

Hands-On Linux for Architects

Design and implement Linux-based IT solutions

Denis Salamanca
Esteban Flores

BIRMINGHAM - MUMBAI

Hands-On Linux for Architects
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Rohit Rajkumar
Content Development Editor: Jordina Dcunha
Technical Editor: Mamta Yadav
Copy Editor: Safis Editing
Project Coordinator: Nusaiba Ansari
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Jisha Chirayil
Production Coordinator: Jyoti Chauhan

First published: April 2019

Production reference: 1270419

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78953-410-8

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Denis Salamanca is a technology enthusiast living in Costa Rica with his fiancée and step-
son. He has been working in IT since he was 20 and has worked for the most influential and
leading companies in the industry, including VMware, Microsoft, and Hewlett-Packard
Enterprise. He currently holds more than 10 technical certifications across different fields,
such as cloud, storage, Linux, Docker, and virtualization. He has also participated in the
development of Linux certifications and is part of the CompTIA Linux Subject Matter
Experts and Technical Advisory Committee.

His love for technology has driven him to work in different positions and fields across his
career, and this has helped him to develop an understanding about the different points of
view that a technical solution requires.

Esteban Flores has been meddling with computers since he was 8 years old. His life as an
IT expert began when he lost a lot of important data belonging to his family by saying he
was "fixing the computer." He's worked for top-tier companies, including Hewlett-Packard
Enterprise, VMware, Akamai, and Microsoft. With 10 years' experience, his passion for
cutting-edge technology has driven him to work on different roles during his professional
career. Storage technologies have always been his forte, focusing mostly on performance
tuning and optimization. A photographer during his free time, he's been doing Linux-
related things since his first job, finding amazement in its flexibility to run from a small
laptop all the way up to the world's fastest supercomputers.

About the reviewer
Donald Tevault—but you can call him "Donnie"—has been working with Linux since way
back in 2006. He's a professional Linux trainer, with the LPI Level 3 - Security and the GIAC
Incident Handler certifications. Donnie is also a fellow Packt Publishing author, having
published Mastering Linux Security and Hardening as his first book. He's the brains behind
the BeginLinux Guru channel on YouTube, and works as a Linux consultant for the VDOO
IoT security company.

I'd like to thank the good folk at Packt Publishing for giving me this opportunity. I'd also
like to thank my cats for finally allowing me to get this done.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

I want to dedicate this book to my parents and my lovely fiancée, who have always supported
me and given me their best, so I can not only reach my goals, but also achieve them successfully.
Without them, nothing would have been possible. Thank you for always being there for me.

-Denis Salamanca

I would like to dedicate this book to my grandmother, who unfortunately passed away
during the development of the book and couldn't see the finished version. Even when she
didn't even understand the language or what was being described, she always asked about
its progress.

-Esteban Flores

Table of Contents
Preface 1

Section 1: High-Performance Storage Solutions with
GlusterFS
Chapter 1: Introduction to Design Methodology 8

Defining the stages of solution design and why they matter 9
Analyzing the problem and asking the right questions 10

Technical standpoint 11
Business standpoint 13
Functional standpoint 14

Considering possible solutions 15
POC 17

Implementing the solution 19
Summary 19
Questions 20
Further reading 20

Chapter 2: Defining GlusterFS Storage 21
Technical requirements 21
What is a cluster? 22

Computing a cluster 22
Storage clusters 23

What is GlusterFS? 24
SDS 25

Cost reduction 25
Scalability 25
Control 26
The market is moving toward SDS 26
Massive storage 27

Block, file, and object storage 27
Block storage 28
File storage 30
Object storage 31

Why choose GlusterFS? 34
GlusterFS features 35

Commodity hardware – GlusterFS runs on pretty much anything 35
GlusterFS can be deployed on private, public, or hybrid clouds 35
No single point of failure 35
Scalability 36
Asynchronous geo-replication 36

Table of Contents

[ii]

Performance 36
Self-healing 36
Flexibility 37
Remote direct memory access (RDMA) 37

Gluster volume types 37
Distributed 38
Replicated 38
Distributed replicated 39
Dispersed 40
Distributed dispersed 40

The need for highly redundant storage 41
Disaster recovery 41

RTO 42
RPO 42
Synchronous replication 43
Asynchronous replication 43

The need for high performance 43
Parallel I/O 44
Summary 45
Questions 45
Further reading 46

Chapter 3: Architecting a Storage Cluster 47
Technical requirements 47
GlusterFS compute requirements 48

RAM 48
Why is cache important? 48

CPU 49
Cloud considerations 49

How much space do you need? 50
GlusterFS volume type 50

Distributed 50
Replicated 51
Dispersed 51

Space required by the application 51
Projected growth 52

Performance considerations 52
Throughput 53
Latency 53
IOPS 53
I/O size 54
GlusterFS performance 54

Volume type 54
Brick layout 55
Number of nodes 56
Tuning parameters 56

The best approach for high availability 56

Table of Contents

[iii]

Replicated 57
Dispersed 57
Geo-replication 58

How the workload defines requirements 59
Documentation 59
System tools 60
File type and size 60
Ask the right questions 61

Summary 62
Questions 63
Further reading 63

Chapter 4: Using GlusterFS on the Cloud Infrastructure 64
Technical requirements 64
Setting up the bricks used for backend storage 65

Azure deployment 65
ZFS as the backend for the bricks 67

Installing ZFS 68
Configuring the zpools 68
Adding the ZFS cache to the pool (optional) 70

Installing GlusterFS on the nodes 72
Installing the packages 72
Creating the trusted pool 73

Creating the volumes 74
Creating a dispersed volume 74
Mounting the volume 75

Optimizing performance 76
GlusterFS tuning 76
ZFS 76

ARC 76
L2ARC 77

Summary 78
Questions 78
Further reading 79

Chapter 5: Analyzing Performance in a Gluster System 80
Technical requirements 81
An overview of the implementation 81

An overview of the cluster 81
Performance testing 82

Performance theory 82
Performance tools 83

The ZFS zpool iostat command 83
iostat 84
The FIO tester 86

Availability testing 89

Table of Contents

[iv]

Scaling 89
Summary 90
Questions 91
Further reading 91

Section 2: High-Availablility Nginx Web Application Using
Kubernetes
Chapter 6: Creating a Highly Available Self-Healing Architecture 93

Microservices 93
Creating container images 97

FROM 98
LABEL 99
RUN 99
ENV 100
COPY 100
EXPOSE 101
CMD and ENTRYPOINT 102

Building container images using best practices 106
Container orchestration 110
Kubernetes 111
Summary 112
Questions 113
Further reading 113
Bibliography/sources 114

Chapter 7: Understanding the Core Components of a Kubernetes
Cluster 115

The Kubernetes control plane 115
The kube-apiserver 116
The kube-controller-manager 117
The kube-scheduler 117
The etcd database 117

Kubernetes worker nodes 118
Container runtime 118
The kubelet 119
The kube-proxy 119

Kubernetes objects 120
Pods – the basis of Kubernetes 122
Deployments 124
Services 127
Kubernetes and persistent storage 129

Volumes 130
Persistent Volumes, Persistent Volume Claims, and Storage Classes 131

Summary 133

Table of Contents

[v]

Questions 134
Further reading 134

Chapter 8: Architecting a Kubernetes Cluster 135
Kube-sizing 135

etcd considerations 136
kube-apiserver sizing 137
Worker nodes 137
Load balancer considerations 138

Storage considerations 139
Network requirements 140

Kubernetes DNS-based service discovery 141
Customizing kube objects 143

Namespacing 143
Limiting namespace resources 144
Customizing pods 146

Summary 150
Questions 151
Further reading 151

Chapter 9: Deploying and Configuring Kubernetes 152
Infrastructure deployment 152

Installing Azure CLI 153
Configuring Azure CLI 154

High-level design overview 154
Provisioning network resources 155
Provisioning compute resources 156
Preparing the management VM 159

Generating certificates 160
Certificate authority 160
Client certificates 162
Control plane certificates 164

Sending our certificates home 168
Kubeconfigs 168

Installing kubectl 169
Kube-controller-manager 169
Kube-scheduler 170
Kubelet configs 171
Kube-proxy 171
Moving configs around 172

Installing the control plane 173
ETCD 173

Installing etcd 173
Encrypting etcd data 175

Installing the Kubernetes controller binaries 176
Kube-apiserver 176
Kube-controller-manager 178
Kube-scheduler 179

Starting the control plane 180

Table of Contents

[vi]

Setting RBAC permissions for kubelets. 181
Cluster role 182
Cluster role binding 182

Load-balancer setup 183
Creating the load-balancer 183

Azure load-balancer 183
The backend pool 183

Health probes 186
Load-balancing rules 189

Worker node setup 190
Downloading and preparing binaries 191

Adding the Kubernetes repository 191
Installing dependencies and kubectl 191
Downloading and storing worker binaries 192

Containerd setup 193
The kubelet 194
kube-proxy 195
Starting services 196

Kubernetes networking 197
Getting the nodes ready 197
Configuring remote access 197
Installing Weave Net 198

DNS server 198
Managing Kubernetes on the cloud 199

Summary 200
Questions 201
Further reading 201
Bibliography/sources: 201

Section 3: Elastic Stack
Chapter 10: Monitoring with the ELK Stack 203

Technical requirements 204
Understanding the need for monitoring 204

Decisions made through historical data 205
Proactively detect problems 206
Understand environment performance 206
Plan for budget 207

Centralized logs 208
Elasticsearch overview 210

Fast 210
Scalable 210
Highly available 210

Logstash 211
Grok 211
Custom patterns 212

Kibana brings everything together 212

Table of Contents

[vii]

Summary 214
Questions 215
Further reading 215

Chapter 11: Designing an ELK Stack 216
Technical requirements 216
Elasticsearch CPU requirements 217

CPU count 217
CPU speed 218
CPU performance impact 218

Startup 218
Index per second 218
Search latency 219

Recommendations 220
Test/dev 220
Production 220

Memory sizing for Elasticsearch 221
Filesystem cache 221
Disable swap 222
Undersizing memory 223

Unable start 223
OOM killer 225

Recommendations 225
Storage configuration for Elasticsearch 226

Capacity 226
Performance 227
Considerations 227

Logstash and Kibana requirements 228
Logstash 228
Kibana 228

Summary 229
Questions 230
Further reading 230

Chapter 12: Using Elasticsearch, Logstash, and Kibana to Manage
Logs 231

Technical requirements 231
Deployment overview 232
Installing Elasticsearch 234

The RPM repository 234
The Elasticsearch data directory 235

Partitioning the disk 235
Formatting the filesystem 236
Persistent mounting using fstab 237

Configuring Elasticsearch 238
Elasticsearch YAML 238

Table of Contents

[viii]

Cluster name 239
Discovery settings 239
Node name 240
Network host 241
Path settings 241

Starting Elasticsearch 242
Adding an Elasticsearch node 242

Installing Logstash and Kibana 244
Configuring Logstash 245

Logstash YAML 245
Logstash pipelines 247

Configuring Kibana 250
Kibana YAML 250
The coordinating node 250

Starting Logstash and Kibana 251
What are Beats? 252

Filebeat 253
Metricbeat 253

Let's not skip a beat – installing Beats 254
Configuring Beats clients 254

Filebeat YAML 254
Metricbeat YAML 257

Next steps 259
Summary 259
Questions 260
Further reading 260

Section 4: System Management Using Saltstack
Chapter 13: Solving Management Problems with Salty Solutions 262

Centralizing system management 262
New technologies and system management 263
Recovering control of our own infrastructure 264
Centralized tools to disperse problems 264
Coding for a desired state 265

Understanding NaCl 267
Introducing Salt 267
The SaltStack platform 269
Salt capabilities 270

Remote command execution modules 271
The sys module 272
The pkg module 273
The test module 274

Salt states 274
Grains of Salt 275
Salt pillars 276

Table of Contents

[ix]

Summary 277
Questions 277
Further reading 278

Chapter 14: Getting Your Hands Salty 279
Hands-on with Salt 279

Scenario 279
Terraforming our initial infrastructure 280

Setting up Terraform 280
Creating IaC 282

Installing Salt with package managers 294
Installing CentOS yum 294
Ubuntu apt-getting Salt 296
Installing Salt via the bootstrap script 298
Master and minion handshake 298
Working with Salt 303

Creating WebServer formulas 303
Creating load-balancing formulas 310

Summary 312

Chapter 15: Design Best Practices 314
Designing for the occasion 314
On-premises environments 316

Bare metal server 316
Virtual machines 317

Cloud environments 318
The journey to the cloud 318

Assessing 319
Migrating 320

Lift and shift 320
Refactor 321
Rearchitecting 321
Rebuild 322
Optimizing 322

DevOps 323
Monolithic waterfalls 324
Agile solutions to monolithic problems 325
Continuous culture for CI/CD 326

Summary 330
Questions 330
Further reading 331

Assessments 332

Other Books You May Enjoy 340

Index 343

Preface
Welcome to Hands-On Linux For Architects, an in-depth look at what goes through the mind
of an architect when dealing with Linux-based solutions. This book will help you achieve
the level of knowledge required to architect and implement different IT solutions.

Additionally, it will show you the flexibility of open source software by demonstrating
some of the most widely used products of the industry, presenting you with a solution and
analyzing every aspect, from the very beginning of the design phase, all the way up to the
implementation stage, where we will build, from the ground up, the infrastructure
proposed in our design.

Delve inside the technical aspects of designing a solution, where we dissect every aspect
with in-depth details to implement and tune open source Linux-based solutions.

Who this book is for
This book is aimed at Linux system administrators, Linux support engineers, DevOps
engineers, Linux consultants, and any other type of open source technology professional
looking to learn or expand their knowledge in architecting, designing, and implementing
solutions based on Linux and open source software.

What this book covers
Chapter 1, Introduction to Design Methodology, kicks off the book by analyzing a proposed
problem, as well as what the correct questions are to ask when designing a solution, in
order to extract the necessary information to define the correct problem statement.

Chapter 2, Defining GlusterFS Storage, goes through what GlusterFS is and defines a storage
cluster.

Chapter 3, Architecting a Storage Cluster, explores the design aspects of implementing a
clustered storage solution using GlusterFS and its various components.

Chapter 4, Using GlusterFS on the Cloud Infrastructure, explains the configuration necessary
to implement GlusterFS on the cloud.

Preface

[2]

Chapter 5, Analyzing Performance in a Gluster System, details the previously configured
solution, explaining the configurations put in place, as well as testing the implementation
for performance.

Chapter 6, Creating a Highly Available Self-Healing Architecture, talks about how the IT
industry has evolved from using monolithic applications into cloud-native, containerized,
highly available microservices.

Chapter 7, Understanding the Core Components of a Kubernetes Cluster, explores the core
Kubernetes components, giving a view of each one and how they can help us solve our
customer's problem.

Chapter 8, Architecting a Kubernetes Cluster, dives into the requirements and configurations
for a Kubernetes cluster.

Chapter 9, Deploying and Configuring Kubernetes, goes into the actual installation and
configuration of a Kubernetes cluster.

Chapter 10, Monitoring with the ELK Stack, explains what each component of the Elastic
Stack is and how they're connected.

Chapter 11, Designing an ELK Stack, covers the design considerations when deploying an
Elastic Stack.

Chapter 12, Using Elasticsearch, Logstash, and Kibana to Manage Logs, describes the
implementation, installation, and configuration of the Elastic Stack.

Chapter 13, Solving Management Problems with Salty Solutions, discusses the business needs
to have a centralized management utility for infrastructure, such as Salt.

Chapter 14, Getting Your Hands Salty, examines how to install and configure Salt.

Chapter 15, Design Best Practices, takes you through some of the different best practices
needed to design a resilient and failure-proof solution.

To get the most out of this book
Some basic Linux knowledge is needed, as this book does not explain the basics of Linux
management.

Preface

[3]

The examples given in this book can be implemented either in the cloud or on-premises.
Some of the setups were deployed on Microsoft's cloud platform, Azure, so having an
account with Azure to follow the examples is recommended. Azure does offer a free trial to
evaluate and test deployments before committing—more information can be found at
https:/​/​azure.​microsoft. ​com/ ​free/ ​.
Additionally, more information on Azure's offerings can be found at: https:/ ​/​azure.
microsoft.​com.

Since the book entirely revolves around Linux, having a way to connect to the internet is a
requirement. This can be done from a Linux desktop (or laptop), a macOS Terminal, or
Windows Subsystem for Linux (WSL).

All of the examples illustrated in this book make use of open source software that can be
easily obtained from either the available repositories or from their respective sources,
without the need of a paying license.

Be sure to drop by the projects pages to show some love—a lot of effort goes into
developing them:

https:/​/ ​github. ​com/ ​gluster/ ​glusterfs

https:/​/ ​github. ​com/ ​zfsonlinux/ ​zfs

https:/​/ ​github. ​com/ ​kubernetes/ ​kubernetes

https:/​/ ​github. ​com/ ​elastic/ ​elasticsearch

https:/​/ ​github. ​com/ ​saltstack/ ​salt

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

https://azure.microsoft.com/free/
https://azure.microsoft.com/free/
https://azure.microsoft.com/free/
https://azure.microsoft.com/free/
https://azure.microsoft.com/free/
https://azure.microsoft.com/free/
https://azure.microsoft.com/free/
https://azure.microsoft.com/free/
https://azure.microsoft.com/free/
https://azure.microsoft.com/free/
https://azure.microsoft.com/free/
https://azure.microsoft.com/free/
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com/free/
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/zfsonlinux/zfs
https://github.com/zfsonlinux/zfs
https://github.com/zfsonlinux/zfs
https://github.com/zfsonlinux/zfs
https://github.com/zfsonlinux/zfs
https://github.com/zfsonlinux/zfs
https://github.com/zfsonlinux/zfs
https://github.com/zfsonlinux/zfs
https://github.com/zfsonlinux/zfs
https://github.com/zfsonlinux/zfs
https://github.com/zfsonlinux/zfs
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://github.com/saltstack/salt
https://github.com/saltstack/salt
https://github.com/saltstack/salt
https://github.com/saltstack/salt
https://github.com/saltstack/salt
https://github.com/saltstack/salt
https://github.com/saltstack/salt
https://github.com/saltstack/salt
https://github.com/saltstack/salt
https://github.com/saltstack/salt
https://github.com/saltstack/salt
http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

[4]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​-​Hands- ​On- ​Linux- ​for- ​Architects. In case there's an update to the code,
it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​9781789534108_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The two key points in this command are the address-prefix flag and
the subnet-prefix flag."

A block of code is set as follows:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: gluster-pvc
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi

https://github.com/PacktPublishing/-Hands-On-Linux-for-Architects
https://github.com/PacktPublishing/-Hands-On-Linux-for-Architects
https://github.com/PacktPublishing/-Hands-On-Linux-for-Architects
https://github.com/PacktPublishing/-Hands-On-Linux-for-Architects
https://github.com/PacktPublishing/-Hands-On-Linux-for-Architects
https://github.com/PacktPublishing/-Hands-On-Linux-for-Architects
https://github.com/PacktPublishing/-Hands-On-Linux-for-Architects
https://github.com/PacktPublishing/-Hands-On-Linux-for-Architects
https://github.com/PacktPublishing/-Hands-On-Linux-for-Architects
https://github.com/PacktPublishing/-Hands-On-Linux-for-Architects
https://github.com/PacktPublishing/-Hands-On-Linux-for-Architects
https://github.com/PacktPublishing/-Hands-On-Linux-for-Architects
https://github.com/PacktPublishing/-Hands-On-Linux-for-Architects
https://github.com/PacktPublishing/-Hands-On-Linux-for-Architects
https://github.com/PacktPublishing/-Hands-On-Linux-for-Architects
https://github.com/PacktPublishing/-Hands-On-Linux-for-Architects
https://github.com/PacktPublishing/-Hands-On-Linux-for-Architects
https://github.com/PacktPublishing/-Hands-On-Linux-for-Architects
https://github.com/PacktPublishing/-Hands-On-Linux-for-Architects
https://github.com/PacktPublishing/-Hands-On-Linux-for-Architects
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789534108_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789534108_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789534108_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789534108_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789534108_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789534108_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789534108_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789534108_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789534108_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789534108_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789534108_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789534108_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789534108_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789534108_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789534108_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789534108_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789534108_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789534108_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789534108_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789534108_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789534108_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789534108_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789534108_ColorImages.pdf

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 SHELL ["/bin/bash", "-c"]
 RUN echo "Hello I'm using bash"

Any command-line input or output is written as follows:

yum install -y zfs

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"To confirm that data is being sent to the cluster, go to Discover on the kibana screen"

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Preface

[6]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/
http://www.packt.com/

1
Section 1: High-Performance

Storage Solutions with
GlusterFS

In this section, the reader will be able to understand the decisions needed to be made when
deploying a high-performance storage solution using GlusterFS.

This section contains the following chapters:

Chapter 1, Introduction to Design Methodology
Chapter 2, Defining GlusterFS Storage
Chapter 3, Architecting a Storage Cluster
Chapter 4, Using GlusterFS on the Cloud Infrastructure
Chapter 5, Analyzing Performance in a Gluster System

1
Introduction to Design

Methodology
These days, IT solutions require increased performance and data availability, and designing
a robust implementation that meets these requirements is a challenge that many IT experts
have to go through every day.

In this chapter, you will learn the basics, from a bird's-eye view of architecting IT solutions
in any type of environment, to virtualized infrastructure, bare metal, and even the public
cloud, as basic concepts of solution design apply to any environment.

You will explore the following subjects:

Defining the stages of solution design and why they matter
Analyzing the problem and asking the right questions
Considering possible solutions
Implementing the solution

Fully understanding the aspects that you need to consider when architecting a solution is
crucial for the success of the project, as this will determine which software, hardware, and
configuration will help you achieve the desired state that meets the needs of your
customers.

Introduction to Design Methodology Chapter 1

[9]

Defining the stages of solution design and
why they matter
Like many things, designing solutions is a step-by-step process that not only involves:
technical aspects, nor necessarily technical parties. Usually, you will be engaged by an
account manager, project manager, or, if you are lucky, a CTO, who understands the
technical part of the requirements. They are looking for an expert who can help them
deliver a solution to a customer. These requests usually do not contain all the information
you will need to deliver your solution, but it's a start to understand what your goal is.

For example, imagine that you receive an email from a project manager with the following
statement.

We require a solution that can sustain at least 10,000 website hits and will stay available
during updates as well as survive outages. Our budget is considerably low, so we need to
spend as little as possible, with little to no upfront cost. We're also expecting this to gain
momentum during the project's life cycle.

From the previous statement, you can only get a general idea of what is required, but no
specifics have been given. So, you only know basic information: we require a solution that
can sustain at least 10,000 website hits, which, for a design, is not good enough, as you
require as much information as possible to be able to resolve the problems exposed by your
customer. This is where you have to ask for as many details as possible to be able to
provide an accurate set of proposals for your customer, which will be the first impression
your customer will have of the project. This part is critical, as it will help you understand
whether you understand your customer's vision.

It is also important to understand that you need to deliver several different solutions for the
customer, as the customer is the one who decides which one fits their business needs the
most. Remember that each solution has its own advantages and disadvantages. After the
customer decides which way to go, you will have what is necessary to move on to the
implementation of your proposal, which can always trigger more challenges. It will require,
more often than not, some final customized tuning or changes that were not considered in
the initial Proof of Concept (POC).

Introduction to Design Methodology Chapter 1

[10]

From our previous analysis, you can see four well-defined stages of the process that you
need to follow in order to reach the final delivery illustrated in the following diagram:

There are many more stages and design methodologies that we could cover, but since
they're not in the scope of this book, we will be focusing on these four general stages to help
you understand the process in which you will be architecting your solutions.

Analyzing the problem and asking the right
questions
After getting the initial premise, you need to break it into smaller pieces in order to
understand what is required. Each piece will raise different questions that you will ask
your customers later. These questions will help fill in the gaps for your POC, ensuring that
your questions cover all business needs from all view standpoints: the business standpoint,
the functional standpoint, and, finally, the technical standpoint. One good way to keep
track of the questions that arise and which business need they will be resolving is to have a
checklist that asks which standpoint the question is being asked from and what is resolved
or answered.

It is also important to note that, as questions become answers, they can also come with
constraints or other obstacles that will also need to be addressed and mentioned during the
POC stage. The customer will have to agree with them and will be decisive when selecting
the final solution.

From our previous example, you can analyze the premise by dissecting it into standpoints.

We require a solution that can sustain at least 10,000 website hits and will stay available
during updates as well as survive outages. Our budget is considerably low, so we need to
spend as little as possible, with little to no upfront cost. We're also expecting this to gain
momentum during the project's life cycle.

Introduction to Design Methodology Chapter 1

[11]

Technical standpoint
From this perspective, we will analyze all technical aspects of the premise – anything that
you will need to provide the initial technical requirements of your solution.

We will analyze it in the following way:

You can understand, from the premise, that your customer needs some kind of
solution that can sustain some amount of website hits, but you can't be certain if
the web server is already set up, and whether the customer only needs a load
balancing solution. Alternatively, maybe the customer needs both, a web server,
that is NGINX, Apache, or something of that sort, and the load balancing
solution.
The customer mentions at least 10,000 hits to their website, but they didn't
mention if these hits are concurrent per second, daily, weekly, or even monthly.
You can also see that they need to stay available during updates and be able to
continue serving their website if the company has an outage, but all these
statements are very general, since availability is measured in 9s. The more 9s you
have, the better (in reality, this is a percentage measurement of the amount of
time during the year; a 99% availability means that there can only be 526 minutes
of downtime per year). Outages are also very hard to predict, and it's almost
impossible to be able to say that you will never have an outage, therefore, you
need to plan for it. You have to have a Recovery point objective (RPO) and
a Recovery time objective (RTO) for your solution in case of a disaster. The
customer didn't mention this, and it is crucial to understand how much time a
business can sustain an outage.
When it comes to budget, this is usually from a business perspective, but the
technical aspects are affected directly by it. It looks like the budget in the project
is tight, and the customer wants to spend as little as possible on their solution,
but they're not mentioning exact numbers, which you will require in order to fit
your proposals to it. Little to no upfront cost? What does this mean? Are we
repurposing the existing resources and building a new solution? How can we
implement a design with no upfront cost? One way to overcome low budgets, or
no upfront costs, at least in software, is to utilize open source software (OSS),
but this is something that we need to ask the customer.

Introduction to Design Methodology Chapter 1

[12]

Gaining momentum can only mean that they are predicting that their userbase
will grow eventually, but you need an estimate of how much they predict this
will grow and how fast, as this will imply that you have to leave the solution
ready to be scaled vertically or horizontally. Vertically, by leaving space to
increase the resources eventually and take into account the business's
procurement process if you need to buy more resources such RAM, CPU, or
storage. Horizontally will also involve a procurement process and a considerable
amount of time to integrate a new node/server/VM/container into the solution.
None of these are included in the premise, and it's vital information.

Here, we have a comparison of horizontal and vertical scaling. Horizontal scaling adds
more nodes, while vertical scaling adds more resources to the existing nodes:

The following is a list of example questions that you could ask to clarify the gray areas:

Is this solution for a new/existing website or web server?
When you say 10,000 hits, are these concurrent per second or is it
daily/weekly/monthly?
Do you have any estimates or current data of how large your userbase is?
Considering that the budget is low, can we use OSS?
Do you have the technical resources to support the solution in case we use OSS?
Do you have any sort of update infrastructure in place, or version control
software implemented already?
When you say little to no upfront cost, does this mean that you already have
hardware, resources, or infrastructures (virtual or cloud) available that we could
recycle and/or reuse for our new solution?

Introduction to Design Methodology Chapter 1

[13]

Are there any disaster recovery sites in place that we could use to provide high
availability?
If your userbase grows, will this generate more storage requirements or only
compute resources?
Do you plan on performing any backups? What is your backup scheme?

From the technical perspective, once you start designing your POCs more questions will
arise based on the software or hardware that will be used in the solution. You will need to
know how they fit or what is needed for them to adjust to the customer's existing
infrastructure, if any.

Business standpoint
Here, we will be analyzing the statement from a business perspective, taking into account
all the aspects that can affect our design:

A main requirement is performance, as this affects how many hits the solution
can sustain. Since this is one of the main objectives of the solution, it needs to be
sized to meet business expectations.
Budget seems to be the main constraint that will affect the project's design and
scope.
There is no mention of the actual available budget.
Availability requirements affect how the business should react in case of an
outage. As there's no specific service level agreement (SLA), this needs to be
clarified to adjust to the business needs.
A main concern is the upfront cost. This can be lowered considerably by utilizing
OSS, as there are no licensing fees.
It has been mentioned that the solution needs to remain up during maintenance
operations. This might indicate that the customer is willing to invest in
maintenance operation for further upgrades or enhancements.
The statement—we're also expecting this to gain momentum, indicates that the
solution will change in the amount of resources needed, thus directly affecting
the amount of money consumed by it.

Introduction to Design Methodology Chapter 1

[14]

The following are questions to ask when clarifying doubts from a business standpoint:

Based on the performance requirements, what is the business impact when
performance goes below the expected baseline?
What is the actual budget for the project?
Does the budget take into account maintenance operations?
Considering the possible unplanned outages and maintenance, how much time
exactly can your website be down per year? Will this affect business continuity?
If an outage happens, how much time can the application tolerate not receiving
data?
Do we have data of any sort from which we can estimate how much your
userbase will grow?
Do you have any procurement process in place?
How much time does it take to approve the acquisition of new hardware or
resources?

Functional standpoint
In the functional standpoint, you will be reviewing the functional side of the solution:

You know that the customer requires 10,000 hits, but what types of user will be
using this website?
You can see that it requires 10,000 hits, but the premise does not specify what the
user will be doing with it.
The premise states that they need the solution to be available during updates. By
this, we assume that the application will be updated, but how?

To clarify the gaps in the functional standpoint, we can ask for the following information:

What type of users will be using your application?
What will your users be doing in your website?
How often will this application be updated or maintained?
Who will be maintaining and supporting this solution?
Will this website be for internal company users or external users?

Introduction to Design Methodology Chapter 1

[15]

It is important to note that functional standpoint overlaps considerably with the business
standpoint, as they are both trying to address similar problems.

Once we have gathered all the information, you can build a document summarizing the
requirements of your solution; ensure that you go through it with the customer and that
they agree to what is required to consider this solution complete.

Considering possible solutions
Once all the doubts that arose during the initial premise have been cleared, you can move
on and construct a more elaborate and specific statement that includes all the information
gathered. We will continue working with our previous statement and, assuming that our
customer responded to all of our previous questions, we can construct a more detailed
statement, as follows.

We require a new web server for our financial application that can sustain at least 10,000
web hits per second from approximately 2,000 users, alongside another three applications
that will consume its data. It will be capable of withstanding maintenance and outages
through the use of high-availability implementations with a minimum of four nodes. The
budget for the project will be $20,000 for the initial implementation, and the project will
utilize OSS, which will lower upfront costs. The solution will be deployed in an existing
virtual environment, whose support will be handled by our internal Linux team, and
updates will be conducted internally by our own update management solution. The
userbase will grow approximately every two months, which is within our procurement
process, allowing us to acquire new resources fairly quickly, without creating extensive
periods of resource contention. User growth will impact mostly computer resources.

As you can see, it is a more complete statement on which you can already start working.
You know that it will utilize an existing virtual infrastructure. OSS is a go, high availability
is also required, and it will be updated via an update and version control infrastructure that
it is already in place, so, possibly, only monitoring agents will be needed for your new
solution.

Introduction to Design Methodology Chapter 1

[16]

A very simplified overview with not many details of the possible design is as follows:

Introduction to Design Methodology Chapter 1

[17]

In the diagram, you can see that it's a web server cluster that provides high availability and
load balancing to the clients and applications that are consuming the solution.

As you are already utilizing much of the existing infrastructure, there are fewer options for
possible POC, so this design will be very straightforward. Nonetheless, there are certain
variables that we can play with to provide our customer with several different options. For
instance, for the web server we can have one solution with Apache and another with
NGINX, or a combination of both, with Apache hosting the website and NGINX providing
load balancing.

POC
With a complete statement and several options already defined, we can proceed to provide
a POC based on one of the possible routes.

A POC is the process of demonstrating an idea or method, in our case a solution, with the
aim of verifying a given functionality. Additionally, it provides a broad overview of how
the solution will behave within an environment, allowing further testing to be able to fine-
tune for specific workloads and use cases.

Any POC will have its advantages and disadvantages, but the main focus is for customers
and architects to explore the different concepts of the solution of an actual working
environment. It is important to note that you, as an architect, have a heavy influence in
which POC will be used as a final solution, but the customer is the one who chooses which
constraints and advantages suit their business better.

With the example of choosing an NGINX as a load balancer to provide high availability and
performance improvements to Apache web servers hosting the application files, we can
implement a working solution with scaled-down resources. Instead of deploying four
nodes for the final solution, we can deploy just two to demonstrate the load-balancing
features as well as provide a practical demonstration of high availability by purposely
bringing one of them down.

Introduction to Design Methodology Chapter 1

[18]

Here's a diagram describing the previous example:

This does not require the full four-node cluster that was envisioned during the design
phase, as we're not testing the full performance of the entire solution. For performance or
load testing, this can be done by having less concurrent users provide a close to actual
workload for the application. While having fewer users will never provide exact
performance numbers for the full implementation, it delivers a good baseline with data that
can later be extrapolated to provide an approximation of what the actual performance will
be.

Introduction to Design Methodology Chapter 1

[19]

As an example for performance testing, instead of having 2,000 users load the application,
we can have a quarter of the userbase and half of the resources. This will considerably
decrease the amount of resources needed, while providing enough data to be able to
analyze the performance of the final solution at the same time.

Also, in the information gathering stage, a document that has the different
POC documented is a good idea, as it can serve as a starting point if the customer wants to
construct a similar solution in the future.

Implementing the solution
Once the customer has selected the optimal route based on their business needs, we can
start constructing our design. At this stage, you will be facing different obstacles, as
implementing the POC in a development or QA environment might vary from production.
Things that worked in QA or development may now fail in production, and different
variables might be in place; all these things only arise at the implementation stage, and you
need to be aware that, in a worst-case scenario, it might mean changing a large amount of
the initial design.

This stage requires hands-on work with the customer and the customer's environment, so it
is of utmost importance to ensure that the changes you make won't affect the current
production. Working with the customer is also important, because this will familiarize their
IT team with the new solution; this way, when the sign-off is done, they will be familiar
with it and its configuration.

The creation of an implementation guide is one of the most important parts at this stage,
since it will document each step and every minor configuration made to the solution. It will
also help in the future in case an issue appears and the support team needs to know how it
was configured in order to be able to solve the problem.

Summary
Designing a solution requires different approaches. This chapter went through the basics of
the design stages and why each of them matters.

The first stage goes through analyzing the problem the design aims to solve, while at the
same time asking the right questions. This will help define the actual requirements and
narrow the scope to the real business needs. Working with the initial problem statement
will impose problems further down the road, making this stage extremely important, as it
will prevent unnecessarily going back and forth.

Introduction to Design Methodology Chapter 1

[20]

Then, we considered the possible paths or solutions we can take to solve the already
defined problem. With the right questions asked in the previous stage, we should be able to
construct several options for the customer to select, and can later implement a POC.
POCs help both customers and architects understand how the solution will behave in an
actual working environment. Normally, POCs are scaled-down versions of the final
solution, making implementation and testing more agile.

Finally, the implementation stage deals with the actual configuration and hands-on aspects
of the project. Based on the findings during the POC, changes can be made to accommodate
the specifics of each infrastructure. Documentation delivered through this stage will help
align parties to ensure that the solution is implemented as expected.

In the next chapter, we will jump into solving a problem that affects every type of
implementation, regardless of cloud provider, software, or design, showing the necessity of
high-performance redundant storage.

Questions
What are the stages of a solution design?1.
Why is it important to ask the right questions when designing a solution?2.
Why should we deliver several design options?3.
What questions can be asked to obtain information that can help design a better4.
solution?
What is a POC?5.
What happens in the implementation stage?6.
How does the POC helps with the final implementation?7.

Further reading
In subsequent chapters, we'll go through the process of creating solutions for specific
problems. As these solutions will be implemented in Linux, we recommend reading
Fundamentals of Linux by Oliver Pelz https:/ ​/​www. ​packtpub. ​com/ ​networking- ​and- ​servers/
fundamentals-​linux.

https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux

2
Defining GlusterFS Storage

Every day, applications require faster storage that can sustain thousands of concurrent I/O
requests. GlusterFS is a highly-scalable, redundancy filesystem that can deliver high-
performance I/O to many clients simultaneously. We will define the core concept of a
cluster and then introduce how GlusterFS plays an important role.

In the preceding chapter, we went through the different aspects of designing solutions to
provide high availability and performance to applications that have many requirements. In
this chapter, we'll go through solving a very specific problem, that is, storage.

In this chapter, we will cover the following topics:

Understanding the core concept of a cluster
The reason for choosing GlusterFS
Explaining software-defined storage (SDS)
Exploring the differences between file, object, and block storage
Explaining the need for high performance and highly available storage

Technical requirements
This chapter will focus on defining GlusterFS. You can refer to the project's home page
at https:/​/​github. ​com/ ​gluster/ ​glusterfs or https:/ ​/​www. ​gluster. ​org/ ​.

Additionally, the project's documentation can be found at https:/ ​/ ​docs. ​gluster. ​org/ ​en/
latest/​.

https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://www.gluster.org/
https://www.gluster.org/
https://www.gluster.org/
https://www.gluster.org/
https://www.gluster.org/
https://www.gluster.org/
https://www.gluster.org/
https://www.gluster.org/
https://www.gluster.org/
https://www.gluster.org/
https://docs.gluster.org/en/latest/
https://docs.gluster.org/en/latest/
https://docs.gluster.org/en/latest/
https://docs.gluster.org/en/latest/
https://docs.gluster.org/en/latest/
https://docs.gluster.org/en/latest/
https://docs.gluster.org/en/latest/
https://docs.gluster.org/en/latest/
https://docs.gluster.org/en/latest/
https://docs.gluster.org/en/latest/
https://docs.gluster.org/en/latest/
https://docs.gluster.org/en/latest/
https://docs.gluster.org/en/latest/

Defining GlusterFS Storage Chapter 2

[22]

What is a cluster?
We can leverage the many advantages of SDS, which allows for easy scalability and
enhanced fault tolerance. GlusterFS is a piece of software that can create highly scalable
storage clusters while providing maximum performance.

Before we go through how we can solve this specific need, we first need to define what a
cluster is, why it exists, and what problems a cluster might be able to solve.

Computing a cluster
Put simply, a cluster is a set of computers (often called nodes) that work in tandem on the
same workload and can distribute loads across all available members of the cluster to
increase performance, while, at the same time, allowing for self-healing and availability.
Note that the term server wasn't used before as, in reality, any computer can be added to a
cluster. Made from a simple Raspberry Pi to multiple CPU servers, clusters can be made
from a small two-node configuration to thousands of nodes in a data center.

Here is an example of a cluster:

Defining GlusterFS Storage Chapter 2

[23]

Technically speaking, clustering allows workloads to scale performance by adding servers
of the same kind with similar resource characteristics. Ideally, a cluster will have
homogeneous hardware to avoid problems where nodes have different performance
characteristics and, at the same time, make maintenance reasonably identical—this means
hardware with the same CPU family, memory configuration, and software. The idea of
adding nodes to a cluster allows you to compute workloads to decrease their processing
time. Depending on the application, compute times can sometimes even decrease linearly.

To further understand the concept of a cluster, imagine that you have an application that
takes historical financial data. The application then receives such data and creates a forecast
based on the stored information. On a single node, the forecast process (processes on a
cluster are typically named jobs) takes roughly six days to complete, as we're dealing with
several terabytes (TB) of data. Adding an extra node with the same characteristics
decreases the processing time to four days. Adding a third node further decreases the time
it takes to complete to three days.

Note that while we added three times the number of compute resources, the compute time
only decreased by approximately half. Some applications can scale performance linearly,
while others don't have the same scalability, requiring more and more resources for fewer
gains, up to the point of diminishing returns. Adding more resources to obtain minimal
time gain is not cost-effective.

With all this in mind, we can point out several characteristics that define a cluster:

It can help reduce processing times by adding compute resources
It can scale both vertically and horizontally
It can be redundant, that is, if one node fails, others should take the workload
It can allow for increased resources to be available for applications
It is a single pool of resources rather than individual servers
It has no single point of failure

Storage clusters
Now that we have an understanding of how to compute a cluster, let's move on to another
application of clusters.

Defining GlusterFS Storage Chapter 2

[24]

Instead of aggregating compute resources to decrease processing times, a storage cluster's
main functionality is to aggregate available space to provide maximum space utilization
while, at the same time, providing some form of redundancy. With the increased need for
storing large amounts of data comes the need of being able to do it at a lower cost, while
still maintaining increased data availability. Storage clusters help to solve this problem by
allowing single monolithic storage nodes to work together as a large pool of
available storage space. Thus, it allows storage solutions to reach the petascale mark
without the need to deploy specialized proprietary hardware.

For example, say that we have a single node with 500 TB of available space and we need to
achieve the 1-Petabyte (PB) mark while providing redundancy. This individual node
becomes a single point of failure because, if it goes down, then there's no way the data can
be accessed. Additionally, we've reached the maximum hard disk drive (HDD) capacity
available. In other words, we can't scale horizontally.

To solve this problem, we can add two more nodes with the same configuration, as the
already existing one provides a total of 1 PB of available space. Now, let's do some math
here, 500 TB times 3 should be approximately 1.5 PB, correct? The answer is most definitely
yes. However, since we need to provide high availability to this solution, the third node
acts as a backup, making the solution tolerate a single-node failure without interrupting the
client's communication. This capability to allow node failures is all thanks to the power of
SDS and storage clusters, such as GlusterFS, which we'll explore next.

What is GlusterFS?
GlusterFS is an open source project by Gluster, which was acquired by Red Hat, Inc. in
2011. This acquisition does not mean that you have to acquire a Red Hat subscription or
pay Red Hat to use it since, as previously mentioned, it is an open source project; therefore,
you can freely install it, look at its source code, and even contribute to the project.
Although Red Hat offers paid solutions based on GlusterFS, we will talk about the open
source software (OSS) and project itself in this chapter.

The following diagram is the number of Contributors and Commits in the Gluster project:

Defining GlusterFS Storage Chapter 2

[25]

To understand GlusterFS, we must understand how it differs from traditional storage. To
do this, we need to understand the concepts behind SDS, including what GlusterFS is.

Traditional storage is an industry-standard storage array with proprietary software in it
that is bound to the hardware vendor. All this restricts you to the following set of rules,set
by your storage provider:

Scalability limitations1.
Hardware compatibility limitations2.
Client-operating system limitations3.
Configuration limitations4.
Vendor lock-in5.

SDS
With SDS, many, if not all, of the preceding limitations are gone, since it provides
impressive scalability by not depending on any hardware. You can fundamentally take an
industry-standard server from any vendor that contains the storage you require and add it
to your storage pool. By only doing this one simple step, you already overcome four of the
preceding limitations.

Cost reduction
The example from SDS section, highly reduces the operating expense (OPEX) costs, as you
do not have to buy additional highly-priced expansion shelves for an existing vendor
storage array that can take weeks to arrive and be installed. You can quickly grab a server
that you have stored in the corner of your data center, and use it to provide storage space
for your existing applications. This process is called plugin scalability and is present in
most of the open source SDS projects out there. In theory, the sky is the limit when it comes
to scalability with SDS.

Scalability
SDS scales when you add new servers to your storage pools and also increases the
resilience of your storage cluster. Depending on what configuration you have, data is
spread across multiple member nodes providing additional high availability by mirroring
or creating parity for your data.

Defining GlusterFS Storage Chapter 2

[26]

Control
You also need to understand that SDS does not create space out of nothing, nor does it
separate the concept of storage from hardware—such as hard drives, solid state drives
(SSD), or any hardware device that is designed to store information. These hardware
devices will always be where the actual data is stored. SDS adds a logical layer that allows
you to control where and how you store this data. It leverages this with its most
fundamental components, that is, with an application programming interface (API) that
allows you to manage and maintain your storage cluster and logical volumes, which
provide the storage capacity to your other servers, applications, and even monitoring
agents that self-heal the cluster in the event of degradation.

The market is moving toward SDS
SDS is the future, and this is where the storage industry is moving. In fact, it is predicted
that, in the next few years, approximately 70% of all current storage arrays will be available
as software-only solutions or virtual storage appliances (VSAs). Traditional network-
attached storage (NAS) solutions are 30% more expensive than current SDS
implementations, and mid-range disk arrays are even more costly. Taking all this into
account alongside the fact that data consumption is growing approximately 40% in
enterprise every year, with a cost decline of only 25%, you can see why we are moving
toward an SDS world in the near future.

With the number of applications that are running public, private, and hybrid clouds,
consumer and business data consumption is growing exponentially and ceaselessly. This
data is usually mission-critical and requires a high level of resiliency. The following is a list
of some of these applications:

E-commerce and online storefronts
Financial applications
Enterprise resource planning
Health care
Big data
Customer relationship management

Defining GlusterFS Storage Chapter 2

[27]

When companies store this type of data (called bulk data), they not only need to archive it,
but they also need to access it, and with the lowest latency possible. Imagine a scenario
where you are sent to take X-rays during your doctor's appointment, and when you arrive,
they tell you that you have to wait for a week to get your scans because they have no
storage space available to save your images. Naturally, this scenario will not happen
because every hospital has a highly efficient procurement process, where they can predict
usage based on their storage consumption and decide when to start the purchase and
installation of new hardware—but you get the idea. It is much faster and more efficient to
install a POSIX-standard server into your SDS layer and be ready to go.

Massive storage
Many other companies also require data lakes as secondary storage, mainly to store data in
its raw form for analysis, real-time analytics, machine learning, and more. SDS is excellent
for this type of storage, mainly because the maintenance required is minimal and also for
the economic reasons that we discussed previously.

We have been talking mainly about how economic and scalable SDS is, but it is also
important to mention the high flexibility that it brings to the table. SDS can be used for
everything from archiving data and storing reach media to providing storage for virtual
machines (VMs), as an endpoint for object storage in your private cloud, and even in
containers. It can be deployed on any of the previously mentioned infrastructures. It can
run on your public cloud of choice, in your current on-premises virtual infrastructure, and
even in a Docker container or Kubernetes pod. In fact, it's so flexible that you can even
integrate Kubernetes with GlusterFS using a RESTful management interface called heketi
that dynamically provisions volumes every time you require persistent volumes for your
pods.

Block, file, and object storage
Now that we have gone through why SDS is the future of next-generation workloads, it is
time to dig a little deeper into the types of storage that we can achieve using SDS.

Defining GlusterFS Storage Chapter 2

[28]

Traditional storage area network (SAN) and NAS solutions more commonly serve storage
using protocols such as internet small computer systems interface (iSCSI), fibre
channel (FC), fibre channel over ethernet (FCoE), network file system (NFS), and server
message block (SMB)/common internet file system (CIFS). However, because we are
moving more toward the cloud, our storage needs change and this is where object storage
comes into play. We will explore what object storage is and how it compares to block and
file storage. GlusterFS is also a file storage solution, but it has block and object storage
capabilities that can be configured further down the line.

The following diagram displays block, file, and object storage:

Block storage, file storage, and object storage work in very different ways when it comes to
how the client stores data in them—causing their use cases to be completely different.

Block storage
A SAN is where block storage is mainly utilized, using protocols such as FC, or iSCSI,
which are essentially mappings of the Small Computer System Interface (SCSI) protocol
over FC and TCP/IP, respectively.

A typical FC SAN looks like the following diagram:

Defining GlusterFS Storage Chapter 2

[29]

A typical iSCSI SAN looks like the following diagram:

Data is stored in logical block addresses. When retrieving data, the application usually
says—I want X number of blocks from address XXYYZZZZ. This process tends to be very fast
(less than a millisecond), making this type of storage very low on latency, a very
transactional-oriented type of storage form, and ideal for random access. However, it also
has its disadvantages when it comes to sharing across multiple systems. This is because
block storage usually presents itself in its raw form, and you require a filesystem on top of
it that can support multiple writes across different systems without corruption—in other
words, a clustered filesystem.

This type of storage also has some downsides when it comes to high availability or disaster
recovery; because it is presented in its raw form, the storage controllers and managers are,
therefore, not aware of how this storage is being used. So, when it comes to replicate its
data to a recovery point, it only takes blocks into account, and some filesystems are terrible
at reclaiming or zeroing blocks, which leads to unused blocks being replicated as well, thus
leading to deficient storage utilization.

Because of its advantages and low latency, block storage is perfect for structured databases,
random read/write operations, and to store multiple VM images that query disks with
hundreds, if not thousands, of I/O requests. For this, clustered filesystems are designed to
support multiple reads and writes from different hosts.

Defining GlusterFS Storage Chapter 2

[30]

However, due to its advantages and disadvantages, block storage requires quite a lot of
care and feeding—you need to take care of the filesystem and partitioning that you are
going to put on top of your block devices. Additionally, you have to make sure that the
filesystem is kept consistent and secure, with correct permissions, and without corruption
across all the systems that are accessing it. VMs have other filesystems stored in their
virtual disks that also add another layer of complexity—data can be written to the VM's
filesystem and into the hypervisor's filesystem. Both filesystems have files that come and
go, and they need to be adequately zeroed for blocks to be reclaimed in a thinly
provisioned replication scenario, and, as we mentioned before, most storage arrays are not
aware of the actual data being written to them.

File storage
On the other hand, file storage or NAS is far more straightforward. You don't have to worry
about partitioning, or about selecting and formatting a filesystem that suits your multi-host
environment.

NAS is usually NFS or SMB/CIFS protocols, which are mainly used for storing data in
shared folders as unstructured data. These protocols are not very good at scaling or
meeting the high media demands that we face in the cloud, such as social media serving
and creating/uploading thousands of images or videos each day. This is where object
storage saves the day, but we will be covering object storage later in this chapter.

File storage, as the name suggests, works at the file level of storage when you perform a
request to NAS; you are requesting a file or a piece of a file from the filesystem, not a series
of logical addresses. With NAS, this process is abstracted from the host (where the storage
is mounted), and your storage array or SDS is in charge of accessing the disks on the
backend and retrieving the file that you are requesting. File storage also comes with native
features, such as file-locking, user and group integration (when we are talking about OSS,
we are talking about NFS mainly here), security, and encryption.

Even though NAS abstracts and makes things simple for the client, it also has its
downsides, as NAS relies heavily, if not entirely, on the network. It also has an additional
filesystem layer with much higher latency than block storage. Many factors can cause
latency or increase round-trip time (RTT). You need to consider things such as how many
hops your NAS is away from your clients, TCP window scaling, or having no jumbo frames
enabled on devices accessing your file shares. Also, all these factors not only affect latency
but are key players when it comes to the throughput of your NAS solution, which is where
file storage excels the most.

Defining GlusterFS Storage Chapter 2

[31]

The following diagram demonstrates how versatile file storage sharing is:

Object storage
Object storage is entirely different from NAS (file storage) and SAN (block storage).
Although data is still accessed through the network, the way that data is retrieved is
uniquely different. You will not access files through a filesystem, but through RESTful APIs
using HTTP methods.

Defining GlusterFS Storage Chapter 2

[32]

Objects are stored in a flat namespace, which can store millions or billions of them; this is
the key to its high scalability, as it is not restrained by the number of nodes as it is in
regular filesystems, such as XFS and EXT4. It is important to know that the namespaces can
have partitions (often called buckets), but they cannot be nested as regular folders in a
filesystem because the namespace is flat:

When comparing object storage with traditional storage, the self-parking versus valet-
parking analogy is often used. Why is this similar? Well, because, in traditional filesystems,
when you store your file you store it in a folder or directory, and it is your responsibility to
know where that file was stored, just like parking a car in a parking spot—you need to
remember the number and floor of where you left your car. With object storage, on the
other hand, when you upload your data or put a file in a bucket, you are granted a unique
identifier that you can later use to retrieve it; you don't need to remember where it was
stored. Just like a valet, who will go and get the car for you, you simply need to give them
the ticket you received when you left your car.

Continuing with the valet-parking reference, you usually give your valet information about
the car they need to get to you, not because they need it, but because they can identify your
car better in this way—for instance, the color, plate number, or model of the car will help
them a lot. With object storage, the process is the same. Each object has its own metadata,
its unique ID, and the file itself, which are all part of the stored object.

Defining GlusterFS Storage Chapter 2

[33]

The following diagram shows what comprises an object in object storage:

As we have mentioned several times, object storage is accessed through RESTful APIs. So,
in theory, any device that supports HTTP protocols can access your object storage buckets
via HTTP methods such as PUT or GET. This sounds insecure, but, in fact, most software-
defined object storage has some type of authentication method, and you require an
authentication token in order to retrieve or upload files. A simple request using the Linux
curl tool may look like this:

curl -X PUT -T "${path_to_file}" \
 -H "Host: ${bucket_name}.s3.amazonaws.com" \
 -H "Date: ${date}" \
 -H "Content-Type: ${contentType}" \
 -H "Authorization: AWS ${s3Key}:${signature}" \
 https://${bucket}.s3.amazonaws.com/${file}

Defining GlusterFS Storage Chapter 2

[34]

Here, we can see how multiple distinct devices can connect to object storage buckets in the
cloud through the HTTP protocol:

Why choose GlusterFS?
Now that we understand the core concepts of SDS, storage clusters, and the differences
between block, file, and object storage, we can go through some of the reasons why
enterprise customers choose GlusterFS for their storage needs.

As previously stated, GlusterFS is an SDS, that is, a layer that sits on top of traditional local
storage mount points, allowing the aggregation of storage space between multiple nodes
into a single storage entity or a storage cluster. GlusterFS can run on shelf-commodity
hardware to private, public, or hybrid clouds. Although its primary usage is file storage
(NAS), several plugins allow it to be used as a backend for block storage through the
gluster-block plugin and for object storage with the gluster-swift plugin.

Some of the main features that define GlusterFS are as follows:

Commodity hardware
Can be deployed on a private, public, or hybrid cloud
No single point of failure

Defining GlusterFS Storage Chapter 2

[35]

Scalability
Asynchronous geo-replication
Performance
Self-healing
Flexibility

GlusterFS features
Let's go through each one of these features to understand why GlusterFS is so attractive to
enterprise customers.

Commodity hardware – GlusterFS runs on pretty much
anything
From Advanced RISC Machines (ARM) on a Raspberry Pi to any variety of x86 hardware,
Gluster merely requires local storage used as a brick, which lays the foundation storage for
volumes. There is no need for dedicated hardware or specialized storage controllers.

In its most basic configuration, a single disk formatted as XFS can be used with a single
node. While not the best configuration, it allows for further growth by adding more bricks
or more nodes.

GlusterFS can be deployed on private, public, or hybrid
clouds
From a container image to a full VM dedicated to GlusterFS, one of the main points of
interest for cloud customers is that since GlusterFS is merely software, it can be deployed
on private, public, or hybrid clouds. Because there is no vendor, locking volumes that span
different cloud providers is entirely possible. Allowing for multi-cloud provider volumes
with high availability setups is done so that when one cloud provider has problems, the
volume traffic can be moved to an entirely different provider with minimal-to-no
downtime, depending on the configuration.

No single point of failure
Depending on the volume configuration, data is distributed across multiple nodes in the
cluster, removing a single point of failure, as no head or master node controls the cluster.

Defining GlusterFS Storage Chapter 2

[36]

Scalability
GlusterFS allows for the smooth scaling of resources by vertically adding new bricks, or by
horizontally adding new nodes to the cluster.

All this can be done online while the cluster serves data, without any disruption to the
client's communication.

Asynchronous geo-replication
GlusterFS takes the no-single-point-of-failure concept, which provides geo-replication,
allowing data to be asynchronously replicated to clusters in entirely different geophysical
data centers.

The following diagram shows geo-replication across multiple sites:

Performance
Since data is distributed across multiple nodes, we can also have multiple clients accessing
the cluster at the same time. This process of accessing data from multiple sources
simultaneously is called parallelism, and GlusterFS allows for increased performance by
directing clients to different nodes. Additionally, performance can be increased by adding
bricks or nodes—effectively, by scaling horizontally or vertically.

Self-healing
In the case of unexpected downtime, the remaining nodes can still serve traffic. If new data
is added to the cluster while one of the nodes is down, this data needs to be synchronized
once the node is brought back up.

Defining GlusterFS Storage Chapter 2

[37]

GlusterFS will automatically self-heal these new files once they're accessed, triggering a
self-heal operation between the nodes and copying the missing data. This is transparent to
the users and clients.

Flexibility
GlusterFS can be deployed on-premises on already existing hardware or existing virtual
infrastructure, on the cloud as a VM, or as a container. There is no lock-in as to how it needs
to be deployed, and customers can decide what suits their needs best.

Remote direct memory access (RDMA)
RDMA allows for ultra-low latency and extremely high-performance network
communication between the Gluster server and the Gluster clients. GlusterFS can leverage
RDMA for high-performance computing (HPC) applications and highly-concurrent
workloads.

Gluster volume types
Having gained an understanding of the core features of GlusterFS, we can now define the
different types of volumes that GlusterFS provides. This will help in the next chapters as we
dive into the actual design of a GlusterFS solution.

GlusterFS provides the flexibility of choosing the type of volume that best suits the needs of
the workload; for example, for a high-availability requirement, we can use replicated
volume. This type of volume replicates the data between two or more nodes, resulting in
exact copies of each of the nodes.

Let's quickly list the types of volumes that are available, and later, we'll discuss each of
their advantages and disadvantages:

Distributed
Replicated
Distributed replicated
Dispersed
Distributed dispersed

Defining GlusterFS Storage Chapter 2

[38]

Distributed
As the name implies, data is distributed across the bricks in the volume and across the
nodes. This type of volume allows for a seamless and low-cost increase in available space.
The main drawback is that there is no data redundancy since files are allocated between
bricks that could be on the same node or different nodes. It is mainly used for high-storage-
capacity and concurrency applications.

Think of this volume type as just a bunch of disks (JBOD) or a linear logical volume
manager (LVM) where space is just aggregated without any stripping or parity.

The following diagram shows a distributed volume:

Replicated
In a replicated volume, data is copied across bricks on different nodes. Expanding a
replicated volume requires the same number of replicas to be added. For example, if I have
a volume with two replicas and I want to expand it, I require a total of four replicas.

A replicated volume can be compared to a RAID1, where data is mirrored between all
available nodes. One of its shortcomings is that scalability is relatively limited. On the other
hand, its main characteristic is high availability, as data is served even in the event of
unexpected downtime.

Defining GlusterFS Storage Chapter 2

[39]

With this type of volume, mechanisms to avoid split-brain situations must be implemented.
A split-brain occurs when new data is written to the volume, and different sets of nodes are
allowed to process writes separately. Server quorum is such a mechanism, as it allows for a
tiebreaker to exist.

The following diagram shows a replicated volume:

Distributed replicated
A distributed replicated volume is similar to a replicated volume, with the main difference
being that replicated volumes are distributed. To explain this, consider having two separate
replicated volumes, each with 10 TB of space. When both are distributed, the volume ends
up with a total of 20 TB of space.

This type of volume is mainly used when both high availability and redundancy are
needed, as the cluster can tolerate node failures.

Defining GlusterFS Storage Chapter 2

[40]

The following diagram shows a distributed replicated volume:

Dispersed
Dispersed volumes take the best of both distributed and replicated volumes by stripping
the data across all available bricks and, at the same time, allowing redundancy. Bricks
should be of the same size, as the volume suspends all writes once the smallest brick
becomes full. For example, imagine a dispersed volume such as a RAID 5 or 6, where data
is stripped and parity is created, allowing data to be reconstructed from the parity. While
the analogy helps us to understand this type of volume, the actual process is entirely
different as it uses erasure codes where data is broken into fragments. Dispersed volumes
provide the right balance of performance, space, and high availability.

Distributed dispersed
In a distributed dispersed volume, data is distributed across volumes of a dispersed type.
Redundancy is provided at the dispersed volume level, having similar advantages to a
distributed replicated volume.

Imagine a JBOD on top of two RAID 5 arrays—growing this type of volume requires an
additional dispersed volume. While not necessarily the same size, ideally, it should
maintain the same characteristics to avoid complications.

Defining GlusterFS Storage Chapter 2

[41]

The need for highly redundant storage
With an increase in the available space for applications comes an increased demand on the
storage. Applications may require access to their information all of the time without any
disruption that could cause the entire business continuity to be at risk. No company wants
to have to deal with an outage, let alone an interruption in the central infrastructure that
leads to money being lost, customers not being served, and users not being able to log in to
their accounts because of bad decisions.

Let's consider storing data on a traditional monolithic storage array—doing this can cause
significant risks as everything is in a single place. A single massive storage array containing
all of the company's information signifies an operational risk as the array is predisposed to
fail. Every single type of hardware—no matter how good—fails at some point.

Monolithic arrays tend to handle failures by providing some form of redundancy through
the use of traditional RAID methods used on the disk level. While this is good for small
local storage that serves a couple of hundred users, this might not be a good idea when we
reach the petascale and storage space and active concurrent users increase drastically. In
specific scenarios, a RAID recovery can cause the entire storage system to go down or
degrade performance to the point that the application doesn't work as expected.
Additionally, with increased disk sizes and single-disk performance being the same over
the past couple of years, recovering a single disk now takes a more substantial amount of
time; rebuilding 1 TB disks is not the same as rebuilding 10 TB disks.

Storage clusters, such as GlusterFS, handle redundancy differently by providing methods
that best fit the workload. For example, when using a replicated volume, data is mirrored
from one node to another. If a node goes down, then traffic is seamlessly directed to the
remaining nodes, being utterly transparent to the users. Once the problematic node is
serviced, it can be quickly put back into the cluster, where it will go through self-healing of
the data. In comparison to traditional storage, a storage cluster removes the single point of
failure by distributing data to multiple members of the clusters.

Having increased availability means that we can reach the application service-level
agreements and maintain the desired uptime.

Disaster recovery
There's no escaping from it—disasters happen, whether it's natural or human error. What
counts is how well-prepared we are for them, and how fast and efficiently we can recover.

Defining GlusterFS Storage Chapter 2

[42]

Implementing disaster recovery protocols is of utmost importance for business continuity.
There are two terms that we need to understand before proceeding: recovery time
objective (RTO) and recovery point objective (RPO). Let's take a quick glance at each.
RTO is the time it takes to recover from a failure or event that causes a disruption. Put
simply, it refers to how fast we can get the application back up. RPO, on the other hand,
refers to how far the data can go back in time without affecting business continuity, that is,
how much data you can lose.

The concept of RPO looks something like this:

RTO
As previously stated, this is the amount of time it takes to recover a functionality after a
failure. Depending on the complexity of the solution, RTO might take a considerable
amount of time.

Depending on the business requirements, RTO might be as short as a couple of hours. This
is where designing a highly redundant solution comes into play—by decreasing the
amount of time that is required to be operational again.

RPO
This is the amount of time data that can be lost and still go back to a recovery point, in other
words, this is how often recovery points are taken; in the case of backups, how often a
backup is taken (it could be hourly, daily, or weekly), and in the case of a storage cluster,
how often changes are replicated.

Defining GlusterFS Storage Chapter 2

[43]

One thing to take into consideration is the speed at which changes can be replicated, as we
want changes to be replicated almost immediately; however, due to bandwidth constraints,
the real time replication is not possible most of the time.

Finally, an essential factor to consider is how data is replicated. Generally, there are two
types of replication: synchronous and asynchronous.

Synchronous replication
Synchronous replication means that data is replicated immediately after it is written. This is
useful for minimizing RPO, as there is no wait or drift between the data from one node to
another. A GlusterFS-replicated volume provides this kind of replication. Bandwidth
should also be considered, as changes need to be committed immediately.

Asynchronous replication
Asynchronous replication means that the data is replicated into fragments of time, for
example, every 10 minutes. During set up, the RPO is chosen based on several factors,
including the business need and the bandwidth that is available.

Bandwidth is the primary consideration; this is because, depending on the size of the
changes, the real time replication might not fit in the RPO window, requiring a more
considerable replication time and directly affecting RPO times. If unlimited bandwidth is
available, synchronous replication should be chosen.

In hindsight, we, as IT architects, spend a significant amount of time trying to figure out
how to make our systems more resilient. Indeed, successfully decreasing RTO and RPO
times can mark the difference between a partially thought out solution and an entirely
architected design.

The need for high performance
With more and more users accessing the same resources, response times get slower and
applications start taking longer to process. The performance of traditional storage has not
changed in the last couple of years—a single HDD yields about 150 MB/s with response
times of several milliseconds. With the introduction of flash media and protocols such as
non-volatile memory express (NVMe), a single SSD can easily achieve gigabytes-per-
second and sub-millisecond response times; SDS can leverage these new technologies to
provide increased performance and significantly reduce response times.

Defining GlusterFS Storage Chapter 2

[44]

Enterprise storage is designed to handle multiple concurrent requests for hundreds of
clients who are trying to get their data as fast as possible, but when the performance limits
are reached, traditional monolithic storage starts slowing down, causing applications to fail
as requests are not completed in time. Increasing the performance of this type of storage
comes at a high price and, in most cases, it can't be done while the storage is still serving
data.

The need for increased performance comes from the increased load in storage servers; with
the explosion in data consumption, users are storing much more information and require it
much faster than before.

Applications also require data to be delivered to them as quickly as possible; for
example, consider the stock market, where data is requested multiple times a second by
thousands of users. At the same time, another thousand users are continuously writing new
data. If a single transaction is not committed in time, people will not be able to make the
correct decision when buying or selling stocks because the wrong information is displayed.

The previous problem is something that architects have to face when designing a solution
that can deliver the expected performance that is necessary for the application to work as
expected. Taking the right amount of time to size storage solutions correctly makes the
entire process flow smoother with less back and forth between design and implementation.

Storage systems, such as GlusterFS, can serve thousands of concurrent users
simultaneously without a significant decrease in performance, as data is spread across
multiple nodes in the cluster. This approach is considerably better than accessing a single
storage location, such as with traditional arrays.

Parallel I/O
I/O refers to the process of requesting and writing data to a storage system. The process is
done through I/O streams, where data is requested one block, file, or object at a time.

Parallel I/O refers to the process where multiple streams perform operations concurrently
on the same storage system. This increases performance and reduces access times, as
various files or blocks are read or written at the same time.

In comparison, serial I/O is the process of performing a single stream of I/O, which could
lead to reduced performance and increased latency or access times.

Storage clusters, such as GlusterFS, take advantage of parallel I/O, since data is spread
through multiple nodes, allowing for numerous clients to access data at the same time
without any drop in latency or throughput.

Defining GlusterFS Storage Chapter 2

[45]

Summary
In this chapter, we went through the core concepts of what a cluster is and defined it as a
set of computers called nodes working together in the same type of workload. A compute
cluster's primary function is to perform tasks that run CPU-intensive workloads, which are
designed to reduce processing time. A storage cluster's function is to aggregate available
storage resources into a single storage space that simplifies management and allows you to
efficiently reach the petascale or go beyond the 1-PB available space. Then, we explored
how SDS is changing the way that data is stored and how GlusterFS is one of the projects
that is leading this change. SDS allows for the simplified management of storage resources,
while at the same time adding features that were impossible with traditional monolithic
storage arrays.

To further understand how applications interact with storage, we defined the core
differences between block, file, and object storage. Primarily, block storage deals with
logical blocks of data in a storage device, file storage works by reading or writing actual
files from a storage space, and object storage provides metadata to each object for further
interaction. With these concepts of different interactions with storage in mind, we went on
to point out the characteristics of GlusterFS that make it attractive for enterprise customers
and how these features tie into what SDS stands for.

Finally, we delved into the main reasons why high availability and high performance are a
must for every storage design and how performing parallel, or serial, I/O can affect
application performance.

In the next chapter, we will dive into the actual process of architecting a GlusterFS storage
cluster.

Questions
How can I optimize my storage performance?1.
What type of workload is GlusterFS better suited for?2.
Which cloud providers offer object storage?3.
What types of storage does GlusterFS offer?4.
Does Red Hat own GlusterFS?5.
Do I have to pay to use GlusterFS?6.
Does Gluster offer disaster recovery or replication?7.

Defining GlusterFS Storage Chapter 2

[46]

Further reading
Ceph Cookbook – Second Edition by Vikhyat Umrao and Michael Hackett: https:/ ​/
prod.​packtpub. ​com/ ​in/ ​virtualization- ​and- ​cloud/ ​ceph- ​cookbook- ​second-
edition

Mastering Ceph by Nick Fisk: https:/ ​/​prod. ​packtpub. ​com/ ​in/ ​big-​data- ​and-
business- ​intelligence/ ​mastering- ​ceph

Learning Ceph – Second Edition by Anthony D'Atri and Vaibhav Bhembre: https:/
/​prod.​packtpub. ​com/ ​in/ ​virtualization- ​and-​cloud/ ​learning- ​ceph- ​second-
edition

https://prod.packtpub.com/in/virtualization-and-cloud/ceph-cookbook-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/ceph-cookbook-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/ceph-cookbook-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/ceph-cookbook-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/ceph-cookbook-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/ceph-cookbook-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/ceph-cookbook-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/ceph-cookbook-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/ceph-cookbook-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/ceph-cookbook-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/ceph-cookbook-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/ceph-cookbook-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/ceph-cookbook-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/ceph-cookbook-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/ceph-cookbook-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/ceph-cookbook-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/ceph-cookbook-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/ceph-cookbook-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/ceph-cookbook-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/ceph-cookbook-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/ceph-cookbook-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/ceph-cookbook-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/ceph-cookbook-second-edition
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/big-data-and-business-intelligence/mastering-ceph
https://prod.packtpub.com/in/virtualization-and-cloud/learning-ceph-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/learning-ceph-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/learning-ceph-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/learning-ceph-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/learning-ceph-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/learning-ceph-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/learning-ceph-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/learning-ceph-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/learning-ceph-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/learning-ceph-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/learning-ceph-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/learning-ceph-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/learning-ceph-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/learning-ceph-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/learning-ceph-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/learning-ceph-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/learning-ceph-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/learning-ceph-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/learning-ceph-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/learning-ceph-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/learning-ceph-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/learning-ceph-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/learning-ceph-second-edition

3
Architecting a Storage Cluster

Software-defined storage has changed the way we store our data; with increased
functionality comes increased requirements when designing the right solution. A
significant amount of variables need to be considered when architecting a storage cluster.

This chapter explores the different design aspects of implementing software-defined
storage solutions using GlusterFS and its various components.

In this chapter, we will cover the following topics:

GlusterFS compute requirements
Using the right storage size
Defining performance needs
Deciding the right approach for high availability
Establishing how the workload ties everything together

Technical requirements
For this chapter, we'll use the documentation for GlusterFS available on the following
URLs:

https:/​/ ​www. ​gluster. ​org/ ​

https:/​/ ​github. ​com/ ​gluster/ ​glusterfs

https://www.gluster.org/
https://www.gluster.org/
https://www.gluster.org/
https://www.gluster.org/
https://www.gluster.org/
https://www.gluster.org/
https://www.gluster.org/
https://www.gluster.org/
https://www.gluster.org/
https://www.gluster.org/
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs
https://github.com/gluster/glusterfs

Architecting a Storage Cluster Chapter 3

[48]

GlusterFS compute requirements
As with any software, GlusterFS has a set of requirements that are defined by the
developers to ensure that it works as expected. The actual requirements described in the
documentation are relatively low, and pretty much every computer sold in the last 10 years
can run GlusterFS. This is probably not at the best possible level of performance, but it still
shows the flexibility of being able to run it in mixed conditions.

For compute requirements, we mainly have the following two resources that we need to
consider when designing a solution with GlusterFS:

RAM
CPU

RAM
With memory, the choice is relatively straightforward—use as much as possible.
Unfortunately, there is no such thing as infinite memory, but the statement of using as
much as possible couldn't be more real, since GlusterFS uses RAM as a read cache for each
of the nodes, and at the same time the Linux kernel uses memory for the read-ahead cache
to speedup reads on frequently accessed files.

Depending on the brick layout and filesystem chosen, available memory plays a significant
role in read performance. As an example of bricks using the advanced ZFS filesystem,
where it uses RAM for its Adaptive Replacement Cache (ARC). This adds an extra layer of
caching sitting on high-speed RAM. The downside is that it consumes as much as it has
available, so selecting a server that provides considerable amount of memory helps a lot.

GlusterFS does not require terabytes of RAM—having 32 GB or more per node assures that
caches are big enough to allocate frequently accessed files, and if the cluster grows in size
by adding more bricks to each node, adding more RAM should be considered in order to
increase the available memory for caching.

Why is cache important?
Consider the following: even old RAM technology such as DDR2 can deliver throughput in
the GBps and latencies around the several nanoseconds. On the other hand, reading from
regular spinning media (hard disk drives) throughput peaks at 150 MBps in most cases,
and latency is in the several hundred milliseconds.

Architecting a Storage Cluster Chapter 3

[49]

Reading from cache is always faster than going to disk—waiting for the disk to move its
head, finding the blocks of data requested, then sending it back to the controllers and onto
the application.

One thing to keep in mind is that cache needs to be warmed up first; this is the process of
allowing the system to determine which files are regularly being accessed and then moving
that data to the cache. While it is warming up, requests are slower, as they first have to be
fetched from disk.

CPU
Any software requires CPU cycles, and GlusterFS is no exception. CPU requirements are
moderately low, and depend on the type of volume used, for example, a replicated volume
requires far less CPU than a dispersed volume.

CPU requirements are also affected by the type of filesystem that the bricks use and what
features they have. Going back to the ZFS example, if compression is enabled this adds
increased load to the CPU, and not having enough CPU resources decreases performance
considerably.

For a simple storage server and no advanced features at the brick level, anything with four
CPUs or more is sufficient. When enabling filesystem features, such as compression, eight
or more CPUs are required for optimal performance. Additionally, more CPU allows for
more concurrent I/O to be done to the cluster. This is of utmost importance when designing
a storage cluster for high-performance compute (HPC) applications, where thousands of
users are performing I/O operations at the same time.

Use the following rules as general rules of thumb:

For highly concurrent workload, go for higher CPU count,
above eight CPUs, depending on the concurrency level
For low-performance requirements and a cost-efficient solution,
select a lower number of CPUs, for example, four CPUs

Cloud considerations
Many cloud providers have a fixed set of given resources for their virtual machine sizes
that do not allow for custom vCPU to RAM ratios. Finding the right balance depends on
which VM size provides the necessary resources.

Architecting a Storage Cluster Chapter 3

[50]

The concept of GlusterFS in the cloud will be explored in further detail in the upcoming
chapters. However, get an overview of the concept, let's explore VM sizes using Microsoft's
Azure offering.

Azure VM families range from general-purpose compute to specific workloads, such as
GPU. For GlusterFS, we really like the L-series VMs, which are optimized for storage
workloads. This VM family has a good ratio of vCPU to RAM, and offers the highest
storage performance to cost ratio of any family.

The general idea can be applied to other cloud vendors. A VM size that provides an
excellent and cost-effective ratio of vCPU to RAM should be selected.

How much space do you need?
Wouldn't it be nice if we could just use as much space as we need? In reality, storage has a
cost, and unlimited storage does not exist.

When it comes to sizing available storage, the following factors have to be taken into
consideration:

GlusterFS volume type
Required space by the application
Projected growth

GlusterFS volume type
Let's start with some technical considerations. Each GlusterFS volume has characteristics
when it comes to available space. Depending on the volume type, you can end up with less
usable space than you initially calculated. We will be exploring the space considerations of
each volume type we described in Chapter 2, Defining GlusterFS Storage.

Distributed
This volume type is reasonably straightforward. The sum of the available space from each
node is the total space on the global namespace (another name for the GlusterFS volume
mount).

Architecting a Storage Cluster Chapter 3

[51]

An example is a request of 50 TB volume where the amount of space needed for the bricks
is precisely 50 TB. This can be divided into five nodes with 10 TB each or two nodes with 25
TB each.

Replicated
With replica volumes, half of the available raw brick space goes into the mirroring or
replication of the data. This means that when sizing this type of volume, you need to at
least double the storage capacity of what is requested. This depends on the specific
configuration of the volume. A general rule of thumb is that the available capacity is half of
the total space on the bricks.

For example, if the request is for 50 TB volume, the node configuration should have at least
100 TB available in brick space between two nodes with 50 TB each.

Dispersed
Dispersed volumes are trickier to size, as they function similar to a RAID 5, where the data
is spread across the nodes and a node's worth of capacity is used for parity. This depends
on the configuration of the volume, but you could expect space efficiency to increase with
the node count.

To further explain, a request for a 50 TB volume can be configured on six nodes with 10 TB
each. Note that an extra node was taken into consideration. Selecting five nodes with 10 TB
each results in a volume of only 40 TB, which falls short of the requested size.

Space required by the application
Each application has its own set of requirements, and storage requirements are as necessary
as any other requirements.

Serving media files require considerably more resources than a website with few users and
not many media files. Knowing precisely what the intended usage of the storage system is
permits correct sizing of the solution and prevents situations where storage estimates fall
short of what was needed from the beginning.

Make sure you go through what minimum requirements the application developers
recommend and understand how it interacts with the storage, as this helps prevent
headaches.

Architecting a Storage Cluster Chapter 3

[52]

Projected growth
Your job as an architect is to ask the right questions. When it comes to storage, make sure
the growth rate or change rate is taken into account.

Consider that data growth happens no matter what, and thinking ahead avoids
complicated situations where there is not enough space, so leaving some margin for future
utilization is a good practice. Allowing for 10% or more space should be a good starting
point, so if 50 TB spaces are requested then add 5 TB more space to the solution.

Go for the most cost-effective route. While GlusterFS allows for seamless expansion, try to
avoid using this feature as an easy solution and make sure that the right size is defined
from the start and a buffer is considered for future growth.

Performance considerations
Applications that perform poorly are probably worse than applications that don't work at
all. Having something work half of the time is incredibly frustrating and costly to any
business.

As an architect, you need to design solutions that perform to the spec or better in order to
avoid scenarios where problems arise due to poor performance.

The very first place to start is by defining what the performance requirements are. Most of
the time, the application developers mention the performance requirements in their
documentation itself. Not meeting these minimum requirements means that the application
either doesn't work at all or barely works. Neither is acceptable.

The following are the things to look out for when designing a performance-oriented
solution:

Throughput
Latency
IOPS
I/O size

Architecting a Storage Cluster Chapter 3

[53]

Throughput
Throughput is a function of a given amount of data over a certain amount of time that is
typically described in megabytes per second (MBps). This means that every second X
amount of data is being sent or received from a storage system.

Depending on the workload, the highest throughput might not be possible as the
application is unable to perform I/O big enough or fast enough. There is no hard number to
recommend here. Try going for the highest possible throughput, and make sure that the
storage cluster can sustain the transfer rates necessary for the desired level of concurrency.

Latency
Latency is critical and requires extra care, as some applications are significantly sensitive to
high latencies or response times.

Latency is a measurement of the amount of time I/O operations take to complete that is
typically measured in milliseconds (1 second is 1,000 milliseconds). High latencies or
response times cause applications to take longer to respond and even stop working
altogether.

Aim for the lowest latency possible. This is a case where getting the lowest possible number
is always the best approach. With latency, there's no such thing as not enough, or, in this
case, not too short of response time. Consider the type of storage medium you used.
Traditional hard disk drives have response times (or seek times) ranging in the several
hundred milliseconds, while newer solid state drives can go past the sub-millisecond mark
and into microseconds.

IOPS
Input/output operations per second is a function of a given amount of operations over time,
in this case, seconds. This is a measurement of how many operations can be done over a
second, and many applications provide a minimum requirement regarding IOPS.

Most applications provide a requirement of the minimum IOPS needed for it to work as
expected. Make sure that these are met, as otherwise the application might not behave as
intended.

When designing a storage solution, make sure IOPS is considered as a primary deciding
factor when taking sizing decisions.

Architecting a Storage Cluster Chapter 3

[54]

I/O size
I/O size is the amount of data that each operation performs. This is dependent on the
workload type, as each application interacts with the storage system differently. The I/O
size impacts directly on the previously mentioned aspects of performance.

Smaller I/O results in lower throughput, but, if done fast enough, it results in higher IOPS
with lower latencies. Larger I/O, on the other hand, provides a higher throughput, but
generally produces lower IOPS as fewer operations are done in the same amount of time.

There is no solid recommendation regarding I/O size. In an ideal, non-realistic world, I/O is
done big enough and fast enough, which results in high throughput and high IOPS. In
reality, it's either one or the other. Small I/O ends up being slow regarding throughput, but
it completes fast enough so that IOPS seem higher. With big I/O, the numbers are inverted,
and the throughput becomes high, but since it takes longer to complete, IOPS goes down.

GlusterFS performance
The following aspects need to be taken into consideration when designing a GlusterFS
storage cluster when it comes to performance:

Volume type
Brick layout
Number of nodes
Tuning parameters

Volume type
The volume chosen affects the performance in different ways, since GlusterFS allocates data
differently for each type.

For example, a replicated volume mirrors data across nodes, while a dispersed volume tries
to maximize node usage and uses them in parallel.

If performance is the primary aim for a dispersed or distributed volume, consider that
distributed volumes offer no redundancy, while a dispersed volume does it at the expense
of performance degradation.

Architecting a Storage Cluster Chapter 3

[55]

Brick layout
Having a node with all of its disks in a single large brick does not perform in the same way
as having disks grouped in smaller numbers with several bricks. Brick layout is the highest
contributing factor to performance, as this directly dictates how disks are used.

If all the disks end up in a single brick, the performance suffers. Generally, having more
bricks with fewer disks results in better performance and lower latency.

Consider configuring a software RAID0 for the disks that make up the bricks. For example,
you could have 10 disks available and, for simplicity's sake, configure all 10 disks in a
RAID0 on a single brick. Alternatively, you could go for a more efficient route and
configure five bricks where each brick is made of two disks in a RAID0.

This also allows smoother growth, since adding more bricks with fewer disks is
considerably easier than adding a large number of disks. You should aim for more bricks
with fewer disks grouped in smaller RAID configurations.

In the following diagram, we can see how each brick is made up of two different disks:

Architecting a Storage Cluster Chapter 3

[56]

Number of nodes
Increasing the number of nodes in the cluster allows for higher concurrency. While
performance gains might not be linear, adding nodes allows for a higher number of users
and applications accessing the volumes.

The goal is to have enough nodes for a balance in the available space and concurrency.
There is no set number here, but your job as an architect is to define, through testing, what
is the right number of nodes for a specific solution. During the POC phase, test with a
smaller number of nodes and check whether the performance is acceptable.

Tuning parameters
Filesystem tunables, such as block size can play an important role, and the goal is to match
the workload I/O size, the GlusterFS volume block size, and the filesystem block size to the
same amount.

Typically, 4 K is the most used block size that works for general workloads. For a large
number of small files, go for a smaller block size. For big files, aim for a bigger block size,
such as 1 M.

The best approach for high availability
With GlusterFS, high availability can be delivered through the volume configuration;
deciding how this is done depends on the application needs, available space, and required
performance.

Since GlusterFS handles high availability, there is no need to configure any form of
redundancy at the brick level. This is especially true with cloud instances and virtual
machines, where there are no physical disks that can go bad. For physical installations, it is
always better to have an extra layer of redundancy by configuring the local disks with
RAID5 or RAID6 for a balance in performance and resiliency. For now, let's stick to cloud
deployments.

With GlusterFS, only two volume types offer high availability: replicated and dispersed.
Replicated volumes are reasonably straightforward since data is just replicated from one
node to another. These offer lower performance, but are considerably easier to configure,
deploy, and maintain.

Architecting a Storage Cluster Chapter 3

[57]

Replicated
Choose a replicated volume when there is no need for extreme performance. Select the
number of replicas based on how many nodes or bricks the volume should tolerate.
Consider that using a higher replica number will decrease the amount of available space,
but increase the availability of the volume.

The following example shows that losing a node in a replicated volume does not disrupt
volume operations:

Dispersed
Dispersed volumes offer a good balance between high availability and performance; this
should be the go-to volume when both are a requirement. Configuring a dispersed volume
is a more complicated process since the redundancy is handled as in a RAID5 setup, where
a node is used as parity. The redundancy value can be chosen at the time of volume
creation which allows for greater flexibility.

Architecting a Storage Cluster Chapter 3

[58]

In the following diagram, you can see that losing one node does not disrupt the volume:

Plan for high availability when there is a specific requirement. Remember that volume
types can be mixed and matched. For example, a distributed replicated volume will have a
good mix of available space and redundancy.

Geo-replication
Geo-replication allows for asynchronous replication of data between different sites through
local networks or the internet. This provides high availability by having a copy of the data
in a different geo-location, and ensures disaster recovery in case of failures.

Consider going the geo-replication route when there is a specific use case where the added
layer of redundancy is needed. Remember that this is asynchronous replication, so, in the
case of a disaster, consider the RPO and RTO times explained in the previous chapters.

Architecting a Storage Cluster Chapter 3

[59]

The following diagram gives you a general understanding of how geo-replication
works—Site A replicates to Site B through the WAN:

How the workload defines requirements
Delivering video files to streaming web servers is not the same as hosting a large database.
I/O is done in an entirely different way, and knowing exactly how the workload interacts
with the storage system is crucial to successfully size and design a robust storage solution.

Documentation
The application documentation is your best friend when trying to figure out what the
storage requirements are. When there's an existing implementation of the application, ask
the administrators what the software expects for performance and how it reacts when it
doesn't meet the minimum requirements.

Architecting a Storage Cluster Chapter 3

[60]

System tools
Using tools such as iostat gives a good understanding of how the application interacts
with the storage, for example, by using the following command:

iostat -dxctm 1

The previous code shows per block device usage, the areq-sz column (previously known
as avgrq-sz) shows the average request size in kilobytes, making this a good starting point
to understand the I/O size the application typically uses.

The output looks similar to the following screenshot:

In the preceding image, we could appreciate the block devices and their respective
performance.

File type and size
As an example, designing a storage solution for a media streaming server requires the use
of large block sizes, as media files tend to be bigger than small text files. If you use a larger
block size for the bricks, the GlusterFS volume will not only make more efficient use of the
space but will also allow for faster operations, as the transaction size matches the file size.

On the other hand, a storage server for sensor logging that usually creates a large number
of small files containing text requires a smaller block size to match the size of the files being
created. Using a smaller block size avoids allocating an entire block, say 4 K, for a file that is
only 1 K in size.

Architecting a Storage Cluster Chapter 3

[61]

Ask the right questions
Your goal as an architect is to make sure the workload is very clear. The intended use for
the storage server defines how many resources need to be allocated. Failing to do so could
result in resources being wasted that in turn means money being wasted, or, in a worst case
scenario, could lead to a solution that does not perform to spec, which leads to applications
failing and users not able to work.

Remember from the Chapter 1, Introduction to Design Methodology: ask the right questions.
When sizing a storage solution, you can ask the following questions:

How much space does the current implementation consume (if there's one
already in place)?
What are the performance requirements of the application?
How many users interact with the application?
Is high availability required?
How does the application store its data?
Does it create large files and append data to them?
Does it create a large number of small files?

Possible answers to these questions could be the following:

Right now, the application consumes 20 TB, but we expect it to increase 5% each
month and stabilize at 80 TB.
The application requires at least 100 MB/s of throughput and a latency no higher
than 10 ms.
Currently, about 300 users have access to the application; concurrently, we've
seen peaks of 150 users, but we expect the user count to increase significantly.
We can sustain not being able to access the storage for some time, but we do need
to be able to recover from a failure reasonably quickly, and could possibly have a
copy of the data off-site.
The application primarily saves its information in small files.
It does not append data, and if more space is needed, it merely creates more
small files.
Yes, we've seen several thousands of files created no bigger than 4 KB.

From the previous example, you can surmise that the application creates a lot of small files,
and it can tolerate being down for some time but requires off-site replication for smooth
disaster recovery. Performance requirements seem to be relatively high, so we could opt for
a dispersed or distributed volume with geo-replication enabled.

Architecting a Storage Cluster Chapter 3

[62]

Summary
The process of architecting a storage solution requires many variables to be known. In this
chapter, we defined that deciding how much space is needed depends on the GlusterFS
volume type, the application requirements, and the estimated growth in data utilization.

Depending on the volume type, the available space is affected, a distributed volume
aggregates all of the available space making it the most space efficient, while a replicated
volume uses half of the available raw space for mirroring.

The application and user base dictate how much space is required. This is because,
depending on the type of data being served, the storage requirements change. Thinking
ahead and planning for storage growth avoids the potential to run out of resources, and
allows for at least a 10% buffer when sizing should fit most situations.

With the performance requirements, we defined the concepts of throughput, latency, IOPS,
and I/O size and how these interact with each other. We defined what variables come into
play when configuring GlusterFS for optimal performance, how each volume has its
performance characteristics, and how the brick layout plays an important role when trying
to optimize a GlusterFS volume.

We also defined how high availability requirements affect sizing and how each volume
provides different levels of HA. When disaster recovery is needed, GlusterFS geo-
replication adds the required level of availability by replicating data to another physical
region, which allows the smooth recovery of services in case of a disaster.

Finally, we went through how the workload defines how the solution is designed and how
using tools to verify how the application interacts with the storage allows for the correct
configuration of the storage cluster. We also found out how file types and sizes define
performance behavior and space utilization, and how asking the right questions allows for
a better understanding of the workload, which results in a more efficient and optimized
solution.

The main takeaway is to always ask how the application and workload interact with its
resources. This allows for the most efficient design possible.

In the next chapter, we'll go through the actual configuration needed for GlusterFS.

Architecting a Storage Cluster Chapter 3

[63]

Questions
What are the compute requirements for GlusterFS?1.
How does GlusterFS use RAM?2.
What is a cache?3.
How does concurrency affect CPU sizing?4.
How do GlusterFS volumes affect available space?5.
How much space does the application need?6.
What is projected growth?7.
What is throughput, latency IOPS, and I/O size?8.
What is brick layout?9.
What is geo-replication?10.

Further reading
Architecting Data-Intensive Applications by Anuj Kumar
Microsoft Azure Storage Essentials by Chukri Soueidi
Azure for Architects by Ritesh Modi

4
Using GlusterFS on the Cloud

Infrastructure
With a good understanding of the core concepts of GlusterFS, we can now dive into the
installation, configuration, and optimization of a storage cluster.

We will be installing GlusterFS on a three-node cluster using Azure as the cloud provider
for this example. However, the concepts can also be applied to other cloud providers.

In this chapter, we will cover the following topics:

Configuring GlusterFS backend storage
Installing and configuring GlusterFS
Setting up volumes
Optimizing performance

Technical requirements
Here's the list of technical resources for this chapter:

A detailed view of Azure virtual machine (VM) sizes:
https:/​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​azure/ ​virtual- ​machines/ ​linux/ ​sizes-
storage

A detailed view of Azure disk sizes and types:
https:/​/ ​azure. ​microsoft. ​com/ ​en-​us/ ​pricing/ ​details/ ​managed- ​disks/ ​

The main page for the ZFS on Linux project:
https:/​/ ​github. ​com/ ​zfsonlinux/ ​zfs/ ​wiki/ ​RHEL- ​and- ​CentOS

GlusterFS installation guide for CentOS:
https:/​/ ​wiki. ​centos. ​org/ ​HowTos/ ​GlusterFSonCentOS

GlusterFS quick start guide on the Gluster website:
https:/​/ ​docs. ​gluster. ​org/ ​en/ ​latest/ ​Quick- ​Start- ​Guide/ ​Quickstart/ ​

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://github.com/zfsonlinux/zfs/wiki/RHEL-and-CentOS
https://github.com/zfsonlinux/zfs/wiki/RHEL-and-CentOS
https://github.com/zfsonlinux/zfs/wiki/RHEL-and-CentOS
https://github.com/zfsonlinux/zfs/wiki/RHEL-and-CentOS
https://github.com/zfsonlinux/zfs/wiki/RHEL-and-CentOS
https://github.com/zfsonlinux/zfs/wiki/RHEL-and-CentOS
https://github.com/zfsonlinux/zfs/wiki/RHEL-and-CentOS
https://github.com/zfsonlinux/zfs/wiki/RHEL-and-CentOS
https://github.com/zfsonlinux/zfs/wiki/RHEL-and-CentOS
https://github.com/zfsonlinux/zfs/wiki/RHEL-and-CentOS
https://github.com/zfsonlinux/zfs/wiki/RHEL-and-CentOS
https://github.com/zfsonlinux/zfs/wiki/RHEL-and-CentOS
https://github.com/zfsonlinux/zfs/wiki/RHEL-and-CentOS
https://github.com/zfsonlinux/zfs/wiki/RHEL-and-CentOS
https://github.com/zfsonlinux/zfs/wiki/RHEL-and-CentOS
https://github.com/zfsonlinux/zfs/wiki/RHEL-and-CentOS
https://github.com/zfsonlinux/zfs/wiki/RHEL-and-CentOS
https://github.com/zfsonlinux/zfs/wiki/RHEL-and-CentOS
https://github.com/zfsonlinux/zfs/wiki/RHEL-and-CentOS
https://wiki.centos.org/HowTos/GlusterFSonCentOS
https://wiki.centos.org/HowTos/GlusterFSonCentOS
https://wiki.centos.org/HowTos/GlusterFSonCentOS
https://wiki.centos.org/HowTos/GlusterFSonCentOS
https://wiki.centos.org/HowTos/GlusterFSonCentOS
https://wiki.centos.org/HowTos/GlusterFSonCentOS
https://wiki.centos.org/HowTos/GlusterFSonCentOS
https://wiki.centos.org/HowTos/GlusterFSonCentOS
https://wiki.centos.org/HowTos/GlusterFSonCentOS
https://wiki.centos.org/HowTos/GlusterFSonCentOS
https://wiki.centos.org/HowTos/GlusterFSonCentOS
https://wiki.centos.org/HowTos/GlusterFSonCentOS
https://wiki.centos.org/HowTos/GlusterFSonCentOS
https://docs.gluster.org/en/latest/Quick-Start-Guide/Quickstart/
https://docs.gluster.org/en/latest/Quick-Start-Guide/Quickstart/
https://docs.gluster.org/en/latest/Quick-Start-Guide/Quickstart/
https://docs.gluster.org/en/latest/Quick-Start-Guide/Quickstart/
https://docs.gluster.org/en/latest/Quick-Start-Guide/Quickstart/
https://docs.gluster.org/en/latest/Quick-Start-Guide/Quickstart/
https://docs.gluster.org/en/latest/Quick-Start-Guide/Quickstart/
https://docs.gluster.org/en/latest/Quick-Start-Guide/Quickstart/
https://docs.gluster.org/en/latest/Quick-Start-Guide/Quickstart/
https://docs.gluster.org/en/latest/Quick-Start-Guide/Quickstart/
https://docs.gluster.org/en/latest/Quick-Start-Guide/Quickstart/
https://docs.gluster.org/en/latest/Quick-Start-Guide/Quickstart/
https://docs.gluster.org/en/latest/Quick-Start-Guide/Quickstart/
https://docs.gluster.org/en/latest/Quick-Start-Guide/Quickstart/
https://docs.gluster.org/en/latest/Quick-Start-Guide/Quickstart/
https://docs.gluster.org/en/latest/Quick-Start-Guide/Quickstart/
https://docs.gluster.org/en/latest/Quick-Start-Guide/Quickstart/
https://docs.gluster.org/en/latest/Quick-Start-Guide/Quickstart/
https://docs.gluster.org/en/latest/Quick-Start-Guide/Quickstart/
https://docs.gluster.org/en/latest/Quick-Start-Guide/Quickstart/
https://docs.gluster.org/en/latest/Quick-Start-Guide/Quickstart/
https://docs.gluster.org/en/latest/Quick-Start-Guide/Quickstart/

Using GlusterFS on the Cloud Infrastructure Chapter 4

[65]

GlusterFS setting up volumes on the administrators guide:
https:/​/ ​docs. ​gluster. ​org/ ​en/ ​latest/ ​Administrator%20Guide/
Setting%20Up%20Volumes/ ​

GlusterFS tuning volumes for better performance:
https:/​/ ​docs. ​gluster. ​org/ ​en/ ​latest/ ​Administrator%20Guide/
Managing%20Volumes/ ​#tuning- ​options

Setting up the bricks used for backend
storage
The following is the list of components that we'll be using:

Azure L4s VM with 4vCPUs and 32 GB of RAM
Four S10 128 GB Disks per VM
CentOS 7.5
ZFS on Linux as the filesystem for the bricks
A single RAID 0 group with four disks
GlusterFS 4.1

Azure deployment
Before going into the details of how to configure the bricks, we first need to deploy the
nodes in Azure. For this example, we are using the storage optimized VM series, or L-
series. One thing that is worth mentioning is that Azure has a 30-day free trial that can be
used for testing before committing to any deployment.

In Azure, performance is defined on several levels. The first level is the VM limit, which is
the maximum performance that the VM allows. The L-series family provides the correct
balance of price versus performance as these VMs are optimized to deliver higher
input/output operations per second (IOPS) and throughput rather than delivering high
compute or memory resources. The second level on which performance is defined is
through the disks that are attached to the VM. For this example, we will be using standard
hard disk drives (HDD) for a cost-effective solution. If more performance is needed, the
disks can always be migrated to premium solid-state drives (SSD) storage.

https://docs.gluster.org/en/latest/Administrator%20Guide/Setting%20Up%20Volumes/
https://docs.gluster.org/en/latest/Administrator%20Guide/Setting%20Up%20Volumes/
https://docs.gluster.org/en/latest/Administrator%20Guide/Setting%20Up%20Volumes/
https://docs.gluster.org/en/latest/Administrator%20Guide/Setting%20Up%20Volumes/
https://docs.gluster.org/en/latest/Administrator%20Guide/Setting%20Up%20Volumes/
https://docs.gluster.org/en/latest/Administrator%20Guide/Setting%20Up%20Volumes/
https://docs.gluster.org/en/latest/Administrator%20Guide/Setting%20Up%20Volumes/
https://docs.gluster.org/en/latest/Administrator%20Guide/Setting%20Up%20Volumes/
https://docs.gluster.org/en/latest/Administrator%20Guide/Setting%20Up%20Volumes/
https://docs.gluster.org/en/latest/Administrator%20Guide/Setting%20Up%20Volumes/
https://docs.gluster.org/en/latest/Administrator%20Guide/Setting%20Up%20Volumes/
https://docs.gluster.org/en/latest/Administrator%20Guide/Setting%20Up%20Volumes/
https://docs.gluster.org/en/latest/Administrator%20Guide/Setting%20Up%20Volumes/
https://docs.gluster.org/en/latest/Administrator%20Guide/Setting%20Up%20Volumes/
https://docs.gluster.org/en/latest/Administrator%20Guide/Setting%20Up%20Volumes/
https://docs.gluster.org/en/latest/Administrator%20Guide/Setting%20Up%20Volumes/
https://docs.gluster.org/en/latest/Administrator%20Guide/Setting%20Up%20Volumes/
https://docs.gluster.org/en/latest/Administrator%20Guide/Managing%20Volumes/#tuning-options
https://docs.gluster.org/en/latest/Administrator%20Guide/Managing%20Volumes/#tuning-options
https://docs.gluster.org/en/latest/Administrator%20Guide/Managing%20Volumes/#tuning-options
https://docs.gluster.org/en/latest/Administrator%20Guide/Managing%20Volumes/#tuning-options
https://docs.gluster.org/en/latest/Administrator%20Guide/Managing%20Volumes/#tuning-options
https://docs.gluster.org/en/latest/Administrator%20Guide/Managing%20Volumes/#tuning-options
https://docs.gluster.org/en/latest/Administrator%20Guide/Managing%20Volumes/#tuning-options
https://docs.gluster.org/en/latest/Administrator%20Guide/Managing%20Volumes/#tuning-options
https://docs.gluster.org/en/latest/Administrator%20Guide/Managing%20Volumes/#tuning-options
https://docs.gluster.org/en/latest/Administrator%20Guide/Managing%20Volumes/#tuning-options
https://docs.gluster.org/en/latest/Administrator%20Guide/Managing%20Volumes/#tuning-options
https://docs.gluster.org/en/latest/Administrator%20Guide/Managing%20Volumes/#tuning-options
https://docs.gluster.org/en/latest/Administrator%20Guide/Managing%20Volumes/#tuning-options
https://docs.gluster.org/en/latest/Administrator%20Guide/Managing%20Volumes/#tuning-options
https://docs.gluster.org/en/latest/Administrator%20Guide/Managing%20Volumes/#tuning-options
https://docs.gluster.org/en/latest/Administrator%20Guide/Managing%20Volumes/#tuning-options
https://docs.gluster.org/en/latest/Administrator%20Guide/Managing%20Volumes/#tuning-options
https://docs.gluster.org/en/latest/Administrator%20Guide/Managing%20Volumes/#tuning-options
https://docs.gluster.org/en/latest/Administrator%20Guide/Managing%20Volumes/#tuning-options
https://docs.gluster.org/en/latest/Administrator%20Guide/Managing%20Volumes/#tuning-options

Using GlusterFS on the Cloud Infrastructure Chapter 4

[66]

The exact VM size for this example will be L4s, which provides four vCPUs and 32 GB of
RAM, and is enough for a small storage cluster for general purposes. With a maximum of
125 MB/s and 5k IOPS, it still retains respectable performance when correctly configured.

A new generation of storage optimized VMs has been recently released,
offering a locally-accessible NVMe SSD of 2 TB. Additionally, it provides
increased core count and memory, making these new VMs ideal for a
GlusterFS setup with Z file system (ZFS). The new L8s_v2 VM can be
used for this specific setup, and the sizes and specifications can be seen on
the product page (https:/ ​/​docs.​microsoft. ​com/ ​en- ​us/​azure/ ​virtual-
machines/ ​linux/ ​sizes- ​storage#lsv2- ​series).

The following screenshot shows the Availability set, Current fault domain, and Current
update domain settings:

When deploying a GlusterFS setup in Azure, make sure that each node
lands on a different update and fault domain. This is done through the use
of availability sets (refer to the preceding screenshot). Doing so ensures
that if the platform restarts a node, the others remain up and serving data.

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes-storage#lsv2-series

Using GlusterFS on the Cloud Infrastructure Chapter 4

[67]

Finally, for the Azure setup, we need 512 GB per node for a total of 1.5 TB raw, or 1 TB
usable space. The most cost-effective way to achieve this is by using a single S20 512 GB
disk, since the price per gigabyte per month is approximately $0.04. Going down the route
of a single disk will impact on performance, as a single standard disk only provides a
maximum of 500 IOPS and 60 MB/s. Considering performance and accepting the fact that
we will lose a bit of efficiency in the cost department, we will be using four S10 128 GB
disks in a single RAID0 group. The price per month per gigabyte of an S10 disk is $0.05,
compared to $0.04 per month for an S20 disk. You can refer to the following table, where
the calculation is done based on the cost of the managed disk divided by its respective size:

Make sure that all three nodes are deployed on the same region and the
same resource group for consistency.

ZFS as the backend for the bricks
We spoke about ZFS in a Chapter 3, Architecting a Storage Cluster. ZFS is a filesystem that
was developed by Sun Microsystems and was later acquired by Oracle. The project was
later made open source and was ported to Linux. Although the project is still in beta, most
of the features work fine and the majority of the problems have been ruled out—the project
is now focused on adding new features.

ZFS is a software layer that combines disk management, logical volumes, and a filesystem
all in one. Advanced features such as compression, adaptive replacement cache (ARC),
deduplication, and snapshots make it ideal to work with GlusterFS as the backend for the
bricks.

Using GlusterFS on the Cloud Infrastructure Chapter 4

[68]

Installing ZFS
Let's start by installing ZFS; there are some dependencies, such as dynamic kernel modules
(DKMS), that live in the EPEL repository.

Note that most of the commands that run here are assumed to be running
as root; the commands can be run as the non-root account by prefacing
sudo before each.

To install the required components, we can use the following commands:

yum install -y epel-release
yum install -y
http://download.zfsonlinux.org/epel/zfs-release.el7_5.noarch.rpm

Next, we will use the following command:

yum install -y zfs

The following commands are used to enable the ZFS components:

systemctl enable zfs.target
systemctl enable --now zfs-import-scan.service

Configuring the zpools
With ZFS installed and enabled, we can now create the zpools. Zpool is the name given to
volumes that are created within ZFS.

Since we will be using a single RAID 0 group consisting of four disks, we can create a zpool
named brick1; this needs to be done on all three nodes. Additionally, let's create a
directory named bricks that lives under the root (/); this directory houses the bricks under
a directory with the brick name. The command required to do this is as follows:

mkdir -p /bricks/brick1

This creates the directory tree, as follows:

zpool create brick1 /dev/disk/by-id/scsi-360022480f0da979b536cde32a4a17406
\
 /dev/disk/by-id/scsi-360022480fb9d18bbdfb9175fd3e0bbf2 \
/dev/disk/by-id/scsi-360022480fb9d18bbdfb9175fd3e0bae4 \
/dev/disk/by-id/scsi-360022480fb9d18bbdfb9175fd3e049f2

Using GlusterFS on the Cloud Infrastructure Chapter 4

[69]

To further explain the command, brick1 is the name of the zpool. Then, we indicate the
path to the disks. In this example, we are using the ID of the disks since this avoids
problems if the disks change order. While ZFS is not affected for disks in a different order,
it is better to avoid problems by using an ID that will never change.

ZFS can use the entire disk because it creates the required partitions
automatically.

With the zpool instance created, we can check whether it has completed correctly by using
the zpool status command:

Let's enable compression and change the mount point of the pool to the previously created
directory. To do this, run the following command:

zfs set compression=lz4 brick1

You will also need to run the following command:

zfs set mountpoint=/bricks/brick1 brick1

The first command enables compression with the lz4 algorithm, which has a low CPU
overhead. The second command changes the mount point of the zpool. Make sure that you
use the correct name of the pool when changing the settings.

Using GlusterFS on the Cloud Infrastructure Chapter 4

[70]

After doing this, we should have the ZFS volume mounted under /bricks/brick1, as
shown in the df command:

We need to create a directory on the recently added mount point to use as the brick; the
consensus is to use the name of the volume. In this case, we'll name the volume gvol1, and
simply create the directory:

mkdir -p /bricks/brick1/gvol1

This needs to be done on all the nodes.

Adding the ZFS cache to the pool (optional)
With Azure, every single VM has a temporary resource drive. The performance of this
temporary resource drive is considerably higher than the data disks that are added to it.
This drive is ephemeral, meaning the data is wiped once the VM is deallocated; this should
work very well as a read cache drive since there is no need to persistently keep the data
across reboots.

Since the drive is wiped with every stop/deallocate/start cycle, we need to tweak
some things with the unit files for ZFS to allow the disk to be added on every reboot. The
drive will always be /dev/sdb, and since there is no need to create a partition on it, we can
simply tell ZFS to add it as a new disk each time the system boots.

Using GlusterFS on the Cloud Infrastructure Chapter 4

[71]

This can be achieved by editing the systemd unit for zfs-mount.service, which is
located under /usr/lib/systemd/system/zfs-mount.service. The problem with this
approach is that the ZFS updates will overwrite the changes made to the preceding unit.
One solution to this problem is to run sudo systemctl edit zfs-mount and add the
following code:

[Service]
ExecStart=/sbin/zpool remove brick1 /dev/sdb
ExecStart=/sbin/zpool add brick1 cache /dev/sdb

To apply the changes, run the following command:

systemctl daemon-reload

Now that we have ensured that the cache drive will be added after every reboot, we need to
change an Azure-specific configuration with the Linux agent that runs on Azure VMs. This
agent is in charge of creating the temporary resource drive, and since we'll be using it for
another purpose, we need to tell the agent not to create the ephemeral disk. To achieve this,
we need to edit the file located in /etc/waagent.conf and look for the following line:

ResourceDisk.Format=y

You will then need to change it to the following line:

ResourceDisk.Format=n

After doing this, we can add the cache drive to the pool by running the following
command:

zpool add brick1 cache /dev/sdb -f

The -f option must only be used the first time because it removes the previously created
filesystem. Note that the stop/deallocate/start cycle of the VM is required to stop the
agent from formatting the resource disk, as it gets an ext4 filesystem by default.

The previous process can also be applied to the newer Ls_v2 VMs, which
use the much faster NVMe drives, such as the L8s_v2; simply replace
/dev /sdb with /dev/nvme0n1.

Using GlusterFS on the Cloud Infrastructure Chapter 4

[72]

You can verify that the cache disk was added as follows:

As we'll be using a single RAID group, this will be used as a read cache for the entire brick,
allowing better performance when reading the files of the GlusterFS volume.

Installing GlusterFS on the nodes
With each node having the bricks already configured, we can finally install GlusterFS. The
installation is relatively straightforward and requires just a couple of commands.

Installing the packages
We'll be using the packages provided by CentOS. To install GlusterFS, we first install the
repository as follows:

yum install -y centos-release-gluster41

Then, we install the glusterfs-server package:

yum install -y glusterfs-server

Using GlusterFS on the Cloud Infrastructure Chapter 4

[73]

We then make sure the glusterd service is enabled and started:

These commands need to be run on each of the nodes that will be part of the cluster; this is
because each node requires the packages and services to be enabled.

Creating the trusted pool
Finally, we need to create a trusted pool. A trusted pool is a list of nodes that will be part of
the cluster, where each Gluster node trusts the other, thus allowing for the creation of
volumes.

To create the trusted pool, run the following code from the first node:

gluster peer probe gfs2
gluster peer probe gfs3

You can verify that the nodes show up as follows:

Using GlusterFS on the Cloud Infrastructure Chapter 4

[74]

The command can be run from any node, and the hostnames or IPs need to be modified to
include the others. In this case, I have added the IP addresses of each of the nodes onto the
/etc/hosts file to allow for easy configuration. Ideally, the hostnames should be
registered with the DNS server for the name resolution within the network.

After the installation, the gluster nodes should allow volumes to be created.

Creating the volumes
We have now reached the point where we can create the volumes; this is because we have
the bricks configured and the necessary packages for GlusterFS to work.

Creating a dispersed volume
We'll be using a dispersed volume type across three nodes, giving a good balance of high
availability and performance. The raw space of all of the nodes combined will be around 1.5
TB; however, the distributed volume will have a usable space of approximately 1 TB.

To create a dispersed volume, use the following code:

gluster volume create gvol1 disperse 3 gfs{1..3}:/bricks/brick1/gvol1

Then, start the volume using the following code:

gluster volume start gvol1

Make sure that it starts correctly by using the following code:

gluster volume status gvol1

Using GlusterFS on the Cloud Infrastructure Chapter 4

[75]

The volume should show up now as follows:

Mounting the volume
The volume is now created and can be mounted on the clients; the preferred method for
doing this is by using the native glusterfs-fuse client, which allows for automatic
failovers in the event that one of the nodes goes down.

To install the gluster-fuse client, use the following code:

yum install -y glusterfs-fuse

Then, let's create a directory under root called gvol1:

mkdir /gvol1

Finally, we can mount the GlusterFS volume on the client as follows:

mount -t glusterfs gfs1:/gvol1 /gvol1

It doesn't matter which node you specify, as the volume can be accessed from any of them.
In the event that one of the nodes goes down, the client will automatically redirect I/O
requests to the remaining nodes.

Using GlusterFS on the Cloud Infrastructure Chapter 4

[76]

Optimizing performance
With the volume created and mounted, we can tweak some parameters to get the best
performance. Mainly, performance tuning can be done on the filesystem level (in this case,
ZFS), and on the GlusterFS volume level.

GlusterFS tuning
Here, the main variable is performance.cache-size. This setting specifies the amount of
RAM to be allocated as a read cache for the GlusterFS volume. By default, it is set to 32 MB,
which is fairly low. Given that the selected VM has enough RAM, this can be bumped to 4
GB using the following command:

gluster volume set gvol1 performance.cache-size 4GB

Another essential parameter once the cluster starts growing is performance.io-thread-
count. This controls how many I/O threads are spawned by the volume. The default is 16
threads, which are enough for small-to-medium clusters. However, once the cluster size
starts growing, this can be doubled. To change the setting, use the following command:

gluster volume set gvol1 performance.io-thread-count 16

This setting should be tested to check whether increasing the count improves the
performance or not.

ZFS
We'll be primarily changing two settings: ARC and the L2ARC feed performance.

ARC
The primary setting for ZFS is its read cache, called ARC. Allowing more RAM to be
allocated to ZFS increases read performance substantially. Since we have already allocated
4 GB to the Gluster volume read cache and the VM has 32 GB available, we can allocate 26
GB of RAM to ZFS, which will leave approximately 2 GB for the OS.

Using GlusterFS on the Cloud Infrastructure Chapter 4

[77]

To change the maximum size that is allowed for ARC, use the following code:

echo 27917287424 > /sys/module/zfs/parameters/zfs_arc_max

Here, the number is the amount of RAM in bytes, in this case, 26 GB. Doing this changes
the setting on the fly but does not make it boot persistent. To have the settings applied on
boot, create a file named /etc/modprobe.d/zfs.conf and add the following values:

options zfs zfs_arc_max=27917287424

By doing this, you can make the changes persist across boots.

L2ARC
L2ARC refers to a second level of read cache; this is the cache disk that was previously
added to the zpools. Changing the speed in which data is fed to the cache helps by
decreasing the amount of time it takes to warm or fill up the cache with constantly accessed
files. The setting is specified in bytes per second. To change it you can use the following
command:

echo 2621440000 > /sys/module/zfs/parameters/l2arc_max_write

As with the previous setting, this is applied to the running kernel. To make it boot-
persistent, add the following line to the /etc/modprobe.d/zfs.conf file:

options zfs l2arc_write_max=2621440000

This setting allows a maximum of 256 MB/s of L2ARC feed; the setting should be increased
to at least double if the VM size is changed to a higher tier.

In the end, you should end up with a file on each node that looks like this:

Regarding ZFS, on other types of filesystems, changing the block size helps to gain some
performance. ZFS has a variable block size, allowing for small and big files to achieve
similar results, so there is no need to change this setting.

Using GlusterFS on the Cloud Infrastructure Chapter 4

[78]

Summary
After installing ZFS, creating the zpools, installing GlusterFS, and creating the volumes, we
have ended up with a solution with respectable performance that can sustain a node failure
and still serve data to its clients.

For the setup, we used Azure as the cloud provider. While each provider has their own set
of configuration challenges, the core concepts can be used on other cloud providers as well.

However, this design has a disadvantage. When adding new disks to the zpools, the stripes
don't align, causing new reads and writes to yield lower performance. This problem can be
avoided by adding an entire set of disks at once; lower read performance is mostly covered
by the read cache on RAM (ARC) and the cache disk (L2ARC).

For GlusterFS, we used a dispersed layout that balances performance with high availability.
In this three-node cluster setup, we can sustain a node failure without holding I/O from the
clients.

The main takeaway is to have a critical mindset when designing a solution. In this example,
we worked with the resources that we had available to achieve a configuration that would
perform to specification and utilize what we provided. Make sure that you always ask
yourself how this setting will impact the result, and how you can change it to be more
efficient.

In the next chapter, we'll go through testing and validating the performance of the setup.

Questions
What are GlusterFS bricks?
What is ZFS?
What is a zpool?
What is a cache disk?
How is GlusterFS installed?
What is a trusted pool?
How is a GlusterFS volume created?
What is performance.cache-size?
What is ARC?

Using GlusterFS on the Cloud Infrastructure Chapter 4

[79]

Further reading
Learning Microsoft Azure by Geoff Webber-Cross: https:/ ​/​www. ​packtpub. ​com/
networking- ​and- ​servers/ ​learning- ​microsoft- ​azure

Implementing Azure Solutions by Florian Klaffenbach, Jan-Henrik Damaschke, and
Oliver Michalski: https:/ ​/ ​www. ​packtpub. ​com/ ​virtualization- ​and-​cloud/
implementing- ​azure- ​solutions

Azure for Architects by Ritesh
Modi: https://www.packtpub.com/virtualization-and-cloud/azure-architec
ts

https://www.packtpub.com/networking-and-servers/learning-microsoft-azure
https://www.packtpub.com/networking-and-servers/learning-microsoft-azure
https://www.packtpub.com/networking-and-servers/learning-microsoft-azure
https://www.packtpub.com/networking-and-servers/learning-microsoft-azure
https://www.packtpub.com/networking-and-servers/learning-microsoft-azure
https://www.packtpub.com/networking-and-servers/learning-microsoft-azure
https://www.packtpub.com/networking-and-servers/learning-microsoft-azure
https://www.packtpub.com/networking-and-servers/learning-microsoft-azure
https://www.packtpub.com/networking-and-servers/learning-microsoft-azure
https://www.packtpub.com/networking-and-servers/learning-microsoft-azure
https://www.packtpub.com/networking-and-servers/learning-microsoft-azure
https://www.packtpub.com/networking-and-servers/learning-microsoft-azure
https://www.packtpub.com/networking-and-servers/learning-microsoft-azure
https://www.packtpub.com/networking-and-servers/learning-microsoft-azure
https://www.packtpub.com/networking-and-servers/learning-microsoft-azure
https://www.packtpub.com/networking-and-servers/learning-microsoft-azure
https://www.packtpub.com/networking-and-servers/learning-microsoft-azure
https://www.packtpub.com/networking-and-servers/learning-microsoft-azure
https://www.packtpub.com/networking-and-servers/learning-microsoft-azure
https://www.packtpub.com/networking-and-servers/learning-microsoft-azure
https://www.packtpub.com/virtualization-and-cloud/implementing-azure-solutions
https://www.packtpub.com/virtualization-and-cloud/implementing-azure-solutions
https://www.packtpub.com/virtualization-and-cloud/implementing-azure-solutions
https://www.packtpub.com/virtualization-and-cloud/implementing-azure-solutions
https://www.packtpub.com/virtualization-and-cloud/implementing-azure-solutions
https://www.packtpub.com/virtualization-and-cloud/implementing-azure-solutions
https://www.packtpub.com/virtualization-and-cloud/implementing-azure-solutions
https://www.packtpub.com/virtualization-and-cloud/implementing-azure-solutions
https://www.packtpub.com/virtualization-and-cloud/implementing-azure-solutions
https://www.packtpub.com/virtualization-and-cloud/implementing-azure-solutions
https://www.packtpub.com/virtualization-and-cloud/implementing-azure-solutions
https://www.packtpub.com/virtualization-and-cloud/implementing-azure-solutions
https://www.packtpub.com/virtualization-and-cloud/implementing-azure-solutions
https://www.packtpub.com/virtualization-and-cloud/implementing-azure-solutions
https://www.packtpub.com/virtualization-and-cloud/implementing-azure-solutions
https://www.packtpub.com/virtualization-and-cloud/implementing-azure-solutions
https://www.packtpub.com/virtualization-and-cloud/implementing-azure-solutions
https://www.packtpub.com/virtualization-and-cloud/implementing-azure-solutions
https://www.packtpub.com/virtualization-and-cloud/implementing-azure-solutions
https://www.packtpub.com/virtualization-and-cloud/implementing-azure-solutions
https://www.packtpub.com/virtualization-and-cloud/azure-architects
https://www.packtpub.com/virtualization-and-cloud/azure-architects

5
Analyzing Performance in a

Gluster System
In the Chapter 4, Using GlusterFS on the Cloud Infrastructure, we have completed a working
implementation of GlusterFS, we can focus on the testing aspect of the solution. We will
look at a high-level overview of what was deployed and explain the reasoning behind the
chosen components.

Once the configuration is defined, we can go through testing the performance to verify that
we are achieving the expected results. We can then conduct availability testing by
deliberately bringing down nodes while performing I/O.

Finally, we will see how we can scale the solution both vertically and horizontally.

In this chapter, we will cover the following topics:

A high-level overview of the implementation
Going through Performance testing
Performance availability testing
Scaling the solution vertically and horizontally

Analyzing Performance in a Gluster System Chapter 5

[81]

Technical requirements
Here's the list of technical resources for this chapter:

Zpool iostat—used for performance monitoring on ZFS: https:/ ​/ ​docs. ​oracle.
com/​cd/ ​E19253- ​01/ ​819- ​5461/ ​gammt/ ​index. ​html

Sysstat—used for live block performance statistics: https:/ ​/​github. ​com/
sysstat/ ​sysstat

The iostat man page containing the different options for the command: http:/ ​/
sebastien. ​godard. ​pagesperso- ​orange. ​fr/ ​man_ ​iostat. ​html

FIO documentation to provide configuration parameters and usage: https:/ ​/
media.​readthedocs. ​org/ ​pdf/ ​fio/​latest/ ​fio.​pdf

GlusterFS monitoring workload documentation on how to view
statistics: https:/ ​/​gluster. ​readthedocs. ​io/ ​en/ ​latest/
Administrator%20Guide/ ​Monitoring%20Workload/ ​

An overview of the implementation
After having the solution deployed and configured in Chapter 4, Using GlusterFS on the
Cloud Infrastructure, we can validate the performance of the implementation. The primary
goal is to understand how this can be done and the tools that are available.

Let's first take a step back and see what we implemented.

An overview of the cluster
In Chapter 4, Using GlusterFS on the Cloud Infrastructure, we deployed GlusterFS version 4.1
on an Azure virtual machine (VM). We used ZFS as the storage backend for the bricks by
using four disks per node on a three-node setup. The following diagram offers a high-level
overview of how this is distributed:

https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://docs.oracle.com/cd/E19253-01/819-5461/gammt/index.html
https://github.com/sysstat/sysstat
https://github.com/sysstat/sysstat
https://github.com/sysstat/sysstat
https://github.com/sysstat/sysstat
https://github.com/sysstat/sysstat
https://github.com/sysstat/sysstat
https://github.com/sysstat/sysstat
https://github.com/sysstat/sysstat
https://github.com/sysstat/sysstat
https://github.com/sysstat/sysstat
http://sebastien.godard.pagesperso-orange.fr/man_iostat.html
http://sebastien.godard.pagesperso-orange.fr/man_iostat.html
http://sebastien.godard.pagesperso-orange.fr/man_iostat.html
http://sebastien.godard.pagesperso-orange.fr/man_iostat.html
http://sebastien.godard.pagesperso-orange.fr/man_iostat.html
http://sebastien.godard.pagesperso-orange.fr/man_iostat.html
http://sebastien.godard.pagesperso-orange.fr/man_iostat.html
http://sebastien.godard.pagesperso-orange.fr/man_iostat.html
http://sebastien.godard.pagesperso-orange.fr/man_iostat.html
http://sebastien.godard.pagesperso-orange.fr/man_iostat.html
http://sebastien.godard.pagesperso-orange.fr/man_iostat.html
http://sebastien.godard.pagesperso-orange.fr/man_iostat.html
http://sebastien.godard.pagesperso-orange.fr/man_iostat.html
http://sebastien.godard.pagesperso-orange.fr/man_iostat.html
http://sebastien.godard.pagesperso-orange.fr/man_iostat.html
http://sebastien.godard.pagesperso-orange.fr/man_iostat.html
http://sebastien.godard.pagesperso-orange.fr/man_iostat.html
http://sebastien.godard.pagesperso-orange.fr/man_iostat.html
https://media.readthedocs.org/pdf/fio/latest/fio.pdf
https://media.readthedocs.org/pdf/fio/latest/fio.pdf
https://media.readthedocs.org/pdf/fio/latest/fio.pdf
https://media.readthedocs.org/pdf/fio/latest/fio.pdf
https://media.readthedocs.org/pdf/fio/latest/fio.pdf
https://media.readthedocs.org/pdf/fio/latest/fio.pdf
https://media.readthedocs.org/pdf/fio/latest/fio.pdf
https://media.readthedocs.org/pdf/fio/latest/fio.pdf
https://media.readthedocs.org/pdf/fio/latest/fio.pdf
https://media.readthedocs.org/pdf/fio/latest/fio.pdf
https://media.readthedocs.org/pdf/fio/latest/fio.pdf
https://media.readthedocs.org/pdf/fio/latest/fio.pdf
https://media.readthedocs.org/pdf/fio/latest/fio.pdf
https://media.readthedocs.org/pdf/fio/latest/fio.pdf
https://media.readthedocs.org/pdf/fio/latest/fio.pdf
https://media.readthedocs.org/pdf/fio/latest/fio.pdf
https://media.readthedocs.org/pdf/fio/latest/fio.pdf
https://media.readthedocs.org/pdf/fio/latest/fio.pdf
https://gluster.readthedocs.io/en/latest/Administrator%20Guide/Monitoring%20Workload/
https://gluster.readthedocs.io/en/latest/Administrator%20Guide/Monitoring%20Workload/
https://gluster.readthedocs.io/en/latest/Administrator%20Guide/Monitoring%20Workload/
https://gluster.readthedocs.io/en/latest/Administrator%20Guide/Monitoring%20Workload/
https://gluster.readthedocs.io/en/latest/Administrator%20Guide/Monitoring%20Workload/
https://gluster.readthedocs.io/en/latest/Administrator%20Guide/Monitoring%20Workload/
https://gluster.readthedocs.io/en/latest/Administrator%20Guide/Monitoring%20Workload/
https://gluster.readthedocs.io/en/latest/Administrator%20Guide/Monitoring%20Workload/
https://gluster.readthedocs.io/en/latest/Administrator%20Guide/Monitoring%20Workload/
https://gluster.readthedocs.io/en/latest/Administrator%20Guide/Monitoring%20Workload/
https://gluster.readthedocs.io/en/latest/Administrator%20Guide/Monitoring%20Workload/
https://gluster.readthedocs.io/en/latest/Administrator%20Guide/Monitoring%20Workload/
https://gluster.readthedocs.io/en/latest/Administrator%20Guide/Monitoring%20Workload/
https://gluster.readthedocs.io/en/latest/Administrator%20Guide/Monitoring%20Workload/
https://gluster.readthedocs.io/en/latest/Administrator%20Guide/Monitoring%20Workload/
https://gluster.readthedocs.io/en/latest/Administrator%20Guide/Monitoring%20Workload/
https://gluster.readthedocs.io/en/latest/Administrator%20Guide/Monitoring%20Workload/

Analyzing Performance in a Gluster System Chapter 5

[82]

This setup gives 1 TB of usable space. The volume can tolerate an entire node going down
while still serving data to the clients.

This setup should be able to deliver approximately 375 megabytes per second (MB/s),
handle several hundred clients at once, and should be reasonably straightforward to scale
both horizontally and vertically.

Performance testing
We now need to validate that the theoretical performance can be achieved through actual
implementation. Let's break this down into several parts.

Performance theory
Let's figure out how much performance we should be getting based on the specifications of
the setup. Consider that each of the nodes should provide a maximum of 125 MB/s. The
disk subsystem is more than capable of delivering performance since each disk yields 60
MB/s.

Analyzing Performance in a Gluster System Chapter 5

[83]

The total achievable performance should be around 375 MB/s, assuming that the client or
clients can keep up by sending or requesting enough data to the volume.

Performance tools
We'll be using three main tools to validate and test the performance of the solution:

zpool iostat

iostat

Flexible I/O tester (FIO)

Each of these tools works at a different level. Let's now detail what each one does and how
to understand the information that they provide.

The ZFS zpool iostat command
ZFS works on the backend volume level; the zpool iostat -v command gives
performance statistics for each of the members in the ZFS volume and statistics for the ZFS
volume as a whole.

The command can provide real-time data by passing a number in seconds that it will iterate
after that period of time has passed. For example, zpool iostat -v 1 reports disk
statistics each second. Here, the -v option shows each of the members of the pool and their
respective data.

This tool helps to present the performance at the lowest level possible because it shows data
from each of the disks, from each of the nodes:

Analyzing Performance in a Gluster System Chapter 5

[84]

Note that we used the extra -L and -P options so that the absolute paths of the device's files
or the Universally Unique Identifier (UUID) are printed; this is because we created the
pool using the unique identifier of each of the disks.

From the preceding screenshot, we can see four main groups, as follows:

pool: This is created with each of the members.
capacity: This is the amount of space that is allocated to each device.
operations: This is the number of IOPSes that are done on each of the devices.
bandwidth: This is the throughput of each device.

In the first line, the command prints the statistics since the last boot.
Remember that this tool helps to present the performance from a ZFS-pool
level.

iostat
As part of the sysstat package, iostat provides low-level performance statistics from
each of the devices. iostat bypasses filesystems and volumes and presents the RAW
performance data from each of the block devices in the system.

The iostat tool can be run with options to alter the information that is printed onscreen,
for example, iostat -dxctm 1. Let's explore what each part does:

iostat: This is the primary command.
d: This prints the device utilization.
x: This displays the extended device statistics.
c: This displays the CPU utilization.
t: This displays the time for each report printed.
m: This ensures that the statistics will be displayed in MB/s.
1: This is the amount of time in seconds in which iostat prints data.

Analyzing Performance in a Gluster System Chapter 5

[85]

In the following screenshot, you can see that iostat displays information in different
columns:

There's no need to go through all of the columns, but the most important ones are as
follows:

Device: This shows the block devices that are present on the system.
r/s: These are the read operations per second.
w/s: These are the write operations per second.
rMB/s: These are the MB/s read from the device.
wMB/s: These are the MB/s written to the device.
r_await: This is the average time in milliseconds for read requests.
w_await: This is the average time in milliseconds for write requests.

The r_await and w_await columns in conjunction with the avg-cpu %iowait time are
essential; this is because these metrics can help determine whether one of the devices has
increased latency over the others. A high CPU iowait time means that the CPU is
continuously waiting for I/O to complete, which, in turn, might mean that the block devices
have high latency.

The iostat tool can be run on each of the nodes in the cluster, providing low-level
statistics for each of the disks that make up the GlusterFS volume.

Details on the rest of the columns can be found on the man page for
iostat.

Analyzing Performance in a Gluster System Chapter 5

[86]

The FIO tester
FIO is a benchmarking tool that is used to conduct performance testing by generating
synthetic workloads and presenting a summary of the I/O metrics.

Note that fio does not come by default on CentOS, but it is available in
the base repository and can be installed by running sudo yum install
-y fio.

This tool is exceptionally helpful as it allows us to perform tests that are close to what the
real workload of the system will be—by allowing the user to change parameters such as the
block size, file size, and thread count. FIO can deliver data that is close to real-world
performance. This level of customization can be potentially confusing as it provides many
options for workload simulation, and some of these are not very intuitive at first.

The easiest way to perform testing with FIO is by creating a configuration file, which tells
the software how to behave; a configuration file looks like this:

[global]
name=rw-nocache-random
rw=randrw
rwmixread=50
rwmixwrite=50
group_reporting=1
bs=1M
direct=1
numjobs=4
time_based=1
runtime=180
ioengine=libaio
iodepth=64

[file1]
size=10G
filename=rw-nocache-random.1

Let's break it down so that we can understand how each part of the configuration file
works:

[global]: This denotes the configuration parameters that affect the entire test
(parameters for individual files can be set).
name=: This is the name of the test; it can be anything meaningful.
rw=randrw: This tells FIO what type of I/O to perform; in this case, it does
random reads and writes.

Analyzing Performance in a Gluster System Chapter 5

[87]

rwmixread and rwmixwrite: These tell FIO what percentage or mix of reads
and writes to perform—in this case, it is a 50-50 mix.
group_reporting=1: This is used to give statistics for the entire test rather than
for each of the jobs.
bs=1M: This is the block size that FIO uses when performing the test; it can be
changed to a value that mimics the workload intended.
numjobs=4: This controls how many threads are opened per file. Ideally, this can
be used to match the number of users or threads that will be using the storage.
runtime=180: This controls, in seconds, how long the test will run for.
ioengine=libaio: This controls the type of I/O engine to be used. The most
common is libaio as it resembles most workloads.
iodepth=64: This controls the I/O depth of the test; a higher number allows the
storage device to be used at its fullest.

Finally, the file group controls how many files are created for the test and what their size
will be. Certain settings, such as iodepth, can be added to this group that only affect the
file where the parameter is defined. Another consideration is that fio opens a thread based
on the numjobs parameter for each of the files. In the preceding configuration, it will open
a total of 16 threads.

To run FIO, simply move into the directory where the mount point is located and point it to
the configuration file, as follows:

cd /gvol1
fio /root/test.fio

Note that FIO requires root privileges, so make sure that FIO is run with
sudo.

While FIO is running, it displays statistics such as throughput and IOPS:

Analyzing Performance in a Gluster System Chapter 5

[88]

Once done, FIO reports the test statistics on screen. The main things to look for are
the IOPS and bandwidth (BW) for both read and write operations:

From the test results, we can see that the GlusterFS volume can sustain about 150 MB/s of
both read and write operations simultaneously. We're off by 75 MB/s from the theoretical
maximum performance of the cluster; in this specific case, we're hitting a network limit.

FIO can be extremely effective at validating performance and detecting problems; fio can
be run on clients mounting the Gluster volume or directly on the bricks of each of the
nodes. You can use FIO for testing existing solutions in order to validate performance
needs; just make sure the settings in the FIO configuration are changed based on what
needs to be tested.

Analyzing Performance in a Gluster System Chapter 5

[89]

GlusterFS provides some tools to monitor performance from the
perspective of volume. These can be found in the
GlusterFS documentation page, under Monitoring Workload.

Availability testing
Making sure that the cluster is able to tolerate a node going down is crucial because we can
confirm that no downtime occurs if a node is lost.

This can be done by forcibly shutting down one of the nodes while the others continue to
serve data. To function as a synthetic workload, we can use FIO to perform a continuous
test while one of the nodes is being shut down.

In the following screenshot, we can see that the gfs2 node was not present, but the FIO test
continued serving data as expected:

Scaling
Scaling this setup is relatively straightforward. As previously mentioned, we can either
scale vertically, by adding more disks to each of the nodes, or scale horizontally, by adding
more nodes to the cluster.

Scaling vertically is considerably simpler than horizontally as it requires fewer resources.
For example, a single disk can be added to the ZFS pool on each of the nodes—effectively
increasing the available space by 256 GB if three 128 GB disks are added.

Adding disks to the ZFS pool can be done with the following command:

zpool add brick1 /dev/disk/by-id/<disk-id>

Analyzing Performance in a Gluster System Chapter 5

[90]

From the previous command, brick1 is the name of the pool and disk-id is the UUID of
the recently added disk or disks.

Scaling horizontally requires the exact setup to be mirrored on a new node and then added
to the cluster. This requires a new set of disks. The advantage is that the available space and
performance will grow accordingly.

Summary
In this chapter, we looked at an overview of the implementation done in the previous
Chapter 4, Using GlusterFS on the Cloud Infrastructure, so that we could have a fresh
understanding of what was implemented in order to understand how we could test
performance. Given the previous setup, the implementation should be capable of a
theoretical 375 MB/s of throughput. We can validate this number with several tools that
work at different levels.

For ZFS volumes, we can use the zpool iostat command, which provides data for each
of the block devices that are part of the ZFS volume. iostat can be used to determine
performance for all of the block devices present in the system. These commands can only be
run on each of the nodes of the cluster. To be able to verify the actual performance of the
implementation, we used the FIO tool, which can simulate specific workloads by changing
the parameters of how I/O is performed. This tool can be used on each of the nodes on the
brick level or on each of the Gluster clients on the GlusterFS volume to get a general
overview of the performance that is achievable by the cluster.

We went through how we can perform availability testing by purposely shutting down one
of the nodes while performing a test through FIO. Finally, scaling the solution can be done
either vertically, by adding disks to each of the volumes in each of the nodes, or
horizontally, by adding an entirely new node to the cluster. Your main takeaway from this
chapter is to consider how the configuration that was implemented can be validated using
widely available tools. These are just a set of tools. Many other tools might be available,
which could be better for the solution that you're implementing.

In the next chapter, we'll jump into creating a highly-available self-healing architecture.

Analyzing Performance in a Gluster System Chapter 5

[91]

Questions
What is MB/s?1.
What is zpool iostat?2.
Where can I run zpool iostat?3.
What is iostat?4.
What does r_await mean?5.
What is CPU IOWAIT time?6.
What is FIO?7.
How can I run FIO?8.
What is an FIO configuration file?9.
How can I validate availability in a Gluster cluster?10.
How can I scale vertically?11.

Further reading
Learning Microsoft Azure Storage by Mohamed Waly: https:/ ​/​www. ​packtpub. ​com/
big-​data- ​and- ​business- ​intelligence/ ​learning- ​microsoft- ​azure- ​storage

https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage
https://www.packtpub.com/big-data-and-business-intelligence/learning-microsoft-azure-storage

2
Section 2: High-Availablility

Nginx Web Application Using
Kubernetes

In this section, the reader will learn to understand the advantages of using Kubernetes as
an orchestrator for deploying and managing containerized applications, and how to deploy
such a solution.

This section contains the following chapters:

Chapter 6, Creating a Highly Available Self-Healing Architecture
Chapter 7, Understanding the Core Components of a Kubernetes Cluster
Chapter 8, Architecting a Kubernetes Cluster
Chapter 9, Deploying and Configuring Kubernetes

6
Creating a Highly Available

Self-Healing Architecture
In this chapter, we will go through how the IT industry has evolved from using monolithic
applications to cloud-native, containerized, and highly available microservices.

With open source, we can provide solutions that will enable us to create highly available
and on-demand scales of our applications based on our user consumption.

We will cover the following topics in this chapter:

Describing microservices
Why containers are the home of microservices
How we can orchestrate our containers
Exploring the most commonly-used orchestrator in Open Source, Kubernetes.

Microservices
Microservices are used to design applications in a modular way, where each module is
deployed independently, and they communicate with each other through APIs. All these
modules work together to deliver a single application where each function has its own
purpose.

For example, let's take a look at an online store. All we can see is the main website;
however, on the backend there are several microservices that come into play, one service to
take orders, another to suggest items for you based on your previous browsing, payment
processing, review and comment handlers, and more.

Creating a Highly Available Self-Healing Architecture Chapter 6

[94]

The following diagram is an example of a microservice application:

By nature, microservice applications do not require a huge team to support the application
as a whole. One single team supports only one or two modules in the big picture, creating a
more granular approach in terms of support and expertise of each moving part of the final
product. Support and development are not only granular, but there are also failures. In the
case of a single microservice failure, only that portion of the application will fail.

Continuing with our online store example, let's say that the microservice that handles the
reviews and comments fails. This is due to the fact that our website is constructed using
microservices, so only that component of our site will be unavailable to our customers.

Creating a Highly Available Self-Healing Architecture Chapter 6

[95]

They will, however, still be able to continue purchasing and using the website with no
issues, and while users will not be able to see the reviews for the products they are
interested in, this does not mean that our entire website usability is compromised.
Depending on what caused the issue, you can either patch the microservice or restart it.
Bringing down the entire website for a patch or restart is no longer necessary.

As an infrastructure engineer you might think, why do I have to know what a microservice
is or what its benefits are? Well, the reason is simple. As an architect or infrastructure
engineer, you are building the underlying infrastructure for this type of application.
Whether they are monolithic applications running on a single host or microservices spread
out across multiple containers, it will certainly impact the way you design your customer's
architecture.

Linux will be your best friend here, as you will find multiple open source tools that will
help you to maintain high availability, load balancing, and continuous integration
(CI)/continuous delivery (CD) with tools such as Docker, Kubernetes, Jenkins, Salt, and
Puppet. So whenever a customer asks you for which OS environment he should start
designing his microserviced applications, Linux will be your answer.

Currently, Docker Swarm and Kubernetes are leaders when it comes to container
orchestration. When it comes to microservices, containers will be also your go-to when
designing an infrastructure for a customer.

We will be diving into Kubernetes in Chapter 7, Understanding the Core Components of a
Kubernetes Cluster, and showing how it will help you orchestrate and deliver an elegant but
complex solution for hosting microservices and other types of applications.

However, before talking about Kubernetes or container orchestration, we need to explain
the concept of a container in order to understand why they are perfect for housing
microservice apps.

Containers in Linux have been available for some time now, but it was not until a few years
ago (with the release of the Docker Engine) that they gained momentum and admiration
across all the tech communities. Containers came into play at the right time, and with the
rise of microservices architecture they came to stay, and are shaping the way that we design
and perform it.

Let's take a step back so that you can understand the benefits of such technology. Imagine
that you have a simple monolith application that is running an API from which you can
consult a list of users and what they have bought from a website that you are hosting on the
same application bundle.

Creating a Highly Available Self-Healing Architecture Chapter 6

[96]

After a while, your customer sees that their API is becoming really popular among other
applications, who are now making thousands of HTTP GET requests during peak hours.
The current infrastructure is not able to handle so many requests, so your customer asks
you to scale their infrastructure in a way that can handle more requests. The problem here
is that because this is a monolithic application, you will not only need to calculate the
resources required for the API, but you will have to also take into account the web-store
frontend that is hosted alongside the API—even though the API is the only thing that you
actually need to scale.

This will be a waste of resources as you are taking the web-store frontend as well, which
does not require any additional replicas or resources. You are wasting precious, and
sometimes expensive (if you are in the public cloud) storage, memory, and CPU resources
on something that doesn't really require it.

So, this is where microservices, and also containers for hosting such types of
applications, come into play. With microservices in container images, you don't have to
provision a new server every time you need to scale up your services due to demand, nor
do you have to restart the server, or struggle with package dependencies every time you
perform an update of the app or the OS. With a simple single command (docker
container run companyreg.io/storeapi:latest), your application is up and ready
to serve requests. Similarly, if your application fails, just restart your container or provision
a new one, and you are ready to go. What if an update that was made to the microservice
had a bug? Just go ahead and revert to the previous image version and you can be up and
running again; there is no need to start uninstalling updated libraries or dealing with
dependency issues.

Containers also allow consistency across application deployments because, as you may
know, there are multiple ways of installing a package. You can do so through a package
manager such as apt, yum, and apk, or through git, /curl/wget, pip, and juju, and
depending on how you install it, it will also define the way you maintain it.

Imagine a production environment where the developers send their package to the open
profiling standard (OPS) team for deployment, and every OPS engineer deploys the app in
a different way! This will become unsupportable and very hard to track. A container image
with your app on it will create consistency because, no matter where you deploy it as a
container, it will have the same location for all the configuration files, binaries, libraries,
and dependencies everywhere you deploy it. Everything will be isolated into a container
running with its own process namespace (PID namespace), network namespace, and
mount namespace (MNT namespace).

Creating a Highly Available Self-Healing Architecture Chapter 6

[97]

The point of having an app architected in microservices is to provide isolation to each of the
microservices in the app so that they can be easily managed and maintained—and a
container achieves exactly that. You can even define how you want to start your application
every time the container comes up—again, consistency plays a leading role here.

Creating container images
The way you build a container is through something called a Dockerfile. A Dockerfile is
basically a set of instructions on how to build your container image; a typical Dockerfile is
as follows:

FROM ubuntu:latest
LABEL maintainer="WebAdmin@company.com"

RUN apt update
RUN apt install -y apache2
RUN mkdir /var/log/my_site

ENV APACHE_LOG_DIR /var/log/my_site
ENV APACHE_RUN_DIR /var/run/apache2
ENV APACHE_RUN_USER www-data
ENV APACHE_RUN_GROUP www-data

COPY /my_site/ /var/www/html/

EXPOSE 80

CMD ["/usr/sbin/apache2","-D","FOREGROUND"]

As you can see, it is a very readable set of instructions. Without even knowing what each
instruction does, we can assume its function because it's very similar to English. This
Dockerfile is just an example and by far the most efficient way to do it.

An image is essentially like a template in the virtual machine (VM) world; it is a set of
read-only layers that contain all the information that you need to deploy your
containers—from a single image you can deploy multiple containers as they all work on
their own writable layer.

For example, whenever you pull an image you will see the following output:

[dsala@redfedora ~]# docker pull httpd:latest
latest: Pulling from library/httpd
d660b1f15b9b: Pull complete
aa1c79a2fa37: Pull complete

Creating a Highly Available Self-Healing Architecture Chapter 6

[98]

f5f6514c0aff: Pull complete
676d3dd26040: Pull complete
4fdddf845a1b: Pull complete
520c4b04fe88: Pull complete
5387b1b7893c: Pull complete
Digest:
sha256:8c84e065bdf72b4909bd55a348d5e91fe265e08d6b28ed9104bfdcac9206dcc8
Status: Downloaded newer image for httpd:latest

Each Pull complete instance that you see corresponds to a layer of the image. So, what
are these layers and where do they come from?

When we perform the build of the image, some of the instructions that we define in the
Dockerfile will create a new layer. Each instruction in the file is executed in a read-write
layer in a container that, at the end of the build, will be committed to the final layer stack
that shapes the final image. One thing to note is that even if each instruction during the
build is executed in a container, not all commands will create data that will make the image
larger in terms of size and layers—some of them will only write to something called the
image manifest, which is essentially a file that contains all the images' metadata.

Let's explore each command a little bit more.

FROM
The FROM instruction indicates what your initial image will be and, essentially, the grounds
on which you will start building your own image.

What you put here will depend on your needs, for instance, which image has the libraries
preinstalled that my application needs, which image already has the compiler that I need to
compile my application, or which image has the least impact on our final size. For example,
your application is built on Python 2. Instead of using CentOS or Ubuntu as the initial
image and then installing Python manually, you can just use the python:2.7 image, and it
will already come with Python preinstalled for you.

Clearly, there are more things to consider here, but we will be going through them later in
this chapter when we look at the best practices of image building.

Since this instruction takes another image and uses it as its basis, your final image will
inherit the layers of your base; so, the total number of final layers will be as follows:

Final image layers = base image layers + the layers you create

Creating a Highly Available Self-Healing Architecture Chapter 6

[99]

LABEL
The LABEL instruction is very self-explanatory—it labels your images with key-value pairs
as metadata that you will later be able to retrieve through the docker inspect command.
You can use this to add data that you would like the user of your image to know. Usually, it
is used to add the information about the author of the image, such as their email or
company:

LABEL maintener="john.doe@company.com"

Because this instruction is just metadata, no extra layers will be added to your image.

RUN
With RUN, you will run the commands that you need to prepare your container to run your
application; for example, to install packages, compile your code, and create users or
directories. RUN has two ways of running commands.

The shell form is as follows:

 RUN <command>

In this form, all your commands will be run with the /bin/sh -c shell by default,
although you can change the shell by using the SHELL instruction, as follows:

 SHELL ["/bin/bash", "-c"]
 RUN echo "Hello I'm using bash"

The SHELL keyword can only be run in the JSON array format, which leads us to the second
form that you can use to run the RUN instruction.

The exec form is as follows:

RUN ["echo","hello world"]

The main difference here, besides the formatting, is that in the exec form the shell is not
invoked, so normal variable substitution will not happen—instead, you will have to invoke
the shell as a command for the shell to be able to provide variable expansion:

 RUN ["/bin/bash","-c","echo $HOME"]

Due to the nature of the RUN keyword, each instance of it will be executed on a new layer
and committed to the final image, therefore, every time you use RUN it will add a new layer
to your image.

Creating a Highly Available Self-Healing Architecture Chapter 6

[100]

ENV
For ENV, there is not much to say—this instruction sets variables for the environment. They
will be used during build time and will be available during container runtime. ENV does not
generate extra layers to the container as it stores the environment variables on the image
manifest as metadata:

 ENV <key>=<value>

The parameters for ENV are treated in <key> /<value> pairs, where the <key> parameter is
the variable name and the <value> parameter is its contents or value. You can either
declare them by using the = sign or without it. Quote marks and backslashes can be used to
escape spaces in the value field.

All the following variations are valid:

ENV USER="Jane Doe"

ENV USER=Jane\ Doe

ENV USER Jane Doe

COPY
With COPY, we can copy files or directories from our local host (where you are executing
the Docker build) to our image. This is very useful as you are actually moving content to
the image, so that you can copy your applications, files, or anything that you might need
for your container to work. As we previously mentioned, any instructions that add actual
data to the container will create a new layer, therefore, increasing the storage footprint of
your final image.

This instruction shares the same forms as RUN; you can either use JSON formatting or just
space the <src> source separately from the <dst> destination:

 COPY <src> <dst>
 COPY ["<src1>","<src2>","<dst>"]

There are several catches that we need to go through. First, if any of the filenames or
directories has a space on its name, you have to use the JSON array format.

Creating a Highly Available Self-Healing Architecture Chapter 6

[101]

Second, by default, all files and directories will be copied with user identifier (UID) and
group identifier (GID) 0 (root). To override this, you can use the --chown=<UID>:<GID>
flag as follows:

 COPY --chown=JANE:GROUP <src> <dst>

chown accepts either the numerical ID or the name of the user or group. If there is only one
of them, then it is defined as follows:

COPY --chown=JANE <src> <dst>

COPY will assume that both the user and the group are the same.

If you are copying similarly-named files, then you can always use wildcards—COPY will
use the Go filepath.Match rule, which can be found at http:/ ​/​golang. ​org/ ​pkg/​path/
filepath#Match.

How you define the <src> and <dst> entries is very important because they follow these
three rules:

The path that you define in <src> must be inside the context of the build,
essentially, all files and directories that are located in the directory that you
specified when running the Docker build PATH command.
If you are copying directories, then always end them with /. In this way, Docker
knows that this is a directory and not a single file that you are copying.
Additionally, if it's a directory, all of the files inside of it will be copied as well.
The path defined in <dst> will always have to be an absolute path, unless you
specify a working directory to be relative to with the WORKDIR instruction.

Finishing with the COPY instruction, I must add that COPY only supports copying locally-
located files. If you want to copy files from a remote server using URLs, you must use the
ADD instruction, which follows the same rules that COPY does but with some other caveats
for URLs. This is beyond the scope of this chapter, but you can learn more about it
at https:/​/​docs.​docker. ​com.

EXPOSE
With the EXPOSE keyword, we are not actually publishing the container port that we
specify here; instead, we are creating a guideline for the container's user to know which
ports to publish when they start the container.

http://golang.org/pkg/path/filepath#Match
http://golang.org/pkg/path/filepath#Match
http://golang.org/pkg/path/filepath#Match
http://golang.org/pkg/path/filepath#Match
http://golang.org/pkg/path/filepath#Match
http://golang.org/pkg/path/filepath#Match
http://golang.org/pkg/path/filepath#Match
http://golang.org/pkg/path/filepath#Match
http://golang.org/pkg/path/filepath#Match
http://golang.org/pkg/path/filepath#Match
http://golang.org/pkg/path/filepath#Match
http://golang.org/pkg/path/filepath#Match
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com

Creating a Highly Available Self-Healing Architecture Chapter 6

[102]

Therefore, this is only metadata that is again created in the image's manifest, which can
later be retrieved with docker inspect. No additional layers are created with this
keyword.

Ports defined in the EXPOSE instruction can be either user datagram protocol (UDP) or
transmission control protocol (TCP), but, by default, TCP is assumed if no protocol is
specified.

Here are some examples of the EXPOSE instruction:

 EXPOSE 80
 EXPOSE 53/udp
 EXPOSE 80/tcp

CMD and ENTRYPOINT
These are probably the most important instructions in a Dockerfile, since they tell the
container what to run when it's started. We will go through both of them and explore how
they interact with one another and how they differ from one another.

Let's start with ENTRYPOINT first. This instruction, as we mentioned before, allows you to
define the executable that you want to run when starting the container. You can add
multiple ENTRYPOINT definitions in a Dockerfile, but only the last one will be executed on
docker container run.

When you run a container with the run argument, you can usually add command-line
arguments. These arguments will be appended to the ENTRYPOINT parameter unless you
use the --entrypoint flag while using docker container run to overwrite the
ENTRYPOINT executable.

Let's look at some examples. Let's say that we are using a container with the following
Dockerfile:

 FROM alpine
 ENTRYPOINT ["echo","Hello from Entrypoint"]

Now, let's assume that we built the image and tagged it entrypointexample. When we
run this container without extra command-line arguments, it will appear as follows:

[dsala@redfedora]# docker container run entrypointexample
Hello from Entrypoint

Creating a Highly Available Self-Healing Architecture Chapter 6

[103]

If we add command-line arguments to the run command, we will see something like this:

[dsala@redfedora]# docker container run entrypointexample /bin/bash
Hello from Entrypoint /bin/bash

As you can see, it is not actually executing a BASH shell, but it's taking /bin/bash as
though it was a string for the echo command that we defined in our Dockerfile. Let's
consider a more explicit example as, with the previous one, I only wanted to demonstrate
that even if you pass an actual command or try to execute a shell, it will still take it and pass
it as arguments for ENTRYPOINT. Here is a more clear example with a simple string:

[dsala@redfedora]# docker container run entrypointexample I AM AN ARGUMENT
Hello from Entrypoint I AM AN ARGUMENT

Now, if we pass the --entrypoint flag, we will overwrite the ENTRYPOINT executable:

[dsala@redfedora]# docker container run --entrypoint /bin/ls
entrypointexample -lath /var
total 0
drwxr-xr-x 1 root root 6 Aug 8 01:22 ..
drwxr-xr-x 11 root root 125 Jul 5 14:47 .
dr-xr-xr-x 2 root root 6 Jul 5 14:47 empty
drwxr-xr-x 5 root root 43 Jul 5 14:47 lib
drwxr-xr-x 2 root root 6 Jul 5 14:47 local
drwxr-xr-x 3 root root 20 Jul 5 14:47 lock
drwxr-xr-x 2 root root 6 Jul 5 14:47 log
drwxr-xr-x 2 root root 6 Jul 5 14:47 opt
lrwxrwxrwx 1 root root 4 Jul 5 14:47 run -> /run
drwxr-xr-x 3 root root 18 Jul 5 14:47 spool
drwxrwxrwt 2 root root 6 Jul 5 14:47 tmp
drwxr-xr-x 4 root root 29 Jul 5 14:47 cache

Okay, so why is the formatting of this command this way? As we saw earlier, the --
entrypoint flag only replaces the executable—all additional parameters have to be passed
as arguments. This is the reason why our ls has its -lath /var arguments at the very
end. There are some additional things that we need to see here, and they correspond to the
forms that the ENTRYPOINT instruction has.

As with the other Dockerfile instruction, ENTRYPOINT has two forms, shell and exec:

 ENTRYPOINT command argument1 argument2
 ENTRYPOINT ["executable", "param1", "param2"]

For the exec form, the same rules that apply to the previous Dockerfile instructions apply
here as well.

Creating a Highly Available Self-Healing Architecture Chapter 6

[104]

No shell is invoked in exec form, therefore, the $PATH variable is not present, and you will
not be able to use the executables without providing their full path—this is why we used
/bin/ls instead of just ls. Also, you can see that you first define the executable in the
JSON array and then its parameters, this first field is what the --entrypoint flag will
replace. Any additional parameters when using the flag will have to be passed to the
docker container run command arguments as we did in our example.

Shell form, on the other hand, will load /bin/sh so that environment variables are
available. Let's take a look at an example; here is a container with the following Dockerfile
using the exec form:

FROM alpine
ENTRYPOINT ["echo", "$PATH"]

Let's assume that we built the image and tagged it pathexampleexec. When we run the
container, we will see the following:

[dsala@redfedora]#docker container run pathexampleexec
$PATH

Here is a container with the following Dockerfile using the shell form:

FROM alpine
ENTRYPOINT echo $PATH

When we run the container, we will see the following:

 [dsala@redfedora]# docker container run pathexampleshell
 /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

Now, let's say that you want to have some default arguments for your application, but you
want your user to be able to overwrite and use different arguments if they require. This is
where CMD comes in; with CMD, you can specify default parameters for your executable, but
they will be overwritten if a user runs the container with command arguments on docker
container run. You have to be careful of how you declare ENTRYPOINT, because if
ENTRYPOINT is declared using the shell form, all CMD definitions will be ignored.

Let's take a look at a couple of examples; the following is a Dockerfile of the container to
run:

 FROM alpine
 ENTRYPOINT echo Hello
 CMD ["I'm Ignored"]

Creating a Highly Available Self-Healing Architecture Chapter 6

[105]

Here is the running of the previously mentioned container, assuming that it was built and
tagged as cmdexample:

[dsala@redfedora]# docker container run cmdexample
Hello

Now, if we use the exec form for ENTRYPOINT, the CMD parameters will be appended to
the ENTRYPOINT. Dockerfile for reference:

 FROM alpine
 ENTRYPOINT ["echo", "hello from ENTRY"]
 CMD ["hello", "from CMD"]

Here is the output, assuming that the image was built and tagged as execcmdexample:

[dsala@redfedora]# docker container run execcmdexmple
hello from ENTRY hello from CMD

Notice that this time the CMD entries were appended to ENTRYPOINT as arguments.
However, remember that the contents of CMD are just defaults; if we specify the arguments
on docker container run, these will overwrite those in CMD.
Using the same Dockerfile as the preceding example, we will something similar to the
following:

[dsala@redfedora]# docker container run execcmdexmple "hello" "from" "run"
 hello from ENTRY hello from run

There are several combinations between CMD and ENTRYPOINT, and you can see all of them
in the following chart taken from https:/ ​/​docs. ​docker. ​com:

https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com
https://docs.docker.com

Creating a Highly Available Self-Healing Architecture Chapter 6

[106]

Building container images using best
practices
Dockerfiles are like recipes for your applications, but you can't just throw in the ingredients
and hope for the best. Creating an efficient image requires you to be careful about how you
utilize the tools at your disposal.

The whole point of containers is to have a small footprint—having a 1 GB+ image for a 100
MB application is not indicative of a small footprint, nor is it efficient at all. Microservices
are all about this as well; having small container images for your microservices not only
improves performance, but storage utilization decreases security vulnerabilities and points
of failure, and it also saves you money.

Container images are stored locally in your host and remotely in a container registry. Public
cloud providers charge you for the storage utilization of your registry and not by the image
quantity that you have stored there. Think of a registry as the GitHub of containers. Let's
say that you have to pull an image from your cloud provider's registry; which image do
you think it will be faster to pull? A 1 GB image or a 100 MB image? The image size is
essential.

The first thing to consider when building an image is the base image that you are going to
use. Instead of using large images (such as full Linux distributions, Ubuntu, Debian, or
CentOS) that have a lot of tools and executables that you will not need for your application
to run, use smaller ones such as Alpine:

REPOSITORY SIZE
centos 200 MB
ubuntu 83.5 MB
debian 101 MB
alpine 4.41 MB

You will find that most of the images have a slimmer version of themselves, for example,
httpd and nginx:

REPOSITORY TAG SIZE
httpd alpine 91.4 MB
httpd latest 178 MB
nginx alpine 18.6 MB
nginx latest 109 MB

Creating a Highly Available Self-Healing Architecture Chapter 6

[107]

As you can see, httpd:alpine is almost 50% smaller than httpd:latest, while
nginx:alpine is 80% smaller!

Smaller images will not only reduce your storage consumption, but they will also reduce
your attack surface. This is because a smaller container has a lower attack surface; let's take
a look at the latest Ubuntu image versus the latest Alpine.

For Ubuntu, we can see an increased count for vulnerabilities as per the Docker Hub page
for the latest tag; this is captured in the following screenshot:

Creating a Highly Available Self-Healing Architecture Chapter 6

[108]

For Alpine Linux, the count goes down to zero, as demonstrated in the following
screenshot:

In the preceding screenshot, we can see the vulnerability count when compared to
Ubuntu. Even today, the latest Alpine image has no vulnerabilities whatsoever. In
comparison, Ubuntu has seven vulnerable components that are not even needed for our
application to run.

Another thing to take into account is the layering of your image; each time you run a RUN
statement in the build it will add one more layer and size to your final image. Reducing the
number of RUN statements and what you run on them will dramatically decrease your
image size.

Let's take our first Dockerfile, as follows:

 FROM ubuntu:latest
 LABEL maintainer="WebAdmin@company.com"

 RUN apt update
 RUN apt install -y apache2
 RUN mkdir /var/log/my_site

 ENV APACHE_LOG_DIR /var/log/my_site
 ENV APACHE_RUN_DIR /var/run/apache2
 ENV APACHE_RUN_USER www-data
 ENV APACHE_RUN_GROUP www-data

 COPY /my_site/ /var/www/html/

 EXPOSE 80

 CMD ["/usr/sbin/apache2","-D","FOREGROUND"]

Creating a Highly Available Self-Healing Architecture Chapter 6

[109]

We can modify the RUN instruction into the following way:

RUN apt update && \
 apt install -y apache2 --no-install-recommends && \
 apt clean && \
 mkdir /var/my_site/ /var/log/my_site

Now instead of creating three layers, we will be producing only one, by running all our
commands in a single statement.

Remember that everything you do in RUN is executed with /bin/sh -c or any other shell
that you specified with SHELL, so &, ;, and \ are accepted as they would be in a regular
shell.

However, we didn't only remove the extra RUN instructions; we also added apt clean to
clean the cache of our container before it commits, and used the --no-install-
recommend flag to avoid installing any unnecessary packages, thus reducing both storage
space and the attack surface:

Here are the details of the original image:

REPOSITORY SIZE
bigimage 221 MB

Here are the details of the smaller image:

REPOSITORY SIZE
smallerimage 214 MB

Of course, this is not a huge difference, but this is only an example and no real application
was being installed. In a production image, you will have to do more than just install
apache2.

Now let's use both of the techniques that we have learned and slim our image down:

FROM alpine

RUN apk update && \
 apk add mini_httpd && \
 mkdir /var/log/my_site

COPY /my_site/ /var/www/localhost/htdocs/
EXPOSE 80

CMD ["/usr/sbin/mini_httpd", "-D", "-d", "/var/www/localhost/htdocs/"]

Creating a Highly Available Self-Healing Architecture Chapter 6

[110]

Here is the final size of the image:

REPOSITORY SIZE
finalimage 5.79 MB

Now, you can see there is a great difference in sizes—we passed from 221 MB to 217 MB,
and finally ended up with a 5.79-MB image! Both images did the exact same thing, which
was to serve a web page, but with an entirely different footprint.

Container orchestration
Now that we know how to create our images, we need a way to maintain the desired state
of our applications. Here's where container orchestrators come in. Container orchestrators
answer questions such as the following:

How do I maintain my applications so that they are highly available?
How do I scale each microservice on demand?
How do I load balance my application across multiple hosts?
How do I limit my application's resource consumption on my hosts?
How do I easily deploy multiple services?

With container orchestrators, administrating your containers has never been as easy or
efficient as it is now. There are several orchestrators available, but the most widely used are
Docker Swarm and Kubernetes. We will discuss Kubernetes later on in this chapter and
take a more in-depth look at it in the Chapter 7, Understanding the Core Components of a
Kubernetes Cluster.

What all orchestrators have in common is that their basic architecture is a cluster that is
composed of some master nodes watching for your desired state, which will be saved in a
database. Masters will then start or stop your containers depending on the state of the
worker nodes that are in charge of the container workloads. Each master node will also be
in charge of dictating which container has to run on which node, based on your predefined
requirements, and to scale or restart any failed instances.

However, orchestrators not only provide high availability by restarting and bringing up
containers on demand, both Kubernetes and Docker Swarm also have mechanisms to
control traffic to the backend containers, in order to provide load balancing for incoming
requests to your application services.

Creating a Highly Available Self-Healing Architecture Chapter 6

[111]

The following diagram demonstrates the traffic going to an orchestrated cluster:

Let's explore Kubernetes a little bit more.

Kubernetes
Kubernetes is by far the most popular container orchestrator out there. Many public cloud
providers are now adopting it as the de facto container orchestrator; for instance, Azure
with its Azure Kubernetes Services (AKS), Amazon Web Services with elastic container
service for Kubernetes (EKS), and Google Cloud with Google Kubernetes Engine (GKE).
Most of these solutions are managed, abstracting the management plane for the user for
ease of use, and adopting cloud-native solutions such as integration with public cloud load
balancers and DNS services.

Kubernetes sits in the middle of a platform as a service (PaaS) solution and an
infrastructure as a service (IaaS) solution because it provides you with a platform to run
your containers and manage your data, but it still lets you provision software-defined
infrastructures such as load balancers, network management, ingress controls, and resource
allocation.

With Kubernetes, we can automate the process of deploying our containers and
maintaining our desired state while controlling the resource consumption of our
applications and providing high availability and isolation across our different applications.

Kubernetes has the basic orchestrator components that we mentioned before; it has worker
nodes, master nodes, and a database that saves the status of our cluster. We will start
exploring Kubernetes concepts in depth in Chapter 7, Understanding the Core Components of
a Kubernetes Cluster.

Creating a Highly Available Self-Healing Architecture Chapter 6

[112]

The following diagram shows the basic architecture of Kubernetes:

Summary
In this chapter, we discussed how IT is evolving from a monolithic design to microservices,
and how containers are helping us achieve this type of architecture by allowing a
modularized infrastructure. We used the example of an online store to demonstrate how
microservices allow for the scalability of specific components without the need to bring
down the entire application. Additionally, we explored how the same example has a highly
available design by discussing how the microservices approach allows for just a portion of
the application to fail without impacting the entire solution (that is, how only the reviews
part failed without bringing down the entire online store).

Later, we learned how containers are created from images through the use of a Dockerfile,
which uses a readable set of instructions to create the base image. An image can be seen as
the counterpart of a template in the context of VMs.

From this Dockerfile, we learned that a FROM statement indicates what will be the initial
image, how the LABEL instruction adds metadata to the container, how RUN executes the
commands that you need to prepare your container to run your application, and how ENV
sets variables for the environment used for container building.

Creating a Highly Available Self-Healing Architecture Chapter 6

[113]

Furthermore, we discussed some of the best practices when building container images,
such as the use of smaller images (such as Alpine), and how choosing a smaller image helps
to reduce the number of vulnerabilities present in the built containers.

Finally, we quickly glanced over some of the more popular orchestration tools that are
available, these being Docker Swarm and Kubernetes.

In the next chapter, we will jump into exploring the core components of a Kubernetes
cluster.

Questions
What are the components of Kubernetes?1.
What is the difference between GKE, EKS, and AKS?2.
How secure are containers from exploits?3.
How easy is to deploy an application in a container?4.
Are Docker containers and Kubernetes exclusive to Linux?5.

Further reading
Mastering Kubernetes by Gigi Sayfan: https:/ ​/ ​www.​packtpub. ​com/
virtualization- ​and- ​cloud/ ​mastering- ​kubernetes

Kubernetes for Developers by Joseph Heck: https:/ ​/​www. ​packtpub. ​com/
virtualization- ​and- ​cloud/ ​kubernetes- ​developers

Hands-On Microservices with Kubernetes by Gigi Sayfan: https:/ ​/ ​www.​packtpub.
com/​virtualization- ​and- ​cloud/ ​hands- ​microservices- ​kubernetes

Getting Started with Kubernetes – Third Edition by Jonathan Baier, Jesse
White: https:/ ​/​www. ​packtpub. ​com/ ​virtualization- ​and-​cloud/ ​getting-
started- ​kubernetes- ​third- ​edition

Mastering Docker - Second Edition by Russ McKendrick, Scott Gallagher: https:/ ​/
www.​packtpub. ​com/ ​virtualization- ​and-​cloud/ ​mastering- ​docker- ​second-
edition

Docker Bootcamp by Russ McKendrick et al: https:/ ​/​www. ​packtpub. ​com/
virtualization- ​and- ​cloud/ ​docker- ​bootcamp

https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp

Creating a Highly Available Self-Healing Architecture Chapter 6

[114]

Bibliography/sources
What are microservices?: http:/ ​/​microservices. ​io/​

Docker Hub: https:/ ​/​hub. ​docker. ​com/​

Production-Grade Container Orchestration: http:/ ​/​kubernetes. ​io/ ​

http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
http://kubernetes.io/
http://kubernetes.io/
http://kubernetes.io/
http://kubernetes.io/
http://kubernetes.io/
http://kubernetes.io/
http://kubernetes.io/
http://kubernetes.io/

7
Understanding the Core

Components of a Kubernetes
Cluster

In this chapter, we will be going through a 10,000-foot view of the main Kubernetes
components, from what each controller is composed of to how a container in a pod is
deployed and scheduled across each of the workers. It is crucial to understand the ins and
outs of the Kubernetes cluster in order to be able to deploy and design a solution based on
Kubernetes as an orchestrator for your containerized applications:

Control plane components
The Kubernetes workers' components
Pods as basic building blocks
Kubernetes services, load balancers, and Ingress controllers
Kubernetes deployments and DaemonSets
Persistent storage in Kubernetes

The Kubernetes control plane
The Kubernetes master nodes are where the core control plane services live; not all services
have to reside on the same node; however, for centralization and practicality, they are often
deployed this way. This obviously raises services availability questions; however, they can
easily be overcome by having several nodes and providing load balancing requests to
achieve a highly available set of master nodes.

Understanding the Core Components of a Kubernetes Cluster Chapter 7

[116]

The master nodes are composed of four basic services:

The kube-apiserver
The kube-scheduler
The kube-controller-manager
The etcd database

Master nodes can either run on bare metal servers, virtual machines, or a private or public
cloud, but it is not recommended to run container workloads on them. We will see more on
this later.

The following diagram shows the Kubernetes master nodes components:

The kube-apiserver
The API server is what ties everything together. It is the frontend REST API of the cluster
that receives manifests to create, update, and delete API objects such as services, pods,
Ingress, and others.

The kube-apiserver is the only service that we should be talking to; it is also the only one
that writes and talks to the etcd database for registering the cluster state. With the
kubectl command, we will send commands to interact with it. This will be our Swiss
Army knife when it comes to Kubernetes.

Understanding the Core Components of a Kubernetes Cluster Chapter 7

[117]

The kube-controller-manager
The kube-controller-manager daemon, in a nutshell, is a set of infinite control loops that is
shipped for simplicity in a single binary. It watches for the defined desired state of the
cluster and it makes sure that it is accomplished and satisfied by moving all the bits and
pieces necessary to achieve it. The kube-controller-manager is not just one controller; it
contains several different loops that watch different components in the cluster. Some of
them are the service controller, the namespace controller, the service account controller, and
many others. You can find each controller and its definition in the Kubernetes GitHub
repository:

https:/​/​github.​com/ ​kubernetes/ ​kubernetes/ ​tree/ ​master/ ​pkg/ ​controller.

The kube-scheduler
The kube-scheduler schedules your newly created pods to nodes with enough space to
satisfy the pods' resource needs. It basically listens to the kube-apiserver and the kube-
controller-manager for newly created pods that are put into a queue and then scheduled to
an available node by the scheduler. The kube-scheduler definition can be found here:

https:/​/​github.​com/ ​kubernetes/ ​kubernetes/ ​blob/ ​master/ ​pkg/ ​scheduler.

Besides compute resources, the kube-scheduler also reads the nodes' affinity and anti-
affinity rules to find out whether a node can or cannot run that pod.

The etcd database
The etcd database is a very reliable consistent key-value store that's used to store the state
of the Kubernetes cluster. It contains the current status of the pods in which the node is
running on, how many nodes the cluster currently has, what the state of those nodes is,
how many replicas of a deployment are running, services names, and others.

As we mentioned before, only the kube-apiserver talks to the etcd database. If the kube-
controller-manager needs to check the state of the cluster, it will go through the API server
in order to get the state from the etcd database, instead of querying the etcd store directly.
The same happens with the kube-scheduler, if the scheduler needs to make it known that a
pod has been stopped or allocated to another node; it will inform the API server, and the
API server will store the current state in the etcd database.

https://github.com/kubernetes/kubernetes/tree/master/pkg/controller
https://github.com/kubernetes/kubernetes/tree/master/pkg/controller
https://github.com/kubernetes/kubernetes/tree/master/pkg/controller
https://github.com/kubernetes/kubernetes/tree/master/pkg/controller
https://github.com/kubernetes/kubernetes/tree/master/pkg/controller
https://github.com/kubernetes/kubernetes/tree/master/pkg/controller
https://github.com/kubernetes/kubernetes/tree/master/pkg/controller
https://github.com/kubernetes/kubernetes/tree/master/pkg/controller
https://github.com/kubernetes/kubernetes/tree/master/pkg/controller
https://github.com/kubernetes/kubernetes/tree/master/pkg/controller
https://github.com/kubernetes/kubernetes/tree/master/pkg/controller
https://github.com/kubernetes/kubernetes/tree/master/pkg/controller
https://github.com/kubernetes/kubernetes/tree/master/pkg/controller
https://github.com/kubernetes/kubernetes/tree/master/pkg/controller
https://github.com/kubernetes/kubernetes/tree/master/pkg/controller
https://github.com/kubernetes/kubernetes/tree/master/pkg/controller
https://github.com/kubernetes/kubernetes/tree/master/pkg/controller
https://github.com/kubernetes/kubernetes/tree/master/pkg/controller
https://github.com/kubernetes/kubernetes/tree/master/pkg/controller
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/scheduler.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/scheduler.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/scheduler.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/scheduler.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/scheduler.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/scheduler.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/scheduler.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/scheduler.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/scheduler.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/scheduler.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/scheduler.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/scheduler.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/scheduler.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/scheduler.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/scheduler.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/scheduler.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/scheduler.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/scheduler.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/scheduler/scheduler.go

Understanding the Core Components of a Kubernetes Cluster Chapter 7

[118]

With etcd, we have covered all the main components for our Kubernetes master nodes so
that we are ready to manage our cluster. But a cluster is not only composed of masters; we
still require the nodes that will be performing the heavy lifting by running our applications.

Kubernetes worker nodes
The worker nodes that do this task in Kubernetes are simply called nodes. Previously,
around 2014, they were called minions, but this term was later replaced with just nodes, as
the name was confusing with Salt's terminologies and made people think that Salt was
playing a major role in Kubernetes.

These nodes are the only place that you will be running workloads, as it is not
recommended to have containers or loads on the master nodes, as they need to be available
to manage the entire cluster.

The nodes are very simple in terms of components; they only require three services to fulfill
their task:

Kubelet
Kube-proxy
Container runtime

Let's explore these three components in a little bit more depth.

Container runtime
To be able to spin up containers, we require a container runtime. This is the base engine
that will create the containers in the nodes kernel for our pods to run. The kubelet will be
talking to this runtime and will spin up or stop our containers on demand.

Currently, Kubernetes supports any OCI-compliant container runtime, such as Docker,
rkt, runc, runsc, and so on.

You can learn more about all the specifications from the OCI GitHub
page: https:/ ​/​github. ​com/ ​opencontainers/ ​runtime- ​spec.

https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec

Understanding the Core Components of a Kubernetes Cluster Chapter 7

[119]

The kubelet
The kubelet is a low-level Kubernetes component and one of the most important ones after
the kube-apiserver; both of these components are essential for the provisioning of
pods/containers in the cluster. The kubelet is a service that runs on the Kubernetes nodes
and listens to the API server for pod creation. The kubelet is only in charge of
starting/stopping and making sure that containers in pods are healthy; the kubelet will not
be able to manage any containers that were not created by it.

The kubelet achieves the goals by talking to the container runtime via something called the
container runtime interface (CRI). The CRI provides pluggability to the kubelet via a gRPC
client, which is able to talk to different container runtimes. As we mentioned earlier,
Kubernetes supports multiple container runtimes to deploy containers, and this is how it
achieves such diverse support for different engines.

You can check the kubelet's source code via the following GitHub
link: https:/ ​/​github. ​com/ ​kubernetes/ ​kubernetes/ ​tree/ ​master/ ​pkg/
kubelet.

The kube-proxy
The kube-proxy is a service that resides on each node of the cluster, and is the one that
makes communications between pods, containers, and nodes possible. This service watches
the kube-apiserver for changes on defined services (a service is a sort of logical load
balancer in Kubernetes; we will dive deeper into services later on in this chapter) and keeps
the network up to date via iptables rules that forward traffic to the correct endpoints.
Kube-proxy also sets up rules in iptables that do random load balancing across pods
behind a service.

Here is an example of an iptables rule that was made by the kube-proxy:

-A KUBE-SERVICES -d 10.0.162.61/32 -p tcp -m comment --comment
"default/example: has no endpoints" -m tcp --dport 80 -j REJECT --reject-
with icmp-port-unreachable

This is a service with no endpoints (no pods behind it).

https://github.com/kubernetes/kubernetes/tree/master/pkg/kubelet
https://github.com/kubernetes/kubernetes/tree/master/pkg/kubelet
https://github.com/kubernetes/kubernetes/tree/master/pkg/kubelet
https://github.com/kubernetes/kubernetes/tree/master/pkg/kubelet
https://github.com/kubernetes/kubernetes/tree/master/pkg/kubelet
https://github.com/kubernetes/kubernetes/tree/master/pkg/kubelet
https://github.com/kubernetes/kubernetes/tree/master/pkg/kubelet
https://github.com/kubernetes/kubernetes/tree/master/pkg/kubelet
https://github.com/kubernetes/kubernetes/tree/master/pkg/kubelet
https://github.com/kubernetes/kubernetes/tree/master/pkg/kubelet
https://github.com/kubernetes/kubernetes/tree/master/pkg/kubelet
https://github.com/kubernetes/kubernetes/tree/master/pkg/kubelet
https://github.com/kubernetes/kubernetes/tree/master/pkg/kubelet
https://github.com/kubernetes/kubernetes/tree/master/pkg/kubelet
https://github.com/kubernetes/kubernetes/tree/master/pkg/kubelet
https://github.com/kubernetes/kubernetes/tree/master/pkg/kubelet
https://github.com/kubernetes/kubernetes/tree/master/pkg/kubelet
https://github.com/kubernetes/kubernetes/tree/master/pkg/kubelet

Understanding the Core Components of a Kubernetes Cluster Chapter 7

[120]

Now that we have gone through all the core components that form a cluster, we can talk
about what we can do with them and how Kubernetes is going to help us orchestrate and
manage our containerized applications.

Kubernetes objects
Kubernetes objects are exactly that: they are logical persistent objects or abstractions that
will represent the state of your cluster. You are the one in charge of telling Kubernetes what
your desired state of that object is so that it can work to maintain it and make sure that the
object exists.

To create an object, there are two things that it needs to have: a status and its spec. The
status is provided by Kubernetes, and it is the current state of the object. Kubernetes will
manage and update that status as needed to be in accordance to your desired state.
The spec field, on the other hand, is what you provide to Kubernetes, and is what you tell
it to describe the object you desire, for example, the image that you want the container to be
running, the number of containers of that image that you want to run, and so on. Each
object has specific spec fields for the type of task that they perform, and you will be
providing these specifications on a YAML file that is sent to the kube-apiserver with
kubectl, which that transforms it into JSON and sends it as an API request. We will dive
deeper into each object and its spec fields later in this chapter.

Here is an example of a YAML that was sent to kubectl:

cat << EOF | kubectl create -f -
kind: Service
apiVersion: v1
metadata:
 Name: frontend-service
spec:
 selector:
 web: frontend
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9256
EOF

Understanding the Core Components of a Kubernetes Cluster Chapter 7

[121]

The basic fields of the object definition are the very first ones, and these ones will not vary
from object to object and are very self-explanatory. Let's take a quick look at them:

kind: The kind field tells Kubernetes what type of object you are defining: a
pod, a service, a deployment, and so on
apiVersion: Because Kubernetes supports multiple API versions, we need to
specify a REST API path that we want to send our definition to
metadata: This is a nested field, which means that you have several more
subfields to metadata, where you will write basic definitions such as the name of
your object, assigning it to a specific namespace, and also tag a label to it to relate
your object to other Kubernetes objects

So, we have now been through the most-used fields and their contents; you can learn more
about the Kuberntes API conventions at the following GitHub page:

https:/​/​github.​com/ ​kubernetes/ ​community/ ​blob/ ​master/ ​contributors/ ​devel/ ​api-
conventions.​md.

Some of the fields of the object can later be modified after the object has been created, but
that will depend on the object and the field that you want to modify.

The following is a short list of the various Kubernetes objects that you can create:

Pod
Volume
Service
Deployment
Ingress
Secret
ConfigMap

And there are many more.

Let's take a closer look at each one of these items.

https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/api-conventions.md

Understanding the Core Components of a Kubernetes Cluster Chapter 7

[122]

Pods – the basis of Kubernetes
Pods are the most basic objects in Kubernetes and also the most important ones. Everything
revolves around them; we can say that Kubernetes is for the pods! All of the other objects
are here to serve them, and all the tasks that they do are to make the pods achieve your
desired state.

So, what is a pod and why are pods so important?

A pod is a logical object that runs one or more containers together on the same network
namespace, the same inter-process communication (IPC) and, sometimes, depending on
the version of Kubernetes, the same process ID (PID) namespace. This is because they are
the ones that are going to run our containers and hence will be the center of attention. The
whole point of Kubernetes is to be a container orchestrator, and with pods, we make
orchestration possible.

As we mentioned before, containers on the same pod live in a "bubble" where they can talk
to one another via localhost, as they are local to one another. One container in a pod has the
same IP address as the other container because they are sharing a network namespace, but
in most cases, you will be running on a one-on-one basis, that is to say, a single container
per pod. Multiple containers per pod are only used on very specific scenarios, such as when
an application requires a helper such as a data pusher or a proxy that needs to
communicate in a fast and resilient way with the primary application.

The way you define a pod is the same way you would do so for any other Kubernetes
object: via a YAML that contains all the pod specs and definitions:

kind: Pod
apiVersion: v1
metadata:
name: hello-pod
labels:
 hello: pod
spec:
 containers:
 - name: hello-container
 image: alpine
 args:
 - echo
 - "Hello World"

Understanding the Core Components of a Kubernetes Cluster Chapter 7

[123]

Let's go through the basic pod definitions needed under the spec field to create our pod:

Containers: Containers is an array; therefore, we have a set of several subfields
under it. Basically, it's what defines the containers that are going to be running
on the pod. We can specify a name for the container, the image that is going to be
spin-off from, and the arguments or command that we need it to run. The
difference between arguments and commands is the same as the difference
between CMD and ENTRYPOINT that we went through in Chapter 6, Creating a
Highly Available Self-Healing Architecture, when we talked about creating Docker
images. Take note that all the fields that we just went through are for the
containers array. They are not directly part of the spec of the pod.
restartPolicy: This field is exactly that: it tells Kubernetes what to do with a
container, and it applies to all the containers in the pod in the case of a zero or
non-zero exit code. You can choose from either option, Never, OnFailure or
Always. Always will be the default in case a restartPolicy is not defined.

These are the most basic specs that you are going to declare on a pod; other specs will
require that you have a little bit more background knowledge on how to use them and how
they interact with various other Kubernetes objects. We will revisit them later on this
chapter, some of them are as follows:

Volume
Env
Ports
dnsPolicy
initContainers
nodeSelector
Resource limits and requests

To view the pods that are currently running in your cluster, you can run kubectl get
pods:

dsala@MININT-IB3HUA8:~$ kubectl get pods
NAME READY STATUS RESTARTS AGE
busybox 1/1 Running 120 5d

Understanding the Core Components of a Kubernetes Cluster Chapter 7

[124]

Alternatively, you can run kubectl describe pods without specifying any pod. This
will print out a description of every pod running in the cluster. In this case, it will be only
the busybox pod, as it is the only one that's currently running:

dsala@MININT-IB3HUA8:~$ kubectl describe pods
Name: busybox
Namespace: default
Priority: 0
PriorityClassName: <none>
Node: aks-agentpool-10515745-2/10.240.0.6
Start Time: Wed, 19 Sep 2018 14:23:30 -0600
Labels: <none>
Annotations: <none>
Status: Running
IP: 10.244.1.7
Containers:
 busybox:
[...] (Output truncated for readability)
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Pulled 45s (x121 over 5d) kubelet, aks-agentpool-10515745-2
Container image "busybox" already present on machine
Normal Created 44s (x121 over 5d) kubelet, aks-agentpool-10515745-2
Created container
Normal Started 44s (x121 over 5d) kubelet, aks-agentpool-10515745-2
Started container

Pods are mortal, and this is the clue in knowing how to manage your application. You have
to understand that once a pod dies or is deleted, there is no way to bring it back. Its IP and
the containers that were running on it will be gone; they are totally ephemeral. The data on
the pods that is mounted as a volume may or may not survive, depending on how you set it
up; however, this is a discussion that we will have later in this chapter. If our pods die and
we lose them, how do we ensure that all our microservices are running? Well, deployments
are the answer.

Deployments
Pods by themselves are not very useful, since it is not very efficient to have more than a
single instance of our application running in a single pod. Provisioning hundreds of copies
of our application on different pods without having a method to look for them all will get
out of hand really quickly.

Understanding the Core Components of a Kubernetes Cluster Chapter 7

[125]

This is where deployments come into play. With deployments, we can manage our pods
with a controller. This allows us to not only decide how many we want to run, but we can
also manage updates by changing the image version or the image itself that our containers
are running. Deployments are what you will be working with most of the time. With
deployments as well as pods and any other objects that we mentioned before, they have
their own definition inside a YAML file:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 deployment: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

Let's start exploring their definition.

At the beginning of the YAML, we have more general fields, such as apiVersion, kind,
and metadata. But under spec is where we will find the specific options for this API
Object.

Under spec, we can add the following fields:

Selector: With the Selector field, the deployment will know which pods to target
when changes are applied. There are two fields that you will be using under the
selector: matchLabels and matchExpressions. With matchLabels, the
selector will use the labels of the pods (key/value pairs). It is important to note
that all the labels that you specify here will be ANDed. This means that the pod
will require that it has all the labels that you specify under matchLabels.
matchExpressions is rarely used, but you can learn more about by reading our
recommended books in the Further reading section.

Understanding the Core Components of a Kubernetes Cluster Chapter 7

[126]

Replicas: This will state the number of pods that the deployment needs to keep
running via the replication controller; for example, if you specify three replicas,
and one of the pods dies, the replication controller will watch the replicas spec as
the desired state and inform the scheduler to schedule a new pod, as the current
status is now 2 since the pod died.
RevisionHistoryLimit: Every time you make a change to a deployment, this
change is saved as a revision of the deployment, which you can later either revert
to that previous state or keep a record of what was changed. You can consult
your history with kubectl rollout history deployment/<name of deployment>.
With revisionHistoryLimit, you can set up a number stating how many
records you want to save.
Strategy: This will let you decide how you want to handle any update or
horizontal pod scale. To overwrite the default, which is rollingUpdate, you
need to write the type key, where you can choose between two values:
recreate or rollingUpdate. While recreate is a fast way to update your
deployment, it will delete all the pods and replace them with new ones, but it
will imply that you will have to take into consideration that a system downtime
will be in place for this type of strategy. The rollingUpdate, on the other hand,
is smoother and slower, and is ideal for stateful applications that can rebalance
their data. The rollingUpdate opens the door for two more fields, which are
maxSurge and maxUnavailable. The first one will be how many pods above
your total amount you want when performing an update; for example, a
deployment with 100 pods and a 20% maxSurge will grow up to a maximum of
120 pods while updating. The next option will let you select how many pods in
the percentage you are willing to kill in order to replace them with new ones in a
100 pod scenario. In cases where there is 20% maxUnavailable, only 20 pods
will be killed and replaced with new ones before continuing to replace the rest of
the deployment.
Template: This is just a nested pod spec field where you will include all the specs
and metadata of the pods that the deployment is going to manage.

We have seen that, with deployments, we manage our pods, and they help us maintain
them in a state that we desire. All these pods are still in something called the cluster
network, which is a closed network in which only the Kubernetes cluster components can
talk to one another, even having their own set of IP ranges. How do we talk to our pods
from the outside? How do we reach our application? This is where services come into play.

Understanding the Core Components of a Kubernetes Cluster Chapter 7

[127]

Services
The name service doesn't fully describe what services actually do in Kubernetes. Kubernetes
services are what route traffic to our pods. We can say that services are what tie pods
together.

Let's imagine that we have a typical frontend/backend type of application where we have
our frontend pods talking to our backend ones via the IP addresses of the pods. If a pod in
the backend dies, we know that pods are ephemeral and therefore we lose communication
with our backend, and so now we are in a world of hurt. This is not only because the new
pod will not have the same IP address of the pod that died, but now we also have to
reconfigure our app to use the new IP address. This issue and similar issues are solved with
services.

A service is a logical object that tells the kube-proxy to create iptables rules based on which
pods are behind the service. Services configure their endpoints, which is how the pods
behind a service are called, the same way as deployments know which pods to control, the
selector field, and the pods' labels.

This diagram shows you how services use labels to manage traffic:

Understanding the Core Components of a Kubernetes Cluster Chapter 7

[128]

Services will not only make kube-proxy create rules to route traffic; it will also trigger
something called kube-dns.

Kube-dns is a set of pods with SkyDNS containers that run on the cluster that provides a
DNS server and forwarder, which will create records for services and sometimes pods for
ease of use. Whenever you create a service, a DNS record pointing to the service's internal
cluster ipaddress will be created with the form service-
name.namespace.svc.cluster.local. You can learn more about the Kubernetes DNS
specifications on the Kubernetes GitHub page: https:/ ​/​github. ​com/ ​kubernetes/ ​dns/
blob/​master/​docs/ ​specification. ​md.

Going back to our example, we will now only have to configure our application to talk to
the service fully qualified domain name (FQDN) in order to talk to our backend pods.
This way, it will not matter what IP address the pods and services have. If a pod behind the
service dies, the service will take care of everything by using the A record, as we will be
able to tell our frontend to route all traffic to my-svc. The logic of the service will take care
of everything else.

There are several types of service that you can create whenever you are declaring the object
to be created in Kubernetes. Let's go through them to see which one will be best suited for
the type of work we need:

ClusterIP: This is the default service. Whenever you create a ClusterIP service, it
will create a service with a cluster-internal IP address that will only be routable
inside the Kubernetes cluster. This type is ideal for pods that only need to talk to
one another and not go outside the cluster.
NodePort: When you create this type of service, by default a random port from
30000 to 32767 will be allocated to forward traffic to the endpoint pods of the
service. You can override this behavior by specifying a node port in the ports
array. Once this is defined you will be able to access your pods via <Nodes-
IP>:<Node-Port>. This is useful to access your pods from outside the cluster via
the Node IP address.
LoadBalancer: Most of the time, you will be running Kubernetes on a cloud
provider. The LoadBalancer type is ideal for these situations, as you will be able
to allocate public IP addresses to your service via your cloud provider's API. This
is the ideal service for when you want to communicate with your pods from
outside your cluster. With LoadBalancer, you will be able to not only allocate a
publicIP address but also, using Azure, allocate a private IP address from your
virtual private network. So, you can talk to your pods from the internet or
internally on your private subnet.

https://github.com/kubernetes/dns/blob/master/docs/specification.md
https://github.com/kubernetes/dns/blob/master/docs/specification.md
https://github.com/kubernetes/dns/blob/master/docs/specification.md
https://github.com/kubernetes/dns/blob/master/docs/specification.md
https://github.com/kubernetes/dns/blob/master/docs/specification.md
https://github.com/kubernetes/dns/blob/master/docs/specification.md
https://github.com/kubernetes/dns/blob/master/docs/specification.md
https://github.com/kubernetes/dns/blob/master/docs/specification.md
https://github.com/kubernetes/dns/blob/master/docs/specification.md
https://github.com/kubernetes/dns/blob/master/docs/specification.md
https://github.com/kubernetes/dns/blob/master/docs/specification.md
https://github.com/kubernetes/dns/blob/master/docs/specification.md
https://github.com/kubernetes/dns/blob/master/docs/specification.md
https://github.com/kubernetes/dns/blob/master/docs/specification.md
https://github.com/kubernetes/dns/blob/master/docs/specification.md
https://github.com/kubernetes/dns/blob/master/docs/specification.md
https://github.com/kubernetes/dns/blob/master/docs/specification.md
https://github.com/kubernetes/dns/blob/master/docs/specification.md
https://github.com/kubernetes/dns/blob/master/docs/specification.md
https://github.com/kubernetes/dns/blob/master/docs/specification.md

Understanding the Core Components of a Kubernetes Cluster Chapter 7

[129]

Let's review YAML's definition of a service:

apiVersion: v1
kind: Service
metadata:
 name: my-service
spec:
 selector:
 app: front-end
 type: NodePort
 ports:
 - name: http
 port: 80
 targetPort: 8080
 nodePort: 30024
 protocol: TCP

A service's YAML is very simple, and the specs will vary, depending on the type of service
that you are creating. But the most important thing you have to take into account is port
definitions. Let's take a look at these:

port: This is the service port that is exposed
targetPort: This is the port on the pods to where the service is sending traffic
nodePort: This is the port that will be exposed

Although we now understand how we can communicate with the pods in our cluster, we
still need to understand how we are going to manage the problem of losing our data every
time a pod is terminated. This is where Persistent Volumes (PV) comes into play.

Kubernetes and persistent storage
Persistent storage in the container world is a serious issue. When we studied Docker
images, we learned that the only storage that is persistent across container runs are the
layers of the image, and they are read-only. The layer where the container runs is
read/write, but all data in this layer is deleted when the container stops. With pods, this is
the same. When a container dies, the data written to it is gone.

Kubernetes has a set of objects to handle storage across pods. The first one that we will
discuss is volumes.

Understanding the Core Components of a Kubernetes Cluster Chapter 7

[130]

Volumes
Volumes solve one of the biggest problems when it comes to persistent storage. First of all,
volumes are not actually objects, but a definition of a pod's spec. When you create a pod,
you can define a volume under the pod's spec field. Containers in this pod will be able to
mount the volume on their mount namespace, and the volume will be available across
container restarts or crashes. Volumes are tied to the pods, though, and if the pod is
deleted, the volume will be gone as well. The data on the volume is another story; data
persistence will depend on the backend of that volume.

Kubernetes supports several types of volumes or volume sources and how they are called
in the API specifications, which range from filesystem maps from the local node, cloud
providers' virtual disks, and software-defined storage-backed volumes. Local filesystem
mounts are the most common ones that you will see when it comes to regular volumes. It's
important to note that the disadvantage of using local node filesystems is that the data will
not be available across all the nodes of the cluster, and just on that node where the pod was
scheduled.

Let's examine how a pod with a volume is defined in YAML:

apiVersion: v1
kind: Pod
metadata:
 name: test-pd
spec:
 containers:
 - image: k8s.gcr.io/test-webserver
 name: test-container
 volumeMounts:
 - mountPath: /test-pd
 name: test-volume
 volumes:
 - name: test-volume
 hostPath:
 path: /data
 type: Directory

Note how there is a field called volumes under spec and then there is another one called
volumeMounts.

The first field (volumes) is where you define the volume you want to create for that pod.
This field will always require a name and then a volume source. Depending on the source,
the requirements will be different. In this example, the source would be hostPath, which is
a node's local filesystem. hostPath supports several types of mappings, ranging from
directories, files, block devices, and even Unix sockets.

Understanding the Core Components of a Kubernetes Cluster Chapter 7

[131]

Under the second field, volumeMounts, we have mountPath, which is where you define
the path inside the container where you want to mount your volume to. The name
parameter is how you specify to the pod which volume to use. This is important because
you can have several types of volumes defined under volumes, and the name will be the
only way for the pod to know which volumes mount to which container.

We will not be going through all the different types of volumes because it is irrelevant to
know about them unless you are going to use a specific one. The important part is to know
that they exist and what type of sources we can have.

You can learn more about the different types of volumes in the volume definitions in the
Kubernetes website (https:/ ​/ ​kubernetes. ​io/​docs/ ​concepts/ ​storage/ ​volumes/ ​#types-
of-​volumes) and in the Kubernetes API reference document (https:/ ​/ ​kubernetes. ​io/
docs/​reference/​generated/ ​kubernetes- ​api/​v1. ​11/​#volume- ​v1- ​core).

Having volumes die with the pods is not ideal. We require storage that persists, and this is
how the need for PVs came to be.

Persistent Volumes, Persistent Volume Claims, and
Storage Classes
The main difference between volumes and PVs is that, unlike volumes, PVs are actually
Kubernetes API objects, so you can manage them individually like separate entities, and
therefore they persist even after a pod is deleted.

You might be wondering why this subsection has PV, persistent volume claims (PVCs),
and storage classes all mixed in. This is because we can't talk about one without talking
about the others; all of them depend on one another, and it is crucial to understand how
they interact among one another to provision storage for our pods.

Let's begin with PVs and PVCs. Like volumes, PVs have a storage source, so the same
mechanism that volumes have applies here. You will either have a software-defined storage
cluster providing logical unit number (LUNs), a cloud provider giving virtual disks, or
even a local filesystem to the Kubernetes node, but here, instead of being called volume
sources, they are called persistent volume types instead.

PVs are pretty much like LUNs in a storage array: you create them, but without a mapping;
they are just a bunch of allocated storage waiting to be used. Here is where PVCs come into
play. PVCs are like LUN mappings: they are backed or bound to a PV and also are what
you actually define, relate, and make available to the pod that it can then use for its
containers.

https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#volume-v1-core

Understanding the Core Components of a Kubernetes Cluster Chapter 7

[132]

The way you use PVCs on pods is exactly the same as with normal volumes. You have two
fields: one to specify which PVC you want to use, and the other one to tell the pod on
which container to use that PVC.

The YAML for a PVC API object definition should have the following code:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: gluster-pvc
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi

The YAML for pod should have the following code:

kind: Pod
apiVersion: v1
metadata:
 name: mypod
spec:
 containers:
 - name: myfrontend
 image: nginx
 volumeMounts:
 - mountPath: "/mnt/gluster"
 name: volume
 volumes:
 - name: volume
 persistentVolumeClaim:
 claimName: gluster-pvc

When a Kubernetes administrator creates a PVC, there are two ways that this request is
satisfied:

Static: Several PVs have already been created, and then when a user creates a
PVC, any available PV that can satisfy the requirements will be bound to that
PVC.
Dynamic: Some PV types can create PVs based on PVC definitions. When a PVC
is created, the PV type will dynamically create a PV object and allocate the
storage in the backend; this is dynamic provisioning. The catch with dynamic
provisioning is that you require a third type of Kubernetes storage object, called a
storage class.

Understanding the Core Components of a Kubernetes Cluster Chapter 7

[133]

Storage classes are like a way of tiering your storage. You can create a class that provisions
slow storage volumes, or another one with hyper-fast SSD drives. However, storage classes
are a little bit more complex than just tiering. As we mentioned in the two ways of creating
a PVC, storage classes are what make dynamic provisioning possible. When working on a
cloud environment, you don't want to be manually creating every backend disk for every
PV. Storage classes will set up something called a provisioner, which invokes the volume
plugin that's necessary to talk to your cloud provider's API. Every provisioner has its own
settings so that it can talk to the specified cloud provider or storage provider.

You can provision storage classes in the following way; this is an example of a storage class
using Azure-disk as a disk provisioner:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: my-storage-class
provisioner: kubernetes.io/azure-disk
parameters:
 storageaccounttype: Standard_LRS
 kind: Shared

Each storage class provisioner and PV type will have different requirements and
parameters, as well as volumes, and we have already had a general overview of how they
work and what we can use them for. Learning about specific storage classes and PV types
will depend on your environment; you can learn more about each one of them by clicking
on the following links:

https:/​/ ​kubernetes. ​io/ ​docs/ ​concepts/ ​storage/ ​storage- ​classes/
#provisioner

https:/​/ ​kubernetes. ​io/ ​docs/ ​concepts/ ​storage/ ​persistent- ​volumes/ ​#types-
of-​persistent- ​volumes

Summary
In this chapter, we learned about what Kubernetes is, its components, and what the
advantages of using orchestration are.

You should now be able to identify each of the Kubernetes API objects, their purpose, and
their use cases. You should be able to understand how the master nodes control the cluster
and the scheduling of the containers in the worker nodes.

https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes

Understanding the Core Components of a Kubernetes Cluster Chapter 7

[134]

Questions
What is Kubernetes?1.
What are the components of Kubernetes?2.
What are Kubernetes's API objects?3.
What can we do with Kubernetes?4.
What is a container orchestrator?5.
What is a pod?6.
What is a deployment?7.

Further reading
Mastering Kubernetes, by Packt Publishing: https:/ ​/ ​prod. ​packtpub. ​com/ ​in/
virtualization- ​and- ​cloud/ ​mastering- ​kubernetes

Kubernetes for Developers, by Packt Publishing: https:/ ​/​prod. ​packtpub. ​com/ ​in/
virtualization- ​and- ​cloud/ ​kubernetes- ​developers

Getting Started with Kubernetes, by Packt Publishing: https:/ ​/​prod. ​packtpub.
com/​in/ ​virtualization- ​and- ​cloud/ ​getting- ​started- ​kubernetes- ​third-
edition

https://prod.packtpub.com/in/virtualization-and-cloud/mastering-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/mastering-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/mastering-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/mastering-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/mastering-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/mastering-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/mastering-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/mastering-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/mastering-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/mastering-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/mastering-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/mastering-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/mastering-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/mastering-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/mastering-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/mastering-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/mastering-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/mastering-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/mastering-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/mastering-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://prod.packtpub.com/in/virtualization-and-cloud/getting-started-kubernetes-third-edition

8
Architecting a Kubernetes

Cluster
Now that we understand the basics of what composes a Kubernetes cluster, we still need to
understand how to place all the Kubernetes components together, and how to suit their
requirements to provision a production-ready Kubernetes cluster.

In this chapter, we will examine how to determine these requirements and how they will
help us maintain steady workloads and achieve a successful deployment.

We will explore the following topics in this chapter:

Kube-sizing
Determining storage considerations
Determining network requirements
Customizing kube objects

Kube-sizing
When designing a Kubernetes cluster, we don't just need to worry about how we are going
to configure our deployment objects to host our applications, or how we are going to
configure our service objects to provide communication across our pods—where all this is
hosted is also important. Therefore, we also need to take into account the resources that are
required to bring balance to our application workloads and our control plane.

Architecting a Kubernetes Cluster Chapter 8

[136]

etcd considerations
We will require at least a three-node etcd cluster in order for it to be able to support itself
in case one node fails. Because etcd uses a distributed census algorithm called Raft, odd-
numbered clusters are recommended. This is because, in order for an action to be allowed,
more than 50% of the members of the cluster have to agree on it. In a scenario with a two-
node cluster, for example, if one of the nodes fails, the other node's vote is only 50% of the
cluster, and therefore, the cluster loses quorum. Now, when we have a three-node cluster, a
single node failure represents only a 33.33% vote loss and the two remaining nodes' votes
still 66.66% for the action to be allowed.

The following link is for a great website where you can learn exactly how
the Raft algorithm works: http:/ ​/​thesecretlivesofdata. ​com/ ​raft/ ​.

For etcd, we can choose from two deployment models for our cluster. We can either run it
on the same node as our kube-apiserver, or we can have a separate set of clusters running
our key-value store. Either way, this will not change how etcd reaches quorum, so you will
still have to install etcd in odd numbers across your control-plane manager nodes.

For a Kubernetes use case, etcd won't consume lots of compute resources such as CPU or
memory. Although etcd does aggressively cache key-value data and uses most of its
memory-tracking watchers, two cores and 8 GB of RAM will be more than enough.

When it comes to the disk, this is where you need to be more critical. The etcd cluster relies
heavily on disk latency, because of the way the consensus protocol persistently stores
metadata in the log. Every member of the etcd cluster has to store every request, and any
major spike in latency can trigger a cluster leader election, which will cause instability for
the cluster. A hard disk drive (HDD) for etcd is out of the question unless you are running
15k RPM disks in a Raid 0 disk to squeeze the highest performance possible out of a
magnetic drive. A solid state drive (SSD) is the way to go and, with extremely low latency
and higher input/output operations per second (IOPS), they are the perfect candidate to
host your key-value store. Thankfully, all major cloud providers offer SSD solutions to
satisfy this need.

http://thesecretlivesofdata.com/raft/
http://thesecretlivesofdata.com/raft/
http://thesecretlivesofdata.com/raft/
http://thesecretlivesofdata.com/raft/
http://thesecretlivesofdata.com/raft/
http://thesecretlivesofdata.com/raft/
http://thesecretlivesofdata.com/raft/
http://thesecretlivesofdata.com/raft/
http://thesecretlivesofdata.com/raft/
http://thesecretlivesofdata.com/raft/

Architecting a Kubernetes Cluster Chapter 8

[137]

kube-apiserver sizing
The remaining resources that are required for the control-plane components will depend on
the number of nodes that they will be managing and which add-ons you will be running on
them. One additional thing to take into account is the fact that you can put these master
nodes behind a load balancer to ease the load and provide high availability. In addition to
this, you can always horizontally scale your master nodes in periods of contention.

Taking all this into consideration, and taking into account that etcd will be hosted
alongside our master nodes, we can say that a three-master node cluster with virtual
machines (VMs) with 2 to 4 vCPUs, and between 8 and 16 GB of RAM will be more than
enough to handle greater than or equal to 100 worker nodes.

Worker nodes
The worker nodes, on the other hand, are the ones that'll be doing the heavy lifting—these
guys are the ones that will be running our application workloads. Standardizing the size of
these nodes will be impossible as they fall into a What if? scenario. We are required to know
exactly what type of applications we will be running on our nodes, and what their resource
requirements are, for us to be able to size them correctly. Nodes will not only be sized on
the application resource requirements, but we will also have to consider periods where we
will have more than our planned pods running on them. For instance, you can perform a
rolling update on a deployment to use a newer image depending on how you have
configured your maxSurge; this node will have to handle 10% to 25% more load.

Containers are really lightweight, but when orchestrators come into play, you can have 30,
40, or even 100 containers running on a single node! This exponentially increases your
resource consumption per host. While pods come with resource-limiting functionalities and
specifications to limit the container's resource consumption, you still need to account for
the required resources of those containers.

Nodes can always be scaled horizontally during periods of contention and high-resource
demand. However, it's always good to have those extra resources available to avoid any
undesirable out of memory (OOMs) killers. So, plan for the future and for the What if?
scenario by having a pool of extra resources.

Architecting a Kubernetes Cluster Chapter 8

[138]

Load balancer considerations
Our nodes still need to talk to our API server and, as we mentioned before, having several
master nodes requires a load balancer. When it comes to load balancing requests from our
nodes to the masters, we have several options to pick from, depending on where you are
running your cluster. If you are running Kubernetes in a public cloud, you can go ahead
with your cloud provider's load balancer option, as they are usually elastic. This means that
they autoscale as needed and offer more features than you actually require. Essentially,
load balancing requests to the API server will be the only task that your load balancer will
perform. This leads us to the on-premises scenario—as we are sticking to open source
solutions here, then you can configure a Linux box running either HAProxy or NGINX to
satisfy your load balancing needs. There is no wrong answer in choosing between HAProxy
and NGINX, as they provide you with exactly what you need.

So far, the basic architecture will look like the following screenshot:

Architecting a Kubernetes Cluster Chapter 8

[139]

Storage considerations
Storage needs are not as straightforward as they are for a regular host or hypervisor. There
are several types of storage that our nodes and pods will be consuming, and we need to tier
them properly. Because you are running Linux, tiering the storage into different filesystems
and storage backends will be extremely easy—nothing that logical volume manager
(LVM) or different mount points can't solve.

The basic Kubernetes binaries, such as kubelet and kube-proxy, can run on basic
storage alongside the OS files; nothing very high-end is required, as any SSD will be
enough to satisfy their needs.

Now, on the other hand, we have the storage in which our container images will be stored
and run from. Going back to the Chapter 6, Creating a Highly Available Self-Healing
Architecture, we learned that containers are composed of read-only layers. This means that
when the disks are running tens or even hundreds of containers in a single node, they will
be hit very hard on read requests. The storage backend for this will have to serve read
requests with very low latency. Specific numbers in terms of IOPS and latency will vary
across each environment, but the basis will be the same. This is because of the nature of
containers—disks that provide a higher read performance over writes will be preferable.

Storage performance is not the only factor to take into account. Storage space is also very
important. Calculating how much space you require will depend on the following two
things:

How big are the images that you are going to be running?1.
How many different images will you be running and what are their sizes?2.

This will directly consume the space in /var/lib/docker or /var/lib/containerd.
With this in mind, a separate mount point for /var/lib/docker or containerd/ with
enough space to store all the images that you are going to be running on the pods will be a
good option. Take into account that these images are ephemeral and will not live on your
node forever. Kubernetes does have garbage collection strategies embedded in kubelet,
which will delete old images that are no longer in use if you reach a specified threshold for
disk usage. These options are HighThresholdPercent and LowThresholdPercent. You
can set them with a kubelet flag: --eviction-hard=imagefs.available or --
eviction-soft=imagefs.available. These flags are already configured by default to
garbage collect when free storage reaches less than 15%, however, you can adjust them to
your needs. eviction-hard is the threshold that it needs to reach in order to start deleting
images, while eviction-soft is the percentage or amount that it needs to reach to stop
deleting images.

Architecting a Kubernetes Cluster Chapter 8

[140]

Some containers will still require some sort of read/write volume for persistent data. As
discussed in Chapter 7, Understanding the Core Components of a Kubernetes Cluster, there are
several storage provisioners, and all of them will suit different scenarios. All you need to
know is that you have a series of options available to you, thanks to the Kubernetes storage
classes. Some of the open source software-defined storage solutions that are worth
mentioning are as follows:

Ceph
GlusterFS
OpenStack Cinder
Network File System (NFS)

Each storage provisioner will have its benefits and downsides, but it is beyond the scope of
this book to go through each one in detail. We have offered a good overview of Gluster in
previous chapters, as it is what we are going to use in later chapters for our example
deployment.

Network requirements
In order to understand the network requirements of our cluster, we first need to
understand the Kubernetes networking model and what problems it aims to solve.
Container networking can be very hard to grasp; however, it has three essential problems:

How do containers talk to each other (on the same host and on different hosts)?1.
How do containers talk to the outside world, and how does the outside world2.
talk to the containers?
Who allocates and configures each container's unique IP address?3.

Containers on the same host can talk to each other through a virtual bridge that you can see
with the brctl utility from the bridge-utils package. This is handled by the Docker
engine and it's called the Docker networking model. Containers are attached to the virtual
bridge named docker0 through a veth virtual interface that is allocated an IP from a
private subnet address. In this way, all containers can talk to each other through their
veth virtual interface. The problem with the Docker model arises when containers are
allocated on different hosts, or when external services want to communicate with them. To
solve this, Docker provides a method where containers are exposed to the outside world
through the host's ports. Requests come into a certain port in the host's IP address and are
then proxied to the container behind that port.

Architecting a Kubernetes Cluster Chapter 8

[141]

This method is useful but not ideal. You can't configure services to specific ports or in a
dynamic port allocation scenario—our services will require flags to connect to the correct
ports each time we deploy them. This can get really messy very quickly.

To avoid this, Kubernetes have implemented their own networking model that has to
comply with the following rules:

All pods can communicate with all other pods without network address1.
translation (NAT)
All nodes can communicate with all pods without NAT2.
The IP that the pod sees itself as is the same IP that others see it as3.

There are several open source projects out there that can help us to reach this goal, and the
one that suits you best will depend on your circumstances. Here are some of them:

Project Calico
Weave Net
Flannel
Kube-router

Assigning IPs to pods and making them talk between them is not the only issue to be aware
of. Kubernetes also provides DNS-based service discovery, because applications that talk
through DNS records rather than IPs are far more efficient and scalable.

Kubernetes DNS-based service discovery
Kubernetes has a deployment in its kube-system namespace and we will revisit namespaces
later in this chapter. The deployment is composed of a pod with a set of containers that
forms a DNS server that is in charge of creating all DNS records in the cluster and serving
DNS requests for service discovery.

Kubernetes will also create a service pointing to the mentioned deployment, and will tell
the kubelet to configure each pod's container to use the service's IP as the DNS resolver by
default. This is the default behavior, but you can overwrite this by setting a DNS policy on
your pod's specification. You can choose from the following specifications:

Default: This one is counter-intuitive as it is not the default one in reality. With
this policy, pods will inherit the name resolution from the node that runs that
pod. For example, if a node is configured to use 8.8.8.8 as its DNS server,
the resolv.conf pods will also be configured to use that same DNS server.

Architecting a Kubernetes Cluster Chapter 8

[142]

ClusterFirst: This is actually the default policy and, as we mentioned before, any
pod running with ClusterFirst will have resolv.conf configured with the IP of
the kube-dns service. Any requests that are not local to the cluster will be
forwarded to the node's configured DNS server.

Not all Kubernetes objects have DNS records. Only services and, in some specific cases,
pods have records created for them. There are two types of records in the DNS server: A
records and service records (SRVs). A records are created depending on the type of service
created; and we are not referring to spec.type here. There are two types of
services: normal services, which we revised in Chapter 7, Understanding the Core
Components of a Kubernetes Cluster, and correspond to the ones under the type specification;
and headless services. Before explaining headless services, let's explore how normal
services behave.

For each normal service, an A record that points to the service's cluster IP address is
created; these records are in the following structure:

<service-name>.<namespace>.svc.cluster.local

Any pod that is running on the same namespace as the service can resolve the service
through only its shortname: <service-name> field. This is because any other pod
outside of the namespace has to specify the namespace after the shortname instance:

<service-name>.<namespace>

For headless services, records work a little bit different. First of all, a headless service is a
service with no cluster IP assigned to it. Therefore, an A record that points to the service's
IP is impossible to create. To create a headless service, you define the
.spec.clusterIP namespace with none in this way, so that no IP is assigned to it.
Kubernetes will then create A records based on the endpoints of this service. Essentially,
the pods are selected through the selector field, although this is not the only
requirement. Because of the format in which the A record is created, pods require several
new fields in order for the DNS server to create records for them.

Pods will require two new specification fields: hostname and subdomain. The
hostname field will be the hostname field of the pod, while subdomain will be the name of
the headless service that you are creating for these pods. The A records for this will point to
each pod's IP in the following way:

<pod hostname>.<subdomian/headless service
name>.<namespace>.svc.cluster.local

Architecting a Kubernetes Cluster Chapter 8

[143]

Additionally, another record will be created with only the headless service, as follows:

<headless service>.<namespace>.svc.cluster.local

This record will return all the IP addresses of the pods behind the service.

We now have what's necessary to start building our cluster. However, there are still some
design features that do not only include the Kubernetes binaries and their configuration,
Kubernetes API objects can also be tuned. We will go through some of the adjustments that
you can perform in the next section.

Customizing kube objects
When it comes to Kubernetes objects, everything will depend on the type of workload or
application that you are trying to build the infrastructure for. Therefore, rather than
designing or architecting any particular customization, we will go through how to
configure the most commonly used and helpful specifications on each object.

Namespacing
Kubernetes offers namespaces as a way of segmenting your cluster into multiple virtual
clusters. Think of it as a way of segmenting your cluster's resources and objects and putting
them in logical isolation from each other.

Namespaces will only be used in very specific scenarios, but Kubernetes comes with some
predefined namespaces:

Default: This is the default namespace that all objects without a namespace
definition will be placed into.
kube-system: Any object that is created by and for the Kubernetes cluster will be
placed on this namespace. Objects that are required for the basic functionality of
the cluster will be placed here. For example, you will find kube-dns,
kubernetes-dashboard, kube-proxy, or any additional component or agent
for external applications, such as fluentd, logstash, traefik, and ingress
controllers.
kube-public: A namespace that is reserved for objects that can be visible to
anyone, including non-authenticated users.

Architecting a Kubernetes Cluster Chapter 8

[144]

Creating a namespace is very simple and straightforward; you can do so by running the
following command:

kubectl create namespace <name>

That's it—you now have your own namespace. To place objects in this namespace, you will
be using the metadata field and adding the namespace key-value pair; for example,
consider this excerpt from a YAML pod:

 apiVersion: v1
 kind: Pod
 metadata:
 namespace: mynamespace
 name: pod1

You will find yourself creating custom namespaces for clusters that are usually very large
and have a considerable number of users or different teams that are consuming their
resources. For these types of scenarios, namespaces are perfect. Namespaces will let you
segregate all the objects of a team from the rest. Names can even be repeated on the same
class objects as long as they are on different namespaces.

Namespaces will not only provide isolation for objects, but you can also set resource quotas
for each namespace. Let's say that you have a couple of development teams working on
your cluster—one team is developing a very lightweight application, and the other one is
developing a very resource-intensive app. In this scenario, you don't want the first
development team consuming any additional compute resources from the resource-
intensive app team—this is where resource quotas come into play.

Limiting namespace resources
Resource quotas are also Kubernetes API objects; however, they are designed to work
specifically on namespaces by creating limits on compute resources and even limiting the
number of objects on each assigned space.

The ResourceQuota API object is declared like any other object in Kubernetes, through a
YAML file passed to the kubectl command.

A basic resource quota definition is as follows:

apiVersion: v1
kind: ResourceQuota
Metadata:
 Namespace: devteam1
 name: compute-resources

Architecting a Kubernetes Cluster Chapter 8

[145]

spec:
 hard:
 pods: "4"
 requests.cpu: "1"
 requests.memory: 1Gi
 limits.cpu: "2"
 limits.memory: 2Gi

There are two types of basic quotas that we can set: compute resource quotas and object
resource quotas. As seen in the previous example, pods is an object quota and the rest are
compute quotas.

In each of these fields, you will specify the total sum of the provided resource, which the
namespace cannot exceed. For example, in this namespace, the total number of running
pods cannot exceed 4, and the sum of their resources can't exceed 1 CPU and 2Gi of RAM
memory.

The maximum number of objects per namespace can be assigned to any kube API object
that can be put in a namespace; here is a list of the objects that can be limited with
namespaces:

Persistent Volume Claims (PVCs)
Services
Secrets
ConfigMaps
Replication controllers
Deployments
ReplicaSets
StatefulSets
Jobs
Cron jobs

When it comes to compute resources, it is not only memory and CPU that can be limited,
but you can also assign quotas to storage space—these quotas will apply only to PVCs,
however.

In order to understand compute quotas better, we need to dive deeper and explore how
these resources are managed and assigned on a pod basis. This will also be a good time to
understand how to architect pods better.

Architecting a Kubernetes Cluster Chapter 8

[146]

Customizing pods
Pods without resource limitations on non-limited namespaces can consume all of a node's
resources without warning; however, you have a set of tools in the pod's specification to
handle their compute allocation better.

When you allocate resources to a pod, you are not actually allocating them to the pod.
Instead, you are doing it on a container basis. Therefore, a pod with multiple containers
will have multiple resource constraints for each of its containers; let's consider the following
example:

apiVersion: v1
 kind: Pod
 metadata:
 name: frontend
 spec:
 containers:
 - name: db
 image: mysql
 env:
 - name: MYSQL_ROOT_PASSWORD
 value: "password"
 resources:
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "500m"
 - name: wp
 image: wordpress
 resources:
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "500m"

In this pod declaration, under the containers definition, we have two new fields that we
haven't covered: env and resources. The resources field contains the compute resource
limitations and requirements for our containers. By setting limits, you are telling the
container the maximum number of resources that it can ask of that resource type. If a
container exceeds the limit, it will be restarted or terminated.

Architecting a Kubernetes Cluster Chapter 8

[147]

The request field refers to how much of that resource Kubernetes will guarantee to that
container. In order for the container to be able to run, the host node must have enough free
resources to satisfy the request.

CPU and memory are measured in different ways. For instance, when we assign or limit
CPU, we talk in CPU units. There are several ways of setting the CPU units; first, you can
either specify round or fractional numbers such as 1, 2, 3, 0.1, and 1.5, which will
correspond to the number of virtual cores that you want to assign to that container.
Another way of assigning is to use the milicore expression. One milicore (1m), which is the
minimum CPU quantity that you can assign, is equivalent to 0.001 CPU cores; for example,
you could do the following assignment:

cpu: "250m"

That would be the same as writing the following:

cpu: 0.25

The preferred way of assigning CPU is through Millicores, as the API will convert whole
numbers into Millicores either way.

For memory allocation, you can use normal memory units such as kilobytes or kibibytes;
the same goes for any other memory unit, such as E, P, T, G, and M.

Going back to resource quotas, we can see how individual container resource management
will play together with resource quotas on namespaces. This is because the resource quotas
will tell us how many limits and requests we can set per namespace in our containers.

The second field that we haven't revised is the env field. With env, we configure the
environmental variables for our containers. With variable declarations, we can pass
settings, parameters, passwords, and more configurations to our containers. The simplest
way to declare a variable in a pod is as follows:

...
env:
- name: VAR
 value: “Hello World”

Now the container will have access to the VAR variable content in its shell, referred to as
$VAR. As we mentioned previously, this is the easiest way to declare a variable and provide
a value to it. However, this is not the most efficient one—when you declare a value in this
way, the value will only live in the pod declaration.

Architecting a Kubernetes Cluster Chapter 8

[148]

If we need to edit the value or pass this value to multiple pods, it becomes a hassle as you
need to type the same value on every pod that requires it. This is where we will introduce
two more Kubernetes API objects: Secrets and ConfigMaps.

With ConfigMaps and Secrets, we can store values for our variables in a persistent and
more modular form. In essence, ConfigMaps and Secrets are the same, but secrets
contain their values encoded in base64. Secrets are used to store sensitive information such
as passwords or private keys—essentially, any type of confidential data. All the rest of the
data that you don't need to be hidden can be passed through ConfigMap.

The way that you create these two types of objects is the same way as with any other object
in Kubernetes—through YAML. You can create a ConfigMap object as follows:

apiVersion: v1
 kind: ConfigMap
 metadata:
 name: my-config
 data:
 super.data: much-data
 very.data: wow

The only difference on this definition, form all the other definitions in this chapter is that
we are missing the specification field. Instead, we have data where we will be placing the
key-value pairs that contain the data that we want to store.

With Secrets, this works a little bit differently. This is because the value for the key that
we need to store has to be encoded. In order to store a value in a secret's key, we pass the
value to base64, as follows:

[dsala@RedFedora]$ echo -n “our secret” | base64
WW91IEhhdmUgRGVjb2RlZCBNeSBTZWNyZXQhIENvbmdyYXR6IQ==

When we have the base64 hash of our string, we are ready to create our secret.

The following code block shows a YAML file configured with the secret's value in base64:

apiVersion: v1
 kind: Secret
 metadata:
 name: kube-secret
 type: Opaque
 data:
 password: WW91IEhhdmUgRGVjb2RlZCBNeSBTZWNyZXQhIENvbmdyYXR6IQ==

Architecting a Kubernetes Cluster Chapter 8

[149]

To use our ConfigMaps and Secrets objects in pods, we use the valueFrom field in the
env array:

apiVersion: v1
 kind: Pod
 metadata:
 name: secret-pod
 spec:
 containers:
 - name: secret-container
 image: busybox
 env:
 - name: SECRET_VAR
 valueFrom:
 secretKeyRef:
 name: kube-secret
 key: password

Here, the name under secretKeyRef corresponds to the Secret API object name, and the
key is the key from the data field in Secret.

With ConfigMaps, it will look almost the same; however, in the valueFrom field, we will
use configMapKeyRef instead of secretKeyRef.

The ConfigMap declaration is as follows:

 …
 env:
 - name: CONFMAP_VAR
 valueFrom:
 configMapKeyRef:
 name: my-config
 key: very.data

Now that you understand the basics of customizing pods, you can take a
look at a real-life example at https:/ ​/​kubernetes. ​io/ ​docs/ ​tutorials/
configuration/ ​configure- ​redis- ​using- ​configmap/ ​.

https://kubernetes.io/docs/tutorials/configuration/configure-redis-using-configmap/
https://kubernetes.io/docs/tutorials/configuration/configure-redis-using-configmap/
https://kubernetes.io/docs/tutorials/configuration/configure-redis-using-configmap/
https://kubernetes.io/docs/tutorials/configuration/configure-redis-using-configmap/
https://kubernetes.io/docs/tutorials/configuration/configure-redis-using-configmap/
https://kubernetes.io/docs/tutorials/configuration/configure-redis-using-configmap/
https://kubernetes.io/docs/tutorials/configuration/configure-redis-using-configmap/
https://kubernetes.io/docs/tutorials/configuration/configure-redis-using-configmap/
https://kubernetes.io/docs/tutorials/configuration/configure-redis-using-configmap/
https://kubernetes.io/docs/tutorials/configuration/configure-redis-using-configmap/
https://kubernetes.io/docs/tutorials/configuration/configure-redis-using-configmap/
https://kubernetes.io/docs/tutorials/configuration/configure-redis-using-configmap/
https://kubernetes.io/docs/tutorials/configuration/configure-redis-using-configmap/
https://kubernetes.io/docs/tutorials/configuration/configure-redis-using-configmap/
https://kubernetes.io/docs/tutorials/configuration/configure-redis-using-configmap/
https://kubernetes.io/docs/tutorials/configuration/configure-redis-using-configmap/
https://kubernetes.io/docs/tutorials/configuration/configure-redis-using-configmap/
https://kubernetes.io/docs/tutorials/configuration/configure-redis-using-configmap/
https://kubernetes.io/docs/tutorials/configuration/configure-redis-using-configmap/
https://kubernetes.io/docs/tutorials/configuration/configure-redis-using-configmap/
https://kubernetes.io/docs/tutorials/configuration/configure-redis-using-configmap/

Architecting a Kubernetes Cluster Chapter 8

[150]

Summary
In this chapter, we learned how to determine the compute and network requirements of a
Kubernetes cluster. We also touched upon the software requirements that come along with
it, such as etcd, and how odd-numbered clusters are preferred (due to the census
algorithm) as the cluster needs to achieve more than 50% of votes for consensus.

The etcd cluster can either run on the kube-apiserver or have a separate set of clusters
dedicated just for etcd. When it comes to resources, 2 CPUs and 8 GB of RAM should be
enough. When deciding on the storage system for etcd, opt for lower latency and higher
IOPS storage such as SSD. We then jumped into sizing the kube-apiserver, which can be
run alongside etcd. Given that both components can coexist, resources should be bumped
to anything between 8 and 16 GB of RAM and between 2 and 4 CPUs per node.

In order to properly size the worker nodes, we have to keep in mind that this is where the
actual application workloads will be running. These nodes should be sized for application
requirements, and additional resources should be considered for periods where more than
the planned number of pods could be running, such as during rolling updates. Continuing
with the requirements for the cluster, we touched on how a load balancer can help with the
master node's communication by balancing requests among the cluster.

Storage needs for Kubernetes can be quite overwhelming as many factors can affect the
overall setup, and leaning toward a storage system that benefits reads over writes is
preferable. Additionally, some of the most common storage providers for Kubernetes are as
follows:

Ceph
GlusterFS (covered in Chapter 2, Defining GlusterFS Storage to Chapter 5,
Analyzing Performance in a Gluster System)
OpenStack Cinder
NFS

We then moved on to the networking side of things and learned how Kubernetes provides
services such as DNS-based service discovery, which is in charge of creating all DNS
records in the cluster and serving DNS requests for service discovery. Objects in
Kubernetes can be customized to accommodate the different needs of each workload, and
things such as namespaces are used as a way of segmenting your cluster into multiple
virtual clusters. Resource limits can be done through resource quotas.

Architecting a Kubernetes Cluster Chapter 8

[151]

Finally, pods can be customized to allow an absolute maximum of resources to be allocated
and to avoid a single pod from consuming all of the worker node's resources. We discussed
the various storage considerations and requirements in detail, including how to customize
kube objects and pods.

In the next chapter, we'll jump into deploying a Kubernetes cluster and learn how to
configure it.

Questions
Why are odd-numbered etcd clusters preferred?1.
Can etcd run alongside kube-apiserver?2.
Why is lower latency recommended for etcd?3.
What are the worker nodes?4.
What should be considered when sizing worker nodes?5.
What are some of the storage providers for Kubernetes?6.
Why is a load balancer needed?7.
How can namespaces be used?8.

Further reading
Mastering Kubernetes by Gigi Sayfan: https:/ ​/ ​www.​packtpub. ​com/
virtualization- ​and- ​cloud/ ​mastering- ​kubernetes

Kubernetes for Developers by Joseph Heck: https:/ ​/​www. ​packtpub. ​com/
virtualization- ​and- ​cloud/ ​kubernetes- ​developers

Hands-On Microservices with Kubernetes by Gigi Sayfan: https:/ ​/ ​www.​packtpub.
com/​virtualization- ​and- ​cloud/ ​hands- ​microservices- ​kubernetes

Getting Started with Kubernetes – Third Edition by Jonathan Baier, Jesse
White: https:/ ​/​www. ​packtpub. ​com/ ​virtualization- ​and-​cloud/ ​getting-
started- ​kubernetes- ​third- ​edition

Mastering Docker – Second Edition by Russ McKendrick, Scott Gallagher: https:/ ​/
www.​packtpub. ​com/ ​virtualization- ​and-​cloud/ ​mastering- ​docker- ​second-
edition

Docker Bootcamp by Russ McKendrick et al.: https:/ ​/​www. ​packtpub. ​com/
virtualization- ​and- ​cloud/ ​docker- ​bootcamp

https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/mastering-kubernetes
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/kubernetes-developers
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/hands-microservices-kubernetes
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/getting-started-kubernetes-third-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/mastering-docker-second-edition
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp
https://www.packtpub.com/virtualization-and-cloud/docker-bootcamp

9
Deploying and Configuring

Kubernetes
After learning about Kubernetes internal components and how they interact with each
other, it's time to learn how to set them up. Installing a Kubernetes cluster manually can be
a very painful and delicate process, but by going through the required steps, we can learn
and understand better its internal components. After performing a manual install, we can
also explore what other alternatives and tools we have available to automate this process.
The following is a summary of what we will learn in this chapter:

Creating our compute environment
Bootstrapping the control plane
Bootstrapping worker nodes
Configuring cluster networking and DNS settings
Examples of managed Kubernetes services

With each step, we will be closer to completing a full install of Kubernetes, and ready to test
it in a development environment.

Infrastructure deployment
To deploy the infrastructure that will be running our Kubernetes cluster, we will be using
Microsoft Azure. You can follow along by creating a free trial or using any other public
cloud provider, or your own on-premise IT infrastructure. The steps will differ depending
on what you choose, though.

Deploying and Configuring Kubernetes Chapter 9

[153]

Installing Azure CLI
There are two ways of deploying resources in Azure when you are using Linux: you can do
it either from the portal or via the Azure CLI. We will be using both, but for different
scenarios.

Let’s begin installing Azure CLI on our Linux workstation or on the Windows subsystem
for Linux.

Note that all commands are assumed to be issued by an account with root
privileges or the root account itself (but this is not recommended).

For RHEL/Centos-based distributions, you need to perform the following steps:

Download and import the repository key, as shown in the following command:1.

rpm --import https://packages.microsoft.com/keys/microsoft.asc

 2. Create the repository config file, as shown in the following command:

cat << EOF > /etc/yum.repos.d/azure-cli.repo
[azure-cli]
name=Azure CLI
baseurl=https://packages.microsoft.com/yumrepos/azure-cli
enabled=1
gpgcheck=1
gpgkey=https://packages.microsoft.com/keys/microsoft.asc
EOF

 3. Install azure-cli using the following command:

yum install azure-cli

 4. Log in to your Azure subscription using the following command:

az login

If you are not in a Desktop environment, you can use: az login --use-
device-code, because the regular "az login" requires a web browser to
perform the login.

Deploying and Configuring Kubernetes Chapter 9

[154]

After installing Azure CLI, we still need to set up some defaults so we won't have to type
the same flag options over and over again.

Configuring Azure CLI
Every resource on Azure lives in a resource group and a geographical location. Because all
our resources will be living in the same resource group and location, let's configure them as
defaults. To do this, run the following command:

az configure --defaults location=eastus group=Kube_Deploy

For our example, we are using east us for the location, as this is the location closest to
where we are based. The group name will depend on how you are going to name your
resource group—in our case, Kube_Deploy.

With the defaults configured, let's move on to actually create the resource group that will
contain our resources, using the following command:

az group create -n “Kube_Deploy”

High-level design overview
With our resource group created and our location selected, let's take a high-level look at the
design that we are going to create using the following code:

<design picture>

The important things that we need to note right now are the number of VMs, the network
architecture, and firewall rules, because these are the elements that we will be configuring
directly in our first steps.

Let's take a look at our network requirements before we start provisioning our resources.

We have the following requirements:

The following three sets of different, non-overlapping subnets:
VM subnet
Pod subnet
Service subnet

Deploying and Configuring Kubernetes Chapter 9

[155]

Statically allocated IP addresses for the following resources:
Master nodes
Worker nodes
Management VM
Public IP for the load-balancer
DNS server

For our VM subnet, we are going to use the following address space:

192.168.0.0/24

The service CIDR will be the following:

10.20.0.0/24

And finally, our POD CIDR will be a little bit bigger so that it can allocate more pods, as
shown in the following code:

10.30.0.0/16

Now let's start provisioning the network resources that we need to make this architecture
possible.

Provisioning network resources
First, we will create the virtual network that will contain our VM subnet. To do this, run the
following command:

az network vnet create -n kube-node-vnet \
 --address-prefix 192.168.0.0/16 \
 --subnet-name node-subnet \
 --subnet-prefix 192.168.0.0/24

The two key points in this command are the address-prefix flag and the subnet-
prefix flag.

With the address-prefix flag, we will be specifying the address space that will define
which subnets we can put on the VNET. For example, our VNET prefix is 192.16.0.0/16.
This means that we cannot put any address outside this CIDR; for example, 10.0.0.0/24
won’t work.

Deploying and Configuring Kubernetes Chapter 9

[156]

The subnet prefix will be the address space that will be provided to the VMs connected to
our subnet. Now that we have created our VNET and the subnet, we require a static public
IP address. In Azure and in any public cloud provider, public IPs are resources that
are separate from the VM.

Let's create our public IPs by running the following:

az network public-ip create -n kube-api-pub-ip \
 --allocation-method Static \
 --sku Standard

Once created, we can take note of the IP by running the following query:

az network public-ip show -n kube-api-pub-ip --query "ipAddress"

With our VNET, subnet, and public IP all allocated, we just need one final resource, a
firewall, to provide security for our VMS. In Azure, firewalls are called network security
groups (NSGs). The process of creating an NSG is fairly simple, as shown in the following
command:

az network nsg create -n kube-nsg

After creating the NSG, we assign the NSG to our subnet using the following command:

az network vnet subnet update -n node-subnet \
 --vnet-name kube-node-vnet \
 --network-security-group kube-nsg

Provisioning compute resources
With our network all set up, we are ready to start creating some VMs. But before we create
any VM, we need to create the SSH keys that we will use to access our VMs.

The first pair of keys that we will create is for our management VM. This VM will be the
only one that will have SSH access from the outside world. We do not want to expose port
22 of any of our cluster nodes for security reasons. Any time when we want to access any of
our nodes, we will be doing it from this VM.

To create the SSH keys, run ssh-keygen on your Linux workstation:

ssh-keygen

Deploying and Configuring Kubernetes Chapter 9

[157]

Now let's create the management VM using the following command:

az vm create -n management-vm \
 --admin-username <USERNAME> \
 --size Standard_B1s \
 --image CentOS \
 --vnet-name kube-node-vnet \
 --subnet node-subnet \
 --private-ip-address 192.168.0.99 \
 --nsg kube-nsg \
 --ssh-key-value ~/.ssh/id_rsa.pub

Remember to replace the <USERNAME> field with the desired username.

The next step is where we need to configure our first NSG rule. This rule will allow traffic
from our own network to our management VM on port 22 so that we can SSH into it. Let's
set this up using the following command:

az network nsg rule create --nsg-name kube-nsg \
 -n mgmt_ssh_allow \
 --direction Inbound \
 --priority 100 \
 --access Allow \
 --description "Allow SSH From Home" \
 --destination-address-prefixes '192.168.0.99' \
 --destination-port-ranges 22 \
 --protocol Tcp \
 --source-address-prefixes '<YOUR IP>' \
 --source-port-ranges '*' \
 --direction Inbound

The source-address-prefixes is your ISP provided public IP address,
as this IPs can be dynamic, in the even that it changes, you can edit the IP
on the Network Security Group rules in your Azure Portal.

Now let's connect to our VM to create SSH keys that will allow us to connect to our cluster
VMs. To retrieve the public IP address of our management vm, run the following query:

az vm show -d -n management-vm --query publicIps

Now let's SSH into our VM using our previously created private key, as follows:

ssh <username>@<public ip> -i <path to private key>

Deploying and Configuring Kubernetes Chapter 9

[158]

You will only need to specify the private key if you are logged in with a different user than
the one with which you created the key pair.

Now that we are in the management VM, run ssh-keygen again and finally exit the VM.

To provide high availability in the case of a disaster in the Azure data centers, our master
nodes will be on an availability set. Let’s create the availability set.

If you don't recall what an availability set is, you can go back to our Gluster chapters and
revisit its functionalities.

To create the availability set, run the following:

az vm availability-set create -n control-plane \
 --platform-fault-domain-count 3 \
 --platform-update-domain-count 3

Now we can go ahead and create our first control plane nodes. Let’s save our management’s
VM public SSH key into a variable first to pass the key to the master nodes, as shown in the
following command:

MGMT_KEY=$(ssh <username>@<public ip> cat ~/.ssh/id_rsa.pub)

To create the three controller nodes, run the following for loop:

for i in 1 2 3; do
az vm create -n kube-controller-${i} \
 --admin-username <USERNAME> \
 --availability-set control-plane \
 --size Standard_B2s \
 --image CentOS \
 --vnet-name kube-node-vnet \
 --subnet node-subnet \
 --private-ip-address 192.168.0.1${i} \
 --public-ip-address "" \
 --nsg kube-nsg \
 --ssh-key-value ${MGMT_KEY};
done

The sizes that we are using on these VMs are small because this is only a test environment,
and we will not really require a lot of compute resources. In a real environment, we would
size the VMs based on the considerations that we explored in the Chapter 8, Architecting a
Kubernetes Cluster.

Deploying and Configuring Kubernetes Chapter 9

[159]

Last but not least, we create our worker nodes using the following command:

for i in 1 2; do
az vm create -n kube-node-${i} \
 --admin-username <USERNAME>\
 --size Standard_B2s \
 --image CentOS \
 --vnet-name kube-node-vnet \
 --subnet node-subnet \
 --private-ip-address 192.168.0.2${i} \
 --public-ip-address "" \
 --nsg kube-nsg \
 --ssh-key-value ${MGMT_KEY}
done

Preparing the management VM
With our controller and worker nodes created, we can now log in to our management VM
and start installing and configuring the tools that we will need to bootstrap our Kubernetes
cluster.

From here on out, we will mostly be working on the management VM. Let's SSH to the VM
and start installing our toolset.

First, we will need to download the tools to create the certificates that our cluster’s services
will be using to talk with one another.

We will install dependencies first using the following command:

johndoe@management-vm$ sudo yum install git gcc

johndoe@management-vm$ sudo wget -O golang.tgz
https://dl.google.com/go/go1.11.1.linux-amd64.tar.gz

johndoe@management-vm$ sudo tar -C /usr/local -xzvf golang.tgz

With Go lang installed, you need to update your PATH variable and create a new one
named GOPATH. Your TLS certificate-generating tool, CFFSL, will be installed in this path.
To do this, you can do the following:

johndoe@management-vm$ sudo cat << EOF > /etc/profile.d/paths.sh
export PATH=$PATH:/usr/local/go/bin:/usr/local/bin
export GOPATH=/usr/local/
EOF

Deploying and Configuring Kubernetes Chapter 9

[160]

Then run the following to load the variables in your current shell:

johndoe@management-vm$ sudo source /etc/profile.d/paths.sh

With the variables set, now we are ready to go and get our cffsl toolkit using the
following command:

johndoe@management-vm$ go get -u github.com/cloudflare/cfssl/cmd/cfssl

johndoe@management-vm$ go get -u github.com/cloudflare/cfssl/cmd/cfssljson

Both binaries will be saved under our GOPATH variable.

Generating certificates
With the CFSSL binaries installed and loaded to our PATH, we can start generating our
certificate files. We will be generating a lot of files in this part of the install, so it will be a
good idea to create a directory structure to store them appropriately.

Certificate authority
The first files that we need to generate are the files for our certificate authority, which will
be signing the rest of our component’s certificates.

We will be storing all of our certificates under the ~/certs/ directory, but first we need to
create the directory. Let's set this up using the following command:

johndoe@management-vm$ mkdir ~/certs

Now that we have the directory, let's start by using the following command to generate the
CA configuration file, which will have information such as the expiration date of the
certificates issued by our CA and what the CA is going to be used for:

johndoe@management-vm$ cd ~/certs

johndoe@management-vm$ cat << EOF > ca-config.json
{
 "signing": {
 "default": {
 "expiry": "8760h"
 },
 "profiles": {
 "kubernetes": {
 "usages": [
 "signing",

Deploying and Configuring Kubernetes Chapter 9

[161]

 "key encipherment",
 "server auth",
 "client auth"
],
 "expiry": "8760h"
 }
 }
 }
}
EOF

With our CA config, we can now start issuing certificate signing requests.

The first CSR that we are going to generate is the one for our CA. Let's set this up using the
following command:

johndoe@management-vm$ cat << EOF > ca-csr.json
{
 "CN": "Kubernetes",
 "key": {
 "algo": "rsa",
 "size": 2048
 },
 "names": [
 {
 "C": "US",
 "L": "New York",
 "O": "Kubernetes",
 "OU": "CA",
 "ST": "NY"
 }
]
}
EOF

Now that we have both our JSON files, we can actually use cffsl and generate our
certificates using the following command:

johndoe@management-vm$ cfssl gencert -initca ca-csr.json | cfssljson -bare
ca

As shown in the following command, three files will be generated, ca.csr, ca.pem, and
ca-key.pem. The first one, ca.csr, is the certificate signing request. The other two are our
public certificate and the private key respectively:

johndoe@management-vm$ ls
ca-config.json ca.csr ca-csr.json ca-key.pem ca.pem

Deploying and Configuring Kubernetes Chapter 9

[162]

This will be the case for any certificates that we generate from here on in.

Client certificates
Now that our CA is configured and its certificate files generated, we can start issuing
certificates for our admin user and for the kubelet on each worker node.

The process and the files that we are going to create are very similar to the CA ones, but
with slight differences in the commands that we use to generate them.

Let's create a directory for our admin certs using the following command:

johndoe@management-vm$ mkdir ~/certs/admin/

johndoe@management-vm$ cd ~/certs/admin/

First, create the admin user certificate. This certificate is for our administrators to manage
our cluster via kubectl.

Again, we will generate the json for the csr using the following command:

johndoe@management-vm$ cat << EOF > admin-csr.json
{
 "CN": "admin",
 "key": {
 "algo": "rsa",
 "size": 2048
 },
 "names": [
 {
 "C": "US",
 "L": "New York",
 "O": "system:masters",
 "OU": "Kubernetes",
 "ST": "NY"
 }
]
}
EOF

With our JSON ready, let's now sign and create the admin certificates using the following
command:

johndoe@management-vm$ cfssl gencert \
 -ca=../ca.pem \
 -ca-key=../ca-key.pem \
 -config=../ca-config.json \

Deploying and Configuring Kubernetes Chapter 9

[163]

 -profile=kubernetes \
 admin-csr.json | cfssljson -bare admin

The process for creating the kubelet certificates is a little bit different compared to the
admin and CA certs. The kubelet certificate requires us to have the hostname field filled
up in the certificate, as this is how it will be identified.

Create the directory using the following command:

johndoe@management-vm$ mkdir ~/certs/kubelet/

johndoe@management-vm$ cd ~/certs/kubelet/

Then use the following command to create the json csr, in which not much has changed:

johndoe@management-vm$ cat << EOF > kube-node-1-csr.json
{
 "CN": "system:node:kube-node-1",
 "key": {
 "algo": "rsa",
 "size": 2048
 },
 "names": [
 {
 "C": "US",
 "L": "New York",
 "O": "system:nodes",
 "OU": "Kubernetes",
 "ST": "NY"
 }
]
}
EOF

However, the process is a little bit different when it comes to generating the certs, as you
can see from the following command:

johndoe@management-vm$ cfssl gencert \
 -ca=../ca.pem \
 -ca-key=../ca-key.pem \
 -config=../ca-config.json \
 -hostname=192.168.0.21,kube-node-1 \
 -profile=kubernetes \
 kube-node-1-csr.json | cfssljson -bare kube-node-1

Deploying and Configuring Kubernetes Chapter 9

[164]

As you can see, the hostname field will contain any IP or FQDN that the node will have.
Now generate a cert for each worker node, filling in the information corresponding to the
node that you are generating the cert for.

Control plane certificates
Let’s start creating the certificate for our kube master components.

As with the previous steps, create a directory that will contain the master node
components’ certificates and generate the certificate files for each of them in the following
way:

johndoe@management-vm$ mkdir ~/certs/control-plane/

johndoe@management-vm$ cd ~/certs/control-plane/

For kube-controller-manager, use the following command:

johndoe@management-vm$ cat << EOF > kube-controller-manager-csr.json
{
 "CN": "system:kube-controller-manager",
 "key": {
 "algo": "rsa",
 "size": 2048
 },
 "names": [
 {
 "C": "US",
 "L": "New York",
 "O": "system:kube-controller-manager",
 "OU": "Kubernetes",
 "ST": "NY"
 }
]
}
EOF

johndoe@management-vm$ cfssl gencert \
 -ca=../ca.pem \
 -ca-key=../ca-key.pem \
 -config=../ca-config.json \
 -profile=kubernetes \
 kube-controller-manager-csr.json | cfssljson -bare kube-controller-
manager

Deploying and Configuring Kubernetes Chapter 9

[165]

For the kube-proxy, use the following command:

johndoe@management-vm$ cat << EOF > kube-proxy-csr.json
{
 "CN": "system:kube-proxy",
 "key": {
 "algo": "rsa",
 "size": 2048
 },
 "names": [
 {
 "C": "US",
 "L": "New York",
 "O": "system:node-proxier",
 "OU": "Kubernetes",
 "ST": "NY"
 }
]
}
EOF

johndoe@management-vm$ cfssl gencert \
 -ca=../ca.pem \
 -ca-key=../ca-key.pem \
 -config=../ca-config.json \
 -profile=kubernetes \
 kube-proxy-csr.json | cfssljson -bare kube-proxy

For the kube-scheduler, use the following command:

johndoe@management-vm$ cat << EOF > kube-scheduler-csr.json
{
 "CN": "system:kube-scheduler",
 "key": {
 "algo": "rsa",
 "size": 2048
 },
 "names": [
 {
 "C": "US",
 "L": "New York",
 "O": "system:kube-scheduler",
 "OU": "Kubernetes",
 "ST": "NY"
 }
]
}
EOF

Deploying and Configuring Kubernetes Chapter 9

[166]

johndoe@management-vm$ cfssl gencert \
 -ca=../ca.pem \
 -ca-key=../ca-key.pem \
 -config=../ca-config.json \
 -profile=kubernetes \
 kube-scheduler-csr.json | cfssljson -bare kube-scheduler

Now we need to create the API server. You will notice that it is similar to the process we
used with the kubelets, as this certificate requires the hostname parameter. But with the
kube-api cert, we will not only provide the hostname and IP address of the individual
nodes, we will also provide instead all of the possible hostnames and IPs that our API
server will be using: the load-balancer public IP, the IP of each master node, and a special
FQDN, kubernetes.default. All of them will be in a single cert.

Let’s create a separate directory first using the following command:

johndoe@management-vm$ mkdir ~/certs/api/

johndoe@management-vm$ cd ~/certs/api/

Now, let's create a variable for the hostname using the following command:

johndoe@management-vm$API_HOSTNAME=10.20.0.1,192.168.0.11,kube-
controller-1,192.168.0.12,kube-
controller-2,<PUBLIC_IP>,127.0.0.1,localhost,kubernetes.default

Note that you should replace <PUBLIC_IP> with your public IP address.

Now, let's create the certificate using the following command:

johndoe@management-vm$ cat << EOF > kubernetes-csr.json
{
 "CN": "kubernetes",
 "key": {
 "algo": "rsa",
 "size": 2048
 },
 "names": [
 {
 "C": "US",
 "L": "New York",
 "O": "Kubernetes",
 "OU": "Kubernetes",
 "ST": "NY"

Deploying and Configuring Kubernetes Chapter 9

[167]

 }
]
}
EOF

johndoe@management-vm$ cfssl gencert \
 -ca=../ca.pem \
 -ca-key=../ca-key.pem \
 -config=../ca-config.json \
 -hostname=${API_HOSTNAME} \
 -profile=kubernetes \
 kubernetes-csr.json | cfssljson -bare kubernetes

At this point, only one certificate is missing—the service account certificate. This certificate
is not for any normal user or Kubernetes component specifically. Service account
certificates are used by the API server to sign tokens that are used for service accounts.

We will be storing these key pairs in the same directory as the API certs, so we will just
create the json and run the cfssl gencert command, as shown in the following
command:

johndoe@management-vm$ cat << EOF > service-account-csr.json
{
 "CN": "service-accounts",
 "key": {
 "algo": "rsa",
 "size": 2048
 },
 "names": [
 {
 "C": "US",
 "L": "New York",
 "O": "Kubernetes",
 "OU": "Kubernetes",
 "ST": "NY"
 }
]
}
EOF

johndoe@management-vm$ cfssl gencert \
 -ca=../ca.pem \
 -ca-key=../ca-key.pem \
 -config=../ca-config.json \
 -profile=kubernetes \
 service-account-csr.json | cfssljson -bare service-account

Deploying and Configuring Kubernetes Chapter 9

[168]

Sending our certificates home
With all our certificates generated, it's time to move them to their corresponding nodes.
Microsoft Azure can resolve internally via the VM name, so we can move the certificates
easily.

To move the certificates to the kubelets, use the following command:

johndoe@management-vm$ cd ~/certs/kubelets

johndoe@management-vm$ scp ../ca.pem \
kube-node-1.pem \
kube-node-1-key.pem \
johndoe@kube-node-1:~/

Repeat for the rest of the nodes.

To move the certificates to the control plane, use the following command:

johndoe@management-vm$ cd ~/certs/api

johndoe@management-vm$ scp ../ca.pem \
../ca-key.pem \
kubernetes.pem \
kubernetes-key.pem \
service-account.pem \
service-account-key.pem \
johndoe@kube-controller-1:~/

Repeat for the last controllers.

Kubeconfigs
For you to be able to talk to Kubernetes, you need to know where your API is. You also
need to tell the API who you are and what your credentials are. All of this information is
provided with kubeconfigs. These configuration files contain all the information
necessary for you to reach and authenticate against the cluster. Not only will users be using
kubeconfig files to reach the cluster, they will also be using it to reach other services. That
is why we will be generating multiple kubeconfig files for every component and user.

Deploying and Configuring Kubernetes Chapter 9

[169]

Installing kubectl
To be able to create the kubeconfig files, we require kubectl. You will be installing
kubectl in the management VM first to generate the config files, but later we will also use
it to manage our cluster.

First, add the repository from where we will be getting kubectl, as shown in the following
command:

johndoe@management-vm$ sudo cat << EOF > /etc/yum.repos.d/kubernetes.repo
[kubernetes]
name=Kubernetes
baseurl=https://packages.cloud.google.com/yum/repos/kubernetes-el7-x86_64
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg
https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg
EOF

Finally, we install it using yum, as shown in the following command:

johndoe@management-vm$sudo yum install kubectl

Control plane kubeconfigs
The first kubeconfigs that we will be generating are for our control plane components.

To maintain order, we will keep organizing our files into directories. All our kubeconfigs
will go in the same directory, though, as shown in the following command:

johndoe@management-vm$ mkdir ~/kubeconfigs

johndoe@management-vm$ cd ~/kubeconfigs

With our directory created, let's begin generating kubeconfigs!

Kube-controller-manager
kube-controller-manager kubeconfig:

johndoe@management-vm$ kubectl config set-cluster kubernetes \
 --certificate-authority=../certs/ca.pem \
 --embed-certs=true \
 --server=https://127.0.0.1:6443 \

Deploying and Configuring Kubernetes Chapter 9

[170]

 --kubeconfig=kube-controller-manager.kubeconfig

johndoe@management-vm$ kubectl config set-credentials \
system:kube-controller-manager \
 --client-certificate=../certs/control-plane/kube-controller-manager.pem
\
 --client-key=../certs/control-plane/kube-controller-manager-key.pem \
 --embed-certs=true \
 --kubeconfig=kube-controller-manager.kubeconfig

johndoe@management-vm$ kubectl config set-context default \
 --cluster=kubernetes \
 --user=system:kube-controller-manager \
 --kubeconfig=kube-controller-manager.kubeconfig

johndoe@management-vm$ kubectl config use-context default --
kubeconfig=kube-controller-manager.kubeconfig

Kube-scheduler
Kube-scheduler kubeconfig:

johndoe@management-vm$ kubectl config set-cluster kubernetes \
 --certificate-authority=../certs/ca.pem \
 --embed-certs=true \
 --server=https://127.0.0.1:6443 \
 --kubeconfig=kube-scheduler.kubeconfig

johndoe@management-vm$ kubectl config set-credentials system:kube-scheduler
\
 --client-certificate=../certs/control-plane/kube-scheduler.pem \
 --client-key=../certs/control-plane/kube-scheduler-key.pem \
 --embed-certs=true \
 --kubeconfig=kube-scheduler.kubeconfig

johndoe@management-vm$ kubectl config set-context default \
 --cluster=kubernetes \
 --user=system:kube-scheduler \
 --kubeconfig=kube-scheduler.kubeconfig

johndoe@management-vm$ kubectl config use-context default --
kubeconfig=kube-scheduler.kubeconfig

Deploying and Configuring Kubernetes Chapter 9

[171]

Kubelet configs
For our kubelets, we will require one kubeconfig for each node. To make things easier,
we will just make a for loop to create a config for each node, as shown in the following
command. Note that you need to replace <KUBE_API_PUBLIC_IP> with your own public
IP address:

johndoe@management-vm$ for i in 1 2; do
kubectl config set-cluster kubernetes \
--certificate-authority=../certs/ca.pem \
--embed-certs=true \
--server=https://<KUBE_API_PUBLIC_IP>:6443 \
--kubeconfig=kube-node-${i}.kubeconfig

kubectl config set-credentials system:node:kube-node-${i} \
--client-certificate=../certs/kubelets/kube-node-${i}.pem \
--client-key=../certs/kubelets/kube-node-${i}-key.pem \
--embed-certs=true \
--kubeconfig=kube-node-${i}.kubeconfig

kubectl config set-context default \
--cluster=kubernetes \
--user=system:node:kube-node-${i} \
--kubeconfig=kube-node-${i}.kubeconfig

kubectl config use-context default --kubeconfig=kube-node-${i}.kubeconfig
done

Finally, the last kubeconfig that our worker nodes will need is the kube-proxy
kubeconfig. We will only be generating one as it does not contain any specific node
configurations, and we can just copy the same config to all our nodes.

Kube-proxy
kube-proxy kubeconfig:

 johndoe@management-vm$ kubectl config set-cluster kubernetes \
 --certificate-authority=../certs/ca.pem \
 --embed-certs=true \
 --server=https://<PUBLIC_IP>:6443 \
 --kubeconfig=kube-proxy.kubeconfig

johndoe@management-vm$ kubectl config set-credentials system:kube-proxy \
 --client-certificate=../certs/controllers/kube-proxy.pem \
 --client-key=../certs/controllers/kube-proxy-key.pem \
 --embed-certs=true \
 --kubeconfig=kube-proxy.kubeconfig

Deploying and Configuring Kubernetes Chapter 9

[172]

johndoe@management-vm$ kubectl config set-context default \
 --cluster=kubernetes \
 --user=system:kube-proxy \
 --kubeconfig=kube-proxy.kubeconfig

johndoe@management-vm$ kubectl config use-context default \ --
kubeconfig=kube-proxy.kubeconfig

Now that we have the control plane kubeconfigs and worker nodes, we will now create the
kubeconfig for the administrator user, using the following command. This kubeconfig
file is the one that we will be using to connect to the cluster and manage its API objects:

johndoe@management-vm$ kubectl config set-cluster kubernetes \
 --certificate-authority=../certs/ca.pem \
 --embed-certs=true \
 --server=https://127.0.0.1:6443 \
 --kubeconfig=admin.kubeconfig

johndoe@management-vm$ kubectl config set-credentials admin \
 --client-certificate=../certs/admin/admin.pem \
 --client-key=../certs/admin/admin-key.pem \
 --embed-certs=true \
 --kubeconfig=admin.kubeconfig

johndoe@management-vm$ kubectl config set-context default \
 --cluster=kubernetes \
 --user=admin \
 --kubeconfig=admin.kubeconfig

johndoe@management-vm$ kubectl config use-context default \ --
kubeconfig=admin.kubeconfig

Moving configs around
Our kubeconfigs now need to be transferred to each of their corresponding VMs. To do
this, we will follow the same procedure that we used to move the certificates.

First, let's move kubeconfigs that go in the worker nodes using the following command:

johndoe@management-vm$ scp kube-node-1.kubeconfig kube-proxy.kubeconfig
johndoe@kube-node-1:~/

Repeat for every node.

Deploying and Configuring Kubernetes Chapter 9

[173]

With the kubeconfigs in place on the nodes, we can now move the kube-api server configs
using the following command:

johndoe@management-vm$ scp admin.kubeconfig kube-controller-
manager.kubeconfig \
kube-scheduler.kubeconfig johndoe@kube-controller-1:~/

Repeat for every controller.

Installing the control plane
Now we will install the binaries required for our control plane.

ETCD
In this design, we have decided to run etcd alongside our kube-apiserver. We will start
downloading the binaries and configuring the systemd units for our database.

Installing etcd
It's time to start installing the etcd cluster in our controller nodes. To install etcd, we will
SSH into each of the controllers from our management VM and run the following
procedures.

We will begin by downloading and extracting the binaries using the following command:

johndoe@kube-controller-1$ wget -O etcd.tgz \
https://github.com/etcd-io/etcd/releases/download/v3.3.10/etcd-v3.3.10-linu
x-amd64.tar.gz

johndoe@kube-controller-1$ tar xzvf etcd.tgz

johndoe@kube-controller-1$ sudo mv etcd-v3.3.10-linux-amd64/etcd*
/usr/local/bin/

johndoe@kube-controller-1$ sudo mkdir -p /etc/etcd /var/lib/etcd

After we have extracted the binaries, we need to copy the kubernetes API and CA
certificates to our etcd directory using the following command:

johndoe@kube-controller-1$ cp /home/johndoe/ca.pem \
/home/johndoe/kubernetes-key.pem \
/home/johndoe/kubernetes.pem /etc/etcd

Deploying and Configuring Kubernetes Chapter 9

[174]

Before creating the systemd unit file, let’s set up some variables to make things a little
easier.

These two first variables will be host-unique, as shown in the following commands:

johndoe@kube-controller-1$ ETCD_NAME=$(hostname)

johndoe@kube-controller-1$ I_IP=192.168.0.11

The next and last variable will be the same across all the nodes; it will contain the hostname
and IP of each of our ectd cluster members, as shown in the following command:

I_CLUSTER=kube-
controller-1=https://192.168.0.11:2380,kube-controller-2=https://192.168.0.
12:2380,kube-controller-3=https://192.168.0.13:2380

Now that we have the variables, let's create the systemd unit file, as shown in the following
command:

johndoe@kube-controller-1$sudo cat << EOF | sudo tee
/etc/systemd/system/etcd.service
[Unit]
Description=etcd
Documentation=https://github.com/coreos

[Service]
ExecStart=/usr/local/bin/etcd \\
 --name ${ETCD_NAME} \\
 --cert-file=/etc/etcd/kubernetes.pem \\
 --key-file=/etc/etcd/kubernetes-key.pem \\
 --peer-cert-file=/etc/etcd/kubernetes.pem \\
 --peer-key-file=/etc/etcd/kubernetes-key.pem \\
 --trusted-ca-file=/etc/etcd/ca.pem \\
 --peer-trusted-ca-file=/etc/etcd/ca.pem \\
 --peer-client-cert-auth \\
 --client-cert-auth \\
 --initial-advertise-peer-urls https://${I_IP}:2380 \\
 --listen-peer-urls https://${I_IP}:2380 \\
 --listen-client-urls https://${I_IP}:2379,https://127.0.0.1:2379 \\
 --advertise-client-urls https://${I_IP}:2379 \\
 --initial-cluster-token etcd-cluster-0 \\
 --initial-cluster ${I_CLUSTER} \\
 --initial-cluster-state new \\
 --data-dir=/var/lib/etcd
Restart=on-failure
RestartSec=5

[Install]

Deploying and Configuring Kubernetes Chapter 9

[175]

WantedBy=multi-user.target
EOF

Now we reload, enable, and start the daemon using the following command:

johndoe@kube-controller-1$ systemctl daemon-reload && \
systemctl enable etcd && \
systemctl start etcd && \
systemctl status etcd

Once you have repeated this process for each of the nodes, you can check the status of the
cluster by running the following:

johndoe@kube-controller-3$ ETCDCTL_API=3 etcdctl member list \
--endpoints=https://127.0.0.1:2379 \
--cacert=/etc/etcd/ca.pem \
--cert=/etc/etcd/kubernetes.pem \
--key=/etc/etcd/kubernetes-key.pem

Encrypting etcd data
The API server can encrypt data stored in etcd. To do this, we will be using a flag called --
experimental-encryption-provider-config when we create our kube-apiserver
systemd unit file. But before we pass the flag, we need to create a YAML that will contain
our encryption key.

We will only create one YAML definition and copy it to every controller node. You should
do this from the management VM so that you can easily transfer the file to all the
controllers. Let's set this up using the following command:

johndoe@management-vm$ CRYPT_KEY=$(head -c 32 /dev/urandom | base64)

Input the YAML definition as follows:

johndoe@management-vm$ cat << EOF > crypt-config.yml
kind: EncryptionConfig
apiVersion: v1
resources:
 - resources:
 - secrets
 providers:
 - aescbc:
 keys:
 - name: key1
 secret: ${CRYPT_KEY}
 - identity: {}
EOF

Deploying and Configuring Kubernetes Chapter 9

[176]

Finally, move the key to every node as follows:

johndoe@management-vm$ for i in 1 2 3; do
scp crypt-config.yml johndoe@kube-controller-${i}:~/
done

Installing the Kubernetes controller binaries
Now that etcd is in place, we can start installing kube-apiserver, kube-controller-
manager, and kube-scheduler.

Kube-apiserver
Let's begin by SSHing into our first controller node and downloading the required binary
using the following command:

johndoe@management-vm$ ssh johndoe@kube-controller-1

johndoe@kube-controller-1$ wget
"https://storage.googleapis.com/kubernetes-release/release/v1.12.0/bin/linu
x/amd64/kube-apiserver" \
"https://storage.googleapis.com/kubernetes-release/release/v1.12.0/bin/linu
x/amd64/kubectl"

Now move the binaries to /usr/local/bin/ using the following command:

johndoe@kube-controller-1$ sudo mkdir -p /etc/kubernetes/config

johndoe@kube-controller-1$ sudo chmod +x kube*

johndoe@kube-controller-1$ sudo mv kube-apiserver kubectl /usr/local/bin/

Next, we will be creating and moving all the directories and certificates that are needed for
our API server to work using the following command:

johndoe@kube-controller-1$ sudo mkdir -p /var/lib/kubernetes/

johndoe@kube-controller-1$ sudo cp /home/johndoe/ca.pem \
/home/johndoe/ca-key.pem \
/home/johndoe/kubernetes-key.pem \
/home/johndoe/kubernetes.pem \
/home/johndoe/service-account-key.pem \
/home/johndoe/service-account.pem \
/home/johndoe/crypt-config.yml \
/var/lib/kubernetes/

https://storage.googleapis.com/kubernetes-release/release/v1.12.0/bin/linux/amd64/kubectl

Deploying and Configuring Kubernetes Chapter 9

[177]

Before creating the systemd unit file, let's declare some variables using the following
command:

johndoe@kube-controller-1$ I_IP=192.168.0.11

johndoe@kube-controller-1$ CON1_IP=192.168.0.11

johndoe@kube-controller-1$ CON2_IP=192.168.0.12

johndoe@kube-controller-1$ CON2_IP=192.168.0.13

Only the I_IP variable will be unique on each node, and it will depend on the IP of the
node on which you are doing the procedure. The other three will be the same on all nodes.

Now that the variables are set up, we can start creating the unit file, as shown in the
following command:

johndoe@kube-controller-1$ sudo cat << EOF | sudo tee
/etc/systemd/system/kube-apiserver.service
[Unit]
Description=Kubernetes API Server
Documentation=https://github.com/kubernetes/kubernetes

[Service]
ExecStart=/usr/local/bin/kube-apiserver \\
 --advertise-address=${I_IP} \\
 --allow-privileged=true \\
 --apiserver-count=3 \\
 --audit-log-maxage=30 \\
 --audit-log-maxbackup=3 \\
 --audit-log-maxsize=100 \\
 --audit-log-path=/var/log/audit.log \\
 --authorization-mode=Node,RBAC \\
 --bind-address=0.0.0.0 \\
 --client-ca-file=/var/lib/kubernetes/ca.pem \\
 --enable-admission-
plugins=Initializers,NamespaceLifecycle,NodeRestriction,LimitRanger,Service
Account,DefaultStorageClass,ResourceQuota \\
 --enable-swagger-ui=true \\
 --etcd-cafile=/var/lib/kubernetes/ca.pem \\
 --etcd-certfile=/var/lib/kubernetes/kubernetes.pem \\
 --etcd-keyfile=/var/lib/kubernetes/kubernetes-key.pem \\
 --etcd-servers=https://$CON1_IP:2379,https://$CON2_IP:2379 \\
 --event-ttl=1h \\
 --experimental-encryption-provider-config=/var/lib/kubernetes/crypt-
config.yml \\
 --kubelet-certificate-authority=/var/lib/kubernetes/ca.pem \\
 --kubelet-client-certificate=/var/lib/kubernetes/kubernetes.pem \\

Deploying and Configuring Kubernetes Chapter 9

[178]

 --kubelet-client-key=/var/lib/kubernetes/kubernetes-key.pem \\
 --kubelet-https=true \\
 --runtime-config=api/all \\
 --service-account-key-file=/var/lib/kubernetes/service-account.pem \\
 --service-cluster-ip-range=10.20.0.0/24 \\
 --service-node-port-range=30000-32767 \\
 --tls-cert-file=/var/lib/kubernetes/kubernetes.pem \\
 --tls-private-key-file=/var/lib/kubernetes/kubernetes-key.pem \\
 --v=2 \\
 --kubelet-preferred-address-
types=InternalIP,InternalDNS,Hostname,ExternalIP,ExternalDNS
Restart=on-failure
RestartSec=5

[Install]
WantedBy=multi-user.target
EOF

Kube-controller-manager
To install the kube-controller-manager, the steps will be very similar, except that at this
point we will start using the kubeconfigs.

First, download kube-controller-manager using the following command:

johndoe@kube-controller-1$ wget
"https://storage.googleapis.com/kubernetes-release/release/v1.12.0/bin/linu
x/amd64/kube-controller-manager"

johndoe@kube-controller-1$sudo chmod +x kube-controller-manager

johndoe@kube-controller-1$sudo mv kube-controller-manager /usr/local/bin/

Move the kubeconfig and create the unit file for the kube-controller-manager using
the following command:

johndoe@kube-controller-1$ sudo cp \
/home/johndoe/kube-controller-manager.kubeconfig /var/lib/kubernetes/

johndoe@kube-controller-1$ cat << EOF | sudo tee \
/etc/systemd/system/kube-controller-manager.service
[Unit]
Description=Kubernetes Controller Manager
Documentation=https://github.com/kubernetes/kubernetes

[Service]
ExecStart=/usr/local/bin/kube-controller-manager \\

Deploying and Configuring Kubernetes Chapter 9

[179]

 --address=0.0.0.0 \\
 --cluster-cidr=10.30.0.0/16 \\
 --cluster-name=kubernetes \\
 --cluster-signing-cert-file=/var/lib/kubernetes/ca.pem \\
 --cluster-signing-key-file=/var/lib/kubernetes/ca-key.pem \\
 --kubeconfig=/var/lib/kubernetes/kube-controller-manager.kubeconfig \\
 --leader-elect=true \\
 --root-ca-file=/var/lib/kubernetes/ca.pem \\
 --service-account-private-key-file=/var/lib/kubernetes/service-account-
key.pem \\
 --service-cluster-ip-range=10.20.0.0/24 \\
 --use-service-account-credentials=true \\
 --v=2
Restart=on-failure
RestartSec=5

[Install]
WantedBy=multi-user.target
EOF

Kube-scheduler
The final component to install in the control plane is kube-scheduler. With the scheduler,
besides creating the systemd unit file we will also be creating a YAML file that contains the
basic configuration of the scheduler.

First, let's download the binaries. Use the following commands to download kube-
scheduler and move it to /usr/local/bin/:

johndoe@kube-controller-1$ wget \
"https://storage.googleapis.com/kubernetes-release/release/v1.12.0/bin/linu
x/amd64/kube-scheduler"

johndoe@kube-controller-1$ chmod +x kube-scheduler

johndoe@kube-controller-1$ sudo mv kube-scheduler /usr/local/bin/

We move the kubeconfig file to the kubernetes folder using the following command:

johndoe@kube-controller-1$sudo cp /home/johndoe/kube-scheduler.kubeconfig
/var/lib/kubernetes/

Deploying and Configuring Kubernetes Chapter 9

[180]

kube-scheduler.yml is given as follows:

johndoe@kube-controller-1$sudo cat << EOF | sudo tee
/etc/kubernetes/config/kube-scheduler.yml
apiVersion: componentconfig/v1alpha1
kind: KubeSchedulerConfiguration
clientConnection:
 kubeconfig: "/var/lib/kubernetes/kube-scheduler.kubeconfig"
leaderElection:
 leaderElect: true
EOF

kube-scheduler.service is given as follows:

johndoe@kube-controller-1$ sudo cat << EOF | sudo tee
/etc/systemd/system/kube-scheduler.service
[Unit]
Description=Kubernetes Scheduler
Documentation=https://github.com/kubernetes/kubernetes

[Service]
ExecStart=/usr/local/bin/kube-scheduler \\
 --config=/etc/kubernetes/config/kube-scheduler.yml \\

 --v=2
Restart=on-failure
RestartSec=5

[Install]
WantedBy=multi-user.target
EOF

Repeat all the steps in the Installing the control plane section on each controller node before
moving on to the next steps.

Starting the control plane
After finishing the installation of each component on every controller node, we are ready to
start and test the services.

Deploying and Configuring Kubernetes Chapter 9

[181]

To do this, we will first enable and start all systemd units using the following command:

johndoe@kube-controller-1$ sudo systemctl daemon-reload

johndoe@kube-controller-1$ sudo systemctl enable kube-apiserver kube-
controller-manager kube-scheduler

johndoe@kube-controller-1$ sudo systemctl start kube-apiserver kube-
controller-manager kube-scheduler

johndoe@kube-controller-1$ sudo systemctl status kube-apiserver kube-
controller-manager kube-scheduler

Finally, to be able to use kubectl ourselves, we need to set the context of the cluster that
we want to connect to and set up the kubeconfig admin as our default one.
The kubeconfig admin that we have is currently set to point to localhost as the kube-
apiserver endpoint. This will be OK for now, because we only want to test our
components.

Enter the following command in your kube-controller-1:

johndoe@kube-controller-1$ mkdir /home/johndoe/.kube/

johndoe@kube-controller-1$ cat /home/johndoe/admin.kubeconfig >
/home/johndoe/.kube/config

johndoe@kube-controller-1$ kubectl get cs

The output should look as follows:

NAME STATUS MESSAGE ERROR
controller-manager Healthy ok
scheduler Healthy ok
etcd-0 Healthy {"health": "true"}
etcd-1 Healthy {"health": "true"}
etcd-2 Healthy {"health": "true"}

Setting RBAC permissions for kubelets.
Our API server will require permissions to talk to the kubelets API. To accomplish this,
we create cluster roles that we will bind to the Kubernetes user. We will do this on just one
of the controller nodes because we will use kubectl, and the changes will be applied to the
entire cluster.

Deploying and Configuring Kubernetes Chapter 9

[182]

Cluster role
Create a cluster role that contains the permissions using the following command:

johndoe@kube-controller-1$ cat << EOF | kubectl apply -f -
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRole
metadata:
 annotations:
 rbac.authorization.kubernetes.io/autoupdate: "true"
 labels:
 kubernetes.io/bootstrapping: rbac-defaults
 name: system:kube-apiserver-to-kubelet
rules:
 - apiGroups:
 - ""
 resources:
 - nodes/proxy
 - nodes/stats
 - nodes/log
 - nodes/spec
 - nodes/metrics
 verbs:
 - "*"
EOF

Cluster role binding
Now bind the role to the Kubernetes user using the following command:

johndoe@kube-controller-1$ cat << EOF | kubectl apply -f -
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
 name: system:kube-apiserver
 namespace: ""
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: system:kube-apiserver-to-kubelet
subjects:
 - apiGroup: rbac.authorization.k8s.io
 kind: User
 name: kubernetes
EOF

Deploying and Configuring Kubernetes Chapter 9

[183]

Load-balancer setup
We need to load-balance the request to all our kube-controller-nodes. Because we are
running on the cloud, we can create a load-balancer object that will load-balance requests
across all our nodes. Not only that, but we can configure health probes that will monitor the
status of our controller nodes to see if they are available to receive requests.

Creating the load-balancer
The load-balancer is what we have been saving the public IP for. The LB is going to be our
point of access to our cluster from the outside. We will need to create rules to health-check
port 80 and to redirect kubectl requests to 6443.

Let's go through the following steps to achieve this.

Azure load-balancer
We will have to go back to our workstation with the Azure CLI installed to go through the
next set of steps.

To create the load-balancer in your workstation and assign it the public IP, run the
following:

az network lb create -n kube-lb \
--sku Standard \
--public-ip-address kube-api-pub-ip

Now that we have created our load-balancer, we still need to configure three more things:

The backend pool
Health probes
Load balancing rules

The backend pool
So far ,we have been doing everything related to Azure via the Azure CLI. Let's go through
the following steps via the Azure portal so you can familiarize yourself with the portal as
well:

Deploying and Configuring Kubernetes Chapter 9

[184]

To create the backend pool, navigate to your kube-lb object as shown in the following
screenshots:

Deploying and Configuring Kubernetes Chapter 9

[185]

When you are inside the load-balancer object, navigate to Backend Pools and click on Add,
as shown in the following screenshot:

When you click on Add, a menu will appear. Name your backend pool kube-lb-backend
and make sure you select all the kube-controller-nodes and their respective IPs, as shown in
the following screenshot:

Deploying and Configuring Kubernetes Chapter 9

[186]

Example

Click on Add to finish. We have successfully set up backend VMs.

Health probes
Before we can create load balancing rules, we need to create the health probes that will tell
our LB which nodes are available to receive traffic. Because, at the time of writing this
chapter, load-balancers in Azure do not support HTTPS health probes, we will need to
expose the /healthz endpoint through HTTP. To do this, we will install Nginx in our
controller nodes, and pass proxy requests coming to port 80 to port 6443.

SSH back to your controller nodes and perform the following procedures in each one of
them:

johndoe@kube-controller-1$ sudo yum install epel-release && yum install
nginx

Deploying and Configuring Kubernetes Chapter 9

[187]

Once Nginx is installed, replace the server entry in /etc/nginx/nginx.conf with the
following:

server {
 listen 80;
 server_name kubernetes.default.svc.cluster.local;

 location /healthz {
 proxy_pass https://127.0.0.1:6443/healthz;
 proxy_ssl_trusted_certificate /var/lib/kubernetes/ca.pem;
 }
}

Because we are running a RHEL-based distribution, SELINUX is enabled by default;
therefore, it will be preventing Nginx from accessing the TCP socket on port 6443. To
permit this behavior, we need to run the following commands.

First, we install the required packages to manage SELINUX, as shown in the following
command:

johndoe@kube-controller-1$ sudo yum install policycoreutils-python

Once the packages are installed, we run the following to allow connections to port 6443:

johndoe@kube-controller-1$ sudo semanage port -a -t http_port_t -p tcp 6443

Lastly, we use the following command to start nginx:

johndoe@kube-controller-1$ sudo systemctl daemon-reload && \
systemctl enable nginx --now

If you want to test this, you can always run a curl on localhost, like this:

johndoe@kube-controller-1$ curl -v http://localhost/healthz

The following output will be generated if everything was correctly configured:

* About to connect() to localhost port 80 (#0)
* Trying 127.0.0.1...
* Connected to localhost (127.0.0.1) port 80 (#0)
> GET /healthz HTTP/1.1
> User-Agent: curl/7.29.0
> Host: localhost
> Accept: /
< HTTP/1.1 200 OK
< Server: nginx/1.12.2
< Date: Sun, 28 Oct 2018 05:44:35 GMT
< Content-Type: text/plain; charset=utf-8

Deploying and Configuring Kubernetes Chapter 9

[188]

< Content-Length: 2
< Connection: keep-alive
<
* Connection #0 to host localhost left intact
Ok

Remember to repeat all these procedures for each of the controller nodes.

Now that the health endpoints are exposed, we are ready to create health probe rules in the
load-balancer.

Back in the kube-lb menu, under Settings—the same place where we configure backend
pools—select health probes and click on Add.

Once the menu appears, fill in the fields as shown in the following screenshot:

Deploying and Configuring Kubernetes Chapter 9

[189]

Load-balancing rules
We have everything ready to create load-balancing rules and get our load-balancer ready
for use.

The process is the same one that we used with backend pools and health probes. Go to the
Settings menu under kube-lb and select Load Balancing Rules. Click on Add and fill in
the dialog that appears, as shown in the following screenshot:

Deploying and Configuring Kubernetes Chapter 9

[190]

Once what is ready, we just need to open our network security group to allow connections
on port 6443.

On your Azure CLI workstation, run the following command to create the rule:

az network nsg rule create --nsg-name kube-nsg \
 -n pub_https_allow \
 --direction Inbound \
 --priority 110 \
 --access Allow \
 --description "Allow HTTPS" \
 --destination-address-prefixes '*' \
 --destination-port-ranges 6443 \
 --protocol Tcp \
 --source-address-prefixes '*' \
 --source-port-ranges '*' \
 --direction Inbound

Give it a few minutes to take effect, and then navigate in your browser
to https://<LB_IP>:6443/version.

You should see something like the following:

{
 "major": "1",
 "minor": "12",
 "gitVersion": "v1.12.0",
 "gitCommit": "0ed33881dc4355495f623c6f22e7dd0b7632b7c0",
 "gitTreeState": "clean",
 "buildDate": "2018-09-27T16:55:41Z",
 "goVersion": "go1.10.4",
 "compiler": "gc",
 "platform": "linux/amd64"
}

This will indicate that you can access the API server through the LB.

Worker node setup
It's time to configure and install our worker nodes. In these, we will be installing kubelet,
the kube proxy, the container runtime, and the container network interface plugins.

Deploying and Configuring Kubernetes Chapter 9

[191]

SSH into the first worker node from your management VM, as shown in the following
command:

johndoe@management-vm$ ssh johndoe@kube-node-1

Downloading and preparing binaries
Before configuring any service, we need to download any dependencies and set up the
required repositories. After this, we can start downloading the binaries and moving them to
their respective locations.

Adding the Kubernetes repository
The repository that we need to configure is the Kubernetes repository. With this, we will be
able to download kubectl. Let's set this up using the following command:

johndoe@kube-node-1$ sudo cat << EOF > /etc/yum.repos.d/kubernetes.repo
[kubernetes]
name=Kubernetes
baseurl=https://packages.cloud.google.com/yum/repos/kubernetes-el7-x86_64
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg
https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg
EOF

Installing dependencies and kubectl
With the repo configured, we can start downloading kubectl and any required
dependencies for the binaries that we will download. Let's set this up using the following
command:

johndoe@kube-node-1$ sudo yum install -y kubectl socat conntrack ipset
libseccomp

Deploying and Configuring Kubernetes Chapter 9

[192]

Downloading and storing worker binaries
Now that we have the dependencies ready, we can download our required worker binaries
using the following command:

johndoe@kube-node-1$ wget \
https://github.com/kubernetes-sigs/cri-tools/releases/download/v1.12.0/cric
tl-v1.12.0-linux-amd64.tar.gz \
https://storage.googleapis.com/kubernetes-release/release/v1.12.0/bin/linux
/amd64/kubelet \
https://github.com/containernetworking/plugins/releases/download/v0.6.0/cni
-plugins-amd64-v0.6.0.tgz \
https://github.com/opencontainers/runc/releases/download/v1.0.0-rc5/runc.am
d64 \
https://storage.googleapis.com/kubernetes-release/release/v1.12.0/bin/linux
/amd64/kube-proxy \
https://github.com/containerd/containerd/releases/download/v1.1.2/container
d-1.1.2.linux-amd64.tar.gz

Now let's create the folder structure for the recently downloaded binaries using the
following command:

johndoe@kube-node-1$ sudo mkdir -p \
/etc/cni/net.d \
/opt/cni/bin \
/var/lib/kube-proxy \
/var/lib/kubelet \
/var/lib/kubernetes \
/var/run/kubernetes

We change the name to runc for ease of use and to conform to the convention, as shown in
the following command:

johndoe@kube-node-1$ mv runc.amd64 runc

We give executable permissions to the rest of our binaries using the following command:

johndoe@kube-node-1$ chmod +x kube-proxy kubelet runc

After giving them executable rights, we can move them to /usr/local/bin/ using the
following command:

johndoe@kube-node-1$ sudo mv kube-proxy kubelet runc /usr/local/bin/

Deploying and Configuring Kubernetes Chapter 9

[193]

Some of the downloaded files are TAR archives, which we need to untar and store in their
respective locations using the following command:

johndoe@kube-node-1$ tar xvzf crictl-v1.12.0-linux-amd64.tar.gz

johndoe@kube-node-1$ sudo mv crictl /usr/local/bin/

johndoe@kube-node-1$ sudo tar xvzf cni-plugins-amd64-v0.6.0.tgz -C
/opt/cni/bin/

johndoe@kube-node-1$ tar xvzf containerd-1.1.2.linux-amd64.tar.gz

johndoe@kube-node-1$ sudo mv ./bin/* /bin/

Containerd setup
We are ready now to start configuring each service. The first one is containerd.

Let’s create the configuration directory using the following command:

johndoe@kube-node-1$ sudo mkdir -p /etc/containerd/

Now we create the toml config file, which will tell containerd what container runtime to
use. Let's set this up using the following command:

johndoe@kube-node-1$ sudo cat << EOF | sudo tee /etc/containerd/config.toml
[plugins]
[plugins.cri.containerd]
snapshotter = "overlayfs"
[plugins.cri.containerd.default_runtime]
runtime_type = "io.containerd.runtime.v1.linux"
runtime_engine = "/usr/local/bin/runc"
runtime_root = ""
EOF

Finally, let's set up the systemd unit file using the following command:

johndoe@kube-node-1$ sudo cat << EOF | sudo tee
/etc/systemd/system/containerd.service
[Unit]
Description=containerd container runtime
Documentation=https://containerd.io
After=network.target

[Service]
ExecStartPre=/sbin/modprobe overlay
ExecStart=/bin/containerd

Deploying and Configuring Kubernetes Chapter 9

[194]

Restart=always
RestartSec=5
Delegate=yes
KillMode=process
OOMScoreAdjust=-999
LimitNOFILE=1048576
LimitNPROC=infinity
LimitCORE=infinity

[Install]
WantedBy=multi-user.target
EOF

The kubelet
Our main service in the worker nodes is the kubelet. Let's create its configuration files.

First, we need to move the kubelet certificates to their locations using the following
command:

johndoe@kube-node-1$ sudo mv /home/johndoe/${HOSTNAME}-key.pem
/home/johndoe/${HOSTNAME}.pem /var/lib/kubelet/

johndoe@kube-node-1$ sudo mv /home/johndoe/${HOSTNAME}.kubeconfig
/var/lib/kubelet/kubeconfig

johndoe@kube-node-1$ sudo mv /home/johndoe/ca.pem /var/lib/kubernetes/

Now we create the YAML config file that will contain things such as the DNS server IP
address, the cluster domain, and the location of the certificate files. Let's set this up using
the following command:

johndoe@kube-node-1$ sudo cat << EOF | sudo tee /var/lib/kubelet/kubelet-
config.yaml
kind: KubeletConfiguration
apiVersion: kubelet.config.k8s.io/v1beta1
authentication:
 anonymous:
 enabled: false
 webhook:
 enabled: true
 x509:
 clientCAFile: "/var/lib/kubernetes/ca.pem"
authorization:
 mode: Webhook
clusterDomain: "cluster.local"

Deploying and Configuring Kubernetes Chapter 9

[195]

clusterDNS:
 - "10.20.0.10"
runtimeRequestTimeout: "15m"
tlsCertFile: "/var/lib/kubelet/${HOSTNAME}.pem"
tlsPrivateKeyFile: "/var/lib/kubelet/${HOSTNAME}-key.pem"
EOF

Finally, we create the service unit file using the following command:

johndoe@kube-node-1$ sudo cat << EOF | sudo tee
/etc/systemd/system/kubelet.service
[Unit]
Description=Kubernetes Kubelet
Documentation=https://github.com/kubernetes/kubernetes
After=containerd.service
Requires=containerd.service

[Service]
ExecStart=/usr/local/bin/kubelet \\
 --config=/var/lib/kubelet/kubelet-config.yaml \\
 --container-runtime=remote \\
 --container-runtime-endpoint=unix:///var/run/containerd/containerd.sock
\\
 --image-pull-progress-deadline=2m \\
 --kubeconfig=/var/lib/kubelet/kubeconfig \\
 --network-plugin=cni \\
 --register-node=true \\
 --v=2 \\
 --hostname-override=${HOSTNAME} \\
 --allow-privileged=true
Restart=on-failure
RestartSec=5

[Install]
WantedBy=multi-user.target
EOF

kube-proxy
The next service to create is kube-proxy.

We move the previously created kubeconfigs using the following command:

johndoe@kube-node-1$ sudo mv /home/johndoe/kube-proxy.kubeconfig
/var/lib/kube-proxy/kubeconfig

Deploying and Configuring Kubernetes Chapter 9

[196]

As with kubelet, kube-proxy also requires a config YAML that has the cluster CIDR and
the mode in which kube-proxy will operate. Let's set this up using the following
command:

johndoe@kube-node-1$ sudo cat << EOF | sudo tee /var/lib/kube-proxy/kube-
proxy-config.yaml
kind: KubeProxyConfiguration
apiVersion: kubeproxy.config.k8s.io/v1alpha1
clientConnection:
 kubeconfig: "/var/lib/kube-proxy/kubeconfig"
mode: "iptables"
clusterCIDR: "10.30.0.0/16"
EOF

Finally, we create a unit file for kube-proxy using the following command:

johndoe@kube-node-1$ sudo cat << EOF | sudo tee /etc/systemd/system/kube-
proxy.service
[Unit]
Description=Kubernetes Kube Proxy
Documentation=https://github.com/kubernetes/kubernetes

[Service]
ExecStart=/usr/local/bin/kube-proxy \\
 --config=/var/lib/kube-proxy/kube-proxy-config.yaml
Restart=on-failure
RestartSec=5

[Install]
WantedBy=multi-user.target
EOF

Starting services
Once you have completed these procedures on ALL kube-nodes, you can start the services
on each node with the following command:

johndoe@kube-node-1$ sudo systemctl daemon-reload && \
systemctl enable containerd kubelet kube-proxy && \
systemctl start containerd kubelet kube-proxy && \
systemctl status containerd kubelet kube-proxy

Deploying and Configuring Kubernetes Chapter 9

[197]

Kubernetes networking
We still have a couple more things to do in our cluster: we need to install a network
provider and configure the DNS.

Getting the nodes ready
Our nodes will have to be able to forward packets in order for our pods to be able to talk to
the outside world. Azure VMs do not have IP forwarding enabled out-of-the-box, so we
will have to enable it manually.

To do this, go to your Azure CLI workstation and run the following:

for i in 1 2; do
az network nic update \
-n $(az vm show --name kube-node-${i} --query
[networkProfile.networkInterfaces[*].id] --output tsv | sed 's:.*/::') \
--ip-forwarding true
done

This will enable IP forwarding capabilities on the VM’s NIC.

Now we have to enable the IP-forwarding kernel parameter on the worker nodes.

SSH into each worker node from the management VM and enable IPv4 forwarding using
the following command:

johndoe@kube-node-1$ sudo sysctl net.ipv4.conf.all.forwarding=1

johndoe@kube-node-1$ sudo echo "net.ipv4.conf.all.forwarding=1" | tee -a
/etc/sysctl.conf

Configuring remote access
Now, in order to run kubectl commands from your management VM, we need to create a
kubeconfig that uses the admin certificate and the public IP address of our cluster. Let's
set this up using the following command:

johndoe@management-vm$ kubectl config set-cluster kube \
 --certificate-authority=/home/johndoe/certs/ca.pem \
 --embed-certs=true \
 --server=https://104.45.174.96:6443

johndoe@management-vm$ kubectl config set-credentials admin \

Deploying and Configuring Kubernetes Chapter 9

[198]

 --client-certificate=/home/johndoe/certs/admin/admin.pem \
 --client-key=~/certs/admin/admin-key.pem

johndoe@management-vm$ kubectl config set-context kube \
 --cluster=kube \
 --user=admin

johndoe@management-vm$ kubectl config use-context kube

Installing Weave Net
With remote access on our management VM configured, we can now run kubectl
commands without having to log in to our controller nodes.

To install Weave Net, run the following kubectl command from the management VM:

johndoe@management-vm$ kubectl apply -f
"https://cloud.weave.works/k8s/net?k8s-version=$(kubectl version | base64 |
tr -d '\n')&env.IPALLOC_RANGE=10.30.0.0/16"

With Weave Net installed, now our pods will have IP allocations.

DNS server
Now we will provision our DNS server, which will be provided by Core DNS, an open
source DNS server based on plugins. Let's set this up using the following command:

johndoe@management-vm$ kubectl create -f
https://raw.githubusercontent.com/dsalamancaMS/CoreDNSforKube/master/coredn
s.yaml

Check the DNS pods with the following command:

johndoe@management-vm$ kubectl get pods -n kube-system

With the DNS server pods created, we have successfully finished the installation of our
Kubernetes cluster. If you want, you can create the following deployment to test the cluster
one more time:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx

Deploying and Configuring Kubernetes Chapter 9

[199]

spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

Now that we have seen the steps needed to create a cluster from scratch, I want to talk a
little bit about managed Kubernetes solutions.

Managing Kubernetes on the cloud
Installing and making a Kubernetes cluster usable and ready for production, as you saw in
this chapter, is a very long and complex process. If any step goes wrong, your entire
deployment might be useless. Because of this, many cloud providers are offering managed
Kubernetes solutions—Kubernetes as a service, in a way. In this type of managed solution,
the cloud provider or service provider will manage the master nodes of the cluster, which
include all the Kubernetes controllers, the API server, and even the etcd database. This is a
major advantage because using a managed service will mean that you don't have to worry
about the maintenance of the master nodes, and so you won't have to worry about the
following:

Renewing SSL certificates
Updating/upgrading the etcd database
Updating/upgrading each of the master node binaries
Registering extra nodes to the cluster
Lack of support if something goes wrong
Transparent integration with the cloud infrastructure
Operating system patching and maintenance

Deploying and Configuring Kubernetes Chapter 9

[200]

By forgetting these, we can focus on what's important, such as provisioning pods and
creating workloads on our cluster. With managed services, the learning curve decreases
dramatically because our staff can focus mainly on the functionality of Kubernetes instead
of how it works in order for them to maintain it.

At the time of writing, some managed Kubernetes services worth mentioning are from the
following three biggest cloud providers:

Azure Kubernetes Services (AKS)
Amazon Web Services Elastic Container Service for Kubernetes (EKS)
Google Kubernetes Engine (GKE)

Besides managed Kubernetes services, there are also several open-source projects and non-
open-source projects that are Kubernetes-based. These projects are not entirely managed,
but instead use Kubernetes in the backend to achieve their goals. The following are some
more well-known projects:

Okd (Red Hat's upstream community project for Red Hat OpenShift)
Red Hat OpenShift
SUSE Container as a Service (Caas) platform
Mesosphere Kubernetes Engine

Summary
In this chapter, we learned the basic steps of provisioning a Kubernetes cluster. We also
learned about the Azure command-line interface and how to provision resources in Azure.
We also tried different tools across the whole deployment, such as CFSSL and Nginx.

We learned about and provisioned kubectl configuration files that enabled us to access
our cluster and deployed a dummy deployment to test our cluster. Finally, we looked at the
benefits of running a managed cluster and the different types of managed service that we
can find in the major public cloud providers.

 The next chapter will explain what each component does. The reader will learn about the
different components and their purposes.

Deploying and Configuring Kubernetes Chapter 9

[201]

Questions
How do you install Kubernetes?1.
What is a kubeconfig?2.
How do we create SSL certificates?3.
What is AKS?4.
How do we use the Azure CLI?5.
How do we provision a resource group in Azure?6.
How do we install etcd?7.

Further reading
Mastering Kubernetes by Packt Publishing: https:/ ​/ ​prod. ​packtpub. ​com/ ​in/
application- ​development/ ​mastering- ​kubernetes- ​second- ​edition

Kubernetes for Developers by Packt Publishing: https:/ ​/​prod. ​packtpub. ​com/ ​in/
virtualization- ​and- ​cloud/ ​kubernetes- ​developers

Hands-On Microservices with Kubernetes by Packt Publishing: https:/ ​/ ​prod.
packtpub. ​com/ ​in/ ​virtualization- ​and- ​cloud/ ​hands- ​microservices-
kubernetes

Bibliography/sources:
Generating self-signed certificates: https:/ ​/​coreos. ​com/​os/ ​docs/ ​latest/
generate- ​self- ​signed- ​certificates. ​html

CloudFlare's PKI/TLS toolkit: https:/ ​/​github. ​com/​cloudflare/ ​cfssl

The Go Programming Language: https:/ ​/​golang. ​org/​doc/ ​install

https://prod.packtpub.com/in/application-development/mastering-kubernetes-second-edition
https://prod.packtpub.com/in/application-development/mastering-kubernetes-second-edition
https://prod.packtpub.com/in/application-development/mastering-kubernetes-second-edition
https://prod.packtpub.com/in/application-development/mastering-kubernetes-second-edition
https://prod.packtpub.com/in/application-development/mastering-kubernetes-second-edition
https://prod.packtpub.com/in/application-development/mastering-kubernetes-second-edition
https://prod.packtpub.com/in/application-development/mastering-kubernetes-second-edition
https://prod.packtpub.com/in/application-development/mastering-kubernetes-second-edition
https://prod.packtpub.com/in/application-development/mastering-kubernetes-second-edition
https://prod.packtpub.com/in/application-development/mastering-kubernetes-second-edition
https://prod.packtpub.com/in/application-development/mastering-kubernetes-second-edition
https://prod.packtpub.com/in/application-development/mastering-kubernetes-second-edition
https://prod.packtpub.com/in/application-development/mastering-kubernetes-second-edition
https://prod.packtpub.com/in/application-development/mastering-kubernetes-second-edition
https://prod.packtpub.com/in/application-development/mastering-kubernetes-second-edition
https://prod.packtpub.com/in/application-development/mastering-kubernetes-second-edition
https://prod.packtpub.com/in/application-development/mastering-kubernetes-second-edition
https://prod.packtpub.com/in/application-development/mastering-kubernetes-second-edition
https://prod.packtpub.com/in/application-development/mastering-kubernetes-second-edition
https://prod.packtpub.com/in/application-development/mastering-kubernetes-second-edition
https://prod.packtpub.com/in/application-development/mastering-kubernetes-second-edition
https://prod.packtpub.com/in/application-development/mastering-kubernetes-second-edition
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/kubernetes-developers
https://prod.packtpub.com/in/virtualization-and-cloud/hands-microservices-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/hands-microservices-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/hands-microservices-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/hands-microservices-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/hands-microservices-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/hands-microservices-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/hands-microservices-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/hands-microservices-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/hands-microservices-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/hands-microservices-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/hands-microservices-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/hands-microservices-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/hands-microservices-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/hands-microservices-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/hands-microservices-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/hands-microservices-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/hands-microservices-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/hands-microservices-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/hands-microservices-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/hands-microservices-kubernetes
https://prod.packtpub.com/in/virtualization-and-cloud/hands-microservices-kubernetes
https://coreos.com/os/docs/latest/generate-self-signed-certificates.html
https://coreos.com/os/docs/latest/generate-self-signed-certificates.html
https://coreos.com/os/docs/latest/generate-self-signed-certificates.html
https://coreos.com/os/docs/latest/generate-self-signed-certificates.html
https://coreos.com/os/docs/latest/generate-self-signed-certificates.html
https://coreos.com/os/docs/latest/generate-self-signed-certificates.html
https://coreos.com/os/docs/latest/generate-self-signed-certificates.html
https://coreos.com/os/docs/latest/generate-self-signed-certificates.html
https://coreos.com/os/docs/latest/generate-self-signed-certificates.html
https://coreos.com/os/docs/latest/generate-self-signed-certificates.html
https://coreos.com/os/docs/latest/generate-self-signed-certificates.html
https://coreos.com/os/docs/latest/generate-self-signed-certificates.html
https://coreos.com/os/docs/latest/generate-self-signed-certificates.html
https://coreos.com/os/docs/latest/generate-self-signed-certificates.html
https://coreos.com/os/docs/latest/generate-self-signed-certificates.html
https://coreos.com/os/docs/latest/generate-self-signed-certificates.html
https://coreos.com/os/docs/latest/generate-self-signed-certificates.html
https://coreos.com/os/docs/latest/generate-self-signed-certificates.html
https://coreos.com/os/docs/latest/generate-self-signed-certificates.html
https://coreos.com/os/docs/latest/generate-self-signed-certificates.html
https://coreos.com/os/docs/latest/generate-self-signed-certificates.html
https://coreos.com/os/docs/latest/generate-self-signed-certificates.html
https://github.com/cloudflare/cfssl
https://github.com/cloudflare/cfssl
https://github.com/cloudflare/cfssl
https://github.com/cloudflare/cfssl
https://github.com/cloudflare/cfssl
https://github.com/cloudflare/cfssl
https://github.com/cloudflare/cfssl
https://github.com/cloudflare/cfssl
https://github.com/cloudflare/cfssl
https://github.com/cloudflare/cfssl
https://github.com/cloudflare/cfssl
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install
https://golang.org/doc/install

3
Section 3: Elastic Stack

This section focuses on how to implement an ELK stack that comprises Elasticsearch,
Logstash, and Kibana for environment log awareness.

This section contains the following chapters:

Chapter 10, Monitoring with the ELK stack
Chapter 11, Designing an ELK Stack
Chapter 12, Using Elasticsearch, Logstash, and Kibana to Manage Logs

10
Monitoring with the ELK Stack

Monitoring is an essential part of any environment, whether it is production, QA, or
development; the Elastic Stack (ELK Stack) helps simplify this task by allowing logs,
metrics, and events from different sources to be aggregated in a single indexable location:
Elasticsearch.

The ELK Stack is a collection of three different pieces of software:

Elasticsearch
Logstash
Kibana

In this chapter, we will explain the role of each component.

In this chapter, we will cover the following topics:Defining the main functionality of
Elasticsearch

Exploring the concept of centralized logs
How Kibana helps bring together the other components

Monitoring with the ELK Stack Chapter 10

[204]

Technical requirements
Here's the list of technical requirements for this chapter:

Elasticsearch product page: https:/ ​/​www. ​elastic. ​co/​products/ ​elasticsearch

Overview of Logstash: https:/ ​/ ​www.​elastic. ​co/​products/ ​logstash

Available input plugins for Logstash: https:/ ​/​www. ​elastic. ​co/​guide/ ​en/
logstash/ ​current/ ​input- ​plugins. ​html

Grok pattern matching: https:/ ​/​www. ​elastic. ​co/ ​guide/ ​en/ ​logstash/ ​current/
plugins- ​filters- ​grok. ​html

Kibana user guide: https:/ ​/ ​www.​elastic. ​co/​guide/ ​en/​kibana/ ​current/ ​index.
html

Understanding the need for monitoring
Imagine that you're asked to provide historical data to the CIO, as an ongoing project
requires information on how much CPU the entire ecosystem is using on average, but the
business never invested the time to implement a good monitoring system. Therefore, your
only option is to log into each system and run local commands, record results into a
spreadsheet, do some math to obtain the average results, and, after all this, you realize that
the data is no longer valid and you have to go through all of this again. This is precisely
why we have monitoring systems such as Elasticsearch. The same process could've taken
you a couple of minutes. Not just that, you would be getting accurate data and real-time
reports. Let's find out more about what monitoring is, and why you, as an architect, should
consider it to be the best thing ever to exist.

Monitoring refers to the process of taking raw data from any given environment,
aggregating it, storing it, and analyzing it in a way that is understandable.

All environments should have some form of monitoring in place, from a simple log file for
keeping track of failed logins, to a more robust system that is in charge of analyzing data
from thousands of hosts. Monitoring data allows system administrators to detect problems
before they occur, and allows architects to make decisions for future or ongoing projects
based on data.

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html

Monitoring with the ELK Stack Chapter 10

[205]

You may recall from the Chapter 1, Introduction to Design Methodology, that we spoke about
how asking the right questions can help design a better solution, and, at the same time, give
the right answers; for example, it could help make sizing decisions based on historical
usage data. Providing usage data to architects helps size the solution correctly. They not
only leverage future usage statistics, but also past instances, where usage spikes have been
recorded during peak times, such as during weekends.

Let's try to condense why we need monitoring into four main areas:

Make decisions through historical data
Proactively detect problems
Understand environment performance
Plan for budget

Decisions made through historical data
Monitoring gives the ability to go back in time and analyze usage trends to help identify
areas of opportunity. For example, in the scenario presented in the Chapter 1, Introduction
to Design Methodology, where the customer needed a web server solution able to sustain
10,000 hits per second. You, as an architect, requested access to usage data from their
existing solution, and, after looking at their usage trends, you determined that usage
increased tenfold during the first week of each month.

While users might not complain about problems during these days, you should take into
account that this high usage tends to leverage resources during this times. The data taken
from the monitoring system might lead to a decision where either more resources need to
be destined to the server (for example, more CPU and RAM) than previously calculated, or
more servers need to be added to the cluster (if possible).

Without this data, no one would ever know that more resources are needed due to spiking.
The ability to discern normal usage from spikes helps make the right choices when
designing and sizing a solution.

From the same scenario, we could conclude from the historical data usage that the current
solution had been sustaining 10,000 hits per second for the last several months. This might
mean that the customers were able to achieve the desired performance all along, but in
reality what they needed was a solution that could handle the usage spikes, as mentioned
earlier.

Monitoring with the ELK Stack Chapter 10

[206]

Proactively detect problems
Imagine that you're almost ready to go home for the day when suddenly someone reports
that a database server is unable to receive connections. You log into the server and notice
that the problem is a lot worse than initially reported. The disks where the data from the
database resides are now all reported as failed. You look closer at the logs on the system
and notice that disk errors had been reported for the last four months; however, as a robust
monitoring system was not in place, no one ever knew that the errors were there. Now, the
data is lost, and you have to retrieve an old backup that takes several hours to go back to
production.

Unfortunately, this situation is not uncommon, and most of the time, IT works reactively,
meaning that if something breaks, someone reports the broken something, and someone
then goes and fix the broken something. This could've been avoided altogether if a
monitoring system had been implemented and configured to report errors. The disks could
have been replaced before they catastrophically failed.

Being able to proactively detect problems before they occur is, in our opinion, one of the
most critical aspects of a monitoring system. Predicting where a problem might occur
before it happens helps decrease downtime by allowing actions to be taken. For example, in
the previous scenario, replacing the drives could have prevented data loss. Predicting
changes also helps to decrease operational costs by preventing business losses due to
downtime or failures, and by increasing production (or uptime).

Understand environment performance
In Chapter 5, Analyzing Performance in a Gluster System, we went through performance
testing of a GlusterFS implementation. With monitoring systems, the process of obtaining a
baseline for performance can be streamlined by aggregating historical data and averaging
statistics.

By looking at historical data, we can see the average performance of any given system
through a certain amount of time, allowing an architect to define what is normal and what
is not. By obtaining a baseline, we can understand on a deeper level how the environment
behaves throughout the day, week, or even month. For example, we can identify that
storage servers have a constant throughput of about 200 MB/s through the day, and when
users log in during the first hours of the day, throughput spikes to 300 MB/s. A spike of 100
MB/s might seem like a problem at first, but, looking at the data, this appears to be a trend,
and is standard behavior.

Monitoring with the ELK Stack Chapter 10

[207]

With this information, we know that the baseline is around 200 MB/s with spikes of 300
MB/s. When the solution is benchmarked, it is expected to perform to this spec. If we obtain
results below this number, we know that there is a problem, and an investigation is
required to determine the cause of the poor performance. This might be either a redesign of
the solution, or an actual problem with the configuration. On the other hand, a high
number indicates that the solution can perform to spec even under load spikes.

Without this data, we wouldn't know what erratic behavior looks like, be able to confirm
whether or not this is an actual problem, or see what is normal for the environment.
Knowing the performance and usage of a solution can help spot problems where there
might not seem to be one. For example, consider a situation with the previous numbers,
where users interact normally with the storage server and have average response times;
however, from the monitoring data, we observe that even with the regular user load we get
a throughput of only 50 MB/s. From the user's perspective, everything seems fine, but when
asked, they do report that even when response times are good, transfers are taking longer
than usual, and upon further investigation a problem is found, with one of the nodes
requiring maintenance.

In the preceding example, by merely looking at the performance data, an instance where
the solution was under-performing was identified, and actions were taken that avoided
downtime and loss to the business. This is the power of understanding the environment
through the use of data.

Plan for budget
Data usage trends allow for more granular control of budget planning, as knowing how
much storage space is required can help avoid situations where not enough space has been
provisioned.

In the Chapter 1, Introduction to Design Methodology, we spoke about the procurement
process of businesses, and how trying to stick to the timelines is essential as this varies from
company to company. Understanding space requirements and usage is crucial for this
process, since it can help predict, for example, when the solution will run out of space and
can help make decisions around acquiring new storage space.

Knowing if the business consumes X amount of storage per day (also known as the daily
change rate) through the use of a monitoring system allows system administrators and
architects to predict how long the business can run with the space that is currently
available. This will also allow them to predict when the solution will run out of space so
that they can act before it runs out of storage—which is a situation that every IT
department should avoid.

Monitoring with the ELK Stack Chapter 10

[208]

Understanding resource utilization is crucial to any business, as it prevents unnecessary
equipment acquisition. Using data to decide whether more resources should be added to
the existing environment or not reduces costs by choosing the right amount of equipment
to be added in the case of upgrades. It's not the same when the application is under-
performing due to a lack of resources (or outdated hardware) rather than having data that
confirms that the current environment is working as expected and still has some room for
growth.

Today, the need for monitoring is more crucial than ever. With the almost exponential
growth of data within IT environments, being able to predict behaviors and act proactively
can be achieved through data-driven decisions, which is only possible through monitoring
systems, such as the ELK Stack.

Centralized logs
Before jumping deeper into what makes the ELK Stack, let's explore the concept of
centralized logs.

Imagine the following scenario; there seems to be a security breach in the environment, and
some strange looking files have been spotted in some servers. Looking at the
/var/log/secure file, you find root logins from several addresses, and you want to know
which systems have been affected. There's just one problem—the environment has 5,000+
Linux servers, and you have to log into each of the systems and look at the logs. It might
take about a minute to grep each host; that's 83+ hours straight looking at system logs.

This problem of having to go to each node can be solved by aggregating and having the
logs in a centralized location. While the rest of the industry seems to be going the route of
de-centralizing services, having all of the environment's log in a single location can help
simplify tasks, such as investigating events that might have affected multiple systems.
Having a single location to look for decreases the amount of time required to troubleshoot,
and at the same time allows administrators to look for problems within the
environment more effectively.

Monitoring with the ELK Stack Chapter 10

[209]

A centralized logging architecture looks like this:

Logs from multiple applications are sent to a log parser (such as Logstash) and later moved
to an indexer (such as Elasticsearch). Each host has an agent that is in charge of shipping
the logs to the parser.

The parser's job is to transform the data for easy indexing, later shipping the data to the
indexer.

In the next segment, we will look at the components that make up the ELK Stack.

Monitoring with the ELK Stack Chapter 10

[210]

Elasticsearch overview
Now, we will dive deep into the components of the ELK Stack, and we will start with the
most important component: Elasticsearch.

Elasticsearch is based on an Apache project named Lucene. Its role is to index data and
store it for later retrieval. Elasticsearch receives data from different sources and stores it in a
centralized location, or multiple nodes if they are set up as a cluster. For this setup, we'll be
using Logstash as a data source; however, Elasticsearch can receive data directly from
Beats, which we will discuss later on. At its core, Elasticsearch is an analytics and search
engine capable of retrieving data very quickly; since data is indexed once it is stored,
Elasticsearch stores the data as a JSON document.

A couple of things that define Elasticsearch are as follows:

Fast
Scalable
Highly available

Fast
Searches are almost real-time; what this means is, when you input a search term,
Elasticsearch returns results almost immediately. This is thanks to the indexes and data
being stored as JSON.

Scalable
Scaling an Elasticsearch cluster can be done quickly by simply adding more nodes to the
cluster.

Highly available
When configured as a cluster, Elasticsearch allocates shards between multiple nodes,
creating replicas of the shards in case one or more nodes fail.

Monitoring with the ELK Stack Chapter 10

[211]

A shard is a fragment of the JSON document. Elasticsearch creates replicas of the shards
and allocates them on the cluster nodes. This allows the cluster to sustain a catastrophic
failure, as data is still present as a replica.

Logstash
Most of the time, data, such as log files, is designed so that humans can easily understand
what the events mean. This type of data is unstructured, as machines can't easily index the
events since they don't follow the same structure or format. Take system logs and Apache,
for example. While each log provides different types of events, none follow the same format
or structure, and, for an indexing system, this becomes a problem. That's where Logstash
comes in.

Logstash data processing parser is capable of receiving data from several sources
simultaneously, and then transforming the data by parsing it into a structured form, and
later shipping it to Elasticsearch as indexed, easily-searchable data.

One of the main features of Logstash is the vast amount of plugins available for filters such
as Grok, allowing greater flexibility on what type of data can be parsed and indexed.

Grok
Grok is a plugin available in Logstash; it takes unstructured data from sources such as
system logs, MySQL, Apache, and other webserver logs and transforms them into
structured and queryable data for easy ingestion into Elasticsearch.

Grok combines text patterns into something that matches the logs, for example, numbers or
IP address. The pattern for this is as follows:

%{SYNTAX:SEMANTIC}

Here, SYNTAX is the name of the pattern that matches the text and SEMANTIC is the
identifier given to the segment of text.

An example of an event for HTTP would be as follows:

55.3.244.1 GET /index.html 15824 0.043

Monitoring with the ELK Stack Chapter 10

[212]

One pattern match for this could be the following:

%{IP:client} %{WORD:method} %{URIPATHPARAM:request} %{NUMBER:bytes}
%{NUMBER:duration}

So, by putting it all together in an actual filter configuration, it looks like this:

input {
 file {
 path => "/var/log/http.log"
 }
}
filter {
 grok {
 match => { "message" => "%{IP:client} %{WORD:method}
%{URIPATHPARAM:request} %{NUMBER:bytes} %{NUMBER:duration}" }
 }
}

Custom patterns
When running a custom application, Logstash won't have the correct pattern to match the
syntaxes and semantics. Logstash allows the creation of custom patterns that can match
custom data. The same logic from the previous example can be used to match data.

Kibana brings everything together
While Elasticsearch is the heavy lifting part of the ELK Stack, and Logstash is the parsing
and processing bit, Kibana is what aggregates everything else together.

The ability to visualize the data allows users to give meaning to their data. By just looking
at the raw data, it is difficult to make any sense of it. Kibana visualizes the data that is
stored within Elasticsearch through graphs, maps, and other methods of shaping data.

Monitoring with the ELK Stack Chapter 10

[213]

The following is a quick glance at Kibana's interface taken from the live demo:

Kibana Dashboard

We can see how easy is to interpret data with multiple modules showing different metrics.

Monitoring with the ELK Stack Chapter 10

[214]

Kibana enables easy understanding of large datasets. Being a browser-based application, it
can be accessed from anywhere. This also allows dashboards and reports to be easily
shared with others. It can be installed alongside Elasticsearch; however, for larger
deployments, it is a good practice to allocate a host to Kibana. Also, Kibana runs on
Node.js, so it can be installed on pretty much every system that can run Node.js, from all of
the flavors of Linux to Windows and MacOS.

Summary
In this chapter, we explored the need for monitoring, and learned the process of acquiring
data from an environment, aggregating it, and storing it so that it can be retrieved later for
further analysis. Being able to shape data and understand how the environment behaves by
just glancing at the data helps to enhance operational efficiency.

Monitoring allows us to proactively detect problems before they happen or become a
bigger problem. This is done by looking at trends, and is by far one of the most crucial
reasons to implement and design a monitoring solution. We also spoke about being able to
act proactively, and how that can help decrease downtime and wasting money on
problems; something that can be achieved by giving shape to data.

Performance is also an area that benefits from data analysis. You may recall from previous
chapters that being able to baseline and measure performance enables granular control
while designing a solution. Having historical data to refer back to can help make decisions
that would affect a design performance-wise, while at the same time allowing us to plan for
the budget based on real data taken from a running environment.

We went through the main reasons why having a centralized logging system can help
simplify administration tasks; instead of connecting to each system in the environment,
looking at all of the logs from a single location saves time and allows quicker, more efficient
investigations.

We also went through an overview of each of the components that comprise the ELK Stack.
Elasticsearch is the main component, where the storing and analysis of data happens. We
noted that it is very fast, as data is stored as JSON documents; that the solution is scalable,
as nodes can be easily added; and that it is highly available, as data is spread across the
nodes.

Logstash provides data transformation and filtering through plugins such as GROK, where
it matches a SYNTAX with a SEMANTIC, for example, an IP with a client.

Monitoring with the ELK Stack Chapter 10

[215]

Finally, we looked at how Kibana connects all of the other components by allowing the data
to be visualized and analyzed through comprehensive graphics.

In the next chapter, we will jump into the requirements for each of the components.

Questions
What is monitoring?1.
How can monitoring help make business decisions?2.
How can problems be proactively detected?3.
How can monitoring allow for performance baselining?4.
How can monitoring help identify erratic behaviors?5.
What is the main need for centralized logs?6.
What is Elasticsearch?7.
In what format does Elasticsearch store data?8.
What is Logstash?9.
What is Kibana?10.

Further reading
Hands-on Big Data Modeling by James Lee, Tao Wei: https:/ ​/​www. ​packtpub. ​com/
big-​data- ​and- ​business- ​intelligence/ ​hands- ​big- ​data- ​modeling

Practical Data Analysis – Second Edition by Hector Cuesta, Dr. Sampath
Kumar: https:/ ​/​www. ​packtpub. ​com/ ​big-​data- ​and- ​business- ​intelligence/
practical- ​data- ​analysis- ​second- ​edition

https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/hands-big-data-modeling
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/practical-data-analysis-second-edition

11
Designing an ELK Stack

Designing an Elastic Stack that performs to the required specifications needs special
attention. Each of the components, Elasticsearch, Logstash, and Kibana (ELK), have
specific requirements. Correct sizing is crucial for best performance and functionality.

This chapter goes through the design considerations when deploying an Elastic Stack,
taking into consideration the needs of each of the components as well as specific setup
details. Throughout this chapter, we will describe how each component is affected by
different resources, how we can handle resource constraints, and how to plan and size for
different scenarios.

In this chapter, we will go through the following topics:

Elasticsearch CPU sizing requirements
How memory sizing affects Elasticsearch performance
How data is stored within Elasticsearch and how to size for performance
Requirements for Logstash and Kibana

Technical requirements
Although the documentation found at https:/ ​/​www. ​elastic. ​co/​guide/ ​en/
elasticsearch/​guide/ ​current/ ​hardware. ​html is outdated, the hardware requirements
can be used as a starting point for CPU sizing. For more useful documentation, visit the
following links:

Setup guide for indexing speed: https:/ ​/​www. ​elastic. ​co/ ​guide/ ​en/
elasticsearch/ ​reference/ ​current/ ​tune- ​for-​indexing- ​speed. ​html

Changing heap configuration for Elasticsearch: https:/ ​/ ​www.​elastic. ​co/
guide/​en/ ​elasticsearch/ ​reference/ ​current/ ​heap- ​size. ​html

Average system memory latency: http:/ ​/​www. ​crucial. ​com/ ​usa/​en/ ​memory-
performance- ​speed- ​latency

https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/heap-size.html
http://www.crucial.com/usa/en/memory-performance-speed-latency
http://www.crucial.com/usa/en/memory-performance-speed-latency
http://www.crucial.com/usa/en/memory-performance-speed-latency
http://www.crucial.com/usa/en/memory-performance-speed-latency
http://www.crucial.com/usa/en/memory-performance-speed-latency
http://www.crucial.com/usa/en/memory-performance-speed-latency
http://www.crucial.com/usa/en/memory-performance-speed-latency
http://www.crucial.com/usa/en/memory-performance-speed-latency
http://www.crucial.com/usa/en/memory-performance-speed-latency
http://www.crucial.com/usa/en/memory-performance-speed-latency
http://www.crucial.com/usa/en/memory-performance-speed-latency
http://www.crucial.com/usa/en/memory-performance-speed-latency
http://www.crucial.com/usa/en/memory-performance-speed-latency
http://www.crucial.com/usa/en/memory-performance-speed-latency
http://www.crucial.com/usa/en/memory-performance-speed-latency
http://www.crucial.com/usa/en/memory-performance-speed-latency
http://www.crucial.com/usa/en/memory-performance-speed-latency
http://www.crucial.com/usa/en/memory-performance-speed-latency
http://www.crucial.com/usa/en/memory-performance-speed-latency
http://www.crucial.com/usa/en/memory-performance-speed-latency

Designing an ELK Stack Chapter 11

[217]

Elasticsearch system paths: https:/ ​/​www. ​elastic. ​co/ ​guide/ ​en/
elasticsearch/ ​reference/ ​master/ ​path- ​settings. ​html

Logstash persistent queues: https:/ ​/​www. ​elastic. ​co/​guide/ ​en/ ​logstash/
current/ ​persistent- ​queues. ​html
Logstash directory paths: https:/ ​/​www. ​elastic. ​co/ ​guide/ ​en/ ​logstash/
current/ ​dir- ​layout. ​html

Elasticsearch CPU requirements
As with any software, sizing for the right CPU requirements determines the overall
application performance and processing time. Having the wrong CPU configuration can
lead to an unusable application due to the processing taking too long to complete and
making it frustrating for users, not to mention the fact that slow processing times can cause
the application to fail altogether.

While Elasticsearch does not rely heavily on the CPU for indexing and searches, several
things need to be taken into consideration when designing an Elastic Stack that performs
well and returns results in a timely manner.

Although Elastic does not publish hard requirements for CPU, there are a couple of things
that can be applied as a rule of thumb.

CPU count
Typically, having more cores is better, and this might be the case for most workloads.
Elasticsearch leverages having multiple cores available on the system by scheduling tasks
across multiple CPUs; however, it doesn't require large amounts of CPU processing power
as most of the operations are performed on files that are already indexed.

Most cloud providers (if you are deploying on the cloud) have increased rates for high CPU
count virtual machines, to avoid unnecessary cost, size for a VM type that balances more
memory than CPU.

When sizing for sufficient CPU resources, you should allow for some growth without
having to change settings midway. For a small setup, something with at least two CPUs
should be sufficient. For testing purposes and a small number of indexes/sources, even one
CPU should suffice, but performance will suffer, especially if all of the
components—Elasticsearch, Logstash, and Kibana—are deployed on the same system.

https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/path-settings.html
https://www.elastic.co/guide/en/logstash/current/persistent-queues.html
https://www.elastic.co/guide/en/logstash/current/persistent-queues.html
https://www.elastic.co/guide/en/logstash/current/persistent-queues.html
https://www.elastic.co/guide/en/logstash/current/persistent-queues.html
https://www.elastic.co/guide/en/logstash/current/persistent-queues.html
https://www.elastic.co/guide/en/logstash/current/persistent-queues.html
https://www.elastic.co/guide/en/logstash/current/persistent-queues.html
https://www.elastic.co/guide/en/logstash/current/persistent-queues.html
https://www.elastic.co/guide/en/logstash/current/persistent-queues.html
https://www.elastic.co/guide/en/logstash/current/persistent-queues.html
https://www.elastic.co/guide/en/logstash/current/persistent-queues.html
https://www.elastic.co/guide/en/logstash/current/persistent-queues.html
https://www.elastic.co/guide/en/logstash/current/persistent-queues.html
https://www.elastic.co/guide/en/logstash/current/persistent-queues.html
https://www.elastic.co/guide/en/logstash/current/persistent-queues.html
https://www.elastic.co/guide/en/logstash/current/persistent-queues.html
https://www.elastic.co/guide/en/logstash/current/persistent-queues.html
https://www.elastic.co/guide/en/logstash/current/persistent-queues.html
https://www.elastic.co/guide/en/logstash/current/persistent-queues.html
https://www.elastic.co/guide/en/logstash/current/persistent-queues.html
https://www.elastic.co/guide/en/logstash/current/persistent-queues.html
https://www.elastic.co/guide/en/logstash/current/persistent-queues.html
https://www.elastic.co/guide/en/logstash/current/dir-layout.html
https://www.elastic.co/guide/en/logstash/current/dir-layout.html
https://www.elastic.co/guide/en/logstash/current/dir-layout.html
https://www.elastic.co/guide/en/logstash/current/dir-layout.html
https://www.elastic.co/guide/en/logstash/current/dir-layout.html
https://www.elastic.co/guide/en/logstash/current/dir-layout.html
https://www.elastic.co/guide/en/logstash/current/dir-layout.html
https://www.elastic.co/guide/en/logstash/current/dir-layout.html
https://www.elastic.co/guide/en/logstash/current/dir-layout.html
https://www.elastic.co/guide/en/logstash/current/dir-layout.html
https://www.elastic.co/guide/en/logstash/current/dir-layout.html
https://www.elastic.co/guide/en/logstash/current/dir-layout.html
https://www.elastic.co/guide/en/logstash/current/dir-layout.html
https://www.elastic.co/guide/en/logstash/current/dir-layout.html
https://www.elastic.co/guide/en/logstash/current/dir-layout.html
https://www.elastic.co/guide/en/logstash/current/dir-layout.html
https://www.elastic.co/guide/en/logstash/current/dir-layout.html
https://www.elastic.co/guide/en/logstash/current/dir-layout.html
https://www.elastic.co/guide/en/logstash/current/dir-layout.html
https://www.elastic.co/guide/en/logstash/current/dir-layout.html
https://www.elastic.co/guide/en/logstash/current/dir-layout.html
https://www.elastic.co/guide/en/logstash/current/dir-layout.html

Designing an ELK Stack Chapter 11

[218]

CPU speed
While there is no hard documentation on the minimum CPU speed (clock speed)
requirements, it is somewhat difficult to find a CPU with less than 2 GHz nowadays. This
low watermark seems to be about the minimum required for Elasticsearch to avoid
problems.

Anything above 2 GHz will perform acceptably, even with a single CPU; this is
adequate for testing purposes. For production environments, look for CPU clock speeds
above 2 GHz or 2.3 GHz to avoid problems.

CPU performance impact
If an incorrect sizing has been configured when it comes to the CPU, Elasticsearch will
mostly suffer in the following three areas:

Startup time
Index per second
Search latency

Startup
During startup, CPU usage might spike as the JVM starts and Elasticsearch reads the data
from the cluster. Having a slower CPU configuration will cause Elasticsearch to take longer
to start up.

If Elasticsearch nodes are to be constantly restarted, having the right CPU configuration
will help to reduce the time it takes to reach an operational state.

Index per second
The CPU configuration directly affects the indexes per second that Elasticsearch is able to
handle, as it will run out of cycles once more documents are indexed. Ideally, with multiple
cores, Elasticsearch leverages indexing on multiple CPUs, allowing more clients to send
data without any metric or event being lost.

Designing an ELK Stack Chapter 11

[219]

Search latency
Performance will probably suffer the most regarding the amount of time it takes for
searches to return results. Remember that one of the main features of Elasticsearch is how
fast it can retrieve data and display it.

Having an undersized CPU configuration will lead to searches taking longer than expected,
which can result in a frustrating user experience.

In the following screenshot, we can see that search latency spikes to almost 80 ms and
hovers at around 20 ms:

Monitoring latency in Kibana

Note that the preceding screenshot was taken from an undersized system
with just one CPU running at less than 2 GHz. The latency could be
worse, but this was taken from a system running on a fast NVMe drive,
which can have latency as low as 100 microseconds.

Designing an ELK Stack Chapter 11

[220]

Recommendations
For optimal results, the correct CPU setup needs to be implemented. The following two
main scenarios affect CPU sizing:

Test/development
Production

Test/dev
For testing, anything above one CPU and 2 GHz would be sufficient for a small test, with a
couple of clients sending data to Elasticsearch. The search results might be a little slow to
return, but it will work without any problems.

Production
For production, make sure that you use a CPU with at least 2.3 GHz or above. The CPU
count does not greatly impact performance, but having at least two CPUs ensures optimal
operation. Once more clients are added, the CPU count might need to be modified to meet
the extra demand; more Elasticsearch nodes can be added if the CPU becomes a constraint.

Lastly, when choosing between the core count versus clock speeds, Elasticsearch leverages
having multiple cores. The performance benefits of fewer but faster cores is not as
impressive as having a larger number of slower cores.

When deploying on Azure, you can use a DS2v3 VM type for a small
setup, as it offers two CPUs and enough RAM for basic needs.

Once we correctly size the CPU, we can then focus on how the system memory (RAM)
affects Elasticsearch performance and usability.

Designing an ELK Stack Chapter 11

[221]

Memory sizing for Elasticsearch
Allocating enough RAM to Elasticsearch is probably the most important resource factor to
consider to avoid problems and an underperforming setup.

Memory is one resource where having a lot of it is never a problem. As an architect, you
need to bear in mind several things when sizing memory. Similar to the CPU resource,
there is no hard documentation for minimum memory requirements.

Filesystem cache
Having a lot of RAM is always a good idea, because of the filesystem cache or Linux page
cache.

The kernel uses free system memory to cache, read, or write requests by allocating some
portion of RAM to I/O requests, considerably speeding up searches or indexes in the case of
Elasticsearch.

As you can see in the following screenshot, the kernel has allocated about 1.2 GB as page
cache:

Leveraging the use of the page cache can help to reduce the response time when doing
searches or incoming indexes; be sure to size for as much RAM as possible. There is a point
were cache usage will balance out, and no more RAM will be used for the page cache. At
this point, it is worth monitoring the process to try and identify this threshold to avoid
running into unnecessary charges. To put it into perspective, if a Virtual Machine (VM) is
sized with 32 GB of RAM, but only uses about 10 GB for the cache and never goes above
this number, then it might be worth resizing to a smaller VM, as the remaining RAM will be
left unused.

As you can see in the Kibana dashboard in the following screenshot, you can monitor cache
usage for Elasticsearch, which might help to identify whether resources are left unused:

Designing an ELK Stack Chapter 11

[222]

Monitoring cache usage for Elasticsearch

Disable swap
Swap is a mechanism that allows the kernel to move memory pages to disk in the event of
infrequent access or when there's memory pressure (that is, when the system is running out
of memory). One of the main problems of swapping is that, when a memory page is moved
to disk, its access time becomes considerably slower than in RAM.

DDR4 memory has an average transfer rate of about 10 GB/s and, more impressively, an
average response time (or latency) of just 13 ns (nanoseconds). Compare that to even the
fastest NVMe SSD drives in the market, which can achieve just 3.5 GB/s and latencies of
around 400 ūs (microseconds). You can quickly start seeing how this becomes a problem:
not all cloud providers or on-premises setups use NVMe drives, and swapping to even
slower spinning media can yield pretty bad results.

Because of this, Elasticsearch recommends disabling all forms of swapping and instead
relying on the correct sizing for system memory.

Designing an ELK Stack Chapter 11

[223]

Undersizing memory
Having the wrong memory configuration will result in different behaviors. It can be boiled
down to two different situations: not having enough memory but having enough to run the
system, and not having enough memory to the point that Elasticsearch can't even start.

For the first scenario, where there is a memory constraint, but there is just enough for
Elasticsearch to start and run, the main problem would be that there is not enough memory
for the page cache, which results in slow searches and reduced indexes per second. In this
scenario, Elasticsearch is able to run, but with a reduced overall performance.

The other scenario can be split into two different situations: one where there's not enough
memory to start Elasticsearch and the other where Elasticsearch is able to start, but as soon
as some indexes are added, it runs out of memory. To avoid a system crash, Linux has a
mechanism called out-of-memory killer (OOM killer).

Unable start
Elasticsearch uses the JVM and, by default, it is set to use a minimum of 1 GB of heap
memory. This means that Java needs to allocate at least 1 GB of RAM to JVM, so for
Elasticsearch to start with just the minimum, it requires about 2.5 GB of RAM.

The easiest way to tell when this problem is occurring is by verifying the status of the
Elasticsearch service using systemctl status elasticsearch; it will return an error
message similar to the following:

Designing an ELK Stack Chapter 11

[224]

Upon further inspection of the error log, we can clearly see how JVM failed to allocate the
necessary memory, as shown in the following code:

There is insufficient memory for the Java Runtime Environment to
continue.
Native memory allocation (mmap) failed to map 899284992 bytes for
committing reserved memory.
Possible reasons:
The system is out of physical RAM or swap space
In 32 bit mode, the process size limit was hit
Possible solutions:
Reduce memory load on the system
Increase physical memory or swap space
Check if swap backing store is full
Use 64 bit Java on a 64 bit OS
Decrease Java heap size (-Xmx/-Xms)
Decrease number of Java threads
Decrease Java thread stack sizes (-Xss)
Set larger code cache with -XX:ReservedCodeCacheSize=
This output file may be truncated or incomplete.
#
Out of Memory Error (os_linux.cpp:2760), pid=933, tid=0x00007f1471c0e700

Testing using the default heap of 1 GB is sufficient. For production, make
sure that you increase the heap to at least 2 GB and adjust as necessary.

To increase the heap, edit the /etc/elasticsearch/jvm.options file and find the
following options:

-Xms1g
-Xmx1g

Change these two options to the following:

-Xms2g
-Xmx2g

The -Xms2g phrase indicates that Java should have a minimum heap of 2
GB and -Xmx2g indicates the maximum heap of 2 GB.

Designing an ELK Stack Chapter 11

[225]

OOM killer
The out-of-memory killer (OOM killer) mechanism's main purpose is to avoid a total
system crash by killing processes that are running processes. Each process has an
oom_score value. OOM killer decides which process to kill based on this score; the higher
the score, the more likely it is that the process will be killed in the event of memory
starvation. This score is calculated based on how much memory the process would free up
if it were killed.

If we take the previous scenario as a starting point, were Elasticsearch is able to start with a
minimum of 2.5 GB, once more indexes/sources are added to Elasticsearch it will start
requiring more and more system memory, up to the point where there is no more memory,
and the system is close to a total crash. At that moment, OOM killer jumps in and kills the
process (or processes) that consumes the most memory—in our case, Elasticsearch.

When looking at the events under /var/log/messages, we can see how OOM killer kicks
in and kills the Java process, and then the Elasticsearch service fails, as shown in the
following screenshot:

Recommendations
Ideally, enough memory should be allocated for Elasticsearch. The very minimum
requirement for memory is about 2.5 GB, but that would lead to a situation where the
system might run out of memory quickly.

For testing purposes, 2.5 GB might be enough for a couple of sources/indexes. Performance
will undoubtedly suffer, but it will remain somewhat usable.

For production, make sure to have at least 4 GB or more for system memory. This should
allow Elasticsearch to start without problems and normally run with multiple
sources/indexes configured. Make sure the heap size for the JVM is increased accordingly,
and consider allowing some RAM for the page cache for faster response times when
interacting with the filesystem.

Designing an ELK Stack Chapter 11

[226]

Next, we will look at the storage configuration required for Elasticsearch.

Storage configuration for Elasticsearch
Storage requirements for Elasticsearch are relatively straightforward, and can be divided
into two main categories:

Storage capacity
Storage performance

Let's go through both of these and see how decisions made here can affect the overall
performance.

Capacity
Storage capacity directly affects how much data Elasticsearch is able to store. As is the case
in many other situations, this is a big and complex requirement to consider, as it depends
upon so many other variables that affect the utilization of space.

The primary variable would be the size of the logs/metrics that are sent to Elasticsearch.
This depends on the number of logs that are generated daily (or monthly). For example, if
the daily log rate is 100 MB, then that means that, to be able to store a month's worth of
logs, at least 3 GB of available space is needed (100 MB x 30 days = 3 GB).

Note that this is the minimum space required for a single source. Ideally, some overhead
should be accounted for as data changes regularly and a figure of 100 MB/day might not be
constant for all of the days in the month or other months might have a higher rate due to
higher load. Additionally, once more sources (or clients) are added, data usage will grow
accordingly.

By default, Elasticsearch will store its data under the
/var/lib/elasticsearch directory.

Designing an ELK Stack Chapter 11

[227]

Performance
One of the main features of Elasticsearch is its ability to retrieve data really fast. While this
is done using an enhanced mechanism of storing documents as JSON files, having the right
performance setup definitely helps achieve the almost real-time search results.

There is no hard number provided by Elastic for storage requirements, but using a Solid-
State Drive (SSD) for the /var/lib/elasticsearch directory helps in reducing latency
when performing searches, as the SSD has a substantially lower latency when compared to
HDD. An SSD also helps when ingesting data as writes get acknowledged faster, thereby
allowing for more concurrent incoming indexes. This is reflected in the indexes per second
that can be seen on the Kibana monitoring dashboard.

When sizing for the cloud, this really depends on the provider as some base the
performance of the disks on their size, but others allow the performance to be manually
configured (as is the case with IOPS and throughput).

Having a slower setup will result in searches taking longer than expected and a slower data
ingestion, due to an unreliable, slower disk setup.

Considerations
For space, consider a sizing that will allow you enough space for unexpected data growth.
If, for example, the expected data usage for an entire month would be 500 GB, consider
sizing for at least 700 GB; doing this gives you a buffer and avoids situations where not
enough space is left for Elasticsearch indexes. A good starting point is 500 GB, as it gives
enough space for testing/production while the actual data usage and data change is
calculated (if not previously known).

For performance, consider using faster storage solutions such as SSD to allow for low-
latency searches and faster indexes/s. For the cloud, most providers have some sort of SSD
offering that can be used with Elasticsearch. Make sure that at least 500 IOPS are
provisioned for optimal performance.

For Azure, you can use a P10 disk—which is an SSD that can provide up
to 500 IOPS—or an E10 as a lower cost alternative that delivers the same
result.

We will now look at what needs to be considered for Logstash and Kibana.

Designing an ELK Stack Chapter 11

[228]

Logstash and Kibana requirements
There are no specific requirements for Logstash and Kibana, but keeping in mind a couple
of things when designing an Elastic Stack is always a good approach.

Logstash
Logstash is not heavy on CPU nor RAM, but this depends entirely on how many sources
are feeding Logstash data since, for each event that Logstash parses, there is some overhead
required to complete the process. If Logstash is to be installed on its own (with no other
components on the same system), anything above one vCPU and 2 GBs of RAM should
suffice for small/testing deployments. Ideally, the actual usage should be monitored and
the system tuned accordingly. Logstash by default has in-memory queues that are used to
store events temporarily; this behavior can be changed to use persistent queues when
processing events. This allows for persistent consistency and avoids data loss during an
outage. Additionally, having persistent queues helps to absorb bursts of events by acting as
a buffer between the clients and Logstash.

When using persistent queues for storage capacity, the /var/lib/logstash directory
needs to be able to store events while being processed by Logstash. The amount of space
depends on two factors: the egress speed when sending data to Elasticsearch and the
number of events being sent to Logstash. The minimum would be 1 GB and the space needs
to be increased accordingly when the number of sources is increased.

Kibana
The requirements for Kibana depend entirely on the number of users concurrently
accessing the dashboard. The amount of resources allocated to Kibana needs to be based on
the intended usage—for example, what is the expected user base? How many of those users
will access Kibana at the same time?

For small deployments/testing, the minimum requirements are dictated by the JVM. One
vCPU and 2 GB of RAM is enough for several users, but once more users start using the
dashboard, RAM will be the first resource to become a bottleneck.

In general, an Elastic Stack has pretty loose requirements that are mostly
dictated by the usage and the number of sources. Regarding software, the
primary requirement is Java; since all of the components use the JVM,
either the open JDK or the official JDK can be used.

Designing an ELK Stack Chapter 11

[229]

Summary
In this chapter, we went through the requirements that are needed when designing an
Elastic Stack using Elasticsearch, Logstash, and Kibana. For Elasticsearch, we determined
that the minimum CPU requirement is two vCPUs for small setups, and the CPU speed
should be kept above 2 GHz. If these minimum requirements are not met, Elasticsearch will
take longer to start up and will perform more slowly. This manifests as a decrease in the
number of indexes per second and an increased search latency, both of which are things
that need to be avoided in order for us to be able to take full advantage of the near-instant
searches that Elasticsearch provides.

Memory sizing is probably the most important specification when designing an
Elasticsearch setup. Part of the system memory will be used for the filesystem cache (also
known as the page cache), which helps with searches and indexes per second. Swapping is
not recommended, as it is considered extremely slow when compared to actual RAM
access, and so swapping should be disabled on Elasticsearch nodes. If the correct memory
requirements are not met, Elasticsearch will fail to start altogether since there will not be
enough memory for the JVM to start. If, on the other hand, enough memory is present to
start the JVM, but the load increases over time and the system runs out of memory, the
OOM or out-of-memory killer will be engaged to avoid a system crash that would lead to a
failure of the application. The very minimum amount of RAM required is 2.5 GB, but
resource constraints will be seen relatively quickly.

Storage capacity and performance play an important role when setting up Elasticsearch.
The capacity depends on the amount of data that needs to be kept and the number of
sources configured. Latency needs to be kept to a minimum in order for our searches to be
fast. Ideally, SSD should be used.

Lastly, for Logstash and Kibana, the minimum requirements are one vCPU and 2 GB of
RAM for each component. For Logstash, there is a space requirement for the persistent
queues.

In the next chapter, we will jump into deploying an Elastic Stack using Elasticsearch,
Logstash, and Kibana using the facts that learned in this chapter.

Designing an ELK Stack Chapter 11

[230]

Questions
How many CPUs are recommended for Elasticsearch?1.
What is the recommended minimum CPU speed for Elasticsearch?2.
How does having the wrong CPU configuration impact Elasticsearch3.
performance?
What is a page cache?4.
Why is it recommended that you disable swapping on Elasticsearch nodes?5.
How does undersizing memory affect Elasticsearch?6.
What is the minimum memory required for Elasticsearch?7.
Where does Elasticsearch store data by default?8.
Why is using an SSD recommended for Elasticsearch?9.
What are the minimum requirements for Logstash?10.
What are persistent queues?11.
What affects the resource usage in Kibana?12.

Further reading
For more information, you can read the following book:

Linux: Powerful Server Administration, by Uday R. Sawant, Et al.: https:/ ​/​www.
packtpub. ​com/ ​networking- ​and- ​servers/ ​linux- ​powerful- ​server-
administration

https://www.packtpub.com/networking-and-servers/linux-powerful-server-administration
https://www.packtpub.com/networking-and-servers/linux-powerful-server-administration
https://www.packtpub.com/networking-and-servers/linux-powerful-server-administration
https://www.packtpub.com/networking-and-servers/linux-powerful-server-administration
https://www.packtpub.com/networking-and-servers/linux-powerful-server-administration
https://www.packtpub.com/networking-and-servers/linux-powerful-server-administration
https://www.packtpub.com/networking-and-servers/linux-powerful-server-administration
https://www.packtpub.com/networking-and-servers/linux-powerful-server-administration
https://www.packtpub.com/networking-and-servers/linux-powerful-server-administration
https://www.packtpub.com/networking-and-servers/linux-powerful-server-administration
https://www.packtpub.com/networking-and-servers/linux-powerful-server-administration
https://www.packtpub.com/networking-and-servers/linux-powerful-server-administration
https://www.packtpub.com/networking-and-servers/linux-powerful-server-administration
https://www.packtpub.com/networking-and-servers/linux-powerful-server-administration
https://www.packtpub.com/networking-and-servers/linux-powerful-server-administration
https://www.packtpub.com/networking-and-servers/linux-powerful-server-administration
https://www.packtpub.com/networking-and-servers/linux-powerful-server-administration
https://www.packtpub.com/networking-and-servers/linux-powerful-server-administration
https://www.packtpub.com/networking-and-servers/linux-powerful-server-administration
https://www.packtpub.com/networking-and-servers/linux-powerful-server-administration
https://www.packtpub.com/networking-and-servers/linux-powerful-server-administration

12
Using Elasticsearch, Logstash,

and Kibana to Manage Logs
Deploying Elasticsearch, Logstash, and Kibana (ELK Stack) is relatively straightforward,
but there are several considerations that need to be taken into account when installing these
components. While this will not be an in-depth guide for an Elastic Stack, the main
takeaways will be the implementation aspects, the decisions that are made through the
process, and how you, as an architect, should think when making these decisions.

This chapter will help you, as an architect, define the aspects that are needed to deploy an
ELK Stack, and what configurations to use when working with the components that make
up the Elastic Stack.

In this chapter, we will go through the following topics:

Installing and configuring Elasticsearch
Installing and configuring Logstash and Kibana
Installing and explaining Beats
Configuring Kibana dashboards

Technical requirements
The following tools and installations will be used in this chapter:

Elasticsearch installation guide: https:/ ​/​www. ​elastic. ​co/​guide/ ​en/
elasticsearch/ ​reference/ ​current/ ​_​installation. ​html

XFS stripe size and Stripe unit "how to": http:/ ​/​xfs. ​org/ ​index. ​php/ ​XFS_
FAQ#Q:_​How_ ​to_ ​calculate_ ​the_ ​correct_ ​sunit. ​2Cswidth_ ​values_ ​for_ ​optimal_
performance

https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance
http://xfs.org/index.php/XFS_FAQ#Q:_How_to_calculate_the_correct_sunit.2Cswidth_values_for_optimal_performance

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[232]

XFS write barriers: https:/ ​/ ​access. ​redhat. ​com/ ​documentation/ ​en-​us/ ​red_
hat_​enterprise_ ​linux/ ​7/ ​html/ ​storage_ ​administration_ ​guide/
writebarrieronoff

Elasticsearch configuration details: https:/ ​/​www. ​elastic. ​co/​guide/ ​en/
elasticsearch/ ​reference/ ​current/ ​settings. ​html

Avoiding a split brain in Elasticsearch: https:/ ​/​www. ​elastic. ​co/​guide/ ​en/
elasticsearch/ ​reference/ ​current/ ​modules- ​node. ​html#split- ​brain

Elasticsearch cluster state API: https:/ ​/​www. ​elastic. ​co/​guide/ ​en/
elasticsearch/ ​reference/ ​current/ ​cluster- ​state. ​html

Logstash installation guide: https:/ ​/​www. ​elastic. ​co/ ​guide/ ​en/ ​logstash/
current/ ​installing- ​logstash. ​html

Kibana user guide and how to install: https:/ ​/​www. ​elastic. ​co/ ​guide/ ​en/
kibana/​current/ ​rpm. ​html

Logstash filter example for Beats modules: https:/ ​/​www. ​elastic. ​co/ ​guide/
en/​logstash/ ​current/ ​logstash- ​config- ​for- ​filebeat- ​modules. ​html

Structure of a Logstash config file: https:/ ​/​www. ​elastic. ​co/ ​guide/ ​en/
logstash/ ​current/ ​configuration- ​file- ​structure. ​html

Filebeat installation process: https:/ ​/​www. ​elastic. ​co/​guide/ ​en/​beats/
filebeat/ ​current/ ​filebeat- ​installation. ​html

Metricbeat installation overview and details: https:/ ​/​www. ​elastic. ​co/​guide/
en/​beats/ ​metricbeat/ ​current/ ​metricbeat- ​installation. ​html

Deployment overview
For this deployment, we will be using Elasticsearch version 6.5 (which is the latest version
at the time of writing). This means that all subsequent components must be the same
version. The base OS will be CentOS 7.6. While this specific deployment will be
implemented on a local virtual machine (VM) setup, the concepts can still be applied to the
cloud.

Elasticsearch will be deployed using 2 nodes on 2 vCPU VMs with 4 GB of RAM each (in
Chapter 11, Designing an ELK Stack, we established that the minimum RAM required is
about 2.5 GB). The underlying storage for the VMs is non-volatile memory express
(NVMe), so some considerations need to be taken when replicating the setup somewhere
else. In terms of space, the Elasticsearch nodes will have 64 GB of disk space each; the nodes
will have the 64 GB disk mounted to the /var/lib/elasticsearch directory.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/writebarrieronoff
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-node.html#split-brain
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-state.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html
https://www.elastic.co/guide/en/kibana/current/rpm.html
https://www.elastic.co/guide/en/kibana/current/rpm.html
https://www.elastic.co/guide/en/kibana/current/rpm.html
https://www.elastic.co/guide/en/kibana/current/rpm.html
https://www.elastic.co/guide/en/kibana/current/rpm.html
https://www.elastic.co/guide/en/kibana/current/rpm.html
https://www.elastic.co/guide/en/kibana/current/rpm.html
https://www.elastic.co/guide/en/kibana/current/rpm.html
https://www.elastic.co/guide/en/kibana/current/rpm.html
https://www.elastic.co/guide/en/kibana/current/rpm.html
https://www.elastic.co/guide/en/kibana/current/rpm.html
https://www.elastic.co/guide/en/kibana/current/rpm.html
https://www.elastic.co/guide/en/kibana/current/rpm.html
https://www.elastic.co/guide/en/kibana/current/rpm.html
https://www.elastic.co/guide/en/kibana/current/rpm.html
https://www.elastic.co/guide/en/kibana/current/rpm.html
https://www.elastic.co/guide/en/kibana/current/rpm.html
https://www.elastic.co/guide/en/kibana/current/rpm.html
https://www.elastic.co/guide/en/kibana/current/rpm.html
https://www.elastic.co/guide/en/kibana/current/rpm.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/logstash-config-for-filebeat-modules.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/logstash/current/configuration-file-structure.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation.html

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[233]

Logstash and Kibana will be deployed on the same VM using 2 vCPUs and 4 GB of RAM.
As seen in Chapter 11, Designing an ELK Stack, Logstash has a requirement for persistent
storage for queues. So, for this, we will be using a 32 GB dedicated disk. This disk will be
mounted on the /var/lib/logstash directory for persistent queuing.

We can summarize what will be used for the deployment as follows:

The base OS is CentOS 7.6
Elasticsearch v6.5
Logstash v6.5
Kibana v6.5
Elasticsearch using 2 nodes on 2 vCPU VMs with 4 GB of RAM
Logstash and Kibana on a single VM using 2 vCPUs with 4 GB of RAM
64 GB disks for the Elasticsearch nodes
32 GB disk for the Logstash persistent queue

The following diagram illustrates the entire implementation and will give you an idea of
how things are connected:

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[234]

Installing Elasticsearch
Going from nothing to a functional Elasticsearch setup requires the software to be installed;
this can be done in several ways and on different platforms. Some of these installation
options are as follows:

Installing from the source
Installing deb for Debian-based Linux Distributions
Installing rpm for Red Hat Enterprise Linux (RHEL), CentOS, sound library for
embedded systems (SLES), OpenSLES, and RPM-based distributions
Installing msi for Windows
Deploying Docker images

For this setup, we will be using the RPM repository for consistency across versions, and for
simplification purposes when updates are available.

The RPM repository
To install the RPM repository for RHEL and CentOS, we need to create a file in the
/etc/yum.repos.d directory. Here, the name of the file doesn't matter but, in reality, it
needs to be meaningful. The contents of the file indicate how yum will go and search for
software.

Create a file named /etc/yum.repos.d/elastic.repo with the following code details:

[elasticsearch-6.x]
name=Elasticsearch repository for 6.x packages
baseurl=https://artifacts.elastic.co/packages/6.x/yum
gpgcheck=1
gpgkey=https://artifacts.elastic.co/GPG-KEY-elasticsearch
enabled=1
autorefresh=1
type=rpm-md

Once the repository file has been created, simply run the following command:

yum makecache

This will refresh the metadata of all of the configured repositories. Before installing
Elasticsearch, we need to install the OpenJDK version, 1.8.0; for this, we can run the
following command:

yum install java-1.8.0-openjdk

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[235]

Next, confirm that java is installed, as follows:

java -version

Then, you should see something similar to the following output:

[root@elastic1 ~]# java -version
openjdk version "1.8.0_191"
OpenJDK Runtime Environment (build 1.8.0_191-b12)
OpenJDK 64-Bit Server VM (build 25.191-b12, mixed mode)

We can then proceed to install elasticsearch, as follows:

yum install elasticsearch

Before starting Elasticsearch, some configuration needs to be done.

The Elasticsearch data directory
The default configuration for Elasticsearch has the data directory set to the
/var/lib/elasticsearch path. This is controlled through the path.data configuration
option in the /etc/elasticsearch/elasticsearch.yml file:

---------------------------------Paths-------------------------------
#
Path to directory where to store the data (separate multiple locations by
comma):
#
path.data: /var/lib/elasticsearch

In this setup, a 64 GB disk will be mounted to this location.

When deploying in Azure, make sure that the path.data option is
configured to use a data disk rather than the OS disk.

Partitioning the disk
Before creating a filesystem, the disk needs to be partitioned. To do this, we can use the
parted utility.

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[236]

First, we need to initialize the disk as gpt; for this, we can use the following command:

sudo parted /dev/sdX mklabel gpt

Then, we create the partition:

sudo parted /dev/sdX mkpart xfs 0GB 64GB

Here, we're telling parted to create a partition from 0GB to 64GB, or from the beginning of
the disk to the end. Additionally, we're using an xfs signature, since that is the filesystem
that is going to be used for the data directory.

Finally, we verify that the partition has been successfully created with the correct
boundaries by running the following command:

sudo parted /dev/sdX print

The output should be similar to the following code block:

[root@elastic1 ~]# parted /dev/sdb print
Model: ATA VBOX HARDDISK (scsi)
Disk /dev/sdb: 68.7GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt
Disk Flags:
Number Start End Size File system Name Flags
1 1049kB 64.0GB 64.0GB xfs

Formatting the filesystem
To be able to store data on the newly created partition, we first need to create a filesystem.
For this setup, we will be using the XFS filesystem.

To format the disk, run the mkfs.xfs command, as follows:

[root@elastic1]# mkfs.xfs /dev/sdb1
meta-data=/dev/sdb1 isize=512 agcount=4, agsize=3906176
blks
 = sectsz=512 attr=2, projid32bit=1
 = crc=1 finobt=0, sparse=0
data = bsize=4096 blocks=15624704, imaxpct=25
 = sunit=0 swidth=0 blks
naming =version 2 bsize=4096 ascii-ci=0 ftype=1
log =internal log bsize=4096 blocks=7629, version=2
 = sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[237]

By default, XFS uses a 4K block size that matches the memory page size; this is also ideal
for relatively small files.

Note that the partition of the device file is specified rather than the entire
disk. While it is possible to use the disk itself, it is recommended that you
create filesystems on partitions. Additionally, if the filesystem is going to
be used on a RAID setup, then changing the stripe unit and stripe size
generally helps with performance.

Persistent mounting using fstab
Now that the filesystem has been created, we need to make sure that it is mounted after
every reboot at the correct location.

As a general rule, mounting the filesystem using the device file is not advised, especially in
the cloud. This is because the disk order might change, causing the device file of the disks
to be mixed up. To work around this problem, we can use the UUID of the disk, which is a
unique identifier that will persist even when the disk is moved to another system.

To obtain the UUID of the disk, run the blkid command:

[root@elastic1 ~]# blkid
/dev/sda1: UUID="58c91edb-c361-470e-9805-a31efd85a472" TYPE="xfs"
/dev/sda2: UUID="H3KcJ3-gZOS-URMD-CD1J-8wIn-f7v9-mwkTWn" TYPE="LVM2_member"
/dev/sdb1: UUID="561fc663-0b63-4d2a-821e-12b6caf1115e" TYPE="xfs"
PARTLABEL="xfs" PARTUUID="7924e72d-15bd-447d-9104-388dd0ea4eb0"

In this case, /dev/sdb1 is the 64 GB disk that we will be using for Elasticsearch. With the
UUID, we can add it to the /etc/fstab file, which controls the filesystems that will be
mounted during boot time. Simply edit the file and add the following entries:

UUID=561fc663-0b63-4d2a-821e-12b6caf1115e /var/lib/elasticsearch xfs
defaults,nobarrier,noatime,nofail 0 0

Here are some important details to take note of from the preceding command:

nobarrier: This helps with write performance as it disables the mechanism
used by XFS to acknowledge writes once they hit persistent storage. This is
usually used on physical storage systems where there is no form of battery
backup write cache.

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[238]

noatime: This disables the recording mechanism when a file is accessed or
modified. When atime is enabled, every read will result in a small set of writes,
since the access times will need to be updated. Disabling can help with reads as it
doesn't generate any unnecessary writes.
nofail: This allows the system to boot normally in the event of the disk that is
backing the mount point going missing. This is particularly helpful when
deploying on the cloud were no access to the console exists.

Next, verify that the disk has been mounted to the correct location before starting the
Elasticsearch service:

[root@elastic1 /]# df -h
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/centos-root 14G 1.6G 12G 12% /
devtmpfs 1.9G 0 1.9G 0% /dev
tmpfs 1.9G 0 1.9G 0% /dev/shm
tmpfs 1.9G 8.5M 1.9G 1% /run
tmpfs 1.9G 0 1.9G 0% /sys/fs/cgroup
/dev/sdb1 60G 33M 60G 1% /var/lib/elasticsearch
/dev/sda1 1014M 184M 831M 19% /boot
tmpfs 379M 0 379M 0% /run/user/0

Finally, make sure that the correct ownership of the /var/lib/elasticsearch directory
is configured:

chown elasticsearch: /var/lib/elasticsearch

Configuring Elasticsearch
Before starting the Elasticsearch service, we need to define several parameters that control
how Elasticsearch behaves. The configuration file is in the YAML format and is located on
/etc/elasticsearch/elasticsearch.yml. Let's explore which main parameters need
to be changed.

Elasticsearch YAML
The central control for Elasticsearch is done through
the /etc/elasticsearch/elasticsearch.yml file, which is in the YAML format. The
default configuration file is reasonably well-documented and explains what each parameter
controls, but there are some entries that should be changed as part of the configuration
process.

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[239]

The main parameters to look for are as follows:

Cluster name
Discovery settings
Node name
Network host
Path settings

Cluster name
Elasticsearch nodes will only be able to join a cluster when they have the same cluster name
specified in their configuration. This is handled through the cluster.name parameter; for
this setup, we will use elastic-cluster:

--------------------------------Cluster------------------------------
#
Use a descriptive name for your cluster:
#
cluster.name: elastic-cluster
#

This setting should be configured on both nodes so that they have the same value.
Otherwise, the second node will not be able to join the cluster.

Discovery settings
The discovery parameters control how Elasticsearch manages intra-node communication
that is used for clustering and master election.

The two main parameters regarding discovery are
discovery.zen.ping.unicast.hosts and discovery.zen.minimum_master_nodes.

The discovery.zen.ping.unicast.hosts setting controls which nodes are going to be
used for clustering. Since two nodes will be used in our setup, the configuration for node1
should have the DNS name of node2, while node2 should have the DNS of node1.

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[240]

The discovery.zen.minimum_master_nodes setting controls the minimum number of
master nodes in the cluster; this is used to avoid split-brain scenarios where there's more
than one master node that is active in the cluster. The number for this parameter can be
calculated based on a simple equation, as follows:

Here, N is the number of nodes in the cluster. For this setup, since only 2 nodes are to be
configured, the setting should be 2. Both parameters should be as follows:

-----------------------------Discovery-------------------------------
#
Pass an initial list of hosts to perform discovery when new node is
started:
The default list of hosts is ["127.0.0.1", "[::1]"]
#
discovery.zen.ping.unicast.hosts: ["elastic2"]
#
Prevent the "split brain" by configuring the majority of nodes (total
number of master-eligible nodes / 2 + 1):
#
discovery.zen.minimum_master_nodes: 2
#
For more information, consult the zen discovery module documentation.

For node2, change discovery.zen.ping.unicast.hosts:
["elastic2"] to discovery.zen.ping.unicast.hosts:
["elastic1"].

Node name
By default, Elasticsearch uses a randomly-generated UUID for its node name, which is not
very user-friendly. This parameter is relatively simple as it controls the name for the
specific node. For this setup, we'll be using elasticX, where X is the node number; node1
should be as follows:

#------------------------------Node---------------------------------
#
Use a descriptive name for the node:
#
node.name: elastic1

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[241]

Change node2 to match the naming convention, so it is elastic2.

Network host
This controls which IP address Elasticsearch will bind to and listen to requests. By default,
it binds to the loopback IP address; this setting needs to be changed to allow other nodes
from a cluster or allow Kibana and Logstash on other servers to send requests. This setting
also accepts special parameters, such as the network interface. For this setup, we'll have
Elasticsearch listen to all the addresses by setting the network.host parameter to
0.0.0.0.

On both nodes, make sure that the setting is as follows:

#-----------------------------Network-------------------------------
#
Set the bind address to a specific IP (IPv4 or IPv6):
#
network.host: 0.0.0.0

Path settings
Finally, the path parameters control where Elasticsearch stores its data and its logs.

By default, it is configured to store data under /var/lib/elasticsearch, and logs under
/var/log/elasticsearch:

#-------------------------------Paths---------------------------------
#
Path to directory where to store the data (separate multiple locations by
comma):
#
path.data: /var/lib/elasticsearch
#
Path to log files:
#
path.logs: /var/log/elasticsearch

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[242]

One crucial aspect of this parameter is that, under the path.data setting, multiple paths
can be specified. Elasticsearch will use all the paths specified here to store data, thus
increasing the overall performance and available space. For this setup, we'll leave the
defaults as they were in the preceding steps, where we mounted a data disk under the
/var/lib/elasticsearch directory.

Starting Elasticsearch
Now that we've configured Elasticsearch, we need to make sure that the service starts
automatically and correctly during boot.

Start and enable the Elasticsearch service, as follows:

systemctl start elasticsearch && systemctl enable elasticsearch

Then, verify that Elasticsearch started correctly by running the following command:

curl -X GET "elastic1:9200"

The output should be similar to the following code block:

[root@elastic1 /]# curl -X GET "elastic1:9200"
{
 "name" : "elastic1",
 "cluster_name" : "elastic-cluster",
 "cluster_uuid" : "pIH5Z0yAQoeEGXcDuyEKQA",
 "version" : {
 "number" : "6.5.3",
 "build_flavor" : "default",
 "build_type" : "rpm",
 "build_hash" : "159a78a",
 "build_date" : "2018-12-06T20:11:28.826501Z",
 "build_snapshot" : false,
 "lucene_version" : "7.5.0",
 "minimum_wire_compatibility_version" : "5.6.0",
 "minimum_index_compatibility_version" : "5.0.0"
 },
 "tagline" : "You Know, for Search"
}

Adding an Elasticsearch node
At this point, we can add the second node to the Elasticsearch cluster.

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[243]

The same configuration should be applied to the previous steps, making sure that the
settings are changed to reflect the DNS name for node2.

To add the node to the cluster, all we need to do is simply start the Elasticsearch service.

When the service starts, messages are logged to /var/log/elasticsearch, which
indicates that the node was successfully added to the cluster:

[2018-12-23T01:39:03,834][INFO][o.e.c.s.ClusterApplierService] [elastic2]
detected_master
{elastic1}{XVaIWexSQROVVxYuSYIVXA}{fgpqeUmBRVuXzvlf0TM8sA}{192.168.1.150}{1
92.168.1.150:9300}{ml.machine_memory=3973599232, ml.max_open_jobs=20,
xpack.installed=true, ml.enabled=true}, added
{{elastic1}{XVaIWexSQROVVxYuSYIVXA}{fgpqeUmBRVuXzvlf0TM8sA}{192.168.1.150}{
192.168.1.150:9300}{ml.machine_memory=3973599232, ml.max_open_jobs=20,
xpack.installed=true, ml.enabled=true},}, reason: apply cluster state (from
master [master
{elastic1}{XVaIWexSQROVVxYuSYIVXA}{fgpqeUmBRVuXzvlf0TM8sA}{192.168.1.150}{1
92.168.1.150:9300}{ml.machine_memory=3973599232, ml.max_open_jobs=20,
xpack.installed=true, ml.enabled=true} committed version [1]])

You can use the following code to confirm that the cluster is up and running:

curl -X GET "elastic1:9200/_cluster/state?human&pretty"

The output should be similar to the following code block:

{
 "cluster_name" : "elastic-cluster",
 "compressed_size" : "10kb",
 "compressed_size_in_bytes" : 10271,
 "cluster_uuid" : "pIH5Z0yAQoeEGXcDuyEKQA",
 "version" : 24,
 "state_uuid" : "k6WuQsnKTECeRHFpHDPKVQ",
 "master_node" : "XVaIWexSQROVVxYuSYIVXA",
 "blocks" : { },
 "nodes" : {
 "XVaIWexSQROVVxYuSYIVXA" : {
 "name" : "elastic1",
 "ephemeral_id" : "fgpqeUmBRVuXzvlf0TM8sA",
 "transport_address" : "192.168.1.150:9300",
 "attributes" : {
 "ml.machine_memory" : "3973599232",
 "xpack.installed" : "true",
 "ml.max_open_jobs" : "20",
 "ml.enabled" : "true"
 }
 },

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[244]

 "ncVAbF9kTnOB5K9pUhsvZQ" : {
 "name" : "elastic2",
 "ephemeral_id" : "GyAq8EkiQGqG9Ph-0RbSkg",
 "transport_address" : "192.168.1.151:9300",
 "attributes" : {
 "ml.machine_memory" : "3973599232",
 "ml.max_open_jobs" : "20",
 "xpack.installed" : "true",
 "ml.enabled" : "true"
 }
 }
 },
 "metadata" : {
...(truncated)

For any subsequent nodes that need to be added to the cluster, the previous steps should be
followed, making sure that the cluster.name parameter is set to the correct value.

Installing Logstash and Kibana
With the Elasticsearch cluster up and running, we can now go ahead and install Logstash
and Kibana.

The repository that was used in the previous steps is the same for the remaining
components. So, the same process that was used before to add the repository should be
applied to the Logstash and Kibana node.

This is a summary, the same process has been explored before:

Add the repository to /etc/yum.repos.d/elastic.repo1.
Update the yum cache to sudo yum makecache2.
Install Logstash and Kibana using sudo yum install logstash kibana3.
Initialize the disk for /var/lib/logstash and sudo parted /dev/sdX4.
mklabel gpt

Create the sudo parted /dev/sdX mkpart xfs 0GB 32GB partition (note5.
that this is a 32 GB disk)
Create the sudo mkfs.xfs /dev/sdX1 filesystem6.
Update fstab7.
Update the sudo chown logstash: /var/lib/logstash directory8.
permissions

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[245]

The Logstash systemd unit is not added by default; to do so, run the script provided by
Logstash:

sudo /usr/share/logstash/bin/system-install

Finally, one specific component that is required is a coordinating Elasticsearch node. This
will serve as a load balancer for the Elasticsearch cluster that is used by Kibana to install
Elasticsearch:

sudo yum install elasticsearch

More information on the coordinating node configuration is provided in the Configuring
Kibana section.

Configuring Logstash
Similar to Elasticsearch, the main configuration file for Logstash is located under
/etc/logstash/logstash.yml, and some settings will need to be changed to achieve the
desired functionality.

Logstash YAML
First, the node.name parameter should be adjusted so that it identifies the Logstash node
correctly. By default, it uses the machine's hostname as the node.name parameter.
However, since we are running both Logstash and Kibana on the same system, it is worth
changing this setting to avoid confusion.

Next, we need to consider the queuing settings; these control how Logstash manages the
type of queues and where it stores queue data.

The first setting is queue.type, which defines the type of queue that is used by Logstash.
For this setup, we are using persistent queuing:

------------ Queuing Settings --------------
#
Internal queuing model, "memory" for legacy in-memory based queuing and
"persisted" for disk-based acked queueing. Defaults is memory
#
queue.type: persisted
#

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[246]

Since queuing is set to persistent, the events need to be stored in a temporary location
before being sent to Elasticsearch; this is controlled by the path.queue parameter:

If using queue.type: persisted, the directory path where the data files
will be stored.
Default is path.data/queue
#
path.queue:
#

If left by default, Logstash will use the path.data/queue directory to store events in the
queue. The path.data directory defaults to /var/lib/logstash, which is where we
configured the 32 GB disk; this is the desired configuration. If another location needs to be
specified for queuing, this setting should be adjusted to match the correct path.

The last setting to be changed in the logstash.yml file is the queue.max_bytes setting,
which controls the maximum space that is allowed for the queue. For this setup, since we
added a dedicated 32 GB disk for only this purpose, the setting can be changed to 25 GB to
allow for a buffer if more space is needed. The setting should look as follows:

If using queue.type: persisted, the total capacity of the queue in number
of bytes.
If you would like more unacked events to be buffered in Logstash, you can
increase the
capacity using this setting. Please make sure your disk drive has
capacity greater than
the size specified here. If both max_bytes and max_events are specified,
Logstash will pick
whichever criteria is reached first
Default is 1024mb or 1gb
#
queue.max_bytes: 25gb

As an option, the xpack.monitoring.enabled setting can be set to true to enable
monitoring through Kibana.

Make sure that the parameters in the yaml file don't have a space at the
beginning of the line or it might fail to load the configuration.

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[247]

Logstash pipelines
Logstash outputs are controlled by the pipelines that are configured through files placed
under /etc/logstash/conf.d/; these files control how Logstash ingests data, processes
it, and then returns it as an output for Elasticsearch. A pipeline configuration is similar to
the following code:

The # character at the beginning of a line indicates a comment. Use
 # comments to describe your configuration.
 input {
 }
 # The filter part of this file is commented out to indicate that it is
 # optional.
 # filter {
 #
 # }
 output {
 }

Here, the input section defines which data to accept and from which source; in this setup,
we will be using beats as an input. The filter section controls how data is transformed
before being sent to the output, and the output section defines where the data is sent. In this
case, we will be sending data to the Elasticsearch nodes.

Let's create a configuration file for syslog messages to be filtered by Logstash, and then be
sent to the Elasticsearch cluster. The file needs to be placed in /etc/logstash/conf.d,
since the input will be from the beats module; let's call it the beats-syslog.conf file:

sudo vim /etc/logstash/conf.d/beats-syslog.conf

The file's contents is as follows:

input {
 beats {
 port => 5044
 }
}
filter {
 if [fileset][module] == "system" {
 if [fileset][name] == "auth" {
 grok {
 match => { "message" =>
["%{SYSLOGTIMESTAMP:[system][auth][timestamp]}
%{SYSLOGHOST:[system][auth][hostname]}
sshd(?:\[%{POSINT:[system][auth][pid]}\])?:
%{DATA:[system][auth][ssh][event]} %{DATA:[system][auth][ssh][method]} for
(invalid user)?%{DATA:[system][auth][user]} from

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[248]

%{IPORHOST:[system][auth][ssh][ip]} port
%{NUMBER:[system][auth][ssh][port]} ssh2(:
%{GREEDYDATA:[system][auth][ssh][signature]})?",
 "%{SYSLOGTIMESTAMP:[system][auth][timestamp]}
%{SYSLOGHOST:[system][auth][hostname]}
sshd(?:\[%{POSINT:[system][auth][pid]}\])?:
%{DATA:[system][auth][ssh][event]} user %{DATA:[system][auth][user]} from
%{IPORHOST:[system][auth][ssh][ip]}",
 "%{SYSLOGTIMESTAMP:[system][auth][timestamp]}
%{SYSLOGHOST:[system][auth][hostname]}
sshd(?:\[%{POSINT:[system][auth][pid]}\])?: Did not receive identification
string from %{IPORHOST:[system][auth][ssh][dropped_ip]}",
 "%{SYSLOGTIMESTAMP:[system][auth][timestamp]}
%{SYSLOGHOST:[system][auth][hostname]}
sudo(?:\[%{POSINT:[system][auth][pid]}\])?: \s*%{DATA:[system][auth][user]}
:(%{DATA:[system][auth][sudo][error]} ;)?
TTY=%{DATA:[system][auth][sudo][tty]} ;
PWD=%{DATA:[system][auth][sudo][pwd]} ;
USER=%{DATA:[system][auth][sudo][user]} ;
COMMAND=%{GREEDYDATA:[system][auth][sudo][command]}",
 "%{SYSLOGTIMESTAMP:[system][auth][timestamp]}
%{SYSLOGHOST:[system][auth][hostname]}
groupadd(?:\[%{POSINT:[system][auth][pid]}\])?: new group:
name=%{DATA:system.auth.groupadd.name},
GID=%{NUMBER:system.auth.groupadd.gid}",
 "%{SYSLOGTIMESTAMP:[system][auth][timestamp]}
%{SYSLOGHOST:[system][auth][hostname]}
useradd(?:\[%{POSINT:[system][auth][pid]}\])?: new user:
name=%{DATA:[system][auth][user][add][name]},
UID=%{NUMBER:[system][auth][user][add][uid]},
GID=%{NUMBER:[system][auth][user][add][gid]},
home=%{DATA:[system][auth][user][add][home]},
shell=%{DATA:[system][auth][user][add][shell]}$",
 "%{SYSLOGTIMESTAMP:[system][auth][timestamp]}
%{SYSLOGHOST:[system][auth][hostname]}
%{DATA:[system][auth][program]}(?:\[%{POSINT:[system][auth][pid]}\])?:
%{GREEDYMULTILINE:[system][auth][message]}"] }
 pattern_definitions => {
 "GREEDYMULTILINE"=> "(.|\n)*"
 }
 remove_field => "message"
 }
 date {
 match => ["[system][auth][timestamp]", "MMM d HH:mm:ss", "MMM dd
HH:mm:ss"]
 }
 geoip {
 source => "[system][auth][ssh][ip]"

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[249]

 target => "[system][auth][ssh][geoip]"
 }
 }
 else if [fileset][name] == "syslog" {
 grok {
 match => { "message" =>
["%{SYSLOGTIMESTAMP:[system][syslog][timestamp]}
%{SYSLOGHOST:[system][syslog][hostname]}
%{DATA:[system][syslog][program]}(?:\[%{POSINT:[system][syslog][pid]}\])?:
%{GREEDYMULTILINE:[system][syslog][message]}"] }
 pattern_definitions => { "GREEDYMULTILINE" => "(.|\n)*" }
 remove_field => "message"
 }
 date {
 match => ["[system][syslog][timestamp]", "MMM d HH:mm:ss", "MMM
dd HH:mm:ss"]
 }
 }
 }
}
output {
 elasticsearch {
 hosts => ["elastic1", "elastic2"]
 manage_template => false
 index => "%{[@metadata][beat]}-%{[@metadata][version]}-%{+YYYY.MM.dd}"
 }
}

Make sure that the output section has the DNS names or IPs of the Elasticsearch nodes:

output {
 elasticsearch {
 hosts => ["elastic1", "elastic2"]
 manage_template => false
 index => "%{[@metadata][beat]}-%{[@metadata][version]}-%{+YYYY.MM.dd}"
 }
}

In this pipeline configuration, the beats module sends logs to the Logstash node. Then
Logstash will process the data and load balance the output between the Elasticsearch
nodes. We can now go ahead and configure Kibana.

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[250]

Configuring Kibana
The last piece of the Elastic Stack is Kibana; the configuration is handled
by /etc/kibana/kibana.yml in a similar way to Elasticsearch and Logstash.

Kibana YAML
By default, Kibana listens on port 5601; this is controlled by the server.port parameter,
which can be changed if there's a need to access Kibana on a different port. For this setup,
the default will be used.

The server.host setting controls which addresses Kibana will listen to for requests. Since
access is needed from external sources (that is, other than localhost), we can use the
following setting:

Specifies the address to which the Kibana server will bind. IP addresses
and host names are both valid values.
 # The default is 'localhost', which usually means remote machines will not
be able to connect.
 # To allow connections from remote users, set this parameter to a non-
loopback address.
 server.host: "0.0.0.0"

The server.name parameter defaults to the hostname where Kibana runs, but since
Logstash is running alongside Kibana, we can change this to identify the Kibana part:

The Kibana server's name. This is used for display purposes.
server.name: "kibana"

Finally, elasticsearch.url specifies which Elasticsearch node Kibana will connect to. As
we mentioned previously, we will be using an Elasticsearch coordinate node to act as a load
balancer between the other two nodes.

Here is the URL of the Elasticsearch instance to use for all your queries:

elasticsearch.url: "http://localhost:9200"

The coordinating node
A coordinating node is an Elasticsearch node that does not accept inputs, does not store
data, nor does it take part in master or slave elections.

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[251]

The goal of this node is to load balance requests for Kibana between the different
Elasticsearch nodes on the cluster. The process of installing is the same as the one we used
before, that is making sure that Java (open JDK) is also installed.

The configuration will be different as we want to achieve a number of things:

Disable the master node role
Disable the ingest node role
Disable the data node role
Disable cross-cluster search

To do this, we need the following settings on the
/etc/elasticsearch/elasticsearch.yml file:

cluster.name: elastic-cluster
node.name: coordinate
network.host: 0.0.0.0
node.master: false
node.data: false
node.ingest: false
cluster.remote.connect: false
discovery.zen.ping.unicast.hosts: ["elastic1", "elastic2"]

Starting Logstash and Kibana
With all of the components already configured, we can start Logstash, Kibana, and the
coordinating Elasticsearch node.

Logstash can be started first as it doesn't require any of the other components to be up:

sudo systemctl start logstash && sudo systemctl enable logstash

Then, we can start and enable the elasticsearch coordinating node:

sudo systemctl start elasticsearch && sudo systemctl enable elasticsearch

Last but not least, kibana can go through the same procedure:

sudo systemctl start kibana && sudo systemctl enable kibana

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[252]

To verify it all started correctly, point your browser to the kibana address on port 5601
http://kibana:5601. Click on Monitoring, and then click on Enable monitoring; after a
couple of seconds, you will see something similar to the following screenshot:

You should see all the components online; the yellow status is due to system indexes that
are not replicated, but this is normal.

With this, the cluster is up and running and ready to accept incoming data from logs and
metrics. We will be feeding data to the cluster using Beats, which we'll explore in the next
section.

What are Beats?
Beats are the lightweight data shippers from Elastic.co (the company behind Elasticsearch).
Beats are designed to be easy to configure and run.

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[253]

Beats are the client part of the equation, living on the systems that are to be monitored.
Beats capture metrics, logs, and more from servers across the environment and ship them to
either Logstash for further processing or Elasticsearch for indexing and analysis.

There are multiple official Beats (which are developed and maintained by Elastic), and a
multitude of open source Beats have been developed by the community.

The main Beats that we'll be using for this setup are Filebeat and Metricbeat.

Filebeat
The Filebeat function collects logs from sources (such as syslog, Apache, and Nginx), and
then ships these to Elasticsearch or Logstash.

The Filebeat client needs to be installed in each of the servers that require data collection in
order to be enabled. This component allows the logs to be sent to a centralized location for
seamless search and indexing.

Metricbeat
Metricbeat collects metrics, such as CPU usage, memory usage, disk IO statistics, and
network statistics, and then ships them to either Elasticsearch or Logstash.

There's really no need to transform metric data further, so feeding data directly to
Elasticsearch makes more sense.

Metricbeat should be installed in all systems that require monitoring of resource usage;
having Metricbeat installed on the Elasticsearch nodes allows you to keep a closer control
on resource usage to avoid problems.

Other Beats exist, such as the following:

Packetbeat: For network traffic monitoring
Journalbeat: For systemd journal logs
Auditbeat: For audit data such as logins

Additionally, Beats can be further adapted to suit a specific need through the use of
modules. As an example, Metricbeat has a module to collect MySQL performance statistics.

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[254]

Let's not skip a beat – installing Beats
The installation of the Beats provided by Elasticsearch can be done through the Elastic
repository that was previously used to install Elasticsearch, Logstash, and Kibana.

First, let's install Filebeat on one of the Elasticsearch nodes:

sudo yum install -y filebeat

Once installed, confirm that it has completed by running the following code:

filebeat version

The output should be similar to the following command block:

[root@elastic1 ~]# filebeat version
filebeat version 6.5.4 (amd64), libbeat 6.5.4
[bd8922f1c7e93d12b07e0b3f7d349e17107f7826 built 2018-12-17 20:22:29 +0000
UTC]

To install metricbeat, the process is the same as it lives in the same repository:

sudo yum install metricbeat

To install Beats on other clients, simply add the Elastic repository as we previously
explained and install it through yum. Beats are also provided as standalone packages in case
there is no repository available for the distribution.

Configuring Beats clients
With both Filebeat and Metricbeat installed on one of the Elasticsearch nodes, we can go
ahead and configure them to feed data to both Logstash and Elasticsearch.

Filebeat YAML
Now, it is no surprise that most of the Elastic components are configured through YAML
files. Filebeat is no exception to that norm, and its configuration is handled by the
/etc/filebeat/filebeat.yml file.

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[255]

First, we need to tell filebeat where to look for the log files that are to be shipped to
Logstash. In the yaml file, this is in the filebeat.inputs section; change enabled:
false to enabled: true, as follows:

#=========================== Filebeat inputs =============================
filebeat.inputs:
Each - is an input. Most options can be set at the input level, so
you can use different inputs for various configurations.
Below are the input specific configurations.
- type: log
 # Change to true to enable this input configuration.
 enabled: true
 # Paths that should be crawled and fetched. Glob based paths.
 paths:
 - /var/log/*.log

Filebeat comes embedded with Kibana dashboards for easy visualization of the data that's
sent. This allows Filebeat to load the dashboards and then add the Kibana address to the
setup.kibana section:

#==============================Kibana================================
Starting with Beats version 6.0.0, the dashboards are loaded via the
Kibana API.
This requires a Kibana endpoint configuration.
setup.kibana:
 # Kibana Host
 # Scheme and port can be left out and will be set to the default (http and
5601)
 # In case you specify and additional path, the scheme is required:
http://localhost:5601/path
IPv6 addresses should always be defined as: https://[2001:db8::1]:5601
 host: "kibana:5601"

Load the dashboards, as follows:

filebeat setup --dashboards

This configuration needs to be done only once for each new Beat installation; there is no
need to change this setting on further Filebeat installations as the dashboards are already
loaded.

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[256]

Since we are going to be sending data to Logstash, comment out the
output.elasticsearch section; then, uncomment the output.logstash section and
add Logstash's details:

#------------------------ Elasticsearch output ----------------------------
#output.elasticsearch:
 # Array of hosts to connect to.
 # hosts: ["localhost:9200"]
 # Optional protocol and basic auth credentials.
 #protocol: "https"
 #username: "elastic"
 #password: "changeme"
#-------------------------- Logstash output -------------------------------
output.logstash:
 # The Logstash hosts
 hosts: ["logstash:5044"]

Next, we'll be using the system module for Filebeat to send the output to Logstash; to
enable this, simply run the following command:

filebeat modules enable system

Then, load the index template into elasticsearch, as follows:

filebeat setup --template -E output.logstash.enabled=false -E
'output.elasticsearch.hosts=["elastic1:9200", "elastic2"]'

Finally, start and enable filebeat, as follows:

sudo systemctl enable filebeat && sudo systemctl start filebeat

To verify that data is being sent, we can use one of the provided dashboards to visualize
syslog events. On Kibana, go to Dashboard and type Syslog Dashboard into the search
bar; you will see something similar to the following screenshot:

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[257]

Kibana Dashboard showing search results for Syslog Dashboard

Metricbeat YAML
Metricbeat follows a similar process to Filebeat, where the
/etc/metricbeat/metricbeat.yml file needs to edited to send output to Elasticsearch,
and the Kibana dashboards need to be loaded (that is, they need to be run once).

To do this, edit the metricbeat.yml file to allow Metricbeat to load the Kibana
dashboards:

setup.kibana:
 host: "kibana:5601"

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[258]

Next, specify the Elasticsearch cluster:

#------------------------ Elasticsearch output ----------------------------
output.elasticsearch:
 # Array of hosts to connect to.
 hosts: ["elastic1:9200", "elastic2:9200"]

Load the Kibana dashboards, as follows:

metricbeat setup --dashboards

By default, metricbeat has the system module enabled, which will capture statistics for
CPU, system load, memory, and network.

Start and enable the metricbeat service, as follows:

sudo systemctl enable metricbeat && sudo systemctl start metricbeat

To confirm that data is being sent to the cluster, go to Discover on the kibana screen;
then, select the metricbeat-* index pattern and verify that events are being sent:

Events filtered with the metricbeat-* index pattern

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[259]

Next steps
At this point, the cluster is now fully functional. All that is left is to install Metricbeat and
Filebeat onto the other nodes of the cluster to ensure full visibility of the cluster's health and
resource usage.

Adding more clients to the cluster is a matter of installing the appropriate Beat, depending
on what needs to be monitored and which logs need to be indexed.

If load increases on the cluster, a number of options are available—either adding more
nodes to the cluster to load balance requests or increasing the number of available resources
for each of the nodes. In certain scenarios, simply adding more resources is a more cost-
effective solution as it doesn't require a new node to be configured.

An implementation such as this one can be used to monitor the performance and events of
a Kubernetes setup (such as the one described in Chapter 11, Designing an ELK Stack). Some
of the Beats have specific modules that are used to extract data from Kubernetes clusters.

Finally, one enhancement that can be made to this setup to ease configuration and
maintenance is to have the Beat clients point to the coordinating Elasticsearch node to act as
a load balancer between the nodes; this avoids having to hardcode each of the Elasticsearch
nodes in the output configuration for the Beats—only a single address is needed.

Summary
In this chapter, we went through many steps to configure an Elastic Stack, which is a
collection of four main components—Elasticsearch, Logstash, Kibana, and Beats. For the
setup, we used three VMs; we hosted two Elasticsearch nodes, and then, on a single system,
we installed Logstash and Kibana, using version 6.5 for each of the components. We
installed Elasticsearch using the RPM repository provided by Elastic Stack; yum was used to
install the required packages. Elasticsearch configuration was done using the
elasticsearch.yml file, which controls how elasticsearch behaves. We defined a
number of settings that are required for a functional cluster, such as the cluster.name
parameter and discovery.zen.minimum_master_nodes.

We added a new Elasticsearch node by configuring the cluster name and the discovery
settings, which allows the node to join the cluster automatically. Then, we moved onto
installing Kibana and Logstash, which are provided on the same RPM repository that was
used for Elasticsearch; configuring Logstash and Kibana was done through their respective
.yml files.

Using Elasticsearch, Logstash, and Kibana to Manage Logs Chapter 12

[260]

Once all three main components were up, and the operation was ready to accept incoming
data, we moved onto installing Beats, which are the data shippers that are used by
Elasticsearch and Logstash to ingest data. For logs and events, we used Filebeat, and for
system metrics such as memory usage and CPU, we used Metricbeat.

In the next chapter, we will learn about the challenges of systems management and Salt's
architecture.

Questions
How can Elasticsearch be installed?1.
How do you partition a disk?2.
How can you persistently mount a filesystem?3.
Which file controls Elasticsearch configuration?4.
What does the cluster.name setting do?5.
What is the recommended number of nodes in an Elasticsearch cluster?6.
How can an Elasticsearch node be added to an existing cluster?7.
What process is needed to install Logstash and Kibana?8.
What is persistent queuing?9.
What is a coordinating node?10.
What are Beats?11.
What is Filebeat used for?12.

Further reading
Fundamentals of Linux by Oliver Pelz: https:/ ​/​www. ​packtpub. ​com/
networking- ​and- ​servers/ ​fundamentals- ​linux

https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux
https://www.packtpub.com/networking-and-servers/fundamentals-linux

4
Section 4: System Management

Using Saltstack
In this section, the reader will be able to understand how Infrastructure as Code (IaC)
works and the advantages of using Saltstack for systems management. Then an overview of
some of the best practices for design.

The section contains the following chapters:

Chapter 13, Solving Management Problems with Salty Solutions
Chapter 14, Getting Your Hands Salty
Chapter 15, Design Best Practices

13
Solving Management Problems

with Salty Solutions
In this chapter, we will discover and discuss why a business needs to have a centralized
management utility for its infrastructure, including the high level of complexity that a
heterogeneous environment brings to the table. We will be talking about solutions to this
and things such as the following:

How new technologies bring complexity to our business
How we can centralize system management.
How infrastructure as code (IaC) help us to maintain our system's state
Tools that leverage IaC
The SaltStack platform and its components

Let's begin our journey through system management.

Centralizing system management
Understanding the reason behind system management can be easily taken for granted. We
often assume that just because a business has a big IT infrastructure, it needs a solution to
manage its inventory. While this is obviously true, there is more to it than that. Our job as
architects consists of listening to our customers' problems and understanding what exactly
they are looking for.

Solving Management Problems with Salty Solutions Chapter 13

[263]

New technologies and system management
In this ever-evolving IT world, changes come fast. New technologies come out almost every
day. Technologies such as virtualization, IoT, and the cloud are shaping and changing the
way we use IT by growing our infrastructures exponentially, which the bare-metal era
never saw.

All these changes and exponential growth means that IT managers have a lot more to
manage and far less time to train their staff to support these technologies, so many
businesses can barely keep up with the pace. This can result in them becoming reluctant to
adopt new technologies. But many have no choice but to adopt them for fear of becoming
irrelevant and not being able to satisfy the demands of their customers. If their competitors
have the advantage and deliver a better and faster service, they will likely go out of
business.

Companies want to adopt these technologies as soon as possible, to gain an edge over their
competitors, but new technologies often come with big learning curves. During this time, IT
staff need to learn how to manage and maintain new systems, resulting in keeping critical
systems and workloads available becoming a challenge. Not complying with our SLAs
becomes a real threat; imagine a situation where a developer needs the operations team to
apply a library patch to our dev environment systems in order to test a new release, and
because our operations staff (or at least half of them) are in training, developers are
tempted to bypass the standardized change-request process and apply the update
themselves. Shadow IT in this type of situation is really common, and we need to avoid it at
all costs. Shadow IT can make our company non-compliant with regulatory standards.

While IT leaders push to adopt new technologies, they are often left with very small and
declining budgets to do this type of transformation. This also directly affects our critical
systems and workloads because investment in system management declines and moves
toward innovation. Moving toward innovation is not a bad thing, because it will eventually
enable us to provide a better service, but it is important to understand that it also has
consequences regarding the maintenance of our existing environments.

With new technology comes new infrastructure; mixed environments become more
common every day, and it is crucial to understand how to manage these mixed
environments in the best and most efficient way possible.

Solving Management Problems with Salty Solutions Chapter 13

[264]

Recovering control of our own infrastructure
Having control of our infrastructure is the main goal of system management. But what does
it mean to have control? Inventory listing, version control, automated patching, and
software distribution are all part of system management. All of them are part of a bigger
picture where IT regains control of its infrastructure and can ensure compliance and
standardization across their systems no matter what Linux distribution they are running.

Often our systems are separated; this separation is because they might differ in their
characteristics. We can have systems with Red Hat Enterprise Linux-based distributions or
Debian-based distributions, systems that have different architectures such as x86, power
servers, or even ARM. All these systems might not even talk to one another or serve the
same purpose; all of them become silos that IT has to maintain and manage.

Imagine performing all the different tasks that systems' management is about on each
separate silo by hand without a tool to centralize and automate the tasks. Human error is
the most direct threat to this type of scenario, followed by the large complexity, time, and
cost that an IT business has to incur to train its staff, hire staff, and buy specific
administration tools for each different system type.

Centralized tools to disperse problems
Centralized configuration management can help us to control changes to systems in a
controlled, consistent, and stable way. It is perfect for systems that are running a cluster or
configured for high availability, as all the nodes across the cluster have to have the exact
same configuration. With configuration management, we can also understand the reason
behind permissions on certain files, a package installed on all the systems, or even a line of
code in a configuration file.

These changes or configurations that we implement through a configuration management
tool can also be rolled back, as most tools available in the market come with version control,
and any typo, human error, or incompatible update can easily be rolled back.

As we slowly transition into cloud environments, virtual machines and resources become
more and more a commodity and a service. Configuration management tools that can help
us manage, provision, and maintain our cloud infrastructure become very valuable assets.
With these types of tool, we can treat our infrastructure in a more elastic way, and define it
in a descriptive way, in the sense that we can have templates that deploy the same
infrastructure or implement changes based on a definition; this is what we call
infrastructure as code (IaC).

Solving Management Problems with Salty Solutions Chapter 13

[265]

Coding for a desired state
The whole idea behind IaC is to have consistency and versioning within our environment.
IaC seeks a more descriptive and standard way of provisioning resources, by avoiding
unique and special deployments to prevent the situation in which recreating an
environment is highly complex because of the uniqueness of each of its components.

IaC tools define configurations via a specific language or via existing languages such as
YAML or JSON; in the following, we can see an example extract from a Terraform template
that defines virtual machines in Microsoft Azure:

resource "azurerm_resource_group" "test" {
 name = "example"
 location = "East US 2"
}

resource "azurerm_kubernetes_cluster" "test" {
 name = "exampleaks"
 location = "${azurerm_resource_group.test.location}"
 resource_group_name = "${azurerm_resource_group.test.name}"
 dns_prefix = "acctestagent1"

 agent_pool_profile {
 name = "default"
 count = 1
 vm_size = "Standard_B1_ls"
 os_type = "Linux"
 os_disk_size_gb = 30
 }

 service_principal {
 client_id = "00000000-0000-0000-0000-000000000000"
 client_secret = "00000000000000000000000000000000"
 }

 tags = {
 Environment = "Production"
 }
}

output "client_certificate" {
 value = "${azurerm_kubernetes_cluster.test.kube_config}"
}

output "kube_config" {
 value = "${azurerm_kubernetes_cluster}"
}

Solving Management Problems with Salty Solutions Chapter 13

[266]

In the world of cloud infrastructures, elasticity is key. Now we don't have existing
resources provisioned on our datacenters waiting to be used. In the cloud, we pay for what
we use and having VMs or storage sitting there increasing our monthly bill is not ideal.
With IaC, we can scale up or scale down those environments on demand. For example, we
know that we have an application that is at its peak consumption only during business
hours and requires extra instances to support the load. But out of business hours, a single
instance is enough to support the load. With IaC, we can have a script to create extra
instances in the morning and lower the instances at the end of the day. Each instance is not
unique and we can take advantage of configuration management tools that use descriptive
files via IaC to achieve this.

There are several tools that can accomplish the afore mentioned example, but many tools
don't just provision infrastructure in the cloud or in virtualized environments. Other
configuration management tools do even more than that; they can push configuration files,
install packages, create users, or even filesystems. There are several ways and methods in
which these tools perform their configurations. Many tools require an agent, but a few
others are agentless.

The way in which configuration management tools perform their changes is essentially via
a push or a pull. This will depend (but not always) on whether the tool uses an agent or is
agentless. Most agentless tools push the configuration changes you declare in IaC files and
send the changes to either an API in the cloud or via SSH when you execute the tool via a
command line or a script.

On the other hand, a pull is almost always through an agent. The agent is constantly
consulting the configuration management server for definitions, verifying the desired state
in case something was changed to pull those changes from the server and apply them to its
host.

Pushes and pulls can be applied in two different ways: in a declarative way and in an
imperative way. The declarative way specifies what the desired state is, and the changes are
applied as they are defined in the IaC specification file. The imperative way consists of
running a set of instructions or commands in a specific order to tell the system how to reach
the desired state.

Some open source tools available for configuration management via IaC are as follows:

Puppet
Chef
Ansible

Solving Management Problems with Salty Solutions Chapter 13

[267]

Terraform
Salt
Vagrant

We will be taking an in-depth look at Salt and its components in the Chapter 14, Getting
Your Hands Salty.

Understanding NaCl
We learned about what IaC is, and the difficulties behind systems management. But as
architects of future solutions, we need to know and understand which tools can help our
customers face the challenges that configuration management brings to the table.

In this section, we will be talking about how we can use Salt, or The SaltStack Platform as
it is also known, to help us achieve a centralized, agile, and elastic management
infrastructure.

Introducing Salt
Salt is an open source project developed in Python and was created by Tomas S Hatch, back
in 2011. Originally, it wasn't intended to be a configuration management tool, but rather a
data collection tool and a remote command execution software that leveraged the ZeroMQ
library. Later the same year, configuration management functionalities were added via
states, which we will review later.

Due to the fact that Salt is written in Python, it is highly extensible and modular, and can
easily write customized modules to extend its functionality even further.

It is crucial to understand that Salt is not just a configuration management tool, but in these
chapters, we will be focusing on its configuration management capabilities due to the
nature of the subject at hand. In the Further reading section, I will be adding several other
book recommendations if you want to learn more about other Salt functionalities.

The ways you define desired states in Salt, or in other words the languages that Salt
supports, are varied. The main and default language is YAML with support for Jinja
templating.

An example of a YAML definition to create a new user can be as follows:

doge:
 user.present:

Solving Management Problems with Salty Solutions Chapter 13

[268]

 - fullname: much doge
 - shell: /bin/bash
 - home: /home/doge

YAML is a data-render language for Salt; data renders take definitions in the file and then
transform them into Python data structures for Salt to consume.

The following are some other data-render languages that Salt supports:

dson

hjson

json5

json

pydsl

pyobjects

py

stateconf

yamlex

Salt has two types of renders. The first one is the one we just talked about: data-renders.
The second one is the text render, which is the category Jinja falls into. This text renders
instead of returning a Python data structure, they return text instead, which is later
translated for the data render.

Text renders are useful for setting up variables or loops if we need to repeat several
definitions with different values but the same structure. For example, instead of creating a
YAML for each user, we could create a Jinja template and create several users with the
same file, as follows:

{% for user in [dsala, eflores, elilu] %}
{{ user }}:
user.present:
 - home: /home/{{ user }}
 - shell: /bin/bash

The preceding example will create three users instead of creating one user by file or
definition. This way is more efficient because we not only save time and work by not typing
the same definition over and over again, we can also easily add more users if needed in the
array, without having to create an entirely new file or definition for the extra user.

Solving Management Problems with Salty Solutions Chapter 13

[269]

Besides Jinja, Salt text-renders support other templating engines, such as the following :

Cheetah

Genshi

GPG

Jinja

Mako

NaCl

Pass

Py

Wempy

We will be focusing on Jinja and YAML for the rest of the chapters.

The SaltStack platform
We previously talked about the different methods and approaches that IaC has. Salt is
perfect for us to understand all of them because Salt uses both push and pull methods and
also both declarative and imperative approaches.

Let's take an overview of Salt's basic functionality:

Solving Management Problems with Salty Solutions Chapter 13

[270]

Like any other client/server cluster, Salt consists of two basic types of node:

Master: This server, or group of servers, is in charge of coordinating the minions
and where they query for their desired states. Masters are also the ones that send
the commands to be executed on minions.
Minion: Servers managed by the master.

The master server listens from two TCP ports: 4505 and 4506. Both ports have very
different roles and very different connection types.

The 4505 port or Publisher is where all minions listen for messages from the master. The
4506 port or the Request Server is where minions request specific files or data directed
directly through them through a secure way. Salt's network transport utilizes the ZeroMQ
messaging queuing system, which uses Elliptic Curve Cryptography with 4,096-bit RSA
keys that are generated in both the master and minions, as we will see later in this chapter.

Salt is an agent-based tool and all communication between masters and minions is possible
through the agent that is installed on the minions. Minions are in charge of initiating
communications with the masters.

This matters because, in a segmented network that might or might not have the internet in
between, you will have many security boundaries between your masters and minions, and
every minion may not have a unique address defined to it. In a scenario where the masters
initiate the communications, all your minions in the stack might have to have a public IP
address, or a lot of networking configuration and network address translation (NAT) has
to be implemented every time you add a minion to be managed.

Because of the way Salt communications work, you can have your masters in a DMZ zone
with publicly addressable IP addresses, and all your minions connecting to those IPs. You
will always have fewer masters than minions, and therefore the network configuration that
needs to be implemented will decrease significantly. Salt is a highly scalable platform,
where some stacks contain thousands of minions; imagine having to configure the network
so that three or four masters can reach thousands of minions.

Having masters with public IPs can be scary, but remember that as long as you verify the
RSA key fingerprints, you can be certain that all communications between the nodes are
secured thanks to ZeroMQ's cryptography mechanisms.

Salt capabilities
After a brief overview of Salt's architecture, it is time to go through its different
functionalities and capabilities.

Solving Management Problems with Salty Solutions Chapter 13

[271]

Remote command execution modules
Remember that we said that Salt uses both push and pull methods alongside declarative
and imperative approaches. The remote command execution feature is how we leverage
Salt's push method in an imperative way.

If you need to run a command in multiple minions or specific minions remotely, you will
be using execution modules. Let's take a look at a simple example:

dsala@master1:~$ salt ‘*’ cmd.run ‘ls /home’
minion-1:
 jdoe
 dev1
master:
 dsala
 eflores

The previous command pushed an ls to the minions that are registered to the master. Let's
take a closer look at the commands:

salt: This is Salt's most basic command to execute commands in parallel on
remote minions.
'*': Indicates that we will be running the command on all servers that are
managed by our masters; you can also define specific targets.

cmd.run: The execution module to be invoked.

'ls /home': The parameters of the execution module.
Output: Ordered by the minion's name followed by the output of that server.

Execution modules are the most basic form in which Salt uses its remote execution
framework. Do you remember that Salt is written in Python? Well, execution modules are
actually Python modules with a set of functions that serve a common purpose. Salt comes
with several prebuilt modules that you can use, and you can even write your own modules
and add them to your SaltStack platform. All execution modules are supposed to be
distribution agnostic, but you can run into some that are not available in some
distributions. Windows-specific modules are mostly defined by a starting win_ at the
beginning of the function.

Solving Management Problems with Salty Solutions Chapter 13

[272]

In our previous example, we used the cmd module with the run function. The format in
which we work with a function from a module involves defining the module to import
followed by a period and the function. Whenever a function is called, Salt proceeds in the
following way:

The Publisher port (4505) from the master in which the command was executed1.
sends the command to the specified targets.
The targeted minions evaluate the command and decide whether they have to2.
run the command.
Minions that ran the command format the output and send it to the master's3.
request server port (4506).

Knowing what execution modules are will not be enough for us to know what we have at
our disposal. Many predefined modules are the ones most commonly used, and it's worth
taking a look at them and what their main functions are.

The sys module
This module is the equivalent of the man command. With sys, we can consult, list, and even
check which argument accepts each function. You will find yourself using mostly the
following functions of the sys module:

list_modules: This function will list the modules available to the target minion.
It is important to note that execution modules are executed on the minions
themselves and not in the master from where the command was executed.
list_functions: With list_functions, you can list the available functions
for a certain module.
argspec: Lists available arguments and default values for the desired function.

Now we can run one of the preceding functions of the sys module to see a real example:

dsala@master1:~$ sudo salt 'minion1' sys.argspec pkg.install
minion1:

 pkg.install:

 args:
 - name
 - refresh
 - fromrepo
 - skip_verify
 - debconf
 - pkgs

Solving Management Problems with Salty Solutions Chapter 13

[273]

 - sources
 - reinstall
 - ignore_epoch
 defaults:
 - None
 - False
 - None
 - False
 - None
 - None
 - None
 - False
 - False
 kwargs:
 True
 varargs:
 None

The pkg module
Now that we have used a pkg function as an example for the sys module, I want to talk
about the pkg module. This is another of the most common and used modules that Salt
offers. This module handles all related package tasks, from installing and upgrading to
deleting packages. As Salt tries to be as distro-agnostic as possible, the pkg module actually
invokes a set of different modules and functions under the hood, specific to the distribution
in which the module was invoked. For example, if a pkg.install was targeting Ubuntu-
based systems when the minions receive the message, in reality the aptpkg module is the
one that is going to be called in the minion. This is why pkg is called a virtual module.

Some different modules invoked by pkg are the following:

aptpkg: For Debian distributions with apt-get package management.
brew: For macOS with Homebrew package management.
yumpkg: Red Hat-based distributions with yum or dnf as package managers.
zypper: For SUSE-based distributions with zypper as the package manager.

The following is an example of installing the nginx web server with pkg:

dsala@master1:~$ sudo salt 'minion1' pkg.install nginx
minion1:

 nginx:

 new:

Solving Management Problems with Salty Solutions Chapter 13

[274]

 1.15.10
old:

The test module
Last, but not least, I want to talk to you about the test module. The test module will allow
us to test our SaltStack platform. Things such as checking the health status of minions, the
Salt version that they are running, and even just making them send an echo, are possible
with the test module.

Different functions of the test module can be found with the sys.list_functions
function, but it is worth mentioning some of the most common ones that you might use
very frequently:

ping: The ping function tests for a response from the minions; this is not an
ICMP ping command.
version: Returns Salt's version of your minions.
versions_information: Returns a full list of all of Salt's dependencies, kernel
version, distribution version, and Salt version.

Salt states
Now that we know about the remote execution framework, we can start exploring the rest
of the systems that Salt has to offer. The remote execution framework is the basis of
something called the state system. The state system is a declarative and idempotent way
that leverages IaC files to configure a minion's desired state. The state system utilizes state
modules that are much like execution modules but with the difference that Salt states
actually check whether the desired configuration is already present in the minion. For
example, let's take a look at the following state definition:

dsala@master:/srv/salt/httpd $ cat httpd.sls
 httpd_package:
 pkg.installed:
 - name: httpd

The preceding state will install the httpd (Apache) package in targeted servers at runtime
but only if the package is not present. If the package is not present, the state module will
invoke the local pkg.install execution function and install the package in the minion(s).

Solving Management Problems with Salty Solutions Chapter 13

[275]

Take a look at the fact that we cat that file from a /srv/salt directory. This directory is
the default location of Salt's state directory tree where state definitions are placed. This
directory is where you will be creating folders containing formulas, which are a set of Salt
states that contain all the necessary configurations to deploy an application. For example,
we can not only install httpd, we can also configure the virtual hosts and download the Git
repos containing the actual websites that will be running on that Apache web server.

There is a set of rules that the directory tree follows for you to invoke state modules and
run formulas, but this will be a subject for the Chapter 14, Getting Your Hands Salty, where
we will delve into configurations and actual usage.

Grains of Salt
We have learned that you can run execution modules by defining the minion name or via
* when running on all minions. But running Salt states and execution modules on all the
minions in the stack, or on individual minions, is less than ideal when you have hundreds
or even thousands of minions being managed by your masters.

Here is where Salt introduces the grains interface, which allows us to identify minions by
specific characteristics or even set our own type of label or role to a group of minions that
share a same purpose or characteristics, so we can perform more targeted configuration
management.

We can leverage the grains interface with the same syntax in which we would execute any
command in Salt:

dsala@master:~$ salt “minion1” grains.items

With the preceding command, we list all the different hardware and software
characteristics of the system that we targeted. In the output, we can see things such as the
operating system family, the system architecture, and even the hypervisor that we are using
to run the VM.

This will help us to create state definitions targeting specific systems via something called a
top file, which we will discuss in the Chapter 14, Getting Your Hands Salty. An example of
a Salt state top file definition using grains and targeting all Debian family VMs will look
like this:

 base:
 'os_family:Debian:
 - match: grain
 - httpd

Solving Management Problems with Salty Solutions Chapter 13

[276]

As mentioned before, we can also create custom grains in our minions to define roles and
tag our minions with unique value pairs. This is useful for grouping minions in specific
tasks; for example, all the VMs of the QA team can be tagged with a key value pair,
departement: qa, for example. Another way of grouping could be by role, such
as appfoo: frontend, and so on. There are many ways to use grain targeting, and all will
depend on how we want to administer or push and maintain the desired states.

Salt pillars
With grains, we can target specific minions, but at the end, we defined those targeting
policies that are in the top files, which form part of a formula. Formulas are usually stored
in Git repositories and sometimes even in public ones. That's why we can't, or rather we
shouldn't, declare sensitive information in Salt states. The same happens with Dockerfiles
as we saw in our previous chapters, and Kubernetes solves this with the Secrets API object.
Salt has its own version of secrets and it's called Pillars.

Unlike grains, pillars are stored in the masters instead of the minions. Only minions that are
targeted by the pillar will have access to the information in the pillar. This, again, makes it
perfect for sensitive information. When storing sensitive information, pillars can also be
encrypted at rest, and thanks to Salt's render system, pillars will be decrypted during pillar
compilation.

Pillars decreases the surface area of sensitive data by only storing it in the master:

Solving Management Problems with Salty Solutions Chapter 13

[277]

With Salt pillars, we finish our brief overview of the basic components that the SaltStack
platform has to offer. We will be discussing them in more depth and working with real-life
examples in Chapter 14, Getting Your Hands Salty, so you can get hands-on and start
managing systems through Salt.

Summary
In this chapter, we covered the different problems that businesses face when it comes to
maintaining their infrastructures. We went through different technologies such as IaC and
centralized system management. We went through the different methods whereby IaC
pushes or pulls changes into managed systems and learned about several applications that
leverage IaC.

We also discussed what Salt is and its different components that help us achieve a
centralized managed infrastructure.

In the next chapter, we will learn how to design a Salt solution and install the software.

Questions
What is systems management?1.
What are the challenges behind systems' management?2.
What applications can help us with system management?3.
What is Infrastructure as Code?4.
What are the different types of method with which we can manage our systems?5.
What is Salt?6.
What are Salt's different components?7.

Solving Management Problems with Salty Solutions Chapter 13

[278]

Further reading
Gartner: 'Every budget is an IT budget'
Forrester: https:/ ​/​www. ​forrester. ​com/ ​report/
Cloud+Investments+Will+Reconfigure+Future+IT+Budgets/ ​-​/​E- ​RES83041#

Declarative vs. Imperative Models for Configuration Management: https:/ ​/
www.​upguard. ​com/ ​blog/ ​articles/ ​declarative- ​vs.​-​imperative- ​models- ​for-
configuration- ​management

SALTSTACK: https:/ ​/ ​s.​saltstack. ​com/​beyond- ​configuration- ​management/ ​

Salt Configuration Management: https:/ ​/​red45. ​wordpress. ​com/ ​2011/ ​05/ ​29/
salt-​configuration- ​management/ ​

Renderers: https:/ ​/ ​docs. ​saltstack. ​com/ ​en/​latest/ ​ref/ ​renderers/ ​

Remote Execution: https:/ ​/ ​docs. ​saltstack. ​com/ ​en/​getstarted/ ​system/
execution. ​html

Targeting using grains: https:/ ​/​docs. ​saltstack. ​com/ ​en/​latest/ ​topics/
targeting/ ​grains. ​html

Grains: https:/ ​/ ​docs. ​saltstack. ​com/ ​en/​latest/ ​topics/ ​grains/ ​

Functions: https:/ ​/​docs. ​saltstack. ​com/​en/ ​getstarted/ ​config/ ​functions.
html

https://www.forrester.com/report/Cloud+Investments+Will+Reconfigure+Future+IT+Budgets/-/E-RES83041#
https://www.forrester.com/report/Cloud+Investments+Will+Reconfigure+Future+IT+Budgets/-/E-RES83041#
https://www.forrester.com/report/Cloud+Investments+Will+Reconfigure+Future+IT+Budgets/-/E-RES83041#
https://www.forrester.com/report/Cloud+Investments+Will+Reconfigure+Future+IT+Budgets/-/E-RES83041#
https://www.forrester.com/report/Cloud+Investments+Will+Reconfigure+Future+IT+Budgets/-/E-RES83041#
https://www.forrester.com/report/Cloud+Investments+Will+Reconfigure+Future+IT+Budgets/-/E-RES83041#
https://www.forrester.com/report/Cloud+Investments+Will+Reconfigure+Future+IT+Budgets/-/E-RES83041#
https://www.forrester.com/report/Cloud+Investments+Will+Reconfigure+Future+IT+Budgets/-/E-RES83041#
https://www.forrester.com/report/Cloud+Investments+Will+Reconfigure+Future+IT+Budgets/-/E-RES83041#
https://www.forrester.com/report/Cloud+Investments+Will+Reconfigure+Future+IT+Budgets/-/E-RES83041#
https://www.forrester.com/report/Cloud+Investments+Will+Reconfigure+Future+IT+Budgets/-/E-RES83041#
https://www.forrester.com/report/Cloud+Investments+Will+Reconfigure+Future+IT+Budgets/-/E-RES83041#
https://www.forrester.com/report/Cloud+Investments+Will+Reconfigure+Future+IT+Budgets/-/E-RES83041#
https://www.forrester.com/report/Cloud+Investments+Will+Reconfigure+Future+IT+Budgets/-/E-RES83041#
https://www.forrester.com/report/Cloud+Investments+Will+Reconfigure+Future+IT+Budgets/-/E-RES83041#
https://www.forrester.com/report/Cloud+Investments+Will+Reconfigure+Future+IT+Budgets/-/E-RES83041#
https://www.forrester.com/report/Cloud+Investments+Will+Reconfigure+Future+IT+Budgets/-/E-RES83041#
https://www.forrester.com/report/Cloud+Investments+Will+Reconfigure+Future+IT+Budgets/-/E-RES83041#
https://www.forrester.com/report/Cloud+Investments+Will+Reconfigure+Future+IT+Budgets/-/E-RES83041#
https://www.forrester.com/report/Cloud+Investments+Will+Reconfigure+Future+IT+Budgets/-/E-RES83041#
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-management
https://s.saltstack.com/beyond-configuration-management/
https://s.saltstack.com/beyond-configuration-management/
https://s.saltstack.com/beyond-configuration-management/
https://s.saltstack.com/beyond-configuration-management/
https://s.saltstack.com/beyond-configuration-management/
https://s.saltstack.com/beyond-configuration-management/
https://s.saltstack.com/beyond-configuration-management/
https://s.saltstack.com/beyond-configuration-management/
https://s.saltstack.com/beyond-configuration-management/
https://s.saltstack.com/beyond-configuration-management/
https://s.saltstack.com/beyond-configuration-management/
https://s.saltstack.com/beyond-configuration-management/
https://s.saltstack.com/beyond-configuration-management/
https://s.saltstack.com/beyond-configuration-management/
https://s.saltstack.com/beyond-configuration-management/
https://s.saltstack.com/beyond-configuration-management/
https://red45.wordpress.com/2011/05/29/salt-configuration-management/
https://red45.wordpress.com/2011/05/29/salt-configuration-management/
https://red45.wordpress.com/2011/05/29/salt-configuration-management/
https://red45.wordpress.com/2011/05/29/salt-configuration-management/
https://red45.wordpress.com/2011/05/29/salt-configuration-management/
https://red45.wordpress.com/2011/05/29/salt-configuration-management/
https://red45.wordpress.com/2011/05/29/salt-configuration-management/
https://red45.wordpress.com/2011/05/29/salt-configuration-management/
https://red45.wordpress.com/2011/05/29/salt-configuration-management/
https://red45.wordpress.com/2011/05/29/salt-configuration-management/
https://red45.wordpress.com/2011/05/29/salt-configuration-management/
https://red45.wordpress.com/2011/05/29/salt-configuration-management/
https://red45.wordpress.com/2011/05/29/salt-configuration-management/
https://red45.wordpress.com/2011/05/29/salt-configuration-management/
https://red45.wordpress.com/2011/05/29/salt-configuration-management/
https://red45.wordpress.com/2011/05/29/salt-configuration-management/
https://red45.wordpress.com/2011/05/29/salt-configuration-management/
https://red45.wordpress.com/2011/05/29/salt-configuration-management/
https://red45.wordpress.com/2011/05/29/salt-configuration-management/
https://red45.wordpress.com/2011/05/29/salt-configuration-management/
https://red45.wordpress.com/2011/05/29/salt-configuration-management/
https://docs.saltstack.com/en/latest/ref/renderers/
https://docs.saltstack.com/en/latest/ref/renderers/
https://docs.saltstack.com/en/latest/ref/renderers/
https://docs.saltstack.com/en/latest/ref/renderers/
https://docs.saltstack.com/en/latest/ref/renderers/
https://docs.saltstack.com/en/latest/ref/renderers/
https://docs.saltstack.com/en/latest/ref/renderers/
https://docs.saltstack.com/en/latest/ref/renderers/
https://docs.saltstack.com/en/latest/ref/renderers/
https://docs.saltstack.com/en/latest/ref/renderers/
https://docs.saltstack.com/en/latest/ref/renderers/
https://docs.saltstack.com/en/latest/ref/renderers/
https://docs.saltstack.com/en/latest/ref/renderers/
https://docs.saltstack.com/en/latest/ref/renderers/
https://docs.saltstack.com/en/latest/ref/renderers/
https://docs.saltstack.com/en/latest/ref/renderers/
https://docs.saltstack.com/en/latest/ref/renderers/
https://docs.saltstack.com/en/latest/ref/renderers/
https://docs.saltstack.com/en/getstarted/system/execution.html
https://docs.saltstack.com/en/getstarted/system/execution.html
https://docs.saltstack.com/en/getstarted/system/execution.html
https://docs.saltstack.com/en/getstarted/system/execution.html
https://docs.saltstack.com/en/getstarted/system/execution.html
https://docs.saltstack.com/en/getstarted/system/execution.html
https://docs.saltstack.com/en/getstarted/system/execution.html
https://docs.saltstack.com/en/getstarted/system/execution.html
https://docs.saltstack.com/en/getstarted/system/execution.html
https://docs.saltstack.com/en/getstarted/system/execution.html
https://docs.saltstack.com/en/getstarted/system/execution.html
https://docs.saltstack.com/en/getstarted/system/execution.html
https://docs.saltstack.com/en/getstarted/system/execution.html
https://docs.saltstack.com/en/getstarted/system/execution.html
https://docs.saltstack.com/en/getstarted/system/execution.html
https://docs.saltstack.com/en/getstarted/system/execution.html
https://docs.saltstack.com/en/getstarted/system/execution.html
https://docs.saltstack.com/en/getstarted/system/execution.html
https://docs.saltstack.com/en/latest/topics/targeting/grains.html
https://docs.saltstack.com/en/latest/topics/targeting/grains.html
https://docs.saltstack.com/en/latest/topics/targeting/grains.html
https://docs.saltstack.com/en/latest/topics/targeting/grains.html
https://docs.saltstack.com/en/latest/topics/targeting/grains.html
https://docs.saltstack.com/en/latest/topics/targeting/grains.html
https://docs.saltstack.com/en/latest/topics/targeting/grains.html
https://docs.saltstack.com/en/latest/topics/targeting/grains.html
https://docs.saltstack.com/en/latest/topics/targeting/grains.html
https://docs.saltstack.com/en/latest/topics/targeting/grains.html
https://docs.saltstack.com/en/latest/topics/targeting/grains.html
https://docs.saltstack.com/en/latest/topics/targeting/grains.html
https://docs.saltstack.com/en/latest/topics/targeting/grains.html
https://docs.saltstack.com/en/latest/topics/targeting/grains.html
https://docs.saltstack.com/en/latest/topics/targeting/grains.html
https://docs.saltstack.com/en/latest/topics/targeting/grains.html
https://docs.saltstack.com/en/latest/topics/targeting/grains.html
https://docs.saltstack.com/en/latest/topics/targeting/grains.html
https://docs.saltstack.com/en/latest/topics/targeting/grains.html
https://docs.saltstack.com/en/latest/topics/targeting/grains.html
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/getstarted/config/functions.html
https://docs.saltstack.com/en/getstarted/config/functions.html
https://docs.saltstack.com/en/getstarted/config/functions.html
https://docs.saltstack.com/en/getstarted/config/functions.html
https://docs.saltstack.com/en/getstarted/config/functions.html
https://docs.saltstack.com/en/getstarted/config/functions.html
https://docs.saltstack.com/en/getstarted/config/functions.html
https://docs.saltstack.com/en/getstarted/config/functions.html
https://docs.saltstack.com/en/getstarted/config/functions.html
https://docs.saltstack.com/en/getstarted/config/functions.html
https://docs.saltstack.com/en/getstarted/config/functions.html
https://docs.saltstack.com/en/getstarted/config/functions.html
https://docs.saltstack.com/en/getstarted/config/functions.html
https://docs.saltstack.com/en/getstarted/config/functions.html
https://docs.saltstack.com/en/getstarted/config/functions.html
https://docs.saltstack.com/en/getstarted/config/functions.html
https://docs.saltstack.com/en/getstarted/config/functions.html
https://docs.saltstack.com/en/getstarted/config/functions.html

14
Getting Your Hands Salty

After going through the basic concepts of Salt, we will finally in this chapter get hands-on
with Salt. We will have the chance to work on a real-life scenario and to design and install
proof-of-concept infrastructure for our potential customer. We will do such things as the
following:

Provisioning cloud infrastructure via Terraform
Installing and configuring Salt masters
Installing and configuring minions
Creating states and formulas for minions
Provisioning a load balancer via Salt

After performing these tasks, you should have the basic knowledge and hands-on
experience to start learning Salt more in depth.

Hands-on with Salt
We have learned about the different Salt components and capabilities that the software has,
and how it can help us to achieve control of our infrastructure. But we haven't used any of
the components to actually maintain any system or even install Salt. So, let's get our hands
dirty with Salt and start making use of our newly acquired knowledge.

Before starting, we are going to set up a scenario to make more sense of what we will be
doing in this chapter, and it will be related to a real-life scenario.

Scenario
You have been hired by Mr. Don High to design the system's management platform for his
company. He wants to run his web server workloads on Azure Virtual Machines (VMs),
with an Infrastructure as a Service (IaaS) model.

Getting Your Hands Salty Chapter 14

[280]

His setup is fairly simple: he wants to have two virtual machines running a website written
in Node.js in front of an nginx load balancer to route the traffic into the website's VMs. All
of his infrastructure has to be managed via a configuration management solution, in a way
that, every time they provision a new VM, the application is loaded alongside any
configuration that might be needed for their website to run.

One more thing that he mentioned to you is that the company's staff haven't deployed any
resources in Azure, and that they would like to see how Infrastructure as Code (IaC) works
for deployments in the cloud, so that their developers are able to use it in the future.

Terraforming our initial infrastructure
We mentioned Terraform in the previous chapter, and we want to take advantage of the
fact that our client is asking us to deploy his infrastructure via an IaC software, so this is the
perfect chance to use this great tool.

We will briefly explain each step before executing it, but if you would like to find out more,
we will suggest more books in the Further reading section that talk more in depth about
Terraform.

Setting up Terraform
We will assume that you will be executing the following steps from a Unix-like
workstation. Installing Terraform is fairly simple. Terraform is only a binary that can be
downloaded from the terraform.io website.

https:/ ​/​www. ​terraform. ​io/​downloads. ​html

In my case, I will be using a macOS Terminal to install Terraform:

https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html

Getting Your Hands Salty Chapter 14

[281]

Once downloaded, you can go ahead and unzip the binary in a directory part of your path:

Check the Terraform version by running terraform version:

Once Terraform has been installed, we require the Azure CLI to be installed to configure
access to the customer's Azure subscription. You can find the steps to install the Azure CLI
and set up the subscription in our Installing Kubernetes chapters.

With the Azure CLI installed and your default account set, we can configure Terraform to
use the appropriate credentials in order for it to be able to deploy infrastructure.

First, we will create a directory to store our Terraform files:

dsala@NixMachine: ~ $ mkdir terrafiles

Next, we will create a service principal ID via the Azure CLI, which will be used to
authenticate Terraform with our subscription.

Save the subscription ID from the output of this command into a $SUB_ID variable:

dsala@NixMachine: ~ $ az account show --query "{subscriptionId:id}"

dsala@NixMachine: ~ $ SUB_ID=<subscription id>

Now, run the following command to create the service principal:

dsala@NixMachine: ~ $ az ad sp create-for-rbac \
--role="Contributor" \
--scopes="/subscriptions/${SUB_ID}"

Getting Your Hands Salty Chapter 14

[282]

Take note of the returned values of appId, password, and tenant returned from the
previous command.

Now, inside the terrafiles directory, create a file called terraform.tfvars.

This file is special because Terraform will automatically load by default
any file with this name if any is present in the directory when we execute
Terraform.

This file should contain the following information:

subscription_id = "azure-subscription-id"
tenant_id = "tenant-from-service-principal"
client_id = "appId-from-service-principal"
client_secret = "password-from-service-principal"

When you have the file ready, create another file called az_creds.tf with the following:

variable subscription_id {}
variable tenant_id {}
variable client_id {}
variable client_secret {}

provider "azurerm" {
 subscription_id = "${var.subscription_id}"
 tenant_id = "${var.tenant_id}"
 client_id = "${var.client_id}"
 client_secret = "${var.client_secret}"
}

This file will be our variables file, and it will load the credential variables
into the Azure Resource Manager Terraform provider.

Creating IaC
Now we are ready to start creating our IaC declaration files. Terraform uses its own
language called Hashicorp Configuration Language (HCL). You can find out more about it
in the following link: https:/ ​/ ​www. ​terraform. ​io/​docs/ ​configuration/ ​index. ​html.

https://www.terraform.io/docs/configuration/index.html
https://www.terraform.io/docs/configuration/index.html
https://www.terraform.io/docs/configuration/index.html
https://www.terraform.io/docs/configuration/index.html
https://www.terraform.io/docs/configuration/index.html
https://www.terraform.io/docs/configuration/index.html
https://www.terraform.io/docs/configuration/index.html
https://www.terraform.io/docs/configuration/index.html
https://www.terraform.io/docs/configuration/index.html
https://www.terraform.io/docs/configuration/index.html
https://www.terraform.io/docs/configuration/index.html
https://www.terraform.io/docs/configuration/index.html
https://www.terraform.io/docs/configuration/index.html
https://www.terraform.io/docs/configuration/index.html
https://www.terraform.io/docs/configuration/index.html
https://www.terraform.io/docs/configuration/index.html
https://www.terraform.io/docs/configuration/index.html

Getting Your Hands Salty Chapter 14

[283]

Let's begin defining our resources. Create a file called main.tf. This will be our main
modules file. A module is a set of resources that share a common goal or are all part of the
same application.

The name main.tf is the recommended name by Hashicorp, the company
owner of the Terraform Open Source project, for a minimal module.
You can find out more about modules in the Terraform documentation here:
https:/ ​/ ​www. ​terraform. ​io/​docs/ ​modules/ ​index. ​html.

Our file should contain all of the following resources that we will be declaring next.

Here is the resource group that will contain our Azure resources:

resource "azurerm_resource_group" "salt" {
name = "Salt"
location = "East US"
}

Here is the virtual network for our subnets:

resource "azurerm_virtual_network" "salt" {
name = "saltnet"
address_space = ["10.0.0.0/16"]
location = "${azurerm_resource_group.salt.location}"
resource_group_name = "${azurerm_resource_group.salt.name}"
}

Note that we are getting values from our previous resources, by calling them with the
following syntax:

"resource_type.local_name.value".

Here is the subnet(s) with the address space for our VMs:

resource "azurerm_subnet" "salt" {
name = "saltsubnet"
resource_group_name = "${azurerm_resource_group.salt.name}"
virtual_network_name = "${azurerm_virtual_network.salt.name}"
address_prefix = "10.0.0.0/24"
}

Here, we are creating only one subnet that will contain our masters and minions, but you
can always create separate subnets, as long as they are inside the VNET address space, for
the masters and minions to have network separation.

https://www.terraform.io/docs/modules/index.html
https://www.terraform.io/docs/modules/index.html
https://www.terraform.io/docs/modules/index.html
https://www.terraform.io/docs/modules/index.html
https://www.terraform.io/docs/modules/index.html
https://www.terraform.io/docs/modules/index.html
https://www.terraform.io/docs/modules/index.html
https://www.terraform.io/docs/modules/index.html
https://www.terraform.io/docs/modules/index.html
https://www.terraform.io/docs/modules/index.html
https://www.terraform.io/docs/modules/index.html
https://www.terraform.io/docs/modules/index.html
https://www.terraform.io/docs/modules/index.html
https://www.terraform.io/docs/modules/index.html
https://www.terraform.io/docs/modules/index.html
https://www.terraform.io/docs/modules/index.html
https://www.terraform.io/docs/modules/index.html

Getting Your Hands Salty Chapter 14

[284]

With our virtual network and subnet created, we need to create the firewall rules for our
virtual machines. Firewalls in Azure are called network security groups, and we will go
ahead and use the network security group provider to create the firewall and its rules.

Here is the network security group for the load balancer:

resource "azurerm_network_security_group" "saltlb" {
 name = "lb-nsg"
 location = "${azurerm_resource_group.salt.location}"
 resource_group_name = "${azurerm_resource_group.salt.name}"
}

The following are the network security group rules for access to the load balancer VM.

Ports for https:

resource "azurerm_network_security_rule" "httpslb" {
 name = "https"
 priority = 100
 direction = "inbound"
 access = "Allow"
 protocol = "Tcp"
 source_port_range = "*"
 destination_port_range = "8443"
 source_address_prefix = "*"
 destination_address_prefix = "*"
 resource_group_name = "${azurerm_resource_group.salt.name}"
 network_security_group_name =
"${azurerm_network_security_group.saltlb.name}"
}

Port for http:

resource "azurerm_network_security_rule" "httplb" {
 name = "http"
 priority = 101
 direction = "inbound"
 access = "Allow"
 protocol = "Tcp"
 source_port_range = "*"
 destination_port_range = "8080"
 source_address_prefix = "*"
 destination_address_prefix = "*"
 resource_group_name = "${azurerm_resource_group.salt.name}"
 network_security_group_name =
"${azurerm_network_security_group.saltlb.name}"
}

Getting Your Hands Salty Chapter 14

[285]

Port for SSH access:

resource "azurerm_network_security_rule" "sshlb" {
 name = "sshlb"
 priority = 103 direction = "inbound"
 access = "Allow"
 protocol = "Tcp"
 source_port_range = "*" destination_port_range = "22"
 source_address_prefix = "*"
 destination_address_prefix = "*"
 resource_group_name = "${azurerm_resource_group.salt.name}"
 network_security_group_name =
"${azurerm_network_security_group.saltlb.name}"
}

The second network security group for the master VM is as follows:

resource "azurerm_network_security_group" "saltMaster" {
 name = "masternsg"
 location = "${azurerm_resource_group.salt.location}"
 resource_group_name = "${azurerm_resource_group.salt.name}"
}

The following are the network security group rules for the master VM.

The following is the Salt publisher port:

resource "azurerm_network_security_rule" "publisher" {
 name = "publisher"
 priority = 100
 direction = "inbound"
 access = "Allow"
 protocol = "Tcp"
 source_port_range = "*"
 destination_port_range = "4505"
 source_address_prefix = "*"
 destination_address_prefix = "*"
 resource_group_name = "${azurerm_resource_group.salt.name}"
 network_security_group_name =
"${azurerm_network_security_group.saltMaster.name}"
}

The following is the request server port for Salt:

resource "azurerm_network_security_rule" "requestsrv" {
 name = "requestsrv"
 priority = 101
 direction = "inbound"

Getting Your Hands Salty Chapter 14

[286]

 access = "Allow"
 protocol = "Tcp"
 source_port_range = "*"
 destination_port_range = "4506"
 source_address_prefix = "*"
 destination_address_prefix = "*"
 resource_group_name = "${azurerm_resource_group.salt.name}"
 network_security_group_name =
"${azurerm_network_security_group.saltMaster.name}"
}

The ssh port for the master is as follows:

resource "azurerm_network_security_rule" "sshmaster" {
 name = "ssh"
 priority = 103
 direction = "inbound"
 access = "Allow"
 protocol = "Tcp"
 source_port_range = "*"
 destination_port_range = "22"
 source_address_prefix = "*"
 destination_address_prefix = "*"
 resource_group_name = "${azurerm_resource_group.salt.name}"
 network_security_group_name =
"${azurerm_network_security_group.saltMaster.name}"
}

The network security group for the minions is as follows:

resource "azurerm_network_security_group" "saltMinions" {
 name = "saltminions"
 location = "${azurerm_resource_group.salt.location}"
 resource_group_name = "${azurerm_resource_group.salt.name}"
}

This last network security group is special because we will not create any rules for it. The
default rules that Azure provides only allow VMs to talk with Azure resources, which is
exactly what we want for these VMs.

A public IP address for our Nginx load balancer VM is as follows:

resource "azurerm_public_ip" "saltnginxpip" {
 name = "lbpip"
 location = "${azurerm_resource_group.salt.location}"
 resource_group_name = "${azurerm_resource_group.salt.name}"
 public_ip_address_allocation = "static"
}

Getting Your Hands Salty Chapter 14

[287]

The virtual network interface for our load balancer is as follows:

resource "azurerm_network_interface" "saltlb" {
 name = "lbnic"
 location = "${azurerm_resource_group.salt.location}"
 resource_group_name = "${azurerm_resource_group.salt.name}"
 network_security_group_id = "${azurerm_network_security_group.saltlb.id}"

 ip_configuration {
 name = "lbip"
 subnet_id = "${azurerm_subnet.salt.id}"
 private_ip_address_allocation = "dynamic"
 public_ip_address_id = "${azurerm_public_ip.saltnginxpip.id}"
 }
}

The virtual network interfaces for our web server VMs are as follows:

resource "azurerm_network_interface" "saltminions" {
 count = 2
 name = "webnic${count.index}"
 location = "${azurerm_resource_group.salt.location}"
 resource_group_name = "${azurerm_resource_group.salt.name}"
 network_security_group_id =
"${azurerm_network_security_group.saltMinions.id}"

 ip_configuration {
 name = "web${count.index}"
 subnet_id = "${azurerm_subnet.salt.id}"
 private_ip_address_allocation = "dynamic"
 }
}

Following is the public IP address for our master VM:

resource "azurerm_public_ip" "saltmasterpip" {
 name = "masterpip"
 location = "${azurerm_resource_group.salt.location}"
 resource_group_name = "${azurerm_resource_group.salt.name}"
 allocation_method = "Dynamic"
}

This public IP address will be used for us to SSH into the master VM; that's why we are
allocating it dynamically.

Getting Your Hands Salty Chapter 14

[288]

The virtual network interface for the master VM is as follows:

resource "azurerm_network_interface" "saltmaster" {
 name = "masternic"
 location = "${azurerm_resource_group.salt.location}"
 resource_group_name = "${azurerm_resource_group.salt.name}"
 network_security_group_id =
"${azurerm_network_security_group.saltMaster.id}"

 ip_configuration {
 name = "masterip"
 subnet_id = "${azurerm_subnet.salt.id}"
 private_ip_address_allocation = "static"
 private_ip_address = "10.0.0.10"
 public_ip_address_id = "${azurerm_public_ip.saltmasterpip.id}"
 }
}

Following are the web server VMs:

resource "azurerm_virtual_machine" "saltminions" {
count = 2
name = "web-0${count.index}"
location = "${azurerm_resource_group.salt.location}"
resource_group_name = "${azurerm_resource_group.salt.name}"
network_interface_ids =
["${element(azurerm_network_interface.saltminions.*.id, count.index)}"]
vm_size = "Standard_B1s"
storage_image_reference {
 publisher = "Canonical"
 offer = "UbuntuServer"
 sku = "16.04-LTS"
 version = "latest"
}
storage_os_disk {
 name = "webosdisk${count.index}"
 caching = "ReadWrite"
 create_option = "FromImage"
 managed_disk_type = "Standard_LRS"
}
os_profile {
 computer_name = "web-0${count.index}"
 admin_username = "dsala"
}
os_profile_linux_config {
 disable_password_authentication = true
 ssh_keys = {
 path = "/home/dsala/.ssh/authorized_keys"

Getting Your Hands Salty Chapter 14

[289]

 key_data = "${file("~/.ssh/id_rsa.pub")}"
 }
 }
}

Replace os_profile.admin_username and os_profile_linux_config.key_data
with your own information.

The master VM is as follows:

resource "azurerm_virtual_machine" "saltmaster" {
name = "salt"
location = "${azurerm_resource_group.salt.location}"
resource_group_name = "${azurerm_resource_group.salt.name}"
network_interface_ids = ["${azurerm_network_interface.saltmaster.id}"]
vm_size = "Standard_B1ms"

storage_image_reference {
 publisher = "OpenLogic"
 offer = "CentOS"
 sku = "7.5"
 version = "latest"
}

storage_os_disk {
 name = "saltos"
 caching = "ReadWrite"
 create_option = "FromImage"
 managed_disk_type = "Standard_LRS"
}

os_profile {
 computer_name = "salt"
 admin_username = "dsala"
}

os_profile_linux_config {
 disable_password_authentication = true
 ssh_keys = {
 path = "/home/dsala/.ssh/authorized_keys"
 key_data = "${file("~/.ssh/id_rsa.pub")}"
 }
 }
}

Getting Your Hands Salty Chapter 14

[290]

Following is the Nginx load balancer VM:

resource "azurerm_virtual_machine" "saltlb" {
name = "lb-vm"
location = "${azurerm_resource_group.salt.location}"
resource_group_name = "${azurerm_resource_group.salt.name}"
network_interface_ids = ["${azurerm_network_interface.saltlb.id}"]
vm_size = "Standard_B1ms"

storage_image_reference {
 publisher = "OpenLogic"
 offer = "CentOS"
 sku = "7.5"
 version = "latest"
}

storage_os_disk {
 name = "lbos"
 caching = "ReadWrite"
 create_option = "FromImage"
 managed_disk_type = "Standard_LRS"
}

os_profile {
 computer_name = "lb-vm"
 admin_username = "dsala"
}

os_profile_linux_config {
 disable_password_authentication = true
 ssh_keys = {
 path = "/home/dsala/.ssh/authorized_keys"
 key_data = "${file("~/.ssh/id_rsa.pub")}"
 }
 }
}

Getting Your Hands Salty Chapter 14

[291]

Once you have saved the file with all of the previously created resources, run
the terraform init command; this will initialize the current directory with the Terraform
files and download the Azure Resource Manager plugin:

If you want to learn more about the init command, you can go to
https:/ ​/​www. ​terraform. ​io/​docs/ ​commands/ ​init. ​html.

After running the init command, we will proceed to run the terraform plan command,
which will calculate all of the changes necessary to achieve the desired state that we
defined in our tf file.

https://www.terraform.io/docs/commands/init.html
https://www.terraform.io/docs/commands/init.html
https://www.terraform.io/docs/commands/init.html
https://www.terraform.io/docs/commands/init.html
https://www.terraform.io/docs/commands/init.html
https://www.terraform.io/docs/commands/init.html
https://www.terraform.io/docs/commands/init.html
https://www.terraform.io/docs/commands/init.html
https://www.terraform.io/docs/commands/init.html
https://www.terraform.io/docs/commands/init.html
https://www.terraform.io/docs/commands/init.html
https://www.terraform.io/docs/commands/init.html
https://www.terraform.io/docs/commands/init.html
https://www.terraform.io/docs/commands/init.html
https://www.terraform.io/docs/commands/init.html
https://www.terraform.io/docs/commands/init.html
https://www.terraform.io/docs/commands/init.html

Getting Your Hands Salty Chapter 14

[292]

This will not make any changes to the existing infrastructure until we run
the terraformapply command:

For more information about the plan command, visit https:/ ​/ ​www.
terraform. ​io/ ​docs/ ​commands/ ​plan. ​html.

https://www.terraform.io/docs/commands/plan.html
https://www.terraform.io/docs/commands/plan.html
https://www.terraform.io/docs/commands/plan.html
https://www.terraform.io/docs/commands/plan.html
https://www.terraform.io/docs/commands/plan.html
https://www.terraform.io/docs/commands/plan.html
https://www.terraform.io/docs/commands/plan.html
https://www.terraform.io/docs/commands/plan.html
https://www.terraform.io/docs/commands/plan.html
https://www.terraform.io/docs/commands/plan.html
https://www.terraform.io/docs/commands/plan.html
https://www.terraform.io/docs/commands/plan.html
https://www.terraform.io/docs/commands/plan.html
https://www.terraform.io/docs/commands/plan.html
https://www.terraform.io/docs/commands/plan.html
https://www.terraform.io/docs/commands/plan.html

Getting Your Hands Salty Chapter 14

[293]

Immediately after you have finished the plan command, you can go ahead and run
terraform apply and you will be prompted with a confirmation to apply the changes:

Once it is finished, you should be able to see the following message:

Apply complete! Resources: 18 added, 0 changed, 0 destroyed.
 Installing, Configuring and Managing Salt

Getting Your Hands Salty Chapter 14

[294]

There are two ways of installing Salt: you can either use a bootstrap script to install the
masters and minions, or you can install and configure them manually via the Salt
repositories.

We will be covering both ways in order to familiarize ourselves with the install process.

Installing Salt with package managers
In our current infrastructure, we have one master and three minions. Our master and one
minion are running CentOS 7.5 and the rest of the VMs are on Ubuntu 16.04. The process
will be sort of different on both distros but some steps will be the same on both.

Installing CentOS yum
Previously, Salt was only available through the EPEL repositories. But now SaltStack has its
own repository that we can import and perform the install from there.

First, install SSH into the master VM and run the following command to import the
SaltStack repository:

[dsala@salt ~]$ sudo yum install \
https://repo.saltstack.com/yum/redhat/salt-repo-latest.el7.noarch.rpm

Optionally, you can run yum clean expire-cache, but as this is a new
VM, this is not necessary.

Once finished, we will go ahead and install the salt-master package:

[dsala@salt ~]$ sudo yum install salt-master -y

Go ahead and enable the systemd salt-master service unit:

[dsala@salt ~]$ sudo systemctl enable salt-master --now

Getting Your Hands Salty Chapter 14

[295]

Check whether the service is running:

Once the service is up and running, check whether the private IP of the VM is the one that
we configured in our Terraform definitions by running the following:

[dsala@salt ~]$ ifconfig eth0 | grep inet | head -1 | awk '{print $2}'

Once you have the IP address confirmed, open another terminal and SSH into the load
balancer minion. Repeat the process of adding the repository as we did in the master VM.

Once the repository is added, run the following command to install the salt-minion
package:

[dsala@lb-vm ~]$ sudo yum install salt-minion -y

Getting Your Hands Salty Chapter 14

[296]

Enable and start the systemd service unit by running this:

[dsala@lb-vm ~]$ sudo systemctl enable salt-minion --now

Let's check whether the service started successfully before we implement any changes to it:

We can see that we are getting errors on the service saying that the master has changed the
public key and we are not unable to connect to the Salt master. We now need to configure
the minion to talk to the master. But first, let's install the remaining two Ubuntu minions,
because the process of registering the minions is the same on both distributions.

Ubuntu apt-getting Salt
The only complicated part of this is that, due to the fact that our web servers do not have a
public IP address assigned to them, you have to SSH to them from either the master VM or
the load balancer VM. To do this, you can set up SSH key authentication to the minions
from either of these two VMs. If you are reading this book, you will be familiar with how to
perform such a task.

Getting Your Hands Salty Chapter 14

[297]

When you log in to the web server VMs, perform the following task in both VMs.

Import the gpg key for the Salt repository:

Run the following to create the repository:

dsala@web-00:~$ echo "deb
http://repo.saltstack.com/apt/ubuntu/16.04/amd64/latest xenial main" \
| sudo tee /etc/apt/sources.list.d/saltstack.list

Once the repository has been added, run apt update, and you should be able to see the
repository listed:

Getting Your Hands Salty Chapter 14

[298]

Proceed to install the salt-minion package:

dsala@web-00:~$ sudo apt install salt-minion -y

Enable and check the status of the salt-minion service by running the following:

dsala@web-00:~$ sudo systemctl enable salt-minion --now && systemctl status
salt-minion

You should see the same messages we saw in the CentOS LB virtual machine.

Installing Salt via the bootstrap script
The second way of installing Salt is via a bootstrap script. This script automatically detects
our distribution and downloads the defined packages. The script also provides us with the
-A flag, which will add the address of the master to our minions.

To get the script, you can either use wget or curl; the official SaltStack uses curl:

user@master:~$ curl -L https://bootstrap.saltstack.com -o install_salt.sh

This script applies for both masters and minions; the difference is which flags you use
when running the script.

To install the master components, run the script with the -M flag for master and -P to allow
any Python pip packages to be installed. We can also specify the master address with -
A and tell the script not to install the minion service in the master with the -N flag:

user@master:~$ sudo sh install_salt.sh -P -M

To install the minion, just run this:

user@master:~$ sudo sh install_salt.sh -P -A <salt master IP>

Master and minion handshake
On this stage of the install, we will go ahead and allow our minions to talk to the master,
verify their fingerprints, and set up configuration files.

First, we will SSH into the master VM and edit the master's configuration file to tell the salt-
master daemon to which IP we want it to bind.

Getting Your Hands Salty Chapter 14

[299]

Edit the /etc/salt/master file, look for the interface: line, and add the master's IP
address:

After modifying the file, run the daemon-reload and restart commands so that the
service acknowledges the changes:

[dsala@salt ~]$ sudo systemctl daemon-reload && sudo systemctl restart
salt-master

You can verify whether the Salt master is listening on the correct IP address by running an
ss command:

Getting Your Hands Salty Chapter 14

[300]

Now that our master is listening on the IP address that we require, it's time to configure our
minions.

Let's start by modifying the minion's configuration file. Remember that these steps are to be
performed on all of the minions regardless of their distribution.

Look for the /etc/salt/minion file and edit it by adding the noted IP address of the
master under master:. We will find an already-configured value: master: salt; this is
because Salt, by default, looks for the master via a DNS query to the hostname, salt, but as
we intend in the future to have more than one master, we will be setting this file with the
static IP address of our master VM:

Before our minions can exchange keys, we need to add the master's fingerprint into our
minions' configuration file.

SSH back to the master and run the following command to obtain your master's public
fingerprint:

Getting Your Hands Salty Chapter 14

[301]

Copy the value of master.pub and go back to editing the minion's configuration file. In the
minion's configuration file, edit the master_finger: ' ' line with the master's public
key, obtained in the preceding step:

Reload and restart the minion daemon, once you have completed this last task:

[dsala@web-00 ~]$ sudo systemctl daemon-reload && sudo systemctl restart
salt-master

Before exiting each minion, run the following command and take note of the minion's
fingerprint:

[dsala@web-00 ~]$ sudo salt-call --local key.finger

Once you have taken note of all of the minions' fingerprints, go ahead and log in to the
master.

In the master, we will compare the fingerprints that the master sees to the fingerprint that
we saw locally on each minion. In this way, we will identify that the minions that we will
be accepting are indeed our minions.

Getting Your Hands Salty Chapter 14

[302]

To do this, run the following command in the master: salt-key -F. This will print all of
the keys, so you don't have to print each key individually:

Make sure the keys are the same, and then we will proceed to accept the keys.

Under the salt-key -F command, we saw that we have unaccepted keys to accept after
verifying them; we will run salt-key -A to accept all of the pending keys and you can
run salt-key -L to verify that the keys were accepted:

Getting Your Hands Salty Chapter 14

[303]

Now that our minions have been authenticated, we can go ahead and issue commands
from our master.

To test our minions, we will invoke the ping function from the test module:

All minions should respond True, meaning that the Salt minion daemon is responding and
we are ready to begin managing our infrastructure.

Working with Salt
With our SaltStack up and running, we are ready to start creating the formulas and
customized configurations for our VMs.

Creating WebServer formulas
We will now be creating the necessary state files to create the formula that will install and
configure our webservers.

Before we begin, we need to create our state tree first, which will contain all of our state
files:

[dsala@salt ~]$ sudo mkdir /srv/salt

Inside this directory, we will be creating something called the top.sls file. This file is what
tells Salt which states are applied to which minions. As for every definition in Salt,
top.sls is a YAML- based file that will contain the minions to target and the state files that
should be applied to those minions.

Getting Your Hands Salty Chapter 14

[304]

Create a file called top.sls in the /srv/salt directory with the following content:

base:
 'web*':
 - webserver.nodejs

base: means the environment in which we are working on; as this is a simple
environment, we only need the base environment; for working with multiple
environments, you can consult one of the books we will suggest in the Further reading
section.

Next, we have the web* entry; this entry tells Salt which minion IDs are going to be the
states applied to. As you can see, you are able to use globbing to target minion IDs.

Finally, - webserver.nodejs is where we indicate which states to apply;
webserver indicates the folder in which the nodejs.sls file is in. As the YAML is read by
the Python interpreter, we need to define the paths with periods (.) instead of slashes (/).
The last word would be the name of the .sls file to load.

Because we defined the Node.js file to be in a directory called webserver, which is the
directory that we will be storing all of our web server state files, we need to create such a
directory:

[dsala@salt ~]$ sudo mkdir /srv/salt/webserver

Now that we have the directory where we will store our state definitions, let's create our
first state definition that will install the node.js package and npm. Create a file called
nodejs.sls in the /srv/salt/webserver/ directory with the following content:

nodejs:
 pkg.installed

npm:
 pkg.installed

The nodejs field is the package to be installed, followed by the pkg.installed function
to invoke.

Getting Your Hands Salty Chapter 14

[305]

With the state file created, apply the state files to the web server minions:

[dsala@salt ~]$ sudo salt 'web*' state.apply

After a while, you will receive output with the applied changes and the duration:

The output of the following example has been truncated for readability.

With Node.JS installed, we need to create now the user for the Node.JS website to run on.

We will create another state file that will define the user configuration.

Create another file called webuser.sls under the /srv/salt/webserver/ directory,
with the following declaration:

webuser:
 user.present:
 - name: webuser
 - uid: 4000
 - home: /home/webuser

Before executing the state, modify the top.sls file to reflect the newly added state file:

base:
 'web*':
 - webserver.nodejs
 - webserver.webuser

Getting Your Hands Salty Chapter 14

[306]

Execute the salt '*' state.apply command again, and you should receive the output
of the user creation:

Getting Your Hands Salty Chapter 14

[307]

Now that we have the user that will be running the website, it's time to copy the website
files into our website servers. For this, we will be creating another state file, which will use
Git to download the website files and load them into the VM.

Modify your top.sls file and add another state called gitfetch under the same web
server directory, like this:

base:
 'web*':
 - webserver.nodejs
 - webserver.webuser
 - webserver.gitfetch

Now, proceed to create the gitfetch.sls file using the git.latest function to
download the code from a Git repository and install the Node.js dependencies every time
the repository is downloaded:

node-app:
 git.latest:
 - name: https://github.com/dsalamancaMS/SaltChap.git
 - target: /home/webuser/app
 - user: webuser

dep-install:
 cmd.wait:
 - cwd: /home/webuser/app
 - runas: webuser
 - name: npm install
 - watch:
 - git: node-app

Getting Your Hands Salty Chapter 14

[308]

Go ahead and run the state.apply function again to download the application on both
web servers. You should be able to see output similar to this after running the command:

With the code in our web servers, we are almost done with the configuration of our Ubuntu
minions.

We now require our Node.JS application to run as a daemon.

For this, we will be using the Supervisor Open Source Project: https:/ ​/
github. ​com/ ​Supervisor/ ​supervisor.

Now, let's configure Salt, to make Supervisor watch our Node.JS web application. Edit
the top.sls file with the following line, as we have done before:

- webserver.suppkg

https://github.com/Supervisor/supervisor
https://github.com/Supervisor/supervisor
https://github.com/Supervisor/supervisor
https://github.com/Supervisor/supervisor
https://github.com/Supervisor/supervisor
https://github.com/Supervisor/supervisor
https://github.com/Supervisor/supervisor
https://github.com/Supervisor/supervisor
https://github.com/Supervisor/supervisor
https://github.com/Supervisor/supervisor

Getting Your Hands Salty Chapter 14

[309]

Before creating the supervisor state file, we first need to create the configuration file for
supervisor that we are going to push to our minions. Create a file called
supervisor.conf in the web server directory, with the following content:

[program:node-app]
command=nodejs .
directory=/home/webuser/app
user=webuser

Now create the suppkg.sls state file, which will be in charge of managing the previous
configuration file, under the web server folder:

supervisor:
 pkg.installed:
 - only_upgrade: False
 service.running:
 - watch:
 - file: /etc/supervisor/conf.d/node-app.conf

/etc/supervisor/conf.d/node-app.conf:
 file.managed:
 - source: salt://webserver/supervisor.conf

Once the file is created, go ahead and run the salt 'web*' state.apply command to
apply the latest states.

With this last state applied, our web application should be up and running. You can try
accessing it via the curl command:

Getting Your Hands Salty Chapter 14

[310]

Now that our web servers are ready, we shall tag them as such. Remember in the previous
chapter when we talked about grains. This is what we will be doing next.

Let's go ahead and tag our web-00 and web-01 servers with the appropriate role tags.

To do this, run the following command for each server:

You can check whether the roles were successfully applied by running the following grep:

Creating load-balancing formulas
Now that both our web servers are correctly set up, we can configure our last minion. This
minion will be running Nginx in order to balance and proxy requests to our web servers
behind the load balancer.

Let's create a directory where we will store all of the states for our load balancer:

[dsala@salt ~]$ sudo mkdir /srv/salt/nginxlb

Getting Your Hands Salty Chapter 14

[311]

With the directory created, let's proceed to edit our top.sls file one last time to include the
load balancer state file. The top.sls file should look like this:

Before we create our load balancer state file, we will create the Nginx configuration file
that we will be pushing to our load balancer VM. Create a file called nginx.conf with
the following content:

events { }
http {
 upstream webapp {
 server web-00:8080;
 server web-01:8080;
 }
 server {
 listen 8080;
 location / {
 proxy_pass http://webapp;
 }
 }
}

Now, let's proceed to create our final state file. Create a file named lb.sls under the
nginxlb directory in /srv/salt/, with the following content:

epel-release:
 pkg.installed

nginx:
 pkg.installed:
 - only_upgrade: False
 service.running:
 - watch:
 - file: /etc/nginx/nginx.conf

Getting Your Hands Salty Chapter 14

[312]

/etc/nginx/nginx.conf:
 file.managed:
 - source: salt://nginxlb/nginx.conf

To apply the final changes, you can run the state.apply command.

Once it's done, you can go ahead and test the load balancer running a cURL to its public IP
address:

With this final configuration, we have concluded the proof of concept for Mr. Don High.
One very important fact to note is that this example is nowhere near ready for be put into
production; this is just an example to show you the basic functionalities and what is
possible with Salt Stack.

Summary
In this chapter, we finally got hands-on interaction with Salt by deploying an infrastructure
through IaC. We used Terraform to set up our initial environment and to start using
Terraform, we simply downloaded the binary from terraform.io. The version of
Terraform can be checked through the terraform version command. With Terraform
installed, we obtained the correct details to connect to our Azure subscription using the AZ
CLI.

Getting Your Hands Salty Chapter 14

[313]

Once Terraform was able to connect to Azure, we proceeded to create the IaC declaration
file, which contained the necessary information to correctly deploy the resources we
wanted in Azure, the way we wanted it.

With the deployment up and running through Terraform, we then moved into installing
Salt. This can be done in two different ways, through the package manager of the OS
(yum and apt) or through a bootstrap script.

When installing through the package manager, we needed to add the Salt repository, as it
was not available in the base repos; we did this by downloading the rpm from the
saltstack site.

To install the master, we ran sudo yum install salt-master, and to install the
minions, we ran sudo yum install salt-minion -y. For Ubuntu, the process was
similar, except the apt package manager was used.

After Salt completed the installation, we enabled the systemctl units. Once Salt was
running, we needed to allow the minions to talk to the master; this was done through SSH
fingerprints.

At this point, Salt was running and the minions were communicating to the master, so we
then moved into creating the web server formulas, which ran the definitions necessary to
deploy the application.

In the next chapter, the last of this book, we will go through some of the best practices
when designing solutions.

15
Design Best Practices

To wrap up this book, our final chapter will talk about the different best practices that you
will have to follow in order to design a resilient and failure-proof solution. Even though
this is the last chapter of this book, it will help you as a starting point for what things to
consider when, for example, migrating to the cloud.

We will be covering the basics of subjects such the following:

Moving to the cloud
Container design
Continuous integration pipelines
Continuous deployment pipelines
Automated testing

The topics and practices that we will be covering in this chapter are no where near
extensive and we will be giving a 10,000 feet overview. With these basics, you can start to
reinforce your knowledge in each area to make the ultimate design decisions for your
customers.

Designing for the occasion
In our previous chapters, we learned everything we needed for very specific solutions.
Here, we will be talking about generalities, the basic rules or recommendations you need to
follow or at least try to adhere to for every design you create. But don't be confused by
what I’m going to say next; best practices per se do not exist. Every solution will have its
own identity, its own goals, and its own unique characteristics. Always try to satisfy the
situation you are in and the business needs of your customer.

Design Best Practices Chapter 15

[315]

Many solutions, though, will have to comply with certain industry standards, as they may
handle sensitive information. In these types of scenarios, we already have a very well-
defined set of rules and policies that our designs have to satisfy. This breaks our statement
that all designs are different, but again, these are very specific scenarios for very specific
industries. Some of the standards that we need to comply with when dealing with sensitive
data are the following:

Health Insurance Portability and Accountability Act (HIPAA)
Payment Card Industry Data Security Standards (PCI-DSS)
The General Data Protection Regulation (GDPR)

These standards are fixed no matter what, locally and internationally, and regulated by
their respective authorities. But not all design patterns or ways to comply with certain
solution requirements are as clear as these ones.

As a solutions architect, you will find yourself in many scenarios that will help you expand
your portfolio and apply it in different solutions. Every design you create is only as strong
as its weakest link. When you are designing, always try to see how you can break your
design:

Where does it have points of failure?
Where does it have bottlenecks?
Will my servers be able to handle the load?

These are a few examples of some questions you need to ask yourself. We need to shape
our way of thinking and ask ourselves the question why? more often. Why are we doing
what we are doing this way, or that way? It is crucial to question ourselves about every
decision we make.

Changing our way of thinking is the best thing we can do, as nowadays technologies are
evolving faster than ever before. Technologies might change over the years, and what we
implemented today might be totally unusable tomorrow, but our way of thinking will
allow us to adapt and analyze from all the points necessary for us to be successful.

Every situation and environment will be different, but at the time of writing we can say that
you will be dealing with two major types of environments:

On-premises/bare metal environments
Cloud environments

In this chapter, we will be going through the basic considerations that you will need to deal
with when you're working in these environments.

Design Best Practices Chapter 15

[316]

On-premises environments
Linux is adaptable; it can run pretty much anywhere. It wouldn't surprise me if I found the
Linux kernel on a lawn mower in the next few years. In a world where IT is becoming more
and more relevant for our daily lives, alongside the rise of the Internet of Things, the
presence of Linux has spiked like never before. Therefore, as Linux architects, we need to
be prepared to design with almost everything.

In an on-premises environment, we are most probably facing two scenarios:

Bare metal server
Virtual machines (VMs)

Both of them will be very different, as the options that we will have to make our solution
more resilient will vary.

Bare metal server
Bare metal servers are perfect for workloads that require a considerable amount of
resources to run. Small workloads will not be efficiently placed on a single server; for
instance, a small web application that will not be serving a lot of user requests has no place
on a 64-core 1 TB of RAM physical server. It's a waste of resources and a terrible economic
decision. Most of the time, 90% of this server would be totally idle, wasting precious
resources that could be used for something else. These types of applications should be put
into a VM or containerized altogether.

The first thing that we should understand before moving or creating an infrastructure on
bare metal are the resource requirements of the application for which you are building the
infrastructure for.

Systems that require lots of resources for data processing and high-performance computing
will take full advantage of the resources available. Solutions such as the following ones are
examples of what to run on bare metal servers:

Type 1/ Type 2 Hypervisors (Kernel-based Virtual Machine (KVM), Linux
containers (LXC), XEN)
Linux for SAP HANA
Apache Hadoop
Linux for Oracle DB
Large MongoDB deployments for memory caching
High-performance computing (HPC)

Design Best Practices Chapter 15

[317]

In-house applications that specify that their memory requirements exceed the hundreds of
GB or hundreds of CPU cores are all better served on a bare metal server where RAM/CPU
will not be consumed on any other overhead process that is not part of the workload that
you design that server for.

Virtual machines
Hypervisors are also better on bare metal servers; since they are going to be sharing their
resources across multiple hosted VMs, they require large quantities of resources. One thing
to note is that some of the resources of the hypervisor will be consumed by the hypervisor
itself, which creates a resource overhead on hardware interrupts and other operations.

Sometimes, when building physical servers, we focus a lot on the CPU cores that our
application will need. With hypervisors, CPU time is served to VMs on priority or a first-
come-first-served basis to the available core; depending on how it is configured, the CPU
resource is shared across the running VMs. On the contrary, RAM memory is not shared
across the VMs, and we need to be careful in the resource balancing that we are
implementing. Deploying a server with the necessary CPU cores but with enough RAM
that can satisfy any period of contention that we can face is something to take into account.
With hundreds of VMs running on a single host, we can run out of memory really quickly
and start swapping, and this is a situation that we want to avoid.

With resource provisioning, we also need to take into account that if we are running a
cluster of hypervisors, there can be situations when one of the cluster nodes needs to go
into maintenance or go down because of an unexpected failure. Scenarios such as this are
the reason we should always leave some resources to be able to manage additional
unexpected workloads from VMs that might failover due to the aforementioned reasons.

When dealing with hypervisors, you have to be careful, as you will not be running just a
single workload per physical host. The number and the VMs themselves will always vary,
unless you have some type of affinity rule configured. Things such as how much network
bandwidth your network interface cards support are of utmost relevance. Depending on
the amount of resources of the host hypervisor, tens or hundreds of VMs will be sharing the
same network hardware to perform their I/O. Here is where deciding, for example, whether
a 10 GbE network card instead of a 1 GbE network card is required.

Design Best Practices Chapter 15

[318]

One more thing to take into consideration when picking the network interfaces of your
physical host is the type of storage you will be using; for example, if you are considering
a network filesystem (NFS) solution or an iSCSI solution, you have to keep in mind that,
many times, they will be sharing the same interfaces such as the ones for the regular
network traffic. If you know the infrastructure you are designing will have a very
congested network and require a good storage performance, it is better to have another
approach, such as choosing a fibre channel storage area network, with its own dedicated
hardware just for storage I/O.

Network segmentation is crucial for virtualized environments, management traffic,
application network traffic, and storage network traffic, which should always be
segmented. You can achieve this in several ways, such as by provisioning dedicated
network interface cards for each purpose or via VLAN tagging. Each hypervisor will have
its own set of tools to achieve segmentation, but the idea behind it is the same.

Cloud environments
Working with cloud environments creates a wide number of options for designing IT
solutions. Independently from the cloud provider, you will be able to select from services
such as these:

Infrastructure as a Service (IaaS)
Platform as a Service (PaaS)
Software as a Service (SaaS)

Your choice will depend on the maturity of your customer in cloud architecture models.
But before we can even talk about design patterns or best practices for cloud environments,
we need to talk about how you perform the migration of your on-premises environment to
the cloud or how you can start adopting the cloud as the infrastructure for your customer.

The journey to the cloud
These migration strategies are adopted from Gartner research. Gartner also calls out a fifth
strategy called replace with SaaS.

The following research paper is discussed in this section:

Devise an Effective Cloud Computing Strategy by Answering Five Key Questions, Gartner, David
W Cearley, November 2015, refreshed June 23, 2017.

Design Best Practices Chapter 15

[319]

When migrating to the cloud, we don't have to see the cloud as a destination, but rather as a
journey. As cheesy as it sounds, it is like that. Every customer’s path to the cloud will be
different; some paths will be easy and others will be painfully hard. It will all depend on
what led the customer to take the decision to move and how they are deciding to move
their infrastructure. Some customers might decide not only to move their infrastructure to
an IaaS model but also take advantage of the move and modernize some of the workloads
into a PaaS or even a serverless model. Each path will require a different level of
preparation, regardless of which one they choose. A typical transition can look as follows:

Each step will require a higher degree of changes to be implemented on the applications or
infrastructure to migrate.

We can see the aforementioned steps as part of a greater journey that begins with the
assessment of the assets to migrate.

Let's explore each step of the migration in more detail.

Assessing
In this step, we will evaluate which workloads we want to migrate. After identifying the
candidates for migration, we should always run an inventory of our VMs or physical
servers and calculate what the total cost of ownership (TCO) of maintaining the
infrastructure is. Things such as hardware cost, support maintenance contracts, electricity
bills, and even space rental come into play here. This will help us to understand how much
we will be saving in an eventual migration to the cloud. This data is crucial to convince
management and any C-level decision makers that may have any doubts about the benefits
in cost of migrating infrastructure to a cloud provider.

Design Best Practices Chapter 15

[320]

The ideal scenario to begin a migration is to look for smaller applications that don’t require
an entire infrastructure to be migrated in order for them to be put into production.
Applications with few dependencies are perfect to begin your assessment. Dependencies
such as which servers we need to migrate together, and network requirements for our
application such as ports and IP operational ranges are to be taken into consideration.
Questions such as the following will help us to prepare for a successful migration:

Is my Linux distribution endorsed by the cloud provider I am migrating to?
Am I running the Kernel version that's supported by my cloud provider?
Do I have to install any additional kernel modules?
Does my cloud provider require any type of agent running on my OS?

With these questions answered, we can start performing the actual migration.

Migrating
When migrating our infrastructure to the cloud, there are four basic ways of doing it:

Lift and shift
Refactor
Rearchitect
Rebuild

Each of these methods will take advantage of different services and different features of the
cloud. Choosing which method to use will depend on many things, such as how quickly
you need to migrate, how much effort you are willing to undergo to migrate, and whether
you want to take advantage of the migration and modernize your workloads as you
migrate.

Lift and shift
This method is literally a rehost, as you will be moving your on-premises physical servers
or VMs into VMs in your cloud provider. This method is the easiest and quickest of all the
methods, because you will be moving your environment and your applications as you have
them on-premises. No code changes or re-architecture of your applications is required for
this method. Here, you will only be taking advantage of the IaaS advantages of the cloud
provider of your choice.

Design Best Practices Chapter 15

[321]

Things such as the agility of having resources at your disposal if you need to increment
storage or compute on demand and the lack of hardware maintenance and administration
will be things to take advantage of in this model.

Refactor
With refactor, your applications require minimal to no code changes. With this method, we
can exploit a mix of IaaS and PaaS features. Migrating a three-tier web application into a
managed middleware and into a managed database is a perfect example of this migration
model.

With a managed database or managed middleware, we don't have to worry about things
such as OS management, database engine installation and administration, framework
updates, security patches, and even configuring additional instances for load balancing, as
it is all taken care of for us. We just need to upload our code and select the framework that
we need for it to run. We still can run monolithic applications, and very little code changes
are required; the main purpose of this method is to migrate by taking things such as
management and configuration off our shoulders, thus increasing the agility of our
workloads.

Rearchitecting
Rearchitecting while migrating does involve heavy changes in our applications, but this
stage is where we modernize our business.

We can find ourselves taking apart a monolithic application and breaking it into
microservices by taking advantage of technologies such as containers and Kubernetes. We
will be making our applications more portable, scalable, agile, and ready to be delivered via
methodologies such as DevOps. With microservices, containers, and the automation that
DevOps brings to the table, you will not only have a faster delivery of your applications to
production, but you will also be using the compute resources on which your application
will run more efficiently.

Rearchitecting might not be easy, nor is it the quickest way to migrate your workloads to
the cloud, but it will give you a substantial advantage and cost savings in the long run.

Design Best Practices Chapter 15

[322]

Rebuild
Rearchitecting requires major code changes, but this last migration model is all about
taking advantage of the movement to the cloud and create what are called cloud-native
applications.

Cloud-native applications are those that take advantage of cloud services such as PaaS and
SaaS applications that are designed to be run on the cloud. Some of them can even be
entirely run on serverless computing. Serverless computing is to run code directly on a
cloud service, or consume an API or a service that is already provided by the cloud
provider. Combining several services that consume one another and work on a common
goal or result are what we call cloud-native applications.

The whole idea behind moving to the cloud is to save: save economically, save in
maintenance, save time to recovery by moving into a more resilient and elastic platform.
But we will not always automatically take advantage of all the benefits of it. After moving,
we still have some terrain to cover in order to have our new cloud workloads completely
optimized.

Optimizing
Maybe if you had moved your infrastructure via a lift and shift, the move might have been
easy, and whatever workload was running on that VM is probably already in production
with not many changes, if any at all. The problem is that your VMs are still the same size as
they were on your on-premises environment. You are still having that VM use a small
percentage of its actual total compute resources. In the cloud, this is wasting money, as you
are paying for the hours that the VM is running, but the price that you pay for those hours
is based on the total amount of resources of that VM, whether you are using 100% of them
or not.

This stage is where we actually start performing appropriate sizings and optimizing our
infrastructure to actually use what we really need to actually take advantage of the
elasticity of the cloud. All cloud providers have tools and services that you can use to
monitor the resource consumption of your VM and other services. With these tools, we can
easily identify and address our sizing requirements in a way that is cost-efficient.

The elasticity of the cloud not only allows us to size our resources on demand, without
having to wait for the IT operations team to allocate or buy new hardware in the case that
we run out resources in our hypervisors or dedicated physical servers.

Design Best Practices Chapter 15

[323]

We can also provision extra VMs or instances of the service that we are consuming on
demand, based on resource thresholds that we establish. Requests to these resources are
automatically load balanced to our extra instances so that we only have to pay for those
extra resources on periods of resource contention.

Optimizing is not all about reducing VM sizes for a better price. Other areas that we can
optimize are management and time to market. Adopting things such as PaaS and SaaS can
help us achieve this.

Once our applications are running on VMs on the cloud, we can easily start transitioning to
these more managed services. Managed services help us forget about OS maintenance or
middleware configurations, and our developers can spend more time actually developing
and deploying applications rather than fighting with the operations team about an update
that a library requires to be able to run the latest version of the production app, which
eventually takes us a faster time to market and less money and time spent in management
or operating system support contracts.

Faster time to market, less management, and fewer conflicts between operations and
development are the things that DevOps is all about. We have mentioned DevOps in
several stages of the migrate phase, but let's take a deeper look into what DevOps is and
what it's trying to accomplish on a closer level.

DevOps
In synthesis, DevOps is the combination of development and operations. It is the union and
collaboration between these two IT groups—developers and system administrators—that
make DevOps possible. Notice that we said collaboration; it is important to understand that
collaboration is the core of DevOps. There is not authority behind DevOps, like there is for
the scrum framework, for example. On the contrary, it has no standard, but it follows a set
practices born from a cultural exchange between these two groups, to achieve shorter
development cycles and increased deployment frequency with agile methodologies.

You will frequently see the term DevOps misused in different ways, for example:

Position (DevOps Engineer): The nature of DevOps is collaboration across the
operations and developer teams, and therefore DevOps is not a position or a
specific team that does DevOps.
Set of tools: The tools that are used to help achieve the goals behind DevOps are
also confused. Kubernetes, Docker, and Jenkins are all often confused with
DevOps, but they are only the means to an end.

Design Best Practices Chapter 15

[324]

Standard: As we mentioned previously, the DevOps movement does not have
any authority regulating its practices and flow; it is the people who are
implementing and following a basic set of practices and adapting it to suit its
own business needs.

We now know that DevOps is a cultural movement, and that brings us more frequent
development cycles, frequency, and integration between operations and development.
Now, let's understand the problems behind the benefits of adopting DevOps.

Monolithic waterfalls
The traditional method of developing software applications is called a waterfall. A
waterfall is a linear sequential way of doing software; basically, you go only in one
direction. It was adopted by software engineering from manufacturing and construction
industries. The waterfall model steps are as follows:

Requirements1.
Design2.
Implementation3.
Verification4.
Maintenance5.

The main problem is that due to the fact that this methodology was invented for
manufacturing and construction, it is not agile at all. In these industries, every change or
every problem that you face might cost you a lot, so all the precautions before moving on to
the next stage have to be taken into consideration. Because of this, each stage takes quite a
while, and therefore the time to market is reduced significantly.

With this methodology, before even starting to create the application, developers have to
design all the features, and time is spent talking and planning before even a line of code is
written. These type of scenarios make a lot of sense for the origins of this methodology,
because if you are building a skyscraper or a residential home, you want to know how it
will be designed and structured before even starting the construction itself. In software
development, the quicker you get feedback, the quicker you can adapt and make the
changes that are necessary to fit the needs of your customer. With waterfall, feedback isn't
provided until the very end, when the product is almost ready and changes are more
difficult to implement.

Design Best Practices Chapter 15

[325]

Waterfall in its own nature is monolithic and bulky, even though we have different teams
working on different features of the product, and in the end all these features are compiled
together to deliver a single big instance of a release. With this type of monolith, if there’s a
quality assurance (QA) team, they have to test all the features of that release. This takes a
lot of time and increases the time to market the product even more. The worst case would
be that a change is needed or a bug gets through QA into production. A rollback will imply
the full release with all its features together instead of just the one with the bug, bringing a
lot of risk to the table when it comes to big releases.

Agile solutions to monolithic problems
With waterfall, we realize too late that things that we thought that are going to work didn’t
work as planned in the installation stage, or even later in the production stage. Performing
those changes implied a whole lot of steps, and course correction was slow and painful.

Software evolves quickly, and the needs of our clients might change in the middle of the
design. That’s why we need a more agile and flexible methodology other than waterfall.
The quicker we get feedback, the quicker we can adapt and deliver the exact expectations of
our customers.

This is exactly what the Agile methodology is for. Agile seeks to deliver the software in
multiple releases, each one going through a set of tests and feedback in order to obtain it
more quickly and make changes and course correction in a quicker and more agile way.

Agile was a game changer, but it generated conflicts between operations and developers.

Deploying releases more frequently can be unstandardized and different every time, if a
different engineer performs the deployment. Let's say you have a deployment at night. If
the person who is deploying in the morning is a different engineer than the one that
performed the last deployment, they could have a completely different way of deploying
the code to production. These types of things generate discrepancy and can cause problem.
For example, if something happens and it needs to be rolled back, a different person rolling
it back might not know what the steps that were taken in deployment were in order to roll
back the changes.

With these releases, system availability can be affected unpredictably. Operations engineers
are measured by the stability of the systems that they are managing, and it's in their interest
to keep it that way. Deploying unpredictable changes to production is something that they
want to avoid. Developers, on the other hand, are measured by how quickly they can put
their new changes, features, and releases into production. You can see how these two teams
have completely opposite goals, and they almost have to fight each other to fulfil them.

Design Best Practices Chapter 15

[326]

Different goals across teams isolates each team from another. This creates silos, and throws
the problem or app over the fence. This develops into a non-collaborative working
environment, where everybody blames one another and things move at an even slower
pace, instead of solving the problem.

Continuous culture for CI/CD
So far, I feel that you have noticed that we haven't talked about any tools to make DevOps
possible. This is because tools will not solve all these types of problems. They will help you
and your customers enforce the DevOps culture, but they are not what makes DevOps
possible.

Standardization and testing before we deliver our product is essential to Agile and
DevOps, and tools will help us achieve these two goals. Let’s take a look into the Agile
workflow and the DevOps workflow:

Here is a look at the Agile workflow:

Design Best Practices Chapter 15

[327]

Here is how it compares to DevOps:

It is very clear that both go hand in hand and that they overlap each other, as they seek the
same goals. DevOps has extra steps, such as operate and monitor, which take place after the
deployment of the code. These steps are very self-explanatory; monitor consists of
monitoring our application in production, checking its behavior regarding whether it
presents any bugs, of whether it is using all the resources that were allocated to it. Operate
the hardware, VM, or PaaS where it was deployed.

The idea behind continuous deployment (CD) and continuous integration (CI) is to bring
us standardization and the means for us to make sure that changes and releases make it
into production as quickly as possible with the least possible failures. If a failure happens,
we can revert quickly and easily as well. The whole point of CI/CD is to automate manual
processes, and many companies still compile releases manually and still send emails to
operations with the binaries and instructions on how to deploy their code. To achieve
CI/CD, we have tools that will help us automate the whole build, test, deploy, and release
cycle.

A typical pipeline of CI/CD is triggered by a commit to a Git repository, which then triggers
an automated build process that usually generates an artifact or a drop, which triggers
automated testing and automated deployment of the application.

Let's take a look at some of the different open source tools, with a brief explanation of each
and to which stage of the DevOps cycle it belongs to.

This is nowhere near an extensive list, and the explanations are a brief summary of their
purpose:

Code:
Git: A version control system that allows developers to have a
distributed repository of their code and track changes across the
development cycle.

Design Best Practices Chapter 15

[328]

GitHub, GitLab, Bitbucket: These three are Git type repositories
instead of tools. However, they are worth the mentioning, as they
are the most used public and private repositories of Git that are
used in the industry.
Apache subversion (SVN): This is another versioning system.
Although it is no longer as popular as it was since the release of
Git, it is worth mentioning that it exists, as you might run into it in
legacy environments.

Build:
Docker: Docker, as we discussed in the Chapter 14, Getting Your
Hands Salty, is a tool you can use to build your container images,
independent of which language your application is written in.
Docker uses Buildkit under the hood, which can also be used as a
standalone product to build the docker images.
Apache ant: This tool was the first one to replace the famous Unix
build binary that was made for Java applications. It uses xml to
define the steps of the build. This tool is mainly for Java
applications.
Apache Maven: Apache Maven is also another Java build tool, but
it came to fix problems such as dependency management that
Apache Ant lacked.
Gradle: Grade was built on the basis of Apache Ant and Apache
Maven, but Gradle uses it's own specific language based on
Groovy for defining the steps that are required. Gradle is the most
modular of all, and mostly all functionalities are added through
plugins.
Grunt: This is the Ant or Maven equivalent of JavaScript; it
automates and runs tasks such as linting, unit testing, minification,
and compilation. Grunt is highly modular, as there are thousands
of plugins available.

Test:
Selenium: This is mainly a web application tester that can be run
against of most modern-day web browsers. With Selenium, you
don't necessarily need to know a test programming language as it
offers an IDE and the option to use several of the most popular
programming languages.

Design Best Practices Chapter 15

[329]

Apache JMeter: This is basically a load performance tool that
generates a heavy load on servers to test static and dynamic
content so that you can analyse its performance on different load
types.
Appium: On the other hand, Appium not only tests web
applications, but it can also perform tests on mobile and desktop
apps.

Release, Deploy, Manage, Orchestrate, Operate:
Jenkins: This is probably the most used tool in the DevOps
culture. Jenkins is an automation server that makes all the steps
possible via triggers that call the automation of the build and the
release process, as well as any automated testing that is configured
in the pipelines.
Ansible: This is mostly a configuration management tool, but it
can also help us release our applications via its modularity and
provides an easy way of developing your own playbooks to run
against a set of servers.
Puppet: This is another configuration management tool that helps
us maintain configurations and manage package patch
installations on our environment servers.
Helm: Look at Helm as the yum or the apt of Kubernetes: on its
own, it is unable to automate any deployment process, but with
the help of tools such as Jenkins, you can use it to deploy your own
custom charts to Kubernetes, as well as keep a release history if a
rollback is needed.

 Monitor:
Nagios: This is the classical monitoring centralized tool that
monitors everything from system performance to the status of
services and much more.
Prometheus: A project under the umbrella of the cloud native
computing foundation. It allows us to create our own metrics and
alerting.
Fluentbit: This allows you to collect multiple logs and/or data and
send it to multiple destinations for log gathering or processing.

Design Best Practices Chapter 15

[330]

Summary
This being the last chapter, we wrapped up with some considerations when designing
solutions. In this chapter, we went through what we should have in mind when dealing
with different scenarios.

Knowing where and how we'll be deploying our solutions helps us have an idea of what
sort of requirements might be in place; for example, certain industries will have hard
requirements that can't be ignored, such as HIPAA, PCI, and GDPR.

Then, we spoke about deploying on-premises solutions and how different workloads are
better for bare metal and what considerations to have when implementing in VMs.

We touched on how moving to the cloud is not as simple as clicking on a portal and
waiting, but rather how it is a journey, since it allows for the modernization of workloads
given the plethora of options available in the cloud.

Also, we mentioned that there are different methods for migrating existing workloads, such
as lift and shift, refactor, rearchitect, and rebuild.

Lastly, we described how DevOps is helping shape the industry by unifying the
development and operations aspects and how this ties with how CI/CD has changed how
software is deployed and used.

Questions
What is HIPAA?1.
What workloads are preferred to run on bare metal?2.
Should hypervisors run on bare metal?3.
Do VMs share resources?4.
What is network segmentation?5.
What is lift and shift?6.
What is refactor?7.
What is Rearchitect?8.

Design Best Practices Chapter 15

[331]

Further reading
Production of Large Computer Programs: http:/ ​/​sunset. ​usc.​edu/ ​csse/ ​TECHRPTS/ ​1983/
usccse83-​501/​usccse83- ​501. ​pdf

Managing the development of large software systems: http:/ ​/​www- ​scf. ​usc. ​edu/
~csci201/​lectures/ ​Lecture11/ ​royce1970. ​pdf

Azure Migration Center: https:/ ​/​azure. ​microsoft. ​com/ ​en- ​gb/​migration/ ​get- ​started/ ​

3 Journeys for Migrating a Data Center to Cloud IaaS: https:/ ​/​www. ​gartner. ​com/
smarterwithgartner/ ​3- ​journeys- ​for- ​migrating- ​a-​data- ​center- ​to-​cloud- ​iaas/ ​

http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://sunset.usc.edu/csse/TECHRPTS/1983/usccse83-501/usccse83-501.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
https://azure.microsoft.com/en-gb/migration/get-started/
https://azure.microsoft.com/en-gb/migration/get-started/
https://azure.microsoft.com/en-gb/migration/get-started/
https://azure.microsoft.com/en-gb/migration/get-started/
https://azure.microsoft.com/en-gb/migration/get-started/
https://azure.microsoft.com/en-gb/migration/get-started/
https://azure.microsoft.com/en-gb/migration/get-started/
https://azure.microsoft.com/en-gb/migration/get-started/
https://azure.microsoft.com/en-gb/migration/get-started/
https://azure.microsoft.com/en-gb/migration/get-started/
https://azure.microsoft.com/en-gb/migration/get-started/
https://azure.microsoft.com/en-gb/migration/get-started/
https://azure.microsoft.com/en-gb/migration/get-started/
https://azure.microsoft.com/en-gb/migration/get-started/
https://azure.microsoft.com/en-gb/migration/get-started/
https://azure.microsoft.com/en-gb/migration/get-started/
https://azure.microsoft.com/en-gb/migration/get-started/
https://azure.microsoft.com/en-gb/migration/get-started/
https://azure.microsoft.com/en-gb/migration/get-started/
https://azure.microsoft.com/en-gb/migration/get-started/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/
https://www.gartner.com/smarterwithgartner/3-journeys-for-migrating-a-data-center-to-cloud-iaas/

Assessments

Chapter 1: Introduction to Design
Methodology

Problem Statement → Information Gathering → Solution Proposal →1.
Implementation.
Because it allows for the correct requirements to be established.2.
To allow room for the customer to choose the right solution.3.
Explored in the section Analyzing the problem and asking the right questions.4.
Proof of Concept.5.
The actual solution is delivered and tested.6.
It allows us to explore the different concepts of the solution of an actual working7.
environment.

Chapter 2: Defining GlusterFS Storage
Chapter 5, Analyzing Performance in a Gluster System further analyzes this.1.
File storage is better suited for how GlusterFS works.2.
Almost all cloud providers offer object storage these days.3.
File storage, block storage (through iSCSI Initiator), and object storage (through a4.
plugin).
No, but it does contribute to the project.5.
GlusterFS is free, open source software; simply download it from your favorite6.
package manager.
It does through the Geo-replication function.7.

Assessments

[333]

Chapter 3: Architecting a Storage Cluster
It depends on the volume type used, but 2 CPUs and 4+GB of RAM is a good1.
starting point.
GlusterFS would use the brick’s filesystem cache mechanism.2.
It is a fast storage layer where I/Os will be served instead of going to slower3.
storage. Cache can be RAM or faster storage media, such as SSDs.
As more concurrency is achieved, the software will require more CPU cycles to4.
server the requests.
Distributed will aggregate space, Replicated will mirror data, hence “halving”5.
space, Dispersed will aggregate space but will consume 1 node for parity. Think
of it as a RAID5.
Depends on many variables such as retention periods, data ingress, etc...6.
The expected amount of data growth.7.
Throughput is a function of a given amount of data over a given amount of time,8.
normally displayed as MB/s or Megabytes per second
Input output operations per second (IOPS) is a function of certain amount of
operations per second
I/O size refers to the request size done by the appliance
The layout of the storage locations used by GlusterFS.9.
GlusterFS’s process of replicating data from a cluster to another, normally located10.
in a different Geo-location..

Chapter 4: Using GlusterFS on Cloud
Infrastructure

The storage locations used by GlusterFS to store actual data.1.
The Z FileSytem, an advanced filesystem created by Sun Microsystems and later2.
made open source.
A ZFS storage pool.3.
A disk used for read request, typically faster and lower latency than the disks4.
used in the zpool.
Normally through the Operating System’s package manager, such as yum.5.
A pool of GlusterFS nodes that will participate in the same cluster.6.
Gluster volume creates <Volume name> <Volume Type> <Number of nodes>7.
<node and brick paths>.

Assessments

[334]

This setting controls how much memory will be used for caching.8.
Adaptive Replacement Cache, this is ZFSs caching algorithm.9.

Chapter 5: Analyzing Performance in a
Gluster System

Megabytes per second, a throughput measurement.1.
Shows ZFS’s I/O statistics.2.
Part of the sysstat package, used for block devices I/O statistics.3.
This is the read latency, measured in milliseconds.4.
The amount of time the CPU is waiting for outstanding I/O to complete.5.
Flexible I/O Tested, a tool used for I/O benchmarking.6.
Either through a configuration file or by passing the parameters to the command7.
directly.
A file that tells FIO how to run a test.8.
By purposely killing one of the nodes.9.
By increasing resources on the nodes or increasing disk size.10.

Chapter 6: Creating a Highly Available Self-
Healing Architecture

The main Kubernetes components are divided into the control plane and the API1.
objects.
The three of them are managed Kubernetes solutions, provided by the three2.
mayor public Cloud providers, Google, Amazon, and Microsoft respectively.
Containers have a smaller attack surface, but that doesn't exempt them from3.
exploits, but the mayor container runtime projects are well maintained and if an
exploit is detected it is rapidly addressed.
That will depend on the type of application you are trying to run and your4.
familiarity with the technology. To migrate an application to containers is
generally easy, but to do it in the most efficient way is what requires work.
No, you can find the Docker Engine for Windows and, at the time of writing,5.
Kubernetes Windows Nodes are in beta.

Assessments

[335]

Chapter 7: Understanding the Core
Components of a Kubernetes Cluster

Kubernetes, at the time of writing, is the mayor Container orchestrator in the1.
market.
Kubernetes is composed of the binaries that make up the cluster, and the logical2.
 objects called API objects.
Kubernetes API objects are the logical objects managed by the orchestrator.3.
We can run orchestrated containarized workloads.4.
A container orchestrator is a tool in charge of managing our running containers5.
and different tasks related to keeping our workloads highly available.
A Pod is the smallest logical object of Kubernetes that encapsulates one or more6.
containers in shared namespaces.
A Deployment is a set of replicated Pods that are managed by the Kubernetes7.
replication controllers.

Chapter 8: Architecting Kubernetes on
Azure

Due to the majority mechanisms of ETCD odd numbers are preferred in order to1.
be able to reach a majority of votes all the times.
Yes, but it can also run in a separate set of notes.2.
Lower latency is recommended because of the heartbeat and leader election3.
frequencies.
The worker nodes or Nodes, are the cluster members in charge of running the4.
container workloads.
Types of Workloads and the amount of containers that each is going to run.5.
All storage providers or provisionares can be found here: https:/ ​/​kubernetes.6.
io/​docs/ ​concepts/ ​storage/ ​storage- ​classes/ ​#provisioner

A load balancer is needed to send requests across all our replicated Pods.7.
Namespaces can be used to logically partition our cluster and assign roles and8.
resources to each logical partition.

https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner

Assessments

[336]

Chapter 9: Deploying and Configuring
Kubernetes

There are several ways to install Kubernetes, from auto provisioning tools like1.
kubeadm and kubespray, to a totally manual installation. You can find more
about the installation methods going to the following link: https:/ ​/ ​kubernetes.
io/​docs/ ​setup/ ​

A kubeconfig file contains all the necessary information to communicate and2.
authenticate with the API server.
You can create SSL certificates with several tools, in this book we used cffssl.3.
But you can also use openssl and easyrsa.
Azure Kubernetes Services (AKS) is the managed Kubernetes solution provided4.
by Microsoft for their public cloud Azure.
Azure CLI can be used in either operating system as it is a Python-based5.
command line interface.
You can either create a resource group via Azure CLI, PowerShell, or the Azure6.
GUI.
You can find the different ways of installing etcd in the following link: http:/ ​/7.
play.​etcd. ​io/ ​install

Chapter 10: Monitoring with ELK stack
The process of actively gathering data.1.
By knowing usage trends, decisions such as buying more resources can be made2.
with actual data.
By having data in a single place, events can be proactively detected before they3.
can occur.
By knowing what is the normal behavior of a storage system, hence providing a4.
baseline for performance.
When spikes are seen where they’re not supposed to be, this can mean erratic5.
behavior.
Instead of going through each of the hosts in an environment, they can be6.
checked through a single centralized location.
A software for data indexing and analysis.7.
Elasticsearch stores data in json format.8.

https://kubernetes.io/docs/setup/
https://kubernetes.io/docs/setup/
https://kubernetes.io/docs/setup/
https://kubernetes.io/docs/setup/
https://kubernetes.io/docs/setup/
https://kubernetes.io/docs/setup/
https://kubernetes.io/docs/setup/
https://kubernetes.io/docs/setup/
https://kubernetes.io/docs/setup/
https://kubernetes.io/docs/setup/
https://kubernetes.io/docs/setup/
http://play.etcd.io/install
http://play.etcd.io/install
http://play.etcd.io/install
http://play.etcd.io/install
http://play.etcd.io/install
http://play.etcd.io/install
http://play.etcd.io/install
http://play.etcd.io/install
http://play.etcd.io/install
http://play.etcd.io/install

Assessments

[337]

Logstash is a data processing parser that allows for data to be manipulated9.
before being sent to Elasticsearch.
Kibana provides the visualisation interface for Elasticsearch, allowing for data to10.
be easily visualized.

Chapter 11: Designing an ELK Stack
At least 2 CPU cores are needed for optimal functionality on smaller1.
deployments.
At least 2Ghz.2.
Slower or less than 2 CPUs impact mostly Elasticsearch startup time, indexing3.
rate and latency.
The kernel uses available RAM for caching requests to the filesystem.4.
If swapping occurs, search latency will be greatly impacted.5.
Elasticsearch will fail to start if there’s not enough memory, once running if6.
there’s not sufficient memory OOM will kill Elasticsearch.
The minimum is 2.5GB but 4GB is recommended.7.
/var/lib/elasticsearch8.
Lower latency helps with the indexing/ search latency.9.
2GB RAM and 1 CPU.10.
This is a storage location where logstash will persistently store queues in the11.
scenario of a crash.
How many users will access concurrently the dashboard.12.

Chapter 12: Using Elasticsearch, Logstash,
and Kibana to Manage Logs

Elasticsearch can be installed through the package manager.1.
This is done through parted.2.
Adding the UUID of the disks to /etc/fstab.3.
/etc/elasticsearch/elasticsearch.yml4.
This gives the name to the cluster, the name should be consistent across nodes so5.
each join the same cluster.

Assessments

[338]

The number is dictated by (N/2)+1.6.
By using the same cluster.name setting, the second node will join to the same7.
cluster.
Add the repo, install through yum, partition the disk for logstash.8.
This is a storage location where logstash will persistently store queues in the9.
scenario of a crash.
A coordinating node is an Elasticsearch node that does not accept inputs, does10.
not store data or takes part in master/slave elections.
Beats are the lightweight data shippers from Elastic.co.11.
Filebeat function is to collect logs from sources like syslog, apache and others to12.
later ship it to Elasticsearch or Logstash.

Chapter 13: Solving Management Problems
with Salty Solutions

Is the task of maintaining existing IT infrastructure.1.
Centralize all infrastructure regardless of its operating system or architecture.2.
Puppet, Chef, Ansible, Spacewalk, SaltStack and many others.3.
Writing desired states on a specific language that can describe the state of an IT4.
infrastructure.
Push and Pull.5.
Salt is an open source project/software that comes to solve many of the6.
challenges of systems’ management.
Master and Minions.7.

Chapter 14: Designing a Salt Solution and
Installing the Software

Any Linux distribution.1.
One self-managed node is the minimum.2.
Provide High availability and Balancing to our SaltStack.3.
Manually installing the binaries, and through the bootstrap script.4.

Assessments

[339]

Via their keys.5.
Through the test.ping function.6.
Grains contain minion specific information (metadata) or labels. Pillars contain7.
configuration and sensitive information.

Chapter 15: Design Best Practices
HIPAA stands for Health Insurance Portability and Accountability Act which is a1.
standard for handling health and medical data.
Type 1/ Type 2 Hypervisors (Kernel-based Virtual Machine (KVM), Linux2.
containers (LXC), XEN)
Linux for SAP HANA
Apache Hadoop
Linux for Oracle DB
Large MongoDB deployments for memory caching
High-performance computing (HPC)
Yes, ideally hypervisors need access to the resources to more effectively provide3.
them to virtual machines.
Yes, CPU is the major resource being shared as the physical CPU has to serve4.
cycles for all of the VMs in the same node.
Allowing for different network traffic to go through different NICs/ Subnets.5.
This is a method of migration which literally moves existing workloads from on-6.
premises to the cloud.
This is a method of migration which leverages some changes to the architecture7.
to take advantage of solutions provided on the cloud.
This is a method of migration which involves re-architecting the solution into the8.
cloud.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Linux Administration on Azure
Frederik Vos

ISBN: 9781789130966

Understand why Azure is the ideal solution for your open source workloads
Master essential Linux skills and learn to find your way around the Linux
environment
Deploy Linux in an Azure environment
Use configuration management to manage Linux in Azure
Manage containers in an Azure environment
Enhance Linux security and use Azure’s identity management systems
Automate deployment with Azure Resource Manager (ARM) and Powershell
Employ Ansible to manage Linux instances in an Azure cloud environment

https://www.packtpub.com/virtualization-and-cloud/hands-linux-administration-azure

Other Books You May Enjoy

[341]

Linux Administration Cookbook
Adam K. Dean

ISBN: 9781789342529

Install and manage a Linux server, both locally and in the cloud
Understand how to perform administration across all Linux distros
Work through evolving concepts such as IaaS versus PaaS, containers, and
automation
Explore security and configuration best practices
Troubleshoot your system if something goes wrong
Discover and mitigate hardware issues, such as faulty memory and failing drives

https://www.packtpub.com/virtualization-and-cloud/linux-administration-cookbook

Other Books You May Enjoy

[342]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Adaptive Replacement Cache (ARC) 48, 67, 76
Advanced RISC Machines (ARM) 35
Agile methodology 325
Ansible 329
Apache Ant 328
Apache JMeter 329
Apache Maven 328
Apache subversion (SVN) 328
Appium 329
application programming interface (API) 26
asynchronous replication 43
availability testing 89
Azure CLI
 configuring 154
 installing 153
Azure deployment 65, 67
Azure Kubernetes Services (AKS) 111
Azure load-balancer 183
Azure Virtual Machines (VMs) 279

B
backend storage
 bricks, setting up for 65
Beats clients
 configuring 254
Beats
 about 252
 installing 254
Bitbucket 328
block storage 28, 29
bootstrap script
 Salt, installing via 298
Buildkit 328
bulk data 27

C
cache
 need for 48, 49
CentOS yum
 installing 294, 295
centralized logs 208, 209
certificate authority 160
certificates
 generating 160
 sending, to corresponding nodes 168
CI/CD
 continuous culture 326
client certificates 162, 163
cloud environments 318
cloud migration
 about 320
 assessment 319
 lift and shift 320
 optimization 322
 rearchitecting 321
 rebuild 322
 refactor 321
cloud-native applications 322
cloud
 about 319
 considerations 49, 50
 Kubernetes, managing on 199, 200
cluster network 126
cluster
 about 22
 characteristics 23
 computing 22, 23
 example 22
 overview 81
 storage clusters 24
CMD instruction 102

[344]

common internet file system (CIFS) 28
compute requisites, GlusterFS
 about 48
 CPU 49
 RAM 48
container images
 building 97, 98, 106, 107, 108, 109
container orchestration 110
container runtime 118
container runtime interface (CRI) 119
continuous deployment (CD) 327
continuous integration (CI) 327
control plane certificates 164, 165, 166, 167
control plane kubeconfigs 169
control plane
 installing 173
 starting 180, 181
coordinating node 250, 251
COPY instruction 100
CPU 49
CPU performance impact
 about 218
 index per second 218
 search latency 219
 startup 218

D
deployment
 about 125
 overview 232, 233
DevOps 323
DevOps, adopting issues
 Agile solutions, to monolithic problems 325
 monolithic waterfalls 324
disaster recovery 41
dispersed volume
 about 40, 49, 51
 creating 74
distributed dispersed volume 40
distributed replicated volume 39
distributed volume 38, 50, 51
DNS server
 provisioning 198
Docker 328
Dockerfile 97

dynamic kernel modules (DKMS) 68

E
elastic container service for Kubernetes (EKS) 111
Elasticsearch CPU requisites
 about 217
 CPU count 217
 CPU performance impact 218
 CPU speed 218
 recommendations 220
Elasticsearch data directory
 about 235
 disk, partitioning 235, 236
 filesystem, formatting 236, 237
 fstab, using for persistent mounting 237, 238
Elasticsearch node
 adding 242, 243
Elasticsearch YAML
 about 238
 cluster name 239
 discovery settings 239, 240
 network host 241
 node name 240
 path settings 241
Elasticsearch
 about 234
 configuring 238
 features 210
 memory sizing 221
 overview 210
 starting 242
 storage configuration 226
ELK Stack 203
Elliptic Curve Cryptography 270
ENTRYPOINT instruction 103
ENV instruction 100
etcd data
 encrypting 175
etcd database 117
etcd
 installing 173, 174
EXPOSE instruction 101

[345]

F
fibre channel (FC) 28
fibre channel over ethernet (FCoE) 28
file storage 30
Filebeat 253
Filebeat YAML 254, 255, 256
FIO tester 86, 87
Fluentbit 329
FROM instruction 98
fully qualified domain name (FQDN) 128

G
General Data Protection Regulation (GDPR) 315
Git 327
GitHub 328
GitLab 328
Gluster volume types
 about 37
 dispersed volumes 40
 distributed 38
 distributed dispersed 40
 distributed replicated 39
 replicated 38
GlusterFS performance
 about 54
 brick layout 55
 number of nodes 56
 tuning parameters 56
 volume type 54
GlusterFS tuning 76
GlusterFS volume types
 about 50
 dispersed 51
 distributed 50, 51
 replicated 51
GlusterFS
 about 24
 commits 24
 compute requisites 48
 contributors 24
 features 34, 35, 36, 37
 installing, on nodes 72
 packages, requisites 72
 SDS 25

Google Kubernetes Engine (GKE) 111
Gradle 328
grains interface, Salt 275
Grok 211, 212
group identifier (GID) 101
Grunt 328

H
hard disk drive (HDD) 24, 65, 136
Hashicorp Configuration Language (HCL) 282
headless services 142
Health Insurance Portability and Accountability Act

(HIPAA) 315
Helm 329
high availability
 approach 56
 dispersed volumes 57
 geo-replication 58, 59
 replicated volumes, selecting 57
high performance
 need for 43
high-performance compute (HPC) 49
high-performance computing (HPC) 37
High-performance computing (HPC) 317
highly redundant storage
 need for 41

I
image manifest 98
Infrastructure as a Service (IaaS) 111, 279, 318
Infrastructure as Code (IaC)
 about 264, 280
 coding, for desired state 265, 266
 creating 283, 284, 286, 289, 291
infrastructure deployment
 about 152
 compute resources, provisioning 156, 157, 158,

159

 high-level design overview 154, 155
 management VM, preparing 159, 160
 network resources, provisioning 155, 156
input/output operations per second (IOPS) 65, 136
instructions, container images
 CMD instruction 102
 COPY instruction 100

[346]

 ENTRYPOINT instruction 104
 ENV instruction 100
 EXPOSE instruction 102
 FROM instruction 98
 LABEL instruction 99
 RUN instruction 99
inter-process communication (IPC) 122
internet small computer systems interface (iSCSI)

28

iostat 84, 85

J
Jenkins 329
just a bunch of disks (JBOD) 38

K
Kernel-based Virtual Machine (KVM) 316
Kibana YAML 250
Kibana
 about 212, 214, 228
 configuring 250
 installing 244
 interface 213
 starting 251
kube objects
 customizing 143
kube-apiserver 116, 176, 177
kube-controller-manager
 about 117, 169, 178
 reference 117
kube-proxy 119, 172
kube-scheduler
 about 117, 169, 179, 180
 reference 117
Kube-sizing
 about 135
 etcd considerations 136
 kube-apiserver sizing 137
 load balancer considerations 138
 worker nodes 137
kubeconfigs
 about 168
 transferring 172, 173
kubectl
 installing 169

kubelet 119
kubelet configs 171
Kubernetes controller binaries
 installing 176
Kubernetes networking
 about 197
 nodes 197
 remote access, configuring 197
Kubernetes objects
 about 120, 121
 deployments 125, 126
 pods 122
 service 127, 128
 volumes 130
Kubernetes worker nodes
 about 118
 container runtime 118
 kube-proxy 119
 kubelet 119
Kubernetes
 about 111
 architecture 112
 control plane 115
 managing, on cloud 199, 200
 master nodes components 116

L
L2ARC 77
LABEL instruction 99
Linux containers (LXC) 316
load-balancer
 Azure load-balancer 183
 backend pool 183, 185
 creating 183
 health probes 186, 188
 setting up 183
load-balancing rules
 creating 189, 190
logical unit number (LUNs) 131
logical volume manager (LVM) 38, 139
Logstash pipelines 247
Logstash YAML 245, 246
Logstash
 about 211, 228
 configuring 245

[347]

 custom patterns 212
 Grok 211, 212
 installing 244
 starting 251

M
master nodes
 about 115
 services 116
memory sizing, Elasticsearch
 about 221
 filesystem cache 221
 recommendations 225
 swap, disabling 222
 undersizing memory 223
Metricbeat 253
Metricbeat YAML 257, 258
microservice application
 example 94
microservices 93, 94
minions 118
modules, Terraform
 reference 283
monitoring
 about 203
 need for 204, 205, 206, 207
mount namespace (MNT namespace) 96

N
NaCl 267
Nagios 329
namespace resources
 limiting 144, 145
namespaces
 about 143
 default 143
 kube-public 143
 kube-system 143
network address translation (NAT) 141, 270
network filesystem (NFS) 318
network requisites
 about 140
 Kubernetes DNS-based service discovery 141
network security groups 284, 285, 286
network security groups (NSGs) 156

network-attached storage (NAS) 26
nodes
 GlusterFS, installing on 72
non-volatile memory express (NVMe) 43, 232
normal services 142

O
object storage 31, 32, 34
on-premises environments
 about 316
 bare metal server 316, 317
 virtual machines 317, 318
open profiling standard (OPS) 96
open source software (OSS) 11, 24
operating expense (OPEX) 25
out-of-memory killer (OOM killer) 223, 225

P
package managers
 Salt, installing with 294
parallel I/O 44
Payment Card Industry Data Security Standards

(PCI-DSS) 315
performance considerations
 about 52
 GlusterFS performance 54
 I/O size 54
 IOPS 53
 latency 53
 throughput 53
performance optimization
 about 76
 GlusterFS tuning 76
 ZFS 76
performance testing 82
performance theory 82
performance tools
 about 83
 FIO tester 86, 87
 iostat 84, 85
 ZFS zpool iostat command 83, 84
persistent storage 129
persistent volume claims (PVCs) 131
persistent volume types 131
persistent volumes 131

[348]

Persistent Volumes (PV) 129
Petabyte (PB) 24
Pillars 276
pkg module 273
platform as a service (PaaS) 111
Platform as a Service (PaaS) 318
POC 17
pods
 about 122
 containers 123
 customizing 146, 147, 148
 restartPolicy field 123
problem, analyzing
 about 10
 business standpoint 13
 functional standpoint 14
 technical standpoint 11, 12
process ID (PID) 122
process namespace (PID namespace) 97
Prometheus 329
Proof of Concept (POC) 9
provisioner 133
Puppet 329

Q
quality assurance (QA) 325

R
Raft algorithm
 about 136
 reference 136
RAM 48
RBAC permissions, kubelets
 cluster role 182
 cluster role binding 182
 setting 181
recommendations, Elasticsearch CPU
 production 220
 test/dev 220
records 142
recovery point objective (RPO) 11, 43
recovery time objective (RTO) 11, 42
remote command execution modules, Salt
 pkg module 273
 sys module 272

 test module 274
remote direct memory access (RDMA) 37
replicated volume 38, 49, 51
round-trip time (RTT) 30
RPM repository
 installing, for RHEL 234, 235
RUN instruction 99

S
Salt capabilities
 about 270
 remote command execution modules 271, 272
Salt
 about 267, 279
 grains interface 275
 installing, via bootstrap script 298
 installing, with package managers 294
 load-balancing formulas, creating 310, 311
 master handshake 298, 299, 300, 301
 minion handshake 298, 299, 300, 301, 302
 nodes 270
 Pillars 276
 states 274, 275
 WebServer formulas, creating 303, 304, 305,

307, 309
 working with 303
SaltStack platform 269
scaling 89
SDS, GlusterFS
 control 26
 cost reduction 25
 market 26
 massive storage 27
 scalability 25
Secrets API object 276
Selenium 328
server message block (SMB) 28
service 127, 128
Service Level Agreement (SLA) 13
service records (SRVs) 142
shard 211
Small Computer System Interface (SCSI) 28
Software as a Service (SaaS) 318
solid state drive (SSD) 26, 65, 136
Solid-State Drive (SSD) 227

[349]

solution design
 stages, defining 9
solution
 considering 15
 implementing 19
space
 about 50
 for application 51
 projected growth 52
storage area network (SAN) 28
storage class 132
storage class provisioner
 reference 133
storage clusters 23
storage configuration, Elasticsearch
 about 226
 capacity 226
 considerations 227
 performance 227
storage considerations 139
synchronous replication 43
sys module 272
system management
 and new technologies 263
 centralized tools, for dispersing problems 264
 centralizing 262
 control, recovering of infrastructure 264

T
terabytes (TB) 23
Terraform
 download link 280
 setting up 280, 281, 282
test module 274
tiering 133
total cost of ownership (TCO) 319
traditional storage 25
transmission control protocol (TCP) 102
trusted pool
 creating 73

U
Ubuntu apt 297
undersizing memory, Elasticsearch
 out-of-memory killer (OOM killer) 225

 unable start 223, 224
Universally Unique Identifier (UUID) 84
user datagram protocol (UDP) 102
user identifier (UID) 101

V
virtual machine (VM) 97
virtual module 273
virtual storage appliances (VSAs) 26
volumes
 about 130
 creating 74
 mounting 75
 reference 131

W
waterfall 324
Weave Net
 installing 198
worker node setup
 about 190
 binaries, downloading 191
 binaries, preparing 191
 containerd setup 193
 dependencies, installing 191
 kube-proxy 195, 196
 kubectl, installing 191
 kubelet 194
 Kubernetes repository, adding 191
 services, starting 196
 worker binaries, downloading 192
 worker binaries, storing 192
workload defines requirements
 about 59
 documentation 59
 file size 60
 file type 60
 system tools 60

Y
YAML 268

Z
Z file system (ZFS)

 about 66
 ARC 76
 as backend, for bricks 67
 installing 68
 L2ARC 77

ZFS cache
 adding, to pool 70
ZFS zpool iostat command 83, 84
zpools
 configuring 68, 69, 70

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Dedication
	Table of Contents
	Preface
	Section 1: High-Performance Storage Solutions with GlusterFS
	Chapter 1: Introduction to Design Methodology
	Defining the stages of solution design and why they matter
	Analyzing the problem and asking the right questions
	Technical standpoint
	Business standpoint
	Functional standpoint

	Considering possible solutions
	POC

	Implementing the solution
	Summary
	Questions
	Further reading

	Chapter 2: Defining GlusterFS Storage
	Technical requirements
	What is a cluster?
	Computing a cluster
	Storage clusters

	What is GlusterFS?
	SDS
	Cost reduction
	Scalability
	Control
	The market is moving toward SDS
	Massive storage

	Block, file, and object storage
	Block storage
	File storage
	Object storage

	Why choose GlusterFS?
	GlusterFS features
	Commodity hardware – GlusterFS runs on pretty much anything
	GlusterFS can be deployed on private, public, or hybrid clouds
	No single point of failure
	Scalability
	Asynchronous geo-replication
	Performance
	Self-healing
	Flexibility
	Remote direct memory access (RDMA)

	Gluster volume types
	Distributed
	Replicated
	Distributed replicated
	Dispersed
	Distributed dispersed

	The need for highly redundant storage
	Disaster recovery
	RTO
	RPO
	Synchronous replication
	Asynchronous replication

	The need for high performance
	Parallel I/O
	Summary
	Questions
	Further reading

	Chapter 3: Architecting a Storage Cluster
	Technical requirements
	GlusterFS compute requirements
	RAM
	Why is cache important?

	CPU
	Cloud considerations

	How much space do you need?
	GlusterFS volume type
	Distributed
	Replicated
	Dispersed

	Space required by the application
	Projected growth

	Performance considerations
	Throughput
	Latency
	IOPS
	I/O size
	GlusterFS performance
	Volume type
	Brick layout
	Number of nodes
	Tuning parameters

	The best approach for high availability
	Replicated
	Dispersed
	Geo-replication

	How the workload defines requirements
	Documentation
	System tools
	File type and size
	Ask the right questions

	Summary
	Questions
	Further reading

	Chapter 4: Using GlusterFS on the Cloud Infrastructure
	Technical requirements
	Setting up the bricks used for backend storage
	Azure deployment
	ZFS as the backend for the bricks
	Installing ZFS
	Configuring the zpools
	Adding the ZFS cache to the pool (optional)

	Installing GlusterFS on the nodes
	Installing the packages
	Creating the trusted pool

	Creating the volumes
	Creating a dispersed volume
	Mounting the volume

	Optimizing performance
	GlusterFS tuning
	ZFS
	ARC
	L2ARC

	Summary
	Questions
	Further reading

	Chapter 5: Analyzing Performance in a Gluster System
	Technical requirements
	An overview of the implementation
	An overview of the cluster

	Performance testing
	Performance theory
	Performance tools
	The ZFS zpool iostat command
	iostat
	The FIO tester

	Availability testing
	Scaling
	Summary
	Questions
	Further reading

	Section 2: High-Availablility Nginx Web Application Using Kubernetes
	Chapter 6: Creating a Highly Available Self-Healing Architecture
	Microservices
	Creating container images
	FROM
	LABEL
	RUN
	ENV
	COPY
	EXPOSE
	CMD and ENTRYPOINT

	Building container images using best practices
	Container orchestration
	Kubernetes
	Summary
	Questions
	Further reading
	Bibliography/sources

	Chapter 7: Understanding the Core Components of a Kubernetes Cluster
	The Kubernetes control plane
	The kube-apiserver
	The kube-controller-manager
	The kube-scheduler
	The etcd database

	Kubernetes worker nodes
	Container runtime
	The kubelet
	The kube-proxy

	Kubernetes objects
	Pods – the basis of Kubernetes
	Deployments
	Services
	Kubernetes and persistent storage
	Volumes
	Persistent Volumes, Persistent Volume Claims, and Storage Classes

	Summary
	Questions
	Further reading

	Chapter 8: Architecting a Kubernetes Cluster
	Kube-sizing
	etcd considerations
	kube-apiserver sizing
	Worker nodes
	Load balancer considerations

	Storage considerations
	Network requirements
	Kubernetes DNS-based service discovery

	Customizing kube objects
	Namespacing
	Limiting namespace resources
	Customizing pods

	Summary
	Questions
	Further reading

	Chapter 9: Deploying and Configuring Kubernetes
	Infrastructure deployment
	Installing Azure CLI
	Configuring Azure CLI

	High-level design overview
	Provisioning network resources
	Provisioning compute resources
	Preparing the management VM
	Generating certificates
	Certificate authority
	Client certificates
	Control plane certificates

	Sending our certificates home

	Kubeconfigs
	Installing kubectl
	Kube-controller-manager
	Kube-scheduler
	Kubelet configs
	Kube-proxy
	Moving configs around

	Installing the control plane
	ETCD
	Installing etcd
	Encrypting etcd data

	Installing the Kubernetes controller binaries
	Kube-apiserver
	Kube-controller-manager
	Kube-scheduler

	Starting the control plane

	Setting RBAC permissions for kubelets.
	Cluster role
	Cluster role binding

	Load-balancer setup
	Creating the load-balancer
	Azure load-balancer
	The backend pool

	Health probes
	Load-balancing rules

	Worker node setup
	Downloading and preparing binaries
	Adding the Kubernetes repository
	Installing dependencies and kubectl
	Downloading and storing worker binaries

	Containerd setup
	The kubelet
	kube-proxy
	Starting services

	Kubernetes networking
	Getting the nodes ready
	Configuring remote access
	Installing Weave Net

	DNS server
	Managing Kubernetes on the cloud

	Summary
	Questions
	Further reading
	Bibliography/sources:

	Section 3: Elastic Stack
	Chapter 10: Monitoring with the ELK Stack
	Technical requirements
	Understanding the need for monitoring
	Decisions made through historical data
	Proactively detect problems
	Understand environment performance
	Plan for budget

	Centralized logs
	Elasticsearch overview
	Fast
	Scalable
	Highly available

	Logstash
	Grok
	Custom patterns

	Kibana brings everything together
	Summary
	Questions
	Further reading

	Chapter 11: Designing an ELK Stack
	Technical requirements
	Elasticsearch CPU requirements
	CPU count
	CPU speed
	CPU performance impact
	Startup
	Index per second
	Search latency

	Recommendations
	Test/dev
	Production

	Memory sizing for Elasticsearch
	Filesystem cache
	Disable swap
	Undersizing memory
	Unable start
	OOM killer

	Recommendations

	Storage configuration for Elasticsearch
	Capacity
	Performance
	Considerations

	Logstash and Kibana requirements
	Logstash
	Kibana

	Summary
	Questions
	Further reading

	Chapter 12: Using Elasticsearch, Logstash, and Kibana to Manage Logs
	Technical requirements
	Deployment overview
	Installing Elasticsearch
	The RPM repository
	The Elasticsearch data directory
	Partitioning the disk
	Formatting the filesystem
	Persistent mounting using fstab

	Configuring Elasticsearch
	Elasticsearch YAML
	Cluster name
	Discovery settings
	Node name
	Network host
	Path settings

	Starting Elasticsearch
	Adding an Elasticsearch node

	Installing Logstash and Kibana
	Configuring Logstash
	Logstash YAML
	Logstash pipelines

	Configuring Kibana
	Kibana YAML
	The coordinating node

	Starting Logstash and Kibana
	What are Beats?
	Filebeat
	Metricbeat

	Let's not skip a beat – installing Beats
	Configuring Beats clients
	Filebeat YAML
	Metricbeat YAML

	Next steps
	Summary
	Questions
	Further reading

	Section 4: System Management Using Saltstack
	Chapter 13: Solving Management Problems with Salty Solutions
	Centralizing system management
	New technologies and system management
	Recovering control of our own infrastructure
	Centralized tools to disperse problems
	Coding for a desired state

	Understanding NaCl
	Introducing Salt
	The SaltStack platform
	Salt capabilities
	Remote command execution modules
	The sys module
	The pkg module
	The test module

	Salt states
	Grains of Salt
	Salt pillars

	Summary
	Questions
	Further reading

	Chapter 14: Getting Your Hands Salty
	Hands-on with Salt
	Scenario
	Terraforming our initial infrastructure
	Setting up Terraform
	Creating IaC

	Installing Salt with package managers
	Installing CentOS yum
	Ubuntu apt-getting Salt
	Installing Salt via the bootstrap script
	Master and minion handshake
	Working with Salt
	Creating WebServer formulas
	Creating load-balancing formulas

	Summary

	Chapter 15: Design Best Practices
	Designing for the occasion
	On-premises environments
	Bare metal server
	Virtual machines

	Cloud environments
	The journey to the cloud
	Assessing
	Migrating
	Lift and shift
	Refactor
	Rearchitecting
	Rebuild
	Optimizing

	DevOps
	Monolithic waterfalls
	Agile solutions to monolithic problems
	Continuous culture for CI/CD

	Summary
	Questions
	Further reading

	Assessments
	Other Books You May Enjoy
	Index

