Elliot Forbes

Learning

Concurrency
in Python

Speed up your Python code with clean, readable, and
advance d concurrenc y techniques

LI Packb

Learning Concurrency in
Python

Speed up your Python code with clean, readable, and

advanced concurrency techniques

Elliot Forbes

BIRMINGHAM - MUMBAI

Learning Concurrency in Python

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2017

Production reference: 1140817

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78728-537-8

www.packtpub.com

http://www.packtpub.com

Author
Elliot Forbes

Reviewer
Nikolaus Gradwohl

Commissioning Editor
Merint Mathew

Acquisition Editor
Chaitanya Nair

Content Development Editor
Rohit Kumar Singh

Technical Editors
Ketan Kamble

Credits

Copy Editor
Sonia Mathur

Project Coordinator
Vaidehi Sawant

Proofreader
Safis Editing

Indexer
Francy Puthiry

Graphics
Abhinash Sahu

Production Coordinator
Nilesh Mohite

About the Author

Elliot Forbes he worked as a full-time software engineer at JPMorgan Chase for the last two
years. He graduated from the University of Strathclyde in Scotland in the spring of 2015
and worked as a freelancer developing web solutions while studying there.

He has worked on numerous different technologies such as GoLang and Node]S and plain
old Java, and he has spent years working on concurrent enterprise systems. It is with this
experience that he was able to write this book.

Elliot has even worked at Barclays Investment Bank for a summer internship in London and
has maintained a couple of software development websites for the last three years.

About the Reviewer

Nikolaus Gradwohl was born 1976 in Vienna, Austria and always wanted to become an
inventor like Gyro Gearloose. When he got his first Atari, he figured out that being a
computer programmer is the closest he could get to that dream. For a living, he wrote
programs for nearly anything that can be programmed, ranging from an 8-bit
microcontroller to mainframes. In his free time, he likes to master on programming
languages and operating systems.

Nikolaus authored the Processing 2: Creative Coding Hotshot book, and you can see some of
his work on his blog at http://www.local-guru.net/.

http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/
http://www.local-guru.net/

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub. com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

. Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1787285375.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375
https://www.amazon.com/dp/1787285375

Table of Contents

Preface 1
Chapter 1: Speed It Up! 6
History of concurrency 7
Threads and multithreading 8
What is a thread? 8
Types of threads 9

What is multithreading? 9
Processes 10
Properties of processes 11
Multiprocessing 12
Event-driven programming 13
Turtle 14
Breaking it down 15
Reactive programming 16
ReactiveX - RxPy 16
Breaking it down 18

GPU programming 19
PyCUDA 20
OpenCL 20
Theano 21
The limitations of Python 21
Jython 22
IronPython 23
Why should we use Python? 23
Concurrent image download 23
Sequential download 24
Breaking it down 24
Concurrent download 25
Breaking it down 26
Improving number crunching with multiprocessing 26
Sequential prime factorization 27
Breaking it down 27
Concurrent prime factorization 28
Breaking it down 29
Summary 30

[ii]

Chapter 2: Parallelize It 31
Understanding concurrency 32
Properties of concurrent systems 32

1/0 bottlenecks 33
Understanding parallelism 35
CPU-bound bottlenecks 36
How do they work on a CPU? 36
Single-core CPUs 37
Clock rate 37
Martelli model of scalability 38
Time-sharing - the task scheduler 39
Multi-core processors 40
System architecture styles 41
SISD 41
SIMD 42
MISD 44
MIMD 44
Computer memory architecture styles 45
UMA 45
NUMA 46
Summary 48
Chapter 3: Life of a Thread 49
Threads in Python 49
Thread state 50
State flow chart 51
Python example of thread state 51
Breaking it down 52
Different types of threads 52
POSIX threads 53
Windows threads 53

The ways to start a thread 53
Starting a thread 53
Inheriting from the thread class 54
Breaking it down 54
Forking 55
Example 55
Breaking it down 55
Daemonizing a thread 56
Example 57
Breaking it down 57

Handling threads in Python 57
Starting loads of threads 58
Example 58
Breaking it down 58
Slowing down programs using threads 59
Example 59
Breaking it down 60
Getting the total number of active threads 61
Example 61
Breaking it down 61
Getting the current thread 62
Example 62
Breaking it down 62

Main thread 63
Example 63
Breaking it down 63
Enumerating all threads 64
Example 64
Breaking it down 64
Identifying threads 65
Example 65
Breakdown 66
Ending a thread 67
Best practice in stopping threads 67
Example 67

Output 68
Orphan processes 68
How does the operating system handle threads 68
Creating processes versus threads 68
Example 69
Breaking it down 69
Multithreading models 70
One-to-one thread mapping 71
Many-to-one 71
Many-to-many 72
Summary 73
Chapter 4: Synchronization between Threads 74
Synchronization between threads 75
The Dining Philosophers 75
Example 77

Output 78

Race conditions 78
Process execution sequence 79

[iii]

The solution 80

Critical sections 81
Filesystem 81
Life-critical systems 81
Shared resources and data races 82
The join method 83
Breaking it down 83
Putting it together 84
Locks 84
Example 84
Breaking it down 86
RLocks 86
Example 87
Breaking it down 87
Output 88
RLocks versus regular locks 89
Condition 90
Definition 90
Example 90

Our publisher 90

Our subscriber 91

Kicking it off 92

The results 93
Semaphores 93
Class definition 94
Example 94
The TicketSeller class 94
Output 96

Thread race 96
Bounded semaphores 96
Events 97
Example 98
Breaking it down 98
Barriers 98
Example 99
Breaking it down 99
Output 100
Summary 101
Chapter 5: Communication between Threads 102
Standard data structures 103
Sets 103
Extending the class 103
Exercise - extending other primitives 104
Decorator 104

[iv]

Class decorator
Lists

Queues

FIFO queues
Example
Breaking it down
Output

LIFO queues
Example
Breaking it down
Output

PriorityQueue
Example
Breakdown
Output

Queue objects
Full/empty queues
Example
Output
The join() function
Example
Breakdown
Output
Deque objects
Example
Breakdown
Output
Appending elements
Example
Breaking it down
Output
Popping elements
Example
Breaking it down
Output
Inserting elements
Example
Breaking it down
Output
Rotation
Example
Breaking it down
Output

Defining your own thread-safe communication structures
A web Crawler example

Requirements

105
106

107
107
108
108
109
109
110
111
111
112
112
113
114

114
114
115
115
115
116
117
117

117
117
118
118

119
119
119
120

120
120
121
121

121
122
122
122
122
123
123
124
124
124
125

[vil

Design 125

Our Crawler class 125

Our starting point 127
Extending the queue object 129
Breaking it down 129

Output 129

Future enhancements 130
Conclusion 130
Exercise - testing your skills 131
Summary 131
Chapter 6: Debug and Benchmark 132
Testing strategies 133
Why do we test? 133
Testing concurrent software systems 134
What should we test? 134
Unit tests 134
PyUnit 135
Example 135

Output 136

Expanding our test suite 136

Unit testing concurrent code 136
Integration tests 137
Debugging 138
Make it work as a single thread 138
Pdb 139

An interactive example 140
Catching exceptions in child threads 142
Benchmarking 143
The timeit module 144
Timeit versus time 145
Command-line example 145
Importing timeit into your code 145
Utilizing decorators 147
Timing context manager 147
Output 149
Profiling 149
cProfile 149
Simple profile example 150

The line_profiler tool 152
Kernprof 152
Memory profiling 154
Memory profile graphs 155
Summary 158

Chapter 7: Executors and Pools 159
Concurrent futures 159
Executor objects 160
Creating a ThreadPoolExecutor 160
Example 161

Output 161

Context manager 162
Example 162

Output 163

Maps 163
Example 164

Output 164
Shutdown of executor objects 164
Example 165

Output 165
Future objects 166
Methods in future objects 166
The result() method 166
The add_done_callback() method 167
The .running() method 167
The cancel() method 167
The .exception() method 167
The .done() method 167
Unit testing future objects 168
The set_running_or_notify_cancel() method 168
The set_result() method 168
The set_exception() method 168
Cancelling callable 168
Example 169
Output 170
Getting the result 170
Example 171
Output 172
Using as_completed 172
Example 172
Output 173
Setting callbacks 174
Example 174
Output 175
Chaining callbacks 176
Exception classes 176
Example 176
Output 177
ProcessPoolExecutor 178
Creating a ProcessPoolExecutor 178

[vii]

Example 178

Output 179
Context Manager 179
Example 179

Output 180
Exercise 180
Getting started 180
Improving the speed of computationally bound problems 180

Full code sample 181

Output 182
Improving our crawler 183
The plan 183
New improvements 184
Refactoring our code 184

Storing the results in a CSV file 186
Exercise - capture more info from each page crawl 187
concurrent.futures in Python 2.7 188
Summary 188
Chapter 8: Multiprocessing 189
Working around the GIL 189
Utilizing sub-processes 190
Example 190

Output 191

The life of a process 191
Starting a process using fork 191
Spawning a process 192
Forkserver 192
Daemon processes 192
Example 193
Breaking it down 193

Output 193
Identifying processes using PIDs 194
Example 194

Output 195
Terminating a process 196
Example 196
Getting the current process 197
Subclassing processes 197
Example 198

Output 198
Multiprocessing pools 199

[viii]

The difference between concurrent.futures.ProcessPoolExecutor and

Pool 199
Context manager 200
Example 200

Output 201
Submitting tasks to a process pool 201
Apply 201
Apply_async 202

Map 203
Map_async 204

Imap 204
Imap_unordered 205
Starmap 206
Starmap_async 207
Maxtasksperchild 207
Communication between processes 208
Pipes 209
Anonymous pipes 209

Named pipes 209
Working with pipes 210
Example 210
Handling Exceptions 211
Using pipes 211
Multiprocessing managers 212
Namespaces 213
Example 213
Queues 214
Example 214

Output 215
Listeners and clients 215
Example 216

The Listener class 216

The Client class 217

Output 217
Logging 218
Example 218
Communicating sequential processes 220
PyCSP 220
Processes in PyCSP 221

Output 221
Summary 222
Chapter 9: Event-Driven Programming 223
Event-driven programming 224

[ix]

The event loop
Asyncio
Getting started
Event loops
The run_forever() method
The run_until_complete() method
The stop() method
The is_closed() method
The close() function
Tasks
Example
The all_tasks(loop=None) method
The current_tasks() function
The cancel() function
Task functions
The as_completed(fs, *, loop=None, timeout=None) function
The ensure_future(coro_or_future, *, loop=None) function
The wrap_future(future, *, loop=None) function
The gather(*coroes_or_futures, loop=None, return_exceptions=False) function
The wait() function
Futures
Example
Output
Coroutines
Chaining coroutines
Output
Transports
Protocols
Synchronization between coroutines
Locks
Queues
Events and conditions
Semaphores and BoundedSemaphores
Sub-processes
Debugging asyncio programs
Debug mode
Twisted
A simple web server example
Gevent
Event loops
Greenlets
Simple example-hostnames
Output

225
226
227

227
227
228
229
229
230

230
230
231
232
233
234
234
234
234
235
235
236
237
237
237
238
241
241
241
242
242
244
245
245
246
246
246
248
248
250
250
251
251
252

[x]

Monkey patching 252
Summary 253
Chapter 10: Reactive Programming 254
Basic reactive programming 255
Maintaining purity 255
ReactiveX, or RX 255
Installing RxPY 256
Observables 257
Creating observers 257
Example 257
Example 2 259
Breaking it down 259

Output 260
Lambda functions 260
Example 261
Breaking it down 261
On_next, on_completed, and on_error in lambda form 262

Output 263
Operators and chaining 263
Filter example 263
Breaking it down 264
Chained operators 264

The different operators 265
Creating observables 265
Transforming observables 265

Filtering observables 266
Error-handling observables 266

Hot and cold observables 266
Emitting events 267
Example 267
Breaking it down 268

Output 268
Multicasting 268
Example 269

Output 270
Combining observables 271
Zip() example 271

Output 272

The merge_all() operator 272

Output 273
Concurrency 273
Example 274

Output 275
PyFunctional 276

[xi]

Installation and official docs 276
Simple example 277
Output 277
Streams, transformations, and actions 277
Filtering lists 278
Output 279
Reading/writing SQLite3 279
Compressed files 280
Parallel execution 281
Summary 282
Chapter 11: Using the GPU 283
Introduction to GPUs 284
Why use the GPU? 285
Data science 285
Branches of data science 286
Machine learning 286
Classification 286

Cluster analysis 286

Data mining 287

CUDA 288
Working with CUDA without a NVIDIA graphics card 289
PyCUDA 289
Features 290
Simple example 290
Kernels 291
GPU arrays 292
Numba 292
Overview 293
Features of Numba 293
LLVM 293
Cross-hardware compatibility 294
Python compilation space 294
Just-in-Time (JiT) versus Ahead-of-Time (Aot) compilation 295

The Numba process 295
Anaconda 296

Writing basic Numba Python programs 296
Compilation options 297
nopython 297

nogil 297

The cache option 298

The parallel option 298

Issues with Numba 298

[xii]

Numba on the CUDA-based GPUs 299
Numba on AMD APUs 299
Accelerate 300
Theano 301
Requirements 301
Getting started 301
Very simple example 302

Adding two matrices 302
Fully-typed constructors 303

Using Theano on the GPU 303
Example 304
Leveraging multiple GPUs 305
Defining the context map 306

Simple graph example 306
PyOpenCL 307
Example 307
Output 308
Summary 309
Chapter 12: Choosing a Solution 310
Libraries not covered in this book 310
GPU 311
PyGPU 311
Event-driven and reactive libraries 311
Tornado 311

Flask 312

Celery 313

Data science 313
Pandas 313
Matplotlib 314
TensorFlow 314
Designing your systems 314
Requirements 315
Functional requirements 315
Non-functional requirements 315
Design 316
Computationally expensive 316
Event-heavy applications 317
I/O-heavy applications 317
Recommended design books 317
Software Architecture with Python 318

Python: Master the Art of Design Patterns 318
Research 318
Summary 318

[xiii]

Index 320

[xiv]

Preface

Python is a very high-level, general-purpose language that features a large number of
powerful high-level and low-level libraries and frameworks that complement its delightful
syntax. This easy-to-follow guide teaches you new practices and techniques to optimize
your code and then moves on to more advanced ways to effectively write efficient Python
code. Small and simple practical examples will help you test the concepts introduced, and
you will be able to easily adapt them to any application.

Throughout this book, you will learn to build highly efficient, robust, and concurrent
applications. You will work through practical examples that will help you address the
challenges of writing concurrent code, and also you will learn to improve the overall speed
of execution in multiprocessor and multicore systems and keep them highly available.

What this book covers

Chapter 1, Speed It Up!, helps you get to grips with threads and processes, and you'll also
learn about some of the limitations and challenges of Python when it comes to
implementing your own concurrent applications.

Chapter 2, Parallelize It, covers a multitude of topics including the differences between
concurrency and parallelism. We will look at how they both leverage the CPU in different
ways, and we also branch off into the topic of computer system design and how it relates to
concurrent and parallel programming.

Chapter 3, Life of a Thread, delves deeply into the workings of Python's native threading
library. We'll look at the numerous different thread types. We'll also look in detail at
various concepts such as the multithreading model and the numerous ways in which we
can make user threads to their lower-level siblings, the kernel threads.

Chapter 4, Synchronization between Threads, covers the various key issues that can impact
our concurrent Python applications. We will delve into the topic of deadlocks and the
famous "dining philosophers" problem and see how this can impact our own software.

Chapter 5, Communication between Threads, discusses quite a number of different
mechanisms that we can employ to implement communication in our multithreaded
systems. We delve into the thread-safe queue primitives that Python features natively.

Preface

Chapter 6, Debug and Benchmark, takes a comprehensive look at some of the techniques that
you can utilize in order to ensure your concurrent Python systems are as free as practically
possible from bugs before they plague your production environment. We will also cover
testing strategies that help to ensure the soundness of your code's logic.

Chapter 7, Executors and Pools, covers everything that you need to get started with thread
pools, process pools, and future objects. We will look at the various ways in which you can
instantiate your own thread and process pools as well the advantages of using thread and
process pool executors over traditional methods.

Chapter 8, Multiprocessing, discusses multiprocessing and how it can be utilized within our
systems. We will follow the life of a process from its creation all the way through to its
timely termination.

Chapter 9, Event-Driven Programming, covers the paradigm of event-driven programming
before covering how asyncio works and how we can use it for our own event-driven Python
systems.

Chapter 10, Reactive Programming, covers some of the key principles of reactive
programming. We will look at the key differences between both reactive programming and
typical event-driven programming and delve more deeply into the specifics of the very
popular RxPY Python library.

Chapter 11, Using the GPU, covers some of the more realistic scenarios that data scientists
typically encounter and why these are ideal scenarios for us to leverage the GPU wrapper
libraries.

Chapter 12, Choosing a Solution, briefly discusses some libraries that are not covered in this
book. We'll also take a look at the process that you should follow in order to effectively
choose which libraries and programming paradigms you leverage for your Python software
projects.

What you need for this book

For this book, you will need the following software installed on your systems:

¢ Beautiful Soup
¢ RxPy

e Anaconda

e Theano
PyOpenCL

[2]

Preface

Who this book is for

This book is for Python developers who would like to get started with concurrent
programming. You are expected to have a working knowledge of the Python language, as
this book will build on its fundamental concepts.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code is set as follows:

import urllib.request

import time

t0 = time.time ()

req = urllib.request.urlopen('http://www.example.com')
pageHtml = reqg.read()

tl = time.time ()

print ("Total Time To Fetch Page: {} Seconds".format (t1-t0))

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

import urllib.request

import time

t0 = time.time ()

req = urllib.request.urlopen('http://www.example.com')
pageHtml = reqg.read()

tl = time.time ()

print ("Total Time To Fetch Page: {} Seconds".format (t1-t0))

Any command-line input or output is written as follows:

pip install rx

[3]

Preface

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text.

0 Warnings or important notes appear like this.
8 Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Downloading the example code

You can download the example code files for this book from your account at http://www.p
acktpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.c
om/supportand register to have the files e-mailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSOk

[4]

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WIinRAR /7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPubl
ishing/Learning-Concurrency-in-Python. We also have other code bundles from our
rich catalog of books and videos available at https://github.com/PacktPublishing/.
Check them out!

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to https://www.packtpub.com/book
s/content/supportand enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[5]

https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/Learning-Concurrency-in-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Speed It Up!

"For over a decade prophets have voiced the contention that the organization of a single
computer has reached its limits and that truly significant advances can be made only by
interconnection of a multiplicity of computers.”

-Gene Amdahl.

Getting the most out of your software is something all developers strive for, and
concurrency, and the art of concurrent programming, happens to be one of the best ways in
order for you to improve the performance of your applications. Through the careful
application of concurrent concepts into our previously single-threaded applications, we can
start to realize the full power of our underlying hardware, and strive to solve problems that
were unsolvable in days gone past.

With concurrency, we are able to improve the perceived performance of our applications by
concurrently dealing with requests, and updating the frontend instead of just hanging until
the backend task is complete. Gone are the days of unresponsive programs that give you no
indication as to whether they’ve crashed or are still silently working.

This improvement in the performance of our applications comes at a heavy price though. By
choosing to implement systems in a concurrent fashion, we typically see an increase in the
overall complexity of our code, and a heightened risk for bugs to appear within this new
code. In order to successfully implement concurrent systems, we must first understand
some of the key concurrency primitives and concepts at a deeper level in order to ensure
that our applications are safe from these new inherent threats.

Speed It Up!

In this chapter, I'll be covering some of the fundamental topics that every programmer
needs to know before going on to develop concurrent software systems. This includes the
following;:

A brief history of concurrency

Threads and how multithreading works
e Processes and multiprocessing

The basics of event-driven, reactive, and GPU-based programming

A few examples to demonstrate the power of concurrency in simple programs

The limitations of Python when it comes to programming concurrent systems

History of concurrency

Concurrency was actually derived from early work on railroads and telegraphy, which is
why names such as semaphore are currently employed. Essentially, there was a need to
handle multiple trains on the same railroad system in such a way that every train would
safely get to their destinations without incurring casualties.

It was only in the 1960s that academia picked up interest in concurrent computing, and it
was Edsger W. Dijkstra who is credited with having published the first paper in this field,
where he identified and solved the mutual exclusion problem. Dijkstra then went on to
define fundamental concurrency concepts, such as semaphores, mutual exclusions, and
deadlocks as well as the famous Dijkstra’s Shortest Path Algorithm.

Concurrency, as with most areas in computer science, is still an incredibly young field when
compared to other fields of study such as math, and it's worthwhile keeping this in mind.
There is still a huge potential for change within the field, and it remains an exciting field for
all--academics, language designers, and developers--alike.

The introduction of high-level concurrency primitives and better native language support
have really improved the way in which we, as software architects, implement concurrent
solutions. For years, this was incredibly difficult to do, but with this advent of new
concurrent APIs, and maturing frameworks and languages, it’s starting to become a lot
easier for us as developers.

[7]

Speed It Up!

Language designers face quite a substantial challenge when trying to implement
concurrency that is not only safe, but efficient and easy to write for the users of that
language. Programming languages such as Google’s Golang, Rust, and even Python itself
have made great strides in this area, and this is making it far easier to extract the full
potential from the machines your programs run on.

Threads and multithreading

In this section of the book, we'll take a brief look at what a thread is, as well as at how we
can use multiple threads in order to speed up the execution of some of our programs.

What is a thread?

A thread can be defined as an ordered stream of instructions that can be scheduled to run as
such by operating systems. These threads, typically, live within processes, and consist of a
program counter, a stack, and a set of registers as well as an identifier. These threads are the
smallest unit of execution to which a processor can allocate time.

Threads are able to interact with shared resources, and communication is possible between
multiple threads. They are also able to share memory, and read and write different memory
addresses, but therein lies an issue. When two threads start sharing memory, and you have
no way to guarantee the order of a thread’s execution, you could start seeing issues or
minor bugs that give you the wrong values or crash your system altogether. These issues
are, primarily, caused by race conditions which we’ll be going, in more depth in chapter 4,
Synchronization Between Threads.

The following figure shows how multiple threads can exist on multiple different CPUs:

CPU CPU
J

Ll

Thread CPU] [CPUH Thread

[8]

Speed It Up!

Types of threads

Within a typical operating system, we, typically, have two distinct types of threads:

¢ User-level threads: Threads that we can actively create, run, and kill for all of our
various tasks

e Kernel-level threads: Very low-level threads acting on behalf of the operating
system

Python works at the user-level, and thus, everything we cover in this book will be,
primarily, focused on these user-level threads.

What is multithreading?

When people talk about multithreaded processors, they are typically referring to a
processor that can run multiple threads simultaneously, which they are able to do by
utilizing a single core that is able to very quickly switch context between multiple threads.
This switching context takes place in such a small amount of time that we could be forgiven
for thinking that multiple threads are running in parallel when, in fact, they are not.

When trying to understand multithreading, it’s best if you think of a multithreaded
program as an office. In a single-threaded program, there would only be one person
working in this office at all times, handling all of the work in a sequential manner. This
would become an issue if we consider what happens when this solitary worker becomes
bogged down with administrative paperwork, and is unable to move on to different work.
They would be unable to cope, and wouldn’t be able to deal with new incoming sales, thus
costing our metaphorical business money.

With multithreading, our single solitary worker becomes an excellent multitasker, and is
able to work on multiple things at different times. They can make progress on some
paperwork, and then switch context to a new task when something starts preventing them
from doing further work on said paperwork. By being able to switch context when
something is blocking them, they are able to do far more work in a shorter period of time,
and thus make our business more money.

[9]

Speed It Up!

In this example, it's important to note that we are still limited to only one worker or
processing core. If we wanted to try and improve the amount of work that the business
could do and complete work in parallel, then we would have to employ other workers or
processes as we would call them in Python.

Let's see a few advantages of threading:

e Multiple threads are excellent for speeding up blocking I/O bound programs
e They are lightweight in terms of memory footprint when compared to processes
e Threads share resources, and thus communication between them is easier

There are some disadvantages too, which are as follows:

e CPython threads are hamstrung by the limitations of the global interpreter lock
(GIL), about which we'll go into more depth in the next chapter.

¢ While communication between threads may be easier, you must be very careful
not to implement code that is subject to race conditions

e It's computationally expensive to switch context between multiple threads. By
adding multiple threads, you could see a degradation in your program's overall
performance.

Processes

Processes are very similar in nature to threads--they allow us to do pretty much everything
a thread can do--but the one key advantage is that they are not bound to a singular CPU
core. If we extend our office analogy further, this, essentially, means that if we had a four
core CPU, then we can hire two dedicated sales team members and two workers, and all
four of them would be able to execute work in parallel. Processes also happen to be capable
of working on multiple things at one time much as our multithreaded single office worker.

These processes contain one main primary thread, but can spawn multiple sub-threads that
each contain their own set of registers and a stack. They can become multithreaded should
you wish. All processes provide every resource that the computer needs in order to execute
a program.

[10]

Speed It Up!

In the following image, you'll see two side-by-side diagrams; both are examples of a
process. You'll notice that the process on the left contains only one thread, otherwise known
as the primary thread. The process on the right contains multiple threads, each with their
own set of registers and stacks:

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
thread — g <+—— thread
single-threaded process multithreaded process

With processes, we can improve the speed of our programs in specific scenarios where our
programs are CPU bound, and require more CPU horsepower. However, by spawning
multiple processes, we face new challenges with regard to cross-process communication,
and ensuring that we don’t hamper performance by spending too much time on this inter-
process communication (IPC).

Properties of processes

UNIX processes are created by the operating system, and typically contain the following:

e Process ID, process group ID, user ID, and group ID
e Environment

Working directory
e Program instructions

Registers
Stack
e Heap

[11]

Speed It Up!

File descriptors

Signal actions
Shared libraries

Inter-process communication tools (such as message queues, pipes, semaphores,
or shared memory)

The advantages of processes are listed as follows:

e Processes can make better use of multi-core processors

They are better than multiple threads at handling CPU-intensive tasks

We can sidestep the limitations of the GIL by spawning multiple processes

Crashing processes will not kill our entire program

Here are the disadvantages of processes:

¢ No shared resources between processes--we have to implement some form of IPC
¢ These require more memory

Multiprocessing

In Python, we can choose to run our code using either multiple threads or multiple
processes should we wish to try and improve the performance over a standard single-
threaded approach. We can go with a multithreaded approach and be limited to the
processing power of one CPU core, or conversely we can go with a multiprocessing
approach and utilize the full number of CPU cores available on our machine. In today’s
modern computers, we tend to have numerous CPUs and cores, so limiting ourselves to just
the one, effectively renders the rest of our machine idle. Our goal is to try and extract the
full potential from our hardware, and ensure that we get the best value for money and solve
our problems faster than anyone else:

CPU

CPU 2 CPU 3 CPU 4

[12]

Speed It Up!

With Python’s multiprocessing module, we can effectively utilize the full number of cores
and CPUs, which can help us to achieve greater performance when it comes to CPU-
bounded problems. The preceding figure shows an example of how one CPU core starts
delegating tasks to other cores.

In all Python versions less than or equal to 2.6, we can attain the number of CPU cores
available to us by using the following code snippet:

First we import the multiprocessing module

import multiprocessing

then we call multiprocessing.cpu_count () which

returns an integer value of how many available CPUs we have
multiprocessing.cpu_count ()

Not only does multiprocessing enable us to utilize more of our machine, but we also avoid
the limitations that the Global Interpreter Lock imposes on us in CPython.

One potential disadvantage of multiple processes is that we inherently have no shared state,
and lack communication. We, therefore, have to pass it through some form of IPC, and
performance can take a hit. However, this lack of shared state can make them easier to work
with, as you do not have to fight against potential race conditions in your code.

Event-driven programming

Event-driven programming is a huge part of our lives--we see examples of it every day
when we open up our phone, or work on our computer. These devices run purely in an
event-driven way; for example, when you click on an icon on your desktop, the operating
system registers this as an event, and then performs the necessary action tied to that specific
style of event.

Every interaction we do can be characterized as an event or a series of events, and these
typically trigger callbacks. If you have any prior experience with JavaScript, then you
should be somewhat familiar with this concept of callbacks and the callback design pattern.
In JavaScript, the predominant use case for callbacks is when you perform RESTful HTTP
requests, and want to be able to perform an action when you know that this action has
successfully completed and we’ve received our HTTP response:

[13]

Speed It Up!

EventEmitters Events @ Event Handlers
O~ ==~ }

If we look at the previous image, it shows us an example of how event-driven programs
process events. We have our EventEmitters on the left-hand side; these fire off multiple
Events, which are picked up by our program's Event Loop, and, should they match a
predefined Event Handler, that handler is then fired to deal with the said event.

Callbacks are often used in scenarios where an action is asynchronous. Say, for instance,
you applied for a job at Google, you would give them an email address, and they would
then get in touch with you when they make their mind up. This is, essentially, the same as
registering a callback except that, instead of having them email you, you would execute an
arbitrary bit of code whenever the callback is invoked.

Turtle

Turtle is a graphics module that has been written in Python, and is an incredible starting
point for getting kids interested in programming. It handles all the complexities that come
with graphics programming, and lets them focus purely on learning the very basics whilst
keeping them interested.

It is also a very good tool to use in order to demonstrate event-driven programs. It features
event handlers and listeners, which is all that we need:

import turtle

turtle.setup (500,500)

window = turtle.Screen|()

window.title ("Event Handling 101")

window.bgcolor ("lightblue")

nathan = turtle.Turtle ()

def moveForward() :
nathan.forward (50)

def moveLeft () :
nathan.left (30)

def moveRight () :
nathan.right (30)

def start():

[14]

Speed It Up!

window.
window.
window.
window.
window.

onkey (moveForward, "Up")
onkey (movelLeft, "Left")
onkey (moveRight, "Right")
listen{()

mainloop ()

if name == '_ _main__ ':

start ()

Breaking it down

In the first line of this preceding code sample, we import the turtle graphics module. We
then go up to set up a basic turtle window with the title Event Handling 101 and a

background color of light blue.

After we’ve got the initial setup out of the way, we then go on to define three distinct event

handlers:

e moveForward: This is for when we want to move our character forward by 50

units

e moveLeft/moveRight: This is for when we want to rotate our character in either

direction by 30 degrees

Event Handling 101!

[15]

Speed It Up!

Once we’ve defined our three distinct handlers, we then go on to map these event handlers
to the up, left, and right key presses using the onkey method.

Now that we’ve set up our handlers, we then tell them to start listening. If any of the keys
are pressed after our program has started listening, then we will fire its event handler
function. Finally, when you run the preceding code, you should see a window appear with
an arrow in the center, which you can move about with your arrow keys.

Reactive programming

Reactive programming is very similar to that of event-driven, but instead of revolving
around events, it focuses on data. More specifically, it deals with streams of data, and reacts
to specific data changes.

ReactiveX - RxPy

RxPy is the Python equivalent of the very popular ReactiveX framework. If you've ever
done any programming in Angular 2 and proceeding versions, then you will have used this
when interacting with HTTP services. This framework is a conglomeration of the observer
pattern, the iterator pattern, and functional programming. We essentially subscribe to
different streams of incoming data, and then create observers that listen for specific events
being triggered. When these observers are triggered, they run the code that corresponds to
what has just happened.

[16]

Speed It Up!

We'll take a data center as a good example of how reactive programming can be utilized.
Imagine this data center has thousands of server racks, all constantly computing millions
upon millions of calculations. One of the biggest challenges in these data centers is keeping
all these tightly packed server racks cool enough so that they don’t damage themselves. We
could set up multiple thermometers throughout our data center to ensure that we aren’t
getting too hot anywhere, and send the readings from these thermometers to a central
computer as a continuous stream:

Within our central control station, we could set up a RxPy program that observes this
continuous stream of temperature information. Within these observers, we could then
define a series of conditional events to listen out for, and then react whenever one of these
conditionals is hit.

One such example would be an event that only triggers if the temperature for a specific part
of the data center gets too warm. When this event is triggered, we could then automatically
react and increase the flow of any cooling system to that particular area, and thus bring the
temperature back down again:

import rx
from rx import Observable, Observer
Here we define our custom observer which
contains an on_next method, an on_error method
and an on_completed method
class temperatureObserver (Observer) :
Every time we receive a temperature reading
this method is called
def on_next (self, x):
print ("Temperature is: %s degrees centigrade" % x)
if (x > 6):
print ("Warning: Temperate Is Exceeding Recommended Limit")

[17]

Speed It Up!

if (x == 9):
print ("DataCenter is shutting down. Temperature is too high")
if we were to receive an error message
we would handle it here
def on_error(self, e):
print ("Error: %s" % e)
This is called when the stream is finished
def on_completed(self):
print ("All Temps Read")
Publish some fake temperature readings
xs = Observable.from_iterable (range (10))
subscribe to these temperature readings
d = xs.subscribe (temperatureObserver ())

Breaking it down

The first two lines of our code import the necessary rx module, and then from there import
both observable and observer.

We then go on to create a temperatureObserver class that extends the observer. This class
contains three functions:

e on_next: This is called every time our observer observes something new

e on_error: This acts as our error-handler function; every time we observe an
error, this function will be called

e on_completed: This is called when our observer meets the end of the stream of
information it has been observing

In the on_next function, we want it to print out the current temperature, and also to check
whether the temperature that it receives is under a set of limits. If the temperature matches
one of our conditionals, then we handle it slightly differently, and print out descriptive
errors as to what has happened.

After our class declaration, we go on to create a fake observable which contains 10 separate
values using Observable.from_iterable (), and finally, the last line of our preceding
code then subscribes an instance of our new temperatureObserver class to this
observable.

[18]

Speed It Up!

GPU programming

GPUs are renowned for their ability to render high resolution, fast action video games. They
are able to crunch together the millions of necessary calculations per second in order to
ensure that every vertex of your game's 3D models are in the right place, and that they are
updated every few milliseconds in order to ensure a smooth 60 FPS.

Generally speaking, GPUs are incredibly good at performing the same task in parallel,
millions upon millions of times per minute. But if GPUs are so performant, then why do we
not employ them instead of our CPUs? While GPUs may be incredibly performant at
graphics processing, they aren't however designed for handling the intricacies of running
an operating system and general purpose computing. CPUs have fewer cores, which are
specifically designed for speed when it comes to switching context between operating tasks.
If GPUs were given the same tasks, you would see a considerable degradation in your
computer's overall performance.

But how can we utilize these high-powered graphics cards for something other than
graphical programming? This is where libraries such as PyCUDA, OpenCL, and Theano
come into play. These libraries try to abstract away the complicated low-level code that
graphics APIs have to interact with in order to utilize the GPU. They make it far simpler for
us to repurpose the thousands of smaller processing cores available on the GPU, and utilize
them for our computationally expensive programs:

+

CPU GPU
MULTIPLE CORES THOUSAMDS OF CORES

[19]

Speed It Up!

These Graphics Processing Units (GPU) encapsulate everything that scripting languages
are not. They are highly parallelizable, and built for maximum throughput. By utilizing
these in Python, we are able to get the best of both worlds. We can utilize a language that is
favored by millions due to its ease of use, and also make our programs incredibly
performant.

In the following sections, we will have a look at the various libraries that are available to us,
which expose the power of the GPU.

PyCUDA

PyCUDA allows us to interact with Nvidia’s CUDA parallel computation API in Python. It
offers us a lot of different advantages over other frameworks that expose the same
underlying CUDA API. These advantages include things such as an impressive underlying
speed, complete control of the CUDA’s driver API, and most importantly, a lot of useful
documentation to help those just getting started with it.

Unfortunately however, the main limitation for PyCUDA is the fact that it utilizes Nvidia-
specific APIs, and as such, if you do not have a Nvidia-based graphics card, then you will
not be able to take advantage of it. However, there are other alternatives which do an
equally good job on other non-Nvidia graphics cards.

OpenCL

OpenCL is one such example of an alternative to PyCUDA, and, in fact, I would
recommend this over PyCUDA due to its impressive range of conformant implementations,
which does also include Nvidia. OpenCL was originally conceived by Apple, and allows us
to take advantage of a number of heterogeneous platforms such as CPUs, GPUs, digital
signal processors, field-programmable gate arrays, and other different types of processors
and hardware accelerators.

There currently exist third-party APIs for not only Python, but also Java and .NET, and it is
therefore ideal for researchers and those of us who wish to utilize the full power of our
desktop machines.

[20]

Speed It Up!

Theano

Theano is another example of a library that allows you to utilize the GPU as well as to
achieve speeds that rival C implementations when trying to solve problems that involve
huge quantities of data.

It’s a different style of programming, though, in the sense that Python is the medium in
which you craft expressions that can be passed into Theano.

i

The limitations of Python

Earlier in the chapter, I talked about the limitations of the GIL or the Global Interpreter
Lock that is present within Python, but what does this actually mean?

The official website for Theano can be found here: http://deeplearning.
net/software/theano/

First, I think it’s important to know exactly what the GIL does for us. The GIL is essentially
a mutual exclusion lock which prevents multiple threads from executing Python code in
parallel. It is a lock that can only be held by one thread at any one time, and if you wanted a
thread to execute its own code, then it would first have to acquire the lock before it could
proceed to execute its own code. The advantage that this gives us is that while it is locked,
nothing else can run at the same time:

Thread | =—p
run

Thread 2

Thread 3 -

|

run

...................................... rup

release acquire

releaSe acquire

GIL

GIL

GIL

GIL

In the preceding diagram, we see an example of how multiple threads are hampered by this
GIL. Each thread has to wait and acquire the GIL before it can progress further, and then
release the GIL, typically before it has had a chance to complete its work. It follows a
random round-robin approach, and you have no guarantees as to which thread will acquire
the lock first.

[21]

http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/

Speed It Up!

Why is this necessary, you might ask? Well, the GIL has been a long-disputed part of
Python, and over the years has triggered many a debate over its usefulness. But it was
implemented with good intentions and to combat the non-thread safe Python memory
management. It prevents us from taking advantage of multiprocessor systems in certain
scenarios.

Guido Van Rossum, the creator of Python, posted an update on the removal of the GIL and
its benefits in a post here: http://www.artima.com/weblogs/viewpost.jsp?thread
=214235. He states that he wouldn’t be against someone creating a branch of Python that is
GIL-less, and he would accept a merge of this code if, and only if, it didn’t negatively
impact the performance of a single-threaded application.

There have been prior attempts at getting rid of the GIL, but it was found that the addition
of all the extra locks to ensure thread-safety actually slowed down an application by a factor
of more then two. In other words, you would have been able to get more work done with a
single CPU than you would have with just over two CPUs. There are, however, libraries
such as NumPy that can do everything they need to without having to interact with the
GIL, and working purely outside of the GIL is something I'm going to be exploring in
greater depth in the future chapters of this book.

It must also be noted that there are other implementations of Python, such as Jython and
IronPython, that don’t feature any form of Global Interpreter Lock, and as such can fully
exploit multiprocessor systems. Jython and IronPython both run on different virtual
machines, so, they can take advantage of their respective runtime environments.

Jython

Jython is an implementation of Python that works directly with the Java platform. It can be
used in a complementary fashion with Java as a scripting language, and has been shown to
outperform CPython, which is the standard implementation of Python, when working with
some large datasets. For the majority of stuff though, CPython’s single-core execution
typically outperforms Jython and its multicore approach.

The advantage to using Jython is that you can do some pretty cool things with it when
working in Java, such as import existing Java libraries and frameworks, and use them as
though they were part of your Python code.

[22]

http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235
http://www.artima.com/weblogs/viewpost.jsp?thread=214235

Speed It Up!

IronPython

IronPython is the NET equivalent of Jython and works on top of Microsoft’s .NET
framework. Again, you’ll be able to use it in a complementary fashion with .NET
applications. This is somewhat beneficial for .NET developers, as they are able to use
Python as a fast and expressive scripting language within their .NET applications.

Why should we use Python?

If Python has such obvious, known limitations when it comes to writing performant,
concurrent applications, then why do we continue to use it? The short answer is that it's a
fantastic language to get work done in, and by work, I'm not necessarily talking about
crunching through a computationally expensive task. It's an intuitive language, which is
easy to pick up and understand for those who don’t necessarily have a lot of programming
experience.

The language has seen a huge adoption rate amongst data scientists and mathematicians
working in incredibly interesting fields such as machine learning and quantitative analysis,
who find it to be an incredibly useful tool in their arsenal.

In both the Python 2 and 3 ecosystems, you’ll find a huge number of libraries that are
designed specifically for these use cases, and by knowing about Python’s limitations, we
can effectively mitigate them, and produce software that is efficient and capable of doing
exactly what is required of it.

So now that we understand what threads and processes are, as well as some of the
limitations of Python, it’s time to have a look at just how we can utilize multi-threading
within our application in order to improve the speed of our programs.

Concurrent image download

One excellent example of the benefits of multithreading is, without a doubt, the use of
multiple threads to download multiple images or files. This is, actually, one of the best use
cases for multithreading due to the blocking nature of I/O.

To highlight the performance gains, we are going to retrieve 10 different images from http
://lorempixel.com/400/200/sports, which is a free API that delivers a different image
every time you hit that link. We'll then store these 10 different images within a temp folder
so that we can view/use them later on.

[23]

http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports
http://lorempixel.com/400/200/sports

Speed It Up!

All the code used in these examples can be found in my GitHub repository here:
https://github.com/elliotforbes/Concurrency-With-Python.

Sequential download

First, we should have some form of a baseline against which we can measure the
performance gains. To do this, we’ll write a quick program that will download these 10
images sequentially, as follows:

import urllib.request
def downloadImage (imagePath, fileName) :
print ("Downloading Image from ", imagePath)
urllib.request.urlretrieve (imagePath, fileName)
def main () :
for i in range (10):

imageName = "temp/image-" + str (i) + ".jpg"
downloadImage ("http://lorempixel.com/400/200/sports", imageName)
if _ name_ == '_ main__':
main ()

Breaking it down

In the preceding code, we begin by importing urllib.request. This will act as our
medium for performing HTTP requests for the images that we want. We then define a new
function called downloadImage, which takes in two parameters, imagePath and
fileName. imagePath represents the URL image path that we wish to download.
fileName represents the name of the file that we wish to use to save this image locally.

In the main function, we then start up a for loop. Within this for loop, we generate an
imageName which includes the temp/ directory, a string representation of what iteration
we are currently at--str(i)--and the file extension . jpg. We then call the downloadImage
function, passing in the lorempixel location, which provides us with a random image as
well as our newly generated imageName.

Upon running this script, you should see your temp directory sequentially fill up with 10
distinct images.

[24]

https://github.com/elliotforbes/Concurrency-With-Python

Speed It Up!

Concurrent download

Now that we have our baseline, it’s time to write a quick program that will concurrently
download all the images that we require. We’ll be going over creating and starting threads
in future chapters, so don’t worry if you struggle to understand the code. The key point of
this is to realize the potential performance gains to be had by writing programs
concurrently:

import threading

import urllib.request

import time

def downloadImage (imagePath, fileName) :
print ("Downloading Image from ", imagePath)
urllib.request.urlretrieve (imagePath, fileName)
print ("Completed Download")

def executeThread (i) :

imageName = "temp/image-" + str (i) + ".jpg"

downloadImage ("http://lorempixel.com/400/200/sports", imageName)
def main() :

t0 = time.time ()

create an array which will store a reference to
all of our threads
threads = []
create 10 threads, append them to our array of threads
and start them off
for i in range (10):
thread = threading.Thread(target=executeThread, args=(i,))
threads.append (thread)
thread.start ()
ensure that all the threads in our array have completed
their execution before we log the total time to complete
for i in threads:
i.join()
calculate the total execution time
tl = time.time ()
totalTime = t1 - tO0
print ("Total Execution Time {}".format (totalTime))
if _ name_ == '_ main__ ':
main ()

[25]

Speed It Up!

Breaking it down

In the first line of our newly modified program, you should see that we are now importing
the threading module; this will enable us to create our first multithreaded application. We

then abstract our filename generation, and call the downloadImage function into our own

executeThread function.

Within the main function, we first create an empty array of threads, and then iterate 10
times, creating a new thread object, appending this to our array of threads, and then
starting that thread.

Finally, we iterate through our array of threads by calling for i in threads, and call the join
method on each of these threads. This ensures that we do not proceed with the execution of
our remaining code until all of our threads have finished downloading the image.

If you execute this on your machine, you should see that it almost instantaneously starts the
download of the 10 different images. When the downloads finish, it again prints out that it
has successfully completed, and you should see the temp folder being populated with these
images.

Both the preceding scripts do exactly the same tasks using the exact same url1lib.request
library, but if you take a look at the total execution time, then you should see an order of
magnitude improvement on the time taken for the concurrent script to fetch all 10 images.

Improving number crunching with
multiprocessing

So, we’ve seen exactly how we can improve things such as downloading images, but how
do we improve the performance of our number crunching? Well, this is where
multiprocessing shines if used in the correct manner.

In this example, we'll try to find the prime factors of 10,000 random numbers that fall
between 20,000 and 100,000,000. We are not necessarily fussed about the order of execution
so long as the work gets done, and we aren’t sharing memory between any of our processes.

[26]

Speed It Up!

Sequential prime factorization

Again, we’ll write a script that does this in a sequential manner, which we can easily verify
is working correctly:

import time
import random
def calculatePrimeFactors (n) :

primfac = []

d =2

while d*d <= n:

while (n % d) ==
primfac.append(d) # supposing you want multiple factors repeated

n //=d
4 +=1
if n > 1:

primfac.append (n)
return primfac
def main() :
print ("Starting number crunching")
t0 = time.time ()
for i in range (10000) :
rand = random.randint (20000, 100000000)
print (calculatePrimeFactors (rand))
tl = time.time ()
totalTime = t1 - tO0
print ("Execution Time: {}".format (totalTime))
if _ _name_ == '__main__ ':
main ()

Breaking it down

The first two lines make up our required imports--we’ll be needing both the time and the
random modules. After our imports, we then go on to define the calculatePrimeFactors
function, which takes an input of n. This efficiently calculates all of the prime factors of a
given number, and appends them to an array, which is then returned once that function
completes execution.

After this, we define the main function, which calculates the starting time and then cycles
through 10,000 numbers, which are randomly generated by using random’s randint. We
then pass these generated numbers to the calculatePrimeFactors function, and we print
out the result. Finally, we calculate the end time of this for loop and print it out.

[27]

Speed It Up!

If you execute this on your computer, you should see the array of prime factors being
printed out for 10,000 different random numbers, as well as the total execution time for this
code. For me, it took roughly 3.6 seconds to execute on my Macbook.

Concurrent prime factorization

So now let us have a look at how we can improve the performance of this program by
utilizing multiple processes.

In order for us to split this workload up, we’ll define an executeProc function, which,
instead of generating 10,000 random numbers to be factorized, will generate 1,000 random
numbers. We'll create 10 processes, and execute the function 10 times, though, so the total
number of calculations should be the exact same as when we performed the sequential test:

import time
import random
from multiprocessing import Process
This does all of our prime factorization on a given number 'n'
def calculatePrimeFactors (n) :

primfac = []

d =2

while d*d <= n:

while (n % d) ==
primfac.append(d) # supposing you want multiple factors repeated

n //=d
d += 1
if n > 1:

primfac.append (n)
return primfac
We split our workload from one batch of 10,000 calculations
into 10 batches of 1,000 calculations
def executeProc():
for i in range (1000) :
rand = random.randint (20000, 100000000)
print (calculatePrimeFactors (rand))
def main () :
print ("Starting number crunching")
t0 = time.time ()
procs = []
Here we create our processes and kick them off
for i in range (10):
proc = Process (target=executeProc, args=())
procs.append (proc)
proc.start ()
Again we use the .join() method in order to wait for

[28]

Speed It Up!

execution to finish for all of our processes
for proc in procs:
proc.join ()
tl = time.time ()
totalTime = tl1 - tO
we print out the total execution time for our 10

procs.

print ("Execution Time: {}".format (totalTime))
if _ name_ == '_ main__ ':

main ()

Breaking it down

This last code performs the exact same function as our originally posted code. The first
change, however, is on line three. Here, we import the process from the multiprocessing
module. Our following, the calculatePrimeFactors method has not been touched.

You should then see that we pulled out the for loop that initially ran for 10,000 iterations.
We now placed this in a function called executeProc, and we also reduced our for loops
range to 1,000.

Within the main function, we then create an empty array called procs. We then create 10
different processes, and set the target to be the executeProc function, and pass in no args.
We append this newly created process to our procs arrays, and then we start the process
by calling proc.start ().

After we’'ve created 10 individual processes, we then cycle through these processes which
are now in our procs array, and join them. This ensures that every process has finished its
calculations before we proceed to calculate the total execution time.

If you execute this now, you should see the 10,000 outputs now print out in your console,
and you should also see a far lower execution time when compared to your sequential
execution. For reference, the sequential program executed in 3.9 seconds on my computer
compared to 1.9 seconds when running the multiprocessing version.

This is just a very basic demonstration as to how we can implement multiprocessing into
our applications. In future chapters, we’ll explore how we can create pools and utilize
executors. The key point to take away from this is that we can improve the performance of
some CPU-bound tasks by utilizing multiple cores.

[29]

Speed It Up!

Summary

By now, you should have an appreciation of some of the fundamental concepts that
underlie concurrent programming. You should have a grasp of threads, processes, and
you'll also know some of the limitations and challenges of Python when it comes to
implementing your own concurrent applications. Finally, you have also seen firsthand some
of the performance improvements that you can achieve if you were to add different types of
concurrency to your applications.

I should make it clear now that there is no silver bullet that you can apply to every
application and see consistent performance improvements. One style of concurrent
programming might work better than another depending on the requirements of your
application, so in the next few chapters, we’ll look at all the different mechanisms you can
employ and when to employ them.

In the next chapter, we'll have a more in-depth look at the concept of concurrency and
parallelism, as well as the differences between the two concepts. We'll also look at some of
the main bottlenecks that constrain our concurrent systems, and you'll learn the different
styles of computer system architecture, and how it can help us achieve greater performance.

[30]

Parallelize It

Concurrency and parallelism are two concepts that are commonly confused. The reality,
though, is that they are quite different, and if you designed software to be concurrent when
instead you needed parallel execution, then you could be seriously impacting your
software’s true performance potential.

Due to this, it’s vital to know exactly what the two concepts mean so that you can
understand the differences. Through knowing these differences, you'll be putting yourself
at a distinct advantage when it comes to designing your own high performance software in
Python.

In this chapter, we’ll be covering the following topics:

e What is concurrency and what are the major bottlenecks that impact our
applications
e What is parallelism and how does this differ from concurrency

¢ The different styles of computer system architecture and how we can utilize these
effectively, using either concurrency or parallelism

¢ A brief overview of computer memory architecture

Parallelize It

Understanding concurrency

Concurrency is, essentially, the practice of doing multiple things at the same time, but not,
specifically, in parallel. It can help us to improve the perceived performance of our
applications, and it can also improve the speed at which our applications run.

The best way to think of how concurrency works is to imagine one person working on
multiple tasks and quickly switching between these tasks. Imagine this one person working
concurrently on a program, and, at the same time, dealing with support requests. This
person would focus primarily on the writing of their program, and quickly context switch
to fixing a bug or dealing with a support issue should there be one. Once they complete the
support task, they could switch context again, back to writing their program really quickly.

However, in computing, there are typically two performance bottlenecks that we have to
watch out for and guard against when writing our programs. It’s important to know the
differences between the two bottlenecks, as if you try to apply concurrency to a CPU-based
bottleneck, then you would find that the program actually starts to see a decrease in
performance as opposed to an increase. And if you tried to apply parallelism to a task that
really requires a concurrent solution, then you could again see the same performance hits.

Properties of concurrent systems

All concurrent systems share a similar set of properties; these can be defined as follows:

e Multiple actors: This represents the different processes and threads all trying to
actively make progress on their own tasks. We could have multiple processes that
contain multiple threads all trying to run at the same time.

e Shared resources: This feature represents the memory, disk, and other resources
that the actors in the preceding group must utilize in order to perform what they
need to do.

e Rules: These are a strict set of rules that all concurrent systems must follow, and
which define when actors can and can’t acquire locks, access memory, modify
state, and so on. These rules are vital in order for these concurrent systems to
work, otherwise, our programs would tear themselves apart.

[32]

Parallelize It

1/0 bottlenecks

I/O bottlenecks, or I/O bottlenecks for short, are bottlenecks where your computer spends
more time waiting on various inputs and outputs than it does on processing the
information.

You'll typically find this type of bottleneck when you are working with an I/O heavy
application. We could take your standard web browser as an example of a heavy I/O
application. In a browser, we typically spend a significantly longer amount of time waiting
for network requests to finish for things such as style sheets, scripts, or HTML pages to load
as opposed to rendering this on the screen.

If the rate at which data is requested is slower than the rate at which it is consumed, then
you have an I/O bottleneck.

One of the main ways to improve the speed of these applications is to either improve the
speed of the underlying I/O by buying more expensive and faster hardware, or to improve
the way in which we handle these I/O requests.

A great example of a program bound by I/O bottlenecks would be a web crawler. Now the
main purpose of a web crawler is to traverse the web, and essentially index web pages so
that they can be taken into consideration when Google runs its search ranking algorithm to
decide the top 10 results for a given keyword.

We'll start by creating a very simple script that just requests a page and times how long it
takes to request said web page, as follows:

import urllib.request

import time

t0 = time.time ()

req = urllib.request.urlopen ('http://www.example.com')
pageHtml = reqg.read()

tl = time.time ()

print ("Total Time To Fetch Page: {} Seconds".format (t1-t0))

If we break down this code, first we import the two necessary modules, urllib.request
and the t ime module. We then record the starting time and request the web page,
example.com, and then record the ending time and print out the time difference.

[33]

Parallelize It

Now, say we wanted to add a bit of complexity and follow any links to other pages so that
we could index them in the future. We could use a library such as BeautifulSoup in order
to make our lives a little easier, as follows:

import urllib.request
import time
from bs4 import BeautifulSoup

t0 = time.time ()
req = urllib.request.urlopen('http://www.example.com')
tl = time.time ()

print ("Total Time To Fetch Page: {} Seconds".format (t1-t0))
soup = BeautifulSoup (reqg.read(), "html.parser")

for link in soup.find_all('a'):
print (link.get ('href'))

t2 = time.time ()
print ("Total Execeution Time: {} Seconds".format)

When I execute the preceding program, I see the results like so on my terminal:

TERMIMNAL

~f/Projects/Python/Chapter 82
§ python @1_ioBottleneck.py
Total Time To Fetch Page: @.254565954208 Seconds
http://www.iana.org/domains/example
Total Execeution Time: @.00471991893616 Seconds

~{Projects/Python/Chapter 82

s 1

You'll notice from this output that the time to fetch the page is over a quarter of a second.
Now imagine if we wanted to run our web crawler for a million different web pages, our
total execution time would be roughly a million times longer.

The real main cause for this enormous execution time would purely boil down to the I/O
bottleneck we face in our program. We spend a massive amount of time waiting on our
network requests, and a fraction of that time parsing our retrieved page for further links to
crawl.

[34]

Parallelize It

Understanding parallelism

In the first chapter, we covered a bit about Python’s multiprocessing capabilities, and how
we could use this to take advantage of more of the processing cores in our hardware. But
what do we mean when we say that our programs are running in parallel?

Parallelism is the art of executing two or more actions simultaneously as opposed to
concurrency in which you make progress on two or more things at the same time. This is an
important distinction, and in order to achieve true parallelism, we’ll need multiple
processors on which to run our code at the same time.

A good analogy for parallel processing is to think of a queue for Coke. If you have, say, two
queues of 20 people, all waiting to use a coke machine so that they can get through the rest
of the day with a bit of a sugar rush, well, this would be an example of concurrency. Now
say you were to introduce a second coke machine into the mix--this would then be an

example of something happening in parallel. This is exactly how parallel processing works--
) Coke

each of the coke machines in that room represents one processing core, and is able to make

progress on tasks simultaneously:
Concurrent: 2 queues, 1 vending machine
Parallel: 2 queues, 2 vending machines

Source: https://github.com/montanaflynn/programming-articles/blob/master/articles/parallelism-and-concurrency-need-different-tools.md

[35]

Parallelize It

A real-life example that highlights the true power of parallel processing is your computer’s
graphics card. These graphics cards tend to have hundreds, if not thousands, of individual
processing cores that live independently, and can compute things at the same time. The
reason we are able to run high-end PC games at such smooth frame rates is due to the fact
we’ve been able to put so many parallel cores onto these cards.

CPU-bound bottlenecks

A CPU-bound bottleneck is, typically, the inverse of an I/O-bound bottleneck. This
bottleneck is found in applications that do a lot of heavy number crunching, or any other
task that is computationally expensive. These are programs for which the rate at which they
execute is bound by the speed of the CPU--if you throw a faster CPU in your machine you
should see a direct increase in the speed of these programs.

If the rate at which you are processing data far outweighs the rate at which
0 you are requesting data, then you have a CPU-bound bottleneck.

In chapter 1, Speed It Up!, we had a quick look at how to combat a CPU-bound program
when we tried to compute the prime factors of 10,000 large random numbers, a problem
that relies heavily on the CPU. We then implemented this same prime factorization
program in a way that enabled us to utilize more of our CPU, and thus, directly improve
the speed at which the program executed.

How do they work on a CPU?

Understanding the differences outlined in the previous section between both concurrency
and parallelism is essential, but it’s also very important to understand more about the
systems that your software will be running on. Having an appreciation of the different
architecture styles as well as the low-level mechanics helps you make the most informed
decisions in your software design.

[36]

Parallelize It

Single-core CPUs

Single-core processors will only ever execute one thread at any given time as that is all they
are capable of. However, in order to ensure that we don’t see our applications hanging and
being unresponsive, these processors rapidly switch between multiple threads of execution
many thousands of times per second. This switching between threads is what is called a
"context switch," and involves storing all the necessary information for a thread at a specific
point in time, and then restoring it at a different point further down the line.

Using this mechanism of constantly saving and restoring threads allows us to make
progress on quite a number of threads within a given second, and it appears like the
computer is doing multiple things at once. It is, in fact, doing only one thing at any given
time, but doing it at such speed that it's imperceptible to the users of that machine.

When writing multithreaded applications in Python, it is important to note that these
context switches are, computationally, quite expensive. There is no way to get around this,
unfortunately, and much of the design of operating systems these days is about optimizing
for these context switches so that we don’t feel the pain quite as much.

The following are the advantages of single-core CPUs:

¢ They do not require any complex communication protocols between multiple
cores

e Single-core CPUs require less power, which makes them better suited for IoT
devices

Single-core CPUs, however, have these disadvantages:

e They are limited in speed, and larger applications cause them to struggle and
potentially freeze

e Heat dissipation issues place a hard limit on how fast a single-core CPU can go

Clock rate

One of the key limitations to a single-core application running on a machine is the clock
speed of the CPU. When we talk about clock rate, we are essentially talking about how
many clock cycles a CPU can execute every second.

[371]

Parallelize It

For the past 10 years, we have watched as manufacturers managed to surpass Moore’s law,
which was essentially an observation that the number of transistors one was able to place
on a piece of silicon doubled roughly every two years.

This doubling of transistors every two years paved the way for exponential gains in single-
CPU clock rates, and CPUs went from the low MHz to the 4-5 GHz clock speeds that we
now see on Intel’s i7 6700k processor.

But with transistors getting as small as a few nanometers across, this is inevitably coming to
an end. We've started to hit the boundaries of physics, and, unfortunately, if we go any
smaller, we'll start being hit by the effects of quantum tunneling. Due to these physical
limitations, we need to start looking at other methods in order to improve the speeds at
which we are able to compute things.

This is where Materlli’s Model of Scalability comes into play.

Martelli model of scalability

The author of Python Cookbook, Alex Martelli, came up with a model on scalability, which
Raymond Hettinger discussed in his brilliant hour-long talk on "Thinking about
Concurrency" that he gave at PyCon Russia 2016. This model represents three different
types of problems and programs:

e 1 core: This refers to single-threaded and single process programs
e 2-8 cores: This refers to multithreaded and multiprocessing programs
e 9+ cores: This refers to distributed computing

The first category, the single core, single-threaded category, is able to handle a growing
number of problems due to the constant improvements in the speed of single-core CPUs,
and as a result, the second category is being rendered more and more obsolete. We will
eventually hit a limit with the speed at which a 2-8 core system can run at, and then we’ll
have to start looking at other methods, such as multiple CPU systems or even distributed
computing.

If your problem is worth solving quickly, and it requires a lot of power, then the sensible
approach is to go with the distributed computing category and spin up multiple machines
and multiple instances of your program in order to tackle your problems in a truly parallel
manner. Large enterprise systems that handle hundreds of millions of requests are the main
inhabitants of this category. You'll typically find that these enterprise systems are deployed
on tens, if not hundreds, of high performance, incredibly powerful servers in various
locations across the world.

[38]

Parallelize It

Time-sharing - the task scheduler

One of the most important parts of the operating system is the task scheduler. This acts as
the maestro of the orchestra, and directs everything with impeccable precision and
incredible timing and discipline. This maestro has only one real goal, and that is to ensure
that every task has a chance to run through till completion; the when and where of a task’s
execution, however, is non-deterministic. That is to say, if we gave a task scheduler two
identical competing processes one after the other, there is no guarantee that the first process
will complete first. This non-deterministic nature is what makes concurrent programming
so challenging.

An excellent example that highlights this non-deterministic behavior is the following code:

import threading
import time
import random
counter = 1
def workerA() :
global counter
while counter < 1000:
counter += 1
print ("Worker A is incrementing counter to {}".format (counter))
sleepTime = random.randint (0,1)
time.sleep(sleepTime)
def workerB() :
global counter
while counter > -1000:
counter -= 1
print ("Worker B is decrementing counter to {}".format (counter))
sleepTime = random.randint (0,1)
time.sleep(sleepTime)
def main() :
t0 = time.time ()
threadl = threading.Thread(target=workerA)
thread2 threading.Thread (target=workerB)
threadl.start ()
thread2.start ()
threadl.join ()
thread2.join ()

tl = time.time ()

print ("Execution Time {}".format (tl1-t0))
if _ _name_ == '__ _main__ ':

main ()

[39]

Parallelize It

Here in the preceding code, we have two competing threads in Python that are each trying
to accomplish their own goal of either decrementing the counter to 1, 000, or conversely
incrementing it to 1, 000. In a single-core processor, there is the possibility that worker A
manages to complete its task before worker B has a chance to execute, and the same can be
said for worker B. However, there is a third potential possibility, and that is that the task
scheduler continues to switch between worker A and worker B an infinite number of times
and never completes.

The preceding code, incidentally, also shows one of the dangers of multiple threads
accessing shared resources without any form of synchronization. There is no accurate way
to determine what will happen to our counter, and as such, our program could be
considered unreliable.

Multi-core processors

We’ve now got some idea as to how single-core processors work, but now it’s time to take a
look at multi-core processors. Multi-core processors contain multiple independent
processing units or “cores”. Each core contains everything it needs in order to execute a
sequence of stored instructions. These cores each follow their own cycle, which consists of
the following processes:

e Fetch: This step involves fetching instructions from the program memory. This is
dictated by a program counter (PC), which identifies the location of the next step
to execute.

¢ Decode: The core converts the instruction that it has just fetched, and converts it
into a series of signals that will trigger various other parts of the CPU.

¢ Execute: Finally, we perform the execute step. This is where we run the
instruction that we have just fetched and decoded, and the results of this
execution are then stored in a CPU register.

Having multiple cores offers us the advantage of being able to work independently on
multiple Fetch -> Decode -> Execute cycles. This style of architecture enables us to
create higher performance programs that leverage this parallel execution.

[40]

Parallelize It

The following are the advantages of multi-core processors:

e We are no longer bound by the same performance limitations that a single-core
processor is bound to

e Applications that are able to take advantage of multiple cores will tend to run
faster if well designed

However, these are the disadvantages of multi-core processors:

¢ They require more power than your typical single-core processor

e Cross-core communication is no simple feat; we have multiple different ways of
doing this, about which I will go into more detail later in this chapter

System architecture styles

When designing your programs, it’s important to note that there are a number of different
memory architecture styles that suit the needs of a range of different use cases. One style of
memory architecture could be excellent for parallel computing tasks and scientific
computing, but somewhat cumbersome when it comes to your standard home-computing
tasks.

When we categorize these different styles, we tend to follow a taxonomy first proposed by a
man named Michael Flynn in 1972. This taxonomy defines four different styles of computer
architecture. These are:

e SISD: single instruction stream, single data stream

¢ SIMD: single instruction stream, multiple data stream

e MISD: multiple instruction stream, single data stream

e MIMD: multiple instruction stream, multiple data stream

We will look in more detail at these architectures in the following sections.

SISD

Single Instruction streams, Single Data streams tend to be your uniprocessor systems. These
systems have one sequential stream of data coming into them, and one single processing
unit that is used to execute this stream.

[41]

Parallelize It

This style of architecture typically represents your classical Von Neumann machines, and
for a vast number of years, before multi-core processors became popular, this represented
your typical home computer. You would have a single processor that handled everything
you required. These would, however, be incapable of things such as instruction parallelism
and data parallelism, and things such as graphics processing were incredibly taxing on
these systems.

The following figure shows an overview of how a uniprocessor system looks. It features one
data source that is processed by a single processing unit:

SISD Instruction Pool

FU

Data Pool

Source: wikipedia.org

This style of architecture features all of the advantages and disadvantages that we outlined
earlier in the chapter when we covered single-core processors.

An example of a uniprocessor could be the Intel Pentium 4.

SIMD

SIMD (single instruction stream, multiple data streams) archtecture, multiple data
streams architecture is best suited to working with systems that process a lot of multimedia.
These are ideal for doing things such as 3D graphics due to the way in which they can
manipulate vectors. For instance, say you had two distinct arrays, [10,15,20,25] and
[20, 15,10, 5].Inan SIMD architecture, you are able to add these in one operation to
get [30,30, 30, 30]. If we were to do this on scalar architecture, we would have to perform
four distinct add operations, as shown in the following figure:

[42]

Parallelize It

(a) Scalar Operation (b) SIMD Operation

+ B = | £
A& L] o An an cn
Al + L] = s A, B, ,

+ .

Al + |8l = Le Ay B, c,
Ay B, C,

At | B = S

Source: wikipedia.org

The best example of this style of architecture can be found within your graphics processing
unit. In OpenGL graphics programming, you have objects called Vertex Array Objects or
VAOs, and these VAOs typically contain multiple Vertex Buffer Objects that describe any
given 3D object in a game. If someone was to, say, move their character, every element
within every Vertex Buffer object would have to be recalculated incredibly quickly in order
to allow us to see the character move smoothly across our screens.

This is where the power of SIMD architecture really shines. We pass all of our elements into
distinct VAOs. Once these VAOs have been populated, we can then tell it that we want to
multiply everything within this VAO with a rotation matrix. This then very quickly
proceeds to perform the same action on every element far more efficiently than a non-vector
architecture ever could.

The next diagram shows a high-level overview of an SIMD architecture. We have multiple
data streams, which could represent multiple vectors, and a number of processing units, all
able to act on a single instruction at any given time. Graphics cards typically have hundreds
of individual processing units:

SIMD | Instruction Fool |

_____4Eu*.
E!FJ
—..H
Euk.

Source: wikipedia.org

Data Fool

[43]

Parallelize It

The main advantages of SIMD are as follows:

e We are able to perform the same operation on multiple elements using one
instruction

¢ As the number of cores on modern graphics cards increases, so too will the
throughput of these cards, thanks to this architecture

We'll be utilizing the full advantages of this style of architecture in chapter 11, Using the
GPU.

MISD

Multiple instruction streams, single data streams or MISD is a somewhat unloved style of
architecture with no real examples currently available commercially. It’s typically quite
hard to find a use case in which an MISD architecture style is appropriate, and would lend
itself well to a problem.

No real examples of an MISD architecture are available commercially today.

MIMD

Multiple instruction streams, multiple data streams is the most diverse taxonomy, and
encapsulates all modern day multi-core processors. Each of the cores that make up these
processors are capable of running independently and in parallel. In contrast to our SIMD
machines, MIMD-based machines are able to run a number of distinct operations on
multiple datasets in parallel as opposed to a single operation on multiple datasets.

The next diagram shows an example of a number of different processing units, all with a
number of different input data streams all acting independently:

MIMD | Instruction Pool |

.—l__
qplk
ﬁ:Lﬁ
_-pa- fpl-

Data Pool

Source: wikipedia.org

[44]

Parallelize It

A normal multiprocessor typically uses MIMD architecture.

Computer memory architecture styles

When we start to speed up our programs by introducing concepts such as concurrency and
parallelism, we start to face new challenges that must be thought about and addressed
appropriately. One of the biggest challenges we start to face is the speed at which we can
access data. It’s important to note at this stage that if we cannot access data fast enough,
then this becomes a bottleneck for our programs, and no matter how expertly we design our
systems, we’ll never see any performance gains.

Computer designers have been increasingly looking for ways to improve the ease with
which we can develop new parallel solutions to problems. One of the ways they have
managed to improve things is by providing a single physical address space that all of our
multiple cores can access within a processor. This removes a certain amount of complexity
away from us, as programmers, and allows us to instead focus on ensuring that our code is
thread safe.

There are a number of these different styles of architecture used in a wide range of different
scenarios. The main two different architectural styles employed by system designers tend to
be those that follow a Uniform Memory Access pattern or a Non-uniform memory access
pattern, or UMA and NUMA respectively.

UMA

UMA (Uniform Memory Access) is an architecture style that features a shared memory
space that can be utilized in a uniform manner by any number of processing cores. In
layman’s terms this means that regardless of where that core resides, it will be able to
directly access a memory location in the same time no matter how close the memory is. This
style of architecture is also known as Symmetric Shared-Memory Multiprocessors or SMP in
short.

[45]

Parallelize It

The following image depicts how a UMA-style system would piece together. Each
processor interfaces with a bus, which performs all of the memory accessing. Each
processor added to this system increases the strain on the bus bandwidth, and thus we
aren't able to scale it in quite the same way we could if we were to use a NUMA
architecture:

Memory || Memory || Memory || Memory

Source: https://software.intel.com/en-us/articles/optimizing-applications-for-numa
The advantages of UMA are as follows:

e All RAM access takes the exact same amount of time
e Cache is coherent and consistent
e Hardware design is simpler

However, there is one disadvantage of UMA:

¢ UMA systems feature one memory bus from which all systems access memory;
unfortunately, this presents scaling problems

NUMA

NUMA (Non-uniform Memory Access) is an architecture style in which some memory
access may be faster than others depending on which processor requested it--this could be
due to the location of the processor with respect to the memory.

[46]

Parallelize It

Show next is a diagram that shows exactly how a number of processors interconnect in
NUMA style. Each has their own cache, access to the main memory, and independent I/O,
and each is connected to the interconnection network:

Non-Uniform Memory Access (NUMA) architecture
or
Multicomputers

P P
| Cache | | Cache |
viemory 10 Niemory 110
viemory 0 vmery /0
| Cache | | Cache |
P P

Larger access time to remote data.

Source: https://virtualizationdeepdive.wordpress.com/deep-dive-numa-vnuma/
There is one major advantage of NUMA:

¢ NUMA machines are more scalable than their uniform-memory access
counterparts

The following are the disadvantages of NUMA:

¢ Non-deterministic memory access times can lead to either really quick access
times if memory is local, or far longer times if memory is in distant memory
locations

e Processors must observe the changes made by other processors; the amount of
time it takes to observe increases in relation to how many processors are part of it

[47]

Parallelize It

Summary

In this chapter, we covered a multitude of topics including the differences between
concurrency and parallelism. We looked at how they both leverage the CPU in different
ways, and we also branched off into the topic of computer system design and how it relates
to concurrent and parallel programming.

By now you should have an appreciation for the two main types of bottlenecks afflicting
most software, and also have some idea as to how to combat this. You'll also have an
appreciation for some of the different styles of system architecture used, and how we can
leverage these different architectures in software design.

In the next chapter, we’ll expand more on the life cycle of a thread, and how it lives on your
machine.

[48]

Life of a Thread

In the previous chapter, we looked in depth at the concepts of concurrency and parallelism
as well as some of the key issues we face in multithreaded Python applications. Now it's
time to look at how we can start working with threads and manipulate them to our will.

In this chapter, we'll be diving into the life of a thread. We'll cover various topics such as:

The different states a thread can be in

Different types of threads - Windows vs POSIX

The best practices when it comes to starting your own threads

How we can make our lives easier when it comes to working with loads of
threads

Finally, we'll be looking at how we can end threads and the various
multithreading models out there

Threads in Python

Before we jump into more detail about the life of a thread, I feel it's important to know what
we are going to be instantiating in real terms. In order to know this, however, we’ll need to
have a look at Python’s Thread class definition which can be found in threading.py.

Within this file, you should see the class definition for the Thread class. This has a
constructor function which looks something like this:

Python Thread class Constructor
def __init__ (self, group=None, target=None, name=None,

args=(), kwargs=None, verbose=None) :

Life of a Thread

This preceding constructor takes in five real arguments, which are defined within that class
definition as follows:

e group: This is a special parameter which is reserved for a future extension.

e target: This is the callable object to be invoked by the run () method. If not
passed, this will default to None, and nothing will be started.

e name: This is the thread name.
¢ args: This is the argument tuple for target invocation. It defaults to ().

e kwargs: This is a dictionary of keyword arguments to invoke the base class
constructor.

Thread state

Threads can exist in five distinct states: running, not-running, runnable, starting, and
ended. When we create a thread, we have, typically, not allocated any resources towards
this thread as of yet. It exists in no state, as it hasn’t been initialized, and it can only be
started or stopped. Let's take a quick look at these five states:

e New Thread: In the New Thread state, our thread hasn’t started, and it hasn’t
been allocated resources. It is merely an instance of an object.

¢ Runnable: This is the state when the thread is waiting to run, it has all the
resources it needs in order to proceed, and the only thing holding it back is the
task scheduler having not scheduled it to run.

¢ Running: In this state, the thread makes progress--it executes whatever task it’s
meant to and has been chosen by the task scheduler to run.

From this state, our thread can go into either a dead state if we chose to kill, it or
it could go into a not-running state.

¢ Not-running: This is when the thread has been paused in some way. This could
be caused by a number of reasons such as when waiting for the response of a
long running I/O request. Or it could be deliberately blocked until another thread
has completed its execution.

e Dead: A thread can reach this state through one of two ways. It can, much like us,
die of natural causes or be killed unnaturally. The latter poses a significant risk to
the murderer, but we’ll go into these risks in detail in the ending a thread section
of this chapter.

[50]

Life of a Thread

State flow chart

The following diagram represents the five different states that a thread can be in as well as
the possible transitions from one state to another:

running
yield
——

N
.r" \
\

The run method terminates

o]

Source: http://www.iitk.ac.in/esc101/05Aug/tutorial/essential/threads/lifecycle.html

Python example of thread state

So now that we know the various states that our threads can be in, how does this translate
into our Python programs? Take a look at the following code:

import threading
import time
A very simple method for our thread to execute
def threadWorker() :
it is only at the point where the thread starts executing
that it's state goes from 'Runnable' to a 'Running'
state
print ("My Thread has entered the 'Running' State")
If we call the time.sleep() method then our thread
goes into a not-runnable state. We can do no further work
on this particular thread
time.sleep (10)
Thread then completes its tasks and terminates
print ("My Thread is terminating")

At this point in time, the thread has no state

it hasn't been allocated any system resources

myThread = threading.Thread (target=threadWorker)

When we call myThread.start (), Python allocates the necessary system

resources in order for our thread to run and then calls the thread's

run method. It goes from 'Starting' state to 'Runnable' but not running
myThread.start ()

[51]

Life of a Thread

Here we join the thread and when this method is called

our thread goes into a 'Dead' state. It has finished the
job that it was intended to do.

myThread.join ()

print ("My Thead has entered a 'Dead' state")

Breaking it down

In this preceding code example, we define a function, threadworker, which will be the
invocation target of the thread that we will create. All that this threadWorker function
does is to print out its current state, and then sleep for 10 seconds by calling
time.sleep(10).

After we've defined threadWorker, we then go on to create a New Thread object in this
line:

myThread = threading.Thread (target=threadWorker)

At this point in time, our thread object is currently in the New Thread state, and hasn’t yet
been allocated any system resources that it needs to run. This only happens when we go on
to call this function:

myThread.start ()

At this point, our thread is allocated with all of its resources, and the thread’s run function
is called. The thread now enters the "Runnable” state. It goes on to print out its own state,
and then proceeds to block for 10 seconds by calling t ime.sleep (10). During the 10
seconds that this thread sleeps, the thread is considered to be in the "Not-Running" state,
and other threads will be scheduled to run over this thread.

Finally, once the 10-second period has elapsed, our thread is considered to have ended and
be in the "Dead" state. It no longer needs any of the resources that it was allocated, and it
will be cleaned up by the garbage collector.

Different types of threads

Python abstracts most of the complications of lower-level threading APIs, and allows us to
focus on creating even more complex systems on top of it. Not only that, it lets us write
portable code that can leverage either POSIX or Windows threads depending on what
operating system we execute our code on.

But what do we mean when we mention things like POSIX threads or Windows threads?

[52]

Life of a Thread

POSIX threads

When we talk about POSIX threads, we are talking about threads that are implemented to
follow the IEEE POSIX 1003.1c standard. This standard was registered as a trademark of the
IEEE foundation, and was originally developed in order to standardize the implementation
of threads across a range of hardware on UNIX systems. Any implementations of threads
that follow this standard are, typically, called POSIX threads or PThreads for short.

Windows threads

When we talk about Windows threads, we are talking about the standard that Microsoft has
chosen to implement their own low-level threads against other threads. They feature quite a
number of differences when compared to POSIX threads, and the Windows threads API is
simpler and overall more elegant than the POSIX threads API.

The ways to start a thread

In this section of the chapter, we’ll take a look at the numerous ways to start threads and
processes.

Starting a thread

In Python, there are a number of different ways we can actually start a thread. When we
have a relatively simple task that we wish to multithread, then we have the option of
defining this as a single function.

In the following example, we have a very simple function that just sleeps for a random time
interval. This represents a very simple piece of functionality, and is ideal for encapsulating a
simple function, and then passing this simple function as the target for a new
threading.Thread object as seen in the following code:

import threading
import time
import random
def executeThread (i) :
print ("Thread {} started".format (i))
sleepTime = random.randint (1,10)
time.sleep(sleepTime)
print ("Thread {} finished executing".format (i))
for i in range (10):
thread = threading.Thread(target=executeThread, args=(i,))

[53]

Life of a Thread

thread.start ()
print ("Active Threads:" , threading.enumerate())

Inheriting from the thread class

Fo scenarios that require more code than can be wrapped up in a single function, we can
actually define a class that inherits directory from the thread native class.

This is ideal for scenarios where the complexity of the code is too large for a single function,
and, instead, needs to be broken up into multiple functions. While this does give us more
flexibility overall when dealing with threads, we do have to take into consideration the fact
that we now have to manage our thread within this class.

In order for us to define a New Thread that subclasses the native Python thread class, we
need to do the following at a bare minimum:

e Pass in the thread class to our class definition

e Call Thread.__init__ (self) within our constructor in order for our thread to
initialize
e Define a run () function that will be called when our thread is started:

from threading import Thread
class myWorkerThread (Thread) :
def _ _init_ (self):
print ("Hello world")
Thread._ init_ (self)
def run(self):
print ("Thread is now running")
myThread = myWorkerThread ()
print ("Created my Thread Object")
myThread.start ()
print ("Started my thread")
myThread. join ()
print ("My Thread finished")

Breaking it down

In the preceding code, we have defined a very simple class called myWorkerThread, which
inherits from the thread class. Within our constructor, we call the necessary
Thread._ _init__ (self) function.

[54]

Life of a Thread

We then also define the run function which will be called when we start
myThread.start (). Within this run function, we simply call the print function to print
our state to the console, and then our thread effectively terminates.

Forking

To fork a process is to create a second exact replica of the given process. In other words,
when we fork something, we effectively clone it and then run it as a child process of the
process that we just cloned from.

This newly created process gets its own address space as well as an exact copy of the
parent's data and the code executing within the parent process. When created, this new
clone receives its own unique Process IDentifier (PID), and is independent of the parent
process from which it was cloned.

Why would you want to clone an existing process though? If you’ve ever done any form of
website hosting, then you've probably run into Apache. Apache heavily utilizes forking in
order to create multiple server processes. Each of these independent processes is able to
handle their own requests within their own address space. This is ideal in this scenario, as it
gives us some protection in the sense that, if a process crashes or dies, other processes
running concurrently with it will be unaffected, and able to continue to cater to any new
requests.

Example

Let's see an example of this:

import os
def child():
print "We are in the child process with PID= %d"%os.getpid()
def parent () :
print "We are in the parent process with PID= %d"%os.getpid()
newRef=o0s.getpid()
if newRef==0:
child()
else:
print "We are in the parent process and our child process has PID=
%d"$newRef
parent ()

[551]

Life of a Thread

Breaking it down

In the preceding code, we start by importing the os Python module. We then define two
distinct functions, one called child and one called parent. The child parent simply prints
out the process identifier, otherwise known as the PID.

In the parent function, we first print out the PID of the process that we are in before calling
the os. fork () method to fork the current running process. This creates a brand new
process, which receives its own unique PID. We then call the child function, which prints
out the current PID. This PID, as you should notice, is different from the original PID that
was printed out at the start of our script's execution.

This different PID represents a successful forking and a completely new process being
created.

Daemonizing a thread

Firstly, before we look at daemon threads, I feel it is important to know what these are.
Daemon threads are 'essentially’ threads that have no defined endpoint. They will continue
to run forever until your program quits.

"Why is this useful?", you might ask. Say, for example, you have a load balancer that sends
service requests to multiple instances of your application. You might have some form of
registry service that lets your load balancer know where to send these requests, but how
does this service registry know the state of your instance? Typically, in this scenario, we
would send out something called a heartbeat or a keep alive packet at a regular interval to
say to our service registry, “Hey, I'm still 200!”.

This example is a prime use case for daemon threads within our application. We could
migrate the job of sending a heartbeat signal to our service registry to a daemon thread, and
start this up when our application is starting. This daemon thread will then sit in the
background of our program, and periodically send this update without any intervention on
our part. What's even better is that our daemon thread will be killed without us having to
worry about it when our instance shuts down.

[561]

Life of a Thread

Example

An example for this is as follows:

import threading
import time
def standardThread() :
print ("Starting my Standard Thread")
time.sleep (20)
print ("Ending my standard thread")
def daemonThread() :
while True:
print ("Sending Out Heartbeat Signal")
time.sleep(2)
if _ name_ == '_ main__ ':
standardThread = threading.Thread(target=standardThread)
daemonThread = threading.Thread (target=daemonThread)
daemonThread. setDaemon (True)
daemonThread.start ()

standardThread.start ()

Breaking it down

In the preceding code sample, we define two functions that will act as targets for both our
normal, non-daemon thread as well as daemonThread. Our standardThread function
essentially just prints out its state and sleeps for 20 seconds to simulate a longer-running
program.

The daemonThread function goes into a permanent while loop, and simply prints out
Sending Out Heartbeat Signal every 2 seconds. This is simply a placeholder for
whatever heartbeat mechanism you choose to go with further down the line.

In our main function, we create two threads, our standard thread and our daemon thread,
and we start both using the same start () method. You'll notice that we also use the
setDaemon function on our daemonThread object. This simply sets the thread object’s
daemon flag to whatever we pass into this function, and is only really used for reference.

Handling threads in Python

In this section of the chapter, we’ll take a look at how you can effectively create and manage
multiple threads in Python programs.

[571

Life of a Thread

Starting loads of threads

The first example we’ll look at is how we can start numerous threads all at once. We can
create multiple thread objects by using a for loop and then starting them within the same
for loop. In the following example, we define a function that takes in an integer and which
sleeps for a random amount of time, printing both when it is starting and ending.

We then create a for loop which loops up to 10, and create 10 distinct thread objects that
have their target set to our executeThread function. It then starts the thread object we've
just created, and then we print out the current active threads.

Example

Let's now look at an example:

import threading
import time
import random
def executeThread (i) :
print ("Thread {} started".format (i))
sleepTime = random.randint (1,10)
time.sleep (sleepTime)
print ("Thread {} finished executing".format (i))
for i in range (10):

thread = threading.Thread (target=executeThread, args=(i,))
thread.start ()
print ("Active Threads:" , threading.enumerate())

Breaking it down

In the preceding code, we define a simple function called executeThread which takes in i
as its only parameter. Within this function, we simply call the t ime .sleep () function and
pass in a randomly generated int between 1 and 10.

We then go on to declare a for loop that loops from 1 to 10, which creates a thread object
and then starts it while passing in i to our thread's args. When you run this script, you
should see something like this:

$ python3.6 00_startingThread.py
Thread 0 started
Active Threads: [<_MainThread(MainThread, started 140735793988544)>,
<Thread (Thread-1, started 123145335930880)>]
Thread 1 started

[581]

Life of a Thread

Active Threads: [<_MainThread(MainThread, started 140735793988544)>,
<Thread (Thread-1, started 123145335930880)>, <Thread(Thread-2, started
123145341186048) >]

Thread 2 started

Active Threads: [<_MainThread(MainThread, started 140735793988544)>,
<Thread (Thread-1, started 123145335930880)>, <Thread(Thread-2, started
123145341186048) >, <Thread(Thread-3, started 123145346441216)>]

Slowing down programs using threads

While working with threads, it's important to know that starting hundreds of threads and
throwing them all at a specific problem is probably not going to improve the performance
of your application. It's highly probable that if you spin up hundreds or thousands of
threads, you could, in fact, be absolutely killing performance.

In chapter 1, Speed it Up!, we touched upon how we could use multiple processes in order
to speed up a very simple prime factorization program that was computationally intensive.
On my machine, I witnessed a good 50-100% speed increase by adding these multiple
processes, but what happens is that we try to, instead, make this multithreaded as opposed
to multiprocessed. Let's take a look at this example:

Example

import time
import random
import threading
def calculatePrimeFactors (n) :
primfac = []
d =2
while d*d <= n:
while (n % d) ==
primfac.append (d)

n //=d
d+=1
if n > 1:

primfac.append (n)
return primfac
def executeProc():
for i in range(1000) :
rand = random.randint (20000, 100000000)
print (calculatePrimeFactors (rand))
def main() :
print ("Starting number crunching")
t0 = time.time ()

[591]

Life of a Thread

threads = []
for i in range (10):
thread = threading.Thread(target=executeProc)
threads.append (thread)
thread.start ()
for thread in threads:
thread.join ()
tl = time.time ()
totalTime = t1 - tO0
print ("Execution Time: {}".format (totalTime))
if _ name_ == '_ main__ ':
main ()

Breaking it down

The preceding sample is almost identical to the Sequential prime factorization in Chapter 1,
Speed it Up!. You should notice, however, that in the main function, instead of defining 10
processes and joining them, we have defined 10 different threads.

If you now run this program, you should see a drastic reduction in the overall performance
of our program when compared with both it’s single-threaded and multiprocessed
counterparts. The results of each are as follows:

Single-threaded sample: | 3.69 seconds

Multi-processing sample: | 1.98 seconds

Multi-threaded sample | 3.95 seconds

As you can see from the results in the preceding table, by starting multiple threads and
throwing them at a problem, we’ve actually managed to achieve a slowdown of around 7%
when compared to our single-threaded solution, and almost a 100% slow down when
compared against our multiprocessed solution.

[60]

Life of a Thread

Getting the total number of active threads

Sometimes, for times when you want to, say, query the status of your application, you may
want to query the number of active threads currently running within your Python program.
Thankfully, Python’s native threading module easily allows us to get this with a simple
call like the one demonstrated in the following code snippet:

Example

import threading
import time
import random
def myThread (i) :
print ("Thread {}: started".format (i))
time.sleep (random.randint (1,5))
print ("Thread {}: finished".format (i))
def main () :
for i in range (random.randint (2,50)) :
thread = threading.Thread (target=myThread, args=(i,))
thread.start ()
time.sleep (4)
print ("Total Number of Active Threads:
{}".format (threading.active_count ()))
if _ name_ == '_ main__ ':
main ()

Breaking it down

In the preceding example, all that we are doing is starting a random number of threads
between 2 and 50 and have them sleep for a random time interval before conking out. Once
all the given threads have been started, we then sleep for 4 seconds, call
threading.active_count (), and output this in a formatted print statement.

[61]

Life of a Thread

Getting the current thread

For a quick and easy way to determine what thread we are on, we can use the
threading.current_thread() function, as shown in the following example:

Example

import threading

import time

def threadTarget () :

print ("Current Thread: {}".format (threading.current_thread()))
threads = []

for i in range (10):

thread = threading.Thread(target=threadTarget)
thread.start ()

threads.append(thread)

for thread in threads:

thread. join ()

Breaking it down

In the preceding example, we define a function, threadTarget, which prints out the
current thread. We then go on to create an empty array for our threads, and we populate
this array with 10 distinct thread objects. We then join each of these threads in turn so that
our program doesn’t instantly exit. The output of the preceding program should look
something like this:

$ python3.6 10_gettingCurrentThread.py

Current Thread: <Thread(Thread-1l, started 123145429614592)>
Current Thread: <Thread(Thread-2, started 123145429614592)>
Current Thread: <Thread(Thread-3, started 123145434869760) >
Current Thread: <Thread(Thread-4, started 123145429614592)>
Current Thread: <Thread(Thread-5, started 123145434869760) >
Current Thread: <Thread(Thread-6, started 123145429614592)>
Current Thread: <Thread(Thread-7, started 123145434869760) >
Current Thread: <Thread(Thread-8, started 123145429614592)>
Current Thread: <Thread(Thread-9, started 123145434869760) >
Current Thread: <Thread(Thread-10, started 123145429614592)>

[62]

Life of a Thread

Main thread

All Python programs feature at least one thread--this sole thread is the main thread. In
Python, we are able to call the aptly named main_thread () function from wherever we are
to retrieve the main thread object. Let's look at this example:

Example

import threading

import time

def myChildThread() :
print ("Child Thread Starting")
time.sleep (5)
print ("Current Thread —-————————- ")
print (threading.current_thread())

print("-————————— ")
print ("Main Thread - -———————————- ")
print (threading.main_thread())
print("-————————— ")
print ("Child Thread Ending")

child = threading.Thread(target=myChildThread)
child.start ()
child.join ()

Breaking it down

In the preceding code, we define a simple function called myChildThread. This will be the
target of the thread object that we shall create for demonstration purposes. Within this
function, we simply print out the current thread and then the main thread.

We then go on to create a thread object, and then start and join this newly created thread. In
the output, you should see something like this:

$ python3.6 15_mainThread.py

Child Thread Starting

Current Thread —-————————-—

<Thread (Thread-1, started 123145387503616) >

Main Thread ———————————eo
<_MainThread (MainThread, started 140735793988544)>

Child Thread Ending

[63]

Life of a Thread

As you can see, our program prints out first our child thread object, and then goes on to
print out the reference of our MainThread object.

Enumerating all threads

There may be a time when you need to enumerate through all active threads in order to do
things like query the status of all active threads. Sometimes, however, you may lose track of
which threads are at play at a given point of an application.

Thankfully, Python natively allows us to query all the active threads, and then enumerate
them easily so that we can obtain the information we need on them, or to properly kill
them, and so on. Let's look at an example:

Example

import threading
import time
import random
def myThread (i) :
print ("Thread {}: started".format (i))
time.sleep (random.randint (1,5))
print ("Thread {}: finished".format (i))
def main () :
for i in range (4):
thread = threading.Thread (target=myThread, args=(i,))
thread.start ()
print ("Enumerating: {}".format (threading.enumerate()))
if _ name_ == '_ main__ ':
main ()

Breaking it down

In the preceding example, we start off by defining a very simplistic function called
myThread, which will be the target of the threads that we are about to create. Within this
function, we simply print that the thread has started, and then we wait for a random
interval between 1 and 5 seconds before printing that the thread is terminating.

[64]

Life of a Thread

We have then defined a main function which creates four distinct thread objects, and then
starts them off. Once we’ve finished creating and starting these threads, we then print out
the results of threading.enumerate (), which should output something like this:

$ python3.6 07_enumerateThreads.py

Thread 0: started

Thread 1: started

Thread 2: started

Thread 3: started

Enumerating: [<_MainThread(MainThread, started 140735793988544)>,
<Thread (Thread-1, started 123145554595840)>, <Thread(Thread-2,
started 123145559851008)>, <Thread(Thread-3, started
123145565106176) >, <Thread(Thread-4, started 123145570361344)>]
Thread 2: finished

Thread 3: finished

Thread 0: finished

Thread 1: finished

Identifying threads

In certain scenarios, it can be very helpful for us, as developers, to be able to distinguish
between different threads. In some scenarios, your application may be made up of
hundreds of different threads, and identifying them might help ease your pain when it
comes to debugging and identifying issues with your underlying program.

In massive systems, it is a good idea to segregate threads into groups if they are performing
different tasks. Say, for instance, you have an application that both listens for incoming
stock price changes and also tries to predict where that price will go. You could, for
instance, have two different thread groups here: one group listening for the changes and the
other performing the necessary calculations.

Having different naming conventions for the threads that do the listening and the threads
that do the calculations could make your job of tailing log files a hell of a lot easier.

Example

In this example, we're going to keep our naming convention really simple; we'll just call our
threads Thread-x, where x will be a unique number:

import threading
import time
def myThread() :
print ("Thread {} starting".format (threading.currentThread () .getName()))

[65]

Life of a Thread

time.sleep (10)
print ("Thread {} ending".format (threading.currentThread () .getName ()))
for i in range (4):
threadName = "Thread-" + str (i)
thread = threading.Thread (name=threadName, target=myThread)
thread.start ()
print ("{}".format (threading.enumerate()))

Breakdown

In the preceding code, what we essentially do is define a function called myThread. Within
this function, we utilize the threading.currentThread () .getName () getter in order to
retrieve the current thread’s moniker, and print this out both when we start our thread’s
execution, and when it ends.

We then go on to start a for loop, and create four thread objects that take in the name
parameter, which we define as “Thread-" + str (i), as well as the myThread function as
the target of that thread’s execution.

We then, finally, go on to print out all the active threads currently running. This should
print out something like the following:

$ python3.6 11_identifyingThreads.py

Thread Thread-0 starting

Thread Thread-1 starting

Thread Thread-2 starting

Thread Thread-3 starting

[<_MainThread (MainThread, started 140735793988544)>,

<Thread (Thread-0, started 123145368256512)>, <Thread(Thread-1,
started 123145373511680)>, <Thread(Thread-2, started
123145378766848) >, <Thread(Thread-3, started 123145384022016)>]
Thread Thread-0 ending

Thread Thread-2 ending

Thread Thread-3 ending

Thread Thread-1 ending

[66]

Life of a Thread

Ending a thread

Ending threads is deemed bad practice, and one that I actively advise against. Python
doesn’t actually provide a native thread function with which to kill other threads, so this
should raise flags straight away. These threads that you wish to terminate could be holding
a critical resource that needs to be opened and closed properly, or they could also be the
parents to multiple child threads. By killing parent threads without killing their child
threads, we essentially create orphan threads.

Best practice in stopping threads

If you require some form of a thread shutdown mechanism, then it is your job to implement
a mechanism that allows for a graceful shutdown as opposed to killing a thread outright.

However, there does exist a workaround; while threads might not possess a native
mechanism for termination, processes do, in fact, feature such a mechanism. As you should
know by now, processes are essentially beefier versions of threads, and while it might not
be ideal, in some situations you have to ensure that your programs can gracefully shut
down, and this presents itself as a far cleaner solution than implementing your own thread
termination. Let's take a look at another example:

Example

from multiprocessing import Process
import time
def myWorker () :
tl = time.time ()
print ("Process started at: {}".format (tl))
time.sleep (20)
myProcess = Process (target=myWorker)
print ("Process {}".format (myProcess))
myProcess.start ()
print ("Terminating Process...")
myProcess.terminate ()
myProcess.join ()
print ("Process Terminated: {}".format (myProcess))

In the preceding example, we define a simple myWorker () function which prints out the
time at which it was started, and then sleeps for 20 seconds. We then go on to declare
myProcess, which is a type process, and we pass in our myWorker function as the target for
its execution.

[67]

Life of a Thread

We kick off the process, and then immediately terminate it using the terminate method.
You should notice in the output that this program finishes almost instantly, and the
myProcess process does not block for the full 20 seconds it was meant to.

Output

$ python3.6 09_killThread.py

Process <Process (Process-1, initial)>

Terminating Process...

Process Terminated: <Process (Process-1, stopped[SIGTERM]) >

Orphan processes

Orphan processes are threads that have no alive parent process. They take up system
resources and provide no benefit, and the only way to kill them is to enumerate alive
threads and then kill them.

How does the operating system handle
threads

So now that we’ve taken a look at the life cycle of a thread, it's important to know how
these threads actually work within your machines. Understanding things like the
multithreading model and how Python threads map to system threads is important if you
are to make the right decisions when designing your high-performance software.

Creating processes versus threads

A process, as we’ve seen, is a more heavyweight version of a simple thread in the sense that
we can do things like spin up multiple threads within a process. They can perform more
CPU-bound tasks better than a standard thread would due to the fact that they each feature
their own separate GIL instance.

However, it’s important to note that while these might be far better at CPU-bound
problems, they are also more resource intensive. Being more resource intensive means that
they are also more expensive to spin up on the fly and kill off just as quickly. In this next
example, we’ll look at the performance impact of spinning up multiple threads, and
compare this to the spinning up of multiple processes.

[68]

Life of a Thread

Example

import threading
from multiprocessing import Process
import time
import os
def MyTask() :
print ("Starting")
time.sleep(2)
t0 = time.time ()
threads = []
for i in range (10):
thread = threading.Thread(target=MyTask)
thread.start ()
threads.append (thread)
tl = time.time ()
print ("Total Time for Creating 10 Threads: {} seconds".format (tl1-t0))
for thread in threads:
thread.join ()
t2 = time.time ()
procs = []
for i in range (10):
process = Process (target=MyTask)
process.start ()
procs.append (process)
t3 = time.time ()
print ("Total Time for Creating 10 Processes: {} seconds".format (t3-t2))
for proc in procs:
proc.join ()

Breaking it down

You'll see in the preceding example that we define a MyTask function which will be the
target of both the threads and the processes that we'll create.

We first store the starting time in our t 0 variable, and then go on to create an empty array
called threads, which will conveniently store the references to all of our thread objects that
we create. We then go on to create and then start these threads before recording the time
again so that we can calculate the total time needed to perform both the creation and
starting.

[69]

Life of a Thread

We then go on to follow the exact same creation and starting process as before, but this
time, with processes as opposed to threads. We record the times again, and calculate the
difference. When running this script on my machine, the two recorded times for creation
and starting were an order of magnitude apart. Creating and starting processes took 10x the
amount of time it took to create and start ordinary threads. The output for this particular
program looked like this on my machine:

[20:08:07] ~/Projects/Python/Chapter 03 master[?

$ python3.6 13_forkVsCreate.py

Total Time for Creating 10 Threads: 0.0017189979553222656 seconds
Total Time for Creating 10 Processes: 0.02233409881591797 seconds

Now, while the times taken to do both these tasks might be minimal for our relatively
lightweight example, consider the performance impact you would see if you were starting
hundreds or thousands of processes or threads on huge server racks.

One way we can combat this is to do all our process or thread creation at the start and store
them in a pool so that they can sit and wait for further instructions without us having to
incur these heavy costs of creation. We'll be looking at this concept of thread pools and
process pools in more depth in chapter 7, Executors and Pools.

Multithreading models

In chapter 1, Speed It Up!, the first section provide a brief introduction to concurrency,
where we talked about the two distinct types of threads that we have on a single machine.
These were user threads and kernel threads, and it’s useful to know how these map to each
other, and the different ways that they can be mapped together. In total, there are these
three different styles of mapping:

e One user thread to one kernel thread
e Many user-level threads to one kernel thread
e Many user threads to many kernel threads

Within Python, we typically go with the one user thread to one kernel thread mapping, and
as such, every thread you create within your multithreaded applications will take up a non-
trivial amount of resources on your machine.

However, there do exist some modules within the Python ecosystem that enable you to
implement multithreaded-esque functionality to your program while remaining on a single
thread. One of the biggest and best examples of this is the asyncio module, which we'll be
diving deeper into in Chapter 9, Event-Driven Programming.

[70]

Life of a Thread

One-to-one thread mapping

In this mapping, we see one user-level thread being mapped directly to one kernel-level
thread. One-to-one mappings can be expensive due to the inherent costs of creating and
managing kernel-level threads, but they provide advantages in the sense that user-level
threads are not subject to the same level of blocking as threads that follow a many-to-one
mapping are subject to:

<«—— user thread

Source: http://www2.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/4_Threads.html

Many-to-one

In many-to-one mappings, we see many user-level threads being mapped to one solitary
kernel-level thread. This is advantageous as we can manage user-level threads efficiently;
however, should if the user-level thread is blocked, the other threads that are mapped to
kernel-level thread will also be blocked:

Sy

<«—— kernel thread

Source: http://www2.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/4_Threads.html

[71]

Life of a Thread

Many-to-many

In this threading model, we see many user-level threads being mapped to many kernel-
level threads. This presents itself as the solution to the shortcomings of the previous two
models.

Individual user-level threads can be mapped to a combination of either a single kernel-level
thread or multiple kernel threads. It provides us, as programmers, the ability to choose
which user-level threads we wish to map to kernel-level threads, and, overall, entitle us to a
great deal of power when trying to ensure the very highest of performances when working
in a multithreaded environment:

<«—— user thread

«—— kernel thread

Source: http://www2.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/4_Threads.html

[72]

Life of a Thread

Summary

In this chapter, we’ve delved deep into the workings of Python’s native threading library.
We've looked in depth at how we can effectively work with threads at a very granular level,
and take full advantage of everything that the Python threading API has to offer.

We’ve looked at the numerous different thread types, and how they compare to each other.
Not only that, but we’ve looked in detail at various concepts such as the multithreading
model, and the numerous ways in which we can make user threads to their lower level
siblings, the kernel threads.

In the next chapter, we'll dive into some of the key concurrency primitives that Python has
on offer. Understanding these primitives will pave the way for us when it comes to making
thread-safe programs that we can confidently push into production environments.

[73]

Synchronization between
Threads

Now that we’ve taken a look at threads, and how we can work with and create these
threads using various mechanisms in the previous chapter, it’s time to look at some of the
basic synchronization primitives we can leverage within our multi-threads.

It’s not enough to simply add multiple threads to your application in order to improve
performance. You also have to take into consideration complexities such as race conditions,
and ensure that your code is properly guarded against them.

In this chapter, we’ll look at some of the following concepts:

¢ How we can synchronize our data between threads

¢ Race conditions--what are they and how to guard against them

¢ Deadlock, and how it can cripple your systems and bring them to their knees
¢ An overview of all of the synchronization primitives that Python has to offer

We'll also be introducing some of the key tools that Python developers utilize in order to
make the fight against conflicts easier and ensure that our programs remain bug free.

Synchronization between Threads

Synchronization between threads

So you know what threads are and how to properly start and end them in Python, and
hopefully, you are starting to realize at least some of the complexity that it takes to
implement concurrent programs. But how do we make sure that we are implementing
multithreading in a safe way without compromising the flow of our program? In this
chapter, we’ll be introducing some of the fundamental issues that can plague multithreaded
applications if not guarded against.

Before we cover some of the key synchronization primitives, we must first have a look at
some of the issues that can occur from using the said primitives. This leads us directly into
one of the biggest and most feared issues one can face when designing concurrent systems,
that is, deadlock. One of the best ways to illustrate this concept of deadlock is to look at the
Dining Philosophers Problem.

The Dining Philosophers

The Dining Philosophers problem is one of the most famous illustration of some of the
problems you can encounter when working in concurrent software systems. It was,
originally the famous Edsger Dijkstra, who you were introduced to in chapter 1, Speed It
Up!, that presented this problem to the world. It was Tony Hoare, however, who gave the
problem it’s more official formulation.

Source: wikipedia.org

[75]

Synchronization between Threads

In the Dining Philosophers problem, we encounter five famous philosophers sitting at a
round table eating from bowls of spaghetti. Between each of these bowls, there are five
forks that the philosophers can use to eat their food with. For some strange reason however,
these philosophers decide that they each require two of the five forks in order to eat their
food.

Each of these philosophers, however, could be either in eating or thinking state, and
whenever they choose to dive into the food in front of them, they must first obtain both the
left and the right fork. However, when a philosopher takes a fork, they have to wait till they
have eaten before they can relinquish said fork.

This method of eating presents a problem when each of the five philosophers manages to
pick up their left fork at the same time.

Source: http://www.cs.fsu.edu/~baker/realtime/restricted/notes/philos.html

In the preceding diagram, we see just such a situation arise. Each of the five philosophers
has picked up the left fork and is now sitting thinking until such time as the right fork is
available. Since every philosopher will never relinquish their fork until they have eaten, the
dinner table has reached a deadlocked state, and will never go further.

[76]

Synchronization between Threads

This problem illustrates a key issue we may run into when we are designing our own
concurrent systems that rely on key synchronization primitives (locks) in order to function
correctly. Our forks, in this example, are our system resources, and each philosopher
represents a competing process.

Example

In this next example, we are going to implement our own version of the Dining
Philosophers problem in Python using RLocks, which we’ll cover later on in this chapter.
These Rlocks will represent the forks in our problem. We'll start by defining our
Philosopher class and constructor like this:

class Philosopher (threading.Thread) :
def __init__ (self, leftFork, rightFork):
print ("Our Philosopher Has Sat Down At the Table")
threading.Thread.__init__ (self)
self.leftFork = leftFork
self.rightFork = rightFork

The Philosopher class, which inherits from the Python’s native thread class, takes in both
a left and a right fork in its constructor function. It then initializes the thread that we can
start later on. After we’ve defined this, we then have to define our thread's run function as
follows:

def run(self):
print ("Philosopher: {} has started
thinking".format (threading.current_thread()))
while True:
time.sleep (random.randint (1,5))
print ("Philosopher {} has finished
thinking".format (threading.current_thread()))
self.leftFork.acquire ()
time.sleep (random.randint (1,5))
try:
print ("Philosopher {} has acquired the left
fork".format (threading.current_thread()))
self.rightFork.acquire ()
try:
print ("Philosopher {} has attained both forks, currently
eating".format (threading.current_thread()))
finally:
self.rightFork.release()
print ("Philosopher {} has released the right
fork".format (threading.current_thread()))
finally:

[77]

Synchronization between Threads

self.leftFork.release()
print ("Philosopher {} has released the left
fork".format (threading.current_thread()))

In this run function, we first think for a random amount of time between 1 and 5 seconds.
When our Philosopher finishes thinking, we then attempt to acquire the left fork and again
sleep for another 1-5 seconds in order to easily follow the console output.

After we’ve again finished waiting, we go on to try and acquire the right fork so that we can
go into an eating state. We eat only very briefly before releasing both the left and the right
fork.

Output

When you attempt to run this Python program, you should see that some of our
Philosophers may get a chance to eat before releasing both locks. However, very quickly,
you will see that every fork has been acquired by a Philosopher, and it's now stuck in a
state where it’s attempting to acquire the right fork.

In the following output, you will see all of our dining philosophers doing a combination of
thinking, eating, and acquiring and releasing forks. However, after a certain amount of
time, you will, eventually, hit the scenario where all the philosophers have acquired all left
forks, and are unable to proceed further, as follows:

Marx has started thinking

Russell has started thinking
Aristotle has finished thinking

Marx has finished thinking

Aristotle has acquired the left fork
Aristotle has attained both forks, currently eating
Aristotle has released the right fork
Aristotle has released the left fork
Aristotle has finished thinking
Russell has finished thinking

Kant has finished thinking

Spinoza has finished thinking
Aristotle has acquired the left fork
Marx has acquired the left fork
Russell has acquired the left fork
Kant has acquired the left fork
Spinoza has acquired the left fork

[78]

Synchronization between Threads

Race conditions

Now that we’ve had a look at deadlock, it’s time to talk about race conditions. Race
conditions are an equally troublesome and oft-cursed aspect of concurrent programming
that plague hundreds, if not thousands, of programs around the world.

The standard definition of a race condition is as follows:

A race condition or race hazard is the behavior of an electronic, software, or other system
where the output is dependent on the sequence or timing of other uncontrollable events.

Let’s break this definition down into simpler terms. One of the best metaphors to describe a
race condition is if we imagine writing a banking application that updates your account
balance whenever you deposit or withdraw any money from that account.

Imagine, we started with £2,000 in our bank account, and say we are about to receive a
bonus of £5,000, because we managed to bug fix a concurrency issue in work that was
costing the business millions. Now also imagine that you are also to pay a rent of £1,000 on
the same day--this is where a potential race condition could leave you out of pocket.

If our banking application had two processes, one of which dealt with the withdrawing,
Process A, and the other which dealt with the depositing, Process B. Say Process B, which
deals with deposits into your account, reads your bank balance as £2,000. If Process A was
to start its withdrawal for the rent just after Process B starts its transaction, it would see the
starting balance as £2,000. Process B would then complete its transaction, and correctly add
£5,000 to our starting £2,000, and we’d be left with the grand sum of £7,000.

However, since Process A started its transaction thinking that the starting account balance
was £2,000, it would unwittingly leave us bonus-less when it updates our final bank balance
to £1,000. This is a prime example of a race condition within our software, and it’s a very
real danger always waiting to strike us in the most unfortunate ways.

Process execution sequence

Let’s take a look at what happened in closer detail. If we look at the following table, we’ll
see the ideal flow of execution for both Process A and Process B:

[79]

https://en.wikipedia.org/wiki/System

Synchronization between Threads

Thread 1 Thread 2 Integer value
0
read value - 0
increase value 0
write back —-+ 1
read value | + 1
increase value 1
write back —+ 2

However, due to the fact we haven’t implemented proper synchronization mechanisms to
protect our account balance, Process A and Process B actually followed the following
execution path and gave us an erroneous result:

Thread 1 Thread 2 Integer value
0
read value = 0
read value L 0
increase value 0
increase value 0
write back —+ 1
write back —+ 1

The solution

Now onto the important part--how do we solve the preceding problem so that we no longer
live in fear of losing our bonuses in the future? In this relatively simple example, the answer
would be to wrap the code that first reads the account balance, and execute any necessary
transactions in a lock, which we’ll go into more detail on later in this chapter.

[801]

Synchronization between Threads

By wrapping the code that performs the read of the account balance and the update in a
lock, we ensure that Process A would first have to acquire the lock in order to both read and
update our account balance, and likewise, for Process B. This would turn our non-
deterministic program deterministic and free of our initial race condition. But by turning it
into a deterministic program, we are, essentially, converting this section of code into a
single-threaded, serial section of code that could impact performance if we were to have
multiple threads.

Critical sections

We can identify critical sections as any parts of our code that modify or access a shared
resource. These critical sections cannot, under any circumstance, be executed by more than
one process at any one time. It is when these critical sections are executed simultaneously
that we start to see unexpected or erroneous behavior.

Say, for instance, we are writing the code for the banking application example previously
defined. We could categorize the part of the code that does the initial reading of the bank
account up to the point at which it’s updating the accounts bottom line as a critical section.

It was through concurrent execution of this critical section that we first ran into a race
condition. By understanding where in our code, we have critical sections, we, as
programmers, are able to more accurately protect these sections using some of the
primitives that I'll be outlining later on in this chapter.

Filesystem

It's important to note that race conditions can plague our filesystem as well as our
programs. One potential issue could be that two processes simultaneously try to modify a
file on the file system. Without appropriate synchronization controls around these files, it’s
possible that the file could, potentially, become corrupted and useless with two processes
writing to it.

Life-critical systems

One of the worst examples of how race conditions can plague our software is in the
software that controlled the Therac-25 radiation therapy machines. This race condition was,
unfortunately, enough to cause the death of, at least, three patients who were receiving
treatment from the machine.

[81]

Synchronization between Threads

Most of the time, the software we write will not be as critical as the software that is used
within medical devices like this. However, it serves as a very morbid warning to ensure that
you try to take every measure in order to prevent your own software from being affected.

Source: wikipedia.org

Shared resources and data races

One of the major things we need to guard against when implementing concurrency in your
applications is race conditions. These race conditions can cripple our applications, and
cause bugs that are hard to debug and even harder to fix. In order to prevent these issues,
we need to both understand how these race conditions occur and how we can guard against
them using the synchronization primitives we’ll be covering in this chapter.

Understanding synchronization and the basic primitives that are available to you is vital if
you are to create thread-safe, high-performance programs in Python. Thankfully, we have
numerous different synchronization primitives available to us in the threading Python
module that can help us in a number of different concurrent situations.

In this section, I'll be giving you a brief overview of all of the synchronization primitives
available to you as well as a few simple examples of how you can use these within your
programs. By the end of it, you should be able to implement your own concurrent Python
programs that can access resources in a thread-safe way.

[82]

Synchronization between Threads

The join method

When it comes to developing incredibly important enterprise systems, being able to dictate
the execution order of some of our tasks is incredibly important. Thankfully, Python’s
thread object allow us to retain some form of control over this, as they come with a join
method.

The join method, essentially, blocks the parent thread from progressing any further until
that thread has confirmed that it has terminated. This could be either through naturally
coming to an end, or whenever the thread throws an unhandled exception. Let's understand
this through the following example:

import threading

import time

def ourThread (i) :

print ("Thread {} Started".format (i))

time.sleep (1i*2)

print ("Thread {} Finished".format (1))

def main() :

threadl = threading.Thread(target=ourThread, args=(1l,))
threadl.start ()

print ("Is thread 1 Finished?")

thread2 = threading.Thread (target=ourThread, args=(2,))
thread2.start ()

thread2.join ()

print ("Thread 2 definitely finished")

if _ _name_ == '__main__ ':

main ()

Breaking it down

The preceding code example shows an example of how we can make the flow of our
threaded programs somewhat deterministic by utilizing this join method.

We begin by defining a very simple function called myThread, which takes in one
parameter. All this function does is print out when it has started, sleep for whatever value is
passed into it times 2, and then print out when it has finished execution.

In our main function, we define two threads, the first of which we aptly call thread1, and
pass in a value of 1 as its sole argument. We then start this thread and execute a print
statement. What's important to note is that this first print statement executes before the
completion of our thread1.

[83]

Synchronization between Threads

We then create a second thread object, and imaginatively, call this thread2, and pass in 2
as our sole argument this time. The key difference, though, is that we call thread2.join ()
immediately after we start this thread. By calling thread2, we can preserve the order in
which we execute our print statements, and you can see in the output that Thread 2 Is
Definitely Finished doesindeed get printed after thread2 has terminated.

Putting it together

While the join method may be very useful and provide you with a quick and clean way of
ensuring order within our code, it’s also very important to note that you could, potentially,
undo all the gains we’ve made by making our code multithreaded in the first place.

Consider our thread?2 object in the preceding example--what exactly did we gain by
multithreading this? I know that this is a rather simple program, but the point remains that
we joined it immediately after we started it, and essentially, blocked our primary thread
until such time as thread2 completed its execution. We, essentially, rendered our
multithreaded application single threaded during the course of the execution of thread2.

Locks

Locks are an essential mechanism when trying to access shared resources from multiple
threads of execution. The best way to picture this is to imagine you have one bathroom and
multiple flat mates--when you want to freshen up or take a shower, you would want to lock
the door so that nobody else could use the bathroom at the same time.

A lock in Python is a synchronization primitive that allows us to essentially lock our
bathroom door. It can be in either a "locked" or "unlocked" state, and we can only acquire a
lock while it's in an "unlocked" state.

Example

In chapter 2, Parallelize It, we had a look at the following code sample:

import threading

import time

import random

counter =1

def workerA() :

global counter

while counter < 1000:
counter += 1

[84]

Synchronization between Threads

print ("Worker A is incrementing counter to {}".format (counter))
sleepTime = random.randint (0,1)
time.sleep (sleepTime)

def workerB() :

global counter

while counter > -1000:

counter -= 1
print ("Worker B is decrementing counter to {}".format (counter))
sleepTime = random.randint (0,1)

time.sleep (sleepTime)
def main() :
t0 = time.time ()
threadl = threading.Thread(target=workerA)
thread?2 = threading.Thread(target=workerB)
threadl.start ()
thread2.start ()
threadl.join ()
thread2.join ()

tl = time.time ()

print ("Execution Time {}".format (tl1-t0))
if _ name_ == '_ main__ ':

main ()

In this preceding sample, we saw two threads constantly competing in order to increment
or decrement a counter. By adding locks, we can ensure that these threads can access our
counter in a deterministic and safe manner.

import threading
import time
import random
counter = 1
lock = threading.Lock ()
def workerA() :
global counter
lock.acquire ()
try:
while counter < 1000:
counter += 1
print ("Worker A is incrementing counter to {}".format (counter))

sleepTime = random.randint (0,1)
time.sleep(sleepTime)
finally:

lock.release ()
def workerB() :
global counter
lock.acquire ()
try:
while counter > -1000:

[85]

Synchronization between Threads

counter -= 1
print ("Worker B is decrementing counter to {}".format (counter))
sleepTime = random.randint (0,1)
time.sleep (sleepTime)
finally:
lock.release()
def main () :
t0 = time.time ()
threadl = threading.Thread(target=workerA)
thread2 threading.Thread (target=workerB)
threadl.start ()
thread2.start ()
threadl.join ()
thread2.join ()

tl = time.time ()

print ("Execution Time {}".format (tl1-t0))
if _ name_ == '_ main__ ':

main ()

Breaking it down

In the preceding code, we’ve added a very simple lock primitive that encapsulates both of
the while loops within our two worker functions. When the threads first start, they both
race to acquire the lock so that they can execute their goal, and try to increment the counter
to either 1,000 or -1,000 without having to compete with the other thread. It is only after one
thread accomplishes their goal and releases the lock that the other can acquire that lock and
try to either increment or decrement the counter.

The preceding code will execute incredibly slowly, as it’s mainly meant for demonstration
purposes. If you removed the time.sleep () calls within the while loop, then you should
notice this code executes almost instantly.

RLocks

Reentrant-locks, or RLocks as they are called, are synchronization primitives that work
much like our standard lock primitive, but can be acquired by a thread multiple times if
that thread already owns it.

For example, say, thread-1 acquires the RLock, so, for each time that thread-1 then acquires
the lock, a counter within the RLock primitive is incremented by 1. If thread-2 tried to come
along and acquire the RLock, then it would have to wait until the counter of the RLock
drops to 0 before it could be acquired. Thread-2 would go into a blocking state until this 0
condition is met.

[86]

Synchronization between Threads

Why is this useful, though? Well, it can come in handy when you, for instance, want to have
thread-safe access for a method within a class that accesses other class methods.

Example

Let's see the following example:

import threading
import time
class myWorker () :
def _ _init_ (self):
self.a = 1
self.b = 2
self.Rlock = threading.RLock ()
def modifyA (self):
with self.Rlock:
print ("Modifying A : RLock Acquired:
{}".format (self.Rlock._1is_owned()))
print ("{}".format (self.Rlock))
self.a = self.a + 1
time.sleep (5)
def modifyB(self):
with self.Rlock:
print ("Modifying B : RLock Acquired:
{}".format (self.Rlock._1is_owned()))
print ("{}".format (self.Rlock))
self.b = self.b - 1
time.sleep (5)
def modifyBoth (self):
with self.Rlock:
print ("Rlock acquired, modifying A and B")
print ("{}".format (self.Rlock))
self.modifyA()
self.modifyB()
print ("{}".format (self.Rlock))
workerA = myWorker ()
workerA.modifyBoth ()

Breaking it down

In the preceding code, we see a prime example of the way an RLock works within our
single-threaded program. We have defined a class called myWorker, which features four
functions, these are the constructors which initialize our Rlock and our a and b variables.

[871]

Synchronization between Threads

We then go on to define two functions that both modify a and b respectively. These both
first acquire the classes Rlock using the with statement, and then perform any necessary
modifications to our internal variables.

Finally, we have our modifyBoth function, which performs the initial Rlock acquisition
before calling the modifyA and modi fyB functions.

At each step of the way, we print out the state of our Rlock. We see that after it has been
acquired within the modifyBoth function, its owner is set to the main thread, and its count
is incremented to one. When we next call modi fya, the Rlocks counter is again incremented
by one, and the necessary calculations are made before modi fyA then releases the Rlock.
Upon the modi fyA function release of the Rlock, we see the counter decrement to 1 before
being immediately incremented to 2 again by our modi fyB function.

Finally, when modifyB completes its execution, it releases the Rlock, and then, so does our
modifyBoth function. When we do a final print out of our Rlock object, we see that the
owner has been set to 0, and that our count has also been set to 0. It is only at this point in
time that another thread could, in theory, obtain this lock.

Output

The output would look as follows:

$ python3.6 04_rlocks.py

Rlock acquired, modifying A and B

<locked _thread.RLock object owner=140735793988544 count=1 at
0x10296e6£0>

Modifying A : RLock Acquired: True

<locked _thread.RLock object owner=140735793988544 count=2 at
0x10296e6£0>

<locked _thread.RLock object owner=140735793988544 count=1 at
0x10296e6£0>

Modifying B : RLock Acquired: True

<locked _thread.RLock object owner=140735793988544 count=2 at
0x10296e6£0>

<unlocked _thread.RLock object owner=0 count=0 at 0x10296e6£0>

[881]

Synchronization between Threads

RLocks versus regular locks

If we were to try and perform the same preceding program using a traditional lock
primitive, then you should notice that the program never actually reaches the point where
it’s executing our modifyA () function. Our program would, essentially, go into a form of
deadlock, as we haven’t implemented a release mechanism that allows our thread to go any
further. This is shown in the following code example:

import threading
import time
class myWorker () :
def __init__ (self):
self.a = 1
self.b = 2
self.lock = threading.Lock ()
def modifyA (self):
with self.lock:
print ("Modifying A : RLock Acquired: {}".format (self.lock._is_owned()))
print ("{}".format (self.lock))
self.a = self.a + 1
time.sleep (5)
def modifyB(self):
with self.lock:
print ("Modifying B : Lock Acquired: {}".format (self.lock._is_owned()))
print ("{}".format (self.lock))
self.b = self.b - 1
time.sleep (5)
def modifyBoth (self):
with self.lock:
print ("lock acquired, modifying A and B")
print ("{}".format (self.lock))
self.modifyA()
print ("{}".format (self.lock))
self.modifyB()
print ("{}".format (self.lock))
workerA = myWorker ()
workerA.modifyBoth ()

RLocks, essentially, allow us to obtain some form of thread safety in a recursive manner
without having to implement complex acquiring, and release lock logic throughout your
code. They allow us to write simpler code that is easier to follow, and as a result, easier to
maintain after our code goes to production.

[891]

Synchronization between Threads

Condition

A condition is a synchronization primitive that waits on a signal from another thread. For
example, this could be that another thread has finished execution, and that the current
thread can proceed to perform some kind of calculation on the results.

Definition
Let's have a look at the definition of our condition object in Python's native library. It's
important to understand these fundamental primitives and how they operate at a more

granular level, so, I implore you to take a look at the full definition of these objects should
you get the time.

def Condition(*args, **kwargs):
"""Factory function that returns a new condition variable object.
A condition variable allows one or more threads to wait until they are
notified by another thread.
If the lock argument is given and not None, it must be a Lock or RLock
object, and it is used as the underlying lock. Otherwise, a new RLock
object
is created and used as the underlying lock.

The most common scenario that is used to highlight the benefits of conditions is that of a
producer/consumer. You could have a producer that publishes messages to a queue and
notifies other threads, aka the consumers, that there are now messages waiting to be
consumed on that queue.

Example

In this example, we are going to create two different classes that will inherit from the thread
class. These will be our Publisher and our subscriber classes. The publisher will do the task

of publishing new integers to an integer array, and then notifying the subscribers that there
is a new integer to be consumed from the array.

Our publisher

Our Publisher class has two functions defined within it--the constructor which takes in
the reference of the integers array and the condition primitive.

[90]

Synchronization between Threads

The run function, essentially, goes into a permanent loop when it is invoked, and then
proceeds to generate a random integer between 0 and 1000. Once we have generated this
number, we then acquire the condition, and then append this newly generated integer to
our integers array.

After we have appended to our array, we then first notify our subscribers that there has
been a new item appended to this array, and then we release the condition.

class Publisher (threading.Thread) :

def __init__ (self, integers, condition):
self.condition = condition
self.integers = integers

threading.Thread.__init__ (self)
def run(self):

while True:
integer = random.randint (0,1000)
self.condition.acquire ()
print ("Condition Acquired by Publisher: {}".format (self.name))
self.integers.append(integer)
self.condition.notify ()
print ("Condition Released by Publisher: {}".format (self.name))
self.condition.release()
time.sleep (1)

Our subscriber

The subscriber class, again, has two functions defined within it: the constructor and the
run function. The constructor takes in two things, the first of which is the reference of array
of integers that it will consume from and the second is the condition synchronization
primitive.

Within our run function, we start a loop that constantly tries to acquire the condition that
has been passed into it. When we manage to acquire this lock, we print out the fact that the
thread has now acquired it, and then we proceed to try and "pop" the first integer we can
from the integers array that we have passed into it. Once we have successfully managed
this, we then release the condition primitive, and, once again, start trying to reacquire this
condition.

class Subscriber (threading.Thread) :

def __init__ (self, integers, condition):
self.integers = integers
self.condition = condition

threading.Thread.__init__ (self)
def run(self):
while True:

[91]

Synchronization between Threads

self.condition.acquire()
print ("Condition Acquired by Consumer: {}".format (self.name))
while True:
if self.integers:
integer = self.integers.pop()
print ("{} Popped from list by Consumer: {}".format (integer,
self.name))
break
print ("Condition Wait by {}".format (self.name))
self.condition.wait ()
print ("Consumer {} Releasing Condition".format (self.name))
self.condition.release()

Kicking it off
In the main function of this program, we first declare the integer array that will act almost
like a message queue. We then declare our condition primitive

And finally, we define one publisher and two different subscribers. We then start these
publishers and subscribers and join the threads so that our program doesn’t instantly
terminate before the threads have a chance of executing.

def main () :
integers = []
condition = threading.Condition ()
Our Publisher
publ = Publisher (integers, condition)
publ.start ()
Our Subscribers
subl = Subscriber (integers, condition)
sub2 = Subscriber (integers, condition)
subl.start ()
sub2.start ()
Joining our Threads
publ.join()
consumerl.join ()
consumer2.join ()
if _ name_ == '_ _main___
main ()

L

[92]

Synchronization between Threads

The results

When we run this program, you should see an output that is similar to the following. You
should see that when the publisher acquires the condition, it appends a number to the
array, and then notifies the condition and releases it.

$ python3.6 03_pubSub.py

Condition Acquired by Publisher: Thread-1
Publisher Thread-l1l appending to array: 108
Condition Released by Publisher: Thread-1
Condition Acquired by Consumer: Thread-2
108 Popped from list by Consumer: Thread-2
Consumer Thread-2 Releasing Condition
Condition Acquired by Consumer: Thread-2
Condition Wait by Thread-2

Condition Acquired by Consumer: Thread-3
Condition Wait by Thread-3

Condition Acquired by Publisher: Thread-1
Publisher Thread-l1l appending to array: 563

At the point of the condition being notified, the battle starts between the two subscribers
where they both try to acquire this condition first. When one wins this fight, it then goes on
to simply "pop" this number from the array.

Semaphores

In the first chapter, we touched upon the history of concurrency, and we talked a bit about
Dijkstra. Dijkstra was the man that actually took this idea of semaphores from railway
systems and translated them into something that we could use within our own complex
concurrent systems.

Semaphores have an internal counter that is incremented and decremented whenever either
an acquire or a release call is made. Upon initialization, this counter defaults to 1 unless
otherwise set. The semaphore cannot be acquired if the counter will fall to a negative
integer value.

Say we protected a block of code with a semaphore, and set the semaphore’s value to 2. If
one thread acquired the semaphore, then the semaphore’s value would be decremented to
1. If another thread then tried to acquire the semaphore, the semaphore’s value would
decrement to 0. At this point, if yet another thread were to come along, the semaphore
would deny its acquire request until such point as one of the original two threads called the
release method, and the counter incremented to preceding 0.

[93]

Synchronization between Threads

Class definition
The class definition for the Python semaphore object looks like this:

class _Semaphore (_Verbose) :
After Tim Peters' semaphore class, but not gquite the same (no maximum)
def _ _init__ (self, wvalue=1, verbose=None) :
if value < O:
raise ValueError ("semaphore initial value must be >= 0")
Verbose. _init_ (self, verbose)
self._ cond = Condition (Lock())
self._value = value

In the preceding constructor function of the semaphore class, you'll notice it takes in a
value, which, unless otherwise set, defaults to 1.

In the class definition, the comments define a semaphore as follows:

Semaphores manage a counter representing the number of release () calls minus the
number of acquire () calls, plus an initial value. The acquire () method blocks if
necessary until it can return without making the counter negative. If not given, value
defaults to 1.

Example

This next example is based loosely on a concurrency example from the Stanford computing
department. In this example, we’ll be creating a simple ticket selling program that features
four distinct threads that each try to sell as many tickets of the entire ticket allocation as
they can before the tickets are sold out.

The TicketSeller class

First we'll implement our TicketSeller class. This class will contain it's own internal
counter for how many tickets that it has sold. In our constructor, we initialize our thread
and take in the reference of the semaphore. Within our run function, we try to acquire this
semaphore if the number of tickets we have available for sale is less than or equal to 0; if it
is greater than 0, then we increment the number of tickets our ticketseller has sold, and
decrease ticketsAvailable by 1. We then release the semaphore and print out our
progress.

class TicketSeller (threading.Thread) :
ticketsSold = 0
def __init__ (self, semaphore):

[94]

Synchronization between Threads

threading.Thread.__init__ (self)
self.sem = semaphore
print ("Ticket Seller Started Work")
def run(self):
global ticketsAvailable
running = True
while running:
self.randomDelay ()
self.sem.acquire ()
if (ticketsAvailable <= 0):
running = False
else:
self.ticketsSold = self.ticketsSold + 1
ticketsAvailable = ticketsAvailable - 1
print ("{} Sold One ({} left)".format (self.getName(),
ticketsAvailable))
self.sem.release ()
print ("Ticket Seller {} Sold {} tickets in total".format (self.getName(),
self.ticketsSold))
def randomDelay (self):
time.sleep (random.randint (0, 1))

In the preceding code, we define our TicketSeller class. This class features a constructor
which takes in the reference of our global semaphore object, and also initializes our thread.
Within our run function, we define a while loop that simulates blocking for anywhere
between 0 and 1 seconds, and then tries to acquire the semaphore. Upon successful
acquisition of the semaphore, it then checks to see if any tickets are available to sell. If there
are, then it increments the number of t icketsSold and decrements ticketsAvailable
before printing it's accomplishment out to the console.

Now that we’ve defined our TicketSeller class, we need to first create our semaphore
object which will be passed to all instances of TicketSerllers, as follows:

our sempahore primitive

semaphore = threading.Semaphore ()

Our Ticket Allocation

ticketsAvailable = 10

our array of sellers

sellers = []

for i in range (4):
seller = TicketSeller (semaphore)
seller.start ()
sellers.append(seller)

joining all our sellers

for seller in sellers:
seller.join ()

[95]

Synchronization between Threads

Output

When you run the preceding program, you should, hopefully, see an output similar to the
following. In this particular run, we see an almost even distribution of tickets sold between
the four distinct threads. When one of these threads blocks for an indeterminate amount of
time, another thread acquires the semaphore and tries to sell their tickets.

$ python3.6 06_semaphores.py

Ticket Seller Started Work

Thread-1 Sold One (9 left)

Ticket Seller Started Work

Ticket Seller Started Work

Ticket Seller Started Work

Thread-1 Sold One (8 left)

Thread-3 Sold One (7 left)

Thread-3 Sold One (6 left)

Thread-4 Sold One (5 left)

Thread-2 Sold One (4 left)

Thread-1 Sold One (3 left)

Thread—-4 Sold One (2 left)

Thread-2 Sold One (1 left)

Thread-3 Sold One (0 left)

Ticket Seller Thread-4 Sold 2 tickets in total
Ticket Seller Thread-1 Sold 3 tickets in total
Ticket Seller Thread-2 Sold 2 tickets in total
Ticket Seller Thread-3 Sold 3 tickets in total

Thread race

One thing to note with the preceding example is that if you remove the simulated blocking
of the thread by commenting out self.randomDelay in the run function, then, when you
run the program, whatever thread acquired the semaphore first will most likely sell all the
tickets. This is because the thread that wins the semaphore is in a prime position to
reacquire the lock before any other thread is able to.

Bounded semaphores

Bounded semaphores are almost identical to normal semaphores. Except for the following;:

A bounded semaphore checks to make sure its current value doesn’t exceed its initial value.
If it does, ValueError is raised. In most situations semaphores are used to guard resources
with limited capacity.

[96]

Synchronization between Threads

If the semaphore is released too many times, it's a sign of a bug. If a value is not given, the
value defaults to 1.

These bounded semaphores could, typically, be found in web server or database
implementations to guard against resource exhaustion in the event of too many people
trying to connect at once, or trying to perform a specific action at once.

It’s, generally, better practice to use a bounded semaphore as opposed to a normal
semaphore. If we were to change the preceding code for our Semaphore example to use
threading.BoundedSemaphore (4) and ran it again, we would see almost exactly the
same behavior except that we’ve guarded our code against some very simple programmatic
errors that otherwise would have remained uncaught.

Events

Events are a very useful, but also a very simple form of communication between multiple
threads running concurrently. With events, one thread would, typically, signal that an event
has occurred while other threads are actively listening for this signal.

Events are, essentially, objects that feature an internal flag that is either true or false. Within
our threads, we can continuously poll this event object to check what state it is in, and then
choose to act in whatever manner we want when that flag changes state.

In the previous chapter, we talked about how there were no real mechanisms to kill threads
natively in Python, and that’s still true. However, we could utilize these event objects and
have our threads run only so long as our event object remains unset. While this isn’t as
useful at the point where a SIGKILL signal is sent, it could, however, be useful in certain
situations where you need to gracefully shut down, but where you can wait for a thread to
finish what it’s doing before it terminates.

An Event has four public functions with which we can modify and utilize it:

e isset (): This checks to see if the event has been set

e set (): This sets the event

e clear (): This resets our event object

e wait (): This blocks until the internal flag is set to true

[97]

Synchronization between Threads

Example

In our next example, we are going to show you just how you can control child threads using
an event object, and obtain a form of graceful shutdown:

import threading
import time
def myThread (myEvent) :
while not myEvent.is_set():
print ("Waiting for Event to be set")
time.sleep (1)
print ("myEvent has been set")

def main() :
myEvent = threading.Event ()
threadl = threading.Thread(target=myThread, args=(myEvent,))
threadl.start ()
time.sleep (10)
myEvent.set ()
if _ _name_ == '__main__ ':
main ()

Breaking it down

In the preceding code, we define a myThread function; within this function, we have a
while loop that only runs while the event object which we pass into this function remains
unset. Within this loop, we simply print out that we are waiting for the event to be set at 1
second intervals.

We define our event object that we’ll be passing to all our child threads within our main
function. To do this, we simply call myEvent = threading.Event (), and it instantiates a
new instance of an event object for us.

We then instantiate our thread object which takes in our myEvent object, and start it off. We
then go on to sleep for 10 seconds before setting the myEvent signal so that our child thread
can complete its execution.

Barriers

Barriers are a synchronization primitive that were introduced in the third major iteration of
the Python language, and address a problem that could only be solved with a somewhat
complicated mixture of conditions and semaphores.

[98]

Synchronization between Threads

These barriers are control points that can be used to ensure that progress is only made by a
group of threads, after the point at which all participating threads reach the same point.

This might sound a little bit complicated and unnecessary, but it can be incredibly powerful
in certain situations, and it can certainly reduce code complexity.

Example

In the following example, we are going to utilize barriers in order to block the execution of
our threads until all of the threads have reached a desired point of execution:

import threading
import time
import random
class myThread(threading.Thread) :
def _ _init_ (self, barrier):
threading.Thread.__init__ (self)
self.barrier = barrier
def run(self):
print ("Thread {} working on
something".format (threading.current_thread()))
time.sleep (random.randint (1,10))
print ("Thread {} is joining {} waiting on
Barrier".format (threading.current_thread(),
self.barrier.n_waiting))
self.barrier.wait ()
print ("Barrier has been lifted, continuing with work")
barrier = threading.Barrier (4)
threads = []
for i in range (4):
thread = myThread(barrier)
thread.start ()
threads.append (thread)
for t in threads:
t.join ()

Breaking it down

If we have a look at the preceding code, we have defined a custom class, myThread, which
inherits from threading. Thread. Within this class, we define the standard __init_
function and the run function. Our __init__ function takes in our barrier object so that we
can reference it later on.

[991]

Synchronization between Threads

Within our run function, we simulate our thread doing some work for a random amount of
time between 1 and 10 seconds, and then we start waiting on the barrier.

Out with our class definition, we first create our barrier object by calling barrier =
threading.Barrier (4). The 4 that we've passed into this as an argument represents the
number of threads that have to be waiting on the barrier before it will be lifted. We then go
on to define four distinct threads, and join them all.

Output

If you run the preceding program on your system, you should, hopefully, see an output
similar to the following.

You'll see our four threads printing out that they are working on something, and then, one
by one, they randomly start waiting on our barrier object. Once the 4th thread starts
waiting, the program almost instantly finishes, as all four threads do their final print
statements now that the barrier has been lifted.

$ python3.6 08_barriers.py

Thread <myThread(Thread-1l, started 123145344643072)> working on
something

Thread <myThread (Thread—-2, started 123145349898240)> working on
something

Thread <myThread(Thread—-3, started 123145355153408)> working on
something

Thread <myThread(Thread—-4, started 123145360408576)> working on
something

Thread <myThread(Thread-1l, started 123145344643072)> is joining O
waiting on Barrier

Thread <myThread(Thread—-3, started 123145355153408)> is joining 1
waiting on Barrier

Thread <myThread(Thread—-2, started 123145349898240)> is joining 2
waiting on Barrier

Thread <myThread(Thread—-4, started 123145360408576)> is joining 3
waiting on Barrier

Barrier has been lifted, continuing with work

Barrier has been lifted, continuing with work

Barrier has been lifted, continuing with work

Barrier has been lifted, continuing with work

[100]

Synchronization between Threads

Summary

Throughout this chapter, we looked at the various key issues that can impact our
concurrent Python applications. We dived into the topic of deadlocks and the famous
dining philosophers problem, and how this can impact our own software.

By now, you should have a solid understanding of all of the Python synchronization
primitives that are on offer as well as how, and, more importantly, when to use these
primitives. In the next chapter, we'll be taking an in-depth look at how we can implement
communication between our multithreaded and multiprocess applications.

[101]

Communication between
Threads

Communication is one of the most important parts of your concurrent systems. Without
proper communication mechanisms implemented, any performance gains we manage to
achieve through the use of concurrency and parallelism could all be for nothing.
Communication represents one of the biggest challenges you will have to overcome when it
comes to communication between both threads and processes, and it’s essential to have a
good understanding of all of the options that are available before you dive in.

In this chapter, we’ll look at the numerous ways that you can implement your own
communication mechanisms, and discuss when and where to use each of these
mechanisms.

We'll cover the following topics within this chapter:

¢ The standard data structures in Python, and how we can interact with them in a
thread-safe manner

¢ Thread-safe communication using queues, and how we can effectively use these
queue objects

¢ Double-ended queues, and how they differ from traditional queues

¢ How we can utilize all of these new concepts and build our own multithreaded
website Crawler

Communication between Threads

Standard data structures

Some of Python’s traditional data structure features provide various degrees of thread
safety by default. However, in most cases, we will have to define some form of a locking
mechanism for controlling access to these data structures in order to guarantee thread
safety.

Sets

During my time working with communication between multiple threads in Python, I
discovered that one excellent solution to using sets in a thread-safe manner is to actually
extend the set class, and to implement my own locking mechanism around the actions that I
wish to perform.

Extending the class

If you are used to working in Python then extending the class should be a somewhat simple
operation. We define a Lockedset class object, which inherits from our traditional Python
set class. Within the constructor for this class, we create a 1ock object, which we’ll use in
subsequent functions in order to allow for thread-safe interactions.

Below our constructor, we define the add, remove, and contains functions. These rely on
the super class functionality with one key exception. With each of these functions, we use
the lock that we initialized in our constructor to ensure that all interactions can only be
executed by one thread at any given time, thus ensuring thread safety.

It should be noted that we could use this same technique of extending the existing set class
with other Python primitives. By implementing our own, we can then, essentially, leverage
the underlying functionality of these classes with minimal effort on our part.

The following example is taken from the Stack Overflow question: http://stackoverflow.
com/a/13618333/2903188. This example does a fantastic job of explaining some of the
distinct methods that we’ll cover in this chapter:

class LockedSet (set) :
"""A set where add(), remove(), and 'in' operator are thread-safe"""

def __init__ (self, *args, **kwargs):
self._lock = Lock ()
super (LockedSet, self).__init__ (*args, **kwargs)

[103]

http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188
http://stackoverflow.com/a/13618333/2903188

Communication between Threads

def add(self, elem):
with self._lock:
super (LockedSet, self) .add(elem)

def remove (self, elem):
with self._lock:
super (LockedSet, self).remove (elem)

def _ contains__ (self, elem):
with self._lock:
super (LockedSet, self)._ _contains__ (elem)

It should be noted that this tactic of extending the existing classes and adding your own
thread-safe logic can be done for most, if not all, Python primitives. It's a great way to
leverage some of the excellent features that come with these classes by default, but you need
to ensure that the way in which you are implementing thread safety is correct.

Exercise - extending other primitives

As a means of practice, I would suggest that you try to extend other classes and implement
thread-safe actions for them. Look at how you could extend the List primitive in order to
provide thread safety when you increment a value within that list by 1. This should give
you a good feel for how you can apply this same practice to a whole variety of Python
primitives.

Decorator

While extending existing Python primitives may be the most useful, if not the most
desirable, means to provide thread-safe communication, it should be noted that we can also
use other techniques.

One of the other key methods that we could leverage is to utilize decorators. With this
mechanism, we define our decorator method, 1ocked_method, which takes in a method.
This decorator method will then define a new method within it, and call the original
method only when it has acquired self._lock.

This allows us to, somewhat effortlessly, turn the potentially erroneous critical sections of
our code into thread-safe sections, which can be called without having to worry about race
conditions.

[104]

Communication between Threads

In this next example, we look at how we can implement our decorator method that
returns a race-condition protected version of our passed in method:

def lock (method) :

def newmethod(self, *args, **kwargs):
with self._lock:
return method(self, *args, **kwargs)
return newmethod

class DecoratorLockedSet (set) :
def __init__ (self, *args, **kwargs):
self._lock = Lock ()
super (DecoratorLockedSet, self).__init__ (*args, **kwargs)

@locked_method
def add(self, *args, **kwargs):
return super (DecoratorLockedSet, self).add(elem)

@locked_method
def remove(self, *args, **kwargs):
return super (DecoratorLockedSet, self).remove (elem)

Class decorator

Class decoration takes our previous example one step further, and instead of protecting one
single method, we can protect every function within our class so that all calls are done in a
thread-safe manner.

In the following example, we look at how we can implement a class decorator function. The
lock_class function at the start takes in a list of methods and lockfactory, and returns a
lambda function which takes in the method names specified in the decorator as well as
lockFactory.

This calls make_threadsafe, which initializes an instance of our passed-in class, it then
defines a new constructor which also calls self._lock = lockfactory (). This
make_threadsafe function then iterates through all of the methods in methodnames, and
locks each method using the 1ock_method function.

This represents a clean and easy way to add thread safety to an entire class while also
giving us the option to choose which functions we wish to lock:

[105]

Communication between Threads

from threading import Lock

def lock_class (methodnames, lockfactory):
return lambda cls: make_threadsafe(cls,
methodnames, lockfactory)

def lock_method (method) :
if getattr (method, '__is_locked', False):
raise TypeError ("Method %r is already locked!" %method)

def locked_method(self, *arg, **kwarg):
with self._lock:
return method(self, *arg, **kwarqg)
locked_method._ _name__ = '$s(%s)' %
('lock_method', method.__name_)
locked_method.__is_locked = True

return locked_method

def make_threadsafe(cls, methodnames,
lockfactory) :
init = cls._ _init_
def newinit (self, *arg, **kwargqg):
init (self, *arg, **kwargqg)
self._lock = lockfactory()
cls.__init__ = newinit
for methodname in methodnames:
oldmethod = getattr(cls, methodname)
newmethod = lock_method (oldmethod)
setattr(cls, methodname, newmethod)
return cls

@lock_class(['add', 'remove'], Lock)
class ClassDecoratorLockedSet (set) :
@lock_method # if you double-lock a method, a TypeError is raised
def lockedMethod(self):
print ("This section of our code would be thread safe")

Lists

Lists, by default, are thread safe, but only in the way that we access them. It’s important to
note that the data represented within this list structure is, in fact, not protected, and if you
want to safely modify this data, then you must implement a proper locking mechanism to
ensure that multiple threads can’t potentially run into race conditions within their
execution--this holds true for all thread-safe containers.

[106]

Communication between Threads

The append () function is one of the few methods for our list data structure that is atomic,
and, as such, thread-safe. Lists, thus, become a very quick and easy structure that we can
leverage for temporary, in-memory storage. However, if we were to attempt to modify
anything within this list in a concurrent fashion, then it’s highly possible that we start to see
the side effects most often attributed to race conditions.

One prime example of such a side effect is if we, for instance, try to update the second
element in our list at the same time as another thread. If one were to read, and subsequently
write, at the same time as a competing thread, then we could see issues where the value is
altered incorrectly.

If you wish to utilize lists within your multithreaded applications, then you can do so by
extending the class in a similar fashion to how we've previously extended the set primitive.

Queues

Queues come in a range of different styles. In Python, we have the option to define three
different types of queues from the native queue module. These are normal Queues,
LifoQueues, and PriorityQueues.

Queues, by default, are thread safe in Python, which means that we do not have to worry
about implementing complex locking mechanisms should we wish to utilize queues within
our applications. This makes them incredibly powerful when it comes to implementing a
quick and easy communication medium through which our numerous threads and
processes can communicate.

FIFO queues

FIFO (first in first out) queues to give them their full name, are the standard queue
implementation that Python has to offer. They follow the exact same queueing mechanism
that you would if you were, say, at the supermarket. The first person to reach the till would
be attended to first, the second person waits and is served second, and so on.

FIFO

Input sequence 1, 2,3, 4 = OQutput sequence 1,2, 3,4

Source: http://javaworldwide.blogspot.co.uk/2015/07/implementing-blocking-queue-in-java.html

[107]

Communication between Threads

Through following this mechanism, we ensure that our customers are treated fairly, and
that you'll be able to reasonably estimate roughly how long it will take for you to get served
if you were, say, 7th in the queue.

Example

In this example, we'll utilize the queue.Queue () object in order to implement our own
FIFO-based queue:

import threading
import queue
import random
import time

def mySubscriber (queue) :
while not queue.empty () :
item = queue.get ()
if item is None:
break
print ("{} removed {} from the queue".format (threading.current_thread(),
item))
queue.task_done ()
time.sleep (1)

myQueue = queue.Queue ()
for i in range (10):
myQueue.put (1)

print ("Queue Populated")

threads = []

for i in range (4):
thread = threading.Thread(target=mySubscriber, args=(myQueue,))
thread.start ()
threads.append (thread)

for thread in threads:
thread.join ()

Breaking it down

In the preceding example, we import the necessary queue, Python module. We then go on
to define a mySubscriber function, which will act as the target for our multiple threads
that are going to consume from our queue.

[108]

Communication between Threads

In the following mySubscriber function declaration, we then declare our queue by calling
myQueue = queue.Queue (), and then we proceed to populate the numbers from zero to
nine.

Finally, we go on to declare and instantiate our numerous threads which will consume from
our thread-safe queue. We start these threads, taking care to pass in our newly declared the
queue object into their args, and then, subsequently, join them.

Output

If we now execute the preceding code, you should see that our four distinct threads start
grabbing items from the queue one after the other in the order that they were initially put
into the queue. So, 0, being the first number to be placed into the queue, is also the first to be
taken off the queue:

$ python3.6 00_queues.py

Queue Populated

<Thread (Thread-1, started 123145445732352)> removed
<Thread (Thread-2, started 123145450987520)> removed
<Thread (Thread-3, started 123145456242688)> removed
<Thread (Thread-4, started 123145461497856)> removed
<Thread (Thread-1, started 123145445732352)> removed
<Thread (Thread-3, started 123145456242688)> removed
<Thread (Thread-4, started 123145461497856)> removed
<Thread (Thread-2, started 123145450987520)> removed
<Thread (Thread-1, started 123145445732352)> removed
<Thread (Thread-3, started 123145456242688)> removed

from the queue
from the queue
from the queue
from the queue
from the queue
from the queue
from the queue
from the queue
from the queue
from the queue

WOl WNPFO

LIFO queues

LIFO (last in first out) queues, act in the opposite fashion to that of normal FIFO queues. To
extend our supermarket analogy further, in using a LIFO queueing mechanism, we,
essentially, serve the last person to join the queue before the existing members of the queue
are served. As you can imagine, if this were a real-life supermarket, there would probably
be a number of complaints put in by people who were spending hours sitting in the same
queue.

[109]

Communication between Threads

In LIFO queues, there is the distinct possibility that a couple of the first people to join the
queue could remain in that position indefinitely as more and more people join the queue
before they can be served. While this may not make sense as a queueing mechanism in the
real world, LIFO has its advantages when it comes to programming.

LIFO queues come in particularly handy when it comes to implementing artificial-
intelligence-based algorithms such as depth-first search, depth-limited search, and so on. It
also comes in very handy when you want to reverse the order of something--simply
populate your LIFO queue with every element, and then pop them off again once you are
done. The results of this are more clearly defined in the following illustration:

LIFO

auTt

Input sequence 1, 2,3, 4 # Output sequence 4, 3,2, 1

Source: http://www.transtutors.com/homework-help/accounting/inventory-valuation-lifo/

Example

In the following example, we define LifoQueue, which we populate with numbers from 1
-> 10. We then create a series of subscribers that retrieve all items from this queue until it
is empty.

import threading
import queue
import random
import time

def mySubscriber (queue) :

while not queue.empty() :

item = queue.get ()

if item is None:

break

print ("{} removed {} from the queue".format (threading.current_thread(),
item))

queue.task_done ()

[110]

Communication between Threads

time.sleep (1)

myQueue = queue.LifoQueue ()
for i in range (10):
myQueue.put (1)

print ("Queue Populated")

threads = []

for i in range(2):
thread = threading.Thread(target=mySubscriber, args=(myQueue,))
thread.start ()
threads.append (thread)

for thread in threads:
thread.join ()

print ("Queue is empty")

Breaking it down

The preceding code isn’t that dissimilar to the code that we used for the normal FIFO
queue. The only real difference is that when we declare our myQueue object, we declare it
using queue.LifoQueue () instead of the normal queue.Queue ().

Output

If we now run the last program, you should see that it's almost identical to our FIFO queue
except for one main distinction--our threads remove the numbers from our queue in the
exact opposite order than they were initially put into the queue:

$ python3.6 01_lifoQueues.py
Queue Populated

<Thread (Thread-1, started 123145362374656)> removed 9 from the queue
<Thread (Thread-2, started 123145367629824)> removed 8 from the queue
<Thread (Thread-1, started 123145362374656)> removed 7 from the queue
<Thread (Thread-2, started 123145367629824)> removed 6 from the queue
<Thread (Thread-1, started 123145362374656)> removed 5 from the queue
<Thread (Thread-2, started 123145367629824)> removed 4 from the queue
<Thread (Thread-2, started 123145367629824)> removed 3 from the queue
<Thread (Thread-1, started 123145362374656)> removed 2 from the queue
<Thread (Thread-2, started 123145367629824)> removed 1 from the queue
<Thread (Thread-1, started 123145362374656)> removed 0 from the queue

Queue is empty

[111]

Communication between Threads

PriorityQueue

If we move away from our supermarket analogy and now think about an airport security
area, there are some people who are more important than the regular customers. These are
people like the pilots, the cabin crew, and others. In these exceptional circumstances, we’d
typically move them up to the front of the queue so that they could proceed to get the
planes in which we are about to fly to get them ready for takeoff.

In other words, we are giving them some form of priority within our queueing mechanism.
Sometimes, in the systems that we develop, we need to also accommodate some form of
prioritization mechanism so that incredibly important tasks aren’t stuck behind millions of
relatively unimportant operations for indefinite periods of time. This is where our
PriorityQueue object comes into play.

With PriorityQueue, we can give everything that we put into the queue a weight as to
how important it is. We can populate our PriorityQueues in much the same way that we
populate our normal queue object except that we use tuples, and pass in
priority_number as the first value in our tuple: (priority_number, data).

Example

In the following example, we create PriorityQueue which we will populate with two sets
of data, both identical, ranging from (1,1) -> (5,5). We then define a subscriber that
will call get on our PriorityQueue until such point as the queue is empty.

import threading
import queue
import random
import time

def mySubscriber (queue) :
whilenot queue.empty () :

item = queue.get ()

if item is None:

break

print ("{} removed {} from the queue".format (threading.current_thread(),
item))

queue.task_done ()

time.sleep (1)

myQueue = queue.PriorityQueue ()

for i in range(5):
myQueue.put (1, 1i)

[112]

Communication between Threads

for i in range(5):
myQueue.put (1, 1)

print ("Queue Populated")

threads = []

for i in range(2):

thread = threading.Thread(target=mySubscriber, args=(myQueue,))
thread.start ()

threads.append (thread)

for thread in threads:
thread.join ()

print ("Queue is empty")

Breakdown

Again, the preceding code is pretty much identical to the code that we’ve seen before, the
only difference being that we’ve changed the way we’ve initialized our queue object, and
we’ve changed how to populate the queue to this:

myQueue = queue.PriorityQueue ()

for i in range(5):
myQueue.put (i, i)

for i in range(5):
myQueue.put (i, i)

This last piece of code populates our queue with two sets of tuples, both with the same
priority_number and the same data, as follows:

Order of Queue Population | Tuple (priority_number, data) | Execution Order
1 (0, 0) 1st

2 (1,1) 3rd

3 2,2) 5th

4 (3,3) 7th

5 (4,4) 9th

6 (0,0) 2nd

7 (1,1) 4th

[113]

Communication between Threads

8 (2,2) 6th
9 (3,3) 8th
10 (4,4) 10th
Output

If we run this program in our command-line, you should see that the order in which we
remove our elements corresponds to the priority of the items within our queue. Our two 0
elements have the highest priority and are removed first, the 1s follow shortly after, and so
on until we have removed all the elements from the priority queue:

$ python3.6 02_priorityQueue.py

Queue Populated

<Thread (Thread-1, started 123145475166208)> removed
<Thread (Thread-2, started 123145480421376)> removed
<Thread (Thread-2, started 123145480421376)> removed
<Thread (Thread-1, started 123145475166208)> removed
<Thread (Thread-2, started 123145480421376)> removed
<Thread (Thread-1, started 123145475166208)> removed
<Thread (Thread-2, started 123145480421376)> removed
<Thread (Thread-1, started 123145475166208)> removed
<Thread (Thread-2, started 123145480421376)> removed
<Thread (Thread-1, started 123145475166208)> removed
Queue is empty

from the queue
from the queue
from the queue
from the queue
from the queue
from the queue
from the queue
from the queue
from the queue
from the queue

w_ b WWwWwDNhdDNdNRFR P OO

Queue objects

With all of these aforementioned queue objects, there comes a range of different public
methods with which we can use to work with the queue objects.

Full/lempty queues

We need to be able to limit the size of our queues within our programs; if we let them
expand for ever, then we could, in theory, start facing MemoryErrors. The amount of
memory one Python program could take is limited by the amount of memory we have
available on our systems.

By constraining the size of our queues, we are able to, effectively, guard ourselves from
hitting these memory constraints. In this example, we’ll create a queue, and pass in the
maxsize parameter, which will be set to zero. We’ll then go on to create four distinct
threads that will each try and populate this queue with an arbitrary number.

[114]

Communication between Threads

We'll then join all of our newly created threads, and attempt to put as many elements into
our queue as possible.

Example

In the following example, we create a series of publishers that attempt to publish to our
queue object until it is full:

import threading
import queue
import time

def myPublisher (queue) :
while not queue.full():
queue.put (1)
print ("{} Appended 1 to queue: {}".format (threading.current_thread(),
queue.gsize()))
time.sleep (1)

myQueue = queue.Queue (maxsize=5)

threads = []

for i in range (4):
thread = threading.Thread (target=mySubscriber, args=(myQueue,))
thread.start ()
threads.append (thread)

for thread in threads:
thread.join ()

Output

Upon execution of our code, you should see each thread append at least one item to our
queue until the point where the queue has five different elements. At this point, our queue
is deemed full, and the execution of our threads terminates:

$ python3.6 09_fullQueue.py

<Thread (Thread-1, started 123145399971840)> Appended 1 to queue:
<Thread (Thread-2, started 123145405227008)> Appended 1 to queue:
<Thread (Thread-3, started 123145410482176)> Appended 1 to queue:
<Thread (Thread—-4, started 123145415737344)> Appended 1 to queue:
<Thread (Thread-1, started 123145399971840)> Appended 1 to queue:

b Wbk

[115]

Communication between Threads

The join() function

The join () function on our queue objects allow us to block our current thread's execution
until such point that all elements from the queue have been consumed. This provides us
with an excellent stopgap method for when we need to ensure that everything we need to
have done is done.

Example

The following example creates a number of subscribers that subscribe to our queue object.
These subscribers then call the get method until such point as our queue is empty:

import threading
import queue
import time

def mySubscriber (queue) :
time.sleep (1)
while not queue.empty () :

item = queue.get ()

if item is None:

break

print ("{} removed {} from the queue".format (threading.current_thread(),
item))

queue.task_done ()

myQueue = queue.Queue ()
for i in range(5):
myQueue.put (i)

print ("Queue Populated")

thread = threading.Thread (target=mySubscriber, args=(myQueue,))
thread.start ()

print ("Not Progressing Till Queue is Empty")
myQueue. join ()
print ("Queue is now empty")

[116]

Communication between Threads

Breakdown

In the preceding code sample, we first define our mySubscriber function that takes our
queue object as its primary argument. Within this, we first sleep for one second, and then
enter a while loop that runs until our queue is not empty. Within this while loop, we first
attempt to retrieve an item from our array, and then go on to check to see if this item is
none.

If the item isn’t none, then we print the current thread and that we’ve read it from our
queue. We then call task_done () to signal the end of our blocking get request.

Output

Upon execution of our last program, you should see that our distinct threads continue to
pop elements from the queue until such point as the queue is declared empty. At this point,
our join condition is fulfilled, and our program completes it’s execution:

$ python3.6 10_gqueueJoin.py

Queue Populated

Not Progressing Till Queue is Empty

<Thread (Thread-1, started 123145410052096)> removed 0 from the queue
<Thread (Thread-1, started 123145410052096)> removed 1 from the queue
<Thread (Thread-1, started 123145410052096)> removed 2 from the queue
<Thread (Thread-1, started 123145410052096)> removed 3 from the queue
<Thread (Thread-1, started 123145410052096)> removed 4 from the queue
Queue is now empty

Deque objects

Deques or double-ended queues are another communication primitive that we can actively
leverage in our quest for thread-safe inter-thread communication. It belongs to the
collections module, and it features functionality much like that of a queue except for the
fact that we can pop and push elements into either end of the queue.

Example

import collections
doubleEndedQueue = collections.deque('123456")
print ("Dequeue: {}".format (doubleEndedQueue))

for item in doubleEndedQueue:

[117]

Communication between Threads

print ("Item {}".format (item))

)

print ("Left Most Element: {}".format (doubleEndedQueue[0])
-11))

print ("Right Most Element: {}".format (doubleEndedQueue [

Breakdown

In the preceding code example, we first import the collections module from which we’ll
be using the deque object. We then go on to define our deque object by calling
collections.deque (“123456") and passingin ‘123456’ as a means of populating our
newly instantiated the deque object.

We then go on to print out our deque object, which displays our deque object as an array of
all of the elements that we have placed into it, and for thoroughness, we then iterate
through this deque object and print out the values of our array. Finally, we query the left-
most and right-most objects, and print these out to our console.

Output

Our program should first print out our complete deque before iterating through each and
every element. We then call doubleEndedQueue [0] to retrieve the leftmost element of our
queue object, and then doubleEndedQueue [-1] to retrieve the rightmost element of our
queue object.

$ python3.6 03_deque.py

Dequeue: deque(['1', '2', '3', '4', '5', '6'])
Item 1

Item
Item
Item
Item
Item
Left Most Element: 1
Right Most Element: 6

o Ul WD

[118]

Communication between Threads

Appending elements

Being able to query and view all of the elements in our deque object might be useful in
some situations, but, typically, you will want to interact with these objects. In this next
example, we are going to introduce the append () and appendLeft () functions that enable
us to publish new items into our deque object at either the first or the last position of our
queue object.

Example

The following code example will show you how we can append to both the start and the
end of our deque object:

import collections
doubleEndedQueue = collections.deque('123456")
print ("Deque: {}".format (doubleEndedQueue))

doubleEndedQueue.append ('1l")
print ("Deque: {}".format (doubleEndedQueue))

doubleEndedQueue.appendleft ('6")
print ("Deque: {}".format (doubleEndedQueue))

Breaking it down

In the last code example, we first create doubleEndedQueue a deque object. We then print
out the current state of this deque, and then append 1 to the end of this queue using the
append () function. We then again print out the state of our deque object, and see that this
has accurately appended our 1 to the right-hand side. We then utilize the appendleft ()
function in order to append a 6 to the front of our queue object.

[119]

Communication between Threads

Output

When we run the preceding program, we should see our original deque with elements 1-6.
After we have appended 1 using the append (1) function, we then see deque printing out
with 1 at the end of our deque object. We then call the appendLeft (6) function, and again
print out our deque object, and see 6 appear at the at the start of our deque object.

$ python3.6 04_addRemoveDeque.py

Deque: deque(['l1', '2', '3', '4', '5', '6'])
Deque: deque(['l1', '2', '3', '4', '5', '6', '1'])
Deque: deque([l6l, l1l, l2l, l3l, l4l, l5l, l6l, lll])

Popping elements

Conversely, we may have to retrieve some of the elements that we publish to our deque
object. The way to do this is to utilize the pop () and the popleft () public functions that
come with our deque object.

Example

The following code example will show you how we can pop items from both the start and
the end of our queues using pop () and popleft ():

import collections
doubleEndedQueue = collections.deque('123456")
print ("Deque: {}".format (doubleEndedQueue))

Removing Elements from our queue
rightPop = doubleEndedQueue.pop ()

print (rightPop)

print ("Deque: {}".format (doubleEndedQueue))

leftPop = doubleEndedQueue.popleft ()
print (leftPop)
print ("Deque: {}".format (doubleEndedQueue))

[120]

Communication between Threads

Breaking it down

In the preceding code sample, we again declare our standard doubleEndedQueue object,
and pass in our 1-6 values. We then print out the current state of our deque immediately
after this so we know how our base deque looks.

We then first declare a rightPop variable, and call doubleEndedQueue.pop () in order to
retrieve the rightmost value from our deque object. Immediately after this, we print the
value we’ve just pop-ed and then the state of our deque object.

Following the same process as we did for retrieving the last value of our deque object, we
can retrieve the first value of our deque object by utilizing the popleft () method. We call
this and instantiate our le ftPop variable with it, and again print out the current state of
our deque object.

Output

The output from the preceding program confirms that our pop () and popleft () work as
expected. We print out our original deque, pop (), which pops the last element of our
deque object from the queue object and prints it out onto the console.

We then call popleft (), which pops the frontmost element from our deque object, and
again prints it out onto the console:

$ python3.6 05_removeDeque.py

Deque: deque(['1', '2', '3', '4', '5', '6'])
6

Deque: deque(['1l', '2', '3', '4', '5'])

1

Deque: deque(['2', '3', '4', '5'])

Inserting elements

Being able to populate a deque object is important, as without this mechanism, our deque
object wouldn’t be very useful.

[121]

Communication between Threads

Example

In this example, we are going to take a quick look at how you can insert elements into an
array at specific points:

import collections

doubleEndedQueue = collections.deque('123456")
print ("Deque: {}".format (doubleEndedQueue))
doubleEndedQueue.insert (5, 5)

print ("Deque: {}".format (doubleEndedQueue))

Breaking it down

In the preceding code snippet, we utilize the insert (n, n) function in order to insert the
element 5 at position five of our deque object.

Output

This output of the last program shows us that it successfully inserts a 5 to the fifth location
of our deque object:
$ python3.6 06_insertDeque.py

Deque: deque(['1l', '2', '3', '4', '5', '6'])
Deque: deque(['l', '2', '3', '4', '5', 5, '6'])

Rotation

Deques give us the ability to rotate our queue object by 7 steps to either the right or the left
depending on whether the number passed in is positive or negative.

[122]

Communication between Threads

Example

The following example shows how we can perform rotation on our deque object by both a
positive and negative value to rotate all the elements both forwards and backwards:

import collections

doubleEndedQueue = collections.deque('123456")
print ("Deque: {}".format (doubleEndedQueue))
doubleEndedQueue.rotate (3)

print ("Deque: {}".format (doubleEndedQueue))
doubleEndedQueue.rotate (-2)

print ("Deque {}".format (doubleEndedQueue))

Breaking it down

In the preceding example, we create our standard deque and pass in our regular one to six
values. We then print out our default deque, and then rotate it three places to the right.

Upon rotation, all of the elements in our deque object move three places to the right; the last
element in our queue becomes the first, and then the second, and subsequently, the third.

This diagram succinctly shows how we can rotate both forward and backwards using
positive and negative values:

Dok remend

(o*whl(ﬂ)

Q = 000000

Q. corare (3)= OO000O
7

0.corre (-3)= O0O0000
RNAN_/

31 1

Source: http://www.transtutors.com/homework-help/accounting/inventory-valuation-lifo/

[123]

Communication between Threads

Output

As you can see from the output of our sample application, we start off with our deque
object with values 1 to 6 in the correct order. We then rotate forward by three places, and all
of our elements correctly move three places forward.

We then attempt to rotate backwards by two, and again, we see that all of the elements
within our array move back two spaces correctly:

$ python3.6 08_rotateDeque.py

Deque: deque(['1l', '2', '3', '4', '5', '6'])
Deque: deque(['4', '5', '6', '1', '2', '3'])
Deque deque(['6', '1', '2', '3', '4', '5'])

Defining your own thread-safe
communication structures

Sometimes, standard communication primitives don’t quite cut it, and we have to
implement our own composite objects in order to communicate between threads.

A web Crawler example

Now that we’ve got a good handle of both our communication primitives as well as the
synchronization primitives that we dealt with in the previous chapter, it’s time to start
putting these to good use.

What better way to put into practice our newfound knowledge than to build something
interesting with it?

In this section of the chapter, we are going to build a very simple multithreaded web
Crawler.

[124]

Communication between Threads

Requirements

Just like any real project, we first need to define a set of requirements. In other words, we
need to know the general direction that we’ll be working towards. For this project, we have
the following requirements:

e The web Crawler needs to utilize multiple threads

It should be able to crawl all the particular web pages of a website
It should be able to report back any 404 links
It should take in a domain name from the command-line

It should avoid cyclic traversal

That last point about cyclic traversal is important--in order to prevent our program
endlessly crawling two or more pages that all interlink each other, we must track exactly
what pages we’ve already crawled. We'll be able to leverage here one of the
synchronization primitives that we’ve learned about in the previous chapter.

Design

In our program, we are going to need a something to do our heavy lifting--this will be the
requesting of web pages and the parsing of these web pages for new links to crawl.

We'll separate this worker out into a class that we’ll call a Crawler; this will have a few
different functions--its constructor function, a run function, and an auxiliary processLink
function.

Our Crawler class

The first thing we want to build out in this Crawler is our Crawler class. This will contain
the static methods which will perform any crawling and enqueueing of links to the crawled
list.

At the top, we import all of the modules that we’ll need; this is a mix of things from the
urllib.request module and the urllib.parse module as well as ss1 so that we can
successfully make the HTTPs requests and the BeautifulSoup module. This
BeautifulSoup module will do the bulk of our heavy lifting when it comes to parsing our
HTML for new links to crawl.

[125]

Communication between Threads

At the top of our class, we declare several variables, this first of which is base_url which
will be used to check and see that we haven’t left the site we originally intended to crawl. If
we were to crawl say https://tutorialedge.net, then this would be set as base_url, and
we would only proceed to crawl] links from this domain.

Below that, we declare the myss1 context, which we’ll pass in as the context for our HTTPS
requests. And finally, we instantiate a new set called errorLinks, which will be populated
with any links that throw less than favorable 200 status codes.

from urllib.request import Request, urlopen, urljoin, URLError
from urllib.parse import urlparse

import ssl

from bs4 import BeautifulSoup

class Crawler:

base_url = "'

myssl = ssl.create_default_context ()
myssl.check_hostname=False
myssl.verify_mode=ssl.CERT_NONE
errorlLinks = set ()

We then go on to declare our Crawler’s constructor function which will set base_url.

After this, we declare crawl static method and enqueueLinks static method. This takes in
a list of links and 1inksToCrawl, a queue object. It iterates through them and if the link
has not already been crawled, and if it is not already enqueued in 1inksToCrawl, then we
add it to the queue object.

def _ _init__ (self, base_url):
Crawler.base_url = base_url

@staticmethod
def crawl (thread_name, url, linksToCrawl):
try:
link = urljoin(Crawler.base_url, url)

if (urlparse(link) .netloc == 'tutorialedge.net') and (link not in
Crawler.crawledLinks) :
request = Request (link, headers={'User—-Agent': 'Mozilla/5.0'})

response = urlopen(request, context=Crawler.myssl)
Crawler.crawledLinks.add (link)
print ("Url {} Crawled with Status: {} : {} Crawled In
Total".format (response.geturl (), response.getcode(),
len (Crawler.crawledLinks)))
soup = BeautifulSoup (response.read(), "html.parser")

[126]

https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net

Communication between Threads

Crawler.enqueuelinks (soup.find_all('a'), linksToCrawl)
except URLError as e:
print ("URL {} threw this error when trying to parse: {}".format (link,
e.reason))
Crawler.errorLinks.add (link)

@staticmethod
def enqueuelinks(links, linksToCrawl) :
for link in links:

if (urljoin(Crawler.base_url, link.get ('href')) not in
Crawler.crawledLinks) :
if (urljoin(Crawler.base_url, link.get('href')) not in linksToCrawl) :

linksToCrawl.put (link.get ("href'))

Our starting point

The next thing we need to do is implement our main.py file. This will be our main entry
point for our web Crawler program.

We begin by importing all the necessary modules as well as CheckableQueue, which we’ll
be defining later on. Below our imports, we define the number of threads upon which we
want our code to execute upon. Due to the highly I/O bound nature of web Crawlers,
having multiple threads of execution allows us to perform multiple I/O-bound HTTP
requests concurrently.

Below this, we define the createCrawlers function, which is, essentially, a thread factory.
Next, we define our run function which will feature as the target of all the threads that we’ll
create. In this function, we constantly loop round and attempt to call the get () method on
our linksToCrawl queue. If the item that we retrieve from the get () is None, then we
terminate our thread, if not, then we crawl the URL by calling our static Crawler.crawl ()
function and passing in our current_thread, our URL, and the 1inksToCrawl queue.

Finally, we define our main function. This first takes in the URL that we wish to crawl--in
my example, we use https://tutorialedge.net, butIimplore you to try your own sites
and have mercy on my web server. We then instantiate an instance of our Crawler, and pass
in the base_ur1 that will constrain our Crawler from crawling other websites.

[127]

https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net

Communication between Threads

Finally, within our main function, we call our factory function, createCrawlers (), and
join our linksToCrawl queue so that our program doesn’t finish execution until
everything on the queue has been processed.

import threading

import queue

from Crawler import *

from CheckableQueue import *

THREAD_COUNT 20
linksToCrawl = CheckableQueue ()

def createCrawlers() :
for i in range (THREAD_COUNT) :
t = threading.Thread(target=run)
t.daemon = True
t.start ()

def run() :
while True:
url = linksToCrawl.get ()
try:
if url is None:
break
Crawler.crawl (threading.current_thread(), url, linksToCrawl)
except:
print ("Exception")
linksToCrawl.task_done ()

def main() :
url = input ("Website > ")
Crawler (url)
linksToCrawl.put (url)
createCrawlers ()
linksToCrawl.join ()
print ("Total Links Crawled: {}".format (len(Crawler.crawledLinks)))
print ("Total Errors: {}".format (len(Crawler.errorLinks)))

if _ _name_ == '__main__ ':
main ()

[128]

Communication between Threads

Extending the queue object

In our example, we will want to utilize the atomicity of the queue object that we’ve covered
previously. However, we also want to extend this further, as we’ll need to check if a new-
found link has already been crawled, and also that it isn’t enqueued to be crawled again in
the future.

import queue

class CheckableQueue (queue.Queue) :
def _ contains__ (self, item):
with self.mutex:
return item in self.queue

def len_ (self):

return len (self.qgqueue)

Breaking it down

So, in the preceding example, we import the queue module, and then go on to define our
CheckableQueue object that inherits from queue . Queue.

Below this, we define the __contains__ method, which will take in an item, and, utilizing
a mutex, will safely traverse the queue to check whether or not the passed-in item exists in
that queue.

We also define the __len__ function, which simply returns the length of our queue. This is
not that vital, but it can give us a nice indication as to how much work our Crawler has yet
to do at various points throughout our program.

Output

Upon running our Crawler program and inputting https://tutorialedge.net, our
program then goes off and works through each and every page of tutorialedge.net that
it can find.

Every time a new page is found, it is added to our 1inksToCrawl CheckableQueue object,
and a thread then proceeds to pick it up and index it. We then print the status of our
Crawler every time it makes a request indicating the URL that we’ve crawled, the HTTP
status that was returned, and finally, how many pages we’ve crawled in total.

$ python3.6 main.py
Website > https://tutorialedge.net
Url https://tutorialedge.net Crawled with Status: 200 : 1 Crawled In Total

[129]

https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net
https://tutorialedge.net

Communication between Threads

Url https://tutorialedge.net/series/blog/ Crawled with Status: 200 : 2
Crawled In Total

Url
https://tutorialedge.net/post/webdev/difference-between-class—id-selector-c
ss/ Crawled with Status:

200 : 3 Crawled In Total

Url https://tutorialedge.net/page/9/ Crawled with Status: 200 : 216 Crawled
In Total

Url https://tutorialedge.net/page/10/ Crawled with Status: 200 : 217
Crawled In Total

Url https://tutorialedge.net/page/11/ Crawled with Status: 200 : 218
Crawled In Total

Total Links Crawled: 218

Total Errors: 11

Future enhancements

This was just an example of a relatively simple website Crawler that could be improved in
quite a number of different ways. You could expand this into a full-blown web spider that
indexes everything it can, or you could use this to constantly monitor the health of your
sites.

One of the best ways you could, potentially, improve this is by wrapping an API around it
so that you could run this constantly on a server and test multiple websites through a web
interface.

Conclusion

Hopefully, this gave you some idea of how you can construct more and more complex
programs using some of the primitives and concepts that we’ve learned about in the last
few chapters.

In this example, we were able to construct a multithreaded website Crawler that was able to
determine the health of all the linked content on a given site. It takes in a single URL as a
starting point, parses it for every link within that page, and then proceeds to parse those. It
continues to do that until it has scanned every linked page on your website.

[130]

Communication between Threads

We've touched upon a few topics within this example, such as the following:

e Multiple threads improving the performance of our I/O-bound application: By
utilizing multiple threads, we were able to request multiple website pages
concurrently.

e Communication between multiple threads: In this example, we utilized both
Queues and Sets in order to obtain thread-safe communication. We utilized a
queue object for storing all of the URLs that we wanted to parse, and sets in order
to store the links that we parsed.

Exercise - testing your skills

As a means of testing your new-found thread communication skills, I would suggest trying
to add some of the new functionality to the web Crawler, similar to what we talked about in
the future enhancements section. One of the best ways to improve your skills when it comes
to thread-safety is, in my opinion, to get your hands dirty and dive deeper into ever more
complex problems.

Or, if this doesn't tickle your fancy, then there are a number of different applications that
you could potentially try your hand at building.

Web Server: You could try to build your own web server that is able to handle more than
one connection at a time. This poses an interesting challenge, and is quite rewarding, as it
gives you a little bit of insight into how some of the bigger Python frameworks have come
to be.

Summary

In this chapter, we looked at quite a number of different mechanisms that we can employ
when it comes to implementing communication in our multithreaded systems. We took a
deep dive into the thread-safe queue primitives that Python features natively, and how we
can implement solutions around these primitives that we can be confident with.

In the last section, we pulled all of the concepts that we covered in the previous two
chapters together, and created a useful tool for checking the health of all the links on a given
website.

In the next chapter, we’ll look in depth at the various debugging and benchmarking
techniques that one can use in order to ensure that their systems are production ready and
bug free.

[131]

Debug and Benchmark

Programming is never just about crafting a solution to a problem and leaving it once it’s
reached a somewhat finished state. More often than not, it’s also about maintaining the
existing solutions so that businesses can continue to run and make money. Maintaining
these existing solutions, typically, means doing things like debugging and adding new
features, and in order to do these things, it's important to have a working knowledge of
some of the tools that exist within the Python ecosystem.

In this chapter, we’ll be looking at the various testing strategies we can follow in order to
ensure that we can continue to add new features and perform refactoring of our code with
minimal risk to the existing features.

We'll also be diving deep into some of the tools available that allow us to gain a better
understanding of our Python applications at a far more granular level. To that end, in this
chapter, we'll be covering the following topics:

e Test strategies for your code

The Python debugger
Pdb
e The line_profiler tool.

The memory_profiler tool

By the end of this chapter, you should have an appreciation of the value of testing your
systems as well as a handle on how you can perform your own benchmarking and
profiling. Let's get started by looking at some testing strategies we can use to improve our
code.

Debug and Benchmark

Testing strategies

While this chapter might be titled Debugging and Benchmarking, I've often found that one of
the best ways to debug your codebases is to build up a range of integration tests that cover
as much of your codebase as is practical. We'll begin by looking at the main reason as to
why we test our code bases.

Why do we test?

So, we’ve gotten roughly halfway through this book, and not once have we defined any sort
of tests, or ensured that the programs that we have written are verifiably correct. Up until
this point, you've taken my word that the programs I have shown you do everything that
I've said they do. But how can we guarantee that they give us the same results every time
regardless of how many changes we make to them?

This is where your testing strategy comes into play.

In professional software development, testing your software to try and limit the bugs is one
of the most important things you can do. All great software developers implement a decent
testing strategy surrounding the systems they build, and this, actually, enables them to
make changes faster and with more confidence.

Say we had a legacy system that had 100,000 lines of code, and had no test suite and no
testing strategy implemented. How would you test that what you were doing wasn’t
breaking something further down the chain? How could you confidently say that a code
change you implemented wasn’t going to bring down X, Y, and Z other applications in
production, and, potentially, cost your business money? The answer is it’s next to
impossible; every change you make will make you nervous when the change is deployed,
and you’ll be on support for potentially catastrophic breaks 24x7.

Conversely, say you were in charge of developing a new feature on a legacy system that has
100,000 lines of code. If you made any changes to specific parts of the code base, the suite of
tests that your team has built up would catch any potentially catastrophic breaks, and you
would be confident that this new feature would be able to go into production without
impacting anything existing. This is a huge advantage for development teams that follow an
agile methodology, and iteratively implements lots of changes to their software systems. It
also means that the chance for your business to be impacted by an issue in production is far
lower, and you don’t have to worry about being on support all the time.

[133]

Debug and Benchmark

Testing concurrent software systems

One of the most important things to take away from this book is that you need to ensure
that all of your concurrent programs are tested and proven to be valid before you
implement multiple threads. If you have a single-threaded application that has a bug, and
you add multiple threads to that application, you now have multiple bugs and your life
becomes a hell of a lot more complex.

All software systems should be designed in a way that ensures their correctness before any
optimizations are implemented.

What should we test?

Now that you have some appreciation as to why we should test, it’s important to know
exactly what you should and shouldn’t be testing. One metric I've often seen used as a
quality sticker is code coverage. This, essentially, boils down to how many lines of code
your tests hit, and I've seen people boost this metric by writing almost pointless tests like
testing getters and setters on your Python objects. This is something which I would
absolutely avoid, as it provides no real value to your system.

Instead of focusing on a metric like code coverage, you should, instead, be focusing on
testing only the most important parts of your code, and then expand your tests to include
your less important parts later on. In your typical project environment, trying to test
everything could drastically decrease the time taken to reach the market, so, you need to try
and come up with a blend of testing that does just enough to ensure platform stability while
also meeting business demands.

I would recommend trying to come up with a multitude of different tests that push your
software to the limit. Intentionally try and break your logic, and ensure that the majority of
it is up to scratch.

Unit tests

A unit test can be defined as a programmatic test that tests a single logical unit of your code.
When we say unit, we, typically, mean a function within our codebase.

When it comes to writing unit tests in Python, typically, the first thing to come to mind is
the unittest module that is included by default in Python 3.6.

[134]

Debug and Benchmark

PyUnit

PyUnit is to Python what JUnit is to Java. It's the standard unit testing module that
provides, basically, everything you need in order to define an automated testing strategy.

Example

The first thing we need to do within our test program is to import the unittest module.
This will contain everything we need in order to test our simple function.

Below this import, we define our simpleFunction, which takes in a single argument and
increments it by one. Nothing overly complex, I'm sure you’ll agree, but the key point here
is that if other parts of our codebase start to rely on the output of this function, then we
need to have some form of a checking mechanism to ensure we don’t break everything if we
make some changes.

In the function code given next, we define our SimpleFunctionTest class which inherits
from unittest.TestCase. Within this, we define our setUp and tearDown functions.
These will run before and after all of the tests in our test suite.

Finally, we kick off this newly defined, but somewhat barebones, test suite by calling
unittest.main ().

import unittest

def simpleFunction (x):
return x + 1

class SimpleFunctionTest (unittest.TestCase) :

def setUp(self):
print ("This is run before all of our tests have a chance to execute")

def tearDown (self):
print ("This is executed after all of our tests have completed")

def test_simple_function(self):
print ("Testing that our function works with positive tests")
self.assertEqual (simpleFunction (2), 3)
self.assertEqual (simpleFunction (234135145145432143214321432),
234135145145432143214321433)
self.assertEqual (simpleFunction (0), 1)

if name == '__main__':
unittest.main ()

[135]

Debug and Benchmark

Output

If we were to run the preceding program, we will see that our setUp function executes first,
followed swiftly by our single test case, and finally, we see our tearDown function
executing.

It then prints out how many tests were run, how long these tests took, and finally, an
overall status:

$ python3.6 00_unittest.py

This is run before all of our tests have a chance to execute
Testing that our function works with positive tests

This is executed after all of our tests have completed

Ran 1 test in 0.000s

OK

Expanding our test suite

So, in the previous section, we looked at how we could test a very simple function with a
few positive tests. This has told us that one path in our code works the way we intended,
which is good; however, it could be far better.

In our current situation, we have no idea how our code will handle, say, a string input, a
negative value, or an object.

One of the most popular trends for writing stable production-ready code these days is to,
actually, define a range of failing tests before you’ve written any of your code. This is called
test-driven development, and it could save you a hell of a lot of time further down the road
when it comes to finding bugs and making changes with confidence.

The idea behind test-driven development is that you start by writing failing tests that
accurately test how your system should work. You then write your code until you have a
set of passing tests.

Unit testing concurrent code

Unfortunately, when it comes to unit testing concurrent code, there is no silver bullet
solution that will work for everything. You'll have to use your own discretion in order to
come up with a strategy, or strategies, that will work for the systems that you are
developing.

[136]

Debug and Benchmark

You will likely never be able to test every possible scenario of your codebase if you
introduce multiple threads. Ideally, you should try to follow a blend of different strategies
like these:

e Unit test the parts of your code that don't run on multiple threads.

e Create a test suite that probes your multithreaded code in a variety of different
ways. If possible, try and include load tests on these specific sections of code to
give you confidence that your multithreaded logic stands up to constant
pressure.

There are, of course, more strategies that you can follow, but adequately testing your
codebase is a complex blend of both science and art that hugely depends on what you are
developing and the complexities of your system.

One rule of thumb I would tend to agree with is that if your code is so complex that testing
becomes near impossible, then it could be time to rethink your initial approach, and come
up with a simpler design. This isn't always possible, but it is something I would actively
recommend you do if you have the time and resources available to do so.

Integration tests

While unit tests represent tests that ensure the correctness of a single unit of your code,
integration tests are used to ensure the correctness of multiple sections of code or different
parts of your systems.

Integration tests are a lot more complex in nature, but the reward for doing them is that you
know your system works well as a piece of a bigger puzzle. Like your unit tests, integration
tests give you that extra bit of insight to see how your system will run when synced up with
everything else.

Integration tests could be a complete chapter on their own, but, unfortunately, they are
somewhat outside the remit of this book. I do, however, encourage you to research different
integration testing strategies, as they can help to ensure that your code is less likely to
contain errors, and with a good integration testing strategy, the art of debugging becomes a
lot easier for developers.

[137]

Debug and Benchmark

Debugging
Being able to debug your code is a key skill that any software developer must be able to do.
As our systems grow ever more complex, the potential for bugs within our code grows

exponentially, and knowing the best practices for debugging in certain scenarios could save
you a substantial amount of time.

The techniques I'll be showing you next will work for both single-threaded and
multithreaded applications. For brevity, I'll only be demonstrating these techniques on
simple, single-threaded applications, but I implore you to try and become as familiar with
these tools as possible, and practice using them in multithreaded scenarios.

Make it work as a single thread

Imagine you were writing a new Al-based system that would drastically improve the sales
that your website makes, or be able to place trades that would make you a multi-millionaire
overnight. You've spent months working on this system, and you are very close to cracking
it and making it work perfectly, but you think it's running very slowly. This could be
because it’s running through millions of calculations per second in order to crank out
accurate predictions.

You may think, in this scenario, that you could optimize the code based off some of the
previous examples in this book we’ve given. You start to add multiple processes to handle
the number crunching more effectively, and see some noticeable improvements in the
speed.

However, you've not yet cracked the final problem, and, suddenly, you see that following
the logical flow of your system is exponentially harder. You have to follow the flow across
multiple threads and processes, and could, potentially, have introduced more bugs into
your system.

The moral of this theoretical story is to ensure that you get your applications fully working
in a deterministic manner before you set about increasing the complexity of the codebase,
and try to optimize things. Single-threaded programs are far easier to debug and work
through, and catching logical errors at this stage is far easier than trying to debug a system
that’s running across multiple threads in a non-deterministic manner.

[138]

Debug and Benchmark

However, sometimes, this may not be possible--you could be trying to debug a system that
has already been in production for months or even years before these bugs rear their ugly
heads. In this case, you'll have to utilize some of the following tools in order to debug these
complex systems.

Again, I will point you to the talk done by Raymond Hettinger at PyCon. He eloquently
goes over some of the reasons why you should get things working in a single-threaded
manner before adding concurrency, and overall, the talk is excellent. You can watch it at ht
tps://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s.

Pdb

Pdb or the Python Debugger is the standard debugger included in Python. It's an excellent
fallback tool for when the more standard methods of debugging are found to be lacking.
Pdb gives you complete control, and allows you to check the values of variables at runtime,
and perform other very handy tasks, such as stepping through code and setting
breakpoints.

With Pdb, we can do either postmortem debugging, which can be done through the
command-line, or we can interactively run our Pdb. If we were to work through our script
using the interactive command-line, then we’ll need to familiarize ourselves with a series of
commands such as the following;:

o 1 (list)
n (next)

¢ (continue)

s (step)
r (return)
b (break)
Python

If you ever forget these commands, then you can simply type ? while running Pdb, and you
should see a table of all the commands available to you. Quite a number of these will be
duplicates, so don’t feel overwhelmed by the number of commands it presents to you:

(Pdb) 2
Documented commands (type help <topic>):

. A table with all of the commands - not shown for brevity

[139]

https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s
https://www.youtube.com/watch?v=Bv25Dwe84g0&t=640s

Debug and Benchmark

An interactive example

Say, we wanted to start debugging this following script, and see what the values of certain
variables are during runtime. In order to do this, we could utilize the following line in order
to set a breakpoint within our code:

Import pdb; pdb.set_trace()

By setting this, we can then execute our program normally, and it will execute up until the
point that this line has been set. Upon reaching this line, the Pdb interactive terminal will
start up, and we’ll be able to utilize the various commands outlined previously in order to
debug the current state of our program.

from timer import Timer
from urllib.request import Request, urlopen
import ssl

def myFunction() :
We create this context so that we can crawl
https sites
myssl = ssl.create_default_context ()
myssl.check_hostname=False
myssl.verify_mode=ssl.CERT_NONE
with Timer () as t:
import pdb; pdb.set_trace()
req = Request ('https://tutorialedge.net', headers={'User-Agent':
'Mozilla/5.0"'})
response = urlopen(req, context=myssl)

print ("Elapsed Time: {} seconds".format (t.elapsed_secs))
myFunction ()

Let’s try executing this preceding script now. You should see that upon execution, the Pdb
kicks in and our code breaks at the point that we placed our set_trace () function. In the
preceding program, we put the set_trace () function call on line 12 of our code, so you
should see that the code breaks at line 13. In order to see the current code that we are
executing, type 1 or 1ist into (Pdb), and you should see all the code surrounding our
current line of execution.

The current line that we are executing can be determined by the —> arrow that features next
to the line number.
$ python3.6 04_timeitContext.py

> /Users/elliotforbes/Projects/Python/Chapter
06/04_timeitContext.py (13)myFunction ()

[140]

Debug and Benchmark

-> req = Request ('https://tutorialedge.net', headers={'User-Agent':
'Mozilla/5.0'})

(Pdb) 1
8 myssl = ssl.create_default_context();
9 myssl.check_hostname=False
10 myssl.verify mode=ssl.CERT_NONE
11 with Timer () as t:
12 import pdb; pdb.set_trace()
13 —> req = Request ('https://tutorialedge.net', headers={'User-Agent':
'Mozilla/5.0'})
14 response = urlopen(req, context=myssl)
15
16 print ("Elapsed Time: {} seconds".format (t.elapsed_secs))
17
18

If we then wanted to try and check on, say, the value of our http response object, we could
continue the execution of our code until the next line using the n command. This then takes
us to response = urlopen(req, context=myssl).

In order to obtain the value of our response object, we’ll have to run this line again using
the n command, and then we’ll be able to do print (response) which prints out our
response object. We can then treat the object as if we were inside our script, and call it’s
geturl () function in order to see what the value of the URL is at runtime.

$ python3.6 04_timeitContext.py

> /Users/elliotforbes/Projects/Python/Chapter
06/04_timeitContext.py (13)myFunction ()

-> req = Request ('https://tutorialedge.net', headers={'User-Agent':
'Mozilla/5.0'})

(Pdb) n

> /Users/elliotforbes/Projects/Python/Chapter
06/04_timeitContext.py (14)myFunction ()

—-> response = urlopen(req, context=myssl)

(Pdb) n

> /Users/elliotforbes/Projects/Python/Chapter
06/04_timeitContext.py (16)myFunction ()

—> print ("Elapsed Time: {} seconds".format (t.elapsed_secs))
(Pdb) print (response)

<http.client.HTTPResponse object at 0x1031e2588>

(Pdb) print (response.geturl())

https://tutorialedge.net

[141]

Debug and Benchmark

While I was still learning the language, I would constantly rerun applications after
modifications in order to try and achieve the results I wanted. However, as the programs I
worked on became bigger and took longer to execute, this simple method of debugging was
no longer sufficient.

Through learning about these excellent debugging methods, I was able to drastically
improve the speed at which I found errors, and subsequently, the speed at which I was able
to fix them, so, I would encourage you to spend a lot of time combing the documentation
and practice using the Pdb.

Official documentation

Before we go any further, I implore you to take a look at the official
documentation of Pdb for Python 3.6, as it'll show you all the different
commands you can utilize in your debugging adventures. That

documentation can be found at https://docs.python.org/3.
6/library/pdb.html.

Catching exceptions in child threads

An important point to consider when writing multithreaded applications is how do we
handle any exceptions thrown in child threads? We looked at cross-thread communication
in the previous chapter, so a logical method for catching and communicating exceptions
between child and parent threads could be to use one or more of the techniques we have
already discussed.

In this next code sample, we'll look at exactly how you can communicate any exceptions
thrown from a child thread to the parent thread. We'll be utilizing the sys module to extract
the information we need about the exception, and then place this within the confines of our
thread-safe queue primitive:

import sys
import threading
import time
import queue

def myThread (queue) :
while True:
try:
time.sleep(2)
raise Exception ("Exception Thrown In Child Thread
{}".format (threading.current_thread()))
except:
queue.put (sys.exc_info())

[142]

https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html
https://docs.python.org/3.6/library/pdb.html

Debug and Benchmark

gueue = queue.Queue ()
myThread = threading.Thread (target=myThread, args=(queue,))
myThread.start ()

while True:

try:
exception = queue.get ()
except Queue.Empty:
pass

else:

print (exception)
break

When you run this preceding Python program, you'll see that the child thread throws an
error two seconds after it starts; this error is put into the thread-safe queue object which our
parent thread then reads from. We are then able to handle the exception in any way we
wish within our parent thread.

[20:22:31] ~/Projects/Python/Chapter 06 masterfd]

$ python3.6 07_threadException.py

(<class 'Exception'>, Exception('Exception Thrown In Child Thread
<Thread (Thread-1, started 123145552101376)>',), <traceback object at
0x102320548>)

Benchmarking

When we talk about benchmarking our code, we are talking about measuring how quickly
it can perform one complete operation. For instance, take the web crawler that we built in
the last chapter--if we benchmarked this program, we would typically measure the number
of pages we could index per second.

When doing performance optimizations, we take a starting benchmark that represents the
current state of our program as a whole, and then use a combination of micro
benchmarking and profiling in order to optimize these programs and achieve higher
throughput.

[143]

Debug and Benchmark

Micro benchmarking is, essentially, decomposing our application into a series of steps, and
then, benchmarking each of these steps individually in order to determine the bottlenecks
within our code. We break, what is essentially a hard problem to optimize as a whole, into a
series of smaller problems that become easier to optimize and tune.

Ha(-d Preb)em

A b A

Source: https://nick janetakis.com/blog/breaking-down-problems-is-the-number-1-sof tware-developer-skill

So, how can we perform benchmarks upon our code? Well, thankfully, we have a number
of different options that we can leverage, which come as part of Python.

The timeit module

The timeit module in Python happens to be one such tool that we can utilize. Python, by
default, comes with this t imeit module which provides an excellent way to measure the
performance of small bits of Python code within your main application.

The timeit module gives us the flexibility to either have our benchmarks included within
our codebase, or, conversely, we can call it through the command-line and feed in sections
of code that we wish to time.

The official documentation for the t imeit module can be found at https
://docs.python.org/3/library/timeit.html.

The first method of using the t imeit module that we’ll cover will be through the
command-line interface.

[144]

https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html

Debug and Benchmark

Timeit versus time

It's worthwhile to note that there are a number of advantages when using the timeit
module as opposed to the time module. t imeit is specifically designed to obtain far more
accurate measurements of time as opposed to the time module.

With timeit, we can tell our programs to run things multiple times, and then give us a
precise measurement that is far less likely to be impacted by extraneous factors within our
OS, which we have no direct control over.

Command-line example

To quickly come to grips with the command-line t imeit module, I suggest that you try
profiling some of the code that we’ve previously featured within this book. The multitude
of samples that are available in the Concurrency with Python GitHub repo can give us a
detailed spread of how fast or slow each of the different concurrency concepts we’ve
covered truly is.

Importing timeit into your code

This next sample will cover a very simple way we can utilize the t imeit module to
measure the time taken to execute two distinct functions:

import timeit
import time

def funcl () :
print ("Function 1 Executing")
time.sleep (5)
print ("Function 1 complete")

def func2():
print ("Function 2 executing")
time.sleep (6)
print ("Function 2 complete")

start_time = timeit.default_timer ()
funcl ()
print (timeit.default_timer () - start_time)

start_time = timeit.default_timer ()
func?2 ()
print (timeit.default_timer () - start_time)

[145]

Debug and Benchmark

The preceding code takes a start, then executes each function, and then records an end time
before printing the precise difference between the two times.

It should be noted that while we’ve managed to measure the time taken for each function,
we’ve not actually utilized the t imeit module to its full potential.

import timeit
import time

def funcl():
print ("Function 1 Executing")
time.sleep (3)
print ("Function 1 complete")

def func2():
print ("Function 2 executing")
time.sleep (2)
print ("Function 2 complete")

tl = timeit.Timer ("funcl ()", setup="from _ _main__ import funcl")
times = tl.repeat (repeat=2, number=1)
for t in times:
print ("{} Seconds: ".format (t))
t2 = timeit.Timer ("func2 ()", setup="from _ _main__ import func2")
times = t2.repeat (repeat=2, number=1)
for t in times:
print ("{} Seconds: ".format (t))

In the last code, we instantiate two Timer objects, each taking in the function that they are
going to be timing as well as the imports needed in order to run them within timeit.

We then call . repeat () on these two Timer objects, passing in repeat = 2 to determine
how many times we want to time our code, and number = 1 to determine how many times
we want to run these tests.

Executing the preceding code should provide the following output:

$ python3.6 timeitCode.py
Function 1 Executing
Function 1 complete
Function 1 Executing
Function 1 complete
3.002750840038061 Seconds:
3.0001289139618166 Seconds:
Function 2 executing
Function 2 complete

[146]

Debug and Benchmark

Function 2 executing
Function 2 complete
2.0005433409824036 Seconds:
2.00145923596574 Seconds:

Utilizing decorators

Sometimes, however, manually inserting the last code can be somewhat of an overkill, and
may end up bloating your codebase when it's unnecessary. Thankfully, Python offers a
solution to this.

We can define our own decorator function, which will automatically wrap our function’s
execution with two calls to timeit.default_timer (). We'll then retrieve the differences
between these two calls and display this on the console.

import random
import timeit
import time

def timethis (func):

def function_timer (*args, **kwargs):
start_time = timeit.default_timer ()

value = func(*args, **kwargs)

runtime = timeit.default_timer () - start_time

print ("Function {} took {} seconds to run".format (func.__name__,
runtime))

return value
return function_timer

@timethis
def long_runner():
for x in range(3):
sleep_time = random.choice (range(1,3))
time.sleep(sleep_time)
if _ name_ == '_ main__ ':
long_runner ()

This preceding code will print out any function we pass into it with the exact time it took to
run it. When you run it, you should see the following output on the console:

$ python3.6 05_timeitDecorator.py
Function long_runner took 5.008787009981461 seconds to run

[147]

Debug and Benchmark

Timing context manager

Context managers are objects that define the runtime context to be established when
executing a with statement.

In Python, we can define our own Timer context manager object, which we can then use in
order to time specific sections of our code without too detrimental an impact on our
codebase.

This time, the context manager object will look something this:

from timeit import default_timer

class Timer (object) :

def _ _init_ (self, verbose=False):
self.verbose = verbose
self.timer = default_timer

def _ _enter_ (self):
self.start = default_timer ()
return self

def __exit__ (self, *args):
end = default_timer ()
self.elapsed_secs = end - self.start
self.elapsed = self.elapsed_secs * 1000 # millisecs
if self.verbose:

print ('elapsed time: %f ms' % self.elapsed)

We define a Timer class which features a constructor, an entry point, and an exit point.
Upon entry, we start the Timer, and upon exit, we calculate the elapsed time.

We can then utilize this class like this within our Python programs:

from timer import Timer
from urllib.request import Request, urlopen
import ssl

def myFunction():
We create this context so that we can crawl
https sites
myssl = ssl.create_default_context ()
myssl.check_hostname=False
myssl.verify_mode=ssl.CERT_NONE
with Timer () as t:
req = Request ('https://tutorialedge.net', headers={'User-Agent':
'Mozilla/5.0'})
response = urlopen(req, context=myssl)

[148]

Debug and Benchmark

print ("Elapsed Time: {} seconds".format (t.elapsed))
myFunction ()

Output

If we were to execute the preceding code, then you should see that it executes and then
prints out the total elapsed time taken for the request as follows:

$ python3.6 04_timeitContext.py
Elapsed Time: 0.5995572790270671 seconds

Profiling

When we talk about profiling our code, what we intend to do is measure some key
attributes about our programs, such as how much memory they use, the time complexity of
our programs, or the usage of particular instructions. It’s a vital tool in a programmer’s
arsenal when it comes to squeezing the highest performance out of their systems.

Profiling, typically, uses a technique called Dynamic program analysis to achieve its
measurements, and this involves running our programs on a real or virtual processor. The
technique goes all the way back to IBM/360 and IBM/370 platforms in the early 1970s.

cProfile

cProfile is a C-based module that comes as part of Python as standard. We can use it to
understand the following characteristics of our code:

e ncalls: This is the number of times a line/function is called throughout the
execution of our program.

e tottime: This is the total time that the line or function took to execute.

¢ percall: This is the total time divided by the number of calls.

e cumtime: This is the cumulative time spent executing this line or function.

e percall: This is the quotient of cumt ime divided by the number of primitive
calls.

e filename: lineno(function): This represents the actual line or function that we
are measuring.

Let’s take a quick look at how we can utilize the cProfile module in order to attain these
attributes on some of our previous Python samples.

[149]

Debug and Benchmark

Simple profile example

For this example, I'm going to use a program from the previous chapter, which showed us
how to append things to a double-ended queue. It’s a rather simplistic script which doesn’t
do a hell of a lot, so, it’s perfect for showing you the results without too much noise.

import collections

doubleEndedQueue collections.deque ('l

print ("Deque: {}".format (doubleEndedQue

doubleEndedQueue.append ('1l")
print ("Deque: {}".format (doubleEndedQue

doubleEndedQueue.appendleft ('6")
print ("Deque: {}".format (doubleEndedQue

When we call cProfile on the preceding progra

23456")

ue))
ue))

ue))

m, it should first run through the entire

program for us and display the output on the console before displaying the tabled stats that

it’s recorded for this particular bit of code.

$ python3.6 -m cProfile 04_appendDeque.

Deque: deque(['1', '2', '3', '4', '5"',
Deque: deque(['1', '2', '3', '4', '5"',
Deque: deque(['6', '1', '2', '3', '4"',
11 function calls in 0.000 seco
Ordered by: standard name
ncalls tottime percall cumtime pe
1 0.000 0.000 0.000
1 0.000 0.000 0.000
builtins.exec}
3 0.000 0.000 0.000
builtins.print}
1 0.000 0.000 0.000
'collections.deque' objects}
1 0.000 0.000 0.000
'collections.deque' objects}
1 0.000 0.000 0.000
' _lsprof.Profiler' objects}
3 0.000 0.000 0.000
objects}

[150]

Py

l6lJ)

'6', 111])

151, '6', lil})

nds

rcall filename:lineno (function)
0.000 04_appendDeque.py:1 (<module>)
0.000 {built-in method

0.000 {built-in method

0.000 {method 'append' of

0.000 {method 'appendleft' of
0.000 {method 'disable' of

0.000 {method 'format' of 'str'

Debug and Benchmark

As you can see, the preceding code takes next to no time to execute. We can see from this
that the method append and appendleft were called a grand total of once each, and that
they took a miniscule amount of time to execute. You can also see on the last line of our
table that we called the format function thrice, and that it again took a minimal amount of
time.

Let’s see what happens if we try using the cProfile on a slightly more advanced program
like this:

import threading
import random
import time

def myWorker () :

for i in range(5):
print ("Starting wait time")
time.sleep (random.randint (1,5))
print ("Completed Wait")

threadl = threading.Thread(target=myWorker)
thread2 threading.Thread (target=myWorker)
thread3 threading.Thread (target=myWorker)

threadl.start ()
thread2.start ()
thread3.start ()

threadl.join ()
thread2.join ()
thread3.join ()

If we were to execute cProfile on the last program, which doesn’t look too mind
bogglingly complex compared to our first program, then you should see a far bigger table
rendered out to your console.

For this particular example, the output is far more insightful, and gives us an indication of
where some of the slowdowns occur within our codebase so that we can further optimize
and improve these speeds.

5157 functi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>