cluster info.

Create a new namespace

Let's see how to create a namespace. A namespace is also a Kubernetes object. We could just
specify the kind as a namespace like other objects. Below is the example to create one
namespace, projectl:

// configuration file of namespace
cat 8-1-1_nsl.yml

apiVersion: vl

kind: Namespace

metadata:

name: projectl

// create namespace for projectl
kubectl create -f 8-1-1_nsl.yml
namespace '"projectl" created

// list namespace, the abbreviation of namespaces is ns. We could use
“kubectl get ns’ to list it as well.
kubectl get namespaces

NAME STATUS AGE
default Active 1d
kube-public Active 1d
kube-system Active 1d
projectl Active 11s

[245]

Cluster Administration Chapter 8

Then let's try to start two nginx containers via deployment in project1 namespace:

// run a nginx deployment in projectl ns
kubectl run nginx --image=nginx:1.12.0 --replicas=2 —--port=80 --
namespace=projectl

When we list pods by kubectl get pods, we'll see nothing in our cluster. Why? Because
Kubernetes uses the current context to decide which namespace is current. If we don't
explicitly specify namespace in the context or kubect1 command line, the default
namespace will be used:

// We'll see the Pods if we explicitly specify —-namespace
kubectl get pods ——namespace=projectl

NAME READY STATUS RESTARTS AGE
nginx-3599227048-gghvw 1/1 Running 0 15s
nginx-3599227048-jz31g 1/1 Running 0 15s

You could use —~—namespace <namespace_name>, ——
namespace=<namespace_name>, —n <namespace_name> O —
n=<namespace_name> to specify the namespace for a command. To list
the resources across namespaces, use -—all-namespaces parameter.

Another way is changing the current context to point to the desired namespace rather than
the default namespace.

Context

Context is a concept of the combination of cluster information, a user for authentication and
a namespace. For example, the following is the context information for one of our clusters in
GKE:

- context:

cluster: gke_devops—-with-kubernetes_us—-centrall-b_cluster
user: gke_devops—-with-kubernetes_us-centrall-b_cluster
name: gke_devops—-with-kubernetes_us-centrall-b_cluster

We could use the kubectl config current-context command to see the current
context:

kubectl config current-context
gke_devops-with-kubernetes_us—-centrall-b_cluster

[246]

Cluster Administration Chapter 8

To list all config info including contexts, you could use the kubect1
config view command; to checkout what context is currently in use, use
kubectl config get-contexts command.

Create a context

The next step is to create a context. As in the preceding example, we'll need to set a user and
cluster name for the context. If we don't specify those, the empty value will be set. The
command to create a context is:

$ kubectl config set-context <context_name> —--namespace=<namespace_name> —-—
cluster=<cluster name> --user=<user_name>

Multiple contexts could be created in the same cluster. The following is an example of how
to create a context for project1 in my GKE cluster gke_devops-with-kubernetes_us-
centrall-b_cluster

// create a context with my GKE cluster

kubectl config set-—context projectl --namespace=projectl --

cluster=gke_devops—-with-kubernetes_us-centrall-b_cluster —--user=gke_devops-

with-kubernetes_us-centrall-b_cluster
Context "projectl" created.

Switch the current context

Then we could switch the context by the use-context sub-command:

kubectl config use-context projectl
Switched to context "projectl".

After the context is switched, every command we invoke via kubect1 is under the
projectl context. We don't need to explicitly specify the namespace to see our pods:

// list pods
kubectl get pods

NAME READY STATUS RESTARTS AGE
nginx-3599227048-gghvw 1/1 Running 0 3m
nginx-3599227048-jz31g 1/1 Running 0 3m

[247]

Cluster Administration Chapter 8

ResourceQuota

By default, pods in Kubernetes are resource-unbounded. Then the running pods might use
up all the compute or storage resources in a cluster. ResourceQuota is a resource object that
allows us to restrict the resource consumption that a namespace could use. By setting up the
resource limit, we could reduce the noisy neighbor symptom. The team working for
projectl won't use up all the resources in the physical cluster.

Then we can ensure the quality of service for other teams working in other projects which
share the same physical cluster. There are three kinds of resource quotas supported in
Kubernetes 1.7. Each kind includes different resource names,
(https://kubernetes.io/docs/concepts/policy/resource—quotas):

e Compute resource quota (CPU, memory)
e Storage resource quota (requested storage, Persistent Volume Claims)
¢ Object count quotas (pods, RCs, ConfigMaps, services, LoadBalancers)

Created resources won't be affected by newly created resource quotas. If the resource
creation request exceeds the specified ResourceQuota, the resources won't be able to start

up.

Create a ResourceQuota for a namespace

Now, let's learn the syntax of ResourceQuota. Below is one example:

cat 8-1-2_resource_gquota.yml
apiVersion: vl
kind: ResourceQuota

metadata:
name: projectl-resource—quota
spec:
hard:# the limits of the sum of memory request
requests.cpu: "1" # the limits of the sum
of requested CPU
requests.memory: 1Gi # the limits of the sum
of requested memory
limits.cpu: "2" # the limits of total CPU
limits
limits.memory: 2Gi # the limits of total memory
limit
requests.storage: 64Gi # the limits of sum of
storage requests across PV claims
pods: "4" # the limits of pod number

[248]

https://kubernetes.io/docs/concepts/policy/resource-quotas

Cluster Administration Chapter 8

The template is like other objects, just this kind becomes ResourceQuota. The quota we
specified is valid across the pods which are in a succeeded or failed state (that is, non-
terminal state). There are several resource constraints that are supported. In the preceding
example, we demonstrate how to set compute ResourceQuota, storage ResourceQuota and
object CountQuota. Any time, we could still use the kubect1 command to check the quota
we set: kubectl describe resourcequota <resource_guota_name>.

Right now let's modify our existing nginx Deployment by the command kubectl edit
deployment nginx, changing replica from 2 to 4 and save. Let's list the state now.

kubectl describe deployment nginx

Replicas: 4 desired | 2 updated | 2 total | 2 available | 2
unavailable
Conditions:

Type Status Reason

Available False MinimumReplicasUnavailable

ReplicaFailure True FailedCreate

It indicates some pods failed on creation. If we check the corresponding ReplicaSet, we
could find out the reason:

kubectl describe rs nginx-3599227048

Error creating: pods '"'nginx-3599227048-" is forbidden: failed quota:
projectl-resource—quota: must specify
limits.cpu, limits.memory, requests.cpu, requests.memory

Since we've specified the request limits on memory and CPU, Kubernetes doesn't know the
default request limits on the newly desired three pods. We could see the original two pods
are still up and running, since the resource quota doesn't apply to existing resources. We
now then use kubectl edit deployment nginx to modify container specs as follows:

[249]

Cluster Administration Chapter 8

spec
containers
- image: nginx:1.12.0
imagePullPolicy: IfNotPresent
name: nginx
ports
- containerPort: 80
protocol: TCP
resources
limits
memory: "300Mi"
cpu: "300m"
requests
memory: "150Mi"
cpu: "100m"
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File

Here, we specify the requests and limits for CPU and memory in the pod spec. It indicates
the pod can't exceed the specified quota, otherwise it will be unable to start:

// check the deployment state

kubectl get deployment

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx 4 3 2 3 2d

Available pods become four instead of two, but still not equal to our desired four. What
went wrong? If we take a step back and check our resource quota, we can find we've used
all the quota of pods. Since Deployments use the rolling update deployment mechanism by
default, it'll require pod numbers larger than four, which is exact object limit we set earlier:

kubectl describe resourcequota projectl-resource-quota

Name: projectl-resource—quota
Namespace: projectl

Resource Used Hard

limits.cpu 900m 4

limits.memory 900Mi 4Gi

pods 4 4

requests.cpu 300m 4

requests.memory 450Mi 16Gi
requests.storage 0 64Gi

[250]

Cluster Administration Chapter 8

After modifying the pods quota from 4 to 8 by kubectl edit resourcequota
projectl-resource-quota command, the Deployment has sufficient resource to launch
the pods. Once the Used quota exceeds the Hard quota, the request will be rejected by the
ResourceQuota admission controller, otherwise, the resource quota usage will be updated
to ensure sufficient resource allocation.

Since ResourceQuota won't affect already created resources, sometimes we
might need to tweak the failed resources, such as deleting an empty
change set of RS or scale up and down Deployment, in order to let
Kubernetes create new pods or RS which will soak the latest quota limits.

Request pods with default compute resource limits

We could also specify default resource requests and limits for a namespace. Default setting
will be used if we don't specify the requests and limits during pod creation. The trick is
using LimitRange resource object. A LimitRange object contains a set of
defaultRequest (request) and default (limits).

LimitRange is controlled by the LimitRanger admission controller plugin.
Be sure you enable it if you launch a self-hosted solution. For more
information, check out the admission controller section in this chapter.

Below is an example where we set cpu.request as 250mand 1imits as 500m,
memory.request as 256Mi and 1limits as 512Mi:

cat 8-1-3_limit_range.yml
apiVersion: vl
kind: LimitRange
metadata:
name: projectl-limit-range
spec:
limits:
— default:
cpu: 0.5
memory: 512Mi
defaultRequest:
cpu: 0.25
memory: 256Mi
type: Container

[251]

Cluster Administration Chapter 8

// create limit range
kubectl create -f 8-1-3_limit_range.yml
limitrange "projectl-limit-range" created

When we launch pods inside this namespace, we don't need to specify the cpu and memory
requests and 1imits anytime, even if we have a total limitation set inside ResourceQuota.

The unit of CPU is core, which is an absolute quantity. It can be an AWS
vCPU, a GCP core or a hyperthread on a machine with hyperthreading
processor equipped. The unit of memory is a byte. Kubernetes uses the
first alphabet or power-of-two equivalents. For example, 256M would be
written as 256,000,000, 256 M or 244 Mi.

Additionally, we can set minimum and maximum CPU and memory values for a pod in
LimitRange. It acts differently as default values. Default values are only used if a pod spec
doesn't contain any requests and limits. The minimum and maximum constraint is used for
verifying if a pod requests too much resource. The syntax is spec.limits[].min and
spec.limits[] .max. If the request exceeds the minimum and maximum values,
forbidden will be thrown from the server.

limits:
- max:
cpu: 1
memory: 1Gi
min:
cpu: 0.25

memory: 128Mi
type: Container

Quality of service for pods: There are three QoS classes for pods in
Kubernetes: Guaranteed, Burstable and BestEffort. It's tied together with
the namespace and resource management concept we learned above. We
also learned QoS in chapter 4, Working with Storage and Resources. Please
refer to the last section Kubernetes Resource Management in Chapter 4,
Working with Storage and Resources for recap.

Delete a namespace

Just like any other resources, deleting a namespace is kubectl delete namespace
<namespace_name>. Please be aware that if a namespace is deleted, all the resources
associated with that namespace will be evicted.

[252]

Cluster Administration Chapter 8

Kubeconfig

Kubeconfig is a file that you can use to switch multiple clusters by switching context. We
can use kubectl config view to view the setting. The following is an example of a

minikube cluster in a kubeconfig file.

kubectl config view
apiVersion: vl
clusters:
— cluster:
certificate-authority: /Users/k8s/.minikube/ca.crt
server: https://192.168.99.100:8443
name: minikube
contexts:
- context:
cluster: minikube
user: minikube
name: minikube
current—-context: minikube
kind: Config
preferences: {}
users:
— name: minikube
user:
client-certificate: /Users/k8s/.minikube/apiserver.crt
client-key: /Users/k8s/.minikube/apiserver.key

Just like what we learned previously. We could use kubectl config use-context to
switch the cluster to manipulate. We could also use kubectl config --
kubeconfig=<config file name> to specify which kubeconfig file we'd like to use.
Only the specified file will be used. We could also specify kubeconfig files by the
environment variable $SKUBECONF IG. In this way, config files could be merged. For example,
the following command will merge kubeconfig-filel and kubeconfig-file2:

export KUBECONFIG=$KUBECONFIG: kubeconfig-filel: kubeconfig-file2

[253]

Cluster Administration Chapter 8

You might find we didn't do any specific setting previously. Then where does the output of
kubectl config view come from? By default, it exists under $SHOME/ . kube/config.
This file will be loaded if none of the preceding are set.

Service account

Unlike normal users, service account is used by processes inside a pod to contact the
Kubernetes API server. By default, a Kubernetes cluster creates different service accounts
for different purposes. In GKE, there are bunch of service accounts that have been created:

// list service account across all namespaces
kubectl get serviceaccount —--all-namespaces

NAMESPACE NAME SECRETS AGE
default default 1 5d
kube-public default 1 5d
kube-system namespace—-controller 1 5d
kube-system resourcequota-controller 1 5d
kube-system service—account-controller 1 5d
kube-system service—-controller 1 5d
projectl default 1 2h

Kubernetes will create a default service account in each namespace, which will be used if no
service account is specified in pod spec during pod creation. Let's take a look at how the
default service account acts for our project1 namespace:

kubectl describe serviceaccount/default

Name: default

Namespace: projectl

Labels: <none>

Annotations: <none>

Image pull secrets: <none>

Mountable secrets: default-token-nsqls
Tokens: default-token—-nsqls

We could see a service account is basically using mountable secrets as a token. Let's dig into
what contents are inside the token:

// describe the secret, the name is default-token-nsqgls here

kubectl describe secret default-token-nsqls

Name: default-token—-nsqls

Namespace: projectl

Annotations: kubernetes.io/service—account.name=default
kubernetes.io/service-account.uid=5e46cc5e-

[254]

Cluster Administration Chapter 8

8b52-11e7-a832-42010a£00267
Type: kubernetes.io/service—account-token

Data

ca.crt: # the public CA of api server. Base64 encoded.

namespace: # the name space associated with this service account. Baseé64
encoded

token: # bearer token. Base64 encoded

The secret will be automatically mounted to the directory
/var/run/secrets/kubernetes.io/serviceaccount. When the pod accesses the API
server, the API server will check the cert and token to do the authentication. The concept of
a service account will be with us in the following sections.

Authentication and authorization

Authentication and authorization are important from DevOps' point of view.
Authentication verifies users and checks if the users are really who they represent
themselves to be. Authorization, on the other hand, checks what permission levels users
have. Kubernetes supports different authentication and authorization modules.

The following is an illustration that shows how the Kubernetes API server processes the
access control when it receives a request.

. oL Admission
Requests Authentication Authorization Control

TLS connection Process Request

Kubernetes APl server

Access control in API server

[255]

Cluster Administration Chapter 8

When the request comes to API server, firstly, it establishes a TLS connection by validating
the clients' certificate with the certificate authority (CA) in the API server. The CA in the
APl server is usually at /etc/kubernetes/, and the clients' certificate is usually at
$HOME/ .kube/config. After the handshake, it goes to the authentication stage. In
Kuberentes, authentication module are chain-based. We could use more than one
authentication and authorization modules. When the request comes, Kubernetes will try all
the authenticators one by one until it succeeds. If the request fails on all authentication
modules, it will be rejected as HTTP 401 Unauthorized. Otherwise, one of the
authenticators verifies the user's identity and the requests are authenticated. Then
Kubernetes authorization modules will come into play. It will verify if the user has the
permission to do the action that they request to do by a set of policies. Authorization
modules are also chain-based. It keeps trying every module until it succeeds. If the request
fails on all the modules, it'll get a HTTP 403 Forbidden response. Admission control is a set
of configurable plugins in an API server that determine if a request is admitted or denied.
At this stage, if the request doesn't pass through one of the plugins, then the request is
denied immediately.

Authentication

By default, a service account is token-based. When you create a service account or a
namespace with default service account, Kubernetes creates the token and stores it as a
secret which is encoded by base64, and mounts the secret as a volume into the pod. Then
the processes inside the pod have the ability to talk to the cluster. The user account, on the
other hand, represents a normal user, who might use kubect1 to manipulate the resource
directly.

Service account authentication

When we create a service account, a signed bearer token will be created automatically by
the Kubernetes service account admission controller plugin.

In chapter 7, Continuous Delivery, in the example that we demonstrated how to do the

deployment of my-app, we created a namespace named cd, and we used the script get -
sa-token.sh

(https://github.com/DevOps—with—Kubernetes/examples/blob/master/chapter7/get—sa
—token. sh) to export the token for us. Then we create a user mysa via kubectl config
set—credentials <user> ——token=$TOKEN command:

kubectl config set-credentials mysa —-token=${CI_ENV_K8S_SA_TOKEN}

[256]

https://github.com/DevOps-with-Kubernetes/examples/blob/master/chapter7/get-sa-token.sh
https://github.com/DevOps-with-Kubernetes/examples/blob/master/chapter7/get-sa-token.sh

Cluster Administration Chapter 8

Next, we set the context to bind with user and namespace:

kubectl config set-context myctxt —--cluster=mycluster —--user=mysa

Finally, we set our context myctxt as default context:

kubectl config use-context myctxt

When the service account sends a request, the token will be verified by the API server to
check if the requester is eligible and it is what it claims to be.

User account authentication

There are several implementations for user account authentication. From client certificates,
bearer tokens, static files to OpenID connect tokens. You can choose more than one as
authentication chains. Here, we'll demonstrate how client certificates works.

In chapter 7, Continuous Delivery we've learned how to export cert and token for service
account. Now, let's learn how to do it for a user. Assume we are still inside project1
namespace, and we want to create a user for our new DevOps member Linda, who will
help us to do the Deployment for my-app.

First, we'll generate a private key by OpenSSL (https://www.openssl.org):

// generate a private key for Linda
openssl genrsa -out linda.key 2048

Next, we'll create a certificate sign request (. csr) for Linda:

// making CN as your username
openssl req -new -key linda.key -out linda.csr -subj "/CN=linda"

Now, linda.key and linda.csr should be located in the current folder. For approving
the sign request, we'll need to locate the CA of our Kubernetes cluster.

In minikube, it's under ~/ .minikube/. For other self-hosted solutions,
normally it's under /etc/kubernetes/. If you use kops to deploy the
cluster, the location is under /srv/kubernetes, where you could find the
pathin /etc/kubernetes/manifests/kube-apiserver.manifest

file.

[257]

https://www.openssl.org

Cluster Administration Chapter 8

Assume we have ca.crt and ca.key under the current folder, we could generate the cert
by our sign request. Using the ~days parameter we could define the expired date:

// generate the cert for Linda, this cert is only valid for 30 days.

openssl x509 -req -in linda.csr -CA ca.crt -CAkey ca.key —-CAcreateserial
—-out linda.crt -days 30

Signature ok

subject=/CN=1linda

Getting CA Private Key

After we have cert signed by our cluster, we could set a user in the cluster.

kubectl config set-credentials linda —--client-certificate=linda.crt —-
client-key=linda.key
User "linda" set.

Remember the concept of context: it's the combination of cluster information, a user for
authentication and a namespace. Now, we'll set a context entry in kubeconfig. Remember
to replace your cluster name, namespace and user from the following example:

kubectl config set-context devops—context —--cluster=k8s-devops.net --
namespace=projectl —--user=linda
Context "devops—context" modified.

Now, Linda should have zero permission:

// test for getting a pod

kubectl —--context=devops—-context get pods

Error from server (Forbidden): User "linda" cannot list pods in the
namespace "projectl". (get pods)

Linda now passes the authentication stage while Kubernetes knows she is Linda. However,
to make Linda have the permission to do the Deployment, we need to set up the polices in
authorization modules.

Authorization

Kubernetes supports several authorization modules. At the time we're writing, it supports:

e ABAC

RBAC

Node authorization
Webhook

Custom modules

[258]

Cluster Administration Chapter 8

Attribute-based access control (ABAC) was the major authorization mode before role-
based access control (RBAC) was introduced. Node authorization is used by kubelet to
make a request to the API server. Kubernetes supports webhook authorization mode to
establish a HTTP callback with an external RESTful service. It'll do a POST whenever it
faces an authorization decision. Another common way is you could implement your in-
house module by following along the pre-defined authorizer interface. For more
implementation information, refer to https://kubernetes.io/docs/admin/authorization/
#custom-modules. In this section, we'll describe more details for ABAC and RBAC.

Attribute-based access control (ABAC)

ABAC allows admin to define a set of user authorization polices into a file with one JSON
per line format. The major drawback of ABAC mode is the policy file has to exist when
launching the API server. Any change in the file requires restarting the API server with —-
authorization-policy-file=<policy_file_name> command. Another authorization
method RBAC was introduced since Kubernetes 1.6. which is more flexible and doesn't
require restarting the API server. RBAC has now become the most common authorization
mode.

The following is an example of how ABAC works. The format of the policy file is one JSON
object per line. The configuration file of the policy is similar to our other configuration files.
Just with different syntax in spec. There are four main properties in ABAC:

Properties type Supported values
Subject-matching user, group
Resource-matching apiGroup, namespace, and resource

Used for non-resource type requests, such as /version, /apis,

Non-resource-matching Jcluster

readonly true or false

The following are some examples:

{"apiVersion": "abac.authorization.kubernetes.io/vlbetal", "kind":
"Policy", "spec": {"user":"admin", "namespace": "*", "resource": "*",
"apiGroup": "*"}}

{"apiVersion": "abac.authorization.kubernetes.io/vlbetal", "kind":
"Policy", "spec": {"user":"linda", "namespace": "projectl", "resource":
"deployments", "apiGroup": "*", "readonly": true}}

{"apiVersion": "abac.authorization.kubernetes.io/vlbetal", "kind":

[259]

https://kubernetes.io/docs/admin/authorization/#custom-modules
https://kubernetes.io/docs/admin/authorization/#custom-modules
https://kubernetes.io/docs/admin/authorization/#custom-modules
https://kubernetes.io/docs/admin/authorization/#custom-modules
https://kubernetes.io/docs/admin/authorization/#custom-modules
https://kubernetes.io/docs/admin/authorization/#custom-modules
https://kubernetes.io/docs/admin/authorization/#custom-modules
https://kubernetes.io/docs/admin/authorization/#custom-modules
https://kubernetes.io/docs/admin/authorization/#custom-modules
https://kubernetes.io/docs/admin/authorization/#custom-modules
https://kubernetes.io/docs/admin/authorization/#custom-modules
https://kubernetes.io/docs/admin/authorization/#custom-modules
https://kubernetes.io/docs/admin/authorization/#custom-modules
https://kubernetes.io/docs/admin/authorization/#custom-modules
https://kubernetes.io/docs/admin/authorization/#custom-modules
https://kubernetes.io/docs/admin/authorization/#custom-modules

Cluster Administration Chapter 8

"Policy", "spec": {"user":"linda", "namespace": "projectl", "resource":
"replicasets", "apiGroup": "*", "readonly": true}}

In the preceding example, we have a user admin who could access everything. Another
user named 1inda who can only read the Deployment and ReplicaSets in the namespace

projectl.

Role-based access control (RBAC)

RBAC was in beta in Kubernetes 1.6, which is enabled by default. In RBAC, admin creates
several Roles or ClusterRoles, which define the fine-grained permissions that specifies a
set of resources and actions (verbs) that roles could access and manipulate. After that,
admin grants the Role permission to users by RoleBinding or ClusterRoleBindings.

If you're running a minikube, add —-extra-
config=apiserver.Authorization.Mode=RBAC when doing
minikube start.If you're running self-hosted cluster on AWS via kops,
adding --authorization=rbac when launching the cluster. Kops
launches API server as a pod; using kops edit cluster command
could modify the spec of the containers.

Roles and ClusterRoles

A Role in Kubernetes is bound within a namespace, a ClusterRole, on the other hand, is
cluster-wide. The following is an example of Role, which could do all the operations,
including get, watch, 1list, create, update, delete, patch to the resources Deployment,
ReplicaSet and pods.

cat 8-5-2_role.yml
kind: Role
apiVersion: rbac.authorization.k8s.io/vlbetal
metadata:
namespace: projectl
name: devops-role
rules:
— apiGroups: ["", "extensions", "apps"]
resources:
- "deployments"
- "replicasets"
- "pods"
verbs: ["*"]

[260]

Cluster Administration Chapter 8

The apiversionis still vibetal at the time we wrote the book. If it happens that the API
version changes, Kubernetes will throw the error and remind you to change. In apiGroups,
an empty string indicates the core API group. The API group is part of the RESTful API call.
The core indicates original API call path, such as /api/v1. The newer REST path has the
group name and API version in it, such as /apis/$GROUP_NAME/$VERSION; for looking up
API groups you'd like to use, check out API References at
https://kubernetes.io/docs/reference.thderresourceS}KnlCOLﬂd,add,ﬂleresourceS
you'd like to grant the access to, and under verbs lists an array of actions that this role could
perform. Let's get into a more advanced example for ClusterRoles, which we used in
previous chapter as Continuous Delivery role:

cat cd-clusterrole.yml
apiVersion: rbac.authorization.k8s.io/vlbetal
kind: ClusterRole
metadata:
name: cd-role
rules:
— apiGroups: ["extensions", "apps"]
resources:
— deployments
- replicasets
- ingresses
verbs: ["*"]
- apiGroups: [""]
resources:
- namespaces
- events
verbs: ["get", "list", "watch"]
- apiGroups: [""]
resources:
- pods
- services
— secrets
- replicationcontrollers
— persistentvolumeclaims
- jobs
— cronjobs
verbs: ["*"]

[261]

https://kubernetes.io/docs/reference

Cluster Administration Chapter 8

ClusterRole is cluster-wide. Some resources don't belong to any namespace, such as
nodes, only could be controlled by ClusterRole. The namespaces it could access depends
on the namespaces field in ClusterRoleBinding it associates with. We could see we
grant the permission to allow this role read and write Deployments, ReplicaSets and
ingresses in both extensions and apps groups. In the core API group, we grant only access
for namespace and events, and all permission for other resources, such as pods and
services.

RoleBinding and ClusterRoleBinding

A RoleBindingis used to bind a Role or ClusterRole to a list of users or service
accounts. If a ClusterRole is bound with a RoleBinding instead of a
ClusterRoleBinding, it'll be only granted the permissions within the namespace that
RoleBinding specified. The following is an example of RoleBinding spec:

cat 8-5-2_rolebinding_user.yml
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/vlbetal
metadata:
name: devops-role-binding
namespace: projectl
subjects:
- kind: User
name: linda
apiGroup: [""]

roleRef:
kind: Role
name: devops-role
apiGroup: [""]

In this example, we bind a Role with a user by roleRef. Kubernetes supports different
kind of roleRef; we could replace the kind from Role to ClusterRole here:

roleRef:

kind: ClusterRole

name: cd-role

apiGroup: rbac.authorization.k8s.io

Then cd-role can only access the resources in namespace projectl.

[262]

Cluster Administration Chapter 8

On the other hand, a ClusterRoleBinding is used to grant permission in all namespace.
Let's review what we did in chapter 7, Continuous Delivery. We first created a service
account named cd-agent, then create a ClusterRole named cd-role. At the end, we
created a ClusterRoleBinding for cd-agent and cd-role. We then used cd-agent to
do the Deployment on our behalf:

cat cd-clusterrolebinding.yml
apiVersion: rbac.authorization.k8s.io/vlbetal
kind: ClusterRoleBinding
metadata:
name: cd-agent
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cd-role
subjects:
— apiGroup: rbac.authorization.k8s.io
kind: User
name: system:serviceaccount:cd:cd-agent

The cd-agent is bound with a ClusterRole via ClusterRoleBinding, so it can have the
permission specified in cd-role across namespaces. Since a service account is created in a
namespace, we'll need to specify its full name including namespace:

system: serviceaccount: <namespace>: <serviceaccountname>

Let's launch the Role and RoleBinding via 8-5-2_role.yml and
8-5-2_rolebinding_user.yml:

kubectl create -f 8-5-2_role.yml

role "devops-role" created

kubectl create —-f 8-5-2_rolebinding_user.yml
rolebinding "devops-role-binding" created

Now, we don't get forbidden anymore:

kubectl —--context=devops-context get pods
No resources found.

What about if Linda wants to list namespaces, is it allowed?:

kubectl —-context=devops—context get namespaces
Error from server (Forbidden): User "linda" cannot list namespaces at the
cluster scope. (get namespaces)

The answer is no, since Linda is not granted permission for listing namespaces.

[263]

Cluster Administration Chapter 8

Admission control

Admission control takes place before Kubernetes processes the request and after
authentication and authorization are passed. It's enabled when launching API server by
adding --admission-control parameter. Kubernetes recommends officially to have the
following plugins with the cluster if the cluster version is >=1.6.0.

——admission-
control=Namespacelifecycle, LimitRanger, ServiceAccount,PersistentVolumelLabel
,DefaultStorageClass,DefaultTolerationSeconds, ResourceQuota

The following introduces the usage of these plugins, and why should we need them. For
more latest information about supported admission control plugins, please visit official
document https://kubernetes.io/docs/admin/admission-controllers.

Namespace life cycle

As we learned earlier, when a namespace is deleted, all objects in that namespace will be
evicted as well. This plugin ensures no new object creation requests could be made in the
namespace that is terminating or non-existed. It also prevents Kubernetes native
namespaces from deletion.

LimitRanger

This plugin ensures LimitRange could work properly. With LimitRange, we could set
default requests and limits in a namespace, which will be used when launching a pod
without specifying the requests and limits.

Service account

The service account plugin must be added if you use service account objects. For more
information about service account, revisit again service account section in this chapter.

PersistentVolumeLabel

PersistentVolumeLabel adds labels to newly-created PV, based on the labels provided
by the underlying cloud provider. This admission controller has been deprecated from 1.8.

[264]

https://kubernetes.io/docs/admin/admission-controllers

Cluster Administration Chapter 8

DefaultStorageClass

This plugin ensures default storage classes could work expectedly if no storageClass is
set in a Persistent Volume Claim. Different provisioning tools with different cloud
providers will leverage DefaultStorageClass (such as GKE uses Google Cloud Persistent
Disk). Be sure you have this enabled.

ResourceQuota

Just like the LimitRange, if you're using the ResourceQuota object to administer different
level of QoS, this plugin must be enabled. The ResourceQuota should be always be put at
the end of the admission control plugin list. As we mentioned in the ResourceQuota section,
if used quota is less than hard quota, resource quota usage will be updated to ensure cluster
have the sufficient resource for accepting request. Putting it into the end of admission
controller list could prevent the request from increasing quota usage prematurely if it
eventually gets rejected by the following controllers.

DefaultTolerationSeconds

Before introducing this plugin, we have to learn what taints and tolerations are.

Taints and tolerations

Taints and toleration are used to prevent a set of pods from scheduling running on some
nodes. Taints are applied to nodes, while tolerations are specified to pods. The value of
taints could be NoSchedule or NoExecute. If pods running one tainted node have no
matching toleration, the pods will be evicted.

Let's say we have two nodes:

kubectl get nodes

NAME STATUS AGE VERSION
ip-172-20-56-91.ec2.internal Ready 6h v1.7.2
ip-172-20-68-10.ec2.internal Ready 29m v1.7.2

Let's run a nginx pod now by kubectl run nginx --image=nginx:1.12.0 --
replicas=1 --port=80 command.

[265]

Cluster Administration Chapter 8

The pod is running on the first node ip-172-20-56-91.ec2.internal:

kubectl describe pods nginx-4217019353-s9xrn

Name: nginx-4217019353-s9xrn
Node: ip-172-20-56-91.ec2.internal/172.20.56.91
Tolerations: node.alpha.kubernetes.io/notReady:NoExecute for 300s

node.alpha.kubernetes.io/unreachable:NoExecute for 300s

By the pod description, we can see there are two default tolerations attached to the pod. It
means if the node is not ready or unreachable yet, wait for 300 s before the pod is evicted

from the node. These two tolerations are applied by DefaultTolerationSeconds admission
controller plugin. We'll talk about this later. Next, we'll set a taint to the first node:

kubectl taint nodes ip-172-20-56-91.ec2.internal
experimental=true:NoExecute
node "ip-172-20-56-91.ec2.internal" tainted

Since we set the action as NoExecute, and experimental=true doesn't match any
tolerations on our pod, the pod will be removed from the node immediately and
reschedule. Multi-taints could be applied to a node. The pods must match all the tolerations
in order to run on that node. The following is an example that could pass the tainted node:

cat 8-6_pod_tolerations.yml
apiVersion: vl
kind: Pod
metadata:
name: pod-with-tolerations
spec:
containers:
- name: web
image: nginx
tolerations:
- key: "experimental"
value: "true"
operator: "Equal"
effect: "NoExecute"

Other than Equal operator, we could use Exists as well. In that case, we don't need to
specify the value. As long as the key presents and effect matches, then the pod is eligible to
run on that tainted node.

[266]

Cluster Administration Chapter 8

The DefaultTolerationSeconds pluginis used to set those pods without any toleration
set. It will then apply for the default toleration for the taints not ready :NoExecute and
unreachable:NoExecute for 300 s. If you don't want this behavior to occur in the cluster,
disabling this plugin could work.

PodNodeSelector

This plugin is used to set node-selector annotation to the namespace. When the plugin is
enabled, passing along a configuration file with -—admission-control-config-file
command using the following format:

podNodeSelectorPluginConfig:
clusterDefaultNodeSelector: <default—-node-selectors-
labels>
namespacel: <namespace—-node-selectors—-labels-1>
namespace2: <namespace-node-selectors—-labels-2>

Then the node-selector annotation will be applied to namespace. The pods on that
namespace will then run on those matched nodes.

AlwaysAdmit

This always admits all the requests, its possible to use for test only.

AlwaysPullimages

Pull policy defines the behavior when kubelet pulling the images. The default pull policy is
IfNotPresent, thatis, it will pull the image if it is not present locally. If this plugin is
enabled, the default pull policy will become Always, which is, always pull the latest image.
This plugin also brings another benefit if your cluster is shared by different teams.
Whenever a pod is scheduled, it'll always pull the latest image whether the image exists
locally or not. Then we can ensure pod creation request always go through authorization
check against the image.

[267]

Cluster Administration Chapter 8

AlwaysDeny

This always denies all the requests. It may only be used for testing only.

DenyEscalatingExec

This plugin denies any kubectl exec and kubectl attach command to be escalated
privilege mode. Pods with privilege mode have the access of host namespace, which could
become a security risk.

Other admission controller plugins

There are many more other admission controller plugins we could use, such as
NodeRestriciton to limit kubelet's permission, ImagePolicyWebhook to establish a webhook
to control the access of the images, SecurityContextDeny for controlling the privilege for a
pod or a container. Please refer to official documents at

(https ://kubernetes.io/docs/admin/admission-controllers) to find out other plugins.

Summary

In this chapter, we learned what is namespace and context and how do they work, how to
switch between physical cluster and virtual cluster by setting the context. We then learned
about the important object—service account, which provides to identify the processes
running within a pod. Then we get to know how to control access flow in Kubernetes. We
learned what the difference are between authentication and authorization, and how they
work in Kubernetes. We also learn how to leverage RBAC to have fine-grained permission
to users. At the end, we learned a couple of admission controller plugins, which are the last
goalkeepers in the access control flow.

AWS is the most major player in public IaaS providers. We've used it lots as self-hosted
cluster examples in this chapter. In next chapter chapter 9, Kubernetes on AWS, we'll finally
learn how to deploy the cluster on AWS and basic concept when using AWS.

[268]

https://kubernetes.io/docs/admin/admission-controllers/)

Kubernetes on AWS

Using Kubernetes on the public cloud is flexible and scalable for your application. AWS is
one of the popular services in the public cloud industry. In this chapter, you will know
what AWS is and how to set up Kubernetes on AWS along with the following topics:

Understanding the public cloud

Using and understanding AWS components

Kubernetes setup and management by kops

Kubernetes cloud provider

Introduction to AWS

When you run your application on the public network, you need an infrastructure such as
networks, Virtual Machines, and storage. Obviously, companies borrow or build their own
data center to prepare those infrastructures, and then hire data center engineers and
operators to monitor and manage those resources.

However, purchasing and maintaining those assets need a large capital expense; you also
need an operation expense for data center engineers/operators. You also need a read time to
fully set up those infrastructures, such as buying a server, mounting to a data center rack,
cabling a network, and then the initial configuration/installation of the OS, and so on.

Therefore, rapidly allocating an infrastructure with appropriate resource capacity is one of
the important factors that dictates that success of your business.

Kubernetes on AWS Chapter 9

To make infrastructure management easier and quicker, there is a lot of technology helps
for data centers. Such as, for virtualization, Software Defined Network (SDN), Storage
Area Network (SAN), and so on. But combining this technology has some sensitive
compatibility issues and is difficult to stabilize; therefore it is required to hire experts in this
industry, which makes operation costs higher eventually.

Public cloud

There are some companies that have provided an online infrastructure service. AWS is a
well known service that provides online infrastructure, which is called cloud or public
cloud. Back in the year 2006, AWS officially launched the Virtual Machine service, which
was called Elastic Computing Cloud (EC2), an online object store service, which was called
Simple Storage Service (S3) and an online messaging queue service, which was called
Simple Queue Service (SQS).

These services are simple enough, but from a data center management point of view, they
relieve infrastructure pre-allocation and reduce read time, because of pay-as-you-go pricing
models (paying hourly or yearly for usage to AWS). Therefore, AWS is getting so popular
that many companies have switched from their own data centers to the public cloud.

An antonym of the public cloud, your own data center is called on-
8 premises.

APl and infrastructure as code

One of the unique benefits of using a public cloud instead of on-premises data centers that
public cloud provides an API to control infrastructure. AWS provides command-line tools
(AWS CLI) to control AWS infrastructure. For example, after signing up to AWS
(https://aws.amazon.com/free/), then install AWS CLI

(http: //docs.aws.amazon.com/cli/latest/userguide/installing. html), then if you
want to launch one Virtual Machine (EC2 instance), use AWS CLI as follows:

[270]

https://aws.amazon.com/free/
http://docs.aws.amazon.com/cli/latest/userguide/installing.html

Kubernetes on AWS Chapter 9

[NON) 7 saito — ec2-user@ip-172-31-31-217:~ — ssh ec2-user@54.172.10.42 — 80x19
ec2-user@ip-172-31-31-217:~ — ssh ec2-user@54.172.10.42

aws ec2 run-instances --image-id ami-a4c7edb2 --key-name my-key --instance-typ

t2.nano --security-groups ssh-only > /dev/null

aws ec2 describe-instances | grep PublicIpAddress

"PublicIpAddress": "54.172.10.42",

ssh ec2-user@54.172.10.42
The authenticity of host '54.172.10.42 (54.172.10.42)' can't be established.
ECDSA key fingerprint is SHA256:4/4exJT5PiRzcqXSg+mo2Q4de/DIrPEWR2cG+M920jg.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '54.172.10.42' (ECDSA) to the list of known hosts.
Enter passphrase for key '/Users/saito/.ssh/id_rsa':

Amazon Linux AMI

https://aws.amazon.com/amazon-linux-ami/2017.03-release-notes/
2 package(s) needed for security, out of 6 available

Run "sudo yum update" to apply all updates.
[ec2-user@ip-172-31-31-217 ~]$

As you can see, it takes only just a few minutes to access your Virtual Machine after signing
up to AWS. On the other hand, what if you set up your own on premise data center from
scratch? The following diagram is a high-level comparison on if you use on premise data
centers or if you use the public cloud:

On Premise Public Cloud

[271]

Kubernetes on AWS Chapter 9

As you can see, the public cloud is too simple and quick; this is why public cloud is flexible
and convenient for not only emerging, but also permanent usage.

AWS components

AWS has some components to configure network and storage. These are important to
understand how the public cloud works and also important to know how to configure
Kubernetes.

VPC and subnet

On AWS, first of all you need to create your own network; it is called Virtual Private Cloud
(VPC) and uses a SDN technology. AWS allows you to create one or more VPC on AWS.
Each VPC may connect with each other as required. When you create a VPC, just define one
network CIDR block and AWS region. For example, CIDR 10.0.0.0/16 onus—east-1.
No matter if you have access to a public network or not, you can define any network
address range (between /16 to /28 netmask range). VPC creation is very quick, once done to
create a VPC, and then you need to create one or more subnets within VPC.

In the following example, one VPC is created via the AWS command line:

//specify CIDR block as 10.0.0.0/16
//the result, it returns VPC ID as "vpc-66eda6lf"
$ aws ec2 create-vpc —--cidr-block 10.0.0.0/16

{
"Vpec": {
"VpcId": "vpc-66eda6lf",
"InstanceTenancy": "default",
"Tags": [],
"State": "pending",
"DhcpOptionsId": "dopt-3d901958",
"CidrBlock": "10.0.0.0/16"
}
}

Subnet is a logical network block. It must belong to one VPC and in addition, belong to one
availability zone. For example, VPC vpc-66eda61f and us—east-1b. Then the network
CIDR must be within VPC's CIDR. For example, if VPC CIDR is 10.0.0.0/16 (10.0.0.0 -
10.0.255.255) then one subnet CIDR could be 10.0.1.0/24(10.0.1.0-10.0.1.255).

[272]

Kubernetes on AWS Chapter 9

In the following example, two subnets are created (us-east-1a and us-east-1b) onto
vpc-66edablf:

//1st subnet 10.0."1".0/24 on us—-east-1"a" availability zone
$ aws ec2 create-subnet —--vpc-id vpc-66eda6lf —--cidr-block 10.0.1.0/24 --
availability—-zone us—-east-la

{
"Subnet": {
"VpcId": "vpc—-66edablf",
"CidrBlock": "10.0.1.0/24",
"State": "pending",
"AvailabilityZone": "us—-east-1la",
"SubnetId": "subnet-d83a4b82",
"AvailableIpAddressCount": 251
}
}

//2nd subnet 10.0."2".0/24 on us—-east-1"b"
$ aws ec2 create-subnet —--vpc-id vpc-66eda6lf —--cidr-block 10.0.2.0/24 --
availability-zone us—-east-1b

{
"Subnet": {
"VpcId": "vpc-66edablf",
"CidrBlock": "10.0.2.0/24",
"State": "pending",
"AvailabilityZone": "us—east-1b",
"SubnetId": "subnet-62758c06",
"AvailableIpAddressCount": 251
}
}

Let's make the first subnet a public facing subnet and the second subnet a private subnet.
This means the public facing subnet can be accessible from the internet, which allows it to
have a public IP address. On the other hand, a private subnet can't have a public IP address.
To do that, you need to set up gateways and routing tables.

In order to make high availability for public networks and private
networks, it is recommended to create at least four subnets (two public
and two private on different availability zones).

But to simplify examples that are easy to understand, these examples
create one public and one private subnet.

[273]

Kubernetes on AWS Chapter 9

Internet gateway and NAT-GW

In most cases, your VPC needs to have a connection with the public internet. In this case,
you need to create an IGW (internet gateway) to attach to your VPC.

In the following example, an IGW is created and attached to vpc-66eda61£:

//create IGW, it returns IGW id as igw-c3a695a5
$ aws ec2 create-internet-gateway

{
"InternetGateway": {
"Tags": [],
"InternetGatewayId": "igw-c3a695a5",
"Attachments": []
}
}

//attach igw-c3a695a5 to vpc-66edablf
$ aws ec2 attach-internet-gateway —--vpc-id vpc-66eda6lf —-internet-gateway-
id igw-c3a695a5

Once the IGW is attached, then set a routing table (default gateway) for a subnet that points
to the IGW. If a default gateway points to an IGW, this subnet is able to have a public IP
address and access from/to the internet. Therefore, if the default gateway doesn't point to
IGW, it is determined as a private subnet, which means no public access.

In the following example, a routing table is created that points to IGW and is set to the first
subnet:

//create route table within vpc-66eda6lf
//it returns route table id as rtb-fb41a280
$ aws ec2 create-route-table —--vpc-id vpc-66edablf
{
"RouteTable": {

"Associations": [],

"RouteTableId": "rtb-fb41a280",

"VpcId": "vpc-66eda6lf",

"PropagatingVgws": [],

"Tags": [],
"Routes": [
{
"GatewayId": "local",
"DestinationCidrBlock": "10.0.0.0/16",
"State": "active",
"Origin": "CreateRouteTable"
}

[274]

Kubernetes on AWS Chapter 9

//then set default route (0.0.0.0/0) as igw—-c3a695a5

$ aws ec2 create-route --route-table-id rtb-fb41a280 --gateway-id igw-—
c3a695a5 —-destination-cidr-block 0.0.0.0/0

{

"Return": true

}

//finally, update 1lst subnet (subnet-d83a4b82) to use this route table
$ aws ec2 associate-route-table —--route-table-id rtb-fb41a280 —--subnet-id
subnet-d83a4b82

{
"AssociationId": "rtbassoc-b£f832dc5"

}

//because l1lst subnet is public, assign public IP when launch EC2
$ aws ec2 modify-subnet-attribute —--subnet-id subnet-d83a4b82 --map-public-
ip—-on-launch

On the other hand, the second subnet, although a private subnet, does not need a public IP
address, however, a private subnet sometimes needs to access the internet. For example,
download some packages and access the AWS service access. In this case, we still have an
option to connect to the internet. It is called Network Address Translation Gateway (NAT-
GW).

NAT-GW allows private subnets to access the public internet through NAT-GW. Therefore,
NAT-GW must be located at a public subnet, and the private subnet routing table points to
NAT-GW as a default gateway. Note that in order to access NAT-GW on the public
network, it needs Elastic IP (EIP) attached to the NAT-GW.

In the following example, a NAT-GW is created:

//allocate EIP, it returns allocation id as eipalloc-56683465
$ aws ec2 allocate-—address

{
"PublicIp": "34.233.6.60",
"Domain": "vpc",
"AllocationId": "eipalloc-56683465"
}

//create NAT-GW on 1lst public subnet (subnet-d83a4b82

//also assign EIP eipalloc-56683465

$ aws ec2 create—nat-gateway —--subnet-id subnet-d83a4b82 --allocation-id
eipalloc-56683465

[275]

Kubernetes on AWS Chapter 9

{
"NatGateway": {
"NatGatewayAddresses": [
{
"AllocationId": "eipalloc-56683465"
}
] 4
"VpcId": "vpc-66eda6lf",
"State": "pending",
"NatGatewayId": "nat-084ff8baledd54bf4",
"SubnetId": "subnet-d83a4b82",
"CreateTime": "2017-08-13T21:07:34.000z"
}
}

Unlike an IGW, AWS charges you an additional hourly cost for Elastic IP
and NAT-GW. Therefore, if you wish to save costs, launch an NAT-GW
only while accessing the internet.

Creating NAT-GW takes a few minutes, then once NAT-GW is created, update a private
subnet routing table that point to NAT-GW, and then any EC2 instances are able to access
the internet, but again, due to no public IP address on the private subnet, there is no chance
of access from the public internet to the private subnet EC2 instances.

In the following example, an update routing table for the second subnet points to NAT-GW
as the default gateway:

//as same as public route, need to create a route table first
$ aws ec2 create-route-table —--vpc-id vpc-66edablf

{
"RouteTable": {
"Associations": [],
"RouteTableId": "rtb-cc4cafb7",
"VpcId": "vpc-66eda6lf",
"PropagatingVgws": [],
"Tags": [1,
"Routes": [
{
"GatewayId": "local",
"DestinationCidrBlock": "10.0.0.0/16",
"State": "active",
"Origin": "CreateRouteTable"
}
1
}
}

[276]

Kubernetes on AWS Chapter 9

//then assign default gateway as NAT-GW
$ aws ec2 create-route --route-table-id rtb-ccd4cafb7 —--nat-gateway-id
nat-084ff8baledd54bf4 —--destination-cidr-block 0.0.0.0/0

{
"Return": true
}
//£finally update 2nd subnet that use this routing table
$ aws ec2 associate-route-table —--route-table-id rtb-cc4d4cafb7 —--subnet-id
subnet-62758c06
{
"AssociationId": "rtbassoc-2760ce5d"
}

Overall, there are two subnets that have been configured as public subnet and private
subnet. Each subnet has a default route to use IGW and NAT-GW as follows. Note that ID
varies because AWS assigns a unique identifier:

Assign
Types CIDR Public
of block Subnet ID Route table ID | Default gateway IP while
subnet EC2
launches
Public |10.0.1.0/24 | subnet-d83a4b82 | rtb-fb41a280 | igw-c3a695a5 (IGW) Yes
nat-084ff8baledd54bf4 | No
i bnet-62758c06 b-ccdcafb’
Private | 10.0.2.0/24 | subne c rtb-ccdca (NAT-GW) (default)

Technically, you can still assign a public IP to private subnet EC2 instance,
but there is no default gateway to the internet (IGW). Therefore, a public
IP will just be wasted and absolutely not have connectivity from the
internet.

Now if you launch an EC2 instance on the public subnet, it becomes public facing, so you
can serve your application from this subnet.

On the other hand, if you launch an EC2 instance on the private subnet, it can still access to
the internet through NAT-GW, but there will be no access from the internet. However, it
can still access it from the public subnet's EC2 instances. So you can deploy internal services
such as database, middleware, and monitoring tools.

[277]

Kubernetes on AWS Chapter 9

Security group

Once VPC and subnets with related gateways/routes are ready, you can create EC2
instances. However, at least one access control needs to be created beforehand, which is
called a security group. It can define a firewall rule that ingress (incoming network access)
and egress (outgoing network access).

In the following example, a security group and a rule for public subnet hosts are created
that allows ssh from your machine's IP address, as well as open HTTP(80/tcp) world-wide:

When you define a security group for public subnet, it is highly
recommended it to be reviewed by a security expert. Because once you
deploy an EC2 instance onto the public subnet, it has a public IP address
and then everyone including crackers and bots are able to access your
instances directly.

//create one security group for public subnet host on vpc-66eda6lf
$ aws ec2 create-security-group —--vpc-id vpc-66edablf —--group-name public -
—description "public facing host"
{
"GroupId": "sg-7d429f0d4d"
}

//check your machine's public IP (if not sure, use 0.0.0.0/0 as temporary)
$ curl ifconfig.co
107.196.102.199

//public facing machine allows ssh only from your machine
$ aws ec2 authorize-security-group-ingress —--group-id sg-7d429f0d4d --
protocol tcp —--port 22 --cidr 107.196.102.199/32

//public facing machine allow HTTP access from any host (0.0.0.0/0)
$ aws ec2 authorize-security-group-ingress —--group-id sg-dl73aeal --
protocol tcp —--port 80 --cidr 0.0.0.0/0

Next, create a security group for a private subnet host, that allows ssh from the public
subnet host. In this case, specifing a public subnet security group ID (sg-7d429£0d) instead
of a CIDR block is convenient:

//create security group for private subnet
$ aws ec2 create-security-group --vpc-id vpc-66eda6lf —--group-name private
——description "private subnet host"
{
"GroupId": "sg-dl73aeal"
}

[278]

Kubernetes on AWS

Chapter 9

//private subnet allows ssh only from ssh bastion host security group
//it also allows HTTP (80/TCP) from public subnet security group
$ aws ec2 authorize-security-group-ingress —--group-id sg-dl73aeal --

protocol tcp —--port 22 —--source—-group sg-7d429f0d

//private subnet allows HTTP access from public subnet security group too
$ aws ec2 authorize-security-group-ingress —--group-id sg-dl73aeal --

protocol tcp —--port 80 —-source—group sg-7d429f0d

Overall, there are two security groups that have been created as follows:

Name |Security group ID | Allow ssh (22/TCP) Allow HTTP (80/TCP)
Your machine
i -7d429£0d 0.0.0.0/0
Public |sg (107.196.102.199) /
Private | sg-d173aeal public sg (sg-7d429£04d) public sg (sg-7d429£04d)

EC2 and EBS

EC2 is one important service in AWS that you can launch a VM on your VPC. Based on
hardware spec (CPU, memory, and network), there are several types of EC2 instances that
are available on AWS. When you launch an EC2 instance, you need to specify VPC, subnet,
security group, and ssh keypair. Therefore, all of these must be created beforehand.

Because of previous examples, the only last step is ssh keypair. Let's make an ssh keypair:

//create keypair (internal_rsa,

$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/Users/saito/.ssh/id_rsa):
/tmp/internal_rsa
Enter passphrase (empty for no passphrase):
Enter same passphrase again:

Your identification has been saved in /tmp/internal_rsa.
Your public key has been saved in /tmp/internal_rsa.pub.

//register internal_rsa.pub key to AWS
$ aws ec2 import-key-pair —--key-name=internal --public-key-material "'cat
/tmp/internal_rsa.pub'"

{

"KeyName" :

"KeyFingerprint":

"18:e7:86:d7:89:15:5d:3b:bc:bd:5f:b4:d5:1c:83:81"

}

"internal",

internal_rsa.pub)

[279]

Kubernetes on AWS Chapter 9

//launch public facing host, using Amazon Linux on us-east-1 (ami-ad4c7edb2)

$ aws ec2 run-instances —--image-id ami-ad4c7edb2 --instance-type t2.nano --
key—name internal --security—-group-ids sg-7d429f0d —-subnet-id subnet-
d83a4b82

//launch private subnet host

$ aws ec2 run-instances —--image-id ami-ad4c7edb2 --instance-type t2.nano --
key—-name internal --security—-group-ids sg-dl73aeal —--subnet-id
subnet-62758c06

After a few minutes, check the EC2 instances status on the AWS web console; it shows a
public subnet host that has a public IP address. On the other hand, a private subnet host
doesn't have a public IP address:

Instance ID Availability : IPv4 Public IP Key Name VPC ID Subnet ID Private IP Add
i-0b51f497f831fab28 us-east-1b - internal vpc-66edab1f subnet-62758c06 10.0.2.98
i-0db344916c90fae61 us-east-1a 54.227.197.56 internal vpc-66edab1f subnet-d83a4b82 10.0.1.24

//add private keys to ssh-—agent

$ ssh-add -K /tmp/internal_rsa

Identity added: /tmp/internal_rsa (/tmp/internal_rsa)

$ ssh-add -1

2048 SHA256:AMkdBxkVZxPz0gBTzLPCwEtaDqoudXyiRzTTG4vtgTo /tmp/internal_rsa
(RSA)

//ssh to the public subnet host with -A (forward ssh-agent) option
$ ssh -A ec2-user@54.227.197.56
The authenticity of host '54.227.197.56 (54.227.197.56)' can't be
established.
ECDSA key fingerprint is
SHA256:0cI7Q60RB+k2gbU90H090r0FhvBEydVI2wXIDzOacaE.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '54.227.197.56' (ECDSA) to the list of known
hosts.
)
I« / Amazon Linux AMI

N
https://aws.amazon.com/amazon-linux—-ami/2017.03-release—-notes/
2 package(s) needed for security, out of 6 available
Run "sudo yum update" to apply all updates.

[280]

Kubernetes on AWS Chapter 9

Now you are in the public subnet host (54.227.197.56), but this host also has an internal
(private) IP address, because this host is deployed in the 10.0.1.0/24 subnet (subnet -
d83a4b82), therefore the private address range mustbe 10.0.1.1-10.0.1.254:

$ ifconfig ethO

ethO Link encap:Ethernet HWaddr OE:8D:38:BE:52:34
inet addr:10.0.1.24 Bcast:10.0.1.255
Mask:255.255.255.0

Let's install nginx web server on the public host as follows:

$ sudo yum -y —-q install nginx
$ sudo /etc/init.d/nginx start
Starting nginx: [OK]

Then, go back to your machine and check the website for 54.227.197.56:

$ exit
logout
Connection to 52.227.197.56 closed.

//from your machine, access to nginx
$ curl -I 54.227.197.56

HTTP/1.1 200 OK

Server: nginx/1.10.3

Accept-Ranges: bytes

In addition, within the same VPC, there is reachability for other availability zones, therefore

you can ssh from this host to the private subnet host (10.0.2. 98). Note that we are using
the ssh -A option that forwards a ssh-agent, so there is no need to create a
~/.ssh/id_rsa file:

[ec2-user@ip-10-0-1-24 ~]$ ssh 10.0.2.98
The authenticity of host '10.0.2.98 (10.0.2.98)' can't be established.
ECDSA key fingerprint is l1la:37:c3:cl:e3:8£:24:56:6£:90:8f:4a:ff:5e:79:0b.
Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '10.0.2.98' (ECDSA) to the list of known
hosts.

)
I ¢ / Amazon Linux AMI

N1
https://aws.amazon.com/amazon-linux-ami/2017.03-release-notes/
2 package(s) needed for security, out of 6 available
Run "sudo yum update" to apply all updates.
[ec2-user@ip-10-0-2-98 ~]$

[281]

Kubernetes on AWS Chapter 9

In addition to EC2, there is an important functionality, which is disk management. AWS
provides a flexible disk management service called Elastic Block Store (EBS). You may
create one or more persistent data storage that can attach to an EC2 instance. From an EC2
point of view, EBS is one of HDD/SSD. Once you terminate (delete) an EC2 instance, EBS
and its contents may remain and then reattach to another EC2 instance.

In the following example, one volume that has 40 GB capacity is created; and then attached
to a public subnet host (instance ID 1-0db344916c90fae61l):

//create 40GB disk at us-east-la (as same as EC2 host instance)
$ aws ec2 create-volume --availability-zone us—-east-la --size 40 --volume-
type standard

{
"AvailabilityZone": "us-east-la",
"Encrypted": false,
"VolumeType": "standard",
"VolumeId": "vol-005032342495918d6",
"State": "creating",
"SnapshotId": "",
"CreateTime": "2017-08-16T05:41:53.271z",
"Size": 40

}

//attach to public subnet host as /dev/xvdh
$ aws ec2 attach-volume --device xvdh —--instance-id i-0db344916c90faeb6l —-
volume-id vol-005032342495918d6

{
"AttachTime": "2017-08-16T05:47:07.598z2",
"InstanceId": "i-0db344916c90faebl",
"VolumeId": "vol-005032342495918d6",
"State": "attaching",
"Device": "xvdh"

}

[282]

Kubernetes on AWS Chapter 9

After attaching the EBS volume to the EC2 instance, the Linux kernel recognizes /dev/xvdh
as specified, and then you need to do partitioning in order to use this device, as follows:

[BON] 2 saito — root@ip-10-0-1-24:~ — ssh ec2-user@54.227.197.56 — 79x41
root@ip-10-0-1-24:~ — ssh ec2-user@54.227.197.56

[root@ip-10-0-1-24 ~]# 1s /dev/xvx

/dev/xvda /dev/xvdal |/dev/xvdh

[root@ip-10-0-1-24 ~]# fdisk /dev/xvdh

Welcome to fdisk (util-linux 2.23.2).

Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Device does not contain a recognized partition table
Building a new DOS disklabel with disk identifier 0x4867ac2f.

Command (m for help): n
Partition type:
p primary (@ primary, @ extended, 4 free)
e extended
Select (default p): p
Partition number (1-4, default 1):
First sector (2048-83886079, default 2048):
Using default value 2048
Last sector, +sectors or +size{K,M,G} (2048-83886079, default 83886079):
Using default value 83886079
Partition 1 of type Linux and of size 40 GiB is set

Command (m for help): p

Disk /dev/xvdh: 42.9 GB, 42949672960 bytes, 83886080 sectors
Units = sectors of 1 *x 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disk label type: dos

Disk identifier: 0x4867ac2f

Device Boot Start End Blocks Id System
/dev/xvdhl 2048 83886079 41942016 83 Linux

Command (m for help): w
The partition table has been altered!

Calling doctl() to re-read partition table.
Syncing disks.
[root@ip-10-0-1-24 ~1# |]

[283]

Kubernetes on AWS

Chapter 9

In this example, we made one partition as /dev/xvdh1, so you can create a filesystem as
ext4 format on /dev/xvdh1 and then you can mount to use this device on an EC2 instance:

[JON)} 1) saito — root@ip-10-0-1-24:/ — ssh ec2-user@54.227.197.56 — 79x 25

root@ip-10-0-1-24:/ — ssh ec2-user@54.227.197.56
[root@ip-10-0-1-24 ~]# mkfs.ext4 /dev/xvdhl
mke2fs 1.42.12 (29-Aug-2014)
Creating filesystem with 10485504 4k blocks and 2621440 inodes
Filesystem UUID: 5cc5edff-d667-420c-al189-4d2b1e966607
Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,

4096000, 7962624

Allocating group tables: done

Writing inode tables: done

Creating journal (32768 blocks): done

Writing superblocks and filesystem accounting information: done

[root@ip-10-0-1-24 ~]#

[root@ip-10-0-1-24 ~]# mount /dev/xvdhl /mnt
[root@ip-10-0-1-24 ~]# cd /mnt
[root@ip-10-0-1-24 mnt]# 1s

lost+found

[root@ip-10-0-1-24 mnt]# df -h /mnt
Filesystem Size Used Avail Use% Mounted on
/dev/xvdhl 406G 48M 38G 1% /mnt
[root@ip-10-0-1-24 mnt]# touch hello
[root@ip-10-0-1-24 mnt]# cd /
[root@ip-10-0-1-24 /]# umount /mnt

After unmounting the volume, you can feel free to detach this volume and then re-attach it

whenever needed:

//detach volume
$ aws ec2 detach-volume --volume-id vol-005032342495918d6
{
"AttachTime": "2017-08-16T06:03:45.0002",
"InstanceId": "i-0db344916c90faebl",
"VolumeId": "vol-005032342495918d6",
"State": "detaching",
"Device": "xvdh"

[284]

Kubernetes on AWS Chapter 9

Route 53

AWS also provides a hosted DNS service called Route 53. Route 53 allows you to manage
your own domain name and associated FQDN to an IP address. For example, if you want to
have a domain name k8s-devops.net, you can order through Route 53 to register your

DNS domain.

The following screenshot shows ordering a domain name k8s-devops.net; it may take a
few hours to complete registration:

0O < (am] console.aws.amazon.com/route53/home?region=us-east-1#
Route 53 Management Console
BF Services v Resource Groups v JEC2 L VPC | Route53 51§ [\ HidetoSaito ~ Global v Support v

1: Domain Search Choose a domain name Shopping cart

k8s-devops .net - $11.00

3: Verify & Purchase
)) . Popular L
To register a domain name, start by finding ¢ irst part of
. .com - $12.00
the name (such as example in example.com s .com or
.org), and click Check. We'll tell you whethe! [k $11.00 can get it
with other extensions. Learn more. .org - $12.00

.com.au - $15.00
.co.uk - $9.00
.o - $39.00

.info - $12.00
.co - $25.00

da - %0 NN

Cancel

Terms of Use

Run script “vaid(0)" @ English € c . All rig . Privacy Policy

Once registration is completed, you may receive a notification email from AWS, and then
you can control this domain name via the AWS command line or a web console. Let's add
one record (FQDN to IP address) that associate public.k8s-devops.net with the public
facing EC2 host public IP address 54.227.197.56. To do that, get a hosted zone ID as

follows:

$ aws route53 list-hosted-zones | grep Id
"Id": "/hostedzone/Z1CTVYM9SLEANS",

[285]

Kubernetes on AWS Chapter 9

Now you get a hosted zone id as /hostedzone/Z1CTVYMISLEANS, so let's prepare a JSON
file to update the DNS record as follows:

//create JSON file
$ cat /tmp/add-record.json

{
"Comment": "add public subnet host",
"Changes": [
{
"Action": "UPSERT",
"ResourceRecordSet": {
"Name": "public.k8s-devops.net",
"Type": "A",
"TTL": 300,
"ResourceRecords": [
{
"Value": "54.227.197.56"
}
]
}
}
1
}

//submit to Route53
$ aws route53 change-resource-record-sets —-hosted-zone-id
/hostedzone/Z1CTVYM9SLEAN8 —--change-batch file:///tmp/add-record.json

//a few minutes later, check whether A record is created or not

$ dig public.k8s-devops.net

; <<>> DiG 9.8.3-P1 <<>> public.k8s-devops.net

;7 global options: +cmd

;; Got answer:

;7 —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 18609

;; flags: gqr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: O
;7 QUESTION SECTION:

;public.k8s—-devops.net. IN A
;; ANSWER SECTION:
public.k8s—-devops.net. 300 IN A 54.227.197.56

Looks good, so now access the nginx through the DNS name public.k8s-devops.net:

$ curl -I public.k8s-devops.net
HTTP/1.1 200 OK
Server: nginx/1.10.3

[286]

Kubernetes on AWS Chapter 9

ELB

AWS provides a powerful software based load balancer called Elastic Load Balancer (ELB).
It allows you to load balance network traffic to one or multiple EC2 instances. In addition,
ELB can offload SSL/TLS encryption/decryption and also supports multi-availability zone.

In the following example, an ELB is created and associated with a public subnet host nginx
(80/TCP). Because ELB also needs a security group, create a new security group for ELB
first:

$ aws ec2 create-security-group --vpc-id vpc-66edablf —--group-name elb --
description "elb sg"
{

"GroupId": "sg-51d77921"

}

$ aws ec2 authorize-security-group-ingress —--group-id sg-51d77921 --
protocol tcp —--port 80 --cidr 0.0.0.0/0

$ aws elb create-load-balancer --load-balancer-name public-elb --listeners
Protocol=HTTP, LoadBalancerPort=80, InstanceProtocol=HTTP, InstancePort=80 —-
subnets subnet-d83a4b82 --security-groups sg-51d77921
{

"DNSName": "public-elb-1779693260.us—east-

1.elb.amazonaws.com"

$ aws elb register-instances-with-load-balancer --load-balancer-name
public—-elb —--instances i-0db344916c90faebl

$ curl -I public-elb-1779693260.us—-east-1.elb.amazonaws.com
HTTP/1.1 200 OK

Accept—-Ranges: bytes

Content-Length: 3770

Content-Type: text/html

[287]

Kubernetes on AWS

Chapter 9

Let's update the Route 53 DNS record public.k8s-devops.net that points to ELB. In this
case, ELB already has an A record, therefore use a CNAME (alias) that points to ELB FQDN:

$ cat change-to-elb.json
{
"Comment": "use CNAME to pointing to ELB",
"Changes": [
{
"Action": "DELETE",
"ResourceRecordSet": {
"Name": "public.k8s-devops.net",
"Type n . "A" ,
"TTL": 300,
"ResourceRecords": [
{

"Value":

}

"52.86.166.223"

}
}

{
"Action": "UPSERT",

"ResourceRecordSet": {

"Name": "public.k8s-devops.net",

"Type n . VICNM n” ,

"TTL": 300,

"ResourceRecords": [

{
"Value":

1.elb.amazonaws.com"

$ dig public.k8s-devops.net

; <<>> DiG 9.8.3-P1 <<>> public.k8s-devops.net
;7 global options: +cmd

;; Got answer:

; ; —>>HEADER<<- opcode: QUERY, status: NOERROR,

;; flags: gr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY:
;; QUESTION SECTION:

;public.k8s—-devops.net. IN A

;; ANSWER SECTION:

public.k8s-devops.net. 300 IN

"public-elb-1779693260.us—east-

10278
0, ADDITIONAL:

CNAME public-elb-1779693260.us-

0

[288]

Kubernetes on AWS Chapter 9

east-1.elb.amazonaws.com.
public-elb-1779693260.us—east-1.elb.amazonaws.com. 60 IN A 52.200.46.81
public-elb-1779693260.us—east-1.elb.amazonaws.com. 60 IN A 52.73.172.171
;; Query time: 77 msec

;; SERVER: 10.0.0.1#53(10.0.0.1)

;; WHEN: Wed Aug 16 22:21:33 2017

;; MSG SIZE «rcvd: 134

$ curl -I public.k8s-devops.net
HTTP/1.1 200 OK

Accept—-Ranges: bytes
Content-Length: 3770
Content-Type: text/html

S3

AWS provides a useful object data store service called Simple Storage Service (S3). It is not
like EBS, no EC2 instance can mount as a file system. Instead, use AWS API to transfer a file
to the S3. Therefore, AWS can make availability (99.999999999%) and multiple instances can
access it at the same time. It is good to store non-throughput and random access sensitive
files such as configuration files, log files, and data files.

In the following example, a file is uploaded from your machine to AWS S3:

//create S3 bucket "k8s-devops"
$ aws s3 mb s3://k8s-devops
make_bucket: k8s-devops

//copy files to S3 bucket

$ aws s3 cp add-record.json s3://k8s-devops/

upload: ./add-record.json to s3://k8s-devops/add-record.json

$ aws s3 cp change-to-elb.json s3://k8s-devops/

upload: ./change-to-elb.json to s3://k8s-devops/change-to-elb. json

//check files on S3 bucket

$ aws s3 1ls s3://k8s-devops/

2017-08-17 20:00:21 319 add-record. json
2017-08-17 20:00:28 623 change-to-elb. json

[289]

Kubernetes on AWS Chapter 9

Overall, we've discussed how to configure AWS components around VPC. The following
diagram shows a major component and relationship:

¢

CNAME
' l http ‘
default route

EC2

Public Subnet (us-east-1a)

default route ssh

EC2

Private subnet (us-east-1b)

k VPC J

Setup Kubernetes on AWS

We've discussed some AWS components that are quite easy to set up networks, virtual
machines, and storage. Therefore, there are a variety of ways to set up Kubernetes on AWS
such as kubeadm (https://github.com/kubernetes/kubeadn), kops
(https://github.com/kubernetes/kops), and kubespray
(https://github.com/kubernetes—incubator/kubespray). One of the recommended ways
to set up Kubernetes is using kops, which is a production grade setup tool and supports a
lot of configuration. In this chapter, we will use kops to configure Kubernetes on AWS.
Note that kops stands for Kubernetes operations.

[290]

https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kops
https://github.com/kubernetes-incubator/kubespray

Kubernetes on AWS Chapter 9

Install kops

First of all, you need to install kops to your machine. Linux and macOS are supported. Kops
is a single binary, so just copy the kops command to /usr/local/bin as recommended.
After that, create an IAM user and role for kops that handles the kops operation. For details,
follow the official documentation
(https://github.com/kubernetes/kops/blob/master/docs/aws.md).

Run kops

Kops needs an S3 bucket that stores the configuration and status. In addition, use Route 53
to register the Kubernetes API server name, and etcd server name to the domain name
system. Therefore, use S3 bucket and use the Route 53 that we've created in the previous
section.

Kops supports a variety of configurations, such as deploying to public subnets, private
subnets, using different types and number of EC2 instances, high availability, and
overlaying networks. Let's configure Kubernetes with a similar configuration of network in
the previous section as follows:

Kops has an option to reuse existing VPC and subnets. However, it
behaves tricky and may encounter some issues based on settings; it is
recommended to create a new VPC by kops. For details, you may find a

document at
https://github.com/kubernetes/kops/blob/master/docs/run_in_exist

ing_vpc.md.

Parameter Value Means

——name my-cluster.k8s-devops.net Set up my—cluster. under kgs-
devops.net domain

--state s3://k8s-devops Use k8s-devops S3 bucket

——zones us—east-1la Dep%oy On us-east-la
Availability Zone

--cloud aws Use AWS as cloud provider

. Create new VPC with CIDR

—-—-network—-cidr 10.0.0.0/16

10.0.0.0/16

[291]

https://github.com/kubernetes/kops/blob/master/docs/aws.md
https://github.com/kubernetes/kops/blob/master/docs/run_in_existing_vpc.md
https://github.com/kubernetes/kops/blob/master/docs/run_in_existing_vpc.md

Kubernetes on AWS

Chapter 9

——master—-size

t2.large

Use EC2 t2. 1large instance for
master

——node-size

t2.medium

Use EC2 t 2 .medium instance for

nodes
—--node-count 2 Set up two nodes
--networking calico Use Calico for overlay network
Set up both public and private
——topology private subnet, and deploy master and

node to private

—--ssh-puglic-key

/tmp/internal_rsa.pub

Use /tmp/internal_rsa.pub
for bastion host

—-—-bastion

Create ssh bastion server on
public subnet

--yes

Immediately to execute

Therefore, run the following to run kops:

$ kops create cluster —-name my-cluster.k8s-devops.net --state=s3://k8s-
devops —-zones us—-east-la —--cloud aws —--network-cidr 10.0.0.0/16 --master-

size t2.large —--node-size t2.medium --node-count 2 —--networking calico —--

topology private —--ssh-public-key /tmp/internal_rsa.pub --bastion --yes

10818 20:43:15.022735

/tmp/internal_rsa.pub

10818 20:45:32.585246

can run

10818 20:45:32.587067
I0818 20:45:35.266425

cluster

11372 executor.go:91] Tasks: 78 done / 78 total;

11372 dns.go:152] Pre—-creating DNS records
11372 update_cluster.go:247] Exporting kubecfg for

Kops has set your kubectl context to my-cluster.k8s—-devops.net

Cluster is starting.

It should be ready in a few minutes.

11372 create_cluster.go:845] Using SSH public key:

0

It may take around 5 to 10 minutes to fully complete after seeing the preceding messages.

This is because it requires us to create the VPC, subnet, and NAT-GW, launch EC2s, then

install Kubernetes master and node, launch ELB, and then update Route 53 as follows:

[292]

Kubernetes on AWS Chapter 9

ELB
CNAME
di

efault route ssh

bastion
EC2

Public Subnet [us-east-1a)

default route ssh http
‘ V * ‘ v
node node master
EC2 EC2 EC2

Private subnet (us-east-1b)

\;k VPC #J)

Once complete, kops updates ~/ . kube/config on your machine points to your
Kubernetes API Server. Kops creates an ELB and sets the corresponding FQDN record on
Route 53 as https://api.<your-cluster—-name>.<your—-domain-name>/, therefore,
you may run the kubect 1l command from your machine directly to see the list of nodes as
follows:

$ kubectl get nodes

NAME STATUS AGE VERSION
ip-10-0-36-157.ec2.internal Ready, master 8m vi.7.0
ip—-10-0-42-97.ec2.internal Ready, node 6m vi.7.0
ip-10-0-42-170.ec2.internal Ready, node 6m vi.7.0

Hooray! It took just a few minutes to set up AWS Infrastructure and Kubernetes on the
AWS from scratch. Now you can deploy pod through the kubect1 command. But you may
want to ssh to the master/node to see what is going on.

[293]

Kubernetes on AWS Chapter 9

However, due to security reasons, if you specify -—topology private, you can ssh to
only the bastion host. Then ssh to master/node host using a private IP address. This is
similar to the previous section that ssh to public subnet host, then ssh to the private subnet
host using ssh-agent (-2 option).

In the following example, we ssh to the bastion host (kops creates Route 53 entry as
bastion.my-cluster.k8s-devops.net) and then ssh to master (10.0.36.157):

[NOX) |51 Desktop — admin@ip-10-0-36-157: ~ — ssh -A admin@bastion.my-cluster.k8s-devops.net — 80x30
admin@ip-10-0-36-157: ~ — ssh -A admi ion.my-cluster.k8s-devops.net

$ ssh-add /tmp/internal_rsa

Enter passphrase for /tmp/internal_rsa:

Identity added: /tmp/internal_rsa (/tmp/internal_rsa)

$

$ ssh -A admin@bastion.my-cluster.k8s-devops.net

The authenticity of host 'bastion.my-cluster.k8s-devops.net (52.201.121.72)' can
't be established.

ECDSA key fingerprint is SHA256:Stwoq7GAqXzWGdK8PkOBpzZcbwfWW2byIos3Vg3EXCs.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'bastion.my-cluster.k8s-devops.net,52.201.121.72' (EC
DSA) to the list of known hosts.

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Sun Aug 20 06:55:21 2017 from 10.0.1.26
admin@ip-10-0-2-163:~$

admin@ip-10-0-2-163:~$

admin@ip-10-0-2-163:~$ ssh admin@10.0.36.157

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
admin@ip-10-0-36-157:~$ ||

Kubernetes cloud provider

While setting up Kubernetes by kops, it also configures Kubernetes cloud provider as AWS.
Which means when you use the Kubernetes service with LoadBalancer, it will use ELB. It
also uses Elastic Block Store (EBS) as its StorageClass.

[294]

Kubernetes on AWS Chapter 9

L4 LoadBalancer

When you make the Kubernetes service public to the external world, using ELB makes
much more sense. Setting service type as LoadBalancer will invoke ELB creation and

associate it with nodes:

$ cat grafana.yml
apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: grafana
spec:
replicas: 1
template:
metadata:
labels:
run: grafana
spec:
containers:
- image: grafana/grafana
name: grafana
ports:
— containerPort: 3000
apiVersion: vl
kind: Service

metadata:
name: grafana
spec:
ports:
- port: 80

targetPort: 3000
type: LoadBalancer
selector:

run: grafana

$ kubectl create -f grafana.yml
deployment "grafana" created
service "grafana" created

$ kubectl get service

NAME CLUSTER-IP EXTERNAL-IP PORT (S) AGE
grafana 100.65.232.120 a5d97c8e£8575. .. 80:32111/TCP 11s
kubernetes 100.64.0.1 <none> 443/TCP 13m

$ aws elb describe-load-balancers | grep a5d97c8ef8575 | grep DNSName

[295]

Kubernetes on AWS Chapter 9

"DNSName": "a5d97c8e£f857511e7a6100edf846£38a-1490901085.us-
east-1.elb.amazonaws.com",

As you can see, ELB has been created automatically and the DNS is
a5d97c8ef857511e7a6100edf846£38a-1490901085.us—

east-1l.elb.amazonaws.com, SO NOW yOu can access Grafana at
http://a5d97c8e£f857511e7a6100edf846£38a-1490901085.us~—
east-1.elb.amazonaws.com.

You may use awscli to update Route 53 to assign a CNAME such as
grafana.k8s-devops.net. Alternatively, the Kubernetes incubator
project external-dns

(https ://github.com/kubernetes—incubator/external-dns) can
automate to update Route 53 in this situation.

o ® < Em} a5d97c8ef857511e7a6100edf846f38a-1490901

e
|}

Grafana +

Grafana

Login

User

Password

[296]

https://github.com/kubernetes-incubator/external-dns)
https://github.com/kubernetes-incubator/external-dns)

Kubernetes on AWS Chapter 9

L7 LoadBalancer (ingress)

As of kops version 1.7.0, it doesn't set up the ingress controller out of the box yet. However,
kops provides some add-ons
(https://github.com/kubernetes/kops/tree/master/addons)thatexparuithefeaturesof
Kubernetes. One of the add-ons ingress-nginx
(https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx) uses a
combination of AWS ELB and nginx to achieve the Kubernetes ingress controller.

In order to install the ingress—-nginx add-on, type the following command to set up the
ingress controller:

$ kubectl create -f
https://raw.githubusercontent.com/kubernetes/kops/master/addons/ingress—-ngi
nx/v1.6.0.yaml

namespace "kube-ingress" created

serviceaccount '"nginx-ingress-—-controller" created
clusterrole "nginx-ingress—-controller" created

role '"nginx-ingress-—-controller" created
clusterrolebinding "nginx-ingress—-controller" created
rolebinding "nginx-ingress—-controller" created
service "nginx—-default-backend" created

deployment "nginx-default-backend" created

configmap "ingress—-nginx" created

service "ingress—nginx" created

deployment "ingress—-nginx" created

After that, deploy nginx and echoserver using the NodePort service as follows:

$ kubectl run nginx --image=nginx —--port=80

deployment "nginx" created

$

$ kubectl expose deployment nginx —--target-port=80 —--type=NodePort
service "nginx" exposed

$

$ kubectl run echoserver —--image=gcr.io/google_containers/echoserver:1.4 ——
port=8080

deployment "echoserver" created

$

$ kubectl expose deployment echoserver —--target-port=8080 —-type=NodePort
service "echoserver" exposed

// URL "/" point to nginx, "/echo" to echoserver
$ cat nginx-echoserver-ingress.yaml

apiVersion: extensions/vlbetal

kind: Ingress

metadata:

[297]

https://github.com/kubernetes/kops/tree/master/addons
https://github.com/kubernetes/kops/tree/master/addons/ingress-nginx

Kubernetes on AWS Chapter 9

name: nginx—echoserver-ingress

spec:
rules:
- http:
paths:
- path: /
backend:

serviceName: nginx
servicePort: 80
- path: /echo
backend:
serviceName: echoserver
servicePort: 8080

//check ingress
$ kubectl get ing -o wide

NAME HOSTS ADDRESS

PORTS AGE

nginx—-echoserver—-ingress *
al705ab488dfalle7a89e0eb0952587e-28724883.us—east—-1.elb.amazonaws.com 80
1m

After a few minutes, the ingress controller associates the nginx service and echoserver
service with the ELB. When you access the ELB server with URI"/" it shows the nginx
screen as follows:

[
&

oe0oe < > El| a1705ab488dfal1e7a89e0eb0952587e-287

Welcome to nginx! —+

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

[298]

Kubernetes on AWS Chapter 9

On the other hand, if you access the same ELB, but use the URI "/echo", it shows
echoserver as follows:

[
&

[) ® < (Em] @ -28724883.us-east-1.elb.amazonaws.com/echd
https://a1705ab488dfal1e7a89e0eb0952587e-28724883.us-east-1.elb.amazonaws.com/echo —+

CLIENT VALUES:

client_address=100.117.74.72

command=GET

real path=/echo

query=nil

request_version=1.1
request_uri=http://al705ab488dfalle7a89e0eb0952587e-28724883.us-east-1.elb.amazonaws.com:8080/echo

SERVER VALUES:
server_version=nginx: 1.10.0 - lua: 10001

HEADERS RECEIVED:

accept=text/html,application/xhtml+xml,application/xml;q=0.9,*/%*;g=0.8

accept-encoding=gzip, deflate

accept-language=en-us

connection=close

cookie=regStatus=pre-register; s_dslv=1498443445925; s_fid=1B53E44044178EFF-30A59D8D2BB5F0FF;
s_nr=1498443445934-Repeat; s_vn=1524285719489%26vn%3D4

Compared to the standard Kubernetes LoadBalancer service, one LoadBalancer service
consumes one ELB. On the other hand, using the nginx-ingress addon, it can consolidate
multiple Kubernetes NodePort services onto the single ELB. This will help to build your
RESTful service easier.

StorageClass

As we discussed in Chapter 4, Working with Storage and Resources, there is a StorageClass
that can dynamically allocate Persistent Volume. Kops sets up provisioner as aws-ebs,
which uses EBS:

$ kubectl get storageclass

NAME TYPE

default kubernetes.io/aws—ebs
gp2 (default) kubernetes.io/aws-ebs

$ cat pvc-aws.yml
apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: pvc-aws-1
spec:
storageClassName: "default"
accessModes:

[299]

Kubernetes on AWS Chapter 9

- ReadWriteOnce
resources:
requests:

storage: 10Gi

$ kubectl create -f pvc—aws.yml
persistentvolumeclaim "pvc—-aws—-1" created

$ kubectl get pv

NAME CAPACITY ACCESSMODES
RECLAIMPOLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc—94957090-84a8-11e7-9974-0ea8dc53a244 10Gi RWO Delete
Bound default/pvc-aws-1 default 3s

This creates EBS volume automatically as follows:

$ aws ec2 describe-volumes --filter Name=tag-
value, Values="pvc-51cdf520-8576-11e7-a610-0edf846£38a6"

{

"Volumes": [
{
"AvailabilityZone": "us-east-la",
"Attachments": [],
"Tags": [
{

1,
"Encrypted": false,

"VolumeType": "gp2",
"VolumeId": "vol-052621c39546£8096",

"State": "available",

"Iops": 100,

"SnapshotId": "",

"CreateTime": "2017-08-20T07:08:08.773z",
"Size": 10

}

}

Overall, the Kubernetes cloud provider for AWS is utilized to map ELB to Kubernetes
services and also EBS to Kubernetes Persistent Volume. It is a great benefit to use AWS for
Kubernetes as there is no need to pre-allocate or buy either a physical LoadBalancer or
storage, just pay as you go; it creates flexibility and scalability for your business.

[300]

Kubernetes on AWS Chapter 9

Maintenance Kubernetes cluster by kops

When you need to change the Kubernetes configuration, such as the number of nodes and
even EC2 instance type, kops can support this kind of use case. For example, if you want to
change Kubernetes node instance type from t2.mediumto t2.micro, and also decrease
number from 2 to 1 due to cost saving, you need to modify the kops node instance group
(ig) setting as follows:

$ kops edit ig nodes —--name my-cluster.k8s-devops.net --state=s3://k8s-
devops

It launches vi editor and you can change the setting for kops node instance group as
follows:

apiVersion: kops/vlalpha2
kind: InstanceGroup
metadata:
creationTimestamp: 2017-08-20T06:43:452
labels:
kops.k8s.io/cluster: my-cluster.k8s-devops.net
name: nodes
spec:
image: kope.io/k8s-1.6-debian-jessie-amdé64-hvm-ebs-2017-
05-02
machineType: t2.medium
maxSize: 2
minSize: 2
role: Node
subnets:
- us—east-la

In this case, change machineType to t2.small, and maxSize/minSize to the 1 and then
save it. After that, run the kops update command to apply settings:

$ kops update cluster —-name my-cluster.k8s-devops.net —--state=s3://k8s-
devops --yes
I0820 00:57:17.900874 2837 executor.go:91] Tasks: 0 done / 94 total; 38

can run
I0820 00:57:19.064626 2837 executor.go:91] Tasks: 38 done / 94 total; 20

can run

Kops has set your kubectl context to my-cluster.k8s-devops.net
Cluster changes have been applied to the cloud.
Changes may require instances to restart: kops rolling-update cluster

[301]

Kubernetes on AWS Chapter 9

As you see in the preceding message, you need to run the kops rolling-update
cluster command to reflect to the existing instances. It may take a few minutes to replace
the existing instance to the new instance:

$ kops rolling-update cluster ——-name my-cluster.k8s-devops.net ——
state=s3://k8s-devops --yes

NAME STATUS NEEDUPDATE READY MIN MAX NODES
bastions Ready 0 1 1 1 0
master—us—east—la Ready 0 1 1 1 1
nodes NeedsUpdate 1 0 1 1 1

I0820 01:00:01.086564 2844 instancegroups.go:350] Stopping instance
"i-07e55394e£f3a09064", node "ip-10-0-40-170.ec2.internal", in AWS ASG
"nodes .my—-cluster.k8s—-devops.net".

Now the Kubernetes node instance has been decreased from 2 to 1 as follows:

$ kubectl get nodes

NAME STATUS AGE VERSION
ip-10-0-36-157.ec2.internal Ready, master 1h v1.7.0
ip-10-0-58-135.ec2.internal Ready, node 34s v1.7.0

Summary

In this chapter, we have discussed public cloud. AWS is the most popular public cloud
service and it gives the API to control AWS infrastructure programmatically. We can
achieve automation and infrastructure as code easily. Especially, kops brings us to ultra-fast
AWS and Kubernetes setup from scratch. Both Kubernetes and kops development are quite
active. Please keep monitoring those projects, which will have more functionality and
configuration in the near future.

The next chapter will introduce Google Cloud Platform (GCP), which is another popular
public cloud service. Google Container Engine (GKE) is the hosted Kubernetes service that
makes using Kubernetes much easier.

[302]

10

Kubernetes on GCP

Google Cloud Platform (GCP) is getting popular in the public cloud industry that is
provided by Google. GCP has similar concepts as AWS such as VPC, Compute Engine,
Persistent Disk, Load Balancing, and several managed services. In this chapter, you will
learn about GCP and how to set up Kubernetes on GCP through the following topics:

¢ Understanding GCP
¢ Using and understanding GCP components
¢ Using Google Container Engine (GKE), the hosted Kubernetes service

Introduction to GCP

GCP was officially launched in 2011. But not like AWS; at the beginning, GCP provided
Paa$S (Platform as a Service) first. So you can deploy your application directly, instead of
launching VM. After that, keep enhance functionality that supports a variety of services.

The most important service for Kubernetes users is GKE, which is a hosted Kubernetes
service. So you can get some relief from Kubernetes installation, upgrade, and management.
It has a pay-as—you-go style approach to use the Kubernetes cluster. GKE is also a very
active service that keeps providing new versions of Kubernetes in a timely manner, and also
keeps coming up with new features and management tools for Kubernetes as well.

Kubernetes on GCP Chapter 10

Let's take a look at what kind of foundation and services are provided by GCP and then
explore GKE.

GCP components

GCP provides a web console and command-line interface (CLI). Both are easy and
straightforward to control GCP infrastructure, but Google accounts (such as Gmail) are
required. Once you have a Google account, go to the GCP sign up page
(https://cloud.google.com/free/) to set up your GCP account creation.

If you want to control via CLI, you need to install Cloud SDK
(https://cloud.google.com/sdk/gcloud/), which is similar to AWS CLI that you can use
to list, create, update, and delete GCP resources. After installing Cloud SDK, you need to
configure it with the following command to associate it to a GCP account:

$ gcloud init

VPC

VPC in GCP is quite a different policy compared with AWS. First of all, you don't need to
set CIDR prefix to VPC, in other words, you cannot set CIDR to VPC. Instead, you just add
one or some subnets to the VPC. Because subnet is always coming with certain CIDR
blocks, therefore, GCP VPC is identified as a logical group of subnets, and subnets within
VPC can communicate with each other.

Note that GCP VPC has two modes, either auto or custom. If you choose auto, it will create
some subnets on each region with predefined CIDR blocks. For example, if you type the
following command:

$ gcloud compute networks create my—auto-network —-mode auto

It will create 11 subnets as shown in the following screenshot (because, as of August, 2017,
GCP has 11 regions):

[304]

https://cloud.google.com/free/
https://cloud.google.com/sdk/gcloud/

Kubernetes on GCP

Chapter 10

my-auto-network
us-centrall
europe-west1
us-west1
asia-east1
us-eastl
asia-northeast1
asia-southeast1
us-east4
australia-southeast
europe-west?2

europe-west3

11

my-auto-network
my-auto-network
my-auto-network
my-auto-network
my-auto-network
my-auto-network
my-auto-network
my-auto-network
my-auto-network
my-auto-network

my-auto-network

Auto ~

10.128.0.0/20

10.132.0.0/20

10.138.0.0/20

10.740.0.0/20

10.142.0.0/20

10.146.0.0/20

10.148.0.0/20

10.150.0.0/20

10.152.0.0/20

10.154.0.0/20

10.156.0.0/20

10.128.0.1

10.132.0.1

10.138.0.1

10.140.0.1

10.142.0.1

10.146.0.1

10.148.0.1

10.150.0.1

10.152.0.1

10.154.0.1

10.156.0.1

Auto mode VPC is probably good to start with. However, in auto mode, you can't specify
CIDR prefix and 11 subnets from all regions might not fit with your use case. For example,
if you want to integrate to your on—premise data center via VPN, or want to create subnets

from a particular region only.

In this case, choose custom mode VPC, then you can create subnets with desired CIDR

prefix manually. Type the following command to create custom mode VPC:

//create custom mode VPC which is named my-custom-network

$ gcloud compute networks create my-custom—-network —--mode custom

Because custom mode VPC won't create any subnets as shown in the following screenshot,
let's add subnets onto this custom mode VPC:

my-custom-network

Custom

[305]

Kubernetes on GCP Chapter 10

Subnets

Subnet in GCP, its always across multiple zones (availability zone) within region. In other
words, you can't create subnets on a single zone like AWS. You always need to specify
entire regions when creating a subnet.

In addition, there are no significant concepts of public and private subnets such as AWS
(combination of route and internet gateway or NAT gateway to determine as a public or
private subnet). This is because all subnets in GCP have a route to internet gateway.

Instead of subnet level access control, GCP uses host (instance) level access control using
network tags to ensure the network security. It will be described in more detail in the
following section.

It might make network administrators nervous, however, GCP best practice brings you
much more simplified and scalable VPC administration, because you can add subnets
anytime to expand entire network blocks.

Technically, you can launch VM instance to set up as a NAT gateway or
HTTP proxy, and then create a custom priority route for the private subnet
that points to the NAT/proxy instance to achieve an AWS-like private
subnet.

Please refer to the following online document for details:
https://cloud.google.com/compute/docs/vpc/special-configurations

One more thing, an interesting and unique concept of GCP VPC is that you can add
different CIDR prefix network blocks to the single VPC. For example, if you have custom
mode VPC then add the following three subnets:

e subnet-a (10.0.1.0/24) from us-west1
e subnet-b(172.16.1.0/24) from us—east1
e subnet-c(192.168.1.0/24) from asia-northeast1

The following commands will create three subnets from three different regions with
different CIDR prefix:

$ gcloud compute networks subnets create subnet-a —--network=my-custom-—
network —--range=10.0.1.0/24 --region=us-westl

$ gcloud compute networks subnets create subnet-b —--network=my-custom-—
network —--range=172.16.1.0/24 --region=us-eastl

$ gcloud compute networks subnets create subnet-c —-—-network=my-custom-—
network —-range=192.168.1.0/24 —--region=asia-northeastl

[306]

https://cloud.google.com/compute/docs/vpc/special-configurations

Kubernetes on GCP Chapter 10

The result will be the following web console. If you are familiar with AWS VPC, you won't
believe these combinations of CIDR prefixes within a single VPC! This means that,
whenever you need to expand a network, you can feel free to assign another CIDR prefix to
add to the VPC.

my-custom-network 3 Custom 0
us-west1 subnet-a 10.0.1.0/24 10.0.1.1
us-east1 subnet-b 172.16.1.0/24 172.16.1.1
asia-northeast1 subnet-c 192.168.1.0/24 192.168.1.1

Firewall rules

As mentioned previously, GCP firewall rule is important to achieve network security. But
GCP firewall is more simple and flexible than AWS security group (SG). For example, in
AWS, when you launch an EC2 instance, you have to assign at least one SG that is tight
coupling with EC2 and SG. On the other hand, in GCP, you can't assign any firewall rules
directly. Instead, firewall rule and VM instance are loosely coupled via network tag.
Therefore, there is no direct association between firewall rule and VM instance. The
following diagram is a comparison between AWS security group and GCP firewall rule.
EC2 requires security group, on the other hand, GCP VM instance just sets a tag. This is
regardless of whether the corresponding firewall has the same tag or not.

AWS GCP

Security Group Security Group Firewall Rule §I Firewall Rule J Firewall Rule
/ tag 1 tag 2 tag 3
tag 1 tag 1 - tag 2 tag 5
EC2 EC2 EC2 vm VM VM

[307]

Kubernetes on GCP Chapter 10

For example, create a firewall rule for public host (use network tag public) and private
host (use network tag private) as given in the following command:

//create ssh access for public host
$ gcloud compute firewall-rules create public-ssh —-network=my-custom-—
network —--allow="tcp:22" --source-ranges="0.0.0.0/0" —--target-tags="public"

//create http access (80/tcp for public host)
$ gcloud compute firewall-rules create public-http —--network=my-custom-

network —--allow="tcp:80" --source-ranges="0.0.0.0/0" —--target-tags="public"

//create ssh access for private host (allow from host which has "public"

tag)
$ gcloud compute firewall-rules create private-ssh —--network=my-custom-
network —--allow="tcp:22" —--source-tags="public" --target-tags="private"

//create icmp access for internal each other (allow from host which has
either "public" or "private")

$ gcloud compute firewall-rules create internal-icmp —--network=my-custom-
network —--allow="icmp" —--source-tags="public,private"

It creates four firewall rules as shown in the following screenshot. Let's create VM instances
to use either the public or private network tag to see how it works:

Name Targets Source filters Protocols / ports Action Priority Network v
internal-icmp public, 1 more ~ Tags: public, icmp Allow 1000 my-
1 more ~ custom-
network
private-ssh private Tags: public tcp:22 Allow 1000 my-
custom-
network
public-http public IP ranges: tcp:80 Allow 1000 my-
0.0.0.0/0 custom-
network
public-ssh public IP ranges: tcp:22 Allow 1000 my-
0.0.0.0/0 custom-
network

VM instance

VM instance in GCP is quite similar to AWS EC2. You can choose from a variety of machine
(instance) types that have different hardware configurations. As well as OS images that are
Linux or Windows-based OS or your customized OS, you can choose.

[308]

Kubernetes on GCP Chapter 10

As mentioned when talking about firewall rules, you can specify zero or more network tags.
A tag is not necessary to be created beforehand. This means you can launch VM instances
with network tags first, even though a firewall rule is not created. It is still valid, but no
firewall rule is applied in this case. Then create a firewall rule to have a network tag.
Eventually a firewall rule will be applied to the VM instances afterwards. This is why VM
instances and firewall rules are loosely coupled, which provides flexibility to the user.

Create FW rule first Create VM first

Firewall Rule

VM
tag 1 tag 2
tag 1 tag2

VM Firewall Rule

Before launching a VM instance, you need to create a ssh public key first, the same as AWS
EC2. The easiest way to do this is to run the following command to create and register a
new key:

//this command create new ssh key pair
$ gcloud compute config-ssh

//key will be stored as ~/.ssh/google_compute_engine (.pub)

$ cd ~/.ssh

$ 1s -1 google_compute_engine*

—rw——————— 1 saito admin 1766 Aug 23 22:58 google_compute_engine
-rw-r——r—— 1 saito admin 417 Aug 23 22:58 google_compute_engine.pub

Now let's get started to launch a VM instance on GCP.

Deploy two instances on both subnet-a and subnet-b as public instances (use the public
network tag) and then launch another instance on the subnet-a as private instance (with a
private network tag):

//create public instance ("public" tag) on subnet-a

$ gcloud compute instances create public-on-subnet-a —--machine-type=£f1l-
micro —--network=my-custom—-network —--subnet=subnet-a --zone=us-westl-a —--
tags=public

[309]

Kubernetes on GCP Chapter 10

//create public instance ("public" tag) on subnet-b

$ gcloud compute instances create public-on-subnet-b —--machine-type=£fl-
micro ——network=my—-custom—-network —--subnet=subnet-b --zone=us-eastl-c --
tags=public

//create private instance ("private" tag) on subnet-a with larger size (gl-
small)

$ gcloud compute instances create private—-on-subnet-a —--machine-type=gl-
small ——-network=my-custom—-network —--subnet=subnet-a —--zone=us-westl-a —-
tags=private

//Overall, there are 3 VM instances has been created in this example as

below
$ gcloud compute instances list
NAME ZONE MACHINE_TYPE
PREEMPTIBLE INTERNAL_IP EXTERNAL_IP STATUS
public-on-subnet-b us—eastl-c fl-micro
172.16.1.2 35.196.228.40 RUNNING
private—on-subnet-a us—-westl-a gl-small
10.0.1.2 104.199.121.234 RUNNING
public-on-subnet-a us—-westl-a fl-micro
10.0.1.3 35.199.171.31 RUNNING
- IGwW
(- u-----’é‘u.-..._.defaultroute \
I-“.-.li . 'i......'
public tag public tag
public-on- public-on-
subnet-a subnet-b
private tag
private-on-
subnet-a
subnet-c
subnet-a (us-west1) subnet-b (us-east1) (asia-northeast1)
\ VPC)

[310]

Kubernetes on GCP Chapter 10

You can log in to those machines to check whether a firewall rule works as expected. First of
all, you need to add a ssh key to the ssh-agent on your machine:

$ ssh-add ~/.ssh/google_compute_engine

Enter passphrase for /Users/saito/.ssh/google_compute_engine:
Identity added: /Users/saito/.ssh/google_compute_engine
(/Users/saito/.ssh/google_compute_engine)

Then check whether an ICMP firewall rule can reject from external, because ICMP allows
only public or private tagged hosts, so it must not allow ping from your machine as shown
in the following screenshot:

[NON) 3y saito — saito@public-on-subnet-b: ~ — -bash — 67x8
saito@public-on-subnet-b: ~— -bash
$ ping -c¢ 3 35.196.228.40
PING 35.196.228.40 (35.196.228.40): 56 data bytes
Request timeout for +icmp_seq 0
Request timeout for -+icmp_seq 1

--— 35.196.228.40 ping statistics —--
3 packets transmitted, 0 packets received, 100.0% packet loss

$

On the other hand, the public host allows ssh from your machine, because public-ssh rule
allows any (0.0.0.0/0).

[NON)) saito — saito@public-on-subnet-b: ~ — ssh -A 35.196.228.40 — 90x15
saito@public-on-subnet-b: ~— ssh -A 35.196.228.40
$ ssh -A 35.196.228.40
The authenticity of host '35.196.228.40 (35.196.228.40)' can't be established.
ECDSA key fingerprint is SHA256:plGeb+dE1X0rANB4GklVeM0z835KE8FHGSCASCAXCn4.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '35.196.228.40' (ECDSA) to the list of known hosts.
Linux public-on-subnet-b 4.9.0-3-amd64 #1 SMP Debian 4.9.30-2+deb9u3 (2017-08-06) x86_64

The programs included with the Debian GNU/Linux system are free software;

the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Thu Aug 24 06:27:21 2017 from 107.196.102.199
saito@public-on-subnet-b: $

[311]

Kubernetes on GCP Chapter 10

Of course, this host can ping and ssh to private hosts on subnet-a (10.0.1.2) through a
private IP address, because of the internal-icmp rule and private-ssh rule.

Let's ssh to a private host and then install tomcat8 and tomcat8-examples package (it
will install the /examples/ application to Tomcat).

{] [] 7 saito — saito@private-on-subnet-a: ~— ssh -A 35.196.228.40 — 101x22
saito@private-on-subnet-a: ~ — ssh -A 35.196.228.40
saito@public-on-subnet-b: § ping -c 3 10.0.1.2
PING 10.0.1.2 (10.0.1.2) 56(84) bytes of data.
64 bytes from 10.0.1.2: icmp_seq=1 ttl=64 time=67.6 ms
64 bytes from 10.0.1.2: tdcmp_seq=2 ttl=64 time=66.5 ms
64 bytes from 10.0.1.2: icmp_seq=3 ttl=64 time=66.5 ms

--- 10.0.1.2 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2003ms

rtt min/avg/max/mdev = 66.564/66.921/67.630/0.543 ms

saito@public-on-subnet-b: $

saito@public-on-subnet-b: $§ ssh 10.0.1.2

Linux private-on-subnet-a 4.9.0-3-amd64 #1 SMP Debian 4.9.30-2+deb9u3 (2017-08-06) x86_64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

Last login: Sun Aug 27 ©1:28:37 2017 from 172.16.1.2

saito@private-on-subnet-a: $ sudo su

root@private-on-subnet-a: /home/saito# apt-get -y update; apt-get -y install tomcat8 tomcat8-examples

Remember that subnet-ais 10.0.1.0/24 CIDR prefix, but subnet-bis 172.16.1.0/24
CIDR prefix. But within the same VPC, there is connectivity with each other. This is a great
benefit and advantage of using GCP whereby you can expand a network address block
whenever you need.

Now, install nginx to public hosts (public-on-subnet-a and public-on-subnet-b):

//logout from VM instance, then back to your machine
$ exit

//install nginx from your machine via ssh
$ ssh 35.196.228.40 "sudo apt-get -y install nginx"
$ ssh 35.199.171.31 "sudo apt-get -y install nginx"

//check whether firewall rule (public-http) work or not
$ curl -I http://35.196.228.40/

HTTP/1.1 200 OK

Server: nginx/1.10.3

Date: Sun, 27 Aug 2017 07:07:01 GMT

[312]

Kubernetes on GCP Chapter 10

Content-Type: text/html

Content-Length: 612

Last-Modified: Fri, 25 Aug 2017 05:48:28 GMT
Connection: keep—-alive

ETag: "599fba2c-264"

Accept—-Ranges: bytes

However, at this moment, you can't access Tomcat on a private host. Even if it has a public
IP address. This is because a private host doesn't have any firewall rule that allows 8080/tcp

yet:
$ curl http://104.199.121.234:8080/examples/

curl: (7) Failed to connect to 104.199.121.234 port 8080: Operation timed
out

Moving forward, not to just creating a firewall rule for Tomcat but will also be setting up a
LoadBalancer to configure both nginx and Tomcat access from a single LoadBalancer.

Load balancing

GCP provides several types of load balancers as follows:

e Layer 4 TCP LoadBalancer
e Layer 4 UDP LoadBalancer
e Layer 7 HTTP(S) LoadBalancer

Layer 4, both TCP and UDP, LoadBalancers are similar to AWS Classic ELB. On the other
hand, Layer 7 HTTP(S) LoadBalancer has content (context) based routing. For example,
URL /img will forward to instance-a, everything else will forward to instance-b. So, it is
more like an application level LoadBalancer.

AWS also provides Application Load Balancer (ALB or ELBv2), which is
quite similar to GCP Layer 7 HTTP(S) LoadBalancer. For details, please
visit https://aws.amazon.com/blogs/aws/new—aws—-application-load-

balancer/.

In order to set up LoadBalancer, unlike AWS ELB, there are several steps needed to
configure some items beforehand:

Configuration item Purpose

Instance group Determine group of VM instances or VM template (OS image).

[313]

https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/
https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/

Kubernetes on GCP

Chapter 10

Health check

Set health threshold (interval, timeout, and so on) to determine
instance group health status.

Backend service

Set load threshold (maximum CPU or request per second) and
session affinity (sticky session) to the instance group and also
associate to health check.

url-maps (LoadBalancer)

This is an actual place holder to represent an L7 LoadBalancer
that associates backend services and target HTTP(S) proxy

Target HTTP(S) proxy

This is a connector that makes relationships between frontend
forwarding rules to LoadBalancer

Frontend forwarding rule

Associate IP address (ephemeral or static), port number to the
target HTTP proxy

External IP (static)

(Optional) Allocate static external IP address for LoadBalancer

The following diagram is for all the preceding components' association that constructs L7

LoadBalancer:

(’(

Health Check

Instance Group

~

*

HTTP Target

default /examples, /examples/*

Health Check

Instance Group

Health Check

Instance Group

L7 Load Balancer

[314]

Kubernetes on GCP Chapter 10

Let's set up an instance group first. In this example, there are three instance groups to
create. One for private host Tomcat instance (8080/tcp) and another two instance groups for
public HTTP instances per zones.

To do that, execute the following command to group three of them:

//create instance groups for HTTP instances and tomcat instance

$ gcloud compute instance-groups unmanaged create http-ig-us-west —--zone
us-westl-a

$ gcloud compute instance-groups unmanaged create http-ig-us-east —--zone
us-eastl-c

$ gcloud compute instance-groups unmanaged create tomcat-ig-us-west —-zone

us—-westl-a

//because tomcat uses 8080/tcp, create a new named port as tomcat:8080
$ gcloud compute instance-groups unmanaged set-named-ports tomcat-ig-us-—
west ——zone us-westl-a ——-named-ports tomcat:8080

//register an existing VM instance to correspond instance group

$ gcloud compute instance-groups unmanaged add-instances http-ig-us-west —-
instances public-on-subnet-a —--zone us-westl-a

$ gcloud compute instance—-groups unmanaged add-instances http-ig-us-east —--
instances public-on-subnet-b —--zone us-eastl-c

$ gcloud compute instance-groups unmanaged add-instances tomcat-ig-us-west
——instances private-on-subnet-a —--zone us-westl-a

Health check

Let's set standard settings by executing the following commands:

//create health check for http (80/tcp) for "/"

$ gcloud compute health-checks create http my-http-health-check --check-
interval 5 —--healthy-threshold 2 —--unhealthy-threshold 3 —--timeout 5 —--port
80 —--request-path /

//create health check for Tomcat (8080/tcp) for "/examples/"

$ gcloud compute health-checks create http my-tomcat-health-check --check-
interval 5 —--healthy-threshold 2 —--unhealthy-threshold 3 —--timeout 5 —--port
8080 —--request-path /examples/

Backend service

First of all, we need to create a backend service that specifies health check. And then add
each instance group with threshold with CPU utilization that utilizes up to 80% and max
capacity as 100% for both HTTP and Tomcat:

[315]

Kubernetes on GCP Chapter 10

//create backend service for http (default) and named port tomcat
(8080/tcp)

$ gcloud compute backend-services create my-http-backend-service —--health-
checks my-http-health—-check —--protocol HTTP —--global

$ gcloud compute backend-services create my-tomcat-backend-service --
health-checks my-tomcat-health-check —--protocol HTTP —--port—name tomcat --
global

//add http instance groups (both us-westl and us-eastl) to http backend
service

$ gcloud compute backend-services add-backend my-http-backend-service -—-
instance—-group http-ig-us-west —--instance—-group-zone us-westl-a —-
balancing-mode UTILIZATION —--max—-utilization 0.8 —--capacity-scaler 1 —-
global

$ gcloud compute backend-services add-backend my-http-backend-service --
instance—-group http-ig-us—-east —--instance—-group-zone us—-eastl-c —--
balancing-mode UTILIZATION —--max—-utilization 0.8 —--capacity-scaler 1 —-
global

//also add tomcat instance group to tomcat backend service

$ gcloud compute backend-services add-backend my-tomcat-backend-service -—-
instance—-group tomcat-ig-us-west —--instance—-group-zone us-westl-a —-
balancing-mode UTILIZATION —--max—-utilization 0.8 —--capacity-scaler 1 —-
global

Creating a LoadBalancer

The LoadBalancer needs to bind both my-http-backend-service and my-tomcat—
backend-service. In this scenario, only /examples and /examples/* will be the
forwarded traffic to my-tomcat-backend-service. Other than that, every URI forwards
traffic to my-http-backend-service

//create load balancer (url-map) to associate my-http-backend-service as
default

$ gcloud compute url-maps create my-loadbalancer —--default-service my-http-
backend-service

//add /examples and /examples/* mapping to my-tomcat-backend-service

$ gcloud compute url-maps add-path-matcher my-loadbalancer —--default-
service my-http-backend-service --path-matcher—-name tomcat-map —--path-rules
/examples=my—-tomcat-backend-service, /examples/*=my-tomcat-backend-service

//create target-http-proxy that associate to load balancer (url-map)
$ gcloud compute target-http-proxies create my-target-http-proxy —--url-
map=my-loadbalancer

[316]

Kubernetes on GCP Chapter 10

//allocate static global ip address and check assigned address
$ gcloud compute addresses create my-loadbalancer-ip —--global

$ gcloud compute addresses describe my-loadbalancer-ip —-—-global
address: 35.186.192.6

//create forwarding rule that associate static IP to target-http-proxy
$ gcloud compute forwarding-rules create my-frontend-rule --global --
target-http-proxy my-target-http-proxy ——address 35.186.192.6 —-ports 80

If you don't specify an --address option, it will create and assign an
ephemeral external IP address.

Finally, LoadBalancer has been created. However, one missing configuration is remaining.
Private hosts don't have any firewall rules to allow Tomcat traffic (8080/tcp). This is why
when you see LoadBalancer status, healthy status of my-tomcat-backend-service is kept
down (0).

Backend

Backend services

1. my-http-backend-service
Endpoint protocol: HTTP Named port: http Timeout: 30 seconds Health check: my-http-health-check

Cloud CDN: disabled

Advanced configurations

Instance group ~ Zone Healthy Autoscaling Balancing mode Capacity
http-ig-us-east us-east1-c 1/1 Off Max CPU: 80% 100%
http-ig-us-west us-west1-a 1/1 Off Max CPU: 80% 100%

2. my-tomcat-backend-service
Endpoint protocol: HTTP Named port: tomcat Timeout: 30 seconds Health check: my-tomcat-health-check

Cloud CDN: disabled

Advanced configurations

Instance group ~ Zone Autoscaling Balancing mode Capacity

tomcat-ig-us-west us-west1-a Off Max CPU: 80% 100%

[317]

Kubernetes on GCP Chapter 10

In this case, you need to add one more firewall rule that allows connection from
LoadBalancer to a private subnet (use the private network tag). According to GCP
documentation
(https://cloud.google.com/compute/docs/load-balancing/health-checks#https_ssl_p
roxy_tcp_proxy_and_internal_load_balancing), health check heart beat will come from
address range 130.211.0.0/22and 35.191.0.0/16:

//add one more Firewall Rule that allow Load Balancer to Tomcat (8080/tcp)
$ gcloud compute firewall-rules create private-tomcat —-—-network=my-custom-—
network —--source-ranges 130.211.0.0/22,35.191.0.0/16 —-target-tags private
—--allow tcp:8080

After a few minutes, my-tomcat-backend-service healthy status will be up (1); now you
can access LoadBalancer from a web browser. When access to / it should route to my-http-
backend-service, which has nginx application on public hosts:

000 < | > @ 35.186.192.6 ¢ (4] i))

Welcome to nginx! =+

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

On the other hand, if you access /examples/ URL with the same LoadBalancer IP address,
it will route to my-tomcat-backend-service, which is a Tomcat application on a private
host, as shown in the following screenshot:

[] ® <> £l 35.186.192.6/examples/ @ (4]] [l
Apache Tomcat Examples +
Apache Tomcat Examples
e Servlets examples

o JSP Examples
o WebSocket Examples

[318]

https://cloud.google.com/compute/docs/load-balancing/health-checks#https_ssl_proxy_tcp_proxy_and_internal_load_balancing
https://cloud.google.com/compute/docs/load-balancing/health-checks#https_ssl_proxy_tcp_proxy_and_internal_load_balancing

Kubernetes on GCP Chapter 10

Overall, there are some steps needed to be performed to set up LoadBalancer, but it is
useful to integrate different HTTP applications onto a single LoadBalancer to deliver your
service efficiently with minimum resources.

Persistent Disk

GCE also has a storage service called Persistent Disk (PD) that is quite similar to AWS EBS.
You can allocate desired size and types (either standard or SSD) on each zone and
attach/detach to VM instances anytime.

Let's create one PD and then attach to the VM instance. Note that when attaching PD to the
VM instance, both must be sat in the same zones. This limitation is the same as AWS EBS.
So before creating PD, check the VM instance location once again:

$ gcloud compute instances list

NAME ZONE MACHINE_TYPE
PREEMPTIBLE INTERNAL_IP EXTERNAL_IP STATUS

public-on-subnet-b us—eastl-c fl-micro
172.16.1.2 35.196.228.40 RUNNING

private—on-subnet-a us—-westl-a gl-small
10.0.1.2 104.199.121.234 RUNNING

public-on-subnet-a us—-westl-a fl-micro
10.0.1.3 35.199.171.31 RUNNING

Let's choose us-west1-a and then attach it to public-on-subnet-a:
//create 20GB PD on us-westl-a with standard type
$ gcloud compute disks create my-disk-us-westl-a —-zone us-westl-a —--type

pd-standard —--size 20

//after a few seconds, check status, you can see existing boot disks as

well

$ gcloud compute disks list

NAME ZONE SIZE_GB TYPE
STATUS

public-on—-subnet-b us—eastl-c 10 pd-
standard READY

my—-disk-us-westl-a us-westl-a 20 pd-
standard READY

private-on-subnet-a us—-westl-a 10 pd-
standard READY

public-on—-subnet-a us-westl-a 10 pd-

standard READY

//attach PD (my-disk-us-westl-a) to the VM instance (public-on-subnet-a)

[319]

Kubernetes on GCP Chapter 10

$ gcloud compute instances attach-disk public-on-subnet-a —--disk my-disk-
us-westl-a —-zone us-westl-a

//login to public-on-subnet-a to see the status

$ ssh 35.199.171.31

Linux public-on-subnet-a 4.9.0-3-amd64 #1 SMP Debian 4.9.30-2+deb9%u3
(2017-08-06) x86_64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Fri Aug 25 03:53:24 2017 from 107.196.102.199
saito@public-on-subnet-a:~$ sudo su

root@public—-on-subnet—-a:/home/saito# dmesg | tail

[7377.421190] systemd[l]: apt-daily-upgrade.timer: Adding 25min 4.773609s
random time.

[7379.202172] systemd[l]: apt-daily-upgrade.timer: Adding 6min 37.770637s
random time.

[243070.866384] scsi 0:0:2:0: Direct-Access Google PersistentDisk 1
PQ: 0 ANSI: 6

[243070.875665] sd 0:0:2:0: [sdb] 41943040 512-byte logical blocks: (21.5
GB/20.0 GiB)
[243070.883461] sd O:
[243070.889914] sd O:
[243070.900603] sd O:

[sdb] 4096-byte physical blocks
: Attached scsi generic sgl type O

[sdb] Write Protect is off
[243070.905834] sd O: [sdb] Mode Sense: 1f 00 00 08
[243070.905938] sd 0:0: [sdb] Write cache: enabled, read cache:
enabled, doesn't support DPO or FUA
[243070.925713] sd 0:0:2:0: [sdb] Attached SCSI disk

0
0:
0
0

NNMNDNMDNDNDN
O oO0Oooo

You may see PD has been attached at /dev/sdb. Similar to AWS EBS, you have to format
this disk. Because this is a Linux OS operation, the steps are exactly the same as described in
Chapter 9, Kubernetes on AWS.

Google Container Engine (GKE)

Overall, there are some GCP components that have been introduced in previous sections.
Now you can start to set up Kubernetes on GCP VM instances using those components. You
can even use kops that was also introduced in chapter 9, Kubernetes on AWS too.

[320]

Kubernetes on GCP Chapter 10

However, GCP has a managed Kubernetes service called GKE. Underneath, it uses some
GCP components such as VPC, VM instances, PD, firewall rules, and LoadBalancers.

Of course, as usual, you can use the kubectl command to control your Kubernetes cluster
on GKE, which is included Cloud SDK. If you don't install the kubect1 command on your
machine yet, type the following command to install kubect1 via Cloud SDK:

//install kubectl command
$ gcloud components install kubectl

Setting up your first Kubernetes cluster on GKE

You can set up a Kubernetes cluster on GKE using the gc1loud command. It needs to specify
several parameters to determine some configurations. One of the important parameters is
network. You have to specify which VPC and subnet you will deploy. Although GKE
supports multiple zones to deploy, you need to specify at least one zone for Kubernetes
master node. This time, it uses the following parameters to launch a GKE cluster:

Parameter Description Value
—-—cluster-version |Specify Kubernetes version 1.6.7
-—machine-type VM instance type for Kubernetes Node fl-micro
——num-nodes Initial number size of Kubernetes nodes 3
—-—network Specify GCP VPC my—-custom-network
—-—subnetwork Specify GCP Subnet if VPC is custom mode | subnet-c
——zone Specify single zone asia-northeastl-a
——tags Network tags that will be assigned to private

Kubernetes nodes

[321]

Kubernetes on GCP Chapter 10

In this scenario, you need to type the following command to launch a Kubernetes cluster on
GCP. It may take a few minutes to complete because, behind the scenes, it will launch
several VM instances and set up Kubernetes master and nodes. Note that Kubernetes
master and etcd will be fully managed by GCP. This means master node and etcd don't
consume your VM instances:

$ gcloud container clusters create my-k8s-cluster --cluster-version 1.6.7 -
-machine-type fl-micro ——num-nodes 3 —--network my-—-custom-network —--
subnetwork subnet-c —--zone asia-northeastl-a —--tags private

Creating cluster my-k8s-cluster...done.

Created
[https://container.googleapis.com/vl/projects/devops-with-kubernetes/zones/
asia-northeastl-a/clusters/my-k8s—-cluster].

kubeconfig entry generated for my-k8s—-cluster.

NAME ZONE MASTER_VERSION MASTER_IP

MACHINE_TYPE NODE_VERSION NUM_NODES STATUS

my-k8s—cluster asia-northeastl-a 1.6.7 35.189.135.13 fl-micro
1.6.7 3 RUNNING

//check node status
$ kubectl get nodes

NAME STATUS AGE VERSION
gke-my—-k8s—-cluster—-default-pool-ael80£53-47h5 Ready 1m v1.6.7
gke-my—-k8s—-cluster—-default-pool-ael80£53-6prb Ready 1m v1.6.7
gke-my—-k8s—-cluster—-default-pool-ael80£53-z611 Ready 1m v1.6.7

Note that we specify the --tags private option, so Kubernetes node VM instance has a
network tag as private. Therefore, it behaves the same as other regular VM instances that
have private tags. Therefore you can't ssh from public Internet and you can't HTTP from
internet either. But you can ping and ssh from another VM instance which has a public
network tag.

Once all nodes are ready, let's access Kubernetes Ul, which is installed by default. To do
that, use the kubectl proxy command to connect to your machine as a proxy. Then access
the Ul via proxy:

//run kubectl proxy on your machine, that will bind to 127.0.0.1:8001
$ kubectl proxy
Starting to serve on 127.0.0.1:8001

//use Web browser on your machine to access to 127.0.0.1:8001/ui/
http://127.0.0.1:8001/ui/

[322]

Kubernetes on GCP Chapter 10

L] ® < (im] 127.0.0.1:8001/api/v1/namespaces/kube-system/services/k ¢ 0] (WL
Kubernetes Dashboard +
= kubernetes Admin > Nodes + CREATE
Admin
CPU usage Memory usage @
Namespaces
Nodes 0.113 1.47 Gi
0.100 —~ 1.30Gi
Persistent Volumes = 8
g 0.075 EI‘OOO Mi
Storage Classes 5‘1 0.050 2 668 Mi
o E
O 0.025 2 33 Mi
Namespace 0 "
18:05 18:05 18:06 18:07 18:04 18:05 18:07
default
Time Time
Workloads
Deployments Nodes
Replica Sets Name Labels Ready Age
Replication Controllers beta.kubernetes.io/arch...
Daemon Sets beta.kubernetes.io/flue...

beta.kubernetes.io/inst...
o gke-my-k8s-cluster-default... True 5 minutes

beta.kubernetes.io/os: |...

Stateful Sets

Jobs

cloud.google.com/gke-...
Pods goog g
show all labels

Node pool

When launching the Kubernetes cluster, you can specify the number of nodes using the ——
num-nodes option. GKE manages a Kubernetes node as node pool. Which means you can
manage one or more node pools that attach to your Kubernetes cluster.

What if you need to add more nodes or delete some nodes? GKE provides a functionality to
resize the node pool by following the command to change Kubernetes node from 3 to 5:

//run resize command to change number of nodes to 5
$ gcloud container clusters resize my-k8s-cluster --size 5 —--zone asia-
northeastl-a

//after a few minutes later, you may see additional nodes
$ kubectl get nodes

NAME STATUS AGE VERSION
gke-my—-k8s—-cluster—-default-pool-ael80£53-47h5 Ready 5m v1l.6.7
gke—-my—-k8s—-cluster—-default-pool-ael80£53-6prb Ready 5m v1l.6.7

[323]

Kubernetes on GCP Chapter 10

gke—-my—-k8s—cluster—-default-pool-ael80£53-£f8ps Ready 30s v1.6.7
gke-my—-k8s—cluster—-default-pool-ael80£53—-qzxz Ready 30s v1.6.7
gke-my—-k8s—-cluster—-default-pool-ael80£53-z611 Ready 5m v1.6.7

Increasing the number of nodes will help if you need to scale out your node capacity.
However, in this scenario, it still uses the smallest instance type (£1-micro, which has only
0.6 GB memory). It might not help if a single container needs more than 0.6 GB memory. In
this case you need to scale up, which means you need to add a larger size of VM instance

type.

In this case, you have to add another set of node pools onto your cluster. Because within the
same node pool, all VM instances are configured the same. So you can't change the instance
type in the same node pool.

Therefore, add a new node pool that has two new sets of g1-small (1.7 GB memory) VM
instance type to the cluster. Then you can expand Kubernetes nodes with different
hardware configuration.

By default, there are some quotas that you can create a number limit of
VM instances within one region (for example, up to eight cpu cores on us-
west1). If you wish to increase this quota, you must change your account
to be a paid account. Then request quota change to GCP. For more details,
please read online documentation from
https://cloud.google.com/compute/quotas and https://cloud.google.

com/free/docs/frequently-asked-questions#how-to-upgrade.

Run the following command that adds an additional node pool that has two instances of
gl-small instance:

//create and add node pool which is named "large-mem-pool"

$ gcloud container node-pools create large-mem-pool —--cluster my-k8s-
cluster --machine-type gl-small --num-nodes 2 --tags private —--zone asia-
northeastl-a

//after a few minustes, large-mem-pool instances has been added
$ kubectl get nodes

NAME STATUS AGE
VERSION

gke-my-k8s-cluster-default-pool-ael80£53-47h5 Ready 13m
vli.6.7

gke-my-k8s-cluster-default-pool-ael80£53-6prb Ready 13m
vli.6.7

gke-my-k8s-cluster-default-pool-ael80£53-£f8ps Ready 8m

vli.6.7

gke-my-k8s-cluster-default-pool-ael80£53-gqzxz Ready 8m

[324]

https://cloud.google.com/compute/quotas
https://cloud.google.com/free/docs/frequently-asked-questions#how-to-upgrade
https://cloud.google.com/free/docs/frequently-asked-questions#how-to-upgrade
https://cloud.google.com/free/docs/frequently-asked-questions#how-to-upgrade
https://cloud.google.com/free/docs/frequently-asked-questions#how-to-upgrade
https://cloud.google.com/free/docs/frequently-asked-questions#how-to-upgrade
https://cloud.google.com/free/docs/frequently-asked-questions#how-to-upgrade
https://cloud.google.com/free/docs/frequently-asked-questions#how-to-upgrade
https://cloud.google.com/free/docs/frequently-asked-questions#how-to-upgrade
https://cloud.google.com/free/docs/frequently-asked-questions#how-to-upgrade
https://cloud.google.com/free/docs/frequently-asked-questions#how-to-upgrade
https://cloud.google.com/free/docs/frequently-asked-questions#how-to-upgrade
https://cloud.google.com/free/docs/frequently-asked-questions#how-to-upgrade
https://cloud.google.com/free/docs/frequently-asked-questions#how-to-upgrade
https://cloud.google.com/free/docs/frequently-asked-questions#how-to-upgrade
https://cloud.google.com/free/docs/frequently-asked-questions#how-to-upgrade
https://cloud.google.com/free/docs/frequently-asked-questions#how-to-upgrade
https://cloud.google.com/free/docs/frequently-asked-questions#how-to-upgrade
https://cloud.google.com/free/docs/frequently-asked-questions#how-to-upgrade
https://cloud.google.com/free/docs/frequently-asked-questions#how-to-upgrade
https://cloud.google.com/free/docs/frequently-asked-questions#how-to-upgrade
https://cloud.google.com/free/docs/frequently-asked-questions#how-to-upgrade
https://cloud.google.com/free/docs/frequently-asked-questions#how-to-upgrade

Kubernetes on GCP Chapter 10

vl1.6.7
gke—-my—-k8s—-cluster—-default-pool-ael80£53-z611 Ready 13m
vl.6.7
gke-my-k8s—-cluster-large—-mem—-pool-£87dd00d-9v5t Ready 5m
vl1.6.7
gke-my—-k8s—-cluster-large—-mem—pool-£87dd00d-fhpn Ready 5m
vl.6.7

Now you have a total of seven CPU cores and 6.4 GB memory in your cluster that has more
capacity. However, due to larger hardware types, Kubernetes scheduler will probably
assign to deploy pod to the 1arge-mem-pool first, because it has enough memory capacity.

However, you may want to preserve large-mem-pool node in case a big application needs
large heap memory size (for example, Java application). Therefore, you may want to
differentiate default-pool and large—-mem—pool.

In this case, Kubernetes label beta.kubernetes.io/instance-type helps to distinguish
instance type of node. Therefore, use nodeSelector to specify a desired node to the pod.
For example, following nodeSelector parameter will force to use £1-micro node for
nginx application:

//nodeSelector specifies fl-micro
$ cat nginx-pod-selector.yml
apiVersion: vl
kind: Pod
metadata:

name: nginx
spec:

containers:

— name: nginx

image: nginx
nodeSelector:
beta.kubernetes.io/instance-type: fl-micro

//deploy pod
$ kubectl create -f nginx-pod-selector.yml
pod "nginx" created

//it uses default pool

$ kubectl get pods nginx -o wide

NAME READY STATUS RESTARTS AGE IP NODE
nginx 1/1 Running 0 Ts 10.56.1.13 gke-my—-k8s-—
cluster-default-pool-ael80£53-6prb

[325]

Kubernetes on GCP Chapter 10

If you want to specify a particular label instead of
beta.kubernetes.io/instance-type, use —~—node-labels option to
create a node pool. That assigns your desired label for the node pool.

For more details, please read the following online document:
https://cloud.google.com/sdk/gcloud/reference/container/node—

pools/create

Of course, you can feel free to remove a node pool if you no longer need it. To do that, run
the following command to delete default-pool (£1-micro x 5 instances). This operation
will involve pod migration (terminate pod on default-pool and re-launch on large-
mem-pool) automatically, if there are some pods running at default-pool:

//list Node Pool
$ gcloud container node-pools list —--cluster my-k8s-cluster —--zone asia-
northeastl-a

NAME MACHINE_TYPE DISK_SIZE_GB NODE_VERSION
default-pool fl-micro 100 1.6.7
large—-mem-pool gl-small 100 1.6.7

//delete default-pool
$ gcloud container node-pools delete default-pool —--cluster my-k8s-cluster
—-zone asia-northeastl-a

//after a few minutes, default-pool nodes x 5 has been deleted
$ kubectl get nodes

NAME STATUS AGE
VERSION

gke-my-k8s—-cluster-large—-mem—-pool-£87dd00d-9v5t Ready 16m
vl.6.7

gke-my-k8s—-cluster-large—-mem—pool-£87dd00d—-£fhpn Ready 16m
vl.6.7

You may have noticed that all of the preceding operations happened in a single zone
(asia—northeastl-a). Therefore, if asia-northeast1-a zone gets an outage, your
cluster will be down. In order to avoid zone failure, you may consider setting up a multi
zone cluster.

Multi zone cluster

GKE supports multi zone cluster that allows you to launch Kubernetes nodes on multiple
zones, but limits within the same region. In previous examples, it has been provisioned at
asia-northeastl-a only, so let's re-provision a cluster that has asia-northeastl-a,
asia-northeastl-b and asia-northeastl-c in a total of three zones.

[326]

https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create
https://cloud.google.com/sdk/gcloud/reference/container/node-pools/create

Kubernetes on GCP

Chapter 10

It is very simple; you just append an —-additional-zones parameter when creating a

new cluster.

As of August, 2017, there is a beta feature that supports to update existing

clusters from single zones to multi zones. Use a beta command as follows:
S gcloud beta container clusters update my-k8s-cluster —-—

additional-zones=asia—-northeastl-b,asia-northeastl-c

To change an existing cluster to multi zone, it may need an additional SDK

tool installation, but out of SLA.

Let's delete the previous cluster, and create a new cluster with an ~~additional-zones

option:

//delete cluster first

$ gcloud container clusters delete my-k8s—-cluster —--zone asia-northeastl-a

//create a new cluster with —-additional-zones option but 2 nodes only
$ gcloud container clusters create my-k8s-cluster --cluster-version 1.6.7 -

-machine-type fl-micro ——-num—-nodes 2 —--network my-custom—-network --

subnetwork subnet-c --zone asia-northeastl-a --tags private --—-additional-

zones asia-northeastl-b,asia-northeastl-c

In this example, it will create two nodes per zones (asia-northeastl-a, b and c);

therefore, a total of six nodes will be added:

$ kubectl get nodes

NAME
gke-my-k8s-cluster-default-pool-0c4£fcdf3-3n6d
gke-my-k8s-cluster-default-pool-0cd4fcdf3-dtjj
gke-my-k8s-cluster-default-pool-2407a£06-5d28
gke-my-k8s-cluster-default-pool-2407af06-tnpj
gke-my-k8s-cluster-default-pool-4c20ec6b-395h
gke-my-k8s-cluster-default-pool-4c20ecbéb-rrvz

You may also distinguish node zone by Kubernetes label failure-

STATUS
Ready
Ready
Ready
Ready
Ready
Ready

AGE
44s
48s
41s
45s
49s
49s

VERSION
vl.6.7
vl.6.7
vl.6.7
vl.6.7
vl.6.7
6.7

vli.

domain.beta.kubernetes.io/zone so that you can specify desired

zones to deploy a pod.

[327]

Kubernetes on GCP Chapter 10

Cluster upgrade

Once you start to manage Kubernetes, you may encounter some difficulty when upgrading
Kubernetes clusters. Because the Kubernetes project is very aggressive, around every three

months, there is a new release, such as 1.6.0 (released on March 28" 2017) to 1.7.0 (released

on June 29" 2017).

GKE also keeps adding new version support in a timely manner. It allows us to upgrade
both master and nodes via the gc1oud command. You can run the following command to
see which Kubernetes version is supported by GKE:

$ gcloud container get-server-config
Fetching server config for us-east4-b
defaultClusterVersion: 1.6.7
defaultImageType: COS
validImageTypes:

— CONTAINER_VM

- COs

— UBUNTU

validMasterVersions:

-1.7.3

- 1.6.8

-1.6.7

validNodeVersions:

-1.7.3

PR RRPRRRRR
BU OO NI
OWaI BN RN

So, you may see the latest supported version is 1.7.3 on both master and node at this
moment. Since the previous example installed is version 1.6.7, let's update to 1.7.3. First of
all, you need to upgrade master first:

//upgrade master using --master option

$ gcloud container clusters upgrade my-k8s—-cluster —--zone asia-northeastl-a
——cluster-version 1.7.3 --master

Master of cluster [my—-k8s-cluster] will be upgraded from version

[1.6.7] to version [1.7.3]. This operation is long-running and will

block other operations on the cluster (including delete) until it has

run to completion.

Do you want to continue (Y¥/n)? vy

[328]

Kubernetes on GCP Chapter 10

Upgrading my-k8s—cluster...done.

Updated
[https://container.googleapis.com/vl/projects/devops-with-kubernetes/zones/
asia-northeastl-a/clusters/my-k8s—-cluster].

It takes around 10 minutes depending on environment, after that you can verify via the
following command:

//master upgrade has been successfully to done

$ gcloud container clusters list —--zone asia-northeastl-a

NAME ZONE MASTER_VERSION MASTER_IP

MACHINE_TYPE NODE_VERSION NUM_NODES STATUS

my-k8s—cluster asia-northeastl-a 1.7.3 35.189.141.251 fl-micro
1.6.7 * 6 RUNNING

Now you can upgrade all nodes to version 1.7.3. Because GKE tries to perform rolling
upgrade, it will perform the following steps per node one by one:

Deregister a target node from the cluster.
Delete old VM instance.

Provision a new VM instance.

Set up the node with the 1.7.3 version.

AN .

Register to master.

Therefore, it takes much longer than a master upgrade:

//node upgrade (not specify —-master)

$ gcloud container clusters upgrade my-k8s—cluster —--zone asia-northeastl-a
——cluster-version 1.7.3

All nodes (6 nodes) of cluster [my-k8s—cluster] will be upgraded from
version [1.6.7] to version [1.7.3]. This operation is long-running and will
block other operations on the cluster (including delete) until it has run
to completion.

Do you want to continue (Y/n)? vy

During rolling upgrade, you can see node status as follows and it shows a mid process of
rolling update (two nodes have upgraded to 1.7.3, one node is upgrading, three nodes are
pending):

NAME STATUS
AGE VERSION
gke-my-k8s—-cluster—-default-pool-0c4fcdf3-3n6d Ready
37m v1l.6.7
gke-my-k8s—-cluster—-default-pool-0cdfcdf3-dtjj Ready
37m v1l.6.7

gke-my—-k8s—-cluster—-default-pool-2407a£06-5d28 NotReady, SchedulingDisabled

[329]

Kubernetes on GCP Chapter 10

37m v1l.6.7
gke-my—-k8s—-cluster—-default-pool-2407af06—-tnpj Ready
37m v1l.6.7
gke-my—-k8s—-cluster—-default-pool-4c20ec6b-395h Ready
5m vl.7.3
gke-my—-k8s—-cluster—-default-pool-4c20ec6b6b-rrvz Ready
1m v1l.7.3

Kubernetes cloud provider

GKE also integrates Kubernetes cloud provider out of box that deep integrate to GCP
infrastructure; for example overlay network by VPC route, StorageClass by Persistent Disk,
and Service by L4 LoadBalancer. The best part is ingress by L7 LoadBalancer. Let's take a
look at how it works.

StorageClass
As per as kops on AWS, GKE also sets up StorageClass by default, which uses Persistent
Disk:

$ kubectl get storageclass
NAME TYPE
standard (default) kubernetes.io/gce-pd

$ kubectl describe storageclass standard

Name: standard

IsDefaultClass: Yes

Annotations: storageclass.beta.kubernetes.io/is-default-class=true
Provisioner: kubernetes.io/gce-pd

Parameters: type=pd-standard

Events: <none>

Therefore, when creating Persistent Volume Claim, it will allocate GCP Persistent Disk as
Kubernetes Persistent Volume automatically. Regarding Persistent Volume Claim and
Dynamic Provisioning, please refer to chapter 4, Working with Storage and Resources:

$ cat pvc-gke.yml
apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: pvc—-gke-1
spec:
storageClassName: "standard"
accessModes:

[330]

Kubernetes on GCP Chapter 10

- ReadWriteOnce
resources:
requests:

storage: 10Gi

//create Persistent Volume Claim
$ kubectl create -f pvc-gke.yml
persistentvolumeclaim "pvc—-gke-1" created

//check Persistent Volume
$ kubectl get pv

NAME CAPACITY ACCESSMODES
RECLAIMPOLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-bc04e717-8c82-11e7-968d-42010a920£c3 10Gi RWO Delete
Bound default/pvc—-gke-1 standard 2s

//check via gcloud command
$ gcloud compute disks list

NAME ZONE
SIZE_GB TYPE STATUS
gke-my-k8s—-cluster-d2e-pvc-bc04e717-8c82-11e7-968d-42010a920£fc3 asia-
northeastl-a 10 pd-standard READY

L4 LoadBalancer

Similar to AWS cloud provider, GKE also supports using L4 LoadBalancer for Kubernetes
Service. Just specify Service.spec.type as LoadBalancer, and then GKE will set up and

configure L4 LoadBalancer automatically.

Note that the corresponding firewall rule between L4 LoadBalancer to Kubernetes node can
be created by cloud provider automatically. It is simple but powerful enough if you want to
expose your application to the internet quickly:

$ cat grafana.yml
apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: grafana
spec:
replicas: 1
template:
metadata:
labels:
run: grafana
spec:
containers:

[331]

Kubernetes on GCP Chapter 10

- image: grafana/grafana
name: grafana
ports:
- containerPort: 3000
apiVersion: vl
kind: Service

metadata:
name: grafana
spec:
ports:
- port: 80

targetPort: 3000
type: LoadBalancer
selector:

run: grafana

//deploy grafana with Load Balancer service
$ kubectl create -f grafana.yml

deployment "grafana" created

service "grafana" created

//check L4 Load balancer IP address

$ kubectl get svc grafana

NAME CLUSTER-IP EXTERNAL-IP PORT (S) AGE
grafana 10.59.249.34 35.189.128.32 80:30584/TCP 5m

//can reach via GCP L4 Load Balancer

$ curl -I 35.189.128.32

HTTP/1.1 302 Found

Location: /login

Set-Cookie: grafana_sess=£92407d7b266aab8; Path=/; HttpOnly
Set-Cookie: redirect_to=%252F; Path=/

Date: Wed, 30 Aug 2017 07:05:20 GMT

Content-Type: text/plain; charset=utf-8

L7 LoadBalancer (ingress)

GKE also supports Kubernetes ingress that can set up GCP L7 LoadBalancer to dispatch
HTTP requests to the target service based on URL. You just need to set up one or more
NodePort services and then create ingress rules to point to services. Behind the scenes,
Kubernetes creates and configures firewall rules, health check, backend service, forwarding
rules, and URL maps automatically.

[332]

Kubernetes on GCP

Chapter 10

Let's create same examples that use nginx and Tomcat to deploy to the Kubernetes cluster
first. These are using Kubernetes Services that bind to NodePort instead of LoadBalancer:

[chapter10 — -bash — 73x19
-bash

$ kubectl create -f nginx.yml

deployment "nginx" created

service "nginx" created

$

$ kubectl create -f tomcat.yml

deployment "tomcat" created

service "tomcat" created
$

$ kubectl get pods

NAME

nginx-158599303-vk6cs
tomcat-670632475-16h8q
$

$ kubectl get svc

NAME
kubernetes
nginx
tomcat

ST

CLUSTER-IP
10.59.240.1

READY
1/1 Running (]
1/1 Running (0]

10.59.253.114
10.59.248.76

STATUS RESTARTS

EXTERNAL-IP
<none>
<nodes>
<nodes>

PORT(S)
443/TCP

80:30339/TCP
8080:30813/TCP 47s

AGE
46s
40s

AGE
19h
53s

At this moment, you cannot access service, because there are no firewall rules that allow
access to the Kubernetes node from the internet yet. So, let's create Kubernetes ingress that

points to these services.

You can use kubectl port-forward <pod name> <your machine
available port><: service port number> to access via the
Kubernetes API server. For the preceding case, use kubectl port-—
forward tomcat-670632475-16h8g 10080:8080..

After that, open your web browser to http://localhost:10080/ and
then you can access Tomcat pod directly.

Kubernetes ingress definition is quite similar to GCP backend service definition as it needs
to specify a combination of URL path, Kubernetes service name, and service port number.
So in this scenario, URL / and /* point to nginx service, also URL /examples and
/examples/* point to the Tomcat service as follows:

$ cat nginx-tomcat-ingress.yaml

apiVersion: extensions/vlbetal

kind: Ingress
metadata:

name: nginx-tomcat-ingress

spec:
rules:
- http:
paths:

[333]

Kubernetes on GCP Chapter 10

- path: /
backend:
serviceName: nginx
servicePort: 80
- path: /examples
backend:
serviceName: tomcat
servicePort: 8080
- path: /examples/*
backend:
serviceName: tomcat
servicePort: 8080

$ kubectl create -f nginx-tomcat-ingress.yaml
ingress "nginx-tomcat-ingress" created

It takes around 10 minutes to fully configure GCP components such as health check,
forwarding rule, backend services, and url-maps:
$ kubectl get ing

NAME HOSTS ADDRESS PORTS AGE
nginx-tomcat-ingress * 107.178.253.174 80 Im

You can also check the status on the web console as follows:

eoe < in] e i ¢ &l a
Network services - DevOps with Kubernetes |+
Google Cloud Platform &e DevOps with Kubernetes ~ Q
m Load balancing CREATE LOAD BALANCER C REFRESH
& Load balancers Backends Frontends
a
& Load balancer Protocol
Gk default-ngi ing! 8c21ded11cc483 & /7 Edit

Detalls ~ Monitoring Caching

Frontend
Protocol ~ IP:Port Certificate
HTTP 107.178.253.17480 —

Host and path rules
Hosts ~ Paths Backend

All unmatched (default) All unmatched (default) k8s-be-31878-3c8c21de411cc483

”* kBs-be-31878-3cBc21de411cc483
/ k8s-be-30339-3c8c21de411cc483
/examples k8s-be-30813-3c8c21de411cc483
/examples/* k8s-be-30813-3c8c21ded11cc483

[334]

Kubernetes on GCP Chapter 10

Once you have completed the setup of L7 LoadBalancer, you can access the public IP
address of LoadBalancer (http://107.178.253.174/) to see the nginx page. As well as
acaﬁstohttp://107.178.253.174/examples/thmlyoucanseetomcat example

page.

In the preceding steps, we created and assigned an ephemeral IP address for L7
LoadBalancer. However, the best practice to use L7 LoadBalancer is to assign a static IP
address instead, because you can also associate DNS (FQDN) to the static IP address.

To do that, update ingress setting to add an annotation
kubernetes.io/ingress.global-static—ip-name to associate a GCP static IP address
name as follows:

//allocate static IP as my-nginx-tomcat
$ gcloud compute addresses create my-nginx-tomcat —--global

//check assigned IP address

$ gcloud compute addresses list

NAME REGION ADDRESS STATUS
my—-nginx—tomcat 35.186.227.252 IN_USE

//add annotations definition
$ cat nginx-tomcat-static-ip-ingress.yaml
apiVersion: extensions/vlbetal
kind: Ingress
metadata:
name: nginx-tomcat-ingress
annotations:
kubernetes.io/ingress.global-static—-ip—-name: my-nginx-—
tomcat
spec:
rules:
- http:
paths:
- path: /
backend:
serviceName: nginx
servicePort: 80
- path: /examples
backend:
serviceName: tomcat
servicePort: 8080
- path: /examples/*
backend:
serviceName: tomcat
servicePort: 8080

[335]

Kubernetes on GCP Chapter 10

//apply command to update Ingress
$ kubectl apply -f nginx-tomcat-static-ip-ingress.yaml

//check Ingress address that associate to static IP

$ kubectl get ing

NAME HOSTS ADDRESS PORTS AGE
nginx-tomcat-ingress * 35.186.227.252 80 48m

So, now you can access ingress via a static IP address as http://35.186.227.252/
(nginx) and http://35.186.227.252/examples/ (Tomcat) instead.

Summary

In this chapter, we discussed Google Cloud Platform. The basic concept is similar to AWS,
but some of the policies and concepts are different. Especially Google Container Engine, as
it is a very powerful service to use Kubernetes as production grade. Kubernetes cluster and
node management are quite easy, not only the installation, but also upgrade. Cloud
provider is also fully integrated to GCP, especially Ingress as it can configure L7
LoadBalancer with one command. Therefore, it is highly recommended to try GKE if you
plan to use Kubernetes on the public cloud.

The next chapter will provide a sneak preview to some new features and alternative
services to against Kubernetes.

[336]

11

What's Next

So far we have gone through topics around carrying out DevOps' tasks on Kubernetes
across the board. Nevertheless, it's always challenging to implement knowledge under real-
world circumstances, hence you may wonder whether Kubernetes is able to solve particular
problems that you are currently facing. In this chapter, we'll learn the following topics to
work out with challenges:

e Advanced Kubernetes features
e Kubernetes communities
e Other container orchestrator frameworks

Exploring the possibilities of Kubernetes

Kubernetes is evolving day by day, and it's at a pace where it is publishing one major
version quarterly. Aside from the built-in functions that come with every new Kubernetes
distribution, contributions from the community also play an important role in the
ecosystem, and we'll have a tour around them in this section.

Mastering Kubernetes

Kubernetes' objects and resources are categorized into three API tracks, namely, alpha, beta,
and stable to denote their maturity. The apiversion field at the head of every resource
indicates their level. If a feature has a versioning such as vlalphal, it belongs to alpha-level
API, and beta API is named in the same way. An alpha-level API is disabled by default and
is subject to change without notice.

What's Next Chapter 11

The beta-level APl is enabled by default; it's well tested and considered to be stable, but the
schema or object semantics could be changed as well. The rest of the parts are the stable,
generally available ones. Once an API enters a stable stage, it's unlikely to be changed
anymore.

Even though we've discussed concepts and practices about Kubernetes extensively, there
are still considerable features that we haven't mentioned, that deal with a variety of
workload as well as scenarios, and make Kubernetes extremely flexible. They may or may
not apply to everyone's needs and are not stable enough in particular cases. Let's take a
brief look at the popular ones.

Job and CronJob

They are also high-level pod controllers, that allow us to run containers that will eventually
terminate. A job ensures a certain number of pods run to completion with success; a
CronJob ensures that a job is invoked at given times. If we have the need to run batch
workloads or scheduled tasks, we'd know that there are built-in controllers that come into

play. Related information can be found at:
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-

completion/.

Affinity and anti-affinity between pods and nodes

We know a pod can be manually assigned to some nodes with the node selector, and a node
can reject pods with taints. However, when it comes to more flexible circumstances, say,
maybe we want some pods to be co-located, or we want pods to be distributed equally
across availability zones, arranging our pods either by node selectors or by node taints may

take a great effort. Thus, the affinity is designed to solve the case:
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-

and-anti-affinity.

Auto-scaling of pods

Almost all modern infrastructure supports auto-scaling an instance group that runs the
application, so does Kubernetes. The pod horizontal scaler (PodHorizontalScaler)is able
to scale pod replicas with CPU/memory metrics in a controller such as Deployment.
Starting from Kubernetes 1.6, the scaler formally supports scaling based on custom metrics,
say transactions-per-second. More information can be found at

https://kubernetes.io/docs/tasks/run—-application/horizontal-pod-autoscale/.

[338]

https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

What's Next Chapter 11

Prevention and mitigation of pod disruptions

We know pods are volatile, and they'd be terminated and relaunched across nodes as the
cluster scales in and out. If too many pods of an application are destroyed simultaneously, it
could result in lowering the service level or even the application fails. Especially when the
application is stateful or quorum-based, it might barely tolerate, pod disruptions. To
mitigate the disruption, we could leverage PodDisruptionBudget to inform Kubernetes of
how many unavailable pods at any given time our application can tolerate so that
Kubernetes is able to take proper actions with the knowledge of the applications on top of
it. For more information, refer to https://kubernetes.io/docs/concepts/workloads/
pods/disruptions/.

On the other hand, since PodDisruptionBudget is a managed object, it still cannot
preclude disruptions caused by factors outside Kubernetes, such as hardware failures of a
node, or node components being killed by the system due to insufficient memory. As such,
we can incorporate tools such as node-problem-detector into our monitoring stack and
properly configure the threshold on the resources of a node, to notify Kubernetes which
begins to drain the node or evict excessive pods to prevent situations getting worse. For
more detailed guides on node-problem-detector and resource thresholds, refer to the
following topics:

® https://kubernetes.io/docs/tasks/debug-application-cluster/monitor-nod
e-health/

® https://kubernetes.io/docs/tasks/administer-cluster/out-of-resource/

Kubernetes federation

A federation is a cluster of clusters. In other words, it's formed by multiple Kubernetes
clusters and is accessible from a single control plane. The resources that are created on a
federation will be synchronized across all connected clusters. As of Kubernetes 1.7,
resources that can be federated include Namespace, ConfigMap, Secret, Deployment,
DaemonSet, Service, and Ingress.

[339]

https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/tasks/debug-application-cluster/monitor-node-health/
https://kubernetes.io/docs/tasks/debug-application-cluster/monitor-node-health/
https://kubernetes.io/docs/tasks/administer-cluster/out-of-resource/

What's Next Chapter 11

Capabilities of the federation to build a hybrid platform bring us another level of flexibility
when architecting our software. For instance, we can federate clusters deployed in on-
premise data centers and various public clouds together, to distribute workloads by cost,
and utilize platform-specific features while keeping the elasticity to move around. Another
typical use case is federating clusters scattered in different geographical locations to lower
the edge latency to customers across the globe. Moreover, a single Kubernetes cluster
backed by etcd3 supports 5,000 nodes while keeping the p99 of API response time less than
1 second (on version 1.6). If there is a need to have a cluster with thousands of nodes or
beyond, we can surely federate clusters to get there.

The guide for a federation can be found at the following link: https://kubernetes.io/

docs/tasks/federation/set-up-cluster-federation-kubefed/.

Cluster add-ons

Cluster add-ons are programs, that are designed or configured to enhance a Kubernetes
cluster, and they are considered to be inherent parts of Kubernetes. For instance, Heapster,
which we used in chapter 6, Monitoring and Logging, is one of the add-on components, and
so is the node-problem-detector we mentioned earlier.

As cluster add-ons may be used in some critical functions, some hosted Kubernetes services
such as GKE deploy the add-on manager to safeguard the state of the add-ons from being
modified or deleted. Managed add-ons will be deployed with a label,
addonmanager.kubernetes.io/mode, on the pod controller. If the mode is Reconcile,
any modification to the specification will be rolled back to its initial state; the
EnsureExists mode only checks whether the controller exists, but doesn't check whether
its specification is modified. For instance, the following Deployments are deployed on a
1.7.3 GKE cluster by default, and all of them are protected in the Reconcile mode:

[340]

https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/
https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/
https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/
https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/
https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/
https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/
https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/
https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/
https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/
https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/
https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/
https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/
https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/
https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/
https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/
https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/
https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/
https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/
https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/
https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/
https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/
https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/
https://kubernetes.io/docs/tasks/federation/set-up-cluster-federation-kubefed/

What's Next

Chapter 11

Namespace

kube-system

Workloads

Daemon Sets
Deployments

Jobs

Pods

Replica Sets
Replication Controllers
Stateful Sets

Discovery and Load Balar
Ingresses
Services

Config and Storage
Config Maps
Persistent Volume Clair

Secrets

GPU (cor

0.0005

0.0003

15:58 16:00 16:01 16:03

Deployments

Name

@ event-exporter-v0.1.4

@ kube-dns-autoscaler

@ kube-dns

@ kubernetes-dashboard

@ heapster-v1.4.0

@ |7-default-backend

16:056 16:06 16:08 16:10 16:12
Time
Labels Pods
addonmanager.kubernetes.io/mode: Reconcile
k8s-app: event-exporter /1
kubernetes.io/cluster-service: true
addonmanager.kubernetes.io/mode: Reconcile
k8s-app: kube-dns-autoscaler 1/1
kubernetes.io/cluster-service: true
addonmanager.kubernetes.io/mode: Reconcile
k8s-app: kube-dns /1
kubernetes.io/cluster-service: true
addonmanager.kubernetes.io/mode: Reconcile
k8s-app: kubernetes-dashboard 1/1
kubernetes.io/cluster-service: true
addonmanager.kubernetes.io/mode: Reconcile
k8s-app: heapster 1/1
kubernetes.io/cluster-service: true version: v1.4.0
addonmanager.kubernetes.io/mode: Reconcile
k8s-app: glbc kubernetes.io/cluster-service: true 1/1

kubernetes.io/name: GLBC

If you'd like to deploy add-ons in your own cluster, they can be found at: https://github.

com/kubernetes/kubernetes/tree/master/cluster/addons.

Kubernetes and communities

When choosing an open source tool to use, we definitely wonder how supportiveness it is
after we begin to use it. The supportiveness includes factors such as who is leading the
project, whether the project is opinionated, how is the project's popularity, and so on.

Kubernetes originated from Google, and it's now backed by the Cloud Native Computing
Foundation (CNCF, https://www.cncf.io). At the time when Kubernetes 1.0 was released,
Google partnered with the Linux Foundation to form the CNCF, and donated Kubernetes as
the seed project. The CNCEF is meant to promote the development of containerized,

dynamic orchestrated, and microservices-oriented applications.

[341]

https://github.com/kubernetes/kubernetes/tree/master/cluster/addons
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons
https://www.cncf.io

What's Next Chapter 11

Since all projects under the CNCF is container-based, they certainly could work fluently
with Kubernetes. Prometheus, Fluentd, and OpenTracing, which we demonstrated and
mentioned in chapter 6, Monitoring and Logging, are all member projects of the CNCF.

Kubernetes incubator

Kubernetes incubator is a process to support projects for Kubernetes:
https://github.com/kubernetes/community/blob/master/incubator.md.

Graduated projects might become a core function of Kubernetes, a cluster add-on, or an
independent tool for Kubernetes. Throughout the book, we have already seen and used
many of them, including the Heapster, cAdvisor, dashboard, minikube, kops, kube-state-
metrics, and kube-problem-detector, whatever makes Kubernetes better and better. You can
explore these projects under Kubernetes (https://github.com/kubernetes), or the
Incubator (https://github.com/kubernetes-incubator).

Helm and charts

Helm (https://github.com/kubernetes/helm) is a package manager, that simplifies the
day-0 through day-n operations of running software on Kubernetes. It's also a graduated
project from the incubator.

As what we've learned in chapter 7, Continuous Delivery, deploying a containerized
software to Kubernetes is basically writing manifests. Nonetheless, an application may be
built with dozens of Kubernetes resources. If we're going to deploy such an application
many times, the task to rename the conflict parts could be cumbersome. If we introduce the
idea of template engines to solve the renaming hell, we will soon realize that we should
have a place to store the templates as well as the rendered manifests. Hence, the Helm is
meant to solve such annoying chores.

A package in Helm is called a chart, and it's a collection of configurations, definitions, and
manifests to run an application. Charts contributed by the communities are published here:
https://github.com/kubernetes/charts. Even if we are not going to use it, we can still
find verified manifests for a certain package there.

[342]

https://github.com/kubernetes/community/blob/master/incubator.md
https://github.com/kubernetes/community/blob/master/incubator.md
https://github.com/kubernetes/community/blob/master/incubator.md
https://github.com/kubernetes/community/blob/master/incubator.md
https://github.com/kubernetes/community/blob/master/incubator.md
https://github.com/kubernetes/community/blob/master/incubator.md
https://github.com/kubernetes/community/blob/master/incubator.md
https://github.com/kubernetes/community/blob/master/incubator.md
https://github.com/kubernetes/community/blob/master/incubator.md
https://github.com/kubernetes/community/blob/master/incubator.md
https://github.com/kubernetes/community/blob/master/incubator.md
https://github.com/kubernetes/community/blob/master/incubator.md
https://github.com/kubernetes/community/blob/master/incubator.md
https://github.com/kubernetes/community/blob/master/incubator.md
https://github.com/kubernetes/community/blob/master/incubator.md
https://github.com/kubernetes/community/blob/master/incubator.md
https://github.com/kubernetes/community/blob/master/incubator.md
https://github.com/kubernetes/community/blob/master/incubator.md
https://github.com/kubernetes/community/blob/master/incubator.md
https://github.com/kubernetes
https://github.com/kubernetes-incubator
https://github.com/kubernetes/helm
https://github.com/kubernetes/charts

What's Next Chapter 11

Using Helm is quite simple. First get the Helm by running the official installation script
here: https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get.

After getting the Helm binary working, it fetches our kubectl configurations to connect to
the cluster. We'd need to have a manager Tiller inside our Kubernetes cluster to manage
every deployment task from Helm:

$ helm init

SHELM_ HOME has been configured at /Users/myuser/.helm.

Tiller (the Helm server—side component) has been installed into your
Kubernetes Cluster.

Happy Helming!

If we'd like to initialize the Helm client without installing the Tiller to our
Kubernetes cluster, we can add the ~—client-only flag to helm init.
Furthermore, using the --skip-refresh flag together allows us to
initialize the client offline.

The Helm client is able to search the available charts from the command line:

$ helm search

NAME VERSION DESCRIPTION
stable/aws—-cluster—autoscaler 0.2.1 Scales worker nodes within
autoscaling groups.

stable/chaoskube 0.5.0 Chaoskube periodically kills

random pods in you...

stable/uchiwa 0.2.1 Dashboard for the Sensu
monitoring framework
stable/wordpress 0.6.3 Web publishing platform for

building blogs and ...

Let's install a chart from the repository, say the last one, wordpress:

$ helm install stable/wordpress

NAME : plinking-billygoat

LAST DEPLOYED: Wed Sep 6 01:09:20 2017
NAMESPACE: default

STATUS: DEPLOYED

[343]

https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get
https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get
https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get
https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get
https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get
https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get
https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get
https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get
https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get
https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get
https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get
https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get
https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get
https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get
https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get
https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get
https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get
https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get
https://raw.githubusercontent.com/kubernetes/helm/master/scripts/get

What's Next Chapter 11

The deployed chart in Helm is a release. Here, we have a release, plinking-billygoat,
installed. Once the pods and the services are ready, we can connect to our site and check the
result:

&« C [@ localhost:8080 X ¢ J

Just another WordPress site

POSTS
SEPTEMBER 5, 2017
Hello world! Search... n

Welcome to WordPress. This is your first post. Edit or

delete it, then start writing! RECENT POSTS

Hello world!

[344]

What's Next Chapter 11

The teardown of a release also takes only one line of command:

$ helm delete plinking-billygoat
release "plinking-billygoat" deleted

Helm leverages ConfigMap to store the metadata of a release, but deleting
a release with helm delete won't delete its metadata. To wholly clear
these metadata, we could either manually delete these ConfigMaps or add
the ——purge flag when executing helm delete.

In addition to managing packages in our cluster, another value brought by Helm is it is
established as a standard to share packages and so it allows us to install popular software
directly, such as the Wordpress we installed, rather than rewriting manifests for every
software we used.

Gravitating towards a future infrastructure

It's always hard to tell whether a tool is a right fit or not, especially on opting for a cluster
management software to underpin business missions, because the difficulties and
challenges with which everyone is confronted varies. Apart from objective concerns such as
performance, stability, availability, scalability, and usability, real circumstances also account
for a significant portion of the decision. For instance, perspective on choosing a stack for
developing greenfield projects and for building additional layers on top of bulky legacy
systems could be diverse. Likewise, operating services by a highly cohesive DevOps team
and by an organization working in the old day styles could also lead to distinct choices.

In addition to Kubernetes, there are still other platforms, which also feature orchestrating
containers, and they all provide some easy ways to getting started. Let's step back and take
an overview over them to find out the best fit.

Docker swarm mode

Swarm mode (https://docs.docker.com/engine/swarm/) is Docker's native orchestrator
integrated in the Docker engine since version 1.12. As such, it shares the same API and user
interface with Docker itself, including the use of Docker Compose files. Such degrees of
integration are considered to be advantages as well as disadvantages depending on if one is
comfortable with working on a stack, where all the components are from the same vendor.

[345]

https://docs.docker.com/engine/swarm/

What's Next Chapter 11

A swarm cluster consists of managers and workers, where the managers are part of a
consensus group to maintain the state of a cluster while keeping high availability. Enabling
the swarm mode is quite easy. Roughly speaking, it's only two steps here: creating a cluster
with docker swarm init and joining other managers and workers with docker swarm
join. Additionally, Docker Cloud (https://cloud.docker.com/swarm) provided by Docker
helps us bootstrap a swam cluster on various cloud providers.

Features that come with the swarm mode are the ones we'd expect to have in a container
platform, that is to say, container lifecycle managements, two scheduling strategies
(replicated and global, which resemble to Deployment and DaemonSet in Kubernetes
respectively), service discovery, secret managements, and so on. There is also an ingress
network that works like the NodePort type service in Kubernetes, but we'll have to bring up
something such as nginx or Traefik if we need a L7 layer LoadBalancer.

All in all, the swarm mode proffers an option to orchestrate containerized applications that
works out of the box once one begins to use Docker. Meanwhile, as it speaks the same
language with Docker and simple architecture, it's also considered to be the easiest platform
among all choices. Therefore, it's indeed reasonable to choose the swarm mode to get
something done quickly. However, its simplicity sometimes leads to lack of flexibility. For
example, in Kubernetes we are able to employ Blue/Green deployment strategy by merely
manipulating selector and labels, but there is no easy way to do so in the swarm mode.
Since the swarm mode is still under active development, such as the function to store
configuration data, which is analogous to ConfigMap in Kubernetes is introduced in
version 17.06, we definitely could look forward to the swarm mode becoming more
powerful in the future while retaining its simplicity.

Amazon EC2 container service

EC2 container service (ECS, https://aws.amazon.com/ecs/)is AWS' answer to the Docker
upsurge. Unlike Google Cloud Platform and Microsoft Azure, which provides open source
cluster managers such as Kubernetes, Docker Swarm, and DC/OS, AWS sticks to its own
way in response to the need of container services.

[346]

https://cloud.docker.com/swarm
https://aws.amazon.com/ecs/

What's Next Chapter 11

ECS takes its Docker as its container runtime, and it also accepts Docker Compose files in
syntax version 2. Moreover, terminologies of ECS and Docker Swarm mode are pretty much
the same thing, such as the idea of task and service. Yet the similarities stop here. Although
the core functions of ECS is simple and even rudimentary, as a part of AWS, ECS fully
utilizes other AWS products to enhance itself such as VPC for container networking,
CloudWatch, and CloudWatch Logs for monitoring and logging, Application LoadBalancer
and Network LoadBalancer with Target Groups for service discovering, Lambda with
Route 53 for DNS-based service discovering, CloudWatch Events for CronJob, EBS and EFS
for data persistence, ECR for docker registry, Parameter Store and KMS for storing
configuration files and secrets, CodePipeline for CI/CD, and so forth. There is another AWS
product, AWS Batch (https://aws.amazon.com/batch/) that is built on top of ECS for
processing batch workloads. Furthermore, an open source tool from AWS ECS team, Blox
(https://blox.github.io), augments the capabilities to customize the scheduling that are
not shipped with ECS, such as the DaemonSet-like strategy, by wiring couples of AWS
products up. From another perspective, if we take AWS as an integral whole to evaluate
ECS, it's truly mighty.

Setting up an ECS cluster is easy: create an ECS cluster via the AWS console or API and join
EC2 nodes with the ECS agent to the cluster. The good thing is that the master side is
managed by AWS so that we are free from keeping wary eye on the master.

Overall, ECS is easy to getting started, especially for people who are familiar with Docker as
well as AWS products. On the other hand, if we aren't satisfied with the primitives
currently provided, we have to do some handworks either with other AWS services
mentioned earlier or third-party solutions to get things done, and this could result in
undesired costs on those services and efforts on configurations and maintenances to make
sure every component works together nicely. Besides, ECS is only available on AWS, which
could also be one concern that people would take it seriously.

Apache Mesos

Mesos (http://mesos.apache.org/) had been created long before Docker set off the trend
of containers, and its goal is to solve the difficulties regarding management of resources in a
cluster comprising general hardware while supporting diverse workloads. To build such a
general platform, Mesos makes use of a two-tier architecture to divide the resource
allocation and the task execution. As such, the execution part can theoretically extend to any
kind of task, including orchestrating Docker containers.

[347]

https://aws.amazon.com/batch/
https://blox.github.io
http://mesos.apache.org/)
http://mesos.apache.org/)

What's Next Chapter 11

Even though we talked about only the name Mesos here, it is basically in charge of one tier
of jobs as a matter of fact, and the execution part is done by other components called Mesos
frameworks. For example, Marathon (https://mesosphere.github.io/marathon/) and
Chronos (https://mesos.github.io/chronos/) were two popular frameworks to deploy
long-running and batch-job tasks respectively, and both of them support the Docker
container. In this way, when it comes to the term Mesos, it's referring to a stack such as
Mesos/Marathon/Chronos or Mesos/Aurora. In fact, under Mesos' two-tier architecture, it's
viable to run Kubernetes as a Mesos framework as well.

Frankly speaking, a properly organized Mesos stack and Kubernetes are pretty much the
same in terms of capabilities except that Kubernetes requires that everything that is run on
it should be containerized regardless of Docker, rkt, or a hypervisor container. On the other
hand, as Mesos focuses on its generic scheduling and tends to keep its core small, some
essential functions should be installed, tested, and operated separately, which could bring
about extra efforts.

DC/OS (https://dcos.io/) published by Mesosphere takes advantages of Mesos to build a
full-stack cluster management platform, which is more comparable to Kubernetes with
respect to capabilities. As a one-stop-shop for every solution built atop Mesos, it bundles
couples of components to drive the whole system, Marathon for common workloads,
Metronome for scheduled jobs, Mesos-DNS for service discovery, and so forth. Though
these building blocks seem to be complicated, DC/OS greatly simplified the works on
installations and configurations by CloudFormation/Terraform templates, and its package
management system, Mesosphere Universe. Since DC/OS 1.10, Kubernetes is officially
integrated into DC/OS, and it can be installed via the Universe. Hosted DC/OS is also
available on some cloud providers such as Microsoft Azure.

The following screenshot is the web console interface of DC/OS, which aggregates
information from every component:

[348]

https://mesosphere.github.io/marathon/
https://mesos.github.io/chronos/
https://dcos.io/

What's Next Chapter 11

¥ Dashboard

Dashboard CPU Allocation Memory Allocation Disk Allocation
N 6/” 43* 20*
10.7 of 16 Shares 24 GiB of 55 GiB 28 GiB of 139 GiB
00
Jobs
Universe 50%
0%
Nodes B60: B C 60 30 (
Networking
Services Health Tasks Component Health
chronos Healthy Admin Router Agent Healthy
marathon-user Healthy Admin Router Master Healthy
System Overview
basic-0 NJA Admin Router Reloader Healthy
Components 1 3
elastic N/A Admin Router Reloader Healthy

Admin Router Reload...

So far we have discussed the community version of DC/OS, but some features are only
available in the enterprise edition. They are mostly on security and compliance, and the list
can be found at https://mesosphere.com/pricing/.

Summary

In this chapter, we have briefly discussed Kubernetes features that applies to certain more
specific use cases, and guided where and how to leverage the strong communities,
including the Kubernetes incubator and the package manager Helm.

In the end, we went back to the start and gave overview to three other popular alternatives
for the same goal: orchestrating containers, so as to leave the conclusion in your mind for
choosing your next generation infrastructure.

[349]

https://mesosphere.com/pricing/

A

Active Directory 21
aggregating logs
logs, collecting with logging agent per node 209
patterns 208
sidecar container, executing to forward logs 210
agile models 7
Alert manager 200
Amazon EC2 container service
about 347
reference link 346
Amazon Web Services (AWS)
about 9,269
APl 270
components 272
EBS 279
EC2 279
Elastic Load Balancer (ELB) 287
infrastructure as code 270
internet gateway 274
Kubernetes, settingup 290
NAT-GW 274
public cloud 270
Route 53 285
security group (SG) 278
Simple Storage Service (S3) 289
subnet 272
URL 30, 270
Virtual Private Cloud (VPC) 272
Apache Mesos 347
Application Load Balancer (ALB or ELBv2) 313
auto mode 304
automation 21
AWS CLI
about 270
URL, for installation 270

Index

AWS CloudFormation
reference link 24
AWS CloudWatch 27
AWS CodeDeploy

reference link 26

B

BIND 21
Bitbucket
reference link 21
Bootstrap Tokens
reference link 76
build server 9

C

cAdvisor

reference link 197
calico.yaml

URL, for downloading 186
Calico

reference link 186
cgroups (control groups) 34
Cloud Native Computing Foundation (CNCF)

about 199, 341

reference link 199, 341
Cloud SDK

URL, for installation 304
Cluster Federation, setting up

reference link 340
Codeship

URL 22
command-line interface (CLI) 304
communities 341
Container life cycle

about 41

connect containers 48

container 43
Docker basics 41
image 43
images, distributing 45
layer 43
volume 43
container network interface (CNI) 173
reference link 173
container network model 175
container-to-container communications 170, 171
container
about 33
beginning 39
containerized delivery 38
Docker, installing for CentOS 40
Docker, installing for macOS 40
Docker, installing for Ubuntu 39
inspecting 190, 191
Kubernetes dashboard 191
Linux container concept 34
resource isolation 33
Continuous Delivery (CD)
about 10
configuration management 10
Infrastructure as code 11
orchestration 12
continuous delivery pipeline
building 224
tools, selecting 225
Continuous Delivery tool 23
Continuous Integration (Cl) 9,217
Continuous Integration tool 21
Contiv
reference link 186
Controller layer 16
Controller Manager 71
copy-on-write (COW) 43
Create/Load/Upload/Delete (CLUD) operation 19
custom mode 304

D

DaemonSet
about 223
updating 222

design phase 7

[351]

discovery mechanisms
endpoints discovery mode 203
node discovery mode 203
pod discovery mode 203
service discovery mode 203
disruptions
reference link 339
distributed object 18
Distributed System ToolKit
reference link 79
Django
reference link 17
DNS Add-on
reference link 79
Docker Hub
reference link 45
Docker networking 167
Docker swarm mode
about 345
reference link 345
Docker
installing, for CentOS 40
installing, for macOS 40
installing, for Ubuntu 39
URL, for installation 41
Dockerfile
organizing 58
syntax 52
working 51
writing 51
dynamic provisioning 131, 132

E

Elastic Block Store (EBS) 279, 282, 294
Elastic Computing Cloud (EC2) 270,279
Elastic IP (EIP) 275
Elastic Load Balancer (ELB) 287
Elasticsearch cluster scenario

about 145, 146

Elasticsearch coordinating node 147, 149, 150,

151, 152

Elasticsearch data node 147

Elasticsearch master-eligible node 147
Elasticsearch, deploying

reference link 212

elasticsearch-head Kubernetes cloud provider 330

reference link 150 Kubernetes cluster, setting up on GKE 321
Elasticsearch multi zone cluster 326
logging 212 node pool 323
reference link 27, 128, 193 reference link 138
electrical 7 Grafana
electrical delivery 7 reference link 207
environment variables URL 28, 138
reference link 226 Graphite
etcd reference link 138
reference link 70 URL 28
events Grok Exporter
aggregating logs, patterns 208 reference link 215
Elasticsearch, logging 212
Fluentd, logging 212 H
Kubgrnetes events, ingesting 211 hands-on monitoring
logging 208 about 199
exec form 53 data, gathering from Kubernetes 205
external-to-service communications 179, 180 metrics, displaying with Grafana 206
F Prometheus, deploying 200
Prometheus, meeting 200
firewall rules 307 PromQL, working 201
Flask targets, discovering in Kubernetes 202
URL 20 headless services
Fluentd reference link 108
logging 212 Heapster
URL 212 reference link 198
Helm
G reference link 342, 343
Git service high availability (HA) 68
reference link 21 HipChat
Google Cloud Platform (GCP) URL 30
about 9, 303 Homebrew
components 304 URL, for installation 72
firewall rules 307
load balancing 313 I
Persistent Disk (PD) 319 IGW (internet gateway) 274
subnet 306 implementation phase 7
URL 30 InfluxDB
VM instance 309 URL 28
VPC 304 infrastructure
Google Container Engine (GKE) Amazon EC2 container service 347
about 134, 206, 321 Apache Mesos 347
cluster upgrade 328 Docker swarm mode 345

[352]

gravitating 345
ingress 181, 182, 185
ingress annotation

reference link 184
ingress-nginx, addons

reference link 297
init containers 235
input output (I/O) 16

J

Jenkins
URL 22

JSON
URL 76

K

Kibana
reference link 28
kops, addons
reference link 297

kops
executing 291
installing 291

reference link 138, 290

URL, for installation 291
kube-state-metrics

references 199
kubeadm

reference link 290
kubectl 71
Kubernetes API

reference link 220
Kubernetes cloud provider

about 330

L4 LoadBalancer 331

L7 LoadBalancer (ingress) 332

StorageClass 330
Kubernetes cluster

setting up, on GKE 321
Kubernetes components

etcd 206

kube-controller-manager 206

kube-dns 206

kube-scheduler 206

[353]

Kubernetes APl serve 206
Nginx ingress controller 206
Kubernetes dashboard
about 191
reference link 192
Kubernetes Deployments
reference link 79
Kubernetes events
ingesting 211
Kubernetes incubator
reference link 342
Kubernetes networking
about 166

container-to-container communications 170, 171

Docker networking 167, 168, 169
external-to-service communications 179, 180
pod-to-pod communications 171
pod-to-service communications 176, 177, 178,
179

Kubernetes Persistent Volume
about 130, 132
abstraction layer, claiming 132, 133, 134, 135
dynamic provisioning 135, 136, 137, 138
Elasticsearch cluster scenario 145, 146, 147

ephemeral, problem case 138, 139, 140, 142,
144

example 145

persistent setting 138, 139, 140, 142, 144

pod replicating, StatefulSet used 144

StorageClass 135, 136, 137, 138
Kubernetes resource management

about 153

BestEffort pod, configuring 157, 158

Burstable pod, configuring 160

Guaranteed pod, configuring 158, 159

Resource Quality of Service 154, 155, 156

resource usage, monitoring 162, 163, 165
Kubernetes volume management

about 125

container volume lifecycle 126

dynamic provisioning 130, 132

Kubernetes Persistent Volume 130, 132

stateful applications 128, 129, 130

stateless applications 128, 129, 130

volume sharing, between containers within pod

127
Kubernetes Volumes 68
Kubernetes, API objects
ingress 179
service 179
Kubernetes
about 67, 72, 196, 341
annotation 79
application 193
charts 342
cloud provider 294
cluster, maintaining by kops 301
components 68
ConfigMap 113, 115
container 195
deployments 92, 93, 94, 96, 97
environment, preparing 72
external resources 195
Helm 342
host 194
incubator 342
interaction, between master and nodes 71
kops, executing 291
kubectl 74, 75
L4 LoadBalancer 295
L7 LoadBalancer (ingress) 297
label and selector 77
Master components 69
monitoring 193
monitoring essentials, obtaining 196
name 77,78
namespace 76, 77
Node components 70
objects 76
pods 79, 82, 83, 85
possibilities, exploring 337
ReplicaSet (RS) 8¢, 87, 88, 89, 90, 91

ReplicationController (RC) 8¢, 87, 88, 89, 90,

91
resources 75

kubespray

reference link 290

L

L4 LoadBalancer 295
libnetwork 175
Linux container concept 34
liveness probe 68, 233
load balancing

about 313

backend service 315
health check 315
LoadBalancer, creating 316

Logstash

reference link 27, 128

Master components
about 69
API server (kube-apiserver) 69

Controller Manager (kube-controller-manager) 70
eted 70
Scheduler (kube-scheduler) 70

mastering Kubernetes

about 337

affinity and anti-affinity, between pod and node
338

auto-scaling of pods 338

cluster add-ons 340

CronJob 338

job 338

Kubernetes federation 340
pod disruptions, mitigation 339
pod disruptions, prevention 339

Maven

URL 14

Message Queue Server

reference link 28

metrics

services 98, 99,101, 103, 104, 106, 107, 108,

109,110,112
setting up 291
setting up, on AWS 290
StorageClass 299

m

[354]

extracting, from logs 215
icroservices

about 19

modular programming 13
monolithic application 17

MVC design pattern 16
no shared datastore 19
package management 14
remote procedure call 17
RESTful design 18
stateless 19
trend 13
versioning and compatibility 20
minikube
reference link 72
Model layer 16
Model View and Controller (MVC) 16
monitoring 193
mtail
reference link 215
multi zone cluster 326
multi-containers orchestration
about 60,116,117,118,122,123
containers, composing 63
containers, pillingup 60
Docker Compose, overview 62
MVC design pattern 16
MySQL Server Exporter
reference link 206

N

Network Address Translation Gateway (NAT-GW)
274,275
network container 170
Network File System (NFS) 17
network namespace 167
network policy 186, 188, 189
network tag 307
nginx 127
nginx container
reference link 81
nginx ingress controller
reference link 182
Nginx
URL 13
Node components
about 70
Docker 71
Kubelet 71
Proxy (kube-proxy) 71

node exporter
reference link 205
node pool 323
node
reference link 145
npm 14

(0

Open Container Initiative

about 39

reference link 39
OpenTracing

URL 194
out-of-memory (OOM) 36

P

packet encapsulation 173
Persistent Disk (PD) 319
Persistent Volume Claim (PVC) 133
Persistent Volumes 68
physical method 6
pip
URL 14
Platform as a Service (PaaS) 303
pod-to-pod communications
about 171
across node 173,174,176
with in node 172
pod-to-service communications 176, 177, 178,
179
pod
about 232
beginning 232
init containers 235
liveness probes 233
placing 241
readiness probes 233
SIGTERM, handling 237
terminating 236, 239
Prometheus configuration
reference link 205
Prometheus
URL 199, 202
PromQL 201

[355]

Q

Quay
reference link 45

R

RBAC (role-based access control) 192
readiness probe 233
Remote Method Invocation (RMI) 17
remoting 18
ReplicaSet (RS) 68, 86
ReplicationController (RC) 68, 86
Resource QoS (Quality of Service) 154
Resource Quotas
reference link 324
resources
DaemonSet, updating 222
rollouts, managing 220
StatefulSet, updating 222
updates, triggering 218
updating 217
RESTful design 19
rkt
reference link 39
RMI compiler (rmic) 17
rollouts
managing 220
Route 53 285
RubyGems
URL 14

S

security group (SG) 278, 307
Sendmail 21
service-loadbalancer
reference link 185
shell form 53
SIGTERM
container process, forwarding issue 237
handling 237
termination handler, invoking issue 239
Simple Queue Service (SQS) 270
Simple Storage Service (S3) 270, 289
Slack
URL 30

[356]

SOAP 18
Software as a Service (SaaS) 22
Software Defined Network (SDN) 9, 270
software delivery challenges
about 6
agile models 7
Continuous Delivery (CD) 10
Continuous Integration (Cl) 9
physical delivery 6
software delivery, on cloud 8
waterfall 6
Software Development Life Cycle (SDLC) 6
Spring Boot
reference link 20
SpringMVC
reference link 16
Standard Operation Procedure (SOP) 12
StatefulSet
about 224
updating 222
steps, continuous delivery pipeline
after_success 228
deploy 229
script 227
Storage Area Network (SAN) 270
Struts
URL 16
subnet 272, 306

T

TeamCity
reference link 22

Tomcat 127

tools, continuous delivery pipeline
steps explained 226

tools
about 21
communication tools 29
Continuous Delivery tool 23
Continuous Integration tool 21
logging 26
monitoring 26
Public Cloud 30
selecting 225

Travis Cl

about 225 Virtual Private Cloud (VPC) 272, 304

URL 22 VirtualBox
URL 72
U VM instance 309
Universal Description, Discovery, and Integration
(UDDI) 18 W

updates waterfall model 7

triggering 218 Weave Net
user interface (Ul) 16 reference link 186

web service 18

V Web Services Description Language (WSDL) 18
VCS tools

reference link 21 Y
Version Control System (VCS) 9, 12 YAML

Virtual Machines (VMs) 34 URL 76

	Cover
	Title Page
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Introduction to DevOps

	Software delivery challenges
	Waterfall and physical delivery
	Agile and electrical delivery
	Software delivery on the cloud
	Continuous Integration
	Continuous Delivery
	Configuration management
	Infrastructure as code
	Orchestration

	Trend of microservices
	Modular programming
	Package management
	MVC design pattern
	Monolithic application
	Remote Procedure Call
	RESTful design
	Microservices

	Automation and tools
	Continuous Integration tool
	Continuous Delivery tool
	Monitoring and logging tool
	Communication tool
	Public cloud

	Summary

	Chapter 2: DevOps with Container

	Understanding container
	Resource isolation
	Linux container concept
	Containerized delivery
	Getting started with container
	Installing Docker for Ubuntu
	Installing Docker for CentOS
	Installing Docker for macOS

	Container life cycle
	Docker basics
	Layer, image, container, and volume
	Distributing images
	Connect containers

	Working with Dockerfile
	Writing your first Dockerfile
	Dockerfile syntax
	Organizing a Dockerfile

	Multi-containers orchestration
	Piling up containers
	Docker Compose overview
	Composing containers

	Summary

	Chapter 3: Getting Started with Kubernetes

	Understanding Kubernetes
	Kubernetes components
	Master components
	API server (kube-apiserver)
	Controller Manager (kube-controller-manager)
	etcd
	Scheduler (kube-scheduler)

	Node components
	Kubelet
	Proxy (kube-proxy)
	Docker

	Interaction between Kubernetes master and nodes

	Getting started with Kubernetes
	Preparing the environment
	kubectl
	Kubernetes resources
	Kubernetes objects
	Namespace
	Name
	Label and selector
	Annotation
	Pods
	ReplicaSet (RS) and ReplicationController (RC)
	Deployments
	Services
	Volumes
	Secrets
	ConfigMap
	Using ConfigMap via volume
	Using ConfigMap via environment variables

	Multi-containers orchestration
	Summary

	Chapter 4: Working with Storage and Resources

	Kubernetes volume management
	Container volume lifecycle
	Sharing volume between containers within a pod
	Stateless and stateful applications
	Kubernetes Persistent Volume and dynamic provisioning
	Persistent Volume claiming the abstraction layer
	Dynamic Provisioning and StorageClass

	A problem case of ephemeral and persistent setting
	Replicating pods with a Persistent Volume using StatefulSet
	Persistent Volume example
	Elasticsearch cluster scenario
	Elasticsearch master node
	Elasticsearch master-eligible node
	Elasticsearch data node
	Elasticsearch coordinating node

	Kubernetes resource management
	Resource Quality of Service
	Configuring the BestEffort pod
	Configuring as the Guaranteed pod
	Configuring as Burstable pod
	Monitoring resource usage

	Summary

	Chapter 5: Network and Security

	Kubernetes networking
	Docker networking
	Container-to-container communications
	Pod-to-pod communications
	Pod communication within the same node
	Pod communication across nodes

	Pod-to-service communications
	External-to-service communications

	Ingress
	Network policy
	Summary

	Chapter 6: Monitoring and Logging

	Inspecting a container
	Kubernetes dashboard

	Monitoring in Kubernetes
	Application
	Host
	External resources
	Container
	Kubernetes
	Getting monitoring essentials for Kubernetes

	Hands-on monitoring
	Meeting Prometheus
	Deploying Prometheus
	Working with PromQL
	Discovering targets in Kubernetes
	Gathering data from Kubernetes
	Seeing metrics with Grafana

	Logging events
	Patterns of aggregating logs
	Collecting logs with a logging agent per node
	Running a sidecar container to forward logs

	Ingesting Kubernetes events
	Logging with Fluentd and Elasticsearch

	Extracting metrics from logs
	Summary

	Chapter 7: Continuous Delivery

	Updating resources
	Triggering updates
	Managing rollouts
	Updating DaemonSet and StatefulSet
	DaemonSet
	StatefulSet

	Building a delivery pipeline
	Choosing tools
	Steps explained
	env
	script
	after_success
	deploy

	Gaining deeper understanding of pods
	Starting a pod
	Liveness and readiness probes
	Init containers

	Terminating a pod
	Handling SIGTERM
	SIGTERM is not forwarded to the container process
	SIGTERM doesn't invoke the termination handler

	Container lifecycle hooks
	Placing pods

	Summary

	Chapter 8: Cluster Administration

	Kubernetes namespaces
	Default namespaces
	Create a new namespace
	Context
	Create a context
	Switch the current context

	ResourceQuota
	Create a ResourceQuota for a namespace
	Request pods with default compute resource limits

	Delete a namespace

	Kubeconfig
	Service account
	Authentication and authorization
	Authentication
	Service account authentication
	User account authentication

	Authorization
	Attribute-based access control (ABAC)
	Role-based access control (RBAC)
	Roles and ClusterRoles
	RoleBinding and ClusterRoleBinding

	Admission control
	Namespace life cycle
	LimitRanger
	Service account
	PersistentVolumeLabel
	DefaultStorageClass
	ResourceQuota
	DefaultTolerationSeconds
	Taints and tolerations

	PodNodeSelector
	AlwaysAdmit
	AlwaysPullImages
	AlwaysDeny
	DenyEscalatingExec
	Other admission controller plugins

	Summary

	Chapter 9: Kubernetes on AWS

	Introduction to AWS
	Public cloud
	API and infrastructure as code
	AWS components
	VPC and subnet
	Internet gateway and NAT-GW
	Security group
	EC2 and EBS
	Route 53
	ELB
	S3

	Setup Kubernetes on AWS
	Install kops
	Run kops
	Kubernetes cloud provider
	L4 LoadBalancer
	L7 LoadBalancer (ingress)
	StorageClass

	Maintenance Kubernetes cluster by kops

	Summary

	Chapter 10: Kubernetes on GCP

	Introduction to GCP
	GCP components
	VPC
	Subnets
	Firewall rules
	VM instance
	Load balancing
	Health check
	Backend service
	Creating a LoadBalancer

	Persistent Disk

	Google Container Engine (GKE)
	Setting up your first Kubernetes cluster on GKE
	Node pool
	Multi zone cluster
	Cluster upgrade
	Kubernetes cloud provider
	StorageClass
	L4 LoadBalancer
	L7 LoadBalancer (ingress)

	Summary

	Chapter 11: What's Next

	Exploring the possibilities of Kubernetes
	Mastering Kubernetes
	Job and CronJob
	Affinity and anti-affinity between pods and nodes
	Auto-scaling of pods
	Prevention and mitigation of pod disruptions
	Kubernetes federation
	Cluster add-ons

	Kubernetes and communities
	Kubernetes incubator
	Helm and charts

	Gravitating towards a future infrastructure
	Docker swarm mode
	Amazon EC2 container service
	Apache Mesos

	Summary

	Index

